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Abstract—This paper tackles the problem of training Feder-
ated Learning (FL) algorithms over real-world wireless networks
with packet losses. Lossy communication channels between the
orchestrating server and the clients affect the convergence of FL
training as well as the quality of the learned model. Although
many previous works investigated how to mitigate the adverse ef-
fects of packet losses, this paper demonstrates that FL algorithms
over asymmetric lossy channels can still learn the optimal model,
the same model that would have been trained in a lossless scenario
by classic FL algorithms like FedAvg. Convergence to the opti-
mum only requires slight changes to FedAvg: i) while FedAvg
computes a new global model by averaging the received clients’
models, our algorithm, UPGA-PL, updates the global model by
a pseudo-gradient step; ii) UPGA-PL accounts for the potentially
heterogeneous packet losses experienced by the clients to unbias
the pseudo-gradient step. Still, UPGA-PL maintains the same
computational and communication complexity as FedAvg. In
our experiments, UPGA-PL not only outperforms existing state-
of-the-art solutions for lossy channels (by more than 5 percentage
points on test accuracy) but also matches FedAvg’s performance
in lossless scenarios after less than 150 communication rounds.

Index Terms—Federated Learning, Packet Loss.

I. INTRODUCTION

Federated Learning (FL) [1], [2] involves a population of
devices (typically referred to as clients) iteratively training
a Machine Learning (ML) model over a network under the
orchestration of a central server. At each global training round,
the server sends the current global FL. model to the clients,
who individually train on their local datasets and send their
locally-trained models back to the server. In many FL applica-
tions, such as training Google keyboard next-word prediction
model, the clients are mobile devices such as smartphones or
Internet of Things (IoT) devices, and the models are exchanged
on wireless networks incurring potential transmission losses.

Lossy channels necessarily degrade the performance of FL
training on wireless networks. Theoretical and experimen-
tal work [3]-[8] has shown that packet losses affect the
quality of the final model towards which the FL training
algorithms converge as well as their convergence rate. Under
medium/high network background traffic, the authors in [3]
measured a twofold training duration and a halved accuracy
in the early stages of the training. Prior work [5]-[8] ana-
lyzed the convergence of state-of-the-art FL algorithms under
different channel assumptions. Specifically, the authors of [§]
proved the existence of a non-vanishing error due to the lossy
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channels, which prevents the convergence of their direct model
aggregation scheme to the optimal model, and proposed to
reduce this error by opportunely allocating resources (e.g.,
transmission power, radio blocks) to control packet losses.
Similar approaches to the one proposed in [8] have been
considered to mitigate the effect of packet loss on wireless
networks, relying on automatic repeat request (ARQ) and
forward error correction (FEC) techniques [9], [10].

Despite these efforts, packet losses are typically caused by
external factors beyond the control of the orchestrating server
and can therefore be unavoidable. Communication protocols
may define a maximum number of retransmissions, but these
retransmissions can still fail. More importantly, we point
out that targeting high transmission reliability in FL-oriented
applications may be sub-optimal, as it usually comes at the
detriment of training time and/or resource usage, e.g., in terms
of wider sub-channel bandwidth, higher energy consumption,
or both. These issues are even more exacerbated in resource-
constrained scenarios, such as the IoT, where increasing com-
munication reliability may result in a reduced device lifetime
or may not be feasible. Moreover, the iterative nature of the
gradient methods used for ML model training makes them
robust against limited errors at intermediate calculations [11].

For the aforementioned reasons, this paper diverges from
prior work [4]-[10], which primarily focused on loss mitiga-
tion. Instead, we address the fundamental question of whether
FL algorithms can achieve optimal model convergence despite
packet losses. Our response is affirmative, necessitating only
slight adjustments to the classic FedAvg [1] algorithm.

More in detail, we consider a FLL framework where losses
can occur in the downlink, uplink, or both, and loss probabil-
ities can differ among clients. Indeed, the channel quality in
wireless networks can vary according to per-user characteris-
tics, such as the relative positioning of the transmitter and the
receiver, the device transmission power, the selected frequency
channel. As a result, the clients will not participate evenly in
the training process, potentially leading to learning a biased
ML model [12], [13]. Thus, the design of an aggregation
strategy becomes critical to ensure the convergence of the FL
model in the presence of packet losses. Previous works [8],
[10] proposed direct model aggregation schemes, denoted in
the following as DMA-PL and UDMA-PL. We will discuss
and compare our approach to them in the rest of the paper.

This work makes the following novel contributions:
o We propose UPGA-PL, a novel algorithm that aggregates

pseudo-gradients, instead of models, and considers the client
loss probabilities. Its complexity is comparable to FedAvg;



« We analytically prove UPGA-PL’s convergence to the opti-
mal model, the same model which would have been learned
over ideal, lossless channels. This result proves UPGA-PL’s
ability to filter out the noise due to packet losses.

o We validate our analysis through numerical experiments.
While losses largely affect the performance of the state-of-
the-art algorithms [8], [10], UPGA-PL is robust to them and
gains 5—10 percentage points on the test accuracy. Most im-
portantly, even under severe losses, UPGA-PL achieves the
same model’s accuracy as FedAvg under lossless channels
in less than 150 communication rounds.

II. PROBLEM DESCRIPTION AND BACKGROUND

A central server and a set of clients K = {1,...,K}
collaborate to train a global ML model w € R™ over a
wireless network. For example, the model w € R™ can be
the vector of parameters of a neural network architecture.
Each client £ € K holds a local dataset D, and has ac-
cess to a loss function /(w,d;) — RT that evaluates the
performance of the model w on a data sample dy € Dy.
We define Fj(w) = ﬁ > a.ep, f(w,di) as the average
loss computed after evaluating the performance of the model
w on the k-th client’s local dataset. The clients solve, under
the coordination of the central server, the minimization of the
global objective F'(w) via the following optimization problem:

min
weR™

F(w) =Y apF(w)|, (1)

keKx

where {ay, }rexc are positive coefficients, chosen by the server,
such that 3, ;- ap = 1. They represent the weight assigned
to each client’s objective function F}. Typical choices are:
1) ap = 1/K Vk € K, the server giving equal weight to all
clients, 2) ay = |Dy|/|D|, with D = Ugex Dy, the server
giving equal weight to each data sample.

Problem (1) is commonly solved through training algo-
rithms executed for multiple rounds 7 = {1,...,T} during
which server and clients communicate over a network. During
communication round ¢ € T, the server broadcasts the current
global model w; to the clients in K. Each client £ € K
initializes its local model wﬁo = w; and performs £ > 1
local computations of Stochastic Gradient Descent (SGD):

wﬁjﬂ = wﬁj —ntVFk(wﬁj,Bf;j) j=0,....,E—1, (2
where 7; > 0 is an appropriately chosen learning rate, Bﬁ jisa
random batch sampled from client-k’s local dataset at round ¢
and local iteration j, and VFy (-, B) := I%\ Yanen VLG, di) is
an unbiased estimator of the local gradient V Fj,(-) evaluated
on a random batch B. After completing the local compu-
tations, each client £k € K produces a local model wf; o
and either transmits its local model or its model update
AY = wfp —wfy = —n Zf:_ol VF(wf;,Bf;) to the
server, which aggregates and finally outputs a new version
of the global model w;;. The server can directly aggregate
models computing wPM* = 3, _ apwy p: this scheme was
introduced in the algorithm FedAvg [1], and we refer to it

as Direct Model Aggregation (DMA). Alternatively, the server
can consider the model updates Af received by the clients as
pseudo-gradients, aggregate them as A, = >, - a, AY, and
finally apply a global pseudo-SGD step as wffl =w + Ay
This aggregation scheme was proposed in [2]: it corresponds
to FedOpt with SGD used both as server and client optimizer.
We denote it as Pseudo-Gradients Aggregation (PGA).

The DMA and PGA aggregation schemes are equivalent
under lossless channels. However, in typical FL applications
the information is transmitted over lossy channels, which
ultimately affect the workflow of the considered FL algorithm.

We consider the same scenario as in [8], [10]: due to
downlink losses, only a subset of clients PtD C K correctly
receives the model w; sent by the server and computes the
local models {'wéc #teepp- On the other hand, due to losses in
the upstream, the server gathers the updates (either the models
wﬁ 1 or the pseudo-gradients A¥) only from a subset of clients
P, = PY C PP. Note that if transmissions span multiple
packets and only some packets are affected by losses, the
recipient could still leverage the partial information correctly
received. Previous literature [5], [6], [8]-[10] has ignored this
possibility, which we plan to investigate in the future.

Since losses are random and can potentially differ among
clients, the aggregation scheme plays an important role in
the quality of the global ML model w;,; learned by the FL
training algorithm. Previous works [8], [10] considered the
problem of FL training under lossy channels and proposed
to generalize FedAvg’s DMA aggregation strategy by letting
the server aggregate all received models, i.e., the models of
all clients k € P;:

DMA-PL __ Zke??t O‘kwéE
wPMAPL _ Zk€P TR TLE (3)

ZkE'Pt Qk

We refer to this strategy as Direct Model Aggregation with
Packet Loss (DMA-PL). The authors of [8] also analyzed
the convergence of the DMA-PL aggregation scheme under
the effect of packet losses. They showed the existence of a
generally non-vanishing error between the model trained under
a non-zero loss rate and the optimal model towards which the

training converges in the absence of losses:

E[F(wi1)] - F* < A" (F(wy) — F)
—_—————

vanishing term for small statistical heterogeneity

2, 1— A
+T Z akpkﬁa 4
ke

non-vanishing error due to statistical heterog. and packet loss

where p; denotes the probability that the server does not
receive client-k’s local model, A = 1— % + 4“L<2 > kekc QkPks
L and p are the L-smooth and p-strongly convex constants
(they will be introduced in Assumptions 1, 2), and (1, (s are
parameters that quantify the statistical heterogeneity of the
local datasets (the larger (; and (2, the more heterogeneous the
clients’ data). We observe that, for non-zero loss probabilities
and high statistical heterogeneity (large (»), it is possible that
the bound does not guarantee convergence (when A > 1). On




the contrary, for sufficiently small (5, (4) predicts linear con-
vergence to a neighborhood of the optimal solution, whose size
is proportional to the loss probabilities {py } xcic. Motivated by
these results, reference [8] focuses on resource allocation to
reduce loss probabilities and minimize the non-vanishing term.

Moreover, due to losses, only a subset of the clients con-
tributes to updating the new model at each round. Previous
works [12], [14] have studied partial client participation due
to client sampling, i.e., when the server samples at each
round a subset of clients S; C K. Convergence results
in [14] require unbiased sampling for DMA to converge to
the optimal model, i.e., the sampling scheme should satisfy
Es, [wis1] = Ypex arwfp [14, Lemma 4], so that in
expectation the k-th client contributes proportionally to its
weight in the global objective (1). This observation suggests
to unbias the DMA-PL scheme in (3) as follows:

E wt,E7

kePy 1= Pk

UDMA-PL __
Wiy =

®)

so that the server counterbalances the more severe losses
experienced by some clients with larger aggregation weights.
We refer to this aggregation as Unbiased DMA-PL (UDMA-
PL). However, by directly aggregating models, the UDMA-PL
scheme suffers a possibly large variance due to the random-
ness in the set P;. Our analysis in Lemma 1 confirms that
this variance leads to a non-vanishing term, which prevents
UDMA-PL from converging to the optimal model. Moreover,
our experimental results in Section IV confirm that UDMA-PL
is not a practical solution.

In the next section, we present UPGA-PL, an unbiased
aggregation scheme like UDMA-PL that filters out the noise
due to losses and then succeeds in converging to the optimal
model. To the best of our knowledge, only reference [6]
showed a similar result for a decentralized FL algorithm, but it
required uplink and downlink channels to have the same loss
probabilities, which is uncommon in wireless networks.

III. PROPOSED ALGORITHM AND ITS ANALYSIS

To solve the issues which characterized the DMA-PL and
UDMA-PL aggregation schemes, we propose the Unbiased
Pseudo-Gradient Aggregation strategy (UPGA-PL):

UPGA-PL __ Qg
Wiy = w; + E 1— s
keP,

Note that both UDMA-PL and UPGA-PL rely on the knowl-
edge of the loss probabilities {pg }rex. In practical scenarios,
these probabilities can be estimated through channel measure-
ments [15], [16].

As UDMA-PL, UPGA-PL is unbiased because it aggregates
the pseudo-gradients with weights that compensate for clients’
different loss probabilities. At the same time, by aggregating
the pseudo-gradients {A¥},cp, rather than the local models
{wﬁ g tkep, (as UDMA-PL does), UPGA-PL can be seen as
a stochastic approximation algorithm [17] with stepsize
(it is easy to verify that each AF is proportional to 7;).
Stochastic approximation theory suggests that convergence to

Ak, (6)

Algorithm 1: UPGA-PL
Input : Initial model wy; Weights o = {ay }rex:
Client loss probabilities p = {px }reics
Learning rates {n; }+c7; Local steps E.
for global round t € T do
for client k € K, in parallel do
wfy = wy;
for j=0,...,E—1do
| w i = wi; =0 VEi(wg;, B )
Af — wf, B — W
Receive {A}} from a subset P; C K of clients;
WA w3 ep, 25 AT

1
2
3
4
5
6
7
8

Qutput: Final model w4 .

the optimal model is guaranteed if 7, decreases fast enough
to filter out the noise due to the randomness in the set P
(i.e., >, m? < +0o0), but also slow enough for the algorithm
to be able to move from the initial tentative model (w;) to
the optimal one (i.e., ), 7 = +00). Our theoretical analysis
below confirms these qualitative considerations: the UPGA-PL
aggregation strategy enables the convergence of FL training
algorithms to the optimal model even in the presence of lossy
channels.

With abuse of language, we refer to the FL algorithm
defined by the local update rule in (2) and the UPGA-PL
aggregation scheme in (6) simply as UPGA-PL. The com-
plete procedure is summarized in Algorithm 1. Similarly, we
denote by DMA-PL and UDMA-PL the FL algorithms obtained
replacing line 8 in Algorithm 1 with (3) and (5), respectively.

In the following, we analyze the convergence of UPGA-PL.

A. Convergence Analysis

For the analysis of the UPGA-PL algorithm, we make the
following hypotheses. Assumptions 1 and 2 are standard in
the literature on convex optimization [18, Sections 4.1, 4.2].
Assumptions 3 and 4 are standard hypothesis in the analysis
of federated optimization algorithms [14], [19, Section 6.1].

Assumption 1. {Fy}rex are L-smooth: for all v and w,
Fie(w) < Fi(w) + (VEy(w), — w) + & o — w]2

Assumption 2. {F} }rcxc are p-strongly convex: for all v and
w, Fi.(v) > Fy(w) + (VF(w),v — w) + 4 v — wlf3.

Assumption 3. Let Bf; ; be a random batch sampled from
the k-th device’s local data uniformly at random. The vari-
ance of stochastic gradients in each device is bounded:
E||VF(w;, BF ) — VE (w)||* < o} for k € K.

Assumption 4. The expected squared norm of stochastic gra-
dients is uniformly bounded, i.e., E HVFk (wﬁj, Bf’]—)H2 <G?
forke KandteT, j=0,...,E—1.

We use the indicator variable ¢ to denote the outcome
of the ¢-th communication round between the server and the
client k: & equals one if and only if the server correctly
receives client-k’s local model at round ¢.



Assumption 5. At each round t € T, the communication
outcomes {£F}ex are independent among clients. For each
client k € K, the outcomes {£F }1e1 are independent and iden-
tically distributed (iid) over time with mean E[(F] = 1 — p..

In Assumption 5, py denotes the probability that the overall
communication between the server and client k fails either
because client k£ does not receive the global model w; or
because later the server does not receive client-k’s update A¥.
If these events are independent, and pg; and pjs denote the
downstream and upstream loss probabilities, respectively, then
pe = 1 — (1 — psg)(1 — prs). If ARQ or FEC techniques
are employed, then p; can be interpreted as the residual
loss probability experienced by the k-th client after potential
retransmissions and/or error corrections, therefore our analysis
remains agnostic to these methods.

Assumption 5 provides the flexibility for different loss prob-
abilities across clients in the uplink and downlink transmis-
sions, but does not consider spatial or temporal correlations,
such as those arising from inter-channel interference or fading
effects. We believe that results for Markov Chain gradient
descent methods (where random samples are taken on the
trajectory of a Markov chain) could be used to study the
convergence of UPGA-PL under correlated channels [13],
[20]. However, we defer this analysis to future work.

Convergence results for FL algorithms require to bound
statistical heterogeneity in terms of some metric (e.g., [8], [12],
[14]). We adopt the same metric introduced in [14]:

Definition 1. Let F* and F}} be the minimum values of F
and F}, respectively. The parameter I :== F* — 3, .- o Fy;
quantifies the degree of data heterogeneity.

If the local datasets are identical, then the functions
{Fk}rex coincide and T = 0. In general, T is larger the more
heterogeneous the local data distributions are.

Theorem 1 (proof in Appendix A) establishes UPGA-PL
convergence under lossy channels. It builds upon [14], which
considers the ideal lossless scenario. Our primary technical
contribution is captured in Lemma 1 (Appendix A), with the
additional term in (8) that accounts for the lossy channels.

Theorem 1 (Convergence under lossy channels). Let Assump-
tions 1-5 hold and L, p, oy, G, py defined therein. Choose
diminishing learning rates as Mi11 = ;TJ’:t, with k == L/p.
Then, for each t € T, UPGA-PL satisfies:

~ * K 2EC )
E [F(wf’ffA PL)} —F* < Fy— <M + 4L ||Jw; —w|| >,
asymptotically vanishing term
(N
where:
C=Y ajo} +2(E-1)°G> +6LT + EG* Y azlpik .
— Pk

ke keK

effect of lossy channels

®)

B. Discussion

a) UPGA-PL enables convergence under lossy channels:
Theorem 1 proves that the objective F(w), evaluated on
the sequence of models {w;};~o computed by UPGA-PL,
converges in expectation to its minimum value F'*. Moreover,
as the function F' is strongly convex and then has a unique
minimizer, the trained model converges also to the optimal
one, i.e., limy o E[wPOAPL] = w*, where w* € R" €
arg min,, F(w). The UPGA-PL aggregation strategy (with
decreasing learning rates) does not suffer then from residual
convergence errors as DMA-PL and UDMA-PL do.

b) The effect of packet losses on the convergence: The
constant C' (see (8)) quantifies the impact of lossy channels
on the convergence in terms of the clients’ loss probabili-
ties {pr}rex. As expected, the larger the loss probabilities,
the larger is C' and the slower the convergence predicted
by the bound in (7). Moreover, the convergence rate in
Theorem 1 (O(1/t)) is comparable to the convergence rate
of FedAvg in absence of losses under the same assumptions
(O(1/(E1))) [14].

c) Convergence speed vs. residual error: The bound
in (4) suffers from a non-zero residual error but may achieve
linear convergence (A! decreases exponentially fast); our
bound in (7) removes such error at the cost of a sublinear
convergence rate, i.e., of slower convergence. One may then
think that for a short duration of the training period, DMA-PL
is preferable to UPGA-PL. In reality, the bound (4) achieves
such a rate requiring the use of full gradients at each client
(ie., o7 = 0) and a single local gradient update at each
communication round (i.e., £ = 1) [8]; however, these
assumptions do not correspond to FL practice [21].

1V. EXPERIMENTAL RESULTS
A. Experimental setup

In the experiments, we consider a population with K = 10
clients. We split the population into two groups G;,i = 1,2, to
which we associate different packet loss probabilities p;,7 =
1, 2. After evaluating different loss configurations, we present
a challenging setting with p; = 0.1 and py = 0.9.

We perform experiments on two datasets: the LEAF Syn-
thetic Dataset for multinomial classification [22] and the real-
world MNIST dataset for handwritten digit recognition [23].
To introduce statistical heterogeneity in the clients’ datasets,
we distribute the data among clients in a non-IID fashion.
The LEAF Synthetic Dataset allows direct control of statistical
heterogeneity through the parameters « and 3: in our experi-
ments, we set « = 8 = 1. For MNIST, we generate a non-1ID
data distribution by splitting the labels among clients, with
each client containing samples from only two classes [24].
We define Problem (1) with o = |Dg|/|D| Vk € K.

For the Synthetic LEAF dataset, we train a linear classifier
with a ridge penalization of parameter 5 x 10~*, which
defines a strongly convex objective function that well aligns
with our theoretical assumptions. As for MNIST, we use
a CNN architecture with two convolutional and two fully



connected layers, resulting in a non-convex objective function
that introduces additional complexity to the learning process.

We compare UPGA-PL, in Algorithm 1, with DMA-PL
(aggregation strategy in (3)), UDMA-PL (aggregation strategy
in (5)), and an ideal lossless FedAvg (when p, = 0 Vk € K).
In the experiments, UDMA-PL and UPGA-PL rely on the
knowledge of {py}rex. For all algorithms, we tuned the
learning rate n = {n}ter via grid search with values
n={1073,1072%,1072,10715, 10~ 1}. The reported results
are averaged over 10 random seeds.

B. Experimental results

Figures 1-2 compare the train loss and test accuracy of
DMA-PL, UDMA-PL, and UPGA-PL on the Synthetic LEAF
and MNIST datasets. For both datasets, we include the refer-
ence performance of the ideal lossless FedAvg.

a) UPGA-PL outperforms the baselines and converges
to the optimal model: The experimental results unanimously
confirm the advantages of the UPGA-PL aggregation strategy
in terms of train loss and test accuracy on the two datasets.
Indeed, UPGA-PL improves the state-of-the-art solutions by
12 percentage points on the Synthetic LEAF dataset (Fig. 1b)
and by 6 percentage points on the MNIST dataset (Fig. 2b).
Moreover, UPGA-PL nearly attains the same performance as
the FedAvg algorithm in lossless scenarios after around 150
communication rounds for both the Synthetic LEAF dataset
(Fig. 1a) and the MNIST dataset (Fig. 2a).

In line with our theoretical analysis, the numerical experi-
ments also confirm the effects of lossy channels on the conver-
gence captured by Theorem 1 and discussed in Section III-B.

b) The effects of packet losses on the convergence: FL
algorithms perform best under the ideal scenario with lossless
channels (py, = 0 Yk € K). Nevertheless, our experiments
show that a severe amount of packet losses (p; = 0.1,ps =
0.9) slows down but does not prevent convergence to the
optimal model, provided that UPGA-PL is used (UPGA-PL
curve overlaps with FedAvg curve in the absence of losses).

¢) Residual errors: DMA-PL and UDMA-PL suffer from
non-vanishing errors. The residual error of DMA-PL is evident
in Figure 2a, where its loss curve reaches a plateau around the
value 0.3, while UPGA-PL converges to the value 0.0, as the
ideal FedAvg. On the other hand, the UDMA-PL aggregation
strategy, which should, in theory, unbias the DMA—-PL scheme,
does not filter the variance introduced by the lossy channels
and suffers a noisy convergence: the UDMA-PL performance
dramatically oscillates in the experiments, and its mean accu-
racy lies around 50-70%.

V. CONCLUSIONS

This paper studied the problem of training FL algorithms
over real-world wireless networks with lossy channels. We
considered the presence of independent and identically dis-
tributed packet losses in the communication channels between
the orchestrating server and the clients and we showed that the
quality of the learned model is highly sensitive to the choice
of the aggregation strategy. To mitigate the negative effects
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Fig. 1: Train loss/test accuracy on the Synthetic LEAF dataset.
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Fig. 2: Train loss/test accuracy on the MNIST dataset.

of packet losses, we proposed UPGA-PL, an algorithm that
aggregates pseudo-gradients rather than models and that effec-
tively converges to the optimal model under asymmetric lossy
channels. While its complexity is comparable to FedAvg,
under severe lossy settings UPGA-PL significantly outper-
formed the state-of-the-art solutions [8], [10] and attained
very close performance to the optimal scenario with ideal,
lossless channels at the cost of a slower convergence. Our work
enabled optimal FL training under lossy channels, and—we
believe—opened interesting research questions. For example,
if losses affect only a part of the transmitted model, would
it be possible for the clients or the server to take advantage
of the partial information received instead of ignoring it (as
DMA-PL, UDMA-PL, and UPGA-PL do)? What happens if the
losses are correlated (e.g., due to inter-channel interference
and/or fading)? What if they change over time?

APPENDIX
A. Proof of Theorem 1

For the proof, we define the sequence w; ;= ;i akwf) e
We denote:

By = {Bo0,Bt.1,.- -, Br.e—1}; &)
Ht:{BI)PI)B27P27'-'7Bt—1a7?t—1}) (10)

where B, ; = {BéC j} ke is the set of random batches sampled

at time (¢, j) and #H; includes all history up to the ¢-th round.
Lemma 1. Ler Assumptions 4-5 hold, and w; = thP GA-PL
Then:

Pk

E wi —w s’ < B°G? Z aj,
P, B | He Py 1

Y



Conversely, for w; = wUDMA'P L we have:
D
Pt\"H 5 lwit1 — wy, E|| Z . k ‘ tEH (12)
kek
Proof of Lemma 1.
2
af
E — _
Pe|He B we ’;C 1— s (wip —wy) & — i
= Var ];C 1 ikpk (U’t,E — wt) & =
— Var ( @ ('wtyE — wt) gf) =
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Finally:
p 2
P, 00 0 el ,;caz 1 —kpk 5B, lwis =]
< Zak Pk 2E2G2. (14)
kek
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Conversely, for w; = w; the same proof technique
leads to the bound in (12), but the steps in (14) do not hold.

O
Proof of Theorem 1.
Wy — W
Ptmhst w1 — w*[|* =
= [wi 41 — w1 ]| + |01, 5 — w*||? (15)
Pt|7'lt,3t

From [14, Lemma 1], [14, Lemma 2], and [14, Lemma 3],
recursively:

i, — w*|* <
Bt|7‘it
< (1= mp)” |, — w*||* +n} B Z (1 =) (16)
< (1= nep) @, — w*|* + 77 EB, (17)

where B =", .- azop +6LT 4+ 2(E — 1)°G.
Combining (15) and (17), and applying Lemma 1, we have:

w*||* + nf EC.
(18)
The conclusion of the proof follows similar steps as [14,

Theorem 1]. We require a learning rate 7; < (5. 77) = 71

e —w*|* < (L = neps) |, —

'Pt,Bt|7'lt

Set ny4q < Sn/th’ with & := L/p, such that i, = 7-. Then:
K 2EC 2
E[F _ eT)
Flon)] - 7 < g (20 4L for-w?)
(19)
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