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Abstract
We propose a gradient-enhanced algorithm for high-dimensional function approximation.

The algorithm proceeds in two steps: firstly, we reduce the input dimension by learning
the relevant input features from gradient evaluations, and secondly, we regress the function
output against the pre-learned features. To ensure theoretical guarantees, we construct the
feature map as the first components of a diffeomorphism, which we learn by minimizing an
error bound obtained using Poincaré Inequality applied either in the input space or in the
feature space. This leads to two different strategies, which we compare both theoretically
and numerically and relate to existing methods in the literature. In addition, we propose
a dimension augmentation trick to increase the approximation power of feature detection.
A generalization to vector-valued functions demonstrate that our methodology directly
applies to learning autoencoders. Here, we approximate the identity function over a given
dataset by a composition of feature map (encoder) with the regression function (decoder).
In practice, we construct the diffeomorphism using coupling flows, a particular class of
invertible neural networks. Numerical experiments on various high-dimensional functions
show that the proposed algorithm outperforms state-of-the-art competitors, especially with
small datasets.
Keywords: high-dimensional function approximation, nonlinear feature learning, aug-
mented space, Poincaré Inequality, invertible neural networks.

1 Introduction

Modern computational models for scientific and engineering applications typically involve a
large number of input parameters and are expensive-to-evaluate both in time and resources.
Replacing the model with an accurate and fast-to-evaluate surrogate (or approximation)
offers a viable workaround in many applications. Approximating such high-dimensional
functions with classical approximation tools such as polynomials, wavelets or neural networks
is, however, a difficult task. This is even aggravated in the small sample regime where one
only has access to a little number of model evaluations. One way to address this challenge
is to reduce the input dimension beforehand. This consists in approximating the model as
the composition of two functions: a feature map which extracts the relevant features of the

1



Diffeomorphism-based feature learning

input variables, and a profile function which regresses the model output on the features.
Manifold learning methods (Donoho and Grimes, 2003; Tenenbaum et al., 2000; Schölkopf
et al., 2005), to cite just a few, aim to detect a low-dimensional nonlinear manifold on which
input parameters are concentrated. These methods do not account for the model to be
approximated and hence are unsupervised dimension reduction methods.

This paper is concerned with supervised dimension reduction techniques where the feature
map is built using gradients of the model. Those gradients can be typically computed via
automatic differentiation (Griewank et al., 1989; Baydin et al., 2018) or via adjoint-state
method (Plessix, 2006) at a cost which is comparable to the cost of evaluating the model itself.
Linear dimension reduction using model gradients has been firstly proposed in (Samarov,
1993; Hristache et al., 2001a,b). Later on, the so-called Active Subspace (AS) method
(Constantine et al., 2014; Zahm et al., 2020; Parente et al., 2020) proposed a dimension
reduction method based on the minimization of an error bound of the mean squared error
obtained via Poincaré inequalities. In the context of Bayesian inverse problems, similar
methodologies have been proposed in (Cui et al., 2014; Zahm et al., 2022; Baptista et al.,
2022; Li et al., 2023) in order to detect the parameter subspace which is the most informed
by the data. Several extensions to nonlinear feature map have been recently proposed,
including (Zhang et al., 2019a; Teng et al., 2021; Gruber et al., 2021; Bigoni et al., 2022;
Romor et al., 2022). The common denominator of all those techniques is to build the feature
map by aligning its Jacobian with the gradients of the model. Notably, (Bigoni et al., 2022)
conducts a thorough analysis of this nonlinear dimension reduction problem using Poincaré
Inequalities. This analysis, however, requires the feature map to have path-connected level
sets, a condition which is hard to ensure in practice.

In this paper, we further explore different ways of learning nonlinear features using the
model gradients. Specifically, we build the nonlinear features as the first components of a
diffeomorphism defined on the input space, a solution originally considered in (Zhang et al.,
2019a). Based on this, we pursue the analysis of (Bigoni et al., 2022) by applying Poincaré
inequalities on either input space or feature space, i.e. the range of the diffeomorphism. That
way, we obtain two different error bounds which we minimize in order to train the feature
map. Let us note that such a strategy of optimizing an error bound is a well-tried strategy
in many machine learning problems, see for instance the use of the evidence-based lower
bound for optimizing variational auto-encoders (Kingma and Welling, 2013; Rezende et al.,
2014). By considering such diffeomorphism-based feature maps, however, we drastically
restrict the approximation class for the features. To circumvent this issue, we propose
a dimension augmentation strategy to increase the expressiveness of the features while
preserving the theoretical foundation of the method. The basic idea, originally proposed
for neural ODEs (Dupont et al., 2019; Zhang et al., 2019b), is to introduce a new arbitrary
random variable which is concatenated with the input random vector. Using this dimension
augmentation trick results in a modified approximation class for the model, where the
feature map is no longer a deterministic function but becomes a stochastic function. We
note that another dimension augmentation trick has been used in (Romor et al., 2022) for
gradient-based nonlinear feature learning, where the input variable is first embedded into
an infinite Hilbert space in a non-bijective way before applying linear dimension reduction.
Finally, we show that our method readily extends to vector-valued functions. In particular,
by approximating the identity function over a given set of data, our methodology permits to
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construct autoencoders (Nguyen et al., 2019) where the feature map is the encoder and the
profile function is the decoder.

In practice, we construct the diffeomorphism, and consequently the feature map, using
coupling flow based neural networks. This class of invertible networks is known for achieving
favorable approximation properties (Teshima et al., 2020; Ishikawa et al., 2022; Lyu et al.,
2022). Numerical comparisons with existing methods from the literature in (Bigoni et al.,
2022; Zhang et al., 2019a; Teng et al., 2021) are presented. Our numerical demonstrations
highlight the efficiency of our methodology in achieving accurate approximations across vari-
ous high-dimensional test cases. Notably, in the small sample regime, employing dimension
augmentation outperforms existing state-of-the-art methods.

The rest of the paper is organized as follow. In Section 2 we introduce the approximation
problem and the proposed methodology. Section 3 explains how to use Poincaré Inequalities
in order to derive error bounds which are then used to train the feature map. In Section
4 we introduce the dimension augmentation strategy. Section 5 generalizes the method
to vector-valued functions and to autoencoders. In Section 6 we explain how to build the
feature map using coupling flow networks. Finally, in Section 7, we compare numerically
the proposed strategy with the existing nonlinear dimension reduction methods from the
literature on several high dimensional functions, including a parametrized partial differential
equation.

2 Problem statement and methodology

Let u : X → R be a function defined on the open set X ⊆ Rd with d� 1. Let (Ω,A,P) be a
probability space and X : (Ω,A) → (Rd,B(Rd)) a measurable function, with B(Rd) denoting
the Borel σ-field on Rd. We assume that X is absolutely continuous with Lebesgue on Rd

and that its probability density function π is supported on X . Our goal is to build a feature
map g : X → Rm and a profile function f : Rm → R with latent dimension m ≤ d such that

E[(u(X)− f ◦ g(X))2] ≤ ε, (1)

for some prescribed tolerance ε, E[·] denoting the expectation. Without additional as-
sumptions, Problem (1) admits two trivial solutions which are {g = id; f = u;m = d}
and {g = u; f = id;m = 1}, where id denotes the identity function. These two solutions
correspond to approximating u by g or by f directly without leveraging dimension reduction.
Thus, Problem (1) makes sense only if we restrict g (or f) to a certain approximation class.
In this paper, we propose to seek g in a set Gm defined as

Gm =

{
g : X → Rm

x 7→ (ϕ1(x), . . . , ϕm(x))

∣∣∣∣ϕ ∈ D
}
, (2)

where D is a set of tractable C1-diffeomorphisms from X to Rd, that is

D ⊆
{
ϕ ∈ C1(X ;Rd) invertible with ϕ−1 ∈ C1(Rd;X )

}
.

Intuitively, the idea is to bend the input space X into a feature space ϕ(X ) = Rd where the
relevant variables are the first m components of ϕ(x) = (ϕ1(x), . . . , ϕd(x)). We demonstrate
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in Section 3 that using such diffeomorphism-based feature maps g ∈ Gm ensures theoretical
guarantees on the approximation error (1).

A naive strategy to solve (1) is to parametrize f and g, e.g., with neural networks
and to train f and g jointly by minimizing the L2

π error E[(u(X) − f ◦ g(X))2] estimated
on a training set. If gradients of u are available, one can instead minimize the H1

π error
E[(u(X)−f ◦g(X))2]+E[‖∇u(X)−∇(f ◦g)(X)‖2] estimated on a training set. The optimal
latent dimension m is selected as the one which yields the smallest L2

π error. In this paper
we propose an alternative strategy which consists in two steps. In the first step, we train
g ∈ Gm by minimizing an upper bound of the following L2

π error

E(g) = min
f :Rm→R

E[(u(X)− f ◦ g(X))2], (3)

where the minimum is taken over the set of measurable functions without restrincting f to
any approximation class. The quantity E(g) is called the reconstruction error. As detailed
later in Section 3, this bound is derived using Poincaré inequalities and, in practice, it is
estimated on a training set using gradient evaluations of u. In the second step, once g is built,
we construct f , e.g., as a neural network by solving a standard regression problem of u(X)
against g(X), that is, we minimize the L2

π error (or the H1
π error) estimated on a training

set. While minimizing an error bound for E(g) can yield, in principle, sub-optimal solutions
compared to minimizing E(g) directly, we demonstrate that this strategy is computationally
favorable. The main reason is that, while E(g) is not readily computable in practice (it
requires minimizing over f), its upper bound turns out to be simple to estimate (it requires
only evaluating ∇u).

By imposing g ∈ Gm, we drastically restrict the approximation class for the feature map.
In Section 4 we propose a dimension augmentation strategy to increase the expressiveness of
the features while preserving the theoretical foundation of the method. The basic idea is to
introduce a new arbitrary random variable Ξ taking values in Ξ ⊆ Rk and to consider the
problem

E[(u(X)− f ◦ g(X,Ξ))2] ≤ ε, (4)

instead of (1). By considering g : X × Ξ → Rm to be the m first components of a
diffeomorphism ϕ from X × Ξ to Rd+m, the above methodology directly applies. By doing
this, we are no longer approximating u(x) by a composition f ◦ g(x) but rather by a random
variable f ◦ g(x,Ξ). Note that allowing the latent variable g(x,Ξ) to be random is at the
root of the variational autoencorders (Kingma et al., 2019). Eventually, a deterministic
approximation to u(x) can be obtained by taking the expectation over Ξ as follow

ũ(x) = E[f(g(x,Ξ))], (5)

and, by (4), the corresponding L2
π error can still be bounded as E[(u(X) − ũ(X)))2] ≤ ε.

To emphasis the benefit of such dimension augmentation strategy, let us mention that for
any h ∈ C1(X ;Rm), the feature map g(x,Ξ) = h(x) + Ξ is the m first components of a
diffeomorphism ϕ : X × Ξ → Rd+k with k = m, see Equation (24) below. Thus, simply by
adding a perturbation Ξ to the feature map, we replace the restrictive constraint g ∈ Gm in
u(x) ≈ f ◦ g(x) with the mild contraint h ∈ C1(X ;Rm) in u(x) ≈ E[f(h(x) +Ξ)].

We end this section with an numerical illustration on a toy model which demonstrates the
benefit of the proposed majorize-then-minimize strategy. For this experiment, we consider
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u(X) = cos(‖X‖2) for X ∼ U([0, 1]d) with d = 20 where ‖ · ‖ is the euclidean norm of Rd.
We observe on Figure 1 that the naive approach of jointly learning f ◦ g in L2

π or H1
π yields

poor performance compared to our proposed two-step strategy, both when g ∈ Gm or g /∈ Gm.
Additionally, the strategy of dimension augmentation contributes to further enhancing the
effectiveness of our approach.

1 2 3 4 5 6 7

10−2

10−1

100

Latent dimension m

E[
(u
(X

)
−

ũ
(X

))
2
]

minf,g L2
π, g ∈ Gm

minf,g L2
π, g /∈ Gm

minf,g H1
π, g ∈ Gm

minf,g H1
π, g /∈ Gm

ming J IS
m (g),minf L2(π)

ming J IS
m (g) with d+ 2,minf L2

π

Figure 1: Toy benchmark u(X) = cos(‖X‖2) for X ∼ U([0, 1]d) with d = 20. L2
π error as a

function of m of the approximation ũ = f ◦ g or, when dimension augmentation is used,
of ũ as in (5). Both f and g are trained as neural networks on a fixed training set of size
100 and the errors are estimated on a test set of size 104. Red and blue curves: we train f
and g jointly by minimizing the L2

π error (red) or the H1
π error (blue), with either g /∈ Gm

(dashed) or g ∈ Gm (solid). Black curves: the proposed two-step strategy where we first
train g ∈ Gm by minimizing the bound J IS

m (g) as in (9) with (squares) or without (solid)
dimension augmentation, and then we minimize the L2

π error over f . The function f is a fully
connected neural network with 3 hidden layers of 50 neurons using the sigmoid activation
function. The feature map g ∈ Gm is a block affine coupling flow with 4 layers, see Section 7.
For g /∈ Gm, the feature map is a fully connected neural network with 3 hidden layers of 26
neurons for an overall number of parameters which is comparable to the above mentioned
g ∈ Gm for fair comparison.

3 Upper bound of the approximation error using Poincaré Inequalities

In this section we derive upper bounds of the approximation error E(g). For any g ∈ Gm,
let us notice that the function f∗g which realizes the minimium in (3) is the conditional
expectation f∗g (zm) = E[u(X)|g(X) = zm]. Denoting by ϕ ∈ D the diffeomorphism such
that g(x) = (ϕ1(x), . . . , ϕm(x)), the change of variable z = ϕ(x) permits to write

E(g) = E[(u(X)− f∗g ◦ g(X))2],

with f∗g (zm) =

∫
Rd−m

u ◦ ϕ−1(zm, z⊥)π(z⊥|zm)dz⊥, (6)

where π(z⊥|zm) is the density of the conditional random vector Z⊥|Zm = zm with (Zm,Z⊥) =
ϕ(X). The notation z = (zm, z⊥) refers to the coordinate splitting of the vector z ∈ Rd into
its first m components zm ∈ Rm and its last d−m components z⊥ ∈ Rd−m. Now, if we assume
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that ϕ is such that the function z⊥ 7→ u ◦ ϕ−1(zm, z⊥) is constant for all zm, then by (6) we
have f∗(zm) = u ◦ϕ−1(zm, z⊥) for all z⊥. In particular with z⊥ = (ϕm+1(x), . . . , ϕd(x)) and
zm = g(x), we deduce that

f∗g (g(x)) = u ◦ ϕ−1(ϕ1(x), . . . , ϕd(x)) = u(x), (7)

for all x ∈ X and therefore E(g) = 0. Next, we show how to build ϕ (and therefore g) in a
way that the function z⊥ 7→ u ◦ ϕ−1(zm, z⊥) is as constant as possible. Our strategy is to
minimize a certain norm of its gradient which we prove to be an upper bound for E(g). The
following Poincaré Inequality will play a central role in our analysis.

Definition 1 (Poincaré Inequality on submanifold of Rd) For Y a continuous ran-
dom vector taking values in a Riemannian submanifold M ⊆ Rd equipped with the Euclidean
metric of Rd, the Poincaré constant C(Y) ≥ 0 is defined as the smallest constant such that

E[(h(Y)− E[h(Y)])2] ≤ C(Y)E[‖∇h(Y)‖2] (8)

holds for any continuously differentiable function h : M → R. Here, ‖ · ‖ denotes the
Euclidean norm of Rd and ∇h(y) ∈ Ty(M) is the gradient of h at point y ∈ M, where
Ty(M) ⊆ Rd is the tangent space of M at y. We say that Y satisfies Poincaré Inequality
(8) if C(Y) < +∞.

Finding sufficient conditions on Y which ensure C(Y) < +∞ has been an active research
field in functional analysis over the past decades. We refer to (Bakry et al., 2014, Chapter
4) for a discussion on the topic. In the next subsections, we propose two different upper
bounds for E(g) which we derive using Poincaré Inequality (8) applied either on input space
X or on feature space ϕ(X ), see Table 1 below for more details.

Input space (IS) Feature space (FS)
Y = (X|g(X) = zm) Y = (ϕ(X)|g(X) = zm)
h = u|M h = u ◦ (ϕ−1)|M

M = {x ∈ X s.t. g(x) = zm} M = {(zm, z⊥) ∈ Rd : z⊥ ∈ Rd−m}
TY(M) = ker(∇g(X)) TY(M) = {(0, z⊥) ∈ Rd : z⊥ ∈ Rd−m}
∇h(Y) = ΠTY(M)∇u(Y) ∇h(Y) = ΠTY(M)∇(u ◦ ϕ−1)(Y)

= Πker(∇g(X))∇u(X) = ∇⊥(u ◦ ϕ−1)(Y)

Table 1: Poincaré Inequality (8) applied either in input space or in feature space. Here, ΠV

denotes the orthogonal projection on a subspace V ⊆ Rd and ∇⊥ = (∂m+1, . . . , ∂d).

3.1 Poincaré Inequality in input space

As a warm-up exercice, assume there exists g ∈ C1(X ;Rm) and f ∈ C1(Rm;R) such that
u = f ◦ g. We denote by ∇g(x) ∈ Rm×d the Jacobian of g at x given by

∇g(x) =

∂1g1(x) . . . ∂dg1(x)
... . . . ...

∂1gm(x) . . . ∂dgm(x)

 .
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By the chain rule, we have ∇u(x) = ∇g(x)>∇f(g(x)) and thus ∇u(x) ∈ range(∇g(x)>) for
all x ∈ Rd. The idea proposed in (Bigoni et al., 2022) is to enforce the Jacobian of g to be
aligned with the gradient of u by minimizing

J IS
m (g) = E[‖∇u(X)−Πrange(∇g(X)>)∇u(X)‖2], (9)

where Πrange(∇g(X)>) is the orthogonal projection onto range(∇g(X)>). For more insight on
this cost function, let us denote by M(X) = {x ∈ X : g(x) = g(X)} the (random) level set
of g associated with the level g(X) and let u|M(X) be the restriction of u to M(X). Because
the tangent space of M(X) at X ∈ M(X) is the kernel of ∇g(X), see e.g. (Absil et al.,
2008, Section 3.5.7), the gradient of u|M(X) writes

∇u|M(X)(X) = Πker(∇g(X))∇u(X)

= ∇u(X)−Πrange(∇g(X)>)∇u(X). (10)

Therefore, J IS
m (g) = E[‖∇u|M(X)(X)‖2] so that minimizing J IS

m (g) boils down to finding g
which makes u as constant as possible on the level sets M(X) of g. The next proposition
shows that the reconstruction error E(g) can be bounded with J IS

m (g). The proof, given in
Appendix A, is inspired from (Bigoni et al., 2022) which shows similar results for g /∈ Gm.

Proposition 2 Let u ∈ C1(X ;R) and g ∈ Gm. Then, J IS
m (g) = 0 if and only if there exists

f ∈ C1(Rm;R) such that u = f ◦ g. Moreover, if

CIS(X|Gm) := sup
g∈Gm

sup
zm∈Rm

C(X|g(X) = zm) < +∞,

then the reconstruction error E(g) as in (3) satisfies

E(g) ≤ CIS(X|Gm)J IS
m (g). (11)

The above proposition suggests to build the feature map g as the solution to

min
g∈Gm

J IS
m (g). (12)

Such majorize-then-minimize strategy can be suboptimal if the bound (11) is loose, which can
be the case if the constant CIS(X|Gm) is large. Even though our numerical experiments reveal
the good performances of this strategy, controlling CIS(X|Gm) remains an open question
which is left for future work. In the next section we derive another bound on E(g) which
offers a viable path for controlling the associated Poincaré constant.

Remark 3 The orthogonal projector Πrange(∇g(X)>) writes

Πrange(∇g(X)>) = ∇g(X)>
(
∇g(X)∇g(X)>

)−1
∇g(X).

Thus, using Pythagorean Theorem, the loss function J IS
m (g) writes

J IS
m (g) = E[‖∇u(X)‖2]− E[‖Πrange(∇g(X)>)∇u(X)‖2]

= E[‖∇u(X)‖2]− E
[
∇u(X)>∇g(X)>

(
∇g(X)∇g(X)>

)−1
∇g(X)∇u(X)

]
. (13)

The fact that g ∈ Gm ensure that ∇g(X) is almost surely full-rank, so that ∇g(X)∇g(X)>

is almost surely invertible.
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3.2 Poincaré Inequality in feature space

As pointed out above in Equation (7), see also the proof of Proposition 2, it is sufficient
that the function z⊥ 7→ (u ◦ ϕ−1)(zm, z⊥) is constant in order to have u = f ◦ g for some
f : Rd → R. In this section, we propose to construct g by minimizing the L2

π norm of the
gradient of that function. With the change of variable (zm, z⊥) = ϕ(x), this gradient writes

∇⊥(u ◦ ϕ−1)(zm, z⊥) = ∇⊥ϕ
−1(zm, z⊥)

>∇u(ϕ−1(zm, z⊥))

= (∇ϕ−1(ϕ(x))>∇u(x))⊥
= (∇ϕ(x)−>∇u(x))⊥, (14)

where (v)⊥ = (vm+1, . . . , vd) ∈ Rd−m denotes the d−m last components of a vector v ∈ Rd.
Thus we introduce

J FS
m (ϕ) = E[‖(∇ϕ(X)−>∇u(X))⊥‖2] (15)

as a cost function to train ϕ ∈ D and therefore g = (ϕ1, . . . , ϕm) ∈ Gm. The next proposition
bounds E(g) with J FS

m (ϕ). The proof is given in Appendix B

Proposition 4 Let u ∈ C1(X ,R), ϕ ∈ D and m ≤ d. Then, J FS
m (ϕ) = 0 if and only if

there exists f ∈ C1(Rm,R) such that u = f ◦ g, where g = (ϕ1, . . . , ϕm) ∈ Gm. Moreover, if
CFS
m (X|D) := sup

ϕ∈D
sup

zm∈Rm
C(ϕ(X)|g(X) = zm) < +∞,

then the reconstruction error E(g) as in (3) satisfies
E(g) ≤ CFS

m (X|D)J FS
m (ϕ). (16)

Inequality (16) suggests to build g = (ϕ1, . . . , ϕm) by minimizing J FS
m (ϕ) over ϕ ∈ D.

However, unlike Problem (12), this variational problems might be ill-posed without imposing
further constraints on ϕ. Indeed, notice that

J FS
m (αϕ) =

1

α2
J FS
m (ϕ), (17)

holds for any ϕ ∈ D and α > 0 so that, if D is a cone (that is αϕ ∈ D for ϕ ∈ D and α > 0),
then α→ ∞ yields the trivial solution J FS

m (αϕ) → 0 for any ϕ ∈ D. In fact, one can show
that CFS

m (X|D) = +∞ whenever D is a cone, which makes the inequality (16) meaningless.
To avoid this problematic situation, one option is to restrict D to contain only normalizing
flows for X such that Z = ϕ(X) ∼ N (0, Id), where N (0, Id) denotes the standard normal
distribution on Rd. This constraint is also convenient as it yields C(ϕ(X)|g(X) = zm) = 1,
see e.g (Bakry and Émery, 2006). Such a constraint is difficult to impose in practice. To
address this issue we propose to penalize J FS

m (ϕ) with the Kullback-Leibler divergence
DKL(ϕ(X)||Z) from Z ∼ N (0, Id) to ϕ(X). Denoting by γ(z) = (2π)−d/2 exp(−‖z‖2/2) the
density of Z and by ϕ]γ(x) = γ(ϕ(x))| det∇ϕ(x)| the density of ϕ−1(Z), the Kullback-Leibler
divergence reads

DKL(ϕ(X)||Z) = DKL(X||ϕ−1(Z))

=

∫
log

(
π

ϕ]γ

)
dπ

= Ω+

∫
‖ϕ‖2

2
− log |det∇ϕ|dπ,

8
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where Ω =
∫
log(π)dπ + d log(2π)/2 is a constant which is independent on ϕ. Finally we

propose to build g = (ϕ1, . . . , ϕm) as the solution to:

min
ϕ∈D

J FS
m,λ(ϕ) := E[‖(∇ϕ(X)−>∇u(X))⊥‖2] + λE

[
‖ϕ(X)‖2

2
− log | det∇ϕ(X)|

]
, (18)

where λ ≥ 0 is a penalization parameter to be tuned. While this penalization strategy do
not permit to control the Poincaré constant CFS

m (X|D), we show in Section 7 that it yields
good performances on our numerical experiments.

Remark 5 In (Romor et al., 2022), a non-bijective map ϕ : X → H is considered where H
is an infinite-dimensional Hilbert space or a discretization of it H = RD, D � d. Because
∇ϕ(X) is no longer invertible, the authors replace the inverse with the Moore–Penrose
pseudoinverse in the loss function J FS

m (ϕ). This map ϕ is parametrized as ϕ(x) = R ◦ ψ(x),
where ψ : X → H is a given function (typically a feature map of a Reproducing Kernel
Hilbert Space) and R : H → H is a rotation in H to be determined by minimizing J FS

m (ϕ).
Further investigation is required to gain a clearer understanding of whether this approach
allows for bounding the reconstruction error E(g).

3.3 Connection between J FS
m , J IS

m and other methods

The next proposition shows that J FS
m (ϕ) and J IS

m (g), albeit being derived with two different
approaches, are closely related to each others. The proof is given in Appendix C.

Proposition 6 Let ϕ ∈ D and g = (ϕ1, . . . , ϕm). For M(X) = ∇ϕ(X)−1∇ϕ(X)−>, let
‖ · ‖M(X) be the norm on Rd associated with the scalar product 〈v, w〉M(X) = v>M(X)w.
Then the cost function J FS

m (ϕ) defined in (15) can be written as

J FS
m (ϕ) = E

[∥∥∥∇u(X)−Π
M(X)

range(∇g(X)>)
∇u(X)

∥∥∥2
M(X)

]
, (19)

where Π
M(X)

range(∇g(X)>)
denotes the 〈·, ·〉M(X)-orthogonal projector on range(∇g(X)>). Fur-

thermore, we have

Lip(ϕ)−2J IS
m (g) ≤ J FS

m (ϕ) ≤ Lip(ϕ−1)2 J IS
m (g), (20)

where Lip(f) = sup{‖f(x)−f(y)‖
‖x−y‖ : x 6= y} denotes the Lipschitz constant of a function f .

It is also worth to mention that J FS
m (ϕ) is similar to the cost function used in (Zhang

et al., 2019a) for the Nonlinear Level-set Learning (NLL). In that paper, the columns of
∇ϕ(X)−1 = [J1(X), . . . , Jd(X)] are normalized in L2 norm which permits to remove the
invariance (17). Specifically, they use the cost function

J NLL
m (ϕ) = E

[
d∑

i=m+1

(
Ji(X)>∇u(X)

‖Ji(X)‖

)2
]
. (21)

According to (Teng et al., 2021), this method fails when u presents a critical point. To address
this issue, the method DRiLLS (Teng et al., 2021) removes the invertibility constraint on ϕ

9
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and penalizes the loss J NLL
m (ϕ) with a term which makes ϕ pseudo-invertible. Both NLL

and DRiLLS require a large amount of training samples to accurately reduce the dimension.
The following proposition shows that this cost function admits a similarly expression as
J FS
m (ϕ) in (19) but with a slightly different norm for the gradient. The proof is given in

Appendix D.

Proposition 7 Let ϕ ∈ D and g = (ϕ1, . . . , ϕm). Then the cost function J NLL
m (ϕ) defined

in (15) can be written as

J NLL
m (ϕ) = E

[∥∥∥∇u(X)−Π
D(X)

range(∇g(X)>)
∇u(X)

∥∥∥2
D(X)

]
, (22)

where, for Ji(X) being the i-th column of ∇ϕ(X)−1 = [J1(X), . . . , Jd(X)], the matrix D(X)
is defined as

D(X) = ∇ϕ(X)−1


1

‖J1(X)‖2 0

. . .
0 1

‖Jd(X)‖2

∇ϕ(X)−> =
d∑

i=1

Ji(X)Ji(X)>

‖Ji(X)‖−2
.

Comparing the expressions (22), (19) and (9), we emphasis that the only difference between
IF, FS and NLL is the norm used to measure the error between the gradient ∇u(X) and its
best approximation in range(∇g(X)>) with respect to this norm.

We end this section by noticing that, in (Zhang et al., 2019a), a penalization term is
employed in order to keep ϕ close to an isometry. The proposed penalized cost function is

J NLL
m,λ (ϕ) = J NLL

m (ϕ) + λE
[
(|det∇ϕ(X)−1| − 1)2

]
,

where the last term aims at keeping |det∇ϕ(X)−1| close to one in the L2
π sense. A similar

penalization is used in (Teng et al., 2021).

Remark 8 By letting ϕ(x) = W>x be a linear isometry for some unitary matrix W =
[Wm,W⊥] ∈ Rd×d with W>W = Id, the feature map g(x) =W>

mx is linear and

J IS
m (g) = J FS

m (ϕ) = J NLL
m (ϕ) = E[‖∇u(X)‖2]− trace

(
W>

mHWm

)
,

where H = E[∇u(X)∇u(X)>]. Thus, minimizing J IS
m ,J FS

m or J NLL
m over W yields the

feature map g(x) = W>
mx where Wm contains the m-first eigenvectors of matrix H. This

corresponds to the Active Subspace method (Constantine et al., 2014; Zahm et al., 2020).

4 Dimension augmentation to increase the expressiveness of the features

In this section we propose a dimension augmentation strategy which aims at increasing the
approximation power of feature map g and, at the same time, preserving the theoretical
foundation of the majorize then minimize strategy (see Section 3). While considering
features g ∈ Gm such that g(x) = (ϕ1(x), . . . , ϕm(x)) for some diffeomorphism ϕ : X → Rd is
convenient theoretically (cf Propositions 2 and 4), it is rater restrictive in practice because not
all functions g : X → Rm are the first components of a diffeomorphism ϕ : X → Rd. However,

10
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for any g : X → Rm, there always exists a diffeomorphism ϕ : X ×Rm → Rm ×X such that
g(x) = (ϕ1(x, 0), . . . , ϕm(x, 0)), see Equation (24) below. In other words, augmenting the
dimension permits to facilitate the construction of diffeomorphisms, as already noticed for
neural ODEs (Dupont et al., 2019; Zhang et al., 2019b) or for normalizing flows in (Lyu
et al., 2022; Huang et al., 2020).

The basic idea of dimension augmentation is to apply the methodology of the previous
section to the dimension-augmented function u : X × Ξ → R defined by

u(X,Ξ) = u(X),

where Ξ ⊆ Rk for some k ≥ 1 and where Ξ is a random vector independent on X with
supp(Ξ) = Ξ. In our experiments, we chose Ξ ∼ N (0, Im), independent of X. For m ≤ d,
we consider the following set of feature maps

Gk
m =

{
g : X × Ξ → Rm

(x, ξ) 7→ (ϕ1(x, ξ), . . . , ϕm(x, ξ))

∣∣∣∣ϕ ∈ Dk

}
Dk =

{
ϕ ∈ C1(X × Ξ;Rd+k) invertible with ϕ−1 ∈ C1(Rd+k;X × Ξ)

}
.

For g ∈ Gk
m, a straightforward application of Propositions 2 and 4 permits to bound the

reconstruction error

Ek(g) = min
f :Rm→R

E[(u(X,Ξ)− f ◦ g(X,Ξ))2], (23)

by Ek(g) ≤ min{CIS(X,Ξ|Gk
m)J IS

k,m(g) ; CFS
m (X,Ξ|Dk)J FS

k,m(ϕ)}, where

J IS
k,m(g) = E

[∥∥∥∥(∇u(X)
0k

)
−Πrange(∇g(X,Ξ)>)

(
∇u(X)

0k

)∥∥∥∥2
]
,

J FS
k,m(ϕ) = E

[∥∥∥∥(∇ϕ(X,Ξ)−>
(
∇u(X)

0k

))
⊥

∥∥∥∥2
]
,

with the notation 0k = (0, . . . , 0) ∈ Rk and (v)⊥ = (vm+1, . . . , vd+k) for v ∈ Rd+k. As
before, the function f∗g which realizes the minimium in (23) is the conditional expectation
f(zm) = E[u(X)|g(X,Ξ) = zm]. However, by augmenting the dimension, we are no longer
approximating u(x) by a composition f∗g ◦ g(x) as in the previous section, but rather by a
random variable f∗g ◦ g(x,Ξ). By taking the expectation over Ξ, we obtain a deterministic
approximation to u(x) of the form

ũ(x) = E[f∗g ◦ g(x,Ξ)].

This structured approximation still leverages dimension reduction via the feature map
g : X ×Ξ → Rm. Because X and Ξ are independent, the reconstruction error decomposes as

Ek(g) = E[(u(X)− ũ(X)) + (ũ(X)− f∗g ◦ g(X,Ξ)))2]

= E[(u(X)− ũ(X))2] + E[(ũ(X)− f∗g ◦ g(X,Ξ))2]

= E[(u(X)− ũ(X))2] + E[Var(f∗g ◦ g(X,Ξ)|X)],

11
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so that controlling Ek(g) permits to bound both the error E[(u(X) − ũ(X))2] and the
expectation (over X) of the point-wise variance Var(f∗g ◦ g(x,Ξ)). As reported in Section
7, our numerical experiments show that the variance E[Var(f∗g ◦ g(X,Ξ)|X)] is negligible
compared to the error E[(u(X)− ũ(X))2]. In the Global Sensitivity Analysis literature, the
quantity E[Var(f∗g ◦ g(X,Ξ)|X)] is the unnormalized total Sobol index of f∗g ◦ g associated
to Ξ, see e.g (Da Veiga et al., 2021). Thus if this term is negligible, it means that f∗g ◦ g can
be approximated by fixing Ξ to a nominal value.

We end this section by particularizing the above analysis to a specific diffeomorphism
which reveals the advantage of the dimension augmentation. As already mentioned in Section
2, for any h ∈ C1(X ;Rm), the feature map g(x, ξ) = h(x) + ξ corresponds to the m first
components of the diffeomorphism ϕ : X × Rm → Rm ×X defined by

ϕ(x, ξ) =

(
h(x) + ξ

x

)
and ϕ−1(z1, z2) =

(
z2

z1 − h(z2)

)
. (24)

The next proposition shows how to identify h via the cost functions J IS
m,m and J FS

m,m. The
proof is given in Appendix E.

Proposition 9 For any h ∈ C1(X ;Rm) we let g(x, ξ) = h(x) + ξ and ϕ as in (24). Then
the loss function J FS

m,m(ϕ) = E[‖∇u(X)‖2] is a constant with respect to ϕ and therefore it
does not permit to learn h. In addition we have

J IS
m,m(g) = E[‖∇u(X)‖2]− E

[
u(X)>∇h(X)>(Im +∇h(X)∇h(X)>)−1∇h(X)∇u(X)

]
.

We note that the difference with the non-augmented loss function J IS
m (g) in (13) is the

presence of the identity matrix Im which, conveniently, ensures (Im +∇h(X)∇h(X)>) be
to invertible.

5 Generalization to vector-valued functions and to autoencoders

In this section we present a generalization of the results of Section 3 to vector-valued functions.
We then apply this generalization to unsupervised feature learning and autoencoders.

5.1 Case of vector-valued functions

We consider now a vector-valued function u : X → Rq with output dimension q ≥ 1. As
before, our goal is to build g : X → Rm and f : Rm → Rq such that

E[‖u(X)− f ◦ g(X)‖2] ≤ ε,

for some prescribed tolerance threshold ε, where ‖ · ‖ denotes the Euclidean norm on
Rq. Following the methodology proposed in (Zahm et al., 2020), we first decompose the
reconstruction error as follows

E(g) = min
f :Rm→Rq

E[‖u(X)− f ◦ g(X)‖2] =
q∑

i=1

min
fi:Rm→R

E[(ui(X)− fi ◦ g(X))2]

12
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and then we bound each term Ei(g) = minfi E[(ui(X)−fi◦g(X))2] using Poincaré Inequalities.
Let us emphasis that ∇u(x) ∈ Rq×d denotes now the Jacobian of u and is given as

∇u(x) =

∂1u1(x) . . . ∂du1(x)
... . . . ...

∂1uq(x) . . . ∂duq(x)

 .

Using these notations, we generalize the definitions of J IS
m (g), J FS

m (ϕ) and J FS
m,λ(ϕ) as follows

J IS
m (g) = E[‖∇u(X)> −Πrange(∇g(X)>)∇u(X)>‖2F ] (25)

J FS
m (ϕ) = E[‖U>

⊥∇ϕ(X)−>∇u(X)>‖2F ] (26)

J FS
m,λ(ϕ) = E[‖U>

⊥∇ϕ(X)−>∇u(X)>‖2F ] + λE
[
‖ϕ(X)‖2

2
− log |det∇ϕ(X)|

]
, (27)

where ‖·‖F denotes the Frobenius norm such that ‖A‖2F =
∑

ij A
2
ij and where U⊥ ∈ R(d+k)×d

is the matrix given by

U⊥ =

(
0k×d

Id

)
.

The following proposition, given without proof, generalizes Proposition 2 and Proposition 4
to the case of vector-valued functions.

Proposition 10 Let u ∈ C1(X ,Rq), ϕ ∈ D and g = (ϕ1, . . . , ϕm) for some m ≤ d. Then,
J IS
m (g) = 0 is equivalent to J FS

m (ϕ) = 0 and also to having u = f ◦g for some f ∈ C1(Rm,Rq).
In addition we have

E(g) ≤ CIS(X|Gm)J IS
m (g),

E(g) ≤ CFS
m (X|D)J FS

m (ϕ),

where CIS(X|Gm) and CFS
m (X|D) are as in Propositions 2 and 4.

5.2 Application to autoencoders

An interesting application of Proposition 10 is to consider u : X → Rd to be the identity
function such that

u(X) = X. (28)

This setup corresponds to the unsupervised learning task of estimating the random vector
X itself given realizations X(1),X(2), . . . of it. It is designed for scenarios in which X takes
values in an unknown m-dimensional manifold M ⊆ Rd which we want to learn. The
feature map g : X → Rm can be interpreted as an encoder which extracts the latent variable
Zm = g(X). The profile function f : Rm → Rd corresponds to the decoder such that f(Zm)
yields an approximation to X. Let us recall that, for any encoder g ∈ Gm, the optimal
decoder f∗g writes as the conditional expectation f∗g (zm) = E[X|g(X) = zm], or equivalently

f∗g (zm) = E[ϕ−1(zm,Z⊥)|Zm = zm],
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where (Zm,Z⊥) = ϕ(X). In other words, the optimal decoder admits a closed form expression
involving only ϕ. Since ∇u(X) = Id, the cost function J IS

m (g) defined in (25) becomes

J IS
m (g)

(28)
= E[‖Id −Πrange(∇g(X)>)‖2F ] = E[d− trace(Πrange(∇g(X)))] = d−m,

for any g ∈ Gm. Thus, J IS
m (g) is constant so that minimizing it does not permit to identify

any relevant feature. On the other hand, the penalized cost function J FS
m,λ(ϕ) becomes

J FS
m,λ(ϕ)

(28)
= E[‖U>

⊥∇ϕ(X)−>‖2F ] + λE
[
‖ϕ(X)‖2

2
− log | det∇ϕ(X)|

]
.

Let us mention that similar diffeomorphism-based autoencoders have been proposed in
(Nguyen et al., 2019). In that paper, the encoder is also parametrized as g = (ϕ1, . . . , ϕm), but
the decoder is the sub-optimal decoder defined as f(zm) = ϕ−1(zm, 0⊥), where 0⊥ = (0, . . . , 0)
is the zero vector in Rd−m. The diffeomorphism ϕ is trained by minimizing directly the
reconstruction error

Lm(ϕ) = E[‖X− ϕ−1(g(X), 0⊥)‖2]. (29)
Our numerical experiments show that this approach slightly outperforms our approach of
minimizing the bound J FS

m,λ(ϕ). The reason for this might be that, on the considered test
cases, the bound on the reconstruction error E(g) ≤ Lm(ϕ) is sharper compared to the
bound we derive E(g) ≤ CFS

m (X|D)J FS
m (ϕ).

6 Invertible neural networks

We describe here a class of invertible neural networks employed for parameterizing and
learning the diffeomorphism ϕ. Such neural networks find common applications in the field
of normalizing flows within the unsupervised learning literature, as evidenced by works
such as (Kobyzev et al., 2021; Dinh et al., 2015, 2017; Baptista et al., 2023), among others.
The fundamental concept involves the composition of multiple monotone triangular maps,
representing invertible functions where the k-th component depends solely on the first k
variables and is monotone in the k-th variable. Moreover, this type of approximation tool is
garnering increasing attention for estimating general diffeomorphisms, see (Teshima et al.,
2020; Ishikawa et al., 2022; Lyu et al., 2022). In this section, we assume that the input
domain X of u is

X = Rd,

and that input random vector X is fully supported on Rd, meaning supp(π) = Rd. That
way, we only consider diffeomorphisms ϕ from X = Rd to Rd.

Remark 11 In practice, if X ( Rd, we can always consider diffeomorphism ϕ0 that maps
Rd to X and replace u : X → R with u◦ϕ0 : Rd → R. In our numerical experiments for which
X = X1×. . .×Xd is a product of intervals Xi = [ai, bi], we define ϕ0(x) = (ϕ0

1(x1), . . . , ϕ
0
d(xd))

as a diagonal transformation such that ϕ0
i (Xi) ∼ N (0, 1) for all 1 ≤ i ≤ d. This transform

is obtained by letting
ϕ0
i (xi) = F−1

N (0,1) ◦ FXi(xi),

where FXi(t) =
∫ t
−∞ dπi is the cumulative distribution function (CDF) of Xi ∼ πi and

FN (0,1) the CDF of the standard normal distribution N (0, 1) on R.
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The term affine coupling flows refers to triangular functions whose k-th component is
affine in the k-th variable, see (Papamakarios et al., 2021, Section 3.1). The following block
affine coupling flows (BACF) are commonly encountered as they are easy to use and perform
well in many applications.

Definition 12 (BACF) Let d ≥ 2. For two functions s, t : Rbd/2c → Rd−bd/2c, the block
affine coupling flow (BACF) Ψs,t : Rd → Rd is defined by

Ψs,t(x) =

(
x≤bd/2c

x>bd/2c � exp(s(x≤bd/2c)) + t(x≤bd/2c)

)
, (30)

where � is the element-wise product and where exp(·) is applied element-wise.

Notice that any function Ψs,t as in (30) is invertible with

Ψ−1
s,t (z) =

(
z≤bd/2c

(z>bd/2c − t(z≤bd/2c))� exp(−s(z≤bd/2c))

)
,

for any z ∈ Rd, and the regularity of Ψs,t and Ψ−1
s,t is exactly the one of the functions s, t.

By composing multiple such functions, we obtain the following sets of diffeomorphisms.

Definition 13 (`-layered BACF) For d, ` ∈ N∗, we let

Dd,`
BACF =

{
(P ◦Ψs`,t`) ◦ . . . ◦ (P ◦Ψs1,t1)

∣∣∣ si, ti ∈ C1(Rb d
2
c;Rd−b d

2
c)
}

where P is the block-coordinate permutation defined by P (x) = (x>b d
2
c, x≤b d

2
c) for x ∈ Rd.

In our experiments, we parametrize the functions si and ti as shallow neural networks

si(x) =W 2
siσ(W

1
six+ bsi), ti(x) =W 2

tiσ(W
1
tix+ bti),

where σ(t) = (1 + exp(−t))−1 is the sigmoid function applied element-wise and where the
matrices W 1

si ,W
1
ti ∈ Rb d

2
c×b d

2
c and W 2

si ,W
2
ti ∈ Rb d

2
c×(d−b d

2
c) and the vectors bsi , bti ∈ Rb d

2
c

are to be determined. With this parametrization, any ϕ ∈ Dd,`
BACF involves `d(d+1) training

parameters when d is even.

Remark 14 Alternative choices have been proposed in the literature. For instance, (Lyu
et al., 2022) takes the permutation P at random at each layer and uses single coordinate
coupling flows (SACF) which only impacts the last coordinate of the input vector. (Zhang
et al., 2019a) employs BACF with s = 0, yielding to a volume preserving diffeomorphism.

7 Numerical Simulations

In this section, we train ϕ ∈ Dd,`
BACF by minimizing either J IS

m (g) (BACF_IS(`)) or J FS
m,λ(ϕ)

(BACF_FS(`)) estimated using a training set {(xi, u(xi),∇u(xi))}ntrain
i=1 . For the dimension

augmentation strategy of Section 4, we train ϕ ∈ Dd+k,`
BACF by minimizing either J IS

m,k(g)

(BACF_ISd+k(`)) or J FS
m,k,λ(ϕ) (BACF_FSd+k(`)) estimated using the same training set. Once
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the feature map g = (ϕ1, . . . , ϕm) is built, we construct the profile function f as a fully
connected neural network with 3 hidden layers of 50 neurons each and the sigmoid activation
function. This network is trained by minimizing the empirical L2

π error E[(u(X)−f ◦g(X))2]
estimated again on the same training set. To evaluate the accuracy of the approximation,
we compute the following errors on a randomly generated testing set of size ntest:

MSE = E((u(X)− f ◦ g(X))2) NRMSE =

√
E((u(X)− f ◦ g(X))2)

max
1≤i≤ntest

u(xi)− min
1≤i≤ntest

u(xi)

RL2 =

√
E((u(X)− f ◦ g(X))2)

E(u(X)2)
RL1 =

E(|u(X)− f ◦ g(X)|)
E(|u(X)|)

·

The column #Param is the total number of parameters used for g. All the approximation
errors are written µ± σ where µ and σ are the mean and the standard deviation over 15
runs of the algorithm.

All the simulations have been implemented with PyTorch 2.01 and tested on a laptop
with a 4.7 GHz Intel Core i7 CPU and 32GB of DRAM memory. The cost functions are
minimized with the ADAM optimizer, a multi-start procedure is applied with 8 different
randomly chosen starting points, after 300 ADAM steps the best candidate is selected and
then optimized for 3000 additional steps. All this procedure is done with a learning rate
of 0.01. f is also trained with the ADAM optimizer but without multi-start. The same
learning rate is used and the learning process is stopped after 5000 ADAM steps or when
the loss function reduces to 10−8.

7.1 High dimensional function approximation

In this section we compare BACF_IS(`), BACF_FS(`), BACF_ISd+k(`) and BACF_FSd+k(`) with
the existing solutions for nonlinear dimension reduction: NLL (Zhang et al., 2019a), DRiLLS
(Teng et al., 2021) and with the Polynomial Feature Map (PFM, see (Bigoni et al., 2022)).
All those algorithms use gradient information to perform nonlinear dimension reduction on
small training sets. We consider the following benchmark functions

u1(x) = cos

(
xd exp

(
d−1∑
i=1

σ(xi)

))
, u2(x) = sin(‖x‖2),

u3(x) = exp
(
1

d

d∑
i=1

sin(xi)ecos(xi)

)
,

where σ is the sigmoid function. These functions are defined on X = [−1, 1]d for u1,
X = [0, 1]d or X = [−1, 1]d for u2, X = [−π

2 ,
π
2 ]

d for u3, and X is uniformly distributed on
X . The training points {xi}ntrain

i=1 are sampled through a latin hypercube sampling optimized
with maximin criterion, using the scikit-optimize library (Head et al., 2022). The testing set
is made of ntest = 104 independent copies of X.

We choose the above benchmark functions to perform a fair comparison of all dimension
reduction methods. u1 is a composition of cosine with the first component of a single-
coordinate affine coupling flows, hence it is well suited for our approximation method (BACF).
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u1 on X = [−1, 1]8

Points Structure #Param MSE% NRMSE% RL2% RL1%

ntrain = 50

BACF_IS(2) 144 (3.45± 2.45)× 10−5 1.15± 0.41 0.65± 0.23 0.52± 0.23
BACF_ISd+2(2) 220 (6.18± 7.90)× 10−5 1.41± 0.82 0.80± 0.47 0.67± 0.48

BACF_FS(2) 144 (1.16± 2.14)× 10−4 1.82± 1.24 1.05± 0.71 0.87± 0.71
BACF_FSd+2(2) 220 (2.31± 5.86)× 10−4 2.11± 2.32 1.20± 1.32 1.06± 1.37

PFM - (1.91± 0.00)× 10−2 30.01± 0.0016.18± 0.0014.16± 0.02

u1 on X = [−1, 1]12

Points Structure #Param MSE% NRMSE% RL2% RL1%

ntrain = 50

BACF_IS(2) 312 (4.33± 7.33)× 10−5 1.09± 0.93 0.59± 0.50 0.49± 0.42
BACF_ISd+2(2) 420 (3.56± 1.41)× 10−5 1.27± 0.27 0.69± 0.15 0.56± 0.12

BACF_FS(2) 312 (2.65± 3.18)× 10−5 0.96± 0.57 0.52± 0.31 0.43± 0.24
BACF_FSd+2(2) 420 (4.23± 5.66)× 10−5 1.15± 0.83 0.62± 0.44 0.51± 0.37

PFM - (2.00± 0.00)× 10−2 29.00± 0.0016.59± 0.0014.56± 0.02

Table 2: Approximation errors for u1 with X = [−1, 1]d, ntrain = 50 and m = 1, λ = 10−4

u2 is well suited for PFM since u = f ◦ g for the polynomial g(x) = ‖x‖2 = x21 + . . . + x2d.
Finally u3 is a composition of the exponential function with a complex non polynomial
function. As u3 cannot be analytically decomposed with a polynomial feature map nor a
coupling flows, neither PFM nor BACF are favored.

Table 2, Table 3 and Table 4 present the results for u1, u2 and u3, respectively. Table 2
confirms that BACF_IS and BACF_FS are able to recover u1 accurately with only 50 training
points, while PFM encounters difficulties with such limited training set. In turns, Table 3 con-
firms that PFM outperforms the other methods on u2. However, on X = [0, 1]20, BACF_ISd+2

achieves better results with 100 training points compared to PFM with 100 training points
and compared to NLL and DRiLLS with 500 training points. Also, on X = [−1, 1]8 and
X = [−1, 1]12, BACF_ISd+2 achieves better results with only 500 training points compared
to DRiLLS with 2500 training points. We do not compare with NLL on X = [−1, 1]8 and
X = [−1, 1]12 because, as noticed in (Zhang et al., 2019a; Teng et al., 2021), NLL is not
appropriate for functions with critical point in the interior of its domain.

Overall, we observe that BACF_IS with dimension augmentation performs generally better
than BACF_IS without dimension augmentation and than BACF_FS for a comparable number
of training parameters. Although dimension augmentation leads to a significant improvement
in the performance of BACF_IS, it appears not to have a notable effect on BACF_FS. It is
worth to note that, on Table 4, BACF_IS with dimension augmentation outperforms all the
other methods on this benchmark, especially PFM algorithm which cannot achieve relative
errors under 10%. These results confirm that BACF_IS with dimension augmentation is well
suited for approximating high dimensional function.

Finally, Table 5 reports the approximation error E[(u(X) − f ◦ g(X,Ξ))2] and the
maximum of the pointwise variance maxxVar(f ◦ g(x,Ξ)) over the test set when dimension
augmentation is employed. As already mentioned in Section 4, we observe that E[Var(f ◦
g(x,Ξ))] is negligible compared to E[(u(X)− f ◦ g(X,Ξ))2].
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u2 on X = [0, 1]20

Points Structure #Param MSE% NRMSE% RL2% RL1%

ntrain = 100

BACF_IS(5) 2100 (3.83± 3.85)× 10−2 9.11± 3.59 26.14± 10.30 18.98± 6.00
BACF_ISd+2(4) 2024 (8.01± 4.88)× 10−3 4.29± 1.27 12.32± 3.65 8.57± 2.35

BACF_FS(5) 2100 (7.80± 1.67)× 10−2 13.89± 1.43 39.99± 4.12 31.51± 2.98
BACF_FSd+2(4) 2024 (5.84± 2.59)× 10−2 11.81± 2.56 33.73± 7.32 26.08± 6.13

PFM 230 (9.73± 4.36)× 10−2 15.23± 3.47 43.77± 9.98 13.38± 7.86

ntrain = 500

BACF_IS(5) 2100 (1.42± 0.95)× 10−3 1.81± 0.53 5.22± 1.53 3.34± 1.36
BACF_ISd+2(4) 2024 (1.91± 2.00)× 10−3 1.96± 0.96 5.64± 2.77 4.21± 3.09

BACF_FS(5) 2100 (1.70± 0.82)× 10−3 2.01± 0.46 5.75± 1.32 3.99± 1.12
BACF_FSd+2(4) 2100 (1.92± 1.19)× 10−3 2.12± 0.57 6.07± 1.62 4.32± 1.46

PFM 230 (1.49± 4.13)× 10−4 0.39± 0.48 1.13± 1.39 0.44± 0.15
NLL - - 5.09 - 7.46

DRiLLS - - 28.73 - 79.29

u2 on X = [−1, 1]8

Points Structure #Param MSE% NRMSE% RL2% RL1%

ntrain = 500

BACF_IS(6) 432 (9.50± 31.20)× 10−2 8.05± 13.15 23.86± 38.9821.23± 39.58
BACF_ISd+2(4) 440 (1.00± 3.44× 10−2 2.47± 4.35 7.37± 12.93 5.75± 12.07

BACF_FS(6) 432 (2.94± 1.50)× 10−2 8.37± 1.93 25.00± 5.76 17.36± 5.09
BACF_FSd+2(4) 440 (4.69± 3.30)× 10−2 9.94± 4.28 29.49± 12.6823.17± 11.38

PFM 44 (2.33± 6.52)× 10−8 (4.16± 6.62)(1.24± 1.98)(1.27± 0.35)
×10−3 ×10−2 ×10−3

ntrain = 2500 DRiLLS - - 9.18 - 15.90

u2 on X = [−1, 1]12

Points Structure #Param MSE% NRMSE% RL2% RL1%

ntrain = 500

BACF_IS(7) 1092 (5.94± 0.94)× 10−3 3.84± 0.28 11.03± 0.82 7.93± 0.46
BACF_ISd+4(4) 1088 (2.88± 10.47)× 10−2 3.43± 7.76 9.78± 22.10 7.53± 17.38

BACF_FS(7) 1092 (3.57± 4.74)× 10−2 8.32± 4.48 23.82± 12.8216.20± 10.35
BACF_FSd+4(4) 1088 (7.69± 13.94)× 10−2 9.60± 10.00 27.24± 28.3520.27± 22.21

PFM 90 (3.00± 8.92)× 10−8 (5.01± 7.32)(1.43± 2.09)(1.45± 5.32)
×10−4 ×10−3 ×10−5

ntrain = 2500 DRiLLS - - 26.86 - 74.17

Table 3: Approximation errors for u2 with m = 1, the NLL and DRiLLS results are copied
from (Teng et al., 2021) Table 3, λ = 10−4
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u3 on X = [−π
2
, π
2
]8

Points Structure #Param MSE% NRMSE% RL2% RL1%

ntrain = 100

BACF_IS(6) 432 (3.06± 1.74)× 10−2 4.75± 1.25 14.32± 3.77 10.63± 2.72
BACF_ISd+2(4) 440 (2.61± 2.45)× 10−3 1.40± 0.64 3.98± 1.82 2.54± 1.01

BACF_FS(6) 432 (2.06± 0.58)× 10−1 12.40± 1.83 37.94± 5.60 29.41± 4.41
BACF_FSd+2(4) 440 (1.57± 0.77)× 10−1 10.80± 2.39 33.12± 7.33 23.98± 3.25

PFM 44 (1.93± 0.24)× 10−1 12.03± 0.79 37.13± 2.43 30.78± 2.22

ntrain = 500

BACF_IS(6) 432 (5.15± 2.14)× 10−3 2.01± 0.34 6.00± 1.02 4.46± 0.99
BACF_ISd+2(4) 440 (4.50± 3.08× 10−4 0.56± 0.22 1.67± 0.65 1.04± 0.44

BACF_FS(6) 432 (9.22± 2.79)× 10−3 2.77± 0.42 8.12± 1.22 5.61± 0.85
BACF_FSd+2(4) 440 (7.47± 4.78)× 10−3 2.16± 0.71 6.96± 2.30 4.81± 1.45

PFM 44 (1.94± 0.17)× 10−1 12.08± 0.56 37.69± 1.71 31.26± 1.44

u3 on X = [−π
2
, π
2
]12

Points Structure #Param MSE% NRMSE% RL2% RL1%

ntrain = 100

BACF_IS(7) 1092 (2.03± 1.02)× 10−1 6.48± 1.54 34.25± 8.12 24.80± 5.56
BACF_ISd+4(4) 1088 (4.56± 5.82)× 10−2 3.26± 1.83 14.51± 8.15 8.66± 4.29

BACF_FS(7) 1092 (3.19± 1.36)× 10−1 10.59± 2.08 43.50± 8.56 32.17± 4.24
BACF_FSd+4(4) 1088 (3.57± 1.82)× 10−1 10.77± 2.5145.54± 10.5732.25± 4.74

PFM 90 (7.08± 3.43)× 10−2 9.37± 1.98 23.32± 4.92 17.14± 1.97

ntrain = 500

BACF_IS(7) 1092 (1.67± 1.08)× 10−2 1.63± 0.52 9.54± 3.06 7.27± 2.87
BACF_ISd+4(4) 1088 (1.70± 0.87× 10−4 0.66± 0.18 3.06± 0.81 2.10± 0.38

BACF_FS(7) 1092 (9.38± 1.93)× 10−3 1.55± 0.15 7.61± 0.76 5.14± 0.40
BACF_FSd+4(4) 1088 (4.28± 1.78)× 10−3 1.28± 0.26 5.02± 1.01 3.56± 0.78

PFM 90 (1.24± 0.07)× 10−1 12.66± 0.38 31.52± 0.95 25.85± 0.53

Table 4: Approximation errors for u3 on X = [−π
2 ,

π
2 ]

d and with m = 1, λ = 10−4

u2 on X = [0, 1]20

Points Structure E[(u(X)− f ◦ g(X,Ξ))2]maxx Var(f ◦ g(x,Ξ))

ntrain = 100
BACF_ISd+2(4) 8.01× 10−3 4.22× 10−9

BACF_FSd+2(4) 5.84× 10−2 9.81× 10−3

ntrain = 500
BACF_ISd+2(4) 1.91× 10−3 1.43× 10−10

BACF_FSd+2(4) 1.92× 10−3 1.71× 10−5

u2 on X = [−1, 1]8

Points Structure E[(u(X)− f ◦ g(X,Ξ))2]maxx Var(f ◦ g(x,Ξ))

ntrain = 500
BACF_ISd+2(4) 1.00× 10−2 2.07× 10−10

BACF_FSd+2(4) 4.69× 10−2 5.79× 10−6

u2 on X = [−1, 1]12

Points Structure E[(u(X)− f ◦ g(X,Ξ))2]maxx Var(f ◦ g(x,Ξ))

ntrain = 500
BACF_ISd+4(4) 2.88× 10−2 1.90× 10−10

BACF_FSd+4(4) 7.69× 10−2 2.52× 10−5

Table 5: Approximation error E[(u(X) − f ◦ g(X,Ξ))2] and maximum of the pointwise
variance maxxVar(f ◦ g(x,Ξ)) estimated on a test set of size 104 where Var(f ◦ g(x,Ξ)) is
estimated using 100 samples of Ξ. All these numbers are averaged over 15 realizations of
the training set.
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7.2 The thermal block problem

In this section we test our method on the thermal bloc problem, where the function to
approximate is defined via the solution of a partial differential equation (PDE) which we
solve with the finite element method (Ern and Guermond, 2004). The gradient is computed
using adjoint-state method (Plessix, 2006). We use here the same settings as in (Teng et al.,
2021) and we consider the diffusion equation

−∇s · (κ∇sv) = 0 in Ω = [0, 1]2, (31)

where s = (s1, s2) ∈ Ω are the spatial coordinates, and ∇s refers to the gradient with respect
to s. Homogeneous Dirichlet boundary conditions are imposed on the upper boundary of
the domain ∂ΩD, and homogeneous Neumann boundary condition is imposed on the left
and right edges ∂ΩN,0. We impose a unit flux on the lower boundary ∂ΩN,1. The domain is
uniformly partitioned into d sub-domains {Ωi}di=1 and the diffusion coefficient κ is piecewise
constant such that κ(s, x) =

∑d
i=1 xi1Ωi(s) with x ∈ X = [0.1, 10]d. For X ∼ U(X ), we

define u(X) as
u(X) =

∫
∂ΩN,1

v(s,X)ds.

All algorithms are trained on 15 different training sets of size ntrain and then tested on a
testing set of size ntest = 104.

The results are presented in Table 6 and Table 7. Again we notice that BACF_IS with
dimension augmentation is clearly the best method we tried. When d = 16 and with 500
training points, it outperforms NLL and DRiLLS with 2500 training points and PFM with 500
training points. Table 7 shows that BACF_IS with dimension augmentation also performs
very well for larger dimension d = 36, achieving a NRMSE of 4% and a RL1 of 5% with only
200 training points. When d = 36 we notice that the dimension augmentation strategy does
not provide as much improvements as for d = 16. The scatter plot {(g(xi), u(xi))}i≥1 from
Figure 2 also shows that BACF_IS can successfully reduce the input dimension for d = 16
and d = 36 with very little training sets.

7.3 Autoencoders

We compare now the two strategies proposed in Section 5.2 to train autoencoders. Here the
goal is to build the best encoder g and decoder f that minimize the empirical reconstruction
loss 1

n

∑ntest
i=1 ‖x(i) − f ◦ g(x(i))‖2 on a testing set {x(i)}ntest

i=1 . We propose to compare the two
strategies presented in Section 5.2 on a synthetic dataset in Rd where the points belong
to a submanifold of intrinsic dimension mint < d. We generate this submanifold with the
following application:

ΨQ : Rmint → Rd

Z 7→ (Z>Q1Z, . . . , Z
>QdZ)

where Q = (Q1, . . . , Qd) ∈ (Zmint×mint)d. In this setup, each component of ΨQ is a quadratic
function. For a given Q, Z is sampled according to the probability distribution πZ and
we compute X = ΨQ(Z) to generate the dataset. In practice we take πZ = U([−2, 2]mint)
and the coefficients of Q are chosen randomly in {−5, . . . , 5}. For d = 8 and mint = 3
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m = 1

Points Structure #Param MSE% NRMSE% RL2% RL1%

ntrain = 100

BACF_IS(6) 1632 (1.25± 0.59)× 10−3 5.18± 1.11 12.97± 2.79 8.43± 2.77
BACF_ISd+4(4) 1680 (6.33± 1.90)× 10−4 3.73± 0.56 9.34± 1.40 5.69± 1.26

BACF_FS(6) 1632 (1.27± 0.42)× 10−3 5.27± 0.86 13.20± 2.16 8.53± 2.08
BACF_FSd+4(4) 1680 (2.56± 0.05)× 10−2 7.54± 0.07 18.89± 1.96 13.14± 1.40

PFM 152 (4.76± 0.27)× 10−3 10.34± 0.29 25.88± 0.74 20.10± 0.96

ntrain = 500

BACF_IS(6) 1632 (1.81± 0.56)× 10−4 2.00± 0.31 5.01± 0.77 2.19± 0.42
BACF_ISd+4(4) 1680 (1.32± 0.55)× 10−4 1.68± 0.35 4.22± 0.87 1.92± 0.44

BACF_FS(6) 1632 (4.47± 5.51)× 10−4 2.83± 1.41 7.10± 3.54 3.61± 3.84
BACF_FSd+4(4) 1680 (3.65± 2.98)× 10−4 2.74± 0.83 6.86± 2.09 3.70± 0.42

PFM 152 (4.74± 0.50)× 10−3 10.34± 0.55 25.90± 1.39 19.79± 0.87

ntrain = 2500
NLL - - 6.26 - 12.71

DRiLLS - - 2.19 - 2.72

m = 2

Points Structure #Param MSE% NRMSE% RL2% RL1%

ntrain = 100

BACF_IS(6) 1632 (1.27± 0.37)× 10−3 5.29± 0.76 13.24± 1.91 8.28± 1.75
BACF_ISd+4(4) 1680 (1.18± 0.55)× 10−3 5.05± 1.02 12.66± 2.55 7.26± 1.35

BACF_FS(6) 1632 (1.28± 0.32)× 10−3 5.31± 0.65 13.31± 1.63 8.33± 1.28
BACF_FSd+4(4) 1680 (4.25± 1.47)× 10−3 9.64± 1.57 24.15± 3.93 16.15± 1.80

PFM 304 (4.65± 0.27)× 10−3 10.21± 0.29 25.88± 0.73 19.78± 1.00

ntrain = 500

BACF_IS(6) 1632 (2.73± 4.21)× 10−4 2.18± 1.17 5.47± 2.93 3.46± 3.42
BACF_ISd+4(4) 1680 (1.42± 1.20)× 10−4 1.70± 0.55 4.25± 1.38 2.39± 1.73

BACF_FS(6) 1632 (2.31± 1.42)× 10−4 2.20± 0.58 5.52± 1.44 2.57± 0.40
BACF_FSd+4(4) 1680 (4.16± 1.88)× 10−4 2.99± 0.61 7.50± 1.53 3.95± 0.46

PFM 304 (4.74± 0.28)× 10−3 10.31± 0.31 25.83± 0.78 19.83± 0.70

ntrain = 2500
NLL - - 6.66 - 13.45

DRiLLS - - - - -

Table 6: Approximation errors for u on X = [0.1, 10]16 for the thermal block problem. The
results for DRiLLS and NLL are copied from (Teng et al., 2021, Table 7).
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m = 1

Points Structure #Param MSE% NRMSE% RL2% RL1%

ntrain = 200

BACF_IS(6) 7992 (3.00± 0.64)× 10−43.44± 0.34 6.91± 0.69 4.73± 0.38
BACF_ISd+8(4) 7920 (3.13± 0.69)× 10−4 3.51± 0.35 7.06± 0.71 4.88± 0.40

BACF_FS(6) 7992 (3.61± 0.32)× 10−4 3.78± 0.16 7.60± 0.33 5.34± 0.22
BACF_FSd+8(4) 7920 (1.03± 0.07)× 10−3 6.40± 0.21 12.87± 0.42 9.72± 0.33

PFM 702 (2.04± 1.12)× 10−3 8.82± 1.87 17.72± 3.7513.04± 0.34

ntrain = 500

BACF_IS(6) 7992 (8.48± 4.67)× 10−5 1.79± 0.40 3.60± 0.80 2.32± 0.98
BACF_ISd+8(4) 7920 (5.48± 1.20)× 10−51.47± 0.16 2.95± 0.32 1.76± 0.27

BACF_FS(6) 7992 (1.09± 0.59)× 10−4 2.04± 0.45 4.09± 0.91 2.59± 1.08
BACF_FSd+8(4) 7920 (4.68± 0.30)× 10−4 4.31± 0.14 8.67± 0.27 6.34± 0.19

PFM 702 (1.74± 0.02)× 10−3 8.31± 0.52 16.71± 0.1012.94± 0.13

m = 2

Points Structure #Param MSE% NRMSE% RL2% RL1%

ntrain = 200

BACF_IS(6) 7992 (3.66± 0.93)× 10−4 3.79± 0.46 7.61± 0.93 5.14± 0.77
BACF_ISd+8(4) 7920 (3.54± 0.62)× 10−43.74± 0.31 7.52± 0.62 5.06± 0.36

BACF_FS(6) 7992 (3.80± 0.62)× 10−4 3.87± 0.30 7.79± 0.61 5.41± 0.30
BACF_FSd+8(4) 7920 (1.61± 0.07)× 10−3 7.87± 1.48 15.82± 2.9811.89± 2.31

PFM 1404 (1.68± 0.10)× 10−3 8.16± 0.26 16.40± 0.5112.72± 0.49

ntrain = 500

BACF_IS(6) 7992 (1.32± 1.44)× 10−4 2.11± 0.90 4.23± 1.81 2.73± 1.92
BACF_ISd+8(4) 7920 (1.02± 0.85)× 10−4 1.91± 0.64 3.84± 1.28 2.58± 1.41

BACF_FS(6) 7992 (7.98± 0.82)× 10−51.78± 0.09 3.58± 0.18 2.27± 0.11
BACF_FSd+8(4) 7920 (5.02± 0.39)× 10−4 4.46± 0.17 8.98± 0.35 6.55± 0.31

PFM 1404 (1.70± 0.06)× 10−3 8.23± 0.15 16.53± 0.2912.80± 0.24

Table 7: Approximation errors of u on X = [0.1, 10]36 for the thermal block problem

(a) u with BACFd+4(4),
d = 16, ntrain = 100

(b) u with BACFd+4(4),
d = 16, ntrain = 500

(c) u with BACFd+8(4),
d = 36, ntrain = 200

(d) u with BACFd+8(4),
d = 36, ntrain = 500

Figure 2: Scatter plot {(g(xi), u(xi))}i≥1 for the thermal block problem using a random
testing set of ntest = 104 points on X = [0.1, 10]d when m = 1
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(a) Q8 datasets with ntrain =
100

(b) Q8 datasets with ntrain =
500

(c) Q16 datasets with ntrain =
100

(d) Q16 datasets with
ntrain = 500

Figure 3: Reconstruction errors according to m using either the reconstruction loss with
zero padding L (Zero padding) or J FS

m,λ(FS Loss). We use BACF(4) with λ = 10−2.

(respectively d = 16 and mint = 5), we set Q = Q8 (respectively Q = Q16) and we generate
the datasets as described above. The values of Q8 and Q16 are given in Appendix F.
Following Section 5.2, we build g = (ϕ1, . . . , ϕm) either by minimizing J FS

m,λ(ϕ) (FS Loss)
or the reconstruction loss Lm(ϕ) as defined in (29) (Zero padding). We train g and f on 15
training sets and we compute the error E(‖X− f ◦ g(X)‖2) on a test set of size ntest = 104.

Figure 3 plots the test error as a function of m for the 15 training sets, each line
corresponding to a different training set. For m ≤ mint, FS Loss yields similar results
compared to Zero padding but with significantly less variance over the 15 trials. For
m > mint, however, the performances of FS Loss degenerate and Zero padding yields much
better results. As already pointed out in (Nguyen et al., 2019), the reconstruction error
of Zero padding continues to decrease with m even when m > mint exceeds the intrinsic
dimension. Further research needs to be conducted to understand why this is not the case
with FS Loss.

8 Conclusion

In this paper, we propose and compare different strategies for learning nonlinear features
in a supervised learning framework where gradients of the high-dimensional function to
be approximated are available. By seeking the feature map as the first components of a
diffeomorphism, we establish bounds for the reconstruction error using Poincaré Inequalities
applied either in the input space or in the feature space. Our computational experiments
demonstrate that the approach based on the augmented input space not only exceeds
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performances of the feature space method but also outperforms all comparable state-of-
the-art techniques found in existing literature. By extending our method to vector-valued
functions, we are able to learn autoencoders for unsupervised learning tasks. However, our
numerical experiments indicate that the resulting method performs suboptimally compared
to existing approaches, necessitating further investigation. In practical implementation, we
learn the diffeomorphism (and consequently, the feature map) by employing block affine
coupling flows, a class of invertible neural networks easily implementable with modern
machine learning libraries. Future research is required to determine the optimal choice for
the latent dimension m and the augmented dimension k a priori. The control of Poincaré
constant, moreover, remains an open and challenging theoretical question.
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Appendix A. Proof of Proposition 2

The fact that u = f ◦ g for some f ∈ C1(Rm;R) implies J IS(g) = 0 is a direct consequence
of the chain-rule. To show the reciprocal, let ϕ ∈ D be a diffeomorphism such that
g(x) = (ϕ1(x), . . . , ϕm(x)) and assume that J IS(g) = 0. The gradient of u = (u ◦ ϕ−1) ◦ ϕ
is ∇u(x) = ∇ϕ(x)>∇(u ◦ ϕ−1) ◦ ϕ(x) and it decomposes as

∇u(x) = [∇ϕ1(x), . . . ,∇ϕd(x)]

∂1(u ◦ ϕ−1) ◦ ϕ(x)
...

∂d(u ◦ ϕ−1) ◦ ϕ(x)


= ∇g(x)>∇m(u ◦ ϕ−1) ◦ ϕ(x) +∇ϕ⊥(x)

>∇⊥(u ◦ ϕ−1) ◦ ϕ(x), (32)

where ϕ⊥(x) = (ϕm+1(x), . . . , ϕd(x)), ∇m = (∂1, . . . , ∂m) and ∇⊥ = (∂m+1, . . . , ∂d). Since
ϕ ∈ D is a diffeomorphism, its Jacobian has full rank everywhere so that range(∇g(x)>)⊕
range(∇ϕ⊥(x)

>) = Rd. Therefore, because J IS(g) = 0 implies ∇u(X) ∈ range(∇g(X)>)
almost surely, relation (32) yields ∇⊥(u ◦ ϕ−1) ◦ ϕ(X) = 0 almost surely. By continuity
of u ◦ ϕ−1 : Rd → R and because supp(ϕ(X)) = Rd, we deduce that ∇⊥(u ◦ ϕ−1) = 0
everywhere so that z⊥ 7→ u ◦ ϕ−1(zm, z⊥) is constant for any zm. Thus, for f ∈ C1(Rm;R)
being defined as f(zm) = u ◦ ϕ−1(zm, 0), we have f ◦ g(x) = u ◦ ϕ−1(g(x), ϕ⊥(x)) =
u ◦ ϕ−1(ϕ1(x), . . . , ϕd(x)) = u(x).

It remains to show (11). Recall that the function f which realizes the minimium in (3)
is the conditional expectation so that E(g) = E[(u(X)− E[u(X)|g(X)])2]. Using the tower
property of the conditional expectation, we can write

E(g) = E
[
E[(u(X)− E[u(X)|g(X)])2|g(X)]

]
≤ E

[
C(X|g(X))E[‖∇u|M(X)(X)‖2|g(X)]

]
≤ CIS(X|Gm)E

[
E[‖∇u|M(X)(X)‖2|g(X)]

]
= CIS(X|Gm)E[‖∇u|M(X)(X)‖2],

where we recall that M(X) = {x ∈ X s.t. g(x) = g(X)}. The above first inequality is the
Poincaré Inequality (8) applied on Y = X|g(X) as in the left column in Table 1, and the
second inequality is a consequence of the definition of CIS(X|Gm). Finally, by (10), we
deduce that E(g) ≤ CIS(X|Gm)J IS

m (g) which concludes the proof.

Appendix B. Proof of Proposition 4

The fact that u = f ◦ g for some f ∈ C1(Rm;R) implies J FS
m (ϕ) = 0 is a consequence of the

chain-rule
∇u(x) = ∇g(x)>∇f(g(x)) = ∇ϕ(x)>

(
∇f(g(x))

0

)
,

where we recall that ∇ϕ(x)> = [∇g(x)>,∇ϕ⊥(x)
>] is everywhere invertible. Therefore,

∇ϕ(x)−>∇u(x) = (∇f(g(x))
0

) so that J FS
m (ϕ) = 0. To show the reciprocal, note that

J FS
m (ϕ) = 0 implies, by (14), that ∇⊥(u ◦ ϕ−1) ◦ ϕ(X) = 0 almost surely. By continuity of

u ◦ ϕ−1 and because supp(ϕ(X)) = Rd, we deduce that z⊥ 7→ u ◦ ϕ−1(zm, z⊥) is constant
for any zm ∈ Rm and therefore that u = f ◦ g for f(zm) = u ◦ ϕ−1(zm, 0).
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It remains to show (16). By the change of variable Z = ϕ(X), we can write g(X) = Zm

so that the reconstruction error writes E(g) = E[(u ◦ ϕ−1(Z)− E[u ◦ ϕ−1(Z)|Zm])2]. Using
the tower property of the conditional expectation, we can write

E(g) = E
[
E[(u ◦ ϕ−1(Z)− E[u ◦ ϕ−1(Z)|Zm)])2|Zm]

]
≤ E

[
C(Z|Zm)E[‖∇⊥(u ◦ ϕ−1)(Z)‖2|Zm)]

]
≤ CFS

m (X|D)E
[
E[‖∇⊥(u ◦ ϕ−1)(Z)‖2|Zm)]

]
= CFS

m (X|D)J FS
m (ϕ),

where, for the last equality, we used Equation (14). The above first inequality is the Poincaré
Inequality (8) applied on Y = Z|Zm as in the right column in Table 1, and the second
inequality is a consequence of the definition of CFS

m (X|D). This concludes the proof.

Appendix C. Proof of Proposition 6

Let Pm = diag(1, . . . , 1, 0, . . . , 0) be such that Pmv = (v1, . . . , vm, 0, . . . , 0) for v ∈ Rd.
Because M(X) = ∇ϕ(X)−1∇ϕ(X)−>, we can write

J FS
m (ϕ) = E[‖(∇ϕ(X)−>∇u(X))⊥‖2]

= E[‖(Id − Pm)∇ϕ(X)−>∇u(X)‖2]
= E[‖∇u(X)−∇ϕ(X)>Pm∇ϕ(X)−>∇u(X)‖2M(X)]

= E[‖∇u(X)−Π
M(X)

range(∇g(X)>)
∇u(X)‖2M(X)]

where we used the fact that ΠM(X)

range(∇g(X)>)
= ∇ϕ(X)>Pm∇ϕ(X)−> is the 〈·, ·〉M(X)-orthogonal

projector onto range(∇g(X)>) = range(∇ϕ(X)>Pm). This shows (19).
To show (20), let us notice that by definition of orthogonal projectors, we can write

J FS
m (ϕ) = E[‖∇u(X)−Π

M(X)

range(∇g(X)>)
∇u(X)‖2M(X)]

≤ E[‖∇u(X)−Πrange(∇g(X)>)∇u(X)‖2M(X)]

≤ E

[(
sup
v∈Rd

‖v‖2M(X)

‖v‖2

)
‖∇u(X)−Πrange(∇g(X)>)∇u(X)‖2

]

≤ sup
x∈X ,v∈Rd

‖v‖2M(x)

‖v‖2
J IS
m (g).

Furthermore we can write

sup
x∈X ,v∈Rd

‖v‖M(x)

‖v‖
= sup

z,v∈Rd

‖(∇ϕ(ϕ−1(z)))−1v‖
‖v‖

= sup
z,v∈Rd

‖∇ϕ−1(z)v‖
‖v‖

≤ Lip(ϕ−1)

where we used the fact that the norm of the gradient of a function is bounded by the
Lipschitz constant of that function. This yields the right-hand side of (20). Similarily we
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have

J IS
m (g) = E[‖∇u(X)−Πrange(∇g(X)>)∇u(X)‖2]

≤ E[‖∇u(X)−Π
M(X)

range(∇g(X)>)
∇u(X)‖2]

≤ E

[(
sup
v∈Rd

‖v‖2

‖v‖2M(X)

)
‖∇u(X)−Π

M(X)

range(∇g(X)>)
∇u(X)‖2M(X)

]

≤ sup
x∈X ,v∈Rd

‖v‖2

‖v‖2M(x)

J FS
m (ϕ).

and

sup
x∈X ,v∈Rd

‖v‖
‖v‖M(x)

= sup
x∈X ,v∈Rd

‖v‖
‖∇ϕ(x)−1v‖

= sup
x∈X ,v∈Rd

‖∇ϕ(x)v‖
‖v‖

≤ Lip(ϕ).

This yields the left-hand side of (20) and concludes the proof.

Appendix D. Proof of Proposition 7

The proof of Proposition 7 is similar to the one of Proposition 6. Let Pm = diag(1, . . . , 1, 0, . . . , 0)
be such that Pmv = (v1, . . . , vm, 0, . . . , 0) for v ∈ Rd. By definition (21) of J NLL

m (ϕ), we can
write

J NLL
m (ϕ) = E

[
‖(Id − Pm)diag(‖Ji(X)‖−1)∇ϕ(X)−>∇u(X)‖2

]
= E

[
‖∇u(X)−∇ϕ(X)>diag(‖Ji(X)‖)Pmdiag(‖Ji(X)‖−1)∇ϕ(X)−>∇u(X)‖2D(X)

]
= E

[
‖∇u(X)−∇ϕ(X)>Pm∇ϕ(X)−>∇u(X)‖2D(X)

]
= E

[
‖∇u(X)−Π

D(X)

range(∇g(X)>)
∇u(X)‖2D(X)

]
,

where we use the fact that ΠD(X)

range(∇g(X)>)
= ∇ϕ(X)>Pm∇ϕ(X)−> is the 〈·, ·〉D(X)-orthogonal

projector onto range(∇ϕ(X)>Pm) = range(∇g(X)>).

Appendix E. Proof of Proposition 9

Notice that the Jacobian of the function defined by (24) reads

∇ϕ(x, ξ) =
(
∇g(x) Im
Id 0d×m

)
, and ∇ϕ−1(z1, z2) =

(
0d×m Id
Im −∇g(z2)

)
.

Using the relation ∇ϕ(x, ξ)−1 = ∇ϕ−1(ϕ(x, ξ)), we obtain

J FS
m,m(ϕ) = E

[∥∥∥∥((0m×d Im
Id −∇g(x)>

)(
∇u(X)
0m

))
⊥

∥∥∥∥2
]
= E

[
‖∇u(X)‖2

]
.
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Furthermore, because ∇g(x, ξ) = (∇g(x), Im), we can write

Πrange(∇g(x,ξ)>) =

(
∇g(x)>
Im

)
(Im +∇g(x)∇g(x)>)−1

(
∇g(x)>
Im

)>

so that, using Pythagorean Theorem, we obtain

J IS
m,m(g) = E[‖∇u(X)‖2]− E

[(
∇u(X)
0m

)>
Πrange(∇g(X,Ξ)>)

(
∇u(X)
0m

)]
= E[‖∇u(X)‖2]− E

[
u(X)>∇g(X)>(Im +∇g(X)∇g(X)>)−1∇g(X)∇u(X)

]
.

This concludes the proof.

Appendix F. Q8 and Q16 values

Q8 = (Q8,1, Q8,2, . . . , Q8,8) ∈ (Z3×3)8

Q8,1 =

 4 0 −5
0 2 1
−3 −5 −3

Q8,2 =

−1 3 2
−1 0 1
−3 −2 −3


Q8,3 =

4 4 −3
1 −4 0
1 3 0

 Q8,4 =

−4 3 4
1 −5 0
3 1 0


Q8,5 =

−2 −2 −3
−1 1 −5
1 2 −1

Q8,6 =

 4 −2 −5
−5 −5 2
−5 1 −2


Q8,7 =

−4 −3 0
−5 −1 1
4 4 2

 Q8,8 =

−2 −3 −1
−5 −5 −1
−1 −3 −2



Q16 = (Q16,1, Q16,2, . . . , Q16,16) ∈ (Z5×5)16

Q16,1 =


−2 −5 −4 4 −4
2 3 −1 −1 2
3 −5 −3 0 −5
0 −1 −5 −1 −3
4 1 3 −4 3

 Q16,2 =


1 1 −5 −5 −5
−5 1 4 −3 −5
2 −5 1 −5 1
−2 −2 −2 2 −3
2 −5 −5 −2 −2



Q16,3 =


−3 −4 −1 −3 −3
3 3 1 2 1
0 1 0 1 2
−1 −1 3 2 −4
4 0 0 −4 4

 Q16,4 =


−2 1 3 1 1
−4 −5 4 −5 −4
1 0 −5 0 3
0 3 −3 3 3
0 −1 −1 −3 2



Q16,5 =


−4 2 −1 0 3
−4 0 −1 −5 0
−2 2 −2 0 2
3 −4 0 3 1
0 −2 3 2 −2

 Q16,6 =


3 3 4 3 0
−4 −3 −4 4 −5
−3 0 −2 4 2
−3 −2 −4 −1 −3
−4 −3 3 1 −5



Q16,7 =


4 2 0 −2 1
3 1 2 0 −2
0 2 0 −2 2
−5 3 3 −4 4
−2 −3 −1 2 0

 Q16,8 =


2 0 −4 1 2
3 −1 0 1 −2
−1 2 0 3 0
−4 −4 1 2 0
4 −4 2 3 4



Q16,9 =


1 −4 −1 0 −3
4 −3 −2 2 3
0 1 3 3 −3
0 −5 −3 −3 4
1 4 3 −1 −4

 Q16,10 =


−2 −5 2 −3 1
−4 2 −1 0 −2
−5 −3 −2 −3 −4
−3 −3 −4 1 −1
2 −2 3 −4 −4



Q16,11 =


1 0 −5 1 2
4 0 0 0 −3
4 −3 −4 3 2
1 3 3 −2 2
−5 −1 1 0 2

Q16,12 =


1 −5 2 −4 2
−2 −3 −4 4 2
2 −4 −1 0 −2
3 1 −4 2 4
1 −3 1 4 0



Q16,13 =


0 1 −2 4 −5
−5 4 1 4 −5
2 3 1 −4 0
3 0 1 −4 3
2 −3 −5 1 −3

Q16,14 =


2 −4 4 2 4
−5 2 −3 0 2
1 −4 −3 4 0
0 −2 −5 −5 1
−4 −4 −4 −1 −3



Q16,15 =


−2 −5 4 −1 2
0 3 −4 −5 4
1 2 −2 1 1
−4 4 −5 2 4
−1 4 −3 1 1

 Q16,16 =


−2 −5 −1 4 0
2 −4 −5 4 4
−2 1 0 4 1
2 −2 −3 0 3
3 3 2 −3 2
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