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Abstract—The enormous amount of data produced by mobile and
IoT devices has motivated the development of federated learning
(FL), a framework allowing such devices (or clients) to collabora-
tively train machine learning models without sharing their local
data. FL algorithms (like FedAvg) iteratively aggregate model
updates computed by clients on their own datasets. Clients may
exhibit different levels of participation, often correlated over time
and with other clients. This paper presents the first convergence
analysis for a FedAvg-like FL algorithm under heterogeneous
and correlated client availability. Our analysis highlights how
correlation adversely affects the algorithm’s convergence rate
and how the aggregation strategy can alleviate this effect at
the cost of steering training toward a biased model. Guided
by the theoretical analysis, we propose CA-Fed, a new FL
algorithm that tries to balance the conflicting goals of maximizing
convergence speed and minimizing model bias. To this purpose,
CA-Fed dynamically adapts the weight given to each client and
may ignore clients with low availability and large correlation. Our
experimental results show that CA-Fed achieves higher time-
average accuracy and a lower standard deviation than state-of-
the-art AdaFed and F3AST, both on synthetic and real datasets.

Index Terms—Federated Learning, Distributed Optimization.

I. INTRODUCTION

The enormous amount of data generated by mobile and IoT de-
vices motivated the emergence of distributed machine learning
training paradigms [2], [3]. Federated Learning (FL) [4]–[7]
is an emerging framework where geographically distributed
devices (or clients) participate in the training of a shared
Machine Learning (ML) model without sharing their local
data. FL was proposed to reduce the overall cost of collecting
a large amount of data as well as to protect potentially
sensitive users’ private information. In the original Federated
Averaging algorithm (FedAvg) [5], a central server selects
a random subset of clients from the set of available clients
and broadcasts them the shared model. The sampled clients
perform a number of independent Stochastic Gradient Descent
(SGD) steps over their local datasets and send their local
model updates back to the server. Then, the server aggregates
the received client updates to produce a new global model, and
a new training round begins. At each iteration of FedAvg, the
server typically samples randomly a few hundred devices to
participate [8], [9].

This research was supported by the French government through the 3IA
Côte d’Azur Investments in the Future project by the National Research
Agency (ANR) with reference ANR-19-P3IA-0002, and by Groupe La Poste,
sponsor of Inria Foundation, in the framework of FedMalin Inria Challenge.

An extended version of this work, including detailed proofs, is available [1].

In real-world scenarios, the availability/activity of clients is
dictated by exogenous factors that are beyond the control of
the orchestrating server and hard to predict. For instance, only
smartphones that are idle, under charge, and connected to
broadband networks are commonly allowed to participate in
the training process [5], [10]. These eligibility requirements
can make the availability of devices correlated over time and
space [8], [11]–[13]. For example, temporal correlation may
origin from a smartphone being under charge for a few consec-
utive hours and then ineligible for the rest of the day. Similarly,
the activity of a sensor powered by renewable energy may
depend on natural phenomena intrinsically correlated over
time (e.g., solar light). Spatial correlation refers instead to
correlation across different clients, which often emerges as
consequence of users’ different geographical distribution. For
instance, clients in the same time zone often exhibit similar
availability patterns, e.g., due to time-of-day effects.

Temporal correlation in the data sampling procedure is known
to negatively affect the performance of ML training even in
the centralized setting [14], [15] and can potentially lead to
catastrophic forgetting: the data used during the final training
phases can have a disproportionate effect on the final model,
“erasing” the memory of previously learned information [16],
[17]. Catastrophic forgetting has also been observed in FL,
where clients in the same geographical area have more similar
local data distributions and clients’ participation follows a
cyclic daily pattern (leading also to spatial correlation) [8],
[11], [12], [18]. Despite this evidence, a theoretical study of
the convergence of FL algorithms under both temporally and
spatially correlated client participation is still missing.

This paper provides the first convergence analysis of
FedAvg [5] under heterogeneous and correlated client avail-
ability. We assume that the clients’ availability follows an
arbitrary finite-state Markov chain: this assumption models a
realistic scenario in which the activity of clients is correlated
and, at the same time, still allows the analytical tractability
of the system. Our theoretical analysis (i) quantifies the
negative effect of correlation on the algorithm’s convergence
rate through an additional term, which depends on the spectral
properties of the Markov chain; (ii) points out a trade-off
between two conflicting objectives: slow convergence to the
optimal model, or fast convergence to a biased model, i.e., a
model that minimizes an objective function different from the
initial target. Guided by insights from the theoretical analysis,
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we propose CA-Fed, an algorithm which dynamically assigns
weights to clients and achieves a good trade-off between
maximizing convergence speed and minimizing model bias.
Interestingly, CA-Fed can decide to ignore clients with low
availability and high temporal correlation. Our experimental
results demonstrate that excluding such clients is a simple, but
effective approach to handle the heterogeneous and correlated
client availability in FL. Indeed, while CA-Fed achieves a
comparable maximum accuracy as the state-of-the-art methods
F3AST [19] and AdaFed [20], its test accuracy exhibits
higher time-average and smaller variability over time.

The remainder of this paper is organized as follows. Section II
describes the problem of correlated client availability in FL
and discusses the main related works. Section III provides
a convergence analysis of FedAvg under heterogeneous and
correlated client participation. CA-Fed, our correlation-aware
FL algorithm, is presented in Section IV. We evaluate CA-Fed
in Section V, comparing it with state-of-the-art methods on
synthetic and real-world data. Section VI concludes the paper.

II. BACKGROUND AND RELATED WORKS

We consider a finite set K of N clients. Each client k ∈ K
holds a local dataset Dk. Clients aim to jointly learn the
parameters w ∈ W ⊆ Rd of a global ML model (e.g., the
weights of a neural network architecture). During training, the
quality of the model with parameters w on a data sample
ξ ∈ Dk is measured by a loss function f(w; ξ). The clients
solve, under the orchestration of a central server, the following
optimization problem:

min
w∈W⊆Rd

[
F (w) :=

∑
k∈K

αkFk(w)

]
, (1)

where Fk(w) := 1
|Dk|

∑
ξ∈Dk

f(w; ξ) is the average loss
computed on client k’s local dataset, and α = (αk)k∈K are
positive coefficients such that

∑
k αk = 1. They represent

the target importance assigned by the central server to each
client k. Typically (αk)k∈K are set proportional to the clients’
dataset size |Dk|, such that the objective function F in (1)
coincides with the average loss computed on the union of the
clients’ local datasets D = ∪k∈KDk.

Under proper assumptions, precised in Section III, Problem (1)
admits a unique solution. We use w∗ (resp. F ∗) to denote
the minimizer (resp. the minimum value) of F . Moreover, for
k∈K, Fk admits a unique minimizer on W . We use w∗

k (resp.
F ∗
k ) to denote the minimizer (resp. the minimum value) of Fk.

Problem (1) is commonly solved through iterative algo-
rithms [5], [9] requiring multiple communication rounds be-
tween the server and the clients. At round t > 0, the server
broadcasts the latest estimate of the global model wt,0 to
the set of available clients (At). Client k ∈ At updates the
global model with its local data through E ≥ 1 steps of local
Stochastic Gradient Descent (SGD):

wk
t,j+1 = wk

t,j − ηt∇Fk(w
k
t,j ,Bkt,j) j = 0, . . . , E − 1, (2)

where ηt > 0 is an appropriately chosen learning rate,
referred to as local learning rate; Bkt,j is a random batch
sampled from client-k’s local dataset at round t and step j;
∇Fk(·,B) := 1

|B|
∑

ξ∈B∇f(·, ξ) is an unbiased estimator of
the local gradient ∇Fk. Then, each client sends its local model
update ∆k

t := wk
t,E −wk

t,0 to the server. The server computes
∆t :=

∑
k∈At

qk ·∆k
t , a weighted average of the clients’ local

updates with non-negative aggregation weights q = (qk)k∈K.
The choice of the aggregation weights defines an aggregation
strategy (we will discuss different aggregation strategies later).
The aggregated update ∆t can be interpreted as a proxy for
−∇F (wt,0); the server applies it to the global model:

wt+1,0 = ProjW (wt,0 + η̄ ·∆t), (3)

where ProjW (·) denotes the projection over the set W , and
η̄ > 0 is an appropriately chosen learning rate, referred to as
the server learning rate.1

The aggregate update ∆t is, in general, a biased estimator
of −∇F (wt,0), where each client k is taken into account
proportionally to its frequency of appearance in the set At and
to its aggregation weight qk. Indeed, under proper assumptions
specified in Section III, one can show (see Theorem 2) that the
update rule described by (2) and (3) converges to the unique
minimizer of a biased global objective FB , which depends
both on the clients’ availability (i.e., on the sequence (At)t>0)
and on the aggregation strategy (i.e., on q = (qk)k∈K):

FB(w) :=
∑N

k=1 pkFk(w), with pk := πkqk∑N
h=1 πhqh

, (4)

where πk := limt→∞ P(k ∈ At) is the asymptotic availability
of client k. The coefficients p = (pk)k∈K can be interpreted as
the biased importance the server is giving to each client k dur-
ing training, in general different from the target importance α.
In what follows, w∗

B (resp. F ∗
B) denotes the minimizer (resp.

the minimum value) of FB .

In some large-scale FL applications, like training Google
keyboard next-word prediction models, each client participates
in training at most for one round. The orchestrator usually
selects a few hundred clients at each round for a few thousand
rounds (e.g., see [6, Table 2]), but the available set of clients
may include hundreds of millions of Android devices. In this
scenario, it is difficult to address the potential bias unless there
is some a-priori information about each client’s availability.
Anyway, FL can be used by service providers with access
to a much smaller set of clients (e.g., smartphone users that
have installed a specific app). In this case, a client participates
multiple times in training: the orchestrating server may keep
track of each client’s availability and try to compensate for
the potentially dangerous heterogeneity in their participation.

Much previous effort on federated learning [5], [18]–[20],
[23]–[26] considered this problem and, under different as-

1The aggregation rule (3) has been considered also in other works, e.g., [9],
[21], [22]. In other FL algorithms, the server computes an average of clients’
local models. This aggregation rule can be obtained with minor changes to (3).
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sumptions on the clients’ availability (i.e., on (At)t>0), de-
signed aggregation strategies that unbias ∆t through an appro-
priate choice of q. Reference [23] provides the first analysis of
FedAvg on non-iid data under clients’ partial participation.
Their analysis covers both the case when active clients are
sampled uniformly at random without replacement from K and
assigned aggregation weights equal to their target importance
(as assumed in [5]), and the case when active clients are
sampled iid with replacement from K with probabilities α
and assigned equal weights (as assumed in [24]). However,
references [5], [23], [24] ignore the variance induced by the
clients stochastic availability. The authors of [25] reduce such
variance by considering only the clients with important up-
dates, as measured by the value of their norm. References [18]
and [26] reduce the aggregation variance through clustered and
soft-clustered sampling, respectively.

Some recent works [19], [20], [27] do not actively pursue the
optimization of the unbiased objective. Instead, they derive
bounds for the convergence error and propose heuristics to
minimize those bounds, potentially introducing some bias.
Our work follows a similar development: we compare our
algorithm with F3AST from [19] and AdaFed from [20].

The novelty of our study is in considering the spatial and
temporal correlation in clients’ availability dynamics. As dis-
cussed in the introduction, such correlations are also intro-
duced by clients’ eligibility criteria, e.g., smartphones being
under charge and connected to broadband networks. The effect
of correlation has been ignored until now, probably due to the
additional complexity in studying FL algorithms’ convergence.
To the best of our knowledge, the only exception is [19], which
scratches the issue of spatial correlation by proposing two
different algorithms for the case when clients’ availabilities
are uncorrelated and for the case when they are positively
correlated (there is no smooth transition from one algorithm
to the other as a function of the degree of correlation).

The effect of temporal correlation on centralized stochastic
gradient methods has been addressed in [13]–[15], [28]: these
works study a variant of stochastic gradient descent where
samples are drawn according to a Markov chain. Refer-
ence [13] extends its analysis to a FL setting where each client
draws samples according to a Markov chain. In contrast, our
work does not assume a correlation in the data sampling but
rather in the client’s availability. Nevertheless, some of our
proof techniques are similar to those used in this line of work
and, in particular, we rely on some results in [15].

III. ANALYSIS

A. Main assumptions

We consider a time-slotted system where a slot corresponds
to one FL communication round. We assume that clients’
availability over the timeslots t ∈ N follows a discrete-time
Markov chain (At)t≥0.2

2In Section III-D we will focus on the case where this chain is the
superposition of N independent Markov chains, one for each client.

Assumption 1. The Markov chain (At)t≥0 on the finite state
space [M ] is time-homogeneous, irreducible, and aperiodic. It
has transition matrix P and stationary distribution π.

Markov chains have already been used in the literature to
model the dynamics of stochastic networks where some nodes
or edges in the graph can switch between active and inactive
states [29], [30]. The previous Markovian assumption, while
allowing a great degree of flexibility, still guarantees the
analytical tractability of the system. The distance dynamics
between the current and the stationary distributions of the
Markov process can be characterized in terms of the spectral
properties of its transition matrix P [31]. Let λ2(P ) denote the
the second largest eigenvalue of P in absolute value. Previous
works [15] have shown that:

max
i,j∈[M ]

|[P t]i,j − πj | ≤ CP · λ(P )t, for t ≥ TP , (5)

where the parameter λ(P ) := (λ2(P ) + 1)/2, and CP , TP
are positive constants whose values are reported in [15,
Lemma 1].3 Note that λ(P ) quantifies the correlation of the
Markov process (At)t≥0: the closer λ(P ) is to one, the slower
the Markov chain converges to its stationary distribution.

In our analysis, we make the following additional assumptions.
Let w∗,w∗

B denote the minimizers of F and FB on W ,
respectively.

Assumption 2. The hypothesis class W is convex, compact,
and contains in its interior the minimizers w∗,w∗

B ,w
∗
k.

The following assumptions concern clients’ local objective
functions {Fk}k∈K. Assumptions 3 and 4 are standard in
the literature on convex optimization [32, Sections 4.1, 4.2].
Assumption 5 is a standard hypothesis in the analysis of
federated optimization algorithms [9, Section 6.1].

Assumption 3 (L-smoothness). The local functions {Fk}Nk=1

have L-Lipschitz continuous gradients: Fk(v) ≤ Fk(w) +
⟨∇Fk(w),v −w⟩+ L

2 ∥v −w∥22, ∀v,w ∈W .

Assumption 4 (Strong convexity). The local functions
{Fk}Nk=1 are µ-strongly convex: Fk(v) ≥ Fk(w) +
⟨∇Fk(w),v −w⟩+ µ

2 ∥v −w∥22 , ∀v,w ∈W .

Assumption 5 (Bounded variance). The variance of stochastic
gradients in each device is bounded: E ∥∇Fk(w

k
t,j , ξ

k
t,j) −

∇Fk(w
k
t,j)∥2 ≤ σ2

k, k = 1, . . . , N .

Assumptions 2–5 imply the following properties for the local
functions, described by Lemma 1 (proof in Appendix B).

Lemma 1. Under Assumptions 2–5, there exist constants D,
G, and H > 0, such that, for w ∈W and k ∈ K, we have:

∥∇Fk(w)∥ ≤ D, (6)

E ∥∇Fk(w, ξ)∥2 ≤ G2, (7)
|Fk(w)− Fk(w

∗
B)| ≤ H. (8)

3Note that (5) holds for different definitions of λ(P ) as far as λ(P ) ∈
(λ2(P ), 1). The specific choice for λ(P ) changes the constants CP and TP .
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Similarly to other works [9], [23], [24], [33], we introduce a
metric to quantify the heterogeneity of clients’ local datasets:

Γ := max
k∈K
{Fk(w

∗)− F ∗
k }. (9)

If the local datasets are identical, the local functions {Fk}k∈K
coincide among them and with F , w∗ is a minimizer of each
local function, and Γ = 0. In general, Γ is smaller the closer
the distributions the local datasets are drawn from.

B. Main theorems

Theorem 1 (proof in Appendix A) decomposes the error of
the target global objective as the sum of an optimization error
for the biased global objective and a bias error.

Theorem 1 (Decomposing the total error). Under Assump-
tions 2–4, the optimization error of the target global objective
ϵ = F (w)− F ∗ can be bounded as follows:

ϵ ≤ 2κ2(FB(w)− F ∗
B)︸ ︷︷ ︸

:=ϵopt

+2κ4χ2
α∥pΓ︸ ︷︷ ︸

:=ϵbias

, (10)

where κ := L/µ, and χ2
α∥p :=

∑N
k=1 (αk − pk)2/pk.

Theorem 2 below proves that the optimization error ϵopt
associated to the biased objective FB , evaluated on the tra-
jectory determined by scheme (3), asymptotically vanishes.
The non-vanishing bias error ϵbias captures the discrepancy
between F (w) and FB(w). This latter term depends on the
chi-square divergence χ2

α∥p between the target and biased
probability distributions α = (αk)k∈K and p = (pk)k∈K,
and on Γ, that quantifies the degree of heterogeneity of the
local functions. When all local functions are identical (Γ = 0),
the bias term ϵbias also vanishes. For Γ > 0, the bias error
can still be controlled by the aggregation weights assigned
to the devices. In particular, the bias term vanishes when
qk ∝ αk/πk,∀k ∈ K. Since it asymptotically cancels the bias
error, we refer to this choice as unbiased aggregation strategy.

However, in practice, FL training is limited to a finite number
of iterations T (typically a few hundreds [6], [8]), and the
previous asymptotic considerations may not apply. In this
regime, the unbiased aggregation strategy can be suboptimal,
since the minimization of ϵbias not necessarily leads to the
minimization of the total error ϵ ≤ ϵopt + ϵbias. This motivates
the analysis of the optimization error ϵopt.

Theorem 2 (Convergence of the optimization error ϵopt). Let
Assumptions 1–5 hold and the constants M,L,D,G,H,Γ,
σk, CP , TP , λ(P ) be defined as above. Let Q =

∑
k∈K qk.

Let the stepsizes satisfy:∑
t ηt = +∞,

∑
t ln(t) · η2t < +∞. (11)

Let T denote the total communication rounds. For T ≥ TP ,
the expected optimization error can be bounded as follows:

E[FB(w̄T,0)− F ∗
B ] ≤

1
2q

⊺Σq+υ

π⊺q + ψ + ϕ
ln(1/λ(P ))

(
∑T

t=1 ηt)
, (12)

where w̄T,0 :=
∑T

t=1 ηtwt,0∑T
t=1 ηt

, and

Σ =diag(σ2
kπk

∑
t η

2
t ),

υ = 2
E ∥w0,0 −w∗∥2 + 1

4MQ
∑

t(η
2
t +

1
t2 ),

ψ = 4L(EQ+ 2)Γ
∑

t η
2
t +

2
3 (E − 1)(2E − 1)G2

∑
t η

2
t ,

Jt =min {max {⌈ln (2CPHt)/ln (1/λ(P ))⌉ , TP } , t},
ϕ = 2EDGQ

∑
t ln(2CPHt)η

2
t−Jt

.

Theorem 2 (proof in Appendix B) proves convergence of
the expected biased objective FB to its minimum F ∗

B under
correlated client participation. Our bound (12) captures the
effect of correlation through the factor ln (1/λ(P )): a high
correlation worsens the convergence rate. In particular, we
found that the numerator of (12) has a quadratic-over-linear
fractional dependence on q. Minimizing ϵopt leads, in general,
to a different choice of q than minimizing ϵbias.

C. Minimizing the total error ϵ ≤ ϵopt + ϵbias

Our analysis points out a trade-off between minimizing ϵopt
or ϵbias. Our goal is to find the optimal aggregation weights q∗

that minimize the upper bound on total error ϵ(q) in (10):

minimize
q

ϵopt(q) + ϵbias(q);

subject to q ≥ 0,

∥q∥1 = Q.

(13)

In Appendix E we prove that (13) is a convex optimization
problem, which can be solved with the method of Lagrange
multipliers. However, the solution is not of practical utility
because the constants in (10) and (12) (e.g., L, µ, Γ, CP ) are
in general problem-dependent and difficult to estimate during
training. In particular, Γ poses particular difficulties as it is
defined in terms of the minimizer of the target objective F , but
the FL algorithm generally minimizes the biased function FB .
Moreover, the bound in (10), similarly to the bound in [33],
diverges when setting some qk equal to 0, but this is simply
an artifact of the proof technique. A result of more practical
interest is the following (proof in Appendix C):

Theorem 3 (An alternative decomposition of the total er-
ror ϵ). Under the same assumptions of Theorem 1, let Γ′ :=
maxk{Fk(w

∗
B)− F ∗

k }. The following result holds:

ϵ ≤ 2κ2(FB(w)− F ∗
B)︸ ︷︷ ︸

:=ϵopt

+8κ4d2TV (α,p)Γ
′︸ ︷︷ ︸

:=ϵ′bias

, (14)

where dTV (α,p) := 1
2

∑N
k=1|αk − pk| is the total variation

distance between the probability distributions α and p.

The new constant Γ′ is defined in terms of w∗
B , and then

it is easier to evaluate during training. However, Γ′ depends
on q, because it is evaluated at the point of minimum of FB .
This dependence makes the minimization of the right-hand
side of (14) more challenging (for example, the corresponding
problem is not convex). We study the minimization of the two
terms ϵopt and ϵ′bias separately and learn some insights, which
we use to design the new FL algorithm CA-Fed.
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D. Minimizing ϵopt

The minimization of ϵopt is still a convex optimization problem
(Appendix D). In particular, at the optimum, non-negative
weights are set accordingly to q∗k = a(λ∗πk − θ∗) with
a, λ∗, and θ∗ positive constants (see (29)). It follows that
clients with smaller availability get smaller weights in the
aggregation. In particular, this suggests that clients with the
smallest availability can be excluded from the aggregation,
leading to the following guideline:

Guideline A: to speed up the convergence, we can exclude,
i.e., set q∗k = 0, the clients with lowest availability πk.

This guideline can be justified intuitively: updates from clients
with low participation may be too sporadic to allow the FL
algorithm to keep track of their local objectives. They act as
a noise slowing down the algorithm’s convergence. It may be
advantageous to exclude these clients from participating.

We observe that the choice of the aggregation weights q does
not affect the clients’ availability process and, in particular,
λ(P ). However, if the algorithm excludes some clients, it is
possible to consider the state space of the Markov chain that
only specifies the availability state of the remaining clients,
and this Markov chain may have different spectral properties.
For the sake of concreteness, we consider here (and in the
rest of the paper) the particular case when the availability of
each client k evolves according to a Markov chain (Ak

t )t≥0

with transition probability matrix Pk and these Markov chains
are all independent. In this case, the aggregate process is
described by the product Markov chain (At)t≥0 with transition
matrix P =

⊗
k∈K Pk and λ(P ) = maxk∈K λ(Pk), where

Pi

⊗
Pj denotes the Kronecker product between matrices Pi

and Pj [31, Exercise 12.6]. In this setting, it is possible to
redefine the Markov chain (At)t≥0 by taking into account
the reduced state space defined by the clients with a non-
null aggregation weight, i.e., P ′ =

⊗
k′∈K|qk′>0 Pk′ and

λ(P ′) = maxk′∈K|qk′>0 λ(Pk′), which is potentially smaller
than the case when all clients participate to the aggregation.
These considerations lead to the following guideline:

Guideline B: to speed up the convergence, we can exclude,
i.e., set q∗k = 0, the clients with largest λ(Pk).

Intuition also supports this guideline. Clients with large λ(Pk)
tend to be available or unavailable for long periods of time.
Due to the well-known catastrophic forgetting problem affect-
ing gradient methods [34], [35], these clients may unfairly
steer the algorithm toward their local objective when they
appear at the final stages of the training period. Moreover,
their participation in the early stages may be useless, as their
contribution will be forgotten during their long absence. The
FL algorithm may benefit from directly neglecting such clients.

We observe that guideline B strictly applies to this specific
setting where clients’ dynamics are independent (and there is
no spatial correlation). We do not provide a corresponding
guideline for the case when clients are spatially correlated

Algorithm 1: CA-Fed (Correlation-Aware FL)
Input : w0,0, α, q(0), {ηt}Tt=1, η̄, E, β, τ

1 Initialize F̂ (0), F̂ ∗, Γ̂
′
(0), π̂(0), and λ̂(0);

2 for t = 1, . . . , T do
3 Receive set of active client At, loss vector F (t);
4 Update F̂ (t), Γ̂

′
(t), π̂(t), and λ̂(t);

5 Initialize q(t) = α
π̂(t) ;

6 q(t) ← get(q(t),α, F̂ (t), F̂ ∗, Γ̂
′
(t), π̂(t), λ̂(t));

7 q(t) ← get(q(t),α, F̂ (t), F̂ ∗, Γ̂
′
(t), π̂(t), 9π̂(t));

8 for client {k ∈ At; q
(t)
k > 0}, in parallel do

9 for j = 0, . . . , E − 1 do
10 wk

t,j+1 = wk
t,j − ηt∇Fk(w

k
t,j ,Bkt,j) ;

11 ∆k
t ← wt,E −wt,0;

12 wt+1,0 ← ProjW (wt,0 + η̄
∑

k∈At
q(t)

k ·∆k
t );

13 Function get(q, α, F , F ∗, Γ, π, ρ):
14 Sort K by descending order in ρ;
15 ϵ̂← ⟨F−F ∗,π⊙̃q⟩+ d2TV (α,π⊙̃q) · Γ;
16 for k ∈ K do
17 q+k ← 0;
18 ϵ̂+ ← ⟨F−F ∗,π⊙̃q+⟩+ d2TV (α,π⊙̃q+) · Γ;
19 if ϵ̂− ϵ̂+ ≥ τ then
20 ϵ̂← ϵ̂+;
21 q ← q+;
22 return q

(we leave this task for future research). However, in this more
general setting, it is possible to ignore guideline B but still
draw on guidelines A and C, or still consider guideline B if
the spatially correlated clients can be grouped in clusters, each
cluster evolving as an independent Markov chain [1].

E. Minimizing ϵ′bias

The bias error ϵ′bias in (14) vanishes when the total variation
distance between the target importance α and the biased
importance p is zero, i.e., when qk ∝ αk/πk,∀k ∈ K. Then,
after excluding the clients that contribute the most to the
optimization error and particularly slow down the convergence
(guidelines A and B), we can assign to the remaining clients an
aggregation weight inversely proportional to their availability,
such that the bias error ϵ′bias is minimized.

Guideline C: to reduce the bias error, we set q∗k ∝ αk/πk for
the clients that are not excluded by the previous guidelines.

IV. PROPOSED ALGORITHM

Guidelines A and B in Section III suggest that the minimiza-
tion of ϵopt can lead to the exclusion of some available clients
from the aggregation step (3), in particular those with low
availability and/or high correlation. For the remaining clients,
guideline C proposes to set their aggregation weight inversely
proportional to their availability to reduce the bias error ϵ′bias.
Motivated by these insights, we propose CA-Fed, a client
sampling and aggregation strategy that takes into account the
problem of correlated client availability in FL, described in
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Algorithm 1. CA-Fed learns during training which are the
clients to exclude and how to set the aggregation weights of the
other clients to achieve a good trade-off between ϵopt and ϵ′bias.
While guidelines A and B indicate which clients to remove,
the exact number of clients to remove at round t is identified
by minimizing ϵ(t) as a proxy for the bound in (14):4

ϵ(t) := FB(wt,0)−F ∗
B + d2TV (α,p)Γ

′. (15)

A. CA-Fed’s core steps

At each communication round t, the server sends the current
model wt,0 to all active clients and each client k sends back
a noisy estimate F (t)

k of the current loss computed on a batch
of samples Bkt,0, i.e., F (t)

k = 1
|Bk

t,0|
∑

ξ∈Bk
t,0
f(wt,0, ξ) (line 3).

The server uses these values and the information about the
current set of available clients At to refine its own estimates
of each client’s loss (F̂ (t) = (F̂ (t)

k )k∈K), and each client’s
loss minimum value (F̂ ∗ = (F̂ ∗

k )k∈K), as well as of Γ′, πk,
λk, and ϵ(t), denoted as Γ̂

′
(t), π̂(t)

k , λ̂(t)

k , and ϵ̂(t), respectively
(possible estimators are described below) (line 4).

The server decides whether excluding clients whose avail-
ability pattern exhibits high correlation (high λ̂(t)

k ) (line 6).
First, the server considers all clients in descending order of
λ̂(t) (line 14), and evaluates if, by excluding them (line 17),
ϵ̂(t) appears to be decreasing by more than a threshold τ ≥ 0
(line 19). Then, the server considers clients in ascending order
of π̂(t), and repeats the same procedure to possibly exclude
some of the clients with low availability (low π̂(t)

k ) (lines 7).

Once the participating clients (those with qk > 0) have
been selected, the server notifies them to proceed updating
the current models (lines 9–10) according to (2), while the
other available clients stay idle. Finally, model’s updates are
aggregated according to (3) (line 12).

B. Estimators

We now briefly discuss possible implementation of the esti-
mators F̂ (t)

k , F̂ ∗
k , Γ̂

′
(t), π̂(t)

k , and λ̂(t)

k . Server’s estimates for the
clients’ local losses (F̂ (t) = (F̂ (t)

k )k∈K) can be obtained from
the received active clients’ losses (F (t) = (F (t)

k )k∈At
) through

an auto-regressive filter with parameter β ∈ (0, 1]:

F̂ (t) = (1− β1At
)⊙ F̂ (t−1) + β1At

⊙ F (t), (16)

where ⊙ denotes the component-wise multiplication between
vectors, and 1At

is a N -dimensions binary vector whose k-th
component equals 1 if and only if k is active at round t, i.e.,
k ∈ At. The server can keep track of the clients’ loss minimum
values and estimate F ∗

k as F̂ ∗
k = mins∈[0,t] F̂

(s)

k . The values of
FB(wt,0), F ∗

B , Γ′, and ϵ(t) can be estimated as follows:

F̂ (t)

B − F̂ ∗
B = ⟨F̂ (t) − F̂ ∗, π̂(t)⊙̃q(t)⟩, (17)

Γ̂
′
(t) = maxk∈K(F̂

(t)

k − F̂ ∗
k ), (18)

ϵ̂(t) = F̂ (t)

B − F̂ ∗
B + d2TV (α, π̂

(t)⊙̃q(t)) · Γ̂′
(t). (19)

4Following (14), one could introduce a hyper-parameter to weigh the
relative importance of the optimization and bias terms in the sum. We have
discussed this additional optimization of CA-Fed in the extended version [1].

where π⊙̃q ∈ RN , such that
(
π⊙̃q

)
k
= πkqk∑N

h=1 πhqh
, k ∈ K.

For π̂(t)

k , the server can simply keep track of the total number
of times client k was available up to time t and compute
π̂(t)

k using a Bayesian estimator with beta prior, i.e., π̂(t)

k =
(
∑

s≤t 1k∈As +nk)/(t+nk+mk), where nk and mk are the
initial parameters of the beta prior.

For λ̂(t)

k , the server can assume the client’s availability evolves
according to a Markov chain with two states (available and
unavailable), track the corresponding number of state tran-
sitions, and estimate the transition matrix P̂ (t)

k through a
Bayesian estimator similarly to what done for π̂(t)

k . Finally,
λ̂(t)

k is obtained computing the eigenvalues of P̂ (t)

k .

C. CA-Fed’s computation/communication cost

CA-Fed aims to improve training convergence and not to
reduce its computation and communication overhead. Never-
theless, excluding some available clients reduces the overall
training cost, as we will discuss in this section referring, for
the sake of concreteness, to neural networks’ training.

The available clients not selected for training are only re-
quested to evaluate their local loss on the current model once
on a single batch instead than performing E gradient updates,
which would require roughly 2 × E − 1 more calculations
(because of the forward and backward pass). For the selected
clients, there is no extra computation cost as computing the
loss corresponds to the forward pass they should, in any case,
perform during the first local gradient update.

In terms of communication, the excluded clients only transmit
the loss, a single scalar, much smaller than the model update.
Conversely, participating clients transmit the local loss and the
model update. Still, this additional overhead is negligible and
likely fully compensated by the communication savings for
the excluded clients.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

a) Federated system simulator: In our experiments, we sim-
ulate the clients’ availability dynamics featuring different
levels of temporal correlations. We model the activity of each
client as a two-state homogeneous Markov process with state
space S = {“active”, “inactive”}. We use pk,s to denote the
probability that client k ∈ K remains in state s ∈ S.

In order to simulate the statistical heterogeneity present in the
federated learning system, we consider an experimental setting
with two disjoint groups of clients Gi, i = 1, 2, to which
we associate two different data distributions Pi, i = 1, 2,
to be precised later. Let ri = |Gi|/N, i = 1, 2 denote the
fraction of clients in group i = 1, 2. In order to simulate
the heterogeneity of clients’ availability patterns in realistic
federated systems, we split the clients of each group in two
classes uniformly at random: “more available” clients whose
steady-state probability to be active is πk,active = 1/2 + g and
“less available” clients with πk,active = 1/2 − g, where g ∈
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Fig. 1: Clients’ activities and CA-Fed’s clients selection on the synthetic dataset.
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Fig. 2: Importance given to the clients by the different algorithms
throughout a whole training process on the synthetic dataset.

(0, 1/2) is a parameter controlling the heterogeneity of clients
availability. We furthermore split each class of clients in two
sub-classes uniformly at random: “correlated” clients that tend
to persist in the same state (λk = ν with values of ν close to
1), and “weakly correlated” clients that are almost as likely
to keep as to change their state (λk ∼ N (0, ε2), with ε close
to 0). In our experiments, we suppose that r1 = r2 = 1/2,
g = 0.4, ν = 0.9, and ε = 10−2.
b) Datasets and models: All experiments are performed on
a binary classification synthetic dataset (described in Ap-
pendix F) and on the real-world MNIST dataset [36], using
N = 24 clients. For MNIST dataset, we introduce statistical
heterogeneity across the two groups of clients (i.e., we make
the two distributions P1 and P2 different), following the same
approach in [37]: 1) every client is assigned a random subset
of the total training data; 2) the data of clients from the second
group is modified by randomly swapping two pairs of labels.
We maintain the original training/test data split of MNIST and
use 20% of the training dataset as validation dataset. We use a
linear classifier with a ridge penalization of parameter 10−2,
which is a strongly convex objective function, for both the
synthetic and the real-world MNIST datasets.
c) Benchmarks: We compare CA-Fed, defined in Algo-
rithm 1, with the Unbiased aggregation strategy, where all
the active clients participate and receive a weight inversely
proportional to their availability, and with the state-of-the-
art FL algorithms discussed in Section II: F3AST [19] and
AdaFed [20]. We tuned the learning rates η, η̄ via grid
search, on the grid η : {10−3, 10−2.5, 10−2, 10−1.5, 10−1},
η̄ : {10−2, 10−1.5, 10−1, 10−0.5, 100}. For CA-Fed, we used
τ = 0, β = 0.2. We assume all algorithms can access an oracle
providing the true availability parameters for each client. In
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Fig. 3: Test accuracy vs number of communication rounds.

practice, Unbiased, AdaFed, and F3AST rely on the exact
knowledge of πk,active, and CA-Fed on πk,active and λk. 5

B. Experimental Results

Figure 1 shows the availability of each client during a training
run on the synthetic dataset. Clients selected (resp. excluded)
by CA-Fed are highlighted in black (resp. red). We observe
that excluded clients tend to be those with low average
availability or high correlation.

Figure 2 shows the importance pk (averaged over time) given
by different algorithms to each client k during a full training
run. We observe that all the algorithms, except Unbiased,
depart from the target importance α. As suggested by guide-
lines A and B, CA-Fed tends to favor the group of “more
available” clients, at the expense of the “less available” clients.

Figure 3 shows the time-average accuracy up to round t of
the learned model averaged over three different runs. On both
datasets, CA-Fed achieves the highest accuracy, which is
about a percentage point higher than the second best algorithm
(F3AST). Table I shows for each algorithm: the average over
three runs of the maximum test accuracy achieved during train-
ing, the time-average test accuracy achieved during training,
together with its standard deviation within the second half
of the training period. While CA-Fed achieves a maximum
accuracy which is comparable to the Unbiased baseline and
state-of-the-art AdaFed and F3AST, it gets a higher time-
average accuracy (1.24 pp on MNIST) in comparison to the
second best (F3AST), and a smaller standard deviation (1.5×
on MNIST) in comparison to the second best (F3AST).

5The authors have provided public access to their code and data at:
https://github.com/arodio/CA-Fed.
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TABLE I: Maximum and time-average test accuracy, together with
their standard deviations, on the Synthetic / MNIST datasets.

TEST ACCURACY
MAXIMUM TIME-AVERAGE STANDARD DEVIATION

UNBIASED 78.94 / 64.87 75.32 / 61.39 0.48 / 1.09
F3AST 78.97 / 64.91 75.33 / 61.52 0.40 / 0.94
ADAFED 78.69 / 63.77 74.81 / 60.48 0.59 / 1.37
CA-FED 79.03 / 64.94 76.22 / 62.76 0.28 / 0.61

VI. CONCLUSION

This paper presented the first convergence analysis for a
FedAvg-like FL algorithm under heterogeneous and corre-
lated client availability. The analysis quantifies how correla-
tion adversely affects the algorithm’s convergence rate and
highlights a general bias-versus-convergence-speed trade-off.
Guided by the theoretical analysis, we proposed CA-Fed, a
new FL algorithm that tries to balance the conflicting goals
of maximizing convergence speed and minimizing model bias.
Our experimental results demonstrate that adaptively excluding
clients with high temporal correlation and low availability
is an effective approach to handle the heterogeneous and
correlated client availability in FL. Our work represents a
first step toward the development of effective FL techniques
under temporally and spatially correlated clients’ availability.
Although our algorithm is mainly designed to handle temporal
correlation, it can deal with spatial correlation as well, as
discussed in the extended version [1].

APPENDIX

A. Proof of Theorem 1

We bound the optimization error of the target objective as the
optimization error of the biased objective plus a bias term:

F (w)− F ∗ ≤ 1
2µ ∥∇F (w)∥2 ≤ L2

2µ ∥w −w∗∥2

≤ L2

µ (∥w −w∗
B∥

2
+ ∥w∗

B −w∗∥2)

≤ 2L2

µ2 (FB(w)− F ∗
B)︸ ︷︷ ︸

:=ϵopt

+ 2L2

µ2 (F (w∗
B)− F ∗)︸ ︷︷ ︸

:=ϵbias

,

where the inequalities follow from Assumptions 3, 4.
We study ϵopt in Theorem 2. Let us now focus on ϵbias:

∥∇F (w∗
B)∥

(a)
=

∥∥∥∑N
k=1(αk − pk)∇Fk(w

∗
B)

∥∥∥
(b)

≤ L
∑N

k=1|αk − pk| ∥w∗
B −w∗

k∥ (20)
(c)

≤ L
√

2
µ

∑N
k=1

|αk−pk|√
pk

√
pk(Fk(w∗

B)− F ∗
k ),

where (a) uses∇FB(w
∗
B)=0; (b) and (c) apply L-smoothness

and µ-strong convexity, respectively. By direct calculations:

∥∇F (w∗
B)∥

2 ≤ 2L2

µ

(∑N
k=1

|αk−pk|√
pk

√
pk(Fk(w∗

B)− F ∗
k )
)2

(d)

≤ 2L2

µ

( N∑
k=1

(αk−pk)
2

pk

)( N∑
k=1

pk(Fk(w
∗
B)− F ∗

k )
)

≤ 2L2

µ χ2
α∥pΓ,

where (d) uses Cauchy–Schwarz. By strong convexity of F :

F (w∗
B)− F ∗ ≤ 1

2µ ∥∇F (w
∗
B)∥

2 ≤ L2

µ2 χ
2
α∥pΓ.

B. Proof of Theorem 2

1) Additional notation: let wk
t,j be the model parameter

computed by device k at the global round t, local itera-
tion j. We define gt(At)=

∑
k∈At

qk
∑E−1

j=0
∇Fk(w

k
t,j , ξ

k
t,j),

and ḡt(At)=Eξ|At
[gt(At)]. The update rule of CA-Fed is:

wt+1,0 = ProjW (wt,0 − ηtgt(At)). (21)

2) Key lemmas and results: we provide useful lemmas and
results to support the proof of the main theorem.

Proof of Lemma 1. The boundedness of W gives a bound on
(wt,0)t≥0 based on (2) and (3). From the convexity of Fk,
D := supw∈W,k∈K ∥∇Fk(w)∥ < +∞. Items (6), (8) follow
directly; item (7) follows from (6) and Assumption 5.

Lemma 2 (Convergence under heterogeneous client availabil-
ity). Let Assumptions 3-5 hold. If ηt ≤ 1

2L(EQ+1) , we have:∑
t ηt E[

∑
k∈At

qk (Fk(wt,0)− Fk(w
∗
B))] ≤

+ 2
E ∥w0,0 −w∗

B∥
2
+ 2

∑N
k=1 πkq

2
kσ

2
k

∑
t η

2
t

+ 2
3

∑N
k=1 πkqk(E − 1)(2E − 1)G2

∑
t η

2
t

+ 2L(EQ+ 2)
∑N

k=1 πkqkΓ
∑

t η
2
t := C1 < +∞.

Proof of Lemma 2.

∥wt+1,0 −w∗
B∥

2
= ∥ProjW (wt,0 − ηtgt)−ProjW (w∗

B)∥
2

≤ ∥wt,0 − ηtgt −w∗
B + ηtḡt − ηtḡt∥2 = A1 +A2 +A3,

where A1= ∥wt,0−w∗
B−ηtḡt∥

2, A2=2ηt⟨wt,0−w∗
B−ηtḡt, ḡt

−gt⟩, A3=η
2
t ∥gt−ḡt∥

2. Note E[A2] = 0. We bound A1, A3

using the following key steps in [23]: (1) the variance of gt
is bounded if the variance of the stochastic gradients at each
device is bounded; (2) the distance of the local model wk

t,E

from the global model wt,0 is bounded since the expected
squared norm of the stochastic gradients is bounded.

Lemma 3 (Optimization error after Jt steps). Let Assump-
tions 1, 2, 4 hold, and D,H be defined as in (6), (8). Then:∑

t ηt E[
∑

k∈At
qk(Fk(wt−Jt,0)− Fk(wt,0))]

≤ EDGQ
∑

t Jtη2t−Jt

∑N
k=1 πkqk := C3

ln(1/λ(P )) < +∞.

For the proof of Lemma 3, we introduce the following results:

|Fk(v)− Fk(w)| ≤ D · ∥v −w∥ , ∀v,w ∈W, (22)
EBk

t,0,...,Bk
t,E−1

∥wt+1,0 −wt,0∥ ≤ ηtGE(
∑

k∈At
qk). (23)

Equation (22) is proven in [15, Proposition 1]: it is a direct
application of the mean value theorem. Equation (23) can be
proven using equation (7) and the update rule in (21).
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Proof of Lemma 3.∑
tηt E[

∑
k∈At

qk(Fk(wt−Jt,0)− Fk(wt,0))]
(a)

≤ D
∑

t ηt E[
∑

k∈At
qk EB ∥wt−Jt,0 −wt,0∥]

(b)

≤ D
∑

t ηt
∑t−1

d=t−Jt
E[
∑

k∈At
qk EB ∥wd,0 −wd+1,0∥]

(c)

≤ EDG
∑

t

∑t−1
d=t−Jt

ηtηd E[
∑

k∈At
qk

∑
k′∈Ad

qk′ ]
(d)

≤ EDG
2

∑
t

∑t−1
d=t−Jt

(η2t + η2d)E[
∑

k∈At
qk

∑
k′∈Ad

qk′ ]
(e)

≤ EDGQ
∑

t Jtη2t−Jt

∑N
k=1 πkqk := C3

ln(1/λ(P )) ,

where (a) uses (22); (b) uses triangle inequality; (c) uses (23);
(d) uses Cauchy–Schwarz; (e) uses ηt < ηd ≤ ηt−Jt .

3) Core of the proof. The proof consists in two main steps:
1.
∑

t ηt
∑N

k=1 πkqk E[FB(wt−Jt,0) − F ∗
B)]≤C2+

C3

ln(1/λ(P )) ;
2.
∑

t ηt
∑N

k=1 πkqk E[FB(wt,0)−FB(wt−Jt,0)]≤ C3

ln(1/λ(P )) .

Step 1. Combining Lemma 2 and 3, we get:∑
t ηt E[

∑
k∈At

qk(Fk(wt−Jt,0)− Fk(w
∗
B))] ≤ C1 +

C3

ln(1/λ(P )) .

From the definition of Jt in Theorem 2 and (5), it follows:∣∣[PJt ]i,j − πj
∣∣ ≤ CPλ(P )Jt ≤ 1

2Ht , ∀i, j ∈ [M ]. (24)

Assume t ≥ TP . We derive an important lower bound:

EAt|At−Jt
[
∑

k∈At
qk(Fk(wt−Jt,0)− Fk(w

∗
B))]

(a)
=

∑M
I=1 P(At=I|At−Jt)

∑
k∈I qk(Fk(wt−Jt,0)−Fk(w

∗
B))

(b)
=

∑M
I=1 [PJt ]At−Jt ,I

∑
k∈I qk (Fk(wt−Jt,0)− Fk(w

∗
B))

(c)

≥
∑M

I=1

(
π(I)− 1

2Ht

)∑
k∈I qk(Fk(wt−Jt,0)− Fk(w

∗
B))

(d)

≥ (
∑N

k=1 πkqk) · (FB(wt−Jt,0)− F ∗
B)− 1

2tMQ, (25)

where (a) is the definition of the conditional expectation, (b)
applies the Markov property, (c) follows from (24), and (d)
is due to (8). Taking total expectations:

(
∑N

k=1 πkqk)
∑

t ηt E[FB(wt−Jt,0)− F ∗
B ]

≤
∑

t ηt E[
∑

k∈At
qk(Fk(wt−Jt,0)− Fk(w

∗
B))]

+ 1
4MQ

∑
t(η

2
t +

1
t2 ) = C2 +

C3

ln(1/λ(P )) , (26)

where C2 = C1 +
1
4MQ

∑
t(η

2
t +

1
t2 ).

Step 2. By direct calculation (similar to Lemma 3):

(
∑N

k=1 πkqk)
∑

t ηt E[FB(wt,0)− FB(wt−Jt,0)]≤ C3

ln(1/λ(P )) .

Summing Step 1 and 2, and applying Jensen’s inequality:

(
∑T

t=1 ηt)(
∑N

k=1 πkqk)E[FB(w̄T,0)− F ∗
B ] ≤

(
∑N

k=1 πkqk)
∑T

t=1 ηt E[FB(wt,0)− F ∗
B ] ≤ C2 +

2C3

ln(1/λ(P )) ,

where w̄T,0 :=
∑T

t=1 ηtwt,0∑T
t=1 ηt

, and the constants are in (12).

C. Proof of Theorem 3

It follows the same lines of Theorem 1, developing (20) as:

∥∇F (w∗
B)∥ ≤ L

√
2
µ

∑N
k=1|αk − pk|

√
(Fk(w∗

B)− F ∗
k )

≤ 2L
√

2
µdTV (α,p)

√
Γ′.

D. Minimizing ϵopt

Equation 12 defines the following optimization problem:

min
q
f(q)=

1
2q

⊺Aq+B

π⊺q +C; domf={q|q≥0,π⊺q>0, ∥q∥
1
=Q}.

Let us rewrite the problem by adding a variable s := 1/π⊺q
and then replacing y := sq. Note that the objective function is
the perspective of a convex function, and is therefore convex:

min
y,s

f(y, s) = 1
2sy

⊺Ay +Bs+ C (27a)

s.t. y ≥ 0, s > 0, π⊺y = 1, ∥y∥1 = Qs. (27b)

The Lagrangian function L is as follows:

L(y, s, λ, θ,µ) = 1
2sy

⊺Ay +Bs+ C+

+λ(1− π⊺y) + θ(∥y∥1 −Qs)− µ⊺y. (28)

Since the constraint s > 0 defines an open set, the set defined
by the constraints in (27b) is not closed. However, the solution
is never on the boundary s = 0 because L∗ → +∞ as s→ 0+,
and we can consider s ≥ 0. The KKT conditions for y∗k read:

if y∗k > 0: y∗k = s∗

A[kk] (λ
∗πk − θ∗); y∗k = 0 otherwise. (29)

Since λ∗ ≥ 0, the clients with smaller πk may have q∗k = 0.

E. Convexity of ϵopt + ϵbias

In Appendix D, we proved that ϵopt(q) is convex. To prove
that ϵbias(q) is also convex, we need to study the convexity of
χ2
α∥p =

∑N

k=1
(fk ◦ gk)(q), where fk(pk) = (pk − αk)

2/pk,
and gk(q) = (πkqk)/

∑N

h=1
πhqh. We observe that fk(pk)

is convex, and gk(q) is a particular case of linear-fractional
function [38]. By direct inspection, it can be proved that
(fk◦gk)(q) is convex in dom(fk◦gk) = {q : ∥q∥1 = Q > 0}.
F. Synthetic dataset

Our synthetic datasets has been generated as follows:

1) For client k ∈ K, sample group identity ik from a
Bernoulli distribution of parameter 1/2;

2) Sample model parameters w∗ ∼ N (0, Id) from the d-
dimensional normal distribution;

3) For client k ∈ K and sample index j ∈ {1, . . . , 150},
sample clients input data x

(j)
k ∼ N (0, Id) from the d-

dimensional normal distribution;
4) For client k ∈ K such that ik = 0 and sample index j ∈
{1, . . . , 150}, sample the true labels y(j)k from a Bernoulli
distribution with parameter equal to sigmoid(⟨w∗,x

(j)
k ⟩);

5) For client k ∈ K such that ik = 1 and sample
index j ∈ {1, . . . , 150}, sample the true labels y

(j)
k

from a Bernoulli distribution with parameter equal to
0.8·sigmoid(⟨w∗,x

(j)
k ⟩)+0.2·(1−sigmoid(⟨w∗,x

(j)
k ⟩)).
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[12] C. Zhu, Z. Xu, M. Chen, J. Konečnỳ, A. Hard, and T. Goldstein, “Diurnal
or Nocturnal? Federated Learning from Periodically Shifting Distribu-
tions,” in NeurIPS 2021 Workshop on Distribution Shifts: Connecting
Methods and Applications, 2021.

[13] T. T. Doan, “Local stochastic approximation: A unified view of federated
learning and distributed multi-task reinforcement learning algorithms,”
arXiv preprint arXiv:2006.13460, 2020.

[14] T. T. Doan, L. M. Nguyen, N. H. Pham, and J. Romberg, “Conver-
gence rates of accelerated Markov gradient descent with applications in
reinforcement learning,” arXiv preprint arXiv:2002.02873, 2020.

[15] T. Sun, Y. Sun, and W. Yin, “On Markov chain gradient descent,”
Advances in neural information processing systems, vol. 31, 2018.

[16] M. McCloskey and N. J. Cohen, “Catastrophic Interference in Connec-
tionist Networks: The Sequential Learning Problem,” in Psychology of
Learning and Motivation, G. H. Bower, Ed. Academic Press, 1989,
vol. 24, pp. 109–165.

[17] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska
et al., “Overcoming catastrophic forgetting in neural networks,” Pro-
ceedings of the National Academy of Sciences, vol. 114, no. 13, pp.
3521–3526, 2017.

[18] M. Tang, X. Ning, Y. Wang, J. Sun, Y. Wang, H. Li, and Y. Chen,
“FedCor: Correlation-Based Active Client Selection Strategy for Het-
erogeneous Federated Learning,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022.

[19] M. Ribero, H. Vikalo, and G. De Veciana, “Federated Learning Un-
der Intermittent Client Availability and Time-Varying Communication
Constraints,” arXiv preprint arXiv:2205.06730, 2022.

[20] L. Tan, X. Zhang, Y. Zhou, X. Che, M. Hu, X. Chen, and D. Wu,
“AdaFed: Optimizing Participation-Aware Federated Learning with
Adaptive Aggregation Weights,” IEEE Transactions on Network Science
and Engineering, 2022.

[21] A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-learning
algorithms,” arXiv preprint arXiv:1803.02999, 2018.

[22] S. J. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečný,
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