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Abstract—In Federated Learning (FL), devices – also referred to
as clients – can exhibit heterogeneous availability patterns, often
correlated over time and with other clients. This paper addresses
the problem of heterogeneous and correlated client availability in
FL. Our theoretical analysis is the first to demonstrate the neg-
ative impact of correlation on FL algorithms’ convergence rate
and highlights a trade-off between optimization error (related to
convergence speed) and bias error (indicative of model quality).
To optimize this trade-off, we propose Correlation-Aware FL
(CA-Fed), a novel algorithm that dynamically balances the
competing objectives of fast convergence and minimal model bias.
CA-Fed achieves this by dynamically adjusting the aggregation
weight assigned to each client and selectively excluding clients
with high temporal correlation and low availability. Experimental
evaluations on diverse datasets demonstrate the effectiveness
of CA-Fed compared to state-of-the-art methods. Specifically,
CA-Fed achieves the best trade-off between training time and
test accuracy. By dynamically handling clients with high temporal
correlation and low availability, CA-Fed emerges as a promising
solution to mitigate the detrimental impact of correlated client
availability in FL.

Index Terms—Federated Learning, Correlated Client Availability,
Markov Chains.

I. INTRODUCTION

The enormous amount of data generated by mobile and IoT de-
vices motivated the development of distributed machine learn-
ing training paradigms [2], [3]. Federated Learning (FL) [4]–
[7] is an emerging framework where geographically distributed
devices (or clients) participate in the training of a shared
Machine Learning (ML) model without sharing their local
data. FL was proposed to reduce the overall cost of collecting
a large amount of data as well as to protect potentially
sensitive users’ private information. In the original Federated
Averaging algorithm (FedAvg) [5], a central server selects
a random subset of clients from the set of available clients
and broadcasts them the shared model. The sampled clients
perform a number of independent Stochastic Gradient Descent
(SGD) steps over their local datasets and send their local
model updates back to the server. Then, the server aggregates
the received client updates to produce a new global model, and
a new training round begins. At each iteration of FedAvg, the
server typically samples randomly a few hundred devices to
participate [8], [9].

This research was supported by the French government through the 3IA
Côte d’Azur Investments in the Future project by the National Research
Agency (ANR) with reference ANR-19-P3IA-0002, and by Groupe La Poste,
sponsor of Inria Foundation, in the framework of FedMalin Inria Challenge.

A first version of this work was presented at IEEE INFOCOM 2023 [1].

In real-world scenarios, the availability of clients is dictated
by exogenous factors that are beyond the control of the
orchestrating server and hard to predict. For instance, only
smartphones that are idle, under charge, and connected to
broadband networks are commonly allowed to participate in
the training process [5], [10]. These eligibility requirements
can make the availability of devices correlated over time and
space [8], [11]–[13]. For example, temporal correlation may
origin from a smartphone being under charge for a few consec-
utive hours and then ineligible for the rest of the day. Similarly,
the activity of a sensor powered by renewable energy may
depend on natural phenomena intrinsically correlated over
time (e.g., solar light). Spatial correlation refers instead to
correlation across different clients, which often emerges as
consequence of users’ different geographical distribution. For
instance, clients in the same time zone often exhibit similar
availability patterns, e.g., due to time-of-day effects.

Temporal correlation in the data sampling procedure is known
to negatively affect the performance of ML training even in
the centralized setting [14], [15] and can potentially lead to
catastrophic forgetting: the data used during the final training
phases can have a disproportionate effect on the final model,
“erasing” the memory of previously learned information [16],
[17]. Catastrophic forgetting has also been observed in FL,
where clients in the same geographical area have more similar
local data distributions and clients’ participation follows a
cyclic daily pattern (leading also to spatial correlation) [8],
[11], [12], [18]. Despite this evidence, a theoretical study of
the convergence of FL algorithms under both temporally and
spatially correlated client participation is still missing.

This paper presents the first convergence analysis of
FedAvg [5] under heterogeneous and correlated client avail-
ability. We assume that the clients’ availability follows an
arbitrary finite-state Markov chain, modeling both temporal
and spatial correlation while maintaining analytical tractabil-
ity. Our theoretical analysis provides valuable insights by
(i) quantitatively measuring the negative impact of correla-
tion on the algorithm’s convergence rate through a novel
additional term that depends on the spectral properties of
the Markov chain, and (ii) highlighting an important trade-
off between two conflicting objectives: slow convergence to
the optimal model and fast convergence to a biased model
that minimizes a different objective function from the ini-
tial target. To leverage this trade-off, we propose CA-Fed,
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an algorithm which achieves an optimal balance between
maximizing convergence speed and minimizing model bias
through dynamic adjustment of aggregation weights assigned
to clients. Depending on their contribution to the learning
process, CA-Fed can decide to exclude clients exhibiting low
availability and high temporal correlation. Our experimental
results demonstrate that excluding such clients is a simple, but
effective approach to handle the heterogeneous and correlated
client availability in FL. Across synthetic and real datasets,
CA-Fed consistently outperforms the state-of-the-art methods
F3AST [19] and AdaFed [20] in terms of test accuracy. These
results underscore the importance of optimizing the training
process to leverage available client resources effectively and
mitigate the impact of less available and correlated clients, a
task successfully accomplished by CA-Fed.

The remainder of this paper is organized as follows. Section II
introduces the problem of correlated client availability in FL
and discusses the main related works. Section III provides
a convergence analysis of FedAvg under heterogeneous and
correlated client availability. CA-Fed, our correlation-aware
FL algorithm, is presented in Section IV. We evaluate CA-Fed
in Section V, comparing it with state-of-the-art methods
on synthetic and real-world data. Section VI concludes the
paper. Supplementary material, comprising Appendices A–H,
provides detailed proofs and further discussions on CA-Fed
not included in the main text due to space constraints.

II. BACKGROUND AND RELATED WORKS

We consider a finite set K of N clients. Each client k ∈ K
holds a local dataset Dk. Clients aim to jointly learn the
parameters w ∈ W ⊆ Rd of a global ML model (e.g., the
weights of a neural network architecture). During training, the
quality of the model with parameters w on a data sample
ξ ∈ Dk is measured by a loss function f(w; ξ). The clients
solve, under the orchestration of a central server, the following
optimization problem:

min
w∈W⊆Rd

[
F (w) :=

∑
k∈K

αkFk(w)

]
, (1)

where Fk(w) := 1
|Dk|

∑
ξ∈Dk

f(w; ξ) is the average loss
computed on client k’s local dataset, and α = (αk)k∈K are
positive coefficients such that

∑
k αk = 1. They represent

the target importance assigned by the central server to each
client k. Typically (αk)k∈K are set proportional to the clients’
dataset size |Dk|, such that the objective function F in (1)
coincides with the average loss computed on the union of the
clients’ local datasets D = ∪k∈KDk.

Under proper assumptions, precised in Section III, Problem (1)
admits a unique solution. We use w∗ (resp. F ∗) to denote
the minimizer (resp. the minimum value) of F . Moreover, for
k ∈ K, Fk admits a unique minimizer. We use w∗

k (resp. F ∗
k )

to denote the minimizer (resp. the minimum value) of Fk.

Problem (1) is commonly solved through iterative algo-
rithms [5], [9] requiring multiple communication rounds be-

tween the server and the clients. At round t > 0, the server
broadcasts the latest estimate of the global model wt,0 to
the set of available clients (At). Client k ∈ At updates the
global model with its local data through E ≥ 1 steps of local
Stochastic Gradient Descent (SGD):

wk
t,j+1 = wk

t,j − ηt∇Fk(w
k
t,j ,Bkt,j) j = 0, . . . , E − 1, (2)

where ηt > 0 is an appropriately chosen learning rate,
referred to as local learning rate; Bkt,j is a random batch
sampled from client-k’s local dataset at round t and step j;
∇Fk(·,B) := 1

|B|
∑

ξ∈B∇f(·, ξ) is an unbiased estimator of
the local gradient ∇Fk. Then, each client sends its local model
update ∆k

t := wk
t,E −wk

t,0 to the server. The server computes
∆t :=

∑
k∈At

qk ·∆k
t , a weighted average of the clients’ local

updates with non-negative aggregation weights q = (qk)k∈K.
The choice of the aggregation weights defines an aggregation
strategy (we will discuss different aggregation strategies later).
The aggregated update ∆t can be interpreted as a proxy for
−∇F (wt,0); the server applies it to the global model:

wt+1,0 = ProjW (wt,0 + η̄ ·∆t), (3)

where ProjW (·) denotes the projection over the set W , and
η̄ > 0 is an appropriately chosen learning rate, referred to as
the server learning rate.1

The aggregate update ∆t is generally a biased estimator
of the pseudo-gradient −∇F (wt,0), to which each client k
contributes proportionally to its frequency of appearance in
the set At and its aggregation weight qk. More specifically,
under proper assumptions specified in Section III, we will
prove in Theorem 2 that the update rule described by (2)
and (3) converges to the unique minimizer of a biased global
objective FB . This objective function depends depends both
on the clients’ availability (i.e., on the sequence (At)t>0) and
on the aggregation strategy (i.e., on q = (qk)k∈K):

FB(w) :=
∑N

k=1 pkFk(w), with pk := πkqk∑N
h=1 πhqh

, (4)

where πk represents the asymptotic availability of client k,
defined as πk := limt→+∞ P(k ∈ At). We denote π =
(πk)k∈K. Moreover, the coefficients p = (pk)k∈K in (4) can
be interpreted as the biased importance the server is giving
to each client k during training, in general different from the
target importance α. In what follows, w∗

B (resp. F ∗
B) denotes

the minimizer (resp. the minimum value) of FB .

In some large-scale FL applications, like training Google
keyboard next-word prediction models, each client participates
in training at most for one round. The orchestrator usually
selects a few hundred clients at each round for a few thousand
rounds (e.g., see [6, Table 2]), but the available set of clients
may include hundreds of millions of Android devices. In this
scenario, it is difficult to address the potential bias unless there
is some a-priori information about each client’s availability.

1The aggregation rule (3) has been considered also in other works, e.g., [9],
[21], [22]. In other FL algorithms, the server computes an average of clients’
local models. This aggregation rule can be obtained with minor changes to (3).
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Anyway, FL can be used by service providers with access
to a much smaller set of clients (e.g., smartphone users that
have installed a specific app). In this case, a client participates
multiple times in training: the orchestrating server may keep
track of each client’s availability and try to compensate for
the potentially dangerous heterogeneity in their participation.

Much previous effort on federated learning [5], [18]–[20],
[23]–[26] considered this problem and, under different as-
sumptions on the clients’ availability (i.e., on (At)t>0), de-
signed aggregation strategies that unbias ∆t through an appro-
priate choice of q. Reference [23] provides the first analysis of
FedAvg on non-iid data under clients’ partial participation.
Their analysis covers both the case when active clients are
sampled uniformly at random without replacement from K and
assigned aggregation weights equal to their target importance
(as assumed in [5]), and the case when active clients are
sampled iid with replacement from K with probabilities α
and assigned equal weights (as assumed in [24]). However,
references [5], [23], [24] ignore the variance induced by the
clients stochastic availability. The authors of [25] reduce such
variance by considering only the clients with important up-
dates, as measured by the value of their norm. References [18]
and [26] reduce the aggregation variance through clustered and
soft-clustered sampling, respectively.

Some recent works [19], [20], [27] do not actively pursue the
optimization of the unbiased objective. Instead, they derive
bounds for the convergence error and propose heuristics to
minimize those bounds, potentially introducing some bias.
Our work follows a similar development: we compare our
algorithm with F3AST from [19] and AdaFed from [20].

The novelty of our study is in considering the spatial and
temporal correlation in clients’ availability dynamics. As dis-
cussed in the introduction, such correlations are also intro-
duced by clients’ eligibility criteria, e.g., smartphones being
under charge and connected to broadband networks. The effect
of correlation has been ignored until now, probably due to the
additional complexity in studying FL algorithms’ convergence.
To the best of our knowledge, the only exception is [19], which
scratches the issue of spatial correlation by proposing two
different algorithms for the case when clients’ availabilities
are uncorrelated and for the case when they are positively
correlated (there is no smooth transition from one algorithm
to the other as a function of the degree of correlation).

The effect of temporal correlation on centralized stochastic
gradient methods has been addressed in [13]–[15], [28]: these
works study a variant of stochastic gradient descent where
samples are drawn according to a Markov chain. Refer-
ence [13] extends its analysis to a FL setting where each client
draws samples according to a Markov chain. In contrast, our
work does not assume a correlation in the data sampling but
rather in the client’s availability. Nevertheless, some of our
proof techniques are similar to those used in this line of work
and, in particular, we rely on some results in [15].

III. ANALYSIS

A. Main assumptions

We consider a time-slotted system where a slot corresponds
to a single FL communication round. We assume that clients’
availability over the timeslots t ∈ N follows a discrete-time
Markov chain (At)t≥0.2

Assumption 1. The Markov chain (At)t≥0 on the M -finite
state space M is time-homogeneous, irreducible, and ape-
riodic. It has transition matrix P , stationary distribution ρ,
and has state distribution ρ at time t = 0.

Markov chains have already been used in the literature to
model the dynamics of stochastic networks where some nodes
or edges in the graph can switch between active and inactive
states [29], [30]. The previous Markovian assumption, while
allowing a great degree of flexibility, still guarantees the
analytical tractability of the system. The distance dynamics
between the current and the stationary distributions of the
Markov process can be characterized in terms of the spectral
properties of its transition matrix P [31]. Let λ̄2(P ) denote the
the second largest module of the eigenvalues of P . Previous
work [15] has shown that:

max
i,j∈[M ]

|[P t]i,j − ρj | ≤ CP · λ(P )t, for t ≥ TP , (5)

where the parameters λ(P ) := (λ̄2(P ) + 1)/2, CP , and TP
are positive constants whose values are defined in [15,
Lemma 1] and reported for completeness in Appendix B2,
Lemma 16.3 Note that λ(P ) quantifies the correlation of the
Markov process (At)t≥0: the closer λ(P ) is to one, the slower
the Markov chain converges to its stationary distribution.

In our analysis, we make the following additional assumptions.

Assumption 2. The hypothesis class W is convex and com-
pact with diameter diam(W ), and contains the minimizers
w∗,w∗

B ,w
∗
k in its interior.

The following assumptions concern clients’ local objective
functions {Fk}k∈K. Assumptions 3 and 4 are standard in
the literature on convex optimization [32, Sections 4.1, 4.2].
Assumption 5 is a standard hypothesis in the analysis of
federated optimization algorithms [9, Section 6.1].

Assumption 3 (L-smoothness). The local functions {Fk}Nk=1

have L-Lipschitz continuous gradients: Fk(v) ≤ Fk(w) +
⟨∇Fk(w),v −w⟩+ L

2 ∥v −w∥22, ∀v,w ∈W .

Assumption 4 (Strong convexity). The local functions
{Fk}Nk=1 are µ-strongly convex: Fk(v) ≥ Fk(w) +
⟨∇Fk(w),v −w⟩+ µ

2 ∥v −w∥22 , ∀v,w ∈W .

Assumption 5 (Bounded variance). The variance of stochas-
tic gradients in each device is bounded: E ∥∇Fk(w,B) −
∇Fk(w)∥2 ≤ σ2

k, k = 1, . . . , N .

2In Section III-D we will focus on the case where this chain is the
superposition of N independent Markov chains, one for each client.

3Note that (5) holds for different definitions of λ(P ) as long as λ(P ) ∈
(λ̄2(P ), 1). The specific choice for λ(P ) changes the values of CP and TP .
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Assumptions 2–5 imply the following properties for the local
functions, described by Lemma 1 (proof in Appendix B).

Lemma 1. Under Assumptions 2–5, there exist constants D,
G, and H > 0, such that, for all w ∈W and k ∈ K, we have:

∥∇Fk(w)∥ ≤ D, (6)

E ∥∇Fk(w,B)∥2 ≤ G2, (7)
|Fk(w)− Fk(w

∗
B)| ≤ H. (8)

Similarly to other works [9], [23], [24], [33], we introduce a
metric to quantify the heterogeneity of clients’ local datasets,
typically referred to as statistical heterogeneity:

Γ := max
k∈K
{Fk(w

∗)− F ∗
k }. (9)

If the local datasets are identical, the local functions {Fk}k∈K
coincide among them and with F , w∗ is a minimizer of each
local function, and Γ = 0. In general, Γ is smaller the closer
the distributions the local datasets are drawn from.

B. Main theorems

Theorem 1 (Decomposing the total error). Let κ := L/µ.
Under Assumptions 2–4, the optimization error of the target
global objective ϵ = F (w)− F ∗ can be bounded as follows:

ϵ ≤ 2κ2(FB(w)− F ∗
B︸ ︷︷ ︸

:=ϵopt

+F (w∗
B)− F ∗︸ ︷︷ ︸
:=ϵbias

). (10)

Moreover, let χ2
α∥p :=

∑N
k=1 (αk − pk)2/pk. Then:

ϵbias ≤ κ2 · χ2
α∥p · Γ︸ ︷︷ ︸
:=ϵ̄bias

. (11)

Theorem 1 (proof in Appendix A) decomposes the error
of the target objective (ϵ) as the sum of an optimization
error for the biased objective (ϵopt) and a bias error (ϵbias).
The term ϵopt, evaluated on the trajectory determined by
scheme (3), quantifies the optimization error associated with
the biased objective FB and asymptotically vanishes (see The-
orem 2 below). The non-vanishing bias error ϵbias captures the
discrepancy between F (w∗

B) and F ∗. This term is bounded by
the chi-square divergence χ2

α∥p between the target and biased
probability distributions α = (αk)k∈K and p = (pk)k∈K, and
by Γ, that quantifies the degree of heterogeneity of the local
functions. When all local functions are identical (Γ = 0),
the bias term ϵbias also vanishes. For Γ > 0, the bias error
can still be controlled by the aggregation weights assigned
to the devices. In particular, the bias term vanishes when
qk ∝ αk/πk,∀k ∈ K. Since it asymptotically cancels the bias
error, we refer to this choice as unbiased aggregation strategy.

However, in practice, FL training is limited to a finite number
of iterations T (typically a few hundreds [6], [8]), and the
previous asymptotic considerations may not apply. In this
regime, the unbiased aggregation strategy can be sub-optimal,
since the minimization of ϵbias not necessarily leads to the

minimization of the total error ϵ ≤ 2κ2(ϵopt + ϵbias). This
motivates the analysis of the optimization error ϵopt.

Theorem 2 (Convergence of the optimization error ϵopt).
Let Assumptions 1–5 hold and the constants M,L,D,G,H,Γ,
σk, CP , TP , and λ(P ) defined above. Let Q :=

∑
k∈K qk.

We require a diminishing step-size ηt > 0 satisfying:

η1 ≤ 1
2L(1+2EQ) ,

+∞∑
t=1

ηt = +∞,
+∞∑
t=1

ln(t) · η2t < +∞. (12)

Let T denote the total communication rounds. For T ≥ TP ,
the expected optimization error can be bounded as follows:

E[FB(w̄T,0)− F ∗
B ] ≤

1
2q

⊺Σq+υ

π⊺q + ψ + ϕ
ln(1/λ(P ))

(
∑T

t=1 ηt)
,︸ ︷︷ ︸

:=ϵ̄opt

(13)

where w̄T,0 :=
∑T

t=1 ηtwt,0∑T
t=1 ηt

, and

Σ := diag(2(E + 1)σ2
kπk

∑+∞
t=1 η

2
t ),

υ := 2
E diam(W )2 + 1

4MQ
∑+∞

t=1 (η
2
t +

1
t2 ),

ψ := (4L(1 + EQ)Γ + 2E2G2)
∑+∞

t=1 η
2
t +H(

∑TP−1
t=1 ηt),

Jt :=min {max {⌈ln (2CPHt)/ln (1/λ(P ))⌉ , TP } , t} ,
ϕ := 2EDGQ

∑+∞
t=1 ln(2CPHt)η

2
t−Jt

.

Theorem 2 (proof in Appendix B) proves convergence of
the expected biased objective FB to its minimum F ∗

B under
correlated client participation. Our bound (13) captures the
effect of correlation through the factor ln (1/λ(P )): a high
correlation worsens the convergence rate. In particular, we
found that the numerator of (13) has a quadratic-over-linear
fractional dependence on q. Minimizing ϵ̄opt leads, in general,
to a different choice of q than minimizing ϵ̄bias.

C. Minimizing the total error ϵ ≤ 2κ2(ϵ̄opt + ϵ̄bias)

Our analysis points out a trade-off between minimizing ϵ̄opt
or ϵ̄bias. Our goal is to find the optimal aggregation weights q∗

that minimize the upper bound on total error ϵ(q) in (10):

minimize
q

ϵ̄opt(q) + ϵ̄bias(q);

subject to q ≥ 0,

∥q∥1 = Q.

(14)

In Appendix D we prove that (14) is a convex optimization
problem, which can be solved with the method of Lagrange
multipliers. However, its solution lacks practical utility be-
cause the constants in (10) and (13) (e.g., L, µ, Γ, CP ) are
in general problem-dependent and difficult to estimate during
training. In particular, Γ poses particular difficulties as it is
defined in terms of the minimizer of the target objective F , but
the FL algorithm generally minimizes the biased function FB .
Moreover, the bound in (10), as well as the bound in [33],
diverges when setting some qk values equal to 0, but this
divergence is merely an artifact of the proof technique. For
more practical considerations, we present the following result
(proof in Appendix C):
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Theorem 3 (An alternative bound on the bias error ϵbias).
Under the same assumptions of Theorem 1, define Γ′ :=
maxk{Fk(w

∗
B)− F ∗

k }. The following result holds:

ϵbias ≤ 4κ2 · d2TV (α,p) · Γ′︸ ︷︷ ︸
:=ϵ̄′bias

, (15)

where dTV (α,p) := 1
2

∑N
k=1|αk − pk| is the total variation

distance between the probability distributions α and p.

The new constant Γ′ is defined in terms of w∗
B , and then

it is easier to evaluate during training. However, Γ′ depends
on q, because it is evaluated at the point of minimum of FB .
This dependence makes the minimization of the right-hand
side of (15) more challenging (for example, the corresponding
problem is not convex). We study the minimization of the two
terms ϵ̄opt and ϵ̄′bias separately and learn some insights, which
we use to design the new FL algorithm CA-Fed.

D. Minimizing ϵ̄opt

The minimization of ϵ̄opt is still a convex optimization problem
(Appendix E). In particular, at the optimum, non-negative
weights are set accordingly to q∗k = a(ι∗πk − θ∗) with
a and ι∗ positive constants (Appendix E2). It follows that
clients with smaller availability get smaller weights in the
aggregation. In particular, this suggests that clients with the
smallest availability can be excluded from the aggregation,
leading to the following guideline:

Guideline A: to accelerate convergence, we can exclude clients
with low availability πk by setting q∗k = 0.

This guideline can be justified intuitively: updates from clients
with low participation may be too sporadic to allow the FL
algorithm to keep track of their local objectives. Their updates
act as a noise slowing down the algorithm’s convergence. It
may then be advantageous to exclude these clients.

We observe that the choice of the aggregation weights q
does not affect the clients’ availability process and, in particu-
lar, λ(P ). However, if the algorithm excludes some clients, it
is possible to consider the state space of the Markov chain that
only specifies the availability state of the remaining clients,
and this Markov chain may have different spectral properties.
For the sake of concreteness, unless otherwise specified, we
consider from now on the particular case when the availability
of each client k evolves according to a Markov chain (Ak

t )t≥0

with transition probability matrix Pk and these Markov chains
are all independent [31, Exercise 12.6]. In this case, the
aggregate process is described by the product Markov chain
(At)t≥0 with transition matrix P =

⊗
k∈K Pk and λ(P ) =

maxk∈K λ(Pk), where Pi

⊗
Pj denotes the Kronecker prod-

uct between matrices Pi and Pj (Appendix F2). In this setting,
it is possible to redefine the Markov chain (At)t≥0 by taking
into account the reduced state space defined by the clients with
a non-null aggregation weight, i.e., P ′ =

⊗
k′∈K|qk′>0 Pk′

and λ(P ′) = maxk′∈K|qk′>0 λ(Pk′), which is potentially
smaller w.r.t. the case when all clients participate to the aggre-
gation. These considerations lead to the following guideline:

Guideline B: to accelerate convergence, we can exclude clients
with high correlation (high λ(Pk)) by setting their q∗k = 0.

Intuition also supports this guideline. Clients with large λ(Pk)
tend to be available or unavailable for long periods of time.
Due to the well-known catastrophic forgetting problem affect-
ing gradient methods [34], [35], these clients may unfairly
steer the algorithm toward their local objective when they
appear at the final stages of the training period. Moreover,
their participation in the early stages may be useless, as their
contribution will be forgotten during their long absence. The
FL algorithm may benefit from directly neglecting such clients.

We observe that Guideline B strictly applies to this specific
setting where clients’ dynamics are independent (and there is
no spatial correlation). We do not provide a corresponding
guideline for the case when clients are spatially correlated
(we leave this task for future research). However, in this more
general setting, it is possible to ignore Guideline B but still
draw on Guidelines A and C, or still consider Guideline B
if the spatially correlated clients can be grouped in clusters,
each cluster evolving as an independent Markov chain (see
Section V-B, Paragraph e).

E. Minimizing ϵ̄′bias

The bias error ϵ̄′bias in (15) vanishes when the total variation
distance between the target importance α and the biased
importance p is zero, i.e., when qk ∝ αk/πk,∀k ∈ K.
Then, after excluding the clients that contribute the most
to the optimization error and particularly slow down the
convergence (Guidelines A and B), we can assign to the
remaining clients an aggregation weight inversely proportional
to their availability, such that the bias error ϵ̄′bias is minimized.

Guideline C: to minimize the bias error, we assign q∗k ∝
αk/πk to the clients not excluded by the previous guidelines.

IV. PROPOSED ALGORITHM

Guidelines A and B in Section III suggest that minimizing ϵ̄opt
can lead to the exclusion of some available clients from the
aggregation step (3), in particular those with low availability
and/or high correlation. For the remaining clients, Guide-
line C proposes setting their aggregation weight inversely
proportional to their availability to reduce the bias error ϵ̄′bias.
Motivated by these insights, we propose CA-Fed, a client
aggregation strategy that considers the problem of correlated
client availability in FL, described in Algorithm 1. CA-Fed
learns during training which clients to exclude and how to set
the aggregation weights of the remaining clients to achieve
a good trade-off between ϵ̄opt and ϵ̄′bias. While Guidelines A
and B indicate which clients to remove, the exact number of
clients to remove at round t is identified by minimizing ϵ(t)

as a proxy for the bounds in (10) and (15):

ϵ(t) := FB(wt,0)− F ∗
B︸ ︷︷ ︸

ϵopt

+ 4κ̄2 · d2TV (α,p)Γ
′︸ ︷︷ ︸

ϵ̄′bias

, (16)

where κ̄2 ≥ 0 is a hyper-parameter that weights the relative
importance of the optimization and bias error (see Sec. IV-C).
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A. CA-Fed’s core steps

At each communication round t, the server sends the current
model wt,0 to all active clients and each client k sends back
a noisy estimate F (t)

k of the current loss computed on a batch
of samples Bkt,0, i.e., F (t)

k = 1
|Bk

t,0|
∑

ξ∈Bk
t,0
f(wt,0, ξ) (line 3).

The server uses these values and the information about the
current set of available clients At to refine its own estimates
of each client’s loss (F̂ (t) = (F̂ (t)

k )k∈K), and each client’s loss
minimum value (F̂ ∗ = (F̂ ∗

k )k∈K), as well as of Γ′, πk, λ(Pk),
and ϵ(t), denoted as Γ̂

′
(t), π̂(t)

k , λ̂(t)

k , and ϵ̂(t), respectively
(possible estimators are described below) (line 4).

The server decides whether excluding clients whose avail-
ability pattern exhibits high correlation (high λ̂(t)

k ) (line 6).
First, the server considers all clients in descending order of
λ̂(t) (line 14), and evaluates if, by excluding them (line 17),
ϵ̂(t) appears to be decreasing by more than a threshold τ ≥ 0
(line 19). Then, the server considers clients in ascending order
of π̂(t), and repeats the same procedure to possibly exclude
some of the clients with low availability (low π̂(t)

k ) (lines 7).

Once the participating clients (those with qk > 0) have
been selected, the server notifies them to proceed updating
the current models (lines 9–10) according to (2), while the
other available clients stay idle. Finally, model’s updates are
aggregated according to (3) (line 12).

B. Estimators

We now briefly discuss possible implementation of the esti-
mators F̂ (t)

k , F̂ ∗
k , Γ̂

′
(t), π̂(t)

k , and λ̂(t)

k . Server’s estimates for the
clients’ local losses (F̂ (t) = (F̂ (t)

k )k∈K) can be obtained from
the received active clients’ losses (F (t) = (F (t)

k )k∈At
) through

an auto-regressive filter with parameter β ∈ (0, 1]:

F̂ (t) = (1− β1At
)⊙ F̂ (t−1) + β1At

⊙ F (t), (17)

where ⊙ denotes the component-wise multiplication between
vectors, and 1At

is a N -dimensions binary vector whose k-th
component equals 1 if and only if client k is active at round t,
i.e., k ∈ At. The server can estimate client-k’s loss minimum
value F ∗

k as F̂ ∗
k = mins∈[0,t] F̂

(s)

k . The values of FB(wt,0),
F ∗
B , Γ′, and ϵ(t) can be estimated as follows:

F̂ (t)

B − F̂ ∗
B = ⟨F̂ (t) − F̂ ∗, π̂(t)⊙̃q(t)⟩, (18)

Γ̂
′
(t) = maxk∈K(F̂

(t)

k − F̂ ∗
k ), (19)

ϵ̂(t) = F̂ (t)

B − F̂ ∗
B + 4κ̄2 · d2TV (α, π̂

(t)⊙̃q(t))Γ̂
′
(t). (20)

where π⊙̃q ∈ RN , such that
(
π⊙̃q

)
k
:= πkqk∑N

h=1 πhqh
, k ∈ K.

For π̂(t)

k , the server can simply keep track of the total
number of times client k was available up to time t and
compute π̂(t)

k using a Bayesian estimator with beta prior, i.e.,
π̂(t)

k = (
∑

s≤t 1k∈As
+nk)/(t+nk +mk), where nk and mk

are the initial parameters of the beta prior.

For λ̂(t)

k , the server can assume the client’s availability evolves
according to a Markov chain with two states (active and
inactive), track the corresponding number of state transitions,

Algorithm 1: CA-Fed (Correlation-Aware FL)
Input : w0,0, α, q(0), {ηt}Tt=1, η̄, E, κ̄2, β, τ

1 Initialize F̂ (0), F̂ ∗, Γ̂
′
(0), π̂(0), and λ̂(0);

2 for t = 1, . . . , T do
3 Receive set of active client At, loss vector F (t);
4 Update F̂ (t), Γ̂

′
(t), π̂(t), and λ̂(t);

5 Initialize q(t) = α
π̂(t) ;

6 q(t) ← get(q(t),α, F̂ (t), F̂ ∗, Γ̂
′
(t), π̂(t), λ̂(t));

7 q(t) ← get(q(t),α, F̂ (t), F̂ ∗, Γ̂
′
(t), π̂(t), 9π̂(t));

8 for client {k ∈ At; q
(t)
k > 0}, in parallel do

9 for j = 0, . . . , E − 1 do
10 wk

t,j+1 = wk
t,j − ηt∇Fk(w

k
t,j ,Bkt,j) ;

11 ∆k
t ← wt,E −wt,0;

12 wt+1,0 ← ProjW (wt,0 + η̄
∑

k∈At
q(t)

k ·∆k
t );

13 Function get(q, α, F , F ∗, Γ, π, ρ):
14 Sort K by descending order in ρ;
15 ϵ̂← ⟨F − F ∗,π⊙̃q⟩+ 4κ̄2 · d2TV (α,π⊙̃q)Γ;
16 for k ∈ K do
17 q+k ← 0;
18 ϵ̂+ ← ⟨F−F ∗,π⊙̃q+⟩+4κ̄2·d2TV (α,π⊙̃q+)Γ;
19 if ϵ̂− ϵ̂+ ≥ τ then
20 ϵ̂← ϵ̂+;
21 q ← q+;
22 return q

and estimate the transition matrix P̂ (t)

k through a Bayesian
estimator similarly to what done for π̂(t)

k . Finally, λ̂(t)

k is
obtained computing the eigenvalues of P̂ (t)

k .

C. The role of the hyper-parameter κ̄2

Theorems 1 and 3 suggest that the condition number κ2 has
a significant impact on the minimization of the total error ϵ.
Our algorithm uses a proxy (ϵ(t)) for the total error (see (16)).
To account for the effect of κ2, we introduced the hyper-
parameter κ̄2 ≥ 0, which weights the relative importance of
the optimization and bias error in (16). In practice, κ̄2 controls
the number of excluded clients by CA-Fed. A small value
of κ̄2 penalizes the bias term in favor of the optimization error,
resulting in a larger number of excluded clients. Conversely,
the bias term dominates for large values of κ̄2, and CA-Fed
tends to include more clients. Asymptotically, for κ̄2 → ∞,
CA-Fed reduces to the unbiased aggregation strategy.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

a) Federated system simulator: In our experiments, we con-
sider a population of N = |K| = 100 clients. We model the
activity of each client k ∈ K as a two-state homogeneous
Markov process with state space S = {“active”, “inactive”},
characterized by a transition matrix Pk, a stationary distribu-
tion π(k), and a second largest absolute eigenvalue λ̄2(Pk)
(see Appendix F3 for details). Our goal is to simulate realistic
dynamics of federated systems featuring varying levels of
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Fig. 1: Average test accuracy among N = 100 clients achieved by the algorithms on the Synthetic, MNIST, and CIFAR-10
datasets. Cumulative importance assigned by the algorithms to the clients after T = 200 rounds on the Synthetic dataset.

clients’ availability and correlation. To introduce heterogeneity
in clients’ availability patterns, we divide the population in
two equally-sized classes: the “more available” clients with a
steady-state probability of being active πk,active = 1/2+g, and
the “less available” clients with πk,active = 1/2− g. Here, the
parameter g ∈ (0, 1/2) controls the degree of heterogeneity
in clients’ availability. We furthermore divide each class of
clients in two equally-sized sub-classes: clients exhibiting a
largely correlated time behavior (in the following referred to
as “correlated” clients) that tend to persist in the same state for
rather long periods (λk = ν with values of ν close to 1), and
clients exhibiting a weakly correlated time behavior (referred
to as “weakly correlated” clients) that are almost as likely to
keep as to change their state at every t (λk ∼ N (0, ε2), with
ε close to 0). We use g = 0.4, ν = 0.9, and ε = 10−2.

b) Datasets and models: We conduct experiments on the
LEAF Synthetic dataset [36], a benchmark for multinomial
classification tasks, and on the real-world MNIST [37] and
CIFAR-10 [38] datasets, respectively for handwritten dig-
its and image recognition tasks. To simulate the statistical
heterogeneity present in the federated learning system, we
use common approaches in the literature. For the Synthetic
dataset, we tune the parameters (γ, δ), which control data
heterogeneity among clients [23]. For MNIST and CIFAR-
10, we distribute samples from the same class across the
clients according to a symmetric Dirichlet distribution with
parameter ς , following the same approach as [39]. Unless
otherwise indicated, we set γ = δ = ς = 0.5. We use the
original training/test data split of MNIST and reserve 20% of
the training dataset as the validation dataset. For Synthetic and
MNIST, we use a linear classifier with a ridge penalization
of parameter 10−2, which corresponds to a strongly convex
objective function. For CIFAR-10, we use a neural network
with two convolutional and one fully connected layers.

c) Benchmarks: We compare CA-Fed, defined in Algo-
rithm 1, with four baselines including two state-of-the-art
FL algorithms discussed in Section II: 1) Unbiased, which
aggregates the active clients k ∈ At with weights qk = αk/πk;
2) More available, which considers only the “more avail-
able” clients and always excludes the “less available” ones;
3) AdaFed [20], which, similarly to Unbiased, aggregates
all active clients, but normalizes their aggregation weights

(i.e., it considers qk = αk/πk∑
k∈At

αk/πk
); 4) F3AST [19], which,

oppositely to More available, favors the “less available”
clients. For all algorithms, we tuned the learning rates η, η̄ via
grid search. For CA-Fed, we use β = τ = 0. Unless otherwise
specified, we assume that the algorithms can access an oracle
providing the true availability parameters for each client:
in practice, all the algorithms rely on the exact knowledge
of πk,active; in addition, CA-Fed also receives λ(Pk). In
Section V-B, Paragraph d, we will relax this assumption by
considering the estimators π̂(t)

k and λ̂(t)

k . The code for this
paper is available at: https://github.com/arodio/CA-Fed.

B. Experimental Results

a) CA-Fed vs. baselines: Figure 1 compares the test accuracy
achieved by CA-Fed (κ̄2 = 1) and the baselines on the
Synthetic (Fig. 1a), MNIST (Fig. 1b), and CIFAR-10 (Fig. 1c)
datasets over 10 different runs. Across all three datasets,
CA-Fed consistently outperforms the baselines, achieving
higher test accuracy (+1.56 pp on Synthetic; +0.94 pp on
MNIST; +1.32 pp on CIFAR-10) compared to the second best
performing method, AdaFed. These results demonstrate that
CA-Fed achieves the best balance between convergence speed
and test accuracy. For deeper insights into the algorithms’
behavior, Figure 1d illustrates the cumulative aggregation
weights { 1

T

∑T
t=1 q

(t)

k }k∈K, representing the cumulative im-
portance that the algorithms assigned to the clients at the
end of the training. In Figure 1d, we grouped the clients
into three categories: “more available”, “less available, weakly
correlated”, and “less available, correlated”. By setting the
aggregation weights inversely proportional to the clients’
availabilities, Unbiased equalizes the importance for all
clients (see Fig. 1d), but achieves a slower convergence (as
shown in Figs. 1a, 1b, and 1c). On the contrary, by excluding
all the “less available” clients, More available achieves
a faster convergence but introduces a non-vanishing bias
error ϵbias, which, in practice, leads to poor accuracy perfor-
mance. The state-of-the-art algorithm AdaFed, similarly to
Unbiased, considers all the active clients, but normalizes
their aggregation weights at each communication round. As a
result, similarly to CA-Fed, AdaFed indeed prioritizes the
“more available” clients (as shown in Fig. 1d), and then a
convergence speed-up could be expected. However, AdaFed

7

https://github.com/arodio/CA-Fed


does not exclude the “less available and correlated” clients,
and therefore their presence causes a convergence slowdown.
Finally, F3AST favors the “less available, correlated” clients
and achieves a slower convergence with a non-vanishing
bias error, which corresponds to lower accuracy performance.
By opportunely excluding some of the “less available and
correlated” clients, CA-Fed achieves the best test accuracy
by the end of the training time.

b) Convergence speed vs. Bias error: The trade-off be-
tween ϵopt or ϵbias discussed in Section III is visible in our ex-
periments. In particular, Figure 2a compares the test accuracy
achieved by More available, Unbiased, and CA-Fed
on the Synthetic dataset for T = 500 communication rounds.
As expected, by targeting the minimization of ϵopt and thus
excluding the “less available” clients, More available
achieves the fastest convergence at the expense of a large
non-vanishing bias error ϵbias. On the other hand, by targeting
the minimization of ϵbias and thus equalizing the clients’
importance, Unbiased asymptotically removes this error and
ultimately achieves the highest test accuracy at communication
round T = 500, but suffers from slower convergence due to the
presence of the “correlated” clients. Our algorithm, CA-Fed,
leverages the trade-off between convergence speed and model
bias and achieves fast convergence to the neighborhood of
the target objective. To explore this trade-off, in Figure 2a,
we varied the value of the hyper-parameter κ̄2 in the range
{10−2, 10−1, 100, 101, 102}. CA-Fed tends to exclude more
clients for low values of κ̄2 and achieves a similar convergence
rate as More available for κ̄2 = 10−2. For intermediate
values of κ̄2, CA-Fed trades a small accuracy decrease for
faster convergence (refer, for example, to the curves κ̄2 =
100, 101). For κ̄2 = 102, CA-Fed reduces to Unbiased
(their curves overlap in Fig. 2a). Moreover, we observe that
the optimal value of κ̄2 depends on the available time for
training. Low values of κ̄2 speed-up convergence and then they
can be beneficial for short training durations (e.g., CA-Fed
(κ̄ = 10−1) achieves a higher test accuracy of +2.8 pp with
respect to Unbiased at communication round t = 40). For
longer training periods, a larger value of κ̄2 may be preferable
as it reduces the bias error and increases the test accuracy (e.g.,
CA-Fed (κ̄ = 102) improves of +3.8 pp with respect to More
available at communication round t = 500). Figure 2b
illustrates the optimal value of κ̄2 for different durations of
the training period T .

c) Effect of statistical heterogeneity: The bias error
bounds ϵ̄bias and ϵ̄′bias in Theorems 1 and 3 are influenced
by the degree of heterogeneity among local functions, com-
monly known as statistical heterogeneity, characterized by
the constants Γ and Γ′ in (11) and (15), respectively. To
control statistical heterogeneity, we manipulate the dissimi-
larity among the clients’ local datasets, specifically through
the parameters γ and δ in the case of the Synthetic dataset, as
explained in Section V-A. Figure 3 illustrates the impact of γ
and δ on the test accuracy achieved by CA-Fed after T = 200
communication rounds on the Synthetic dataset. As expected,
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Fig. 4: Estimation of the clients’ activities (π̂(t)

k , λ̂(t)

k ) for
different priors t ∈ {101, 101.5, 102, 102.5, 103, 103.5, 104} and
test accuracy after T = 50 rounds on the MNIST dataset.

in the extreme IID setting (when γ = δ = 0), Γ and Γ′ are
small, and the bias error ϵbias is negligible. As a result, More
available and CA-Fed (κ̄2 = 10−2) reach the highest
test accuracy, whereas CA-Fed (κ̄2 = 102) and Unbiased
present slow convergence. Nevertheless, More available
and CA-Fed (κ̄2 = 10−2) perform poorly as the statistical
heterogeneity increases (i.e., γ = δ ≥ 0.25). In the extreme
non-IID setting (when γ = δ = 1), Γ and Γ′ are large, and ϵbias
dominates. In this case, CA-Fed (κ̄2 = 102) and Unbiased
should be preferred. For γ = δ = {0.25, 0.5, 0.75}, CA-Fed
(with κ̄2 = 1 or κ̄2 = 10) achieves the highest test accuracy
(+1.6 pp, +1.2 pp, and +1.0 pp with respect to Unbiased).

d) Estimation of the clients’ availability and correlation:
In this experiment, CA-Fed utilizes estimators π̂(t)

k and λ̂(t)

k

to estimate the clients’ πk and λk values. We employ a
Bayesian estimator with a beta prior to estimate P̂ (t)

k , which
we generate by observing the evolution of the Markov
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Fig. 5: Clients’ activities and CA-Fed’s inclusion/exclusion decisions in the presence of spatial correlation for different degrees
of intra-cluster/inter-cluster data distributions. Average test accuracy after T = 100 rounds on the MNIST dataset.

chain defined by Pk over t′ time-steps. We compute π̂(t)

k

and λ̂(t)

k analytically, following the methodology explained
in Section IV-B and described in detail in Appendix F3.
Figure 4a shows the estimation errors 1

N

∑
k∈K|π̂

(t)

k −πk| and
1
N

∑
k∈K|λ̂

(t)

k − λk| as a function of the number of historical
observations t′. As expected, both errors decrease with an
increasing number of observations, and the estimation error
for λk is larger than that for πk. Furthermore, Figure 4b
compares the final test accuracy obtained by CA-Fed and
the baselines for varying numbers of historical observations
t′ ∈ {101, 101.5, 102, 102.5, 103, 103.5, 104} when training for
T = 50 rounds on the MNIST dataset. In this setting, CA-Fed
outperforms the baselines for t′ ≥ 100. This value is reason-
able, because estimating λk requires a number of observations
comparable to the expected hitting time for the slowest Markov
chain, which is given by maxk∈K

1
(1−λk)πk

= 100.

e) CA-Fed with Spatial Correlation: Although CA-Fed is
primarily designed to handle temporal correlation (as dis-
cussed in Section III-D), we also evaluate its performance in
the presence of spatial correlation. In the considered spatially
correlated scenario, clients are grouped into clusters, and each
cluster c ∈ C is characterized by an underlying Markov chain
that determines when all clients in the cluster are available
or unavailable. The Markov chains of different clusters are
independent. Let λc denote the second-largest eigenvalue
in magnitude of cluster c’s Markov chain. To reduce the
eigenvalue of the aggregate Markov chain, CA-Fed needs to
exclude all clients in the cluster c̄ = argmaxc∈C λc. In this
experiment, we consider a population of N = 100 clients
grouped into |C| = 10 clusters. We equally split the clients, or
equivalently, the clusters, into two categories: “more available”
with πc = 0.9 and λc = 0 for c = 0, . . . , 4, and “less
available, correlated” with πc = 0.1 and λc = c/10 for
c = 5, . . . , 9. In Figures 5a, 5b, and 5c, each pixel represents,
for each client k ∈ K and for each communication round,
the client’s activity (active/inactive) and CA-Fed’s decision
(included/excluded in training). From the experiments, we
observe that CA-Fed’s decisions depend on the degree of sta-
tistical heterogeneity among clients within a cluster (i.e., intra-
cluster) and among clusters (i.e., inter-cluster). When both
the intra-cluster and inter-cluster clients’ data distributions are

homogeneous, CA-Fed starts considering the clients in cluster
c̄ = 9 with λc̄ = 0.9, and sequentially excludes, in order, all
clients from clusters {9, 8, 7, 6} (as shown in Fig. 5a). When
the clients’ data distributions are homogeneous within clusters,
but heterogeneous among clusters (Fig. 5b), CA-Fed still
excludes all clients from clusters c = {9, 7, 6}, but decides to
include clients from cluster c = 8. This is because these clients
happen to have a lower value of F̂ (t)

k −F̂ ∗
k , and despite having a

large λc, CA-Fed decides to include them. Finally, when both
the intra-cluster and inter-cluster clients’ data distributions are
heterogeneous (Fig. 5c), CA-Fed can partially include clients
from the more correlated clusters, even though their λc is large.
Figure 5d compares the test accuracy achieved by CA-Fed
and the baselines with spatial correlation in the same setting
as in Figure 5c. The experimental results show that CA-Fed
can operate correctly in the presence of spatial correlation and
still outperforms the baselines (+0.6 pp w.r.t. AdaFed).

VI. CONCLUSION

This paper presents the first convergence analysis of a
FedAvg-like federated learning (FL) algorithm in presence of
heterogeneous and correlated client availability. The analysis
reveals the detrimental effect of correlation on the convergence
rate and highlights a fundamental trade-off between conver-
gence speed and model bias. To navigate this tradeoff, we
introduce CA-Fed, a novel FL algorithm, which adaptively
manages the conflicting aims of enhancing convergence speed
and reducing model bias, with the ultimate objective of max-
imizing model quality within the constraints of the training
time available. CA-Fed achieves this goal by dynamically
excluding clients who exhibit high temporal correlation and
limited availability, contingent on their data distributions.
Indeed, model updates from such clients may act as noise,
increasing variance and slowing down the algorithm’s con-
vergence. CA-Fed disregards such clients unless their local
datasets notably enhance the quality of the final model. The
experimental results validate the effectiveness of our strategy,
demonstrating that CA-Fed is a versatile and resilient FL
algorithm, well-suited to address real-world scenarios char-
acterized by heterogeneous and correlated client availability.
Further discussions on the computation and communication
costs, and fairness of CA-Fed can be found in Appendix H.
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Supplementary Material: Federated Learning under
Heterogeneous and Correlated Client Availability

APPENDIX A
PROOF OF THEOREM 1

Theorem 1 (Decomposing the total error). Let κ := L/µ. Under Assumptions 2–4, the optimization error of the target global
objective ϵ = F (w)− F ∗ can be bounded as follows:

ϵ ≤ 2κ2(FB(w)− F ∗
B︸ ︷︷ ︸

:=ϵopt

+F (w∗
B)− F ∗︸ ︷︷ ︸
:=ϵbias

). (10)

Moreover, let χ2
α∥p :=

∑N
k=1 (αk − pk)2/pk. Then:

ϵbias ≤ κ2 · χ2
α∥p · Γ︸ ︷︷ ︸
:=ϵ̄bias

. (11)

The proof of Theorem 1 employs well-established techniques from convex optimization. It is based on the proof presented
in [33, Theorem 2].

Proof of Theorem 1. By leveraging the L-smoothness and µ-strong convexity properties of F , we obtain:

F (w)− F ∗ ≤ 1

2µ
∥∇F (w)∥2 (21)

≤ L2

2µ
∥w −w∗∥2 (22)

≤ L2

µ
(∥w −w∗

B∥
2
+ ∥w∗

B −w∗∥2) (23)

≤ 2L2

µ2

(
FB(w)− F ∗

B︸ ︷︷ ︸
:=ϵopt

+F (w∗
B)− F ∗︸ ︷︷ ︸
:=ϵbias

)
, (24)

where the inequality in (21) follows from Assumption 4 and is commonly referred to as the Polyak-Lojasiewicz inequality;
the inequality in (22) is derived using the fact that ∇F (w∗) = 0 (Assumption 2) and the definition of L-Lipschitz continuous
gradient for F (Assumption 3); the inequality in (23) is based on (a+ b)2 ≤ 2(a2 + b2); lastly, the inequality in (24) follows
from the µ-strong convexity of both FB and F (Assumptions 4), and uses ∇FB(w

∗
B) = 0 and ∇F (w∗) = 0 (Assumption 2).

The obtained results complete the first part of the proof, establishing the bound in (10).

Next, to prove the relation in (11), we proceed by bounding the term ϵbias as follows:

ϵbias := (F (w∗
B)− F ∗) ≤ 1

2µ
∥∇F (w∗

B)∥
2
, (25)

where the inequality in (25) directly follows from the Polyak-Lojasiewicz inequality (Assumption 4).

Furthermore, we bound the term ∥∇F (w∗
B)∥ as follows:

∥∇F (w∗
B)∥ =

∥∥∥∥∥
N∑

k=1

(αk − pk)∇Fk(w
∗
B)

∥∥∥∥∥ (26)

≤
N∑

k=1

|αk − pk| ∥∇Fk(w
∗
B)∥ (27)

≤ L
N∑

k=1

|αk − pk| ∥w∗
B −w∗

k∥ (28)

≤ L
√

2

µ

N∑
k=1

|αk − pk|
√
(Fk(w∗

B)− F ∗
k ), (29)

where, in (26), we use ∇FB(w
∗
B) = 0 (Assumption 2) and apply the definitions of F and FB given in (1) and (4), respectively.

The bound in (27) follows from the triangle inequality. Next, the inequality in (28) uses ∇Fk(w
∗
k) = 0 (Assumption 2) and
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the L-smoothness of Fk (Assumption 3). Finally, the inequality in (29) leverages the µ-strong convexity of Fk (Assumption 4)
and ∇Fk(w

∗
k) = 0 (Assumption 2), and follows multiplying and dividing by

√
pk.

By squaring both sides of Equation (29), we obtain:

∥∇F (w∗
B)∥

2 ≤ 2L2

µ

(
N∑

k=1

|αk − pk|√
pk

√
pk(Fk(w∗

B)− F ∗
k )

)2

(30)

≤ 2L2

µ

(
N∑

k=1

(αk − pk)2

pk

)(
N∑

k=1

pk(Fk(w
∗
B)− F ∗

k )

)
(31)

≤ 2L2

µ
· χ2

α∥p · Γ, (32)

where the inequality in (31) follows from the Cauchy-Schwarz inequality. Furthermore, the inequality in (32) holds because:

N∑
k=1

pk(Fk(w
∗
B)− F ∗

k ) = F ∗
B −

N∑
k=1

pkF
∗
k (33)

≤ FB(w
∗)−

N∑
k=1

pkF
∗
k (34)

=

N∑
k=1

pk(Fk(w
∗)− F ∗

k ) (35)

≤ max
k∈K
{Fk(w

∗)− F ∗
k } := Γ. (36)

We remark that the inequality in (34) only holds if w∗
B is the global minimizer of FB , as guaranteed by Assumption 2.

By replacing (32) into (25), we have:

ϵbias ≤
1

2µ
∥∇F (w∗

B)∥
2 ≤ L2

µ2
· χ2

α∥p · Γ, (37)

which concludes the proof of Equation (11), and therefore, of Theorem 1.

APPENDIX B
PROOF OF THEOREM 2

B1. Algorithm Overview and Supplementary Notation

Let wk
t,j represent the model parameter maintained by the k-th client during the t-th global communication round and the j-th

local step. The t-th global communication round can be described as follows: 1) The server broadcasts the model parameter
wt,0 to the active clients, which adopt it as their local model, i.e., wk

t,0 = wt,0 for k ∈ At; 2) Each active client k ∈ At

generates a sequence of local models {wk
t,j}Ej=1 using the local-SGD update rule defined in (2); 3) The active clients send

their model updates ∆k
t := wk

t,E −wt,0 back to the server; 4) The server aggregates the model updates using the aggregation
rule specified in (3), resulting in the new global model parameter wt+1,0.

wk
t,j+1 = wk

t,j − ηt∇Fk(w
k
t,j ,Bkt,j) for j = 0, . . . , E − 1; (2)

wt+1,0 = ProjW (wt,0 +
∑
k∈At

qk
(
wk

t,E −wt,0

)
) for j = E. (3)

The projection operator in (3) ensures that the current iterate wt+1,0 in the optimization algorithm defined by (2) and (3)
remains within the feasible region W .
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Sources of randomness: In the system, we model two sources of randomness. The first arises from the availability of random
clients, which follows a Markov process as stated in Assumption 1. The second source of randomness originates from the
random sampling of batches for computing stochastic gradients. Remember that At denotes the random set of clients available
at the t-th communication round and that Bkt,j denotes the random batch independently sampled from client-k’s local dataset
at round t, local iteration j. For the analysis, we introduce the following additional notation:

• Ai:j := {Ai, . . . ,Aj}: the family of random sets of clients available from the i-th to the j-th communication rounds, i<j;

• Bkt := {Bkt,j}
E−1
j=0 : the set of random batches sampled by the k-th client at the t-th communication round;

• Bt := {Bkt }k∈At : the set of random batches sampled by the available clients (At) in the t-th communication round;

• Bkt,i:j := {Bkt,i, . . . ,Bkt,j}: the set of random batches sampled by the k-th client at the t-th communication round between
the i-th and the j-th local iterations, i < j;

• Bi:j := {Bi, . . . ,Bj}: the set of random batches sampled by the available clients (Ai:j) between the i-th and j-th
communication rounds, i < j.

With this notation established, the randomness in the t-th communication round, which starts with the initial model wt,0 and
yields the updated model wt+1,0, is fully determined by the sets At and Bt. This implies that the evolution of the algorithm,
governed by the update rules in (2) and (3), from round 0 to round t can be completely described by the tuple:

Ht := (A0, . . . ,At−1;B0, . . . ,Bt−1) , (38)

which represents the historical information up to the t-th communication round.

We introduce the following additional quantities for our analysis:

gt(At,Bt) :=
∑
k∈At

qk

E−1∑
j=0

∇Fk(w
k
t,j ,Bkt,j), (39)

and

ḡt(At,Bt) :=
∑
k∈At

qk

E−1∑
j=0

∇Fk(w
k
t,j), (40)

where gt(At,Bt) denotes the global pseudo-gradient computed at communication round t, aggregated from the active clients
in At, and ḡt(At,Bt) denotes its expected value with respect to the choices of the random batches Bkt,j , for all j = 0, . . . , E−1
and k ∈ At. With this notation established, the global update rule for the t-th communication round can be expressed as:

wt+1,0 = ProjW (wt,0 − ηtgt(At,Bt)). (41)

B2. Supporting Lemmas

In this section, we introduce several lemmas that are instrumental in proving Theorem 2. Firstly, we prove Lemma 1, introduced
in Section III-A. Its proof relies on the convexity and compactness of the hypothesis class W (Assumption 2), on the L-
smoothness of the functions {Fk}k∈K (Assumption 3), and on the bounded variance of the stochastic gradients (Assumption 5).

Lemma 1. Under Assumptions 2, 3, and 5, there exist constants D, G, and H > 0, such that, for w ∈ W and k ∈ K,
we have:

∥∇Fk(w)∥ ≤ D, (6)

E ∥∇Fk(w, ξ)∥2 ≤ G2, (7)
|Fk(w)− Fk(w

∗
B)| ≤ H. (8)

Proof of Lemma 1. The boundedness of the hypothesis class W (Assumption 2) provides a bound on the sequence (wt,0)t≥0

generated by the scheme defined in Equations (2) and (3). Moreover, since w∗
k minimizes ∇Fk(w), we have ∇Fk(w

∗
k) = 0.

Furthermore, the L-smoothness of {Fk}k∈K (Assumption 3) leads to the following inequality:

∥∇Fk(w)∥ = ∥∇Fk(w)−∇Fk(w
∗
k)∥ ≤ L ∥w −w∗

k∥ := D < +∞. (42)

13



The bound in (6) is directly derived from (42), while the bound in (8) follows from the continuity of {Fk}k∈K over the
compact set W (Assumption 2). Finally, the inequality in (7) requires a bound on the variance of the stochastic gradients
(Assumption 5). In particular, it holds that:

E ∥∇Fk(w, ξ)∥2 ≤ D2 +max
k∈K
{σ2

k} := G2. (43)

The following lemma proves that the global pseudo-gradient gt(At,Bt) is an unbiased estimator of ḡt(At,Bt). A similar result
has been used in previous works, specifically in [33, Appendix C1]. Here, we provide a comprehensive proof for this result.

Lemma 2. Let gt(At,Bt) and ḡt(At,Bt) be defined as in (39) and (40), respectively. The following equality holds:

E
Bt|At,Ht

[gt(At,Bt)] = E
Bt|At,Ht

[ḡt(At,Bt)] . (44)

Proof of Lemma 2.

E
Bt|At,Ht

[gt(At,Bt)] = (45)

= E
Bt|At,Ht

∑
k∈At

qk

E−1∑
j=0

∇Fk(w
k
t,j ,Bkt,j)

 (46)

=
∑
k∈At

qk E
Bk

t

E−1∑
j=0

∇Fk(w
k
t,j ,Bkt,j)

 (47)

=
∑
k∈At

qk

[
E

Bk
t,0

[∇Fk(wt,0,Bkt,0)] + E
Bk

t,0,Bk
t,1

[∇Fk(w
k
t,1,Bkt,1)] + · · ·+ E

Bk
t,0:E−1

[∇Fk(w
k
t,E−1,Bkt,E−1)]

]
(48)

=
∑
k∈At

qk

[
∇Fk(wt,0) + E

Bk
t,0

[
E

Bk
t,1|Bk

t,0

[
∇Fk(w

k
t,1,Bkt,1)

] ]
+ · · ·+ E

Bk
t,0:E−2

[
E

Bk
t,E−1|Bk

t,0:E−2

[
∇Fk(w

k
t,E−1,Bkt,E−1)

] ]]
(49)

=
∑
k∈At

qk

[
∇Fk(wt,0) + E

Bk
t,0

[∇Fk(w
k
t,1)] + · · ·+ E

Bk
t,0:E−2

[∇Fk(w
k
t,E−1)]

]
(50)

=
∑
k∈At

qk E
Bk

t,0:E−2

E−1∑
j=0

∇Fk(w
k
t,j)

 (51)

= E
Bt|At,Ht

∑
k∈At

qk

E−1∑
j=0

∇Fk(w
k
t,j)

 = E
Bt|At,Ht

[ḡt(At,Bt)] , (52)

where, in (47), we considered that both the evolution of the local models {wk
t,j}

E−1
j=0 and the choices of the random batches

{Bkt,j}
E−1
j=0 are independent among different clients k ∈ At within the same communication round t ∈ T .

For the sake of simplicity, we will henceforth denote gt(At,Bt) and ḡt(At,Bt) as gt and ḡt, respectively. The following
lemma decomposes the optimization error into multiple components, which we will bound separately in subsequent lemmas.

Lemma 3 (Decomposition of the error in a global communication round). Let Assumption 2 hold. We have:

E
Bt|At,Ht

∥wt+1,0 −w∗
B∥

2 ≤∥wt,0 −w∗
B∥

2−2ηt E
Bt|At,Ht

⟨wt,0 −w∗
B , ḡt⟩︸ ︷︷ ︸

bounded in Lemma 4

+ η2t E
Bt|At,Ht

∥ḡt∥2︸ ︷︷ ︸
bounded in Lemma 5

+ 2ηt E
Bt|At,Ht

⟨wt,0 −w∗
B − ηtḡt, ḡt − gt⟩︸ ︷︷ ︸

bounded in Lemma 6

+ η2t E
Bt|At,Ht

∥gt − ḡt∥2︸ ︷︷ ︸
bounded in Lemma 7

. (53)

Proof of Lemma 3.

∥wt+1,0 −w∗
B∥

2
= ∥ProjW (wt,0 − ηtgt)−ProjW (w∗

B)∥
2 (54)
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≤ ∥wt,0 − ηtgt −w∗
B + ηtḡt − ηtḡt∥2 (55)

= ∥wt,0 −w∗
B − ηtḡt∥

2
+ 2ηt⟨wt,0 −w∗

B − ηtḡt, ḡt − gt⟩+ η2t ∥gt − ḡt∥2 (56)

= ∥wt,0 −w∗
B∥

2 − 2ηt⟨wt,0 −w∗
B , ḡt⟩+ η2t ∥ḡt∥

2
+ 2ηt⟨wt,0 −w∗

B − ηtḡt, ḡt − gt⟩+ η2t ∥gt − ḡt∥2 ,
(57)

where, in (54), we used Assumption 2; whereas, the inequality in (55) is due to the contracting property of projection.
We observe that (55) does not hold in general if w∗

B ̸∈W .

In what follows, we present a series of lemmas to establish bounds for the error in (53).

Lemma 4. Let Assumption 3 hold and the local functions {Fk}Nk=1 be convex. We have:

−2ηt⟨wt,0 −w∗
B , ḡt⟩ ≤ − 2ηt(1− ηtL)

∑
k∈At

qk

E−1∑
j=0

(
Fk(w

k
t,j)− Fk(w

∗
B)
)

+
∑
k∈At

qk

E−1∑
j=0

∥∥wk
t,j −wt,0

∥∥2
︸ ︷︷ ︸

bounded in Lemma 9

+2η2tLE
∑
k∈At

qk (Fk(w
∗
B)− F ∗

k )︸ ︷︷ ︸
bounded in Lemma 10

. (58)

Proof of Lemma 4. We decompose the term −2ηt⟨wt,0 −w∗
B , ḡt⟩, by adding and subtracting wk

t,j :

−2ηt⟨wt,0 −w∗
B , ḡt⟩ = −2ηt⟨wt,0 −wk

t,j , ḡt⟩︸ ︷︷ ︸
developed in Eq. (60)

−2ηt⟨wk
t,j −w∗

B , ḡt⟩︸ ︷︷ ︸
developed in Eq. (64)

. (59)

We bound the two terms separately. We bound the first term in (59) as:

−2ηt⟨wt,0−wk
t,j , ḡt⟩ = −2ηt

∑
k∈At

qk

E−1∑
j=0

⟨∇Fk(w
k
t,j),wt,0 −wk

t,j⟩ (60)

≤ η2t
∑
k∈At

qk

E−1∑
j=0

∥∥∇Fk(w
k
t,j)
∥∥2 + ∑

k∈At

qk

E−1∑
j=0

∥∥wk
t,j −wt,0

∥∥2 (61)

≤ 2η2tL
∑
k∈At

qk

E−1∑
j=0

(
Fk(w

k
t,j)− F ∗

k

)
+
∑
k∈At

qk

E−1∑
j=0

∥∥wk
t,j −wt,0

∥∥2 (62)

= 2η2tL
∑
k∈At

qk

E−1∑
j=0

(
Fk(w

k
t,j)− Fk(w

∗
B)
)
+
∑
k∈At

qk

E−1∑
j=0

∥∥wk
t,j −wt,0

∥∥2 + 2η2tLE
∑
k∈At

qk (Fk(w
∗
B)− F ∗

k ) ,

(63)

where, in (61), we used |⟨a, b⟩| ≤ 1
2 ∥a∥

2
+ 1

2 ∥b∥
2; in (62), we applied the L-smoothness of {Fk(w)}k∈K (Assumption 3);

in (63), we added and subtracted Fk(w
∗
B).

We bound the second term in (59) as:

−2ηt⟨wk
t,j −w∗

B , ḡt⟩ = −2ηt
∑
k∈At

qk

E−1∑
j=0

⟨wk
t,j −w∗

B ,∇Fk(w
k
t,j)⟩ (64)

≤ −2ηt
∑
k∈At

qk

E−1∑
j=0

(
Fk(w

k
t,j)− Fk(w

∗
B)
)
, (65)

where, in (65), we use the convexity of {Fk(w)}k∈K.

By summing the bounds provided in (63) and (65), we conclude the proof.

Lemma 5 (Bound on the squared norm of a global gradient step). Let Assumption 3 hold. We have:

η2t ∥ḡt∥
2 ≤ 2η2tLEQ

∑
k∈At

qk

E−1∑
j=0

(
Fk(w

k
t,j)− Fk(w

∗
B)
)
+ 2η2tLE

2Q
∑
k∈At

qk (Fk(w
∗
B)− F ∗

k )︸ ︷︷ ︸
bounded in Lemma 10

. (66)
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Proof of Lemma 5.

η2t ∥ḡt∥
2
= η2t

∥∥∥∥ ∑
k∈At

qk

E−1∑
j=0

∇Fk(w
k
t,j)

∥∥∥∥2 (67)

≤ η2t
∑

k′∈At

qk′

∑
k∈At

qk

∥∥∥∥E−1∑
j=0

∇Fk(w
k
t,j)

∥∥∥∥2 (68)

≤ η2tQE
∑
k∈At

qk

E−1∑
j=0

∥∥∇Fk(w
k
t,j)
∥∥2 (69)

≤ 2η2tQLE
∑
k∈At

qk

E−1∑
j=0

(
Fk(w

k
t,j)− F ∗

k

)
(70)

= 2η2tLEQ
∑
k∈At

qk

E−1∑
j=0

(
Fk(w

k
t,j)− Fk(w

∗
B)
)
+ 2η2tLE

2Q
∑
k∈At

qk (Fk(w
∗
B)− F ∗

k ) , (71)

where, in (68) and in (69), we applied the Jensen’s inequality; in (69), we also observed that
∑

k∈At
qk ≤

∑
k∈K qk := Q;

in (70), we used the L-smoothness of {Fk(w)}k∈K (Assumption 3); in (71), we added and subtracted Fk(w
∗
B) to the sum.

Lemma 6. Let Assumption 5 hold. We have:

2ηt E
Bt|At,Ht

[⟨wt,0 −w∗
B − ηtḡt, ḡt − gt⟩] ≤ 2η2tLEQ

∑
k∈At

qk

E−1∑
j=1

E
Bk

t |At,Ht

[
Fk(w

k
t,j)− Fk(w

∗
B)
]

+
1

2
η2tE(E − 1)

∑
k∈At

q2kσ
2
k

+ 2η2tLE
2Q

∑
k∈At

qk (Fk(w
∗
B)− F ∗

k )︸ ︷︷ ︸
bounded in Lemma 10

. (72)

Proof of Lemma 6. We decompose the term ⟨wt,0 −w∗
B − ηtḡt, ḡt − gt⟩ in two parts:

2ηt⟨wt,0 −w∗
B − ηtḡt, ḡt − gt⟩ = 2ηt⟨wt,0 −w∗

B , ḡt − gt⟩ − 2η2t ⟨ḡt, ḡt − gt⟩. (73)

From Lemma 2, we conclude that EBt|At,Ht
⟨wt,0 −w∗

B , ḡt − gt⟩ = 0.

We now focus on:

− 2η2t E
Bt|At,Ht

[⟨ḡt, ḡt − gt⟩] = (74)

= −2η2t E
Bt|At,Ht

∑
k∈At

∑
k′∈At

qkqk′

E−1∑
j=0

E−1∑
j′=0

⟨∇Fk(w
k
t,j),∇Fk′(wk′

t,j′)−∇Fk′(wk′

t,j′ ,Bk
′

t,j′)⟩

 (75)

= −2η2t E
Bt|At,Ht

∑
k∈At

q2k

E−1∑
j=0

E−1∑
j′=0

⟨∇Fk(w
k
t,j),∇Fk(w

k
t,j′)−∇Fk(w

k
t,j′ ,Bkt,j′)⟩



− 2η2t E
Bt|At,Ht

∑
k∈At

∑
k′∈At

k′ ̸=k

qkqk′

E−1∑
j=0

E−1∑
j′=0

⟨∇Fk(w
k
t,j),∇Fk′(wk′

t,j′)−∇Fk′(wk′

t,j′ ,Bk
′

t,j′)⟩

 (76)

= −2η2t
∑
k∈At

q2k E
Bk

t |At,Ht

E−1∑
j=0

E−1∑
j′=0

⟨∇Fk(w
k
t,j),∇Fk(w

k
t,j′)−∇Fk(w

k
t,j′ ,Bkt,j′)⟩


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− 2η2t
∑
k∈At

∑
k′∈At

k′ ̸=k

qkqk′

E−1∑
j=0

E−1∑
j′=0

⟨ E
Bk

t |At,Ht

[
∇Fk(w

k
t,j)
]
, E
Bk′

t,0:j′−1
|At,Ht

[
E

Bk′
t,j′ |B

k′
t,0:j′−1

,At,Ht

[
∇Fk′(wk′

t,j′)−∇Fk′(wk′

t,j′ ,Bk
′

t,j′)
]]

︸ ︷︷ ︸
=0

⟩,

(77)

where, in (75), we replaced the definitions of gt and ḡt given in (39) and in (40), respectively; in (76), we consider the cases
k = k′ and k ̸= k′ separately; (77) follows from the consideration that local models of different clients evolve independently
and then all the terms with k′ ̸= k equal zero because ∇Fk(w,B) is an unbiased estimator of ∇Fk(w). It follows that:

−2η2t E
Bt|At,Ht

[⟨ḡt, ḡt − gt⟩] = (78)

= −2η2t
∑
k∈At

q2k E
Bk

t |At,Ht

E−1∑
j=0

E−1∑
j′=0

⟨∇Fk(w
k
t,j),∇Fk(w

k
t,j′)−∇Fk(w

k
t,j′ ,Bkt,j′)⟩

 (79)

= −2η2t
∑
k∈At

q2k E
Bk

t |At,Ht

E−1∑
j=0

E−1∑
j′=0
j′<j

⟨∇Fk(w
k
t,j),∇Fk(w

k
t,j′)−∇Fk(w

k
t,j′ ,Bkt,j′)⟩



− 2η2t
∑
k∈At

q2k E
Bk

t |At,Ht

E−1∑
j=0

E−1∑
j′=0
j′≥j

⟨∇Fk(w
k
t,j),∇Fk(w

k
t,j′)−∇Fk(w

k
t,j′ ,Bkt,j′)⟩

 (80)

= −2η2t
∑
k∈At

q2k

E−1∑
j=0

E−1∑
j′=0
j′<j

E
Bk

t |At,Ht

[
⟨∇Fk(w

k
t,j),∇Fk(w

k
t,j′)−∇Fk(w

k
t,j′ ,Bkt,j′)⟩

]

− 2η2t
∑
k∈At

q2k

E−1∑
j=0

E−1∑
j′=0
j′≥j

E
Bk

t,0:j′−1
|At,Ht

[
E

Bk
t,j′ |B

k
t,0:j′−1

,At,Ht

[
⟨∇Fk(w

k
t,j),∇Fk(w

k
t,j′)−∇Fk(w

k
t,j′ ,Bkt,j′)⟩

]]
(81)

= −2η2t
∑
k∈At

q2k

E−1∑
j=0

E−1∑
j′=0
j′<j

E
Bk

t |At,Ht

[
⟨∇Fk(w

k
t,j),∇Fk(w

k
t,j′)−∇Fk(w

k
t,j′ ,Bkt,j′)⟩

]

− 2η2t
∑
k∈At

q2k

E−1∑
j=0

E−1∑
j′=0
j′≥j

E
Bk

t,0:j′−1
|At,Ht

[
⟨∇Fk(w

k
t,j), E

Bk
t,j′ |B

k
t,0:j′−1

,At,Ht

[
∇Fk(w

k
t,j′)−∇Fk(w

k
t,j′ ,Bkt,j′)

]
︸ ︷︷ ︸

=0

⟩

]
, (82)

where, in (80), we consider the cases j′ < j and j′ ≥ j separately; then, in (81) and in (82), we use the law of total expectation.

Finally, we bound the remaining term in the right-hand side of (82) as follows:

−2η2t E
Bt|At,Ht

[⟨ḡt, ḡt − gt⟩] = (83)

= −2η2t
∑
k∈At

q2k

E−1∑
j=1

∑
j′<j

E
Bk

t |At,Ht

⟨∇Fk(w
k
t,j),∇Fk(w

k
t,j′)−∇Fk(w

k
t,j′ ,Bkt,j′)⟩ (84)

= η2t
∑
k∈At

q2k

E−1∑
j=1

∑
j′<j

E
Bk

t |At,Ht

[∥∥∇Fk(w
k
t,j)
∥∥2 + ∥∥∇Fk(w

k
t,j′)−∇Fk(w

k
t,j′ ,Bkt,j′)

∥∥2] (85)

= η2t
∑
k∈At

q2k

E−1∑
j=1

∑
j′<j

E
Bk

t |At,Ht

[∥∥∇Fk(w
k
t,j)
∥∥]+

+ η2t
∑
k∈At

q2k

E−1∑
j=1

∑
j′<j

E
Bk

t,0:j′−1
|At,Ht

[
E

Bk
t,j′ |B

k
t,0:j′−1

,At,Ht

∥∥∇Fk(w
k
t,j′)−∇Fk(w

k
t,j′ ,Bkt,j′)

∥∥2]
︸ ︷︷ ︸

bounded with Assumption 5

(86)
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≤ η2t
∑
k∈At

q2k

E−1∑
j=1

∑
j′<j

E
Bk

t |At,Ht

∥∥∇Fk(w
k
t,j)
∥∥2 + 1

2
η2tE(E − 1)

∑
k∈At

q2kσ
2
k (87)

≤ η2tL(E − 1)
∑
k∈At

q2k

E−1∑
j=1

E
Bk

t |At,Ht

[(
Fk(w

k
t,j)− F ∗

k

)]
+

1

2
η2tE(E − 1)

∑
k∈At

q2kσ
2
k (88)

= η2tL(E − 1)
∑
k∈At

q2k

E−1∑
j=1

E
Bk

t |At,Ht

[(
Fk(w

k
t,j)− Fk(w

∗
B)
)]

+ η2tLE(E − 1)
∑
k∈At

q2k (Fk(w
∗
B)− F ∗

k ) +
1

2
η2tE(E − 1)

∑
k∈At

q2kσ
2
k (89)

≤ η2tL(E − 1)Q
∑
k∈At

qk

E−1∑
j=1

E
Bk

t |At,Ht

[(
Fk(w

k
t,j)− Fk(w

∗
B)
)]

+ η2tLE(E − 1)Q
∑
k∈At

qk (Fk(w
∗
B)− F ∗

k )︸ ︷︷ ︸
bounded in Lemma 10

+
1

2
η2tE(E − 1)

∑
k∈At

q2kσ
2
k, (90)

where, in (85), we used |⟨a, b⟩| ≤ 1
2 ∥a∥

2
+ 1

2 ∥b∥
2; in (87), we applied Assumption 5; in (88), we used the L-smoothness

of {Fk(w)}k∈K; in (89), we added and subtracted Fk(w
∗
B) from the sum; finally, in (90), we used

∑
k∈At

q2kf(k) ≤
(
∑

k∈At
qk)(

∑
k∈At

qkf(k)) and
∑

k∈At
qk ≤

∑N
k=1 qk := Q. Noting that E− 1 < 2E concludes the proof of Lemma 6.

Lemma 7 (Bound on the variance of the stochastic gradients). Let Assumption 5 hold. Similarly to [23, Lemma 2], we have:

η2t E
Bt|At,Ht

∥gt − ḡt∥2 ≤ η2tE
∑
k∈At

q2kσ
2
k. (91)

Proof of Lemma 7.

E
Bt|At,Ht

∥gt − ḡt∥2 = (92)

= E
Bt|At,Ht

∥∥∥∥ ∑
k∈At

qk

E−1∑
j=0

(
∇Fk(w

k
t,j ,Bkt,j)−∇Fk(w

k
t,j)
) ∥∥∥∥2 (93)

=
∑
k∈At

q2k

E−1∑
j=0

E
Bk

t |At,Ht

∥∥∇Fk(w
k
t,j ,Bkt,j)−∇Fk(w

k
t,j)
∥∥2

+
∑
k∈At

q2k E
Bk

t |At,Ht

E−1∑
j=0

E−1∑
j′=0
j′ ̸=j

⟨∇Fk(w
k
t,j ,Bkt,j)−∇Fk(w

k
t,j),∇Fk(w

k
t,j′ ,Bkt,j′)−∇Fk(w

k
t,j′)⟩


+
∑
k∈At

∑
k′∈At

k′ ̸=k

qkqk′

E−1∑
j=0

⟨ E
Bk

t,0:j−1|At,Ht

[
E

Bk
t,j |Bk

t,0:j−1,At,Ht

[
∇Fk(w

k
t,j ,Bkt,j)−∇Fk(w

k
t,j)
]]

︸ ︷︷ ︸
=0

,

E
Bk′

t,0:j−1|At,Ht

[
E

Bk′
t,j |Bk′

t,0:j−1,At,Ht

[
∇Fk′(wk′

t,j ,Bk
′

t,j)−∇Fk′(wk′

t,j)
]]

︸ ︷︷ ︸
=0

⟩

+
∑
k∈At

∑
k′∈At

k′ ̸=k

qkqk′

E−1∑
j=0

E−1∑
j′=0
j′ ̸=j

⟨ E
Bk

t,0:j−1|At,Ht

[
E

Bk
t,j |Bk

t,0:j−1,At,Ht

[
∇Fk(w

k
t,j ,Bkt,j)−∇Fk(w

k
t,j)
]]

︸ ︷︷ ︸
=0

,

E
Bk′

t,0:j′−1
|At,Ht

[
E

Bk′
t,j′ |B

k′
t,0:j′−1

,At,Ht

[
∇Fk′(wk′

t,j′ ,Bk
′

t,j′)−∇Fk′(wk′

t,j′)
]]

︸ ︷︷ ︸
=0

⟩ (94)
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=
∑
k∈At

q2k

E−1∑
j=0

E
Bk

t,j |At,Ht

∥∥∇Fk(w
k
t,j ,Bkt,j)−∇Fk(w

k
t,j)
∥∥2︸ ︷︷ ︸

bounded with Assumption 5

+
∑
k∈At

q2k

E−1∑
j=0

E−1∑
j′=0
j′<j

E
Bk

t,0:j−1|At,Ht

[
E

Bk
t,j |Bk

t,0:j−1,At,Ht

[
⟨∇Fk(w

k
t,j ,Bkt,j)−∇Fk(w

k
t,j),∇Fk(w

k
t,j′ ,Bkt,j′)−∇Fk(w

k
t,j′)⟩

]]

+
∑
k∈At

q2k

E−1∑
j=0

E−1∑
j′=0
j′>j

E
Bk

t,0:j′−1
|At,Ht

[
E

Bk
t,j′ |B

k
t,0:j′−1

,At,Ht

[
⟨∇Fk(w

k
t,j ,Bkt,j)−∇Fk(w

k
t,j),∇Fk(w

k
t,j′ ,Bkt,j′)−∇Fk(w

k
t,j′)⟩

]]

(95)

=
∑
k∈At

q2k

E−1∑
j=0

E
Bk

t,j |At,Ht

∥∥∇Fk(w
k
t,j ,Bkt,j)−∇Fk(w

k
t,j)
∥∥2︸ ︷︷ ︸

bounded with Assumption 5

+
∑
k∈At

q2k

E−1∑
j=0

E−1∑
j′=0
j′<j

E
Bk

t,0:j−1|At,Ht

[
⟨ E
Bk

t,j |Bk
t,0:j−1,At,Ht

[
∇Fk(w

k
t,j ,Bkt,j)−∇Fk(w

k
t,j)
]

︸ ︷︷ ︸
=0

,∇Fk(w
k
t,j′ ,Bkt,j′)−∇Fk(w

k
t,j′)⟩

]

+
∑
k∈At

q2k

E−1∑
j=0

E−1∑
j′=0
j′>j

E
Bk

t,0:j′−1
|At,Ht

[
⟨∇Fk(w

k
t,j ,Bkt,j)−∇Fk(w

k
t,j), E

Bk
t,j′ |B

k
t,0:j′−1

,At,Ht

[
∇Fk(w

k
t,j′ ,Bkt,j′)−∇Fk(w

k
t,j′)

]
︸ ︷︷ ︸

=0

⟩

]

(96)

≤ E
∑
k∈At

q2kσ
2
k, (97)

where, in (94), (95), and (96), we used the law of total expectation; in (97), we applied Assumption 5.
Multiplying both sides of (97) by η2t completes the proof of Lemma 7.

Lemma 8. Let Assumption 3 hold and let the local functions {Fk}Nk=1 be convex. Define γt := 2ηt(1− ηtL(1 + 2EQ)).
For a diminishing step-size 0 < ηt ≤ 1

2L(1+2EQ) , satisfying γt > 0, we have:

−γt
∑
k∈At

qk

E−1∑
j=0

(
Fk(w

k
t,j)− Fk(w

∗
B)
)
≤− 1

2
ηtE

∑
k∈At

qk (Fk(wt,0)− Fk(w
∗
B))

+
∑
k∈At

qk

E−1∑
j=0

∥∥wk
t,j −wt,0

∥∥2
︸ ︷︷ ︸

bounded in Lemma 9

+2η2tLE
∑
k∈At

qk (Fk(w
∗
B)− F ∗

k )︸ ︷︷ ︸
bounded in Lemma 10

, (98)

Proof of Lemma 8. In the following, we require γt > 0.

− γt
∑
k∈At

qk

E−1∑
j=0

(
Fk(w

k
t,j)− Fk(w

∗
B)
)

(99)

= −γt
∑
k∈At

qk

E−1∑
j=0

(
Fk(w

k
t,j)− Fk(wt,0)

)
− γt

∑
k∈At

qk

E−1∑
j=0

(Fk(wt,0)− Fk(w
∗
B)) (100)

≤ −γt
∑
k∈At

qk

E−1∑
j=0

⟨∇Fk(wt,0),w
k
t,j −wt,0⟩ − γtE

∑
k∈At

qk (Fk(wt,0)− Fk(w
∗
B)) (101)

≤ γt
∑
k∈At

qk

E−1∑
j=0

1

2

[
ηt ∥∇Fk(wt,0)∥2 +

1

ηt

∥∥wk
t,j −wt,0

∥∥2 ]− γtE ∑
k∈At

qk (Fk(wt,0)− Fk(w
∗
B)) (102)
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≤ γtηtLE
∑
k∈At

qk (Fk(wt,0)− F ∗
k ) +

γt
2ηt

∑
k∈At

qk

E−1∑
j=0

∥∥wk
t,j −wt,0

∥∥2 − γtE ∑
k∈At

qk (Fk(wt,0)− Fk(w
∗
B)) (103)

≤ −γtE(1− ηtL)
∑
k∈At

qk (Fk(wt,0)− Fk(w
∗
B)) +

γt
2ηt

∑
k∈At

qk

E−1∑
j=0

∥∥wk
t,j −wt,0

∥∥2 + γtηtLE
∑
k∈At

qk (Fk(w
∗
B)− F ∗

k )

(104)

where, in (100), we added and subtracted Fk(wt,0) to the sum; in (101), we used the convexity of {Fk(w)}k∈K; note that (101)
also requires γt > 0; in (102), we used the inequality |⟨a, b⟩| ≤ 1

2 ∥a∥
2
+ 1

2 ∥b∥
2; in (103), we applied the L-smoothness of

{Fk(w)}k∈K (Assumption 3); finally, in (104), we added and subtracted Fk(w
∗
B) to the sum.

In particular, for γt := 2ηt(1− ηtL(1 + 2EQ)) > 0, since 0 < ηt ≤ 1
2L(1+2EQ) , we further obtain:

− γt
∑
k∈At

qk

E−1∑
j=0

(
Fk(w

k
t,j)− Fk(w

∗
B)
)

≤ −1

2
ηtE

∑
k∈At

qk (Fk(wt,0)− Fk(w
∗
B)) +

∑
k∈At

qk

E−1∑
j=0

∥∥wk
t,j −wt,0

∥∥2
︸ ︷︷ ︸

bounded in Lemma 9

+2η2tLE
∑
k∈At

qk (Fk(w
∗
B)− F ∗

k )︸ ︷︷ ︸
bounded in Lemma 10

, (105)

where, in (105), we used 0 < ηt ≤ 1
2L(1+2EQ) , which gives − γtE(1−ηtL) = − 2ηtE (1−ηtL(1+2EQ)) (1−ηtL) ≤ − 1

2ηtE.
Moreover, since γt ≤ 2ηt, we also used γtηt ≤ 2η2t , and γt

2ηt
≤ 1.

Lemma 9 (Bound on the divergence of local models). Let Assumption 2, 3, and 5 hold, the local functions {Fk}Nk=1 be convex
and G be defined as in Lemma 1, Equation (7). Similarly to [23, Lemma 3], we obtain the following inequality:

E
Bt|At,Ht

∑
k∈At

qk

E−1∑
j=0

∥∥wk
t,j −wt,0

∥∥2 ≤ 1

2
η2tE

3G2

(∑
k∈At

qk

)
. (106)

Proof of Lemma 9.

E
Bt|At,Ht

∑
k∈At

qk

E−1∑
j=0

∥∥wk
t,j −wt,0

∥∥2 = E
Bt|At,Ht

∑
k∈At

qk

E−1∑
j=1

η2t

∥∥∥∥∥∥
j−1∑
j′=0

∇Fk(w
k
t,j′ ,Bkt,j′)

∥∥∥∥∥∥
2
 (107)

≤ η2t
∑
k∈At

qk

E−1∑
j=1

j

j−1∑
j′=0

E
Bk

t |At,Ht

[∥∥∇Fk(w
k
t,j′ ,Bkt,j′)

∥∥2] (108)

≤ η2tG2

E−1∑
j=1

j2

(∑
k∈At

qk

)
(109)

=
1

6
η2tE(E − 1)(2E − 1)G2

(∑
k∈At

qk

)
, (110)

where, in (108), we used the triangle and the Jensen’s inequalities; in (109), we applied the bound in Lemma 1, Equation (7);
finally, in (110), we developed the sum of sequence of squares

∑E−1
j=1 j

2 = 1
6E(E − 1)(2E − 1) ≤ 1

2E
3 since E ≥ 1.

Lemma 10 (Bound on the dissimilarity of local functions). Let Assumption 1 hold and (At)t≥0 defined therein. We have:

E

[∑
k∈At

qk (Fk(w
∗
B)− F ∗

k )

]
≤

(
N∑

k=1

πkqk

)
Γ, (111)

where Γ is defined in (9).
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Proof of Lemma 10.

E

[∑
k∈At

qk (Fk(w
∗
B)− F ∗

k )

]
=

N∑
k=1

πkqk (Fk(w
∗
B)− F ∗

k ) (112)

=

(
N∑

k′=1

πk′qk′

)
N∑

k=1

pk (Fk(w
∗
B)− F ∗

k ) (113)

≤

(
N∑

k′=1

πk′qk′

)
N∑

k=1

pk (Fk(w
∗)− F ∗

k ) (114)

≤

(
N∑

k′=1

πk′qk′

)
max
k∈K
{(Fk(w

∗)− F ∗
k )}︸ ︷︷ ︸

:=Γ

=

(
N∑

k=1

πkqk

)
Γ, (115)

where, in (112), we solved the total expectation, observing that E
[∑

k∈At
qkf(k)

]
=
∑N

k=1 πkqkf(k) (Assumption 1);

in (113), we applied pk := πkqk∑N
k′=1

πk′qk′
; in (114), we used FB(w) :=

∑N
k=1 pkFk(w) and we observed FB(w

∗
B) ≤ FB(w

∗);

finally, in (115), we used
∑N

k=1 pk = 1 and Γ := maxk∈K{(Fk(w
∗)− F ∗

k )}.

Lemma 11 (Convergence results under heterogeneous client availability). Let Assumptions 1–3 and 5 hold and the functions
{Fk}Nk=1 be convex. For a diminishing step-size 0 < ηt ≤ 1

2L(1+2EQ) satisfying
∑+∞

t=1 η
2
t < +∞, for any t0 ≤ T , we have:

T∑
t=t0

ηt E

[∑
k∈At

qk
(
Fk(wt,0)− Fk(w

∗
B)
)]
≤ 2

E
diam(W )2 + (E + 1)

(
N∑

k=1

πkq
2
kσ

2
k

)(
+∞∑
t=1

η2t

)

+ 2E2G2

(
N∑

k=1

πkqk

)(
+∞∑
t=1

η2t

)

+ 4L(1 + EQ)Γ

(
N∑

k=1

πkqk

)(
+∞∑
t=1

η2t

)
:= C0 < +∞. (116)

Proof of Lemma 11. We take expectation over Bt | At,Ht on Lemma 3:

E
Bt|At,Ht

∥wt+1,0 −w∗
B∥

2 ≤∥wt,0 −w∗
B∥

2−2ηt E
Bt|At,Ht

⟨wt,0 −w∗
B , ḡt⟩︸ ︷︷ ︸

bounded in Lemma 4

+ η2t E
Bt|At,Ht

∥ḡt∥2︸ ︷︷ ︸
bounded in Lemma 5

+ 2ηt E
Bt|At,Ht

⟨wt,0 −w∗
B − ηtḡt, ḡt − gt⟩︸ ︷︷ ︸

bounded in Lemma 6

+ η2t E
Bt|At,Ht

∥gt − ḡt∥2︸ ︷︷ ︸
bounded in Lemma 7

. (117)

Replacing Lemmas 4–7 in (117), we obtain:

E
Bt|At,Ht

∥wt+1,0 −w∗
B∥

2 ≤ ∥wt,0 −w∗
B∥

2
+ 2η2tLE(1 + 2EQ) E

Bt|At,Ht

[∑
k∈At

qk (Fk(w
∗
B)− F ∗

k )

]

− 2ηt(1− ηtL(1 + 2EQ))︸ ︷︷ ︸
γt

E
Bt|At,Ht

∑
k∈At

qk

E−1∑
j=1

(
Fk(w

k
t,j)− Fk(w

∗
B)
)

︸ ︷︷ ︸
bounded in Lemma 8

+
1

2
η2tE(E + 1)

∑
k∈At

q2kσ
2
k + E

Bt|At,Ht

∑
k∈At

qk

E−1∑
j=0

∥∥wk
t,j −wt,0

∥∥2
︸ ︷︷ ︸

bounded in Lemma 9

(118)
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We apply Lemmas 8 and 9 to (118) with γt := 2ηt(1− ηtL(1 + 2EQ)). We observe that γt > 0 because:

0 ≤ ηt ≤
1

2L(1 + 2EQ)
. (119)

We obtain:

E
Bt|At,Ht

∥wt+1,0 −w∗
B∥

2 ≤ ∥wt,0 −w∗
B∥

2 − 1

2
ηtE E

Bt|At,Ht

[∑
k∈At

qk (Fk(wt,0)− Fk(w
∗
B))

]

+
1

2
η2tE(E + 1)

∑
k∈At

q2kσ
2
k + η2tE

3G2
∑
k∈At

qk

+ 4η2tLE(1 + EQ)

[∑
k∈At

qk (Fk(w
∗
B)− F ∗

k )

]
. (120)

Computing the total expectation on (120), we have:

E
At,Bt,Ht

∥wt+1,0 −w∗
B∥

2 ≤ E
Ht

∥wt,0 −w∗
B∥

2 − 1

2
ηtE E

At,Bt,Ht

[∑
k∈At

qk (Fk(wt,0)− Fk(w
∗
B))

]

+
1

2
η2tE(E + 1) E

At,Ht

[∑
k∈At

q2kσ
2
k

]
+ η2tE

3G2 E
At,Ht

[∑
k∈At

qk

]

+ 4η2tLE(1 + EQ) E
At,Ht

[∑
k∈At

qk (Fk(w
∗
B)− F ∗

k )

]
︸ ︷︷ ︸

bounded in Lemma 10

(121)

Applying Lemma 10 to (121) and considering E
[∑

k∈At
ak
]
=
∑N

k=1 πkak (Assumption 1), the following inequality holds:

E ∥wt+1,0 −w∗
B∥

2 ≤ E ∥wt,0 −w∗
B∥

2 − 1

2
ηtE E

[∑
k∈At

qk (Fk(wt,0)− Fk(w
∗
B))

]

+
1

2
η2tE(E + 1)

(
N∑

k=1

πkq
2
kσ

2
k

)
+ η2tE

3G2

(
N∑

k=1

πkqk

)
+ 4η2tLE(1 + EQ)Γ

(
N∑

k=1

πkqk

)
. (122)

Rearranging and summing over t = t0, . . . , T , we obtain the following inequality:

T∑
t=t0

ηt E

[∑
k∈At

qk
(
Fk(wt,0)− Fk(w

∗
B)
)]
≤ 2

E

T∑
t=t0

E
[(
∥wt,0 −w∗

B∥
2 − ∥wt+1,0 −w∗

B∥
2
)]

+ (E + 1)

(
N∑

k=1

πkq
2
kσ

2
k

)(
T∑

t=t0

η2t

)

+ 2E2G2

(
N∑

k=1

πkqk

)(
T∑

t=t0

η2t

)

+ 4L(1 + EQ)Γ

(
N∑

k=1

πkqk

)(
T∑

t=t0

η2t

)
. (123)

The first term in the right-hand side of (123) is a telescoping sum and we remove the negative term −E ∥wT+1,0 −w∗
B∥

2:

T∑
t=t0

ηt E

[∑
k∈At

qk
(
Fk(wt,0)− Fk(w

∗
B)
)]
≤ 2

E
E ∥wt0,0 −w∗

B∥
2
+ (E + 1)

(
N∑

k=1

πkq
2
kσ

2
k

)(
T∑

t=t0

η2t

)

+ 2E2G2

(
N∑

k=1

πkqk

)(
T∑

t=t0

η2t

)
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+ 4L(1 + EQ)Γ

(
N∑

k=1

πkqk

)(
T∑

t=t0

η2t

)
. (124)

Finally, by noting that ∥wt0,0 −w∗
B∥ ≤ diam(W ) and

∑T
t=t0

η2t ≤
∑+∞

t=1 η
2
t < +∞, we complete the proof of Lemma 11.

Lemma 12. Let Assumptions 2 and 3 hold, and the local functions {Fk}Nk=1 be convex. We have:

|Fk(v)− Fk(w)| ≤ D · ∥v −w∥ , ∀v,w ∈W (125)

Proof of Lemma 12. In Lemma 1, under Assumptions 2 and 3, we have already proved that:

∥∇Fk(w)∥ ≤ D. (6)

Moreover, from the convexity of {Fk}k∈K, it follows that:

⟨∇Fk(v),v −w⟩ ≤ Fk(v)− Fk(w) ≤ ⟨∇Fk(w),v −w⟩. (126)

The Cauchy–Schwarz inequality completes the proof of Lemma 12:

|Fk(v)− Fk(w)| ≤ max{∥∇Fk(v)∥ , ∥∇Fk(w)∥} · ∥v −w∥ ≤ D · ∥v −w∥ . (127)

Lemma 13. Let Assumptions 2, 3, and 5 hold. We have:

E
Bt|At,Ht

∥wt+1,0 −wt,0∥ ≤ ηtEG

(∑
k∈At

qk

)
. (128)

Proof of Lemma 13. The proof is based on [15, Proposition 1.4].

E
Bt|At,Ht

∥wt+1,0 −wt,0∥ = E
Bt|At,Ht

∥∥∥∥∥∥−ηt
∑
k∈At

qk

E−1∑
j=0

∇Fk(w
k
t,j ,Bkt,j)

∥∥∥∥∥∥ (129)

≤ ηt
∑
k∈At

qk

E−1∑
j=0

E
Bk

t,0:j−1|At,Ht

[
E

Bk
t,j |Bk

t,0:j−1,At,Ht

[
∇Fk(w

k
t,j ,Bkt,j)

]]
(130)

≤ ηtEG

(∑
k∈At

qk

)
, (131)

where, in (130), we used the triangle inequality and the law of total expectation; in (131), we applied Lemma 1, Equation (7).

Similarly to [15, Theorem 1], we provide the following definition.

Definition 1. For communication round t ≥ 1, denote the positive integer Jt as follows:

Jt := min

{
max

{⌈
ln (2CPHt)

ln (1/λ(P ))

⌉
, TP

}
, t

}
. (132)

The parameter Jt is crucial in our analysis: it represents the communication rounds needed to bound the stationary distribution
convergence of the Markov process (At)t>0. It will play a key role in Lemmas 14–18 and in the proof of Theorem 2.
We remark that, by definition: TP ≤ Jt ≤ t.

Our definition of Jt corrects a typo in [15, (6.27)], which considered ln (t/(2CPH)) rather than ln (2CPHt). In fact,
we observe that [15, (6.28)] and consequently [15, (6.35)] do not hold when Jt is defined as in [15, (6.27)].

Lemma 14 (Convergence results under heterogeneous and correlated client availability after Jt communication rounds).
Let Assumptions 1–3, and 5 hold, the local functions {Fk}Nk=1 be convex, and the parameter Jt ≤ t be as in Definition 1.
For a diminishing step-size {ηt}t≥1 satisfying

∑+∞
t=1 ln(t) · η2t , for any t0 ≤ T , we have:

T∑
t=t0

ηt E

[∑
k∈At

qk
(
Fk(wt−Jt,0)− Fk(wt,0)

)]
≤ C1

ln(1/λ(P ))
< +∞, (133)
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where:

C1 := EDGQ

(
N∑

k=1

πkqk

)(
+∞∑
t=1

ln (2CPHt) η
2
t−Jt

)
. (134)

Proof of Lemma 14. This proof is based on [15, Equation (6.31)].

T∑
t=t0

ηt E

[∑
k∈At

qk(Fk(wt−Jt,0)− Fk(wt,0))

]
≤ Q

T∑
t=t0

ηt E
[
max
k∈K
{Fk(wt−Jt,0)− Fk(wt,0)}

]
(135)

≤ DQ
T∑

t=t0

ηt E ∥wt−Jt,0 −wt,0∥ (136)

≤ DQ
T∑

t=t0

ηt

t−1∑
d=t−Jt

E
Ad,Hd

[
E

Bd|Ad,Hd

∥wd,0 −wd+1,0∥
]

(137)

≤ EDGQ
T∑

t=t0

t−1∑
d=t−Jt

ηtηd E

[∑
k∈Ad

qk

]
(138)

≤ EDGQ

(
N∑

k=1

πkqk

)
T∑

t=t0

t−1∑
d=t−Jt

ηtηd (139)

≤ EDGQ

2

(
N∑

k=1

πkqk

)
T∑

t=t0

t−1∑
d=t−Jt

(
η2t + η2d

)
(140)

≤ EDGQ

(
N∑

k=1

πkqk

)
T∑

t=t0

Jtη2t−Jt
, (141)

where, in (135), we used
∑

k∈At
qkak ≤

∑N
k=1 qkak ≤ (

∑N
k=1 qk) ·maxk∈K {ak} = Q ·maxk∈K {ak}; in (136), we applied

Lemma 12; in (137), we used the triangle inequality and the law of total expectation; in (138), we applied Lemma 13 and
again the law of total expectation; in (139), we observed that E

[∑
k∈Ad

qk
]
=
∑N

k=1 πkqk (Assumption 1); in (140), we used
2ab ≤ a2 + b2; finally, in (141), we applied ηt < ηd ≤ ηt−Jt

due to the diminishing learning rate.

We apply then the definition of Jt in (132) and we observe that
∑T

t=t0
ln(t)η2t−Jt

≤
∑+∞

t=1 ln(t)η
2
t−Jt

:

T∑
t=t0

ηt E

[∑
k∈At

qk(Fk(wt−Jt,0)− Fk(wt,0))

]
≤ EDGQ

(
N∑

k=1

πkqk

)(
T∑

t=t0

ln (2CPHt)

ln(1/λ(P ))
η2t−Jt

)
(142)

≤ EDGQ

(
N∑

k=1

πkqk

)(
+∞∑
t=1

ln (2CPHt)

ln(1/λ(P ))
η2t−Jt

)
=

C1

ln(1/λ(P ))
. (143)

Finally, we conclude that C1 is finite. To this purpose, we observe that Jt ≤ a ln(t)+ b, for opportune positive values a and b.
Let t′ be a positive integer such that t ≥ a ln(t) + b for any t ≥ t′. Then:

T∑
t=t′

ln(t) · η2t−Jt
=

T−Jt∑
t=t′−Jt

ln(t+ Jt) · η2t (144)

≤
+∞∑
t=1

ln(t+ a ln t+ b) · η2t (145)

≤
+∞∑
t=1

ln ((1 + a+ b) t) · η2t < +∞. (146)
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Lemma 15. Let Assumptions 2, 3 and 5 hold, the local functions {Fk}Nk=1 be convex, and Jt ≤ t be as in Definition 1.
Let the step-size be decreasing and satisfy:

∑+∞
t=1 ln(t) · η2t < +∞. For any t0 ≤ T , we have:(

N∑
k=1

πkqk

)
T∑

t=t0

ηt E [FB(wt,0)− FB(wt−Jt,0)] ≤
C1

ln (1/λ(P ))
< +∞, (147)

where:

C1 := EDGQ

(
N∑

k=1

πkqk

)(
+∞∑
t=1

ln (2CPHt) η
2
t−Jt

)
. (148)

Proof of Lemma 15. This proof is based on [15, Equation (6.38)].(
N∑

k=1

πkqk

)
T∑

t=t0

ηt E [FB(wt,0)− FB(wt−Jt,0)] =

T∑
t=t0

ηt

N∑
k=1

πkqk E [Fk(wt,0)− Fk(wt−Jt,0)] (149)

≤ D

(
N∑

k=1

πkqk

)
T∑

t=t0

ηt E ∥wt−Jt,0 −wt,0∥ (150)

≤ D

(
N∑

k=1

πkqk

)
T∑

t=t0

ηt

t−1∑
d=t−Jt

E
Ad,Hd

[
E

Bd|Ad,Hd

∥wd,0 −wd+1,0∥
]

(151)

≤ DEGQ

(
N∑

k=1

πkqk

)
T∑

t=t0

t−1∑
d=t−Jt

ηtηd (152)

≤ DEGQ

2

(
N∑

k=1

πkqk

)
T∑

t=t0

t−1∑
d=t−Jt

(
η2t + η2d

)
(153)

≤ DEGQ

(
N∑

k=1

πkqk

)
T∑

t=t0

Jt · η2t−Jt
(154)

≤ EDGQ

(
N∑

k=1

πkqk

)(
+∞∑
t=1

ln (2CPHt)

ln(1/λ(P ))
η2t−Jt

)
=

C1

ln(1/λ(P ))
, (155)

where, in (149), we applied FB(w) =
∑N

k=1 pkFk(w), where pk = πkqk∑N
h=1 πhqh

; in (150), we applied Lemma 12; in (151),
we applied the triangle inequality and the law of total expectation; in (152), we applied Lemma 13; in (153), we used
2ab ≤ a2 + b2; in (154), we observed that η2t + η2d ≤ 2η2t−Jt

due to the diminishing learning rate; finally, in (155), we applied
the definition of Jt given in (132) and we observed that

∑T
t=t0

ln(t)η2t−Jt
≤
∑+∞

t=1 ln(t)η
2
t−Jt

< +∞ and then C1 < +∞.

Lemma 16 (Bound on the distance dynamics between the current and the stationary distributions of the Markov process).
Let Assumption 1 hold, and P , ρ defined therein. The following inequality holds:

max
i,j∈[M ]

∣∣[P t]i,j − ρj
∣∣ ≤ CP · λ(P )t, for t ≥ TP , (5)

where CP and TP are positive constants defined as:

CP :=

(
d∑

i=2

n2i

) 1
2

· ∥U∥F ∥U−1∥F , (156)

TP := max

{
max
1≤i≤d

{⌈
2ni(ni − 1)(ln( 2ni

lnλ(P )/|λ̄2(P )| )− 1)

(ni + 1) ln(λ(P )/|λ̄2(P )|)

⌉}
, 0

}
. (157)

Here, d, ni, and U are quantities related to the Jordan canonical form of P . Specifically, P = UJU−1, where J denotes the
Jordan M×M matrix with d blocks Ji, i = 2, . . . , d. Each block Ji, i = 2, 3, . . . , d, has a dimension ni ≥ 1, and

∑d
i=1 ni =M .

Moreover, |U |F denotes the Frobenius norm of the matrix U .
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Furthermore, let Assumptions 2 and 3 hold, H be defined as in Lemma 1, Equation (8), and TP ≤ Jt ≤ t be defined in (132).
We obtain the additional inequality:∣∣[PJt ]i,j − ρj

∣∣ ≤ CP · λ(P )t ≤ CPλ(P )Jt =
1

2Ht
, ∀i, j ∈ [M ] and ∀t ≥ TP . (158)

Proof of Lemma 16. The inequality in (5) is proven in [15, Lemma 1] and holds for any t ≥ TP . Here, TP is a constant
dependent on the transition matrix P of the Markov chain (At)t≥0 defined in Assumption 1. To prove (158), we further
observe that 0 < λ(P ) ≤ 1 and TP ≤ Jt ≤ t. The last inequality in (158) follows from the definition of Jt in (132).

We remark that the bounds in [15, Lemma 1], and consequently our (158), require t ≥ TP . Therefore, the derivations in [15,
(6.28)] and [15, (6.35)–(6.37)] are not accurate, since they hold for t ≥ TP . We address this problem with Lemmas 17 and 18.

Lemma 17. Let Assumptions 1–3 hold, and TP be defined as in (157). The following inequality holds:(
N∑

k=1

πkqk

)
TP−1∑
t=1

ηt E [FB(wt−Jt,0)− F ∗
B ] ≤ C2 < +∞, (159)

where:

C2 := H

(
TP−1∑
t=1

ηt

)(
N∑

k=1

πkqk

)
< +∞. (160)

Proof of Lemma 17.(
N∑

k=1

πkqk

)
TP−1∑
t=1

ηt E [FB(wt−Jt,0)− F ∗
B ] =

TP−1∑
t=1

ηt

N∑
k=1

πkqk E [Fk(wt−Jt,0)− Fk(w
∗
B)] (161)

≤ H

(
TP−1∑
t=1

ηt

)(
N∑

k=1

πkqk

)
:= C2 < +∞, (162)

where, in (161), we used the definition of FB from (4), and in (162), we applied Lemma 1, Equation (8), which holds
for any w ∈W . Lastly, it is worth noting that C2 is a sum of finite elements, and is therefore finite.

Lemma 18. Let Assumptions 1–3 and 5 hold, and {Fk}Nk=1 be convex. Recall the definitions of Jt and TP in (132) and in (157),
respectively. Let the step-size (ηt)t≥1 decrease and satisfy η1 ≤ 1

2L(1+2EQ) ,
∑+∞

t=1 η
2
t < +∞, and

∑+∞
t=1 ln (t) · η2t < +∞.

For t ≥ TP , we have: (
N∑

k=1

πkqk

)
T∑

t=TP

ηt E [FB(wt−Jt,0)− F ∗
B ] ≤

C1

ln (1/λ(P ))
+ C3 < +∞, (163)

where:

C1 := EDGQ

(
N∑

k=1

πkqk

)(
+∞∑
t=1

ln (2CPHt) · η2t−Jt

)
< +∞. (164)

C3 := C0 +
MQ

4

+∞∑
t=1

(
η2t +

1

t2

)
< +∞; (165)

Proof of Lemma 18. Assume t ≥ TP . With a similar proof technique to [15, (6.35)], we derive the following lower bound:

E
At|At−Jt ,Ht−Jt

[∑
k∈At

qk
(
Fk(wt−Jt,0)− Fk(w

∗
B)
)]

=

=
∑
a∈M

P(At = a | At−Jt
,Ht−Jt

)
∑
k∈a

qk
(
Fk(wt−Jt,0)− Fk(w

∗
B)
)

(166)

=
∑
a∈M

[
PJt

]
At−Jt ,a

∑
k∈a

qk
(
Fk(wt−Jt,0)− Fk(w

∗
B)
)

(167)

≥
∑
a∈M

(
ρa −

1

2Ht

)∑
k∈a

qk
(
Fk(wt−Jt,0)− Fk(w

∗
B)
)

(168)
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=

N∑
k=1

E [1k∈At
] qk
(
Fk(wt−Jt,0)− Fk(w

∗
B)
)
− 1

2Ht

∑
a∈M

∑
k∈a

qk
(
Fk(wt−Jt,0)− Fk(w

∗
B)
)

(169)

≥
N∑

k=1

πkqk
(
Fk(wt−Jt,0)− Fk(w

∗
B)
)
− MQ

2Ht
max
k∈K
{Fk(wt−Jt,0)− Fk(w

∗
B)} (170)

≥

(
N∑

k=1

πkqk

)
·
(
FB(wt−Jt,0)− F ∗

B

)
− MQ

2t
, (171)

where, in (166), we applied the definition of expected value to the random variable At, with a representing a realization
of At, that is a state in the state space M, and P(At = a | At−Jt

,Ht−Jt
) denoting the conditional probability of

the event At = a given (At−Jt ,Ht−Jt); in (167), we applied the Markov property (Assumption 1), observing that
P(At = a | At−Jt) = [PJt ]At−Jt ,a

, where [P k]i,j denotes the (i, j)-th element of the k-th power of the transition
matrix P ; in (168), we applied Lemma 16, Equation (158); for the first term in (169), we used

∑
a∈M ρa

∑
k∈a f(k) =∑

a∈M ρa
∑N

k=1 1{k∈a}f(k) =
∑N

k=1 f(k)
∑

a∈M ρa1k∈a =
∑N

k=1 f(k)E [1k∈At
], where 1k∈At

is the indicator function
that equals 1 if and only if k ∈ At; in (170), we used E [1k∈At

] = P(k ∈ At) := πk for the first term, and∑
k∈a qkf(k) ≤

∑N
k=1 qkf(k) ≤ (

∑N
k=1 qk)(maxk∈K f(k)) = Qmaxk∈K f(k) and

∑
a∈M 1 = M for the second term;

finally, in (171), we used the definition of FB in (4) for the first term, and we used Lemma 1, Equation (8) for the second term.

Our derivations in (170) and (171) correct a typo in [15, (6.35)], which considered Q/(2t) instead of (MQ)/(2t). In (171),
the dimension (M ) of the state space (M) of the Markov chain (At)t≥0 appears in the numerator of the second term.

Note that the steps in (168)–(171) require t ≥ TP . Multiplying by ηt and summing for t = TP , . . . , T , rearranging,
and computing the total expectation, we obtain the following inequality:(

N∑
k=1

πkqk

)
T∑

t=TP

ηt E [FB(wt−Jt,0)− F ∗
B ] ≤

T∑
t=TP

ηt E

[∑
k∈At

qk
(
Fk(wt−Jt,0)− Fk(w

∗
B)
)]

+
MQ

2

T∑
t=TP

ηt
t

(172)

≤
T∑

t=TP

ηt E

[∑
k∈At

qk
(
Fk(wt−Jt,0)− Fk(w

∗
B)
)]

︸ ︷︷ ︸
bounded with Lemma 11 + Lemma 14

+
MQ

4

T∑
t=1

(
η2t +

1

t2

)
, (173)

where, in (173), we used 2ab ≤ a2 + b2 and we observed that
∑T

t=TP

(
η2t +

1
t2

)
≤
∑T

t=1

(
η2t +

1
t2

)
since t > 0 and ηt > 0.

Moreover, if the step-size (ηt)t≥1 decreases and satisfies η1 ≤ 1
2L(1+2EQ) ,

∑+∞
t=1 η

2
t < +∞, and

∑+∞
t=1 ln (t) · η2t < +∞,

we can further bound the first term in (173) by combining Lemma 11 and Lemma 14 for t0 = TP , and we obtain:

T∑
t=TP

ηt E

[∑
k∈At

qk
(
Fk(wt−Jt,0)− Fk(w

∗
B)
)]
≤ C0 +

C1

ln (1/λ(P ))
< +∞, (174)

where:

C0 :=
2

E
diam(W )2 + (E + 1)

(
N∑

k=1

πkq
2
kσ

2
k

)(
+∞∑
t=1

η2t

)

+ 2E2G2

(
N∑

k=1

πkqk

)(
+∞∑
t=1

η2t

)

+ 4L(1 + EQ)Γ

(
N∑

k=1

πkqk

)(
+∞∑
t=1

η2t

)
. (175)

Finally, plugging (174) into (173), observing that
∑T

t=1

(
η2t +

1
t2

)
≤
∑+∞

t=1

(
η2t +

1
t2

)
< +∞ because

∑+∞
t=1 η

2
t < +∞ and∑+∞

t=1
1
t2 = π

6 < +∞, and denoting C3 := C0 +
MQ
4

∑+∞
t=1

(
η2t +

1
t2

)
< +∞, we conclude the proof of Lemma 18.
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B3. Proof of Theorem 2

Theorem 2 (Convergence of the optimization error ϵopt). Let Assumptions 1–3 and 5 hold and the functions {Fk}Nk=1 be convex.
Recall the constants M,L,D,G,H,Γ, σk, CP , TP ,Jt, and λ(P ) defined above. Let Q =

∑
k∈K qk.

Let the step-size ηt > 0 decrease and satisfy:

η1 ≤
1

2L(1 + 2EQ)
,

+∞∑
t=1

ηt = +∞,
+∞∑
t=1

ln(t) · η2t < +∞. (12)

Let T denote the total communication rounds.
For T ≥ TP , the expected optimization error E[FB(w̄T,0)− F ∗

B ] can be bounded as follows:

E[FB(w̄T,0)− F ∗
B ] ≤

1
2q

⊺Σq+υ

π⊺q + ψ + ϕ
ln(1/λ(P ))

(
∑T

t=1 ηt)
, (13)

where w̄T,0 =
∑T

t=1 ηtwt,0∑T
t=1 ηt

, and:

Σ := diag

(
2 (E + 1)πkσ

2
k

+∞∑
t=1

η2t

)
; (176)

υ :=
2

E
diam(W )2 +

MQ

4

+∞∑
t=1

(
η2t +

1

t2

)
; (177)

ψ := 4L(1 + EQ)Γ

(
+∞∑
t=1

η2t

)
+ 2E2G2

(
+∞∑
t=1

η2t

)
+H

(
TP−1∑
t=1

ηt

)
; (178)

ϕ := 2EDGQ

(
+∞∑
t=1

ln(2CPHt) · η2t−Jt

)
. (179)

Proof of Theorem 2. The proof involves three main steps.

Step 1: From Lemma 15, observe that:(
N∑

k=1

πkqk

)
T∑

t=1

ηt E[FB(wt,0)− FB(wt−Jt,0)] ≤
C1

ln(1/λ(P ))
< +∞, (180)

where:

C1 := EDGQ

(
N∑

k=1

πkqk

)(
+∞∑
t=1

ln (2CPHt) · η2t−Jt

)
< +∞. (181)

Step 2: By combining Lemma 17 and Lemma 18, we obtain:(
N∑

k=1

πkqk

)
T∑

t=1

ηt E[FB(wt−Jt,0)− F ∗
B)] ≤

C1

ln(1/λ(P ))
+ C2 + C3 < +∞, (182)

where C1 is defined in (181), and:

C2 := H

(
TP−1∑
t=1

ηt

)(
N∑

k=1

πkqk

)
< +∞; (183)

C3 :=
2

E
diam(W )2 + (E + 1)

(
N∑

k=1

πkq
2
kσ

2
k

)(
+∞∑
t=1

η2t

)

+ 2E2G2

(
N∑

k=1

πkqk

)(
+∞∑
t=1

η2t

)

+ 4L(1 + EQ)Γ

(
N∑

k=1

πkqk

)(
+∞∑
t=1

η2t

)
+
MQ

4

+∞∑
t=1

(
η2t +

1

t2

)
< +∞. (184)
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Step 3: By summing the results from Steps 1 and 2, given in (180) and (182), respectively, we have:(
N∑

k=1

πkqk

)
T∑

t=1

ηt E[FB(wt,0)− F ∗
B ] ≤

2C1

ln(1/λ(P ))
+ C2 + C3 < +∞. (185)

With the convexity of FB(·), applying the Jensen’s inequality, we complete Step 3:(
T∑

t=1

ηt

)(
N∑

k=1

πkqk

)
E[FB(w̄T,0)− F ∗

B ] ≤

(
N∑

k=1

πkqk

)
T∑

t=1

ηt E[FB(wt,0)− F ∗
B ] (186)

≤ 2C1

ln(1/λ(P ))
+ C2 + C3 < +∞, (187)

where w̄T,0 :=
∑T

t=1 ηtwt,0∑T
t=1 ηt

, and the constants C1, C2, and C3 are defined in (181), (183), and (184), respectively.

By dividing (186) and (187) by
(∑T

t=1 ηt

)
·
(∑N

k=1 πkqk

)
, we obtain the expression for Theorem 2 given in (13).

APPENDIX C
PROOF OF THEOREM 3

Theorem 3 (An alternative bound on the bias error ϵbias). Under the same assumptions of Theorem 1, define
Γ′ := maxk{Fk(w

∗
B)− F ∗

k }. The following result holds:

ϵbias ≤ 4κ2 · d2TV (α,p) · Γ′︸ ︷︷ ︸
:=ϵ̄′bias

, (15)

where dTV (α,p) :=
1
2

∑N
k=1|αk − pk| denotes the total variation distance between the probability distributions α and p.

Proof of Theorem 3. The proof follows the same steps as in Theorem 1, proceeding from (29) as follows:

∥∇F (w∗
B)∥ ≤ L

√
2

µ

N∑
k=1

|αk − pk|
√
(Fk(w∗

B)− F ∗
k ) (29)

≤ 2L

√
2

µ
dTV (α,p)

√
Γ′, (188)

where, in (188), we applied the definitions of dTV (α,p) :=
1
2

∑N
k=1|αk − pk| and Γ′ := maxk{Fk(w

∗
B)− F ∗

k }.

Squaring (188), we obtain the following expression:

∥∇F (w∗
B)∥

2 ≤ 8L2

µ
d2TV (α,p)Γ

′. (189)

Then, replacing (189) in (25), we obtain:

ϵbias := (F (w∗
B)− F ∗) ≤ 1

2µ
∥∇F (w∗

B)∥
2 ≤ 4

L2

µ2
d2TV (α,p)Γ

′︸ ︷︷ ︸
:=ϵ̄′bias

, (190)

which concludes the proof of Theorem 3.

APPENDIX D
CONVEXITY OF ϵ̄OPT + ϵ̄BIAS

For the proof of the convexity of ϵ̄opt(q), please refer to Appendix E1. To prove that ϵ̄bias(q) is also convex, we need to study
the convexity of χ2

α∥p :=
∑N

k=1 (αk − pk)2/pk in q ∈ {qk > 0 ∀k, ∥q∥1 = Q > 0}. To this purpose, we define the following
functions:

hk : RN
≥0 \ {0} → R≥0, hk(q) :=

πkqk∑N
k′=1 πk′qk′

; (191)

gk : R>0 → R≥0, gk(pk) :=
(pk − αk)

2

pk
. (192)
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Finally, we write the chi-square divergence χ2
α∥p between the target and biased probability distributions α and p as:

χ2
α∥p(q) =

N∑
k=1

(gk ◦ hk)(q) =
N∑

k=1

gk(hk(q)). (193)

We observe that:

• hk(q) is a particular case of linear-fractional functions [40, Example 3.32, p. 97];

• gk(·) is a convex in pk over R>0 because sum of convex functions;

• each gk◦hk is quasi-convex in q ∈ RN
>0 because composition of a convex function (gk) and a linear-fractional function (hk)

[40, p. 102].

However, note that the sum of quasi-convex functions is not necessarily quasi-convex.

Proposition 1. The function χ2
α∥p(q) is not convex over RN

>0.

Proof of Proposition 1. To analyze the convexity of χ2
α∥p(q) =

∑N
k=1(gk ◦hk)(q) over RN

>0, a possible approach is to check
whether each function (gk ◦ hk)(q) is convex over RN

>0. In what follows, we show that (gk ◦ hk) is not convex over RN
>0.

Consider the case when πk = 1 ∀k ∈ K. We can rewrite (gk ◦ hk)(q) as follows:

(gk ◦ hk)(q) =

(
qk

∥q∥1
− αk

)2
qk

∥q∥1

. (194)

We show that this function fails to satisfy the definition of convexity, i.e., ∃ q, q′ ∈ RN
>0, ζ ∈ [0, 1] such that:

(gk ◦ hk) (ζq + (1− ζ)q′) > ζ (gk ◦ hk) (q) + (1− ζ) (gk ◦ hk) (q′). (195)

The left-hand side (LHS) of (195) is:

(gk ◦ hk) (ζq + (1− ζ)q′) =

(
ζqk+(1−ζ)q′k

ζ∥q∥1+(1−ζ)∥q′∥1
− αk

)2
ζqk+(1−ζ)q′k

ζ∥q∥1+(1−ζ)∥q′∥1

. (196)

If we take q : ∥q∥1 = 1, qk = αk, ζ = 1
2 , q′ = Q

N 1, and we let Q→ +∞, then the LHS in (196) converges to:

lim
Q→+∞

(
1
2αk+

1
2

Q
N

1
2 1+

1
2Q
− αk

)2
1
2αk+

1
2

Q
N

1
2 1+

1
2Q

=

(
1
N − αk

)2
1
N

. (197)

On the other hand, for the same choices of qk, q, q′, and ζ, and if we let Q→ +∞, the right-hand side (RHS) of (195) is:

ζ (gk ◦ hk) (q) + (1− ζ) (gk ◦ hk) (q′) = 0 +
1

2

(
1
N − αk

)2
1
N

. (198)

Finally, comparing (197) and (198), we conclude that, for Q large enough, the LHS in (195) is larger than the RHS.

Proposition 2. The function χ2
α∥p(q) is convex over RN

>0 ∩ {q : ∥q∥1 = Q > 0}.

Proof of Proposition 2. To verify the convexity of χ2
α∥p(q) =

∑N
k=1(gk ◦ hk)(q) over RN

>0 ∩ {q : ∥q∥1 = Q > 0}, one
possible approach is to demonstrate the convexity of each function (gk ◦ hk)(q) over the set RN

>0 ∩ {q : ∥q∥1 = Q > 0}.

We prove this result for a more general case. We show that, if

g̃ is a convex function over its domain Dg (199)
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and

h̃(q) =
Aq + b

c⊺q + d
, (200)

then

g̃ ◦ h̃ is convex over D = RN
>0 ∩ {q : c⊺q + d = Q > 0,

Aq + b

c⊺q + d
∈ Dg}. (201)

It is then sufficient to apply this result to each pair (gk, hk) to conclude that (gk ◦ hk) is convex and then χ2
α∥p(q) is convex.

By direct inspection, for all q, q′ ∈ D, ∀ ζ ∈ [0, 1], the following equality holds:(
g̃ ◦ h̃

)
(ζq + (1− ζ)q′) = g̃

(
h̃ (ζq + (1− ζ)q′)

)
= g̃

(
ζ ′

Aq + b

c⊺q + d
+ (1− ζ ′)Aq′ + b

c⊺q′ + d

)
, (202)

where:

ζ ′ =
ζ (c⊺q + d)

ζ (c⊺q + d) + (1− ζ) (c⊺q′ + d)
∈ [0, 1]. (203)

Applying the convexity of g̃, we bound Equation (202) as follows:

g̃

(
ζ ′

Aq + b

c⊺q + d
+ (1− ζ ′)Aq′ + b

c⊺q′ + d

)
convexity of g̃
≤ ζ ′g̃

(
Aq + b

c⊺q + d

)
+ (1− ζ ′)g̃

(
Aq′ + b

c⊺q′ + d

)
(204)

= ζ ′
(
g̃ ◦ h̃

)
(q) + (1− ζ ′)

(
g̃ ◦ h̃

)
(q′). (205)

Finally, to conclude the proof, we show that ζ ′ = ζ. This is true because, for any q and q′ ∈ D, c⊺q+d = c⊺q′+d = Q > 0.
In fact, by using this condition in Equation (203), we have that:

ζ ′ =
ζQ

ζQ+ (1− ζ)Q
= ζ, (206)

which establishes the convexity of g̃ ◦ h̃ by definition.

APPENDIX E
MINIMIZING ϵ̄OPT

Equation (13) can be rewritten as:(
T∑

t=1

ηt

)
E [FB(w̄T,0)− F ∗

B ] ≤
1
2q

⊺Σq + υ

π⊺q
+ ψ +

ϕ

ln(1/λ(P ))
(207)

=
1
2q

⊺Aq +B

π⊺q
+ C := J(q), (208)

where:

A := Σ = diag

(
2 (E + 1)πkσ

2
k

+∞∑
t=1

η2t

)
; (209)

B := υ =
2

E
diam(W )2 +

MQ

4

+∞∑
t=1

(
η2t +

1

t2

)
; (210)

C := ψ +
ϕ

ln(1/λ(P ))
=
(
4L(1 + EQ)Γ + 2E2G2

)(+∞∑
t=1

η2t

)
+ 2EDGQ

(
+∞∑
t=1

Jt · η2t−Jt

)
+H

(
TP−1∑
t=1

ηt

)
. (211)

The minimization of (208), defines the following optimization problem:

minimize
q

J(q) :=
1
2q

⊺Aq +B

π⊺q
+ C; (212a)

subject to q ≥ 0, (212b)

31



π⊺q > 0, (212c)
∥q∥1 = Q. (212d)

Remark. In Problem (212a)–(212d), when setting some qk to zero, we do not consider the possibility of redefining the Markov
chain (At)t≥0 in Assumption 1 by considering the reduced state space of clients with qk > 0. In this case, the redefined
Markov chain would have a different transition matrix P ′ ̸= P with λ(P ′) ̸= λ(P ), resulting in C no longer being constant.

E1. The optimization problem in (212a)–(212d) is convex

Let us rewrite the problem by adding a variable s := 1/π⊺q and then replacing y := sq. We have:

J(y, s) = s

(
1

2

y⊺

s
A

y

s
+B

)
+ C = s ·K

(
y

s

)
+ C, (213)

where K : RN → R, K(q) := 1
2q

⊺Aq +B is a (strictly) convex function, and:

minimize
y, s

J(y, s) =
1

2s
y⊺Ay +Bs+ C (214a)

subject to y ≥ 0, (214b)
s > 0, (214c)
π⊺y = 1, (214d)
∥y∥1 = Qs. (214e)

Note that the objective function J(y, s) : RN+1 → R, J(y, s) = s · K(y/s) + C in (213) is the perspective of the convex
function K(q) + C, and is therefore convex [40, pp. 89–90]. Moreover, the constraints in (214b)–(214e) define a convex set,
and then the optimization problem defined by (214a)–(214e) is convex. We solve it with the method of Lagrange multipliers.

E2. Support for Guideline A (Section III)

The Lagrangian function L is as follows:

L(y, s, ι, θ,ω) =
1

2s
y⊺Ay +Bs+ C + ι(1− π⊺y) + θ(∥y∥1 −Qs)− ω⊺y. (215)

Since the constraint s > 0 defines an open set, the set defined by the constraints in (214b)–(214e) is not closed. However, the
solution of the optimization problem defined by (214a)–(214e) is never on the boundary s = 0 because L → +∞ as s→ 0+,
therefore we can consider s ≥ 0. Moreover, strong duality holds for the Slater’s constraint qualification for convex problems.

The KKT conditions read: 

∂L
∂s

(y∗, s∗, ι∗, θ∗,ω∗) = 0, (216)

∇yL(y∗, s∗, ι∗, θ∗,ω∗) = 0, (217)
π⊺y∗ − 1 = 0, (218)
∥y∗∥1 −Qs = 0, (219)
ω∗⊺y∗ = 0, (220)
y∗,ω∗ ≥ 0. (221)

In particular, the KKT condition for y∗ read:

∇yL(y∗, s∗, ι∗, θ∗,ω∗) =
1

s∗
Ay∗ − ι∗π + θ∗1− ω∗ = 0, (222)

which is satisfied when:
∂L
∂y∗k

=
1

s∗
Akky

∗
k − ι∗πk + θ∗ − ω∗

k = 0, ∀k ∈ K, (223)

where Aij denotes the element on the i-th row and the j-th column of matrix A.

Furthermore, the Complementary Slackness conditions in (220) and (221) present two cases:

1) If y∗k > 0 (and q∗k > 0), then ω∗
k = 0 and:

y∗k =
s∗

Akk
(ι∗πk − θ∗), q∗k =

1

Akk
(ι∗πk − θ∗); (224)
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2) y∗k = q∗k = 0 otherwise.

By replacing the equality constraint (214d) in Problem (214a)–(214e) with the inequality constraint π⊺y ≥ 1, we establish an
equivalent optimization problem. The equivalence holds because, for any feasible solution y′ with π⊺y′ > 1, we can consider
the solution y′′ = y′

π⊺y′ < y′, leading to a lower objective function value. Additionally, the new problem states that the
Lagrange multiplier (ι∗) associated with the inequality constraint must be non-negative. By considering Akk ≥ 0 and ι∗ ≥ 0
in Equation (224), we conclude that q∗k increases with πk, providing analytical support for Guideline A.

E3. Closed-form solution of the optimization problem in (212a)–(212d)

The solution of the optimization problem in (212a)–(212d) is not of practical utility because its constants (e.g., L, ω, Γ, CP )
are in general problem-dependent and difficult to estimate during training. In particular, Γ poses particular difficulties as it is
defined in terms of the minimizer of the target objective F , but the FL algorithm generally minimizes the biased function FB .
Nevertheless, we include the closed-formed solution of the optimization problem in (212a)–(212d) for completeness.

We use the active-set method: let X be the set of coordinates corresponding to the active inequalities, i.e., X = {k | y∗k = 0}.

From the KKT condition in (218), we derive a relation between ι∗ and θ∗:

π⊺y∗ =
∑
k ̸∈X

πky
∗
k =

∑
k ̸∈X

πk
s∗

Akk
(ι∗πk − θ∗) = ι∗s∗

∑
k ̸∈X

π2
k

Akk
− θ∗s∗

∑
k ̸∈X

πk
Akk

= 1. (225)

We use the KKT condition in (219) to derive another relation between ι∗ and θ∗:

∥y∗∥1 =
∑
k ̸∈X

y∗k =
∑
k ̸∈X

s∗

Akk
(ι∗πk − θ∗) = Qs ⇔ ι∗ =

Q+ θ∗
∑

k ̸∈X
1

Akk∑
k ̸∈X

πk

Akk

, (226)

and, replacing (226) in (225), we derive the closed-form solution for θ∗:

θ∗ =

∑
k ̸∈X

πk

Akk
−Qs∗

∑
k ̸∈X

π2
k

Akk

s∗
[(∑

k ̸∈X
1

Akk

)
·
(∑

k ̸∈X
π2
k

Akk

)
−
(∑

k ̸∈X
πk

Akk

)2] . (227)

APPENDIX F
BACKGROUND ON MARKOV CHAINS

F1. Markov Chain for the Analysis (Section III)

We recall some existing results [15], [31] for the Markov chain (At)t≥0 used in our analysis (Assumption 1).

Assumption 1. The Markov chain (At)t≥0 on the M -finite state space M is time-homogeneous, irreducible, and aperiodic.
It has transition matrix P , stationary distribution ρ, and has state distribution ρ at time t = 0.

Let ρ(t) = [ρ
(t)
1 , ρ

(t)
2 , . . . , ρ

(t)
M ],

∑M
i=1 ρ

(t)
i = 1 be the state probability distribution on the Markov chain (At)t≥0 at time step t.

Assumption 1 guarantees the existence of a stationary distribution ρ = limt→+∞ ρ(t) = [ρ1, ρ2, . . . , ρM ] with mini{ρi} > 0
and ρ⊺P = ρ⊺. Then ρ is a left eigenvector relative to the eigenvalue 1, which is the largest eigenvalue of the matrix P .

For the transition matrix P , we label its eigenvalues in decreasing order:

1 = λ1(P ) > λ2(P ) ≥ · · · ≥ λM (P ). (228)

We define:

λ̄2(P ) := max {|λ2(P )|, |λM (P )|} and λ(P ) :=
λ̄2(P ) + 1

2
. (229)

The second largest absolute eigenvalue λ̄2(P ) of the transition matrix P characterizes the mixing time of a Markov chain.
The absolute spectral gap γ := 1− λ̄2(P ) and its reciprocal, the relaxation time trel :=

1
γ , play a role in this relationship. To

quantify the convergence of the Markov chain towards stationarity, we use the parameter d(t) := maxa∈M∥[P t]a,· − ρ∥TV ,
which measures the maximum distance between the distribution [P t]a,· and the stationary distribution ρ for all initial states
a ∈ M. The mixing time tmix(ε) is defined as the minimum time at which the distance d(t) becomes less than or equal to a
given threshold ε: tmix(ε) := min {t : d(t) ≤ ε}. Upper and lower bounds exist for the mixing time based on the relaxation time
and the stationary distribution: (trel − 1) log

(
1
2ε

)
≤ tmix(ε) ≤ log

(
1

ερmin

)
trel, where ρmin := mina∈M ρa [31, pp. 154–156].
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F2. Markov Chain for Guideline B (Section IV)

In Section III-D (Guideline B), we examine a specific scenario where the availability of each client k follows an independent
Markov chain (Ak

t )t≥0 with transition probability matrix Pk. This setup allows us to model the aggregate process as a product
of independent Markov chains, known as a Product Chain [31, Section 12.4].

Definition 2 (Product Chain). Let P1 and P2 be transition matrices on state spacesM1 andM2 respectively, with corresponding
stationary distributions π1 and π2. We consider a Markov Chain on the state spaceM1×M2 that moves independently in the
first and second coordinates according to P1 and P2 respectively. The transition matrix of this Markov Chain is the Kronecker
product P̃ = P1 ⊗ P2, defined as:

P̃ ((x, y), (z, w)) = P1(x, z)P2(y, w). (230)

Proposition 3. The stationary distribution of the Markov chain defined by P̃ = P1⊗P2 is the Kronecker product ρ̃ = π1⊗π2.

Proof. We can observe the following:

ρ̃⊺P̃ = (π1 ⊗ π2)
⊺ · (P1 ⊗ P2) = (π⊺

1P1)⊗ (π⊺
2P2) = π⊺

1 ⊗ π⊺
2 = ρ̃⊺, (231)

where, in (231), we used the mixed-product property of the Kronecker product in the second step, and in the third step, we
noted that π1 and π2 are the stationary distributions for P1 and P2, respectively. For a comprehensive list of properties that
the Kronecker product satisfies, please refer to [41, p. 597].

Proposition 4 ([31, Exercise 12.6]). Let u and v be eigenvectors of P1 and P2, respectively, with eigenvalues λ and µ.
Then u⊗ v is an eigenvector of P1 ⊗ P2 with eigenvalue λµ.

Proof. We can verify the following:

(u⊗ v)⊺(P1 ⊗ P2) = (u⊺P1)⊗ (v⊺P2) = (λu⊺)⊗ (µv⊺) = λµ(u⊗ v)⊺. (232)

In (232), we used the mixed-product property and the associativity of the scalar multiplication with the Kronecker product.

In general, let P1 be a m × m matrix with eigenvalues λ1, ..., λm, and P2 be a n × n matrix with eigenvalues µ1, ..., µn.
The complete eigen-decomposition of P1 ⊗P2 depends on the Kronecker product structure and involves combinations of the
eigenvalues and eigenvectors of P1 and P2.

Proposition 5 (Spectrum of the Kronecker product, [41, Exercise 7.8.11]). Let the eigenvalues of P1 ∈ Rm×m be denoted
by λi and let the eigenvalues of P2 ∈ Rn×n be denoted by µj . The eigenvalues of P1⊗P2 are the mn numbers {λiµj}m,n

i=1,j=1.

Proof. Let J1 = A−1
1 P1A1 and J2 = A−1

2 P2A2 be the respective Jordan forms for P1 and P2. We use the mixed-product
property and the inverse property of the Kronecker product to show that P1 ⊗ P2 is similar to J1 ⊗ J2:

J1 ⊗ J2 = (A−1
1 P1A1)⊗ (A−1

2 P2A2) = (A−1
1 ⊗A−1

2 )(P1 ⊗ P2)(A1 ⊗A2) = (A1 ⊗A2)
−1(P1 ⊗ P2)(A1 ⊗A2).

(233)

Consequently, the eigenvalues of P1⊗P2 coincide with those of J1⊗J2. Since J1 and J2 are upper triangular with {λi}mi=1

and {µj}nj=1 on the diagonals, respectively, J1⊗J2 is also upper triangular with diagonal entries given by {λiµj}m,n
i=1,j=1.

Proposition 6. Let λ̄2(Pk) denote the second largest eigenvalue in absolute value of the transition matrix Pk associated with
the k-th client, and define λ(Pk) :=

λ̄2(Pk)+1
2 . For the product chain defined by P =

⊗
k∈K Pk, the second largest eigenvalue

in absolute value λ̄2(P ) and λ(P ) := λ̄2(P )+1
2 satisfy:

λ̄2(P ) = max
k∈K

λ̄2(Pk) and λ(P ) = max
k∈K

λ(Pk). (234)

The proof of Proposition 6 follows a similar structure to the one in [31, Corollary 12.13].

Proof. From Proposition 5, we know that the eigenvalues of P =
⊗

k∈K Pk are given by:{∏
k∈K

λi(Pk) : λi(Pk) an eigenvalue of Pk

}
. (235)
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Recall that λ̄2(Pk) is the second largest eigenvalue of Pk in absolute value. If k∗ denotes the index such that λ̄2(Pk∗) =
maxk∈K λ̄2(Pk), the second largest eigenvalue in module of P is the product of λ̄2(Pk∗) for the k∗-th client and λ1(Pj) = 1
for the remaining clients j ̸= k∗. The second result in (234) follows from the definitions of λ(P ) and λ(Pk).

F3. Markov Chain for the Experiments (Section V)

In the experiments (Section V-A), we consider a scenario where the activity of each client k ∈ K follows a two-state
homogeneous Markov process. The state spaceM consists of two states: “inactive” (with value 0) and “active” (with value 1):

0 1p
(k)
0

1− p
(k)
0

p
(k)
1

1− p
(k)
1

We provide detailed expressions of the transition matrix Pk, stationary distribution π(k), and the second eigenvalue λ2(Pk)
used in the experiments for each client k ∈ K:

Pk =

[
p
(k)
0 1− p(k)0

1− p(k)1 p
(k)
1

]
=

[
1− (1− λ2(Pk))πk (1− λ2(Pk))πk
(1− λ2(Pk))(1− πk) λ2(Pk) + (1− λ2(Pk))πk

]
. (236)

π(k) = [1− πk, πk] =

[
1− p(k)1

2− p(k)0 − p(k)1

,
1− p(k)0

2− p(k)0 − p(k)1

]
. (237)

λ2(Pk) = p
(k)
0 + p

(k)
1 − 1. (238)

APPENDIX G
EXPERIMENTAL EVALUATION

G1. Details on Experimental Setup

A. Datasets and Models: In this section, we provide a detailed description of the datasets and models used in our experiments.
We considered a total of N = 100 clients. We tested CA-Fed on the benchmark synthetic LEAF dataset [36] for regularized
logistic regression tasks, which satisfy Assumptions 3-4. Additionally, we incorporated two “real-world” datasets: MNIST [37]
for handwritten digit recognition and CIFAR-10 [38] for image recognition. Detailed descriptions of the datasets and the models
used for each of them are provided below.

a) Synthetic LEAF dataset: Synthetic data provides us with precise control over heterogeneity. The Synthetic LEAF dataset
achieves this by using parameters γ and δ, where γ determines the degree of variation among local models and δ determines
the variability in the local data across different devices. The generation process follows the setup described in [23], [24]:

1) For each client k ∈ K, sample the model parameters Wk ∈ R10×60 and bk ∈ R10 from a normal distribution with mean
µk and standard deviation 1, where µk is sampled from N (0, γ).

2) For each client k ∈ K, generate the client’s input data Xk ∈ Rnk×60 as follows: sample each element (xk)j from a
normal distribution with mean vk and standard deviation 1

j1.2 , where vk is sampled from N (Bk, 1) and Bk is sampled
from N (0, δ).

3) Generate synthetic samples (Xk,Yk), where Yk ∈ Rnk , according to the model y = argmax(softmax(Wkx + bk)),
where x ∈ R60.

The distribution of samples nk = |Dk| among the clients follows a power law, resulting in an imbalanced data distribution. We
refer to the synthetic dataset with parameters γ and δ as synthetic(γ, δ). We set (γ, δ) values to (0, 0), (0.25, 0.25), (0.5, 0.5),
(0.75, 0.75), and (1, 1) to investigate various levels of heterogeneity in the data.
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TABLE I: Average computation time and used CPU/GPU for each dataset.

Dataset CPU/GPU Simulation time

Binary Synthetic Intel(R) Xeon(R) CPU 10min
Synthetic LEAF Intel(R) Xeon(R) CPU 6min
MNIST [37] GeForce GTX 1080 Ti 42min
CIFAR10 [38] GeForce GTX 1080 Ti 2h37min

TABLE II: Learning rates η and η̄ used for the experiments in Figure 1.

Dataset Unbiased More available CA-Fed (κ̄ = 1) AdaFed [20] F3AST [19]

Synthetic LEAF 2.0/2.0 1.0/7.0 2.0/3.0 1.0/1.0 2.0/2.0
MNIST 0.03/1.0 0.1/4.0 0.1/1.0 0.03/1.0 0.1/0.3
CIFAR10 0.03/1.0 0.03/3.0 0.03/1.0 0.03/1.0 0.03/0.3

b) MNIST: To classify handwritten digits in the MNIST dataset, we employ multinomial logistic regression. The model takes a
flattened 784-dimensional (28 × 28) image as input and predicts a class label from 0 to 9 as output. To introduce heterogeneity
in the data distribution, we distribute the dataset among N = 100 clients using a Dirichlet allocation method [39] with
parameter ς . This allocation scheme allows for varying proportions of the dataset to be assigned to each client, contributing
to the heterogeneous nature of our experimental setting.

c) CIFAR-10: The CIFAR-10 dataset consists of 60,000 input images, sourced from a collection of 80 million tiny images,
with 10 distinct labels. To partition the CIFAR-10 dataset among N = 100 clients, we employ a Dirichlet allocation [39] with
parameter ς . For this particular dataset, we train a shallow neural network comprising two convolutional layers followed by
one fully connected layer. This network architecture is designed to capture relevant features from the CIFAR-10 images and
facilitate accurate classification.

B. Implementation Details:

a) Machines: The experiments were conducted on a CPU/GPU cluster, utilizing various available GPUs such as Nvidia Tesla
V100, GeForce GTX 1080 Ti, and Quadro RTX 8000. The majority of experiments involving Synthetic datasets were executed
on an Intel(R) Xeon(R) CPU E5-1660 v3 @ 3.00GHz. On the other hand, experiments involving MNIST and CIFAR-10 datasets
were performed using GeForce GTX 1080 Ti cards. For each dataset, we conducted approximately 50 experiments, excluding
the time dedicated to development and debugging. Due to the usage of a train batch size of 32 samples, the experiments with
MNIST and CIFAR-10 datasets exhibited slower execution times. Table I provides the average duration required to execute
one simulation for each dataset. The authors are grateful to the OPAL infrastructure from Université Côte d’Azur for providing
resources and support.

b) Libraries: We extensively employed the PyTorch deep learning framework throughout our experiments. PyTorch provided us
with a comprehensive set of tools and functionalities for model construction, training, and evaluation. It allowed us to efficiently
implement and optimize various neural network architectures, including the multinomial logistic regression model for the
MNIST dataset and the shallow neural network for the CIFAR-10 dataset. To simplify the data preparation process, we utilized
Torchvision, a PyTorch package designed for computer vision tasks. Torchvision facilitated seamless dataset management,
including the download and pre-processing of MNIST and CIFAR-10, enabling us to transform the raw image data into a
suitable format for training and evaluation.

c) Hyper-parameters: For each method and task, we performed a grid search to determine the optimal learning
rates η and η̄. For the MNIST and CIFAR-10 datasets, we explored the grids η = {2.0, 1.0, 0.3, 0.1, 0.03, 0.01} and η̄ =
{5.0, 4.0, 3.0, 2.0, 1.0, 0.3, 0.1}. For the Synthetic LEAF dataset, we shifted the grid to η̄ = {8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0}.
Table II reports the learning rates η and η̄ corresponding to the results in Figure 1 for each dataset and method. For CA-Fed,
we use the hyper-parameters β = τ = 0. In the case of AdaFed, we set full device participation, where the parameter server
samples all active clients (|St| = |At|). To ensure a fair comparison, we set the number of clients sampled by F3AST to the
average number of clients included by CA-Fed, which is 45 on average. Furthermore, we set the smoothness parameter β of
F3AST to be O(1/T ), as suggested by the authors in [19, Appendix D].
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APPENDIX H
FURTHER DISCUSSION ABOUT CA-FED

H1. CA-Fed’s computation/communication cost

CA-Fed aims to improve training convergence and not to reduce its computation and communication overhead. Nevertheless,
excluding some available clients reduces the overall training cost, as we will discuss in this section referring, for the sake of
concreteness, to neural networks’ training.

In terms of computation, the available clients not selected for training are only requested to evaluate their local loss on the
current model once on a single batch instead than performing E gradient updates, which would require roughly 2×E−1 more
calculations (because of the forward and backward pass). The selected clients have no extra computation cost as computing
the loss corresponds to the forward pass they should, in any case, perform during the first local gradient update.

In terms of communication, the excluded clients only transmit the loss, a single scalar, much smaller than the model update.
Conversely, participating clients transmit the local loss and the model update. Still, this additional overhead is negligible and
likely fully compensated by the communication savings for the excluded clients.

H2. CA-Fed and Client Sampling

In cross-device FL, a common practice is to employ client sampling, where a small subset of clients (denoted as St) is uniformly
selected at random from the set of active clients (At) during each communication round of model training. This is primarily
done to mitigate communication overhead and enhance scalability.

In our analysis, based on Assumption 1, we assume that spatial and temporal correlations primarily concern clients’ availability
dynamics and we consider, for simplicity, St = At. However, our findings have a noteworthy implication: while the set of
available clients At exhibits correlation, the client sampling in St can be designed to make clients’ participation dynamics
independent over time and among clients. A promising direction for future research is to extend our work in this context and
derive a refined bound similar to our result in Theorem 2 which quantifies the impact of client sampling on λ(P ).

Consistent with our analysis, we have designed our algorithm to align with the assumption St = At. By design, CA-Fed
excludes clients with large temporal correlation and low availability and activates, in each communication round, only clients
satisfying {k ∈ At; q

(t)
k > 0} (line 8 in Algorithm 1). However, when only a small fraction of clients is excluded, CA-Fed

seamlessly integrates with client sampling. This only involves replacing At with St in Equation (17) and Algorithm 1 (server
estimates for clients’ local losses (F̂ (t) = (F̂ (t)

k )k∈K) are now updated from the sampled clients’ losses (F (t) = (F (t)

k )k∈St )).

H3. About CA-Fed’s fairness

Strategies that exclude clients from the training phase, such as CA-Fed, may raise concerns about fairness. The concept
of fairness in federated learning does not have a unified definition in the literature [42, Chapter 8]. Fairness goals can be
established by appropriately selecting the target weights α = {αk}k∈K in the definition of the global target objective (1). For
instance, per-client fairness can be achieved by setting αk to be equal for every client (i.e., αk = 1/N), while per-sample
fairness can be accomplished by setting αk proportional to the local dataset size |Dk| (i.e, αk = |Dk|/|D|).

Assuming that the global objective in (1) truly reflects fairness concerns, then CA-Fed can be considered intrinsically fair.
This is because CA-Fed continually focuses on minimizing the total error ϵ := F (wT ) − F ∗, which guarantees that the
performance objective of the learned model is as close as possible to its optimal value at every time. Although CA-Fed
occasionally excludes clients with low availability and high temporal correlation, the optimization problem (1) is carefully
designed to ensure that the learned model performs well for these clients. As a result, CA-Fed effectively learns a model that
is consistently accurate and fair across all clients, regardless of their availability or temporal correlation.
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