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Abstract. Binary Partition Hierarchies (BPHs) and Minimum Span-
ning Trees are key structures in hierarchical image analysis. However,
the explosion in the size of image data poses a new challenge, as the
memory available in conventional workstations becomes insufficient to
execute classical algorithms. To address this problem, specific algorithms
have been proposed for out-of-core computation of BPHs, where a BPH
is actually represented by a collection of smaller trees, called a distribu-
tion, thus reducing the memory footprint of the algorithms. In this arti-
cle, we address the problem of designing efficient out-of-core algorithms
for computing classical attributes in distributions of BPHs, which is a
necessary step towards a complete out-of-core hierarchical analysis work-
flow that includes tasks such as connected filtering and the generation
of other representations such as hierarchical watersheds. The proposed
algorithms are based on generic operations designed to propagate infor-
mation through the distribution of trees, enabling the computation of
attributes such as area, volume, height, minima and number of minima.

1 Introduction

Hierarchies are versatile representations that are useful in many image analysis
and processing problems and are attracting increasing interest [15]. Among them,
binary partition hierarchies [2,18] (BPHs) paired to minimum spanning trees are
key structures for several (hierarchical) segmentation methods: in particular, it
has been shown [2,14] that the BPH can be used to efficiently compute quasi-flat
zone hierarchies [2,13] (also called α-trees), watershed hierarchies [2,12] or seed-
based watersheds [10]. Efficient algorithms for building BPHs on standard size
images are well established [14], but with the continuous improvement of image
acquisition systems, the image resolutions are increasing dramatically, resulting
in images that can reach dozens of gigabytes. In [3, 11] the authors proposed
algorithms to compute the BPH under the out-of-core constraint, i.e., when the
goal is to minimize the amount of memory required by the algorithms. In this
framework, the BPH is spread into a collection of smaller local hierarchies called
a distribution. Each local hierarchy is represented by a tree data structure that
is small enough to fit in the main memory of a classical workstation.

In this article, we address the problem of the out-of-core computation of
tree attributes, which is a necessary step to obtain a complete out-of-core hi-
erarchical image analysis pipeline including for example: connected filters [17],
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attribute openings [1] or extinction values computation [19]. Several authors have
already explored the issue of attribute computation in related contexts, such as
incremental attribute computation [20] and parallel or distributed algorithms for
hierarchical image analysis. In [4,7,9], the authors investigate distributed mem-
ory algorithms for computation of min and max trees to perform user-defined
attribute filtering and multiscale analysis of terabytes images. In [5], the method
was extended to allow a posteriori attribute computation on distributed com-
ponent trees. In [6], the computation of minimum spanning trees of streaming
images is considered whereas a parallel algorithm for the computation of quasi-
flat zones hierarchies has been proposed in [8], allowing to efficiently implement
interactive filtering segmentation of video.

In this study, we propose a generic scheme and detailed algorithms for com-
puting regional attributes on the distribution of a BPH under the out-of-core
constraint. These algorithms do not require any additional global data structure
and only require having two trees of the distribution simultaneously in memory.
We consider classical geometric attributes such as area, volume, height, or right-
most intersecting slice of a region, and topological attributes such as the Boolean
attribute indicating whether a region is a regional minimum and the number of
regional minima included in each region. The implementation of the method in
C++ and Python based on the hierarchical graph processing library Higra [16]
is available online https://github.com/PerretB/Higra-distributed.

This article is organized as follows. Section 2 gives the formal problem state-
ment recalling the notion of BPH and distribution of BPH before introducing
the distribution of an attribute. Section 3 explains the proposed data structures
and presents a general scheme for out-of-core attribute computation. Section 4
presents uses of this scheme for calculating attributes such as area, volume,
height, local minima and number of minima.

2 Out-of-core Attribute Computation: Problem
Statement

In this section, we give formal definitions of a BPH and of the distribution of a
BPH, and we state the problem of computing an attribute over the distribution
of a BPH.

2.1 Binary Partition Hierarchy by Altitude Ordering

Let us first recall the definition of a hierarchy of partitions. Then we define the
binary partition hierarchy by altitude ordering.

Let V be a set. A partition of V is a set of pairwise disjoint subsets of V .
Any element of a partition is called a region of this partition. The ground of a
partition P, denoted by gr(P), is the union of the regions of P. A partition whose
ground is V is called a complete partition of V . Let P and Q be two partitions
of V . We say that Q is a refinement of P if any region of Q is included in
a region of P. A hierarchy on V is a sequence (P0, . . . ,Pℓ) of partitions of V

https://github.com/PerretB/Higra-distributed
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such that, for any λ in {0, . . . , ℓ− 1}, the partition Pλ is a refinement of Pλ+1.
Let H = (P0, . . . ,Pℓ) be a hierarchy. The integer ℓ is called the depth of H
and, for any λ in {0, . . . , ℓ}, the partition Pλ is called the λ-scale of H. In the
following, if λ is an integer in {0, . . . , ℓ}, we denote by H[λ] the λ-scale of H. For
any λ in {0, . . . , ℓ}, any region of the λ-scale of H is also called a region of H.
The hierarchy H is complete if H[0] = {{x} | x ∈ V } and if H[ℓ] = {V }. We
denote by Hℓ(V ) the set of all hierarchies on V of depth ℓ, by P(V ) the set of
all partitions on V , and by 2|V | the set of all subsets of V .

In the following, the symbol ℓ stands for any strictly positive integer.
We define a graph as a pair G = (V,E) where V is a finite set and E is

composed of ℓ unordered pairs of distinct elements in V . Each element of V is
called a vertex of G, and each element of E is called an edge of G. The Binary
Partition Hierarchy (BPH) by altitude ordering relies on a total order on E,
denoted by ≺. Let k in {1, . . . , ℓ}, we denote by u≺

k the k-th element of E for
the order ≺. Let u be an edge in E, the rank of u for ≺, denoted by r≺(u),
is the unique integer k such that u = u≺

k . We set B[0] = {{x } | x ∈ V }. The
partial binary partition hierarchy B[k] at rank k is the hierarchy on V defined
by B[k] = (B[k − 1] \ {Rx, Ry}) ∪ {Rx ∪Ry} where u≺

k = {x, y} and where Rx

(resp. Ry) is the unique region of B[k− 1] that contains x (resp. y). The partial
binary partition hierarchy at rank ℓ is the binary partition hierarchy by ≺ and
it is denoted by B≺. The rank r(R) of a region R of B≺ is the lowest scale λ
at which the region appears in the hierarchy and, if r(R) > 0, the building edge
of R, denoted by µ≺(R), is the edge µ≺(R) = u≺

r(R) (i.e., the edge that lead to

“building” region R).

2.2 Distribution of Binary Partition Hierarchy on a Causal
Partition

Intuitively, distributing a hierarchy consists in splitting it into a set of smaller
hierarchies such that: 1) each smaller hierarchy corresponds to a selection of
a subpart of the whole that intersects a slice of the graph and 2) the initial
hierarchy can be reconstructed by “gluing” those smaller hierarchies.

Let V be a set. The operation sel is the map from 2|V |×P(V ) to P(V ) which
associates to any subset X of V and to any partition P of V the subset sel(X,P)
of P which contains every region of P that contains an element of X. The
operation select is the map from 2|V | × Hℓ(V ) in Hℓ(V ) which associates to
any subset X of V and to any hierarchy H on V the hierarchy select (X,H) =
(sel(X,H[0]), . . . , sel(X,H[ℓ])).

We are then able to define the distribution of a hierarchy thanks to the select
operation. Let V be a set, let P be a complete partition on V and let H be a hier-
archy on V . The distribution of H over P is the set δH = {select (R,H) | R ∈ P}
and for any region R of P, select (R,H) is called a local hierarchy of δH In Fig-
ure 1, the distribution (H0,H1,H2) of the BPH H is computed over the causal
partition ({a, d}, {b, e}, {c, f}).

In the following sections, we consider the special case of a distribution built
on a 4-adjacency graph representing a 2d image divided into slices (this is not a



4 J. Lefèvre et al.

limiting factor, and the method can easily be adapted to any regular grid graph
such as 6 adjacency for 3d images). Let h and w be two integers representing
the height and the width of an image. Then, the vertex set V is the Cartesian
product {0, · · · , h − 1} × {0, · · · , w − 1} and the edge set E is given by the
well-known 4-adjacency relation on V . Let k be a positive integer, the causal
partition of V into k + 1 slices is the sequence (S0, . . . , Sk) such that for any t
in {0, · · · , k}, St = {(i, j) ∈ V | t× w

k ≤ i < (t+ 1)× w
k }. Each element of the

sequence (S0, . . . , Sk) is called a slice and it can be seen that each slice can have
up to two neighboring slices.

Important notation. In this article, the symbols G = (V,E), ≺, and H denote
a 4-adjacency graph of ℓ edges, a total order on its edge set E, and the associated
BPH by ≺, respectively. Furthermore, the symbol δH denotes the distribution of
H over the causal partition (S0, · · · , Sk) of V into k + 1 slices.

2.3 Distribution of Attributes

An attribute on H is a mapping A associating an attribute value A(R) to every
region R of H. In this article, we consider attributes values that can be either
Boolean or scalar and we are interested in computing attributes from the distri-
bution of a BPH over a causal partition. To this end, given an attribute A on H,
we define the distribution of A over δH as the series δA = (AB0

, · · · , ABk
) such

that for any i in {0, . . . , k} and any R in Bi, we have A(R) = ABi
(R). Hence, in

this article, our main goal is to solve the following problem.

Problem. Given the distribution δH of the hierarchy H, compute the distribu-
tion δA of an attribute A without explicitly computing H nor A while maintaining
the out-of-core constraint, that is having a limited amount of memory at each
computation steps.

3 Propagate Algorithm: a Fundamental Brick for
Out-of-core Attribute Computation

In this section, we introduce Propagate Algorithm which is called as a fundamen-
tal step of all subsequent attribute computations. Since a region may contain
pixels belonging to several slices, it is generally not possible to compute the at-
tribute of a region using only the information available in a single local hierarchy
of the distribution. Thus, the general out-of-core attribute computation scheme
considers a first step of local computation followed by a second step consisting
of merging local information, done with Propagate Algorithm. More precisely,
the proposed computation proceeds as follows:

1. Compute a partial attribute value locally on each tree of the distribution;
2. Propagate partial attribute values from neighboring trees in the causal di-

rection, i.e., from slices of lower indices to those of higher indices. At the
end of this step, the attribute values of the last tree of the distribution are
correct;
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3. Backpropagate the “correct” attribute values in the anti-causal direction,
i.e., from slices of higher indices to those of lower indices. At the end of this
step, all the attribute values of all the trees in the distribution are correct.

In this scheme, each local hierarchy of the distribution is visited twice (once in
the causal pass and once in the anti-causal pass) and at any step, we never need
to have more than 2 neighboring hierarchies simultaneously in memory.

Before describing precisely Propagate Algorithm in Section 3.2, we first in-
troduce the necessary data structures in Section 3.1. Then, the computation of
specific attributes using Propagate Algorithm is addressed in Section 4.

The distribution of H built over 
the causal partition {S0, S1, S2}

A BPH H built on an edge
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Fig. 1. Left, a BPH H built on an edge weighted graph (index/weight) and the visual-
isation of the nested series of partition. Red edges of the graph belong to the minimum
spanning tree. Right, the distribution {H0,H1,H2} of H over the causal partition
{S0, S1, S2}.

3.1 Data Structures

The data structures used in our algorithms are designed to contain only the
necessary and sufficient information so that we never need to have all the data
in the main memory at once. The tree-based data structure representing a local
hierarchy H assumes that the regions, also called nodes of the hierarchy in this
context, are indexed in a particular order and relies on three arrays: 1) a mapping
of the indices from the local context (a given slice) to the global one (the whole
graph) noted H.map, 2) a parent array denoted by H.par encoding the parent
relation between the tree nodes, and 3) an array H.alt giving, for each non-
leaf-node of the tree, the weight of its corresponding building edge also called
altitude.

More precisely, given a binary partition hierarchy H with n regions, every
integer between 0 and n−1 is associated to a unique region of H. Moreover, this
indexing of the regions of H follows a topological order such that: 1) any leaf
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region is indexed before any non-leaf region; 2) two leaf regions {x} and {y} are
sorted with respect to an arbitrary order on the element V (e.g., the raster scan
order in 2d) and 3) two non-leaf regions are sorted according to their altitude,
i.e., the order of their building edges for≺. This order can be seen as an extension
of the order ≺ on E to the set V ∪ E that enables 1) to efficiently browse the
nodes of a hierarchy according to their scale of appearance in the hierarchy and
2) to efficiently match regions of V with the leaves of the hierarchy. By abuse of
notation, this extended order is also denoted by ≺ in the following.

To keep track of the global context, a link between the indices in the local
tree and the global indices in the whole graph is stored in the form of an array
map which associates: 1) to the index i of any leaf region R, the vertex x of the
graph G such that R = {x}, i.e. map[i]=x; and 2) to the index i of any non-leaf
region R, its building edge, i.e. map[i]=µ≺(R).

The parent relation of the tree is stored in an array par such that par[i]=j
if the region of index j is the parent of the region of index i. For the root node
r, which has no parent, we set par[r]=r.

The binary partition hierarchy is built for a particular ordering ≺ of the edges
of G. In practice, this ordering is induced by weights computed over the edges
of G. To this end, we store an array alt of size |R⋆|, i.e. the number of non-leaf
regions, elements such that, for every region R in R⋆ of index i, alt[i] is the
weight of the building edge µ≺(R) of region R, with R⋆ be the set of non-leaf
regions R in H. The edges can then be compared according to the following total
order induced by the weights: we set u ≺ v if the weight of u is less than the one
of v or if u and v have equal weights but u comes before v with respect to the
raster scan order.

3.2 Attribute Propagation

Let us now give a precise description of Propagate Algorithm (see Algorithm 1)
that is a fundamental brick to compute regional attributes in an out-of-core man-
ner. This algorithm allows for transforming a first version of an attribute, which
can be seen as local to each slice, to a global version. To this end, the algorithm
considers the regions which are replicated in two neighbouring hierarchies asso-
ciated with successive slices and propagate their attribute values: 1) firstly, in a
causal order (lines 1 to 3), from the slices of lower indices to the ones of higher
indices; and 2) secondly, in an anti-causal order (lines 5 to 6), from the higher
indices to the lower ones. During the causal propagation, a binary operator is
used to merge the attribute values of regions replicated in consecutive slices Si

and Si+1. This binary operator (denoted by ⊕ in Algorithm 1) is given as a
parameter of the algorithm. In the following sections, depending on the kind of
attributes, we consider the sum, the maximum, or the minimum of two values.
During the anti-causal propagation, the attribute value of the region in the slice
of higher index is copied as the attribute value of the same replicated region in
the slice of lower index.
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Algorithm 1: Propagate

Params: The distribution (B0, . . . ,Bk)} of a BPH; a series
(attrB0

, . . . , attrBk
) of attributes; and a binary operator ⊕

Result: A new series (attr↓B0
, . . . , attr↓Bk

) of attributes where values of
regions replicated on consecutive slices have been propagated.

1 attr
↑
B0

:= attrB0

2 foreach i from 1 to k do

3 attr
↑
Bi

:= Merge(Bi−1,Bi, attr
↑
Bi−1

, attrBi ,⊕)

4 attr
↓
Bk

:= attr
↑
Bk

5 foreach i from k − 1 to 0 do

6 attr
↓
Bi

:= Merge(Bi+1,Bi, attr
↓
Bi+1

, attr↑Bi
, ◁)

7 return
(
attr

↓
B0
, . . . , attr↓Bk

)
In order to identify the regions that are replicated in two consecutive hier-

archies X and Y, Propagate Algorithm calls the auxiliary function Merge
(see Algorithm 2). This function simultaneously browses the regions of the two
hierarchies in increasing order. When two nodes x and y of, respectively, X and
Y are found as occurrences of the same region (i.e., when X .map[x] = Y.map[y],
see line 3 in Algorithm 2) the attribute values attrX [x] and attrY [y] are merged
and the result is stored as the new attribute value of y: attr′Y(y) := attrX (x)⊕
attrY(y). If assign-first operator, denoted by ◁, is given to Merge as the merg-
ing operator (i.e., if ⊕ = ◁), then the result attrX (x)⊕ attrY(y) is simply the
value attrX (x).

Algorithm 2: Merge

Params: Two hierarchies X and Y; two attributes attrX and attrY
associated with these hierarchies ; and a binary operator ⊕

Result: A new attribute attr′Y , update of attrY
1 x := 0; y := 0 // x iterates over X and y over Y
2 while x < |X | or y < |Y| do
3 if x < |X | and y < |Y| and X .map[x] = Y.map[y] then
4 attr′Y [y] := attrX [x]⊕ attrY [y]
5 x := x+ 1; y := y + 1

6 else if X .map[x] ≺ Y.map[y] then x := x+ 1
7 else y := y + 1; attr′Y [y] := attrY [y]

8 return attr′Y

Figure 2 illustrates the use of Propagate Algorithm. More precisely, in Fig-
ure 2b, an initial attribute value is mapped to each node (subscript) of the local

hierarchies (i.e., (attrB0
, attrB1

, attrB2
)). The values of (attr↑B0

, attr↑B1
, attr↑B2

)
obtained after the causal pass of Propagate are then shown in Figure 2c. In
particular, red arrows indicate the mapping between replicated regions detected
by Merge as well as the computation which is made to obtain the value of the
updated attribute (here ⊕ = + is given to Merge). Finally, Figure 2d shows

the result of (attr↓B0
, attr↓B1

, attr↓B2
) obtained after the anticausal pass.
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It can be observed that every node of each tree is browsed once during the
execution of Merge Algorithm. Thus, the overall time-complexity of Merge
Algorithm is linear with respect to the number of regions of X and Y. Further-
more, given a causal partition with k+1 slices, it can be seen that Propagate
performs exactly 2 × k calls to Merge and that the overall time complexity
of Propagate Algorithm is O(k + N) where N is the sum of the numbers of
regions of the local hierarchies B0, . . . ,Bk.

4 Out-of-core Attributes Algorithms

In this section, following the general scheme proposed in Section 3, we present
out-of-core algorithms to compute common attributes in hierarchical analysis.

Rightmost Slice. We first consider Rightmost slice attribute that maps to
every region R of H, the highest index of a slice containing a vertex of R. Aside
from being a simplest attribute whose values can be computed with the help of
Propagate, Rightmost slice attribute, denoted by right, will be used subse-
quently as a preprocessing necessary before computing more complex attributes
such as minima number. More precisely, it is used when one needs to select a
single representative of a region that is replicated over several slices. In such
case, we arbitrarily pick the representative of a region R as the occurrence of R
in local hierarchy Bi such that rightBi

(R) = i.
To compute the Rightmost slice of each region, firstly, for each local hierarchy

Bi in the distribution δH, we locally initialize an attribute IBi
(R) = i and then

we call Propagate with the supremum operator.

1 Function RightmostSlice(δH = {B0, . . . ,Bk})
2 foreach i from 0 to k do
3 rightBi

[R] := i for each region R of Bi

4 return Propagate(
(
rightB0

, . . . , rightBk

)
, δH, ∨)

Area. Let us now consider the area attribute that maps to every region of a
hierarchy the number of pixels in that region. In the tree-based representation of
a hierarchy, the area of a node n can be obtained recursively by setting area(n) =
1 for every leaf n and area(n) =

∑
c∈children(n) area(c) for every non-leaf node n

with children(n) = {c | n = parent(c)}. In the case of a distribution, for each
local tree, we initialize the area of the nodes with the previous recursive formula
(lines 2-5 below) followed by a call to Propagate with the + operator.

1 Function Area(δH = {B0, . . . ,Bk})
2 foreach i from 0 to k do
3 Initialize area values with 1 for every leaf and 0 for every

non-leaf
4 foreach non-root region R of Bi in topological order do
5 areaBi

[parent[R]]+ = areaBi
[R]

6 return Propagate((areaB0 , . . . , areaBk
), δH, +)



Out-of-core Attribute Algorithms for Binary Partition Hierarchies 9

Note that if we consider superpixels instead of pixels or the integral of a
function over the domain, the algorithm remains valid provided an adaptation
of its initialization at line 3.

Volume. In the tree-based representation of a hierarchy, the volume V (n)
of a node n can be obtained recursively by V (n) = 0 for every leaf n and
V (n) = A(n) × |altitude(parent(n)) − altitude(n) | +

∑
c∈children(n) V (c) for

every non-leaf node n. To compute the volume for a distribution, we firstly
initialize the volume locally with the recursive formula. Similarly to the area,
at this point, each region will lack the volumes of included regions that do not
belong to the same local hierarchy. To correct this value, we propagate the partial
volume by calling Propagate with the + operator.

1 Function Volume(δH = {B0, . . . ,Bk})
2 foreach i from 0 to k do
3 Locally initialize areaBi

i.e., lines 3-5 of Area
4 foreach non-root region R of Bi in topological order do
5 volBi

[R]+ = areaBi
[R]× (alt[Bi.par[R]]− alt[R])

6 volBi [Bi.par[R]]+ = volBi [R]

7 return Propagate((volB0
, . . . , volBk

), δH, +)

Height. The height of a region R of a BPH H is the difference between the
altitude of the region R and the altitude of the lowest region included in R.
From the tree based representation of a hierarchy, it can be computed with the
following recursion: H(n) = 0 for every leaf n and H(n) = altitude(parent(n))−
altitude(n) + max{H(c), c ∈ children(n)} for every non-leaf node n. In a dis-
tribution, after initializing the height locally, following the above recursion, it is
possible that the children leading to maximize the height in the global hierarchy
do not belong to the same local hierarchy. It is therefore necessary to ”search”
for these children within the distribution in order to maximize the height. To do
so we call Propagate with the supremum operator.

1 Function Height(δH = {B0, . . . ,Bk})
2 foreach i from 0 to k do
3 Initialize heigBi

to 0 for every node

4 foreach non-root region R of Bi in topological order do
5 heigBi

[Bi.par[R]] :=
max(heigBi

[Bi.par[R]], alt[Bi.par[Bi.par[R]]]−
altBi

[Bi.par[R]] + heigBi
[R])

6 return Propagate(
(
heigB0

, . . . , heigBk

)
, δH, ∨)

Note that this method can also be used to compute the topological height,
i.e. the maximum length of a paths from a node to a descendant leaf node.

Minima. A regional minimum of a weighted graph is a set of vertices con-
nected by edges of weight k and whose adjacent edges are all of strictly higher
weight. In the tree-based representation of a BPH, a node n can be identified as
a minimum if 1) the altitude of the parent of n is different from the one of n,
and 2) the altitude of any non-leaf node included in the sub-tree rooted in n is
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equal to the altitude of n. We can formalize and test these two criteria in our
framework. Firstly, let LBi

(n) = true if altitude(n) < altitude(parent(n)) and
false otherwise: this can be calculated locally, as only the altitude of the parents
is required. The second criterion is defined recursively as EL

Bi
(R) = false for any

leaf R and as EL
Bi
(R) =

∧
c∈children(R) ¬LBi

(c) for an any non-leaf region R. This
last criterion depends on the children of R, so we need to make sure it is satisfied
for all children in the distribution. We can verify this by calling Propagate with
the infimum operator to compute a global criterion EG

Bi
. Then, an occurrence of

a region R in the distribution is a minimum if MBi
(R) = LBi

(R) ∧ EG
Bi
(R).
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Fig. 2. Minima number attribute computation. The subscript of each node indicate
its attribute value. a. The two local minima i and h (square node) have both two
occurrences in the distribution. To ensure that only one occurrence of each minimum
contributes, only the rightmost replica is set to 1, e.g., region h in H1 count as 0
because its rightmost occurrence is in H2. b. Local initialisation of minnb on the basis
of modified minima values. c. Causal pass with the operator +. The arrows link two
occurrences of a region in neighbouring hierarchies. The arrow points to the region
whose attribute is updated. d. Anti-causal pass, the values associated with rightmost
occurrences of each region area back-propagated with ◁.

Minima Number. In this part, we are interested in the number of minima
included in each region of a hierarchy. In a tree, we can obtain it recursively
by considering, M(n) = 0 for every leaf n, M(n) = 1 for every minimum n
and M(n) =

∑
x∈childre(n) M(n) for any other node.

At first glance, the calculation of this attribute seems similar to that of
area. For the latter, we propagate the sum value of the leaves, and no leaf can



Out-of-core Attribute Algorithms for Binary Partition Hierarchies 11

1 Function Minima(δH = {B0, . . . ,Bk})
2 foreach i from 0 to k do
3 foreach region R of Bi in topological order do
4 includesMin[R] := false; miniBi [R] := false
5 foreach non-leaf region R of Bi in topological order do
6 if alt[R] < alt[Bi.par[R]] and includesMin[R] = false then
7 miniBi [R] := true; includesMin[R] := true
8 includesMin[Bi.par[R]] := includesMin[R]

9 return Propagate((miniB0 , . . . , miniBk ), δH, ∧)

contribute more than once to the final result because a leaf belongs to one and
only one local hierarchy. However, as the minima are defined on non-leaf regions,
they can be replicated in several local hierarchies e.g., on Figure 2 the node h is
replicated in H1 and H2.If this situation, if we use the same strategy as for area,
a single minimum would contribute several times to the minima count. We must
therefore ensure that, one and only one occurrence of a minimum contributes to
the calculation of the attribute for the ancestors of thus minimum. As a solution,
we use RightmostSlice attribute to arbitrarily discriminate the last occurrence of
each region. We can therefore guarantee that only one of these occurrences will
contribute to the local minimum account. In Figure 2 a), since the occurrence of
the minimum h in H1 is not the rightmost, it does not contribute to the bottom-
up sum contrary to the occurrence in H2. It should be noted that contrary to
the previously introduced attributes, this one necessitate two calls to Propagate
(minima and RightmostSlice can be computed simultaneously) rather than one.

1 Function NumberMinima(δH = {B0, . . . ,Bk})
2 right := RightmostSlice(δH); mini := Minima(δH)
3 foreach i from 0 to k do
4 Initialize nbminBi to 0 for every node
5 foreach non-root region R of the each Bi in topological order do
6 if miniBi [R] = true and rightBi

[R] = i then

7 nbminBi [R] := 1
8 nbminBi [Bi.par[R]]+ = nbminBi [R]

9 return Propagate((nbminB0 , . . . , nbminBk ), δH, +)

5 Discussion and conclusion

In this paper, we proposed a global scheme for computing attributes for a dis-
tribution of BPH. This method is based on a linear complexity algorithm and
requires having only the information about two adjacent regions in main memory
at any step of the algorithm. We have given applications for computing com-
mon attributes such as area, volume, and local minima. It should be noted that
the use of this methodology is not limited to the presented attributes, but can
easily be used to compute other attributes such as bounding boxes or to deter-
mine watershed edges. In future work, we plan to study the time and memory
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consumption of this methodology and to extend it to the computation of more
complex attributes such as extinction values or smallest common ancestors.
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7. Götz, M., Cavallaro, G., Geraud, T., Book, M., Riedel, M.: Parallel computation
of component trees on distributed memory machines. TPDS (2018)
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