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Abstract— The XM2VTS dataset is a challenging dataset in 

biometric authentication due to variations in lighting, facial 

expressions, and voice characteristics. Conventional methods 

encounter difficulties in handling such uncertainties. To 

overcome these challenges, the study proposes the utilization of 

T-norms, a fuzzy logic-based approach that provides a flexible 

framework for modeling uncertainty. By employing T-norms, 

the study demonstrates the feasibility of combining multiple 

biometric modalities, specifically facial and voice recognition. 

This integration enhances authentication accuracy by 

necessitating a consensus between modalities for access. The 

application of T-norms not only improves security measures but 

also enhances adaptability, making it a promising solution for 

addressing the intricate nature of the XM2VTS dataset in 

biometric authentication. 

Keywords—biometric, score  level, T-Norms,  XM2VTS, DCT, 

fusion, face, voice 

I. INTRODUCTION  

Biometric identification uses unique physiological or 
behavioral traits like fingerprints, irises, faces, and voices to 
verify individuals' identities [1]. Single-modal biometric 
systems, which rely on a single trait, face challenges such as 
variations within categories and vulnerability to spoofing. On 
the other hand, multimodal biometrics, which combines 
multiple traits, consistently outperform single-modal systems, 
providing improved accuracy, resistance to noise, 
universality, anti-spoofing capabilities, and greater resilience. 

Within multimodal biometrics, data fusion from different 
modalities is essential, occurring at feature, score, or decision 
levels. While feature-level fusion can lead to compatibility 
problems and high-dimensional redundancy, decision-level 
fusion is considered inflexible [2]. Score-level fusion, 
leveraging discriminative power between genuine and 
imposter scores, strikes a balance between data combination 
ease and information content, making it a favored approach 
for integrating biometric data [3].  

Facial and speech biometrics are two key branches of 
biometric authentication, used in security, access control, and 
identity verification systems. Facial biometrics, known as 
facial recognition, relies on unique facial features like the 
arrangement of facial landmarks to establish identity [5]. It is 
non-intrusive, requiring no physical contact, and is employed 
in various applications, from security systems to smartphone 
unlocking. Advancements in deep learning and artificial 
intelligence have significantly improved its accuracy and 
performance [7]. However, challenges in facial recognition 
include variations in lighting, pose, expressions, and potential 
privacy concerns [8].  

Speech biometrics, or voice biometrics, identifies and 
verifies individuals based on unique voice patterns, including 
pitch, tone, cadence, and spectral features [4]. These 
characteristics remain stable over time, captured during 
speech interactions. Voice recordings create voiceprints, used 
in applications like call center authentication and forensic 

voice analysis. Challenges include the need for high-quality 
voice recordings, susceptibility to environmental noise, and 
potential voice mimicry [9] [10]. Both facial and speech 
biometrics offer user-friendly and secure authentication 
methods, yet they also raise ethical and privacy concerns due 
to the sensitivity of biometric data. Consequently, the 
development and deployment of these technologies should be 
accompanied by safeguards and regulations to ensure the 
protection of individuals' privacy and rights. 

This study aims to address challenges by reevaluating the 
underutilized XM2VTS biometrics database, known for its 
valuable features and classifications in facial recognition and 
related fields [11]. This publicly available database contains a 
wide range of facial images and metadata, making it a crucial 
resource for benchmarking facial recognition algorithms. 
Originally an extension of the M2VTS database, it was 
developed by the University of Surrey, UK, and is widely 
recognized in the research community [12]. 

The XM2VTS (Multi-Modal Verification for Teleservices 
and Security) database includes a diverse collection of facial 
images with variations in lighting, expressions, and poses. 
This diversity allows researchers to assess the performance of 
facial recognition algorithms in real-world scenarios. Each 
image and video sequence in the database is meticulously 
annotated with subject information, facial landmarks, and 
other relevant metadata [13]. This rich dataset provides an 
opportunity for experimenting with merging methods to 
enhance results and reduce fraud rates in biometric 
authentication. 

This work is divided into three main sections. Section 1 
explains the XM2VTS database and the Lausanne Protocols. 
Section 2 presents the proposed fusion protocols based on 
score-level fusion using T-norms algorithms, along with 
comparisons. In Section 3, we discuss the results and future 
perspectives of this research. 

II. THE XM2VTS DATABASE AND PROTOCOLS 

The XM2VTS dataset, as described in reference [14], 
encompasses synchronized video and speech data derived 
from 295 subjects. These recordings were conducted over four 
sessions separated by one-month intervals. During each 
session, two recordings were produced, consisting of both 
speech and headshot footage. The dataset is organized into 
three distinct sets:  

• Training set (LP Train): Served as the foundation for 
constructing client models. 

• Evaluation set (LP Eval): Played a pivotal role in 
determining decision thresholds and various hyper-
parameters employed by classifiers. 

• Test set (LP Test): Was utilized to assess performance 
levels. 

Out of the total 295 individuals in the study, they were 
categorized into three different groups. One group consisted 



of 200 clients, 25 evaluation impostors, and the third had 70 
impostors meant for the testing phase. The study used two 
distinct approaches for dividing subjects into training and 
evaluation groups, known as Lausanne Protocol I and II.  

This paper focuses on explaining and analyzing the 
Lausanne protocols I and II [14]. The following section will 
provide detailed information about these platforms, including 
their features, classification methods, and the entire system, 
which involves a combination of a feature type and a 
classifier. 

A. Face and Speech Analysis Features  

 

The study employs two sets of baseline features for 

biometric analysis. For facial analysis, these features consist 

of the Facial Histogram (FH), Discrete Cosine Transform for 

small images (DCTs), and Discrete Cosine Transform for 

large images (DCTb). In the realm of speech analysis, the 

selected features include Linear Frequency Cepstral 

Coefficients (LFCC) and Perceptual Linear Predictive 

Analysis Cepstral Coefficients (PAC-MFCC). These features 

play a crucial role in the biometric identification process and 

are used to analyze both facial and speech data for the purpose 

of identity verification. 

 

B. Classifiers 

Two different types of classifiers were employed in these 

experiments: Multi-Layer Perceptron’s (MLPs) and a 

Bayesian Classifier utilizing Gaussian Mixture Models 

(GMMs). In theory, both classifiers could be trained using 

any of the previously defined feature sets; however, in 

practice, MLPs excel at matching feature vectors of fixed 

size, while GMMs are better suited for matching sequences 

(feature vectors of varying sizes). Regardless of the chosen 

classifier, the hyper parameters (e.g., the number of hidden 

units for MLPs or the number of Gaussian components for 

GMMs) were fine-tuned on the evaluation set LP1 Eval.  

When these experts are combined, they yield a total of 15 

distinct biometric systems in Protocol I and 9 in Protocol II, 

each employing a unique approach to recognizing 

individuals. These systems leverage various modalities, 

indicating that they may rely on different types of information 

encoded within the feature-classifier pair. 

III. PROPOSED SCORE-LEVEL FUSION METHOD 

In this study, our objective was to build upon the well-

established XM2VTS database. Our approach involved a 

thorough exploration of this database, followed by the 

application of techniques aimed at combining information at 

the score level, inspired by concepts like T-Norms [14]. After 

implementing these methods, we proceeded to compare our 

results with those from previous research [15]. 

A. Preliminaries of t-norms 

T-norms are kinds of binary functions, which generalize 

the intersection at the fuzzy sets. A t-norm is a function: 

𝑇[0,1] × [0,1] → [0,1] that satisfies the following properties: 

• Commutativity: 𝑇(𝑥, 𝑦) = 𝑇(𝑦, 𝑥) 

• Associativity: 𝑇(𝑥(𝑦, 𝑧)) = 𝑇((𝑥, 𝑦)𝑧 

• Monotonicity: 𝑇(𝑥, 𝑦) ≤ 𝑇(𝑥, 𝑧) if𝑦 ≤ 𝑧. 

• Identity element:  𝑇(𝑥, 1) = 𝑥 

B. Score-level fusion method based on  

Before entering the fusion phase, the scores from each 

system were normalized using the Min-Max normalization, 

this method normalizes the raw scores (Tᵢ) while maintaining 

their distributions to a scale factor close and transforms all 

scores in the range [0,1] according to: 

𝑇𝑖𝑁𝑜𝑚 =
𝑇𝑖−𝑇𝑚𝑖𝑛

𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛
                                                        (1) 

 

In this paper, we have used some t-norms examples 

represented in table 1.  
TABLE I 

EXAMPLES OF T-NORMS USED 

𝑻𝒊(𝒙, 𝒚) Property 

𝑇1(𝑥, 𝑦) = 𝑥𝑦 associative 

𝑇2(𝑥, 𝑦) = 𝑥 + 𝑦 − 𝑥𝑦 non-associative 

𝑇3(𝑥, 𝑦) = (
𝑥𝑦

𝑥 + 𝑦 − 𝑥𝑦
) 

non-associative 

𝑇4(𝑥, 𝑦) = min (𝑥, 𝑦) mean 

𝑇5(𝑥, 𝑦) = max(𝑥, 𝑦) mean 

 

IV. EVALUATION CRITERIA  

Due to the accept-reject outcomes, the biometric system 
may make two types of errors: false acceptance (FA) and false 
rejection (FR). These errors are defined as follows:  
(FAR=FA/NI), and (FRR=FR/NC).                                                                        

Where FA and FR count the number of FA and FR 

accesses, respectively and NI and NC are the total number of 

impostor and client accesses, respectively. HTER stands for 

Half Total Error Rate, which is another performance metric 

commonly used in biometric systems. It represents the 

average of the FAR and FRR at the EER threshold. 

𝐻𝑇𝐸𝑅 =
𝐹𝐴𝑅+𝐹𝑅𝑅

2
                                                           (2) 

When score distributions overlap, the Equal Error Rate 
(EER) is the point where False Acceptance Rate (FAR) equals 
False Rejection Rate (FRR). The choice of the threshold value 
in applications like biometric recognition or data classification 
is crucial, as it acts as a decision boundary. The threshold 
value depends on the application's goals, such as application 
type, FAR, FRR, performance metrics, and data distribution. 
There is no universal threshold value; it must be determined 
through experimentation and evaluation to strike the right 
balance between false positives and false negatives based on 
the specific context and objectives. 

V. EXPERIMENTAL RESULTS 

This section unveils the findings from our research on 
multimodal biometrics, with a particular emphasis on score-
level fusion through T-Norms. We used the T-Norm 
functions detailed in Table 2 for this purpose. After running 
our evaluation algorithms, we carried out recognition tests to 
gauge the system's effectiveness, offering valuable insights 
into how the system performs in various situations. 

The table provided below displays the HTER (Half Total 
Error Rate) values achieved by combining two biometric 
characteristics, namely, facial and vocal features, at the score 
level. This combination was performed using five different 
T-Norm relationships. We will subsequently compare these 



results with the findings of a prior study [15] that utilized 
mean relationships during the merging process. 

A. Score level results for Lausanne Protocol I   

In the first protocol divisions, there are 15 distinct binary 
combinations for face and voice. The Half Total Error Rate 
(HTER) values for these combinations ranged from a 
minimum of 0.533, associated with (DCTb, GMM) (LFCC, 
GMM), to a maximum of 4.225 for (PAC, GMM) (SSC, 
GMM) [14]. To improve HTER values, various 

methodologies were applied, with the best result achieved at 
HTER=0.505 using the T2 algorithm in the combination 
(DCTb, GMM) (LFCC, GMM). These values showed 
variability across experiments. Additionally, comparisons 
were made with alternative techniques and previous research 
[14] as showing in Table 2. Referring to the table, the optimal 
match is ((DCTb, GMM) (LFCC, GMM)), which achieves 
the lowest HTER value. A lower HTER indicates a more 
secure system with a reduced error rate. 

TABLE II 

LAUSANNE PROTOCOL I AND BASELINE SYSTEM DESCRIPTION

 
Fusion candidates 

HTFR 

Mean 

[14] 

𝑻𝟏(𝒙, 𝒚) 𝑻𝟐(𝒙, 𝒚) 𝑻𝟑(𝒙, 𝒚) 𝑻𝟒(𝒙, 𝒚) 𝑻𝟓(𝒙, 𝒚) 

((FH, MLP) (LFCC, GMM)) 0.785 1.559 0.781 1.718 1.881 0.711 

((FH, MLP) (PAC, GMM)) 1.133 1.663 1.179 1.733 1.883 1.178 

((FH, MLP) (SSC, GMM)) 0.868 1.696 0.763 1.748 1.883 0.825 

((DCTs, GMM) (LFCC, GMM)) 0.526 0.606 0.523 0.599 1.055 2.028 

((DCTs, GMM) (PAC, GMM)) 1.436 1.419 1.409 1.429 3.531 2.670 

((DCTs, GMM) (SSC, GMM)) 1.144 1.280 1.150 1.613 3.393 2.630 

((DCTb, GMM) (LFCC, GMM)) 0.553 0.525 0.505 0.590 0.941 0.703 

((DCTb, GMM) (PAC, GMM)) 1.127 1.115 1.409 1.014 1.316 3.400 

((DCTb, GMM) (SSC, GMM)) 0.747 0.751 0.827 0.767 1.586 3.200 

((DCTs, MLP) (LFCC, GMM)) 0.841 1.658 1.147 2.143 3.241 0.803 

((DCTs, MLP) (PAC, GMM)) 1.119 2.276 1.478 2.885 3.347 1.935 

((DCTs, MLP) (SSC, GMM)) 1.326 2.556 1.388 3.217 3.361 1.871 

((DCTb, MLP) (LFCC, GMM)) 1.621 4.580 2.740 5.085 5.883 1.762 

((DCTb, MLP) (PAC, GMM)) 3.653 4.968 2.905 5.536 6.221 3.889 

((DCTb, MLP) (SSC, GMM)) 3.017 5.588 3.193 6.052 6.225 3.105 

((FH, MLP) (DCTs, GMM)) 1.280 1.728 1.361 1.756 1.882 2.074 

((FH, MLP) (DCTb, GMM)) 1.122 1.737 1.179 1.745 1.882 1.528 

((FH, MLP) (DCTs, MLP))  1.513 1.480 1.510 1.595 1.748 1.873 

((FH, MLP) (DCTb, MLP)) 1.960 1.657 2.261 2.268 2.496 2.586 

((LFCC, GMM) (SSC, GMM)) 1.595 1.213 1.721 1.104 1.140 4.437 

((PAC, GMM) (SSC, GMM)) 4.225 4.794 4.457 4.820 6.096 4.129 

((DCTs, GMM) (DCTs, MLP)) 2.388 3.092 2.437 3.354 3.363 3.332 

((DCTb, GMM) (DCTb, MLP)) 3.063 5.365 3.738 5.662 6.196 2.559 

To validate these results, we created plots illustrating the 
distributions of agent and imposter degrees, allowing us to 
evaluate the degree of overlap between them. Indeed, 
assessing the overlap between the client and imposter score 
distributions is crucial in evaluating the effectiveness of a 
biometric verification system. When the client and imposter 
score distributions do not overlap or overlap very little, it is a 
positive indicator of the system's performance in separating 
genuine clients from impostors, as shown in the figure below. 
The absence of or minimal overlap implies that genuine 
clients' scores are clearly distinct from those of impostors. As 
a result, the system is less likely to mistakenly accept 
impostors as genuine clients. This leads to a low FAR, which 
means that the system has a high level of security in terms of 
verifying genuine users. However, it's important to note that 
achieving absolutely no overlap in practice can be 
challenging, and there is often a trade-off between FAR and 
False Rejection Rate (FRR). Sometimes, setting the system's 
threshold to eliminate all overlap may result in a higher FRR, 
which could inconvenience genuine users. Therefore, it's 
essential to strike the right balance between security (FAR) 

and user convenience (FRR) based on the specific 
requirements and use cases of the system. Different 
applications may have different tolerance levels for security 
and user experience, and the system's parameters should be 
adjusted accordingly. 

 

Fig.1. Distribution of client and imposter scores in the best matching 
 

By examining this distribution, we gain valuable insights 

into how scores are spread across these different groups. This 



visual representation aids in understanding the variations in 

scores and their implications for face and speech matching 

accuracy and security. 

B. Score level results for Lausanne Protocol II   

In a technical evaluation of a biometric system's 
performance, nine distinct combinations of face and voice 
features were tested in protocol II, with Half Total Error Rate 
(HTER) values ranging from 0.133 to 2.891 [14]. Various 
methods were applied to enhance HTER, with the best result 
achieved using the "T1 algorithm" in the combination 
(DCTb, GMM) (LFCC, GMM). Comparisons with 
alternative techniques were made, and the optimal match 
((DCTb, GMM) (LFCC, GMM)) achieved the lowest HTER, 
indicating a more secure system with fewer errors as showing 
in Table. When examining the results, it is evident that the 
protocol II outperforms the protocol I. The second protocol 

consistently yields lower HTER values, which implies a more 
secure system with a reduced error rate. This outcome is 
highly desirable in biometric applications, as it means that the 
system is better at accurately verifying the identity of genuine 
users and minimizing the risk of granting access to imposters. 

The reasons for this performance difference between the 
two protocols could be attributed to various factors, such as 
the choice of features, the data collection process, or the 
algorithms applied for matching. Careful analysis and 
understanding of these differences are crucial for improving 
biometric systems and enhancing their overall security and 
reliability. It's worth noting that the choice of the optimal 
protocol depends on the specific requirements and constraints 
of the application.

 
VI.TABLE III 

LAUSANNE PROTOCOL II AND BASELINE SYSTEM DESCRIPTION

 
Fusion candidates 

HTFR 

Mean 

[14] 

𝑻𝟏(𝒙, 𝒚) 𝑻𝟐(𝒙, 𝒚) 𝑻𝟑(𝒙, 𝒚) 𝑻𝟒(𝒙, 𝒚) 𝑻𝟓(𝒙, 𝒚) 

((FH, MLP) (LFCC, GMM)) 0.688 1.184 0.488 1.472 1.769 0.681 

((FH, MLP) (PAC, GMM)) 1.144 1.405 0.758 1.614 1.760 1.508 

((FH, MLP) (SSC, GMM)) 0.981 1.367 0.636 1.623 1.767 0.694 

((DCTb, GMM) (LFCC, GMM)) 0.133 0.133 0.251 0.139 0.441 0.682 

((DCTb, GMM) (PAC, GMM)) 1.175 0.395 2.229 0.439 0.681 5.260 

((DCTb, GMM) (SSC, GMM)) 0.177 0.273 1.070 0.294 0.695 3.393 

((FH, MLP) (DCTb, GMM)) 0.962 1.475 0.990 1.627 1.771 0.900 

((LFCC, GMM) (SSC, GMM)) 0.828 0.819 1.986 0.824 1.365 3.393 

((PAC, GMM) (SSC, GMM)) 2.891 3.068 2.941 3.050 3.553 4.289 

VII. CONLUSIONS 

In conclusion, our paper has unveiled the untapped 

potential of the XM2VTS biometric database and 

introduced an exciting multimodal biometric system that 

employs innovative score-level fusion. The research 

findings not only hold promise but also pave the way for 

future algorithmic experiments geared toward bolstering 

the accuracy and resilience of biometric identification 

methods. Our overarching goal is to make the HTER value 

as low as possible compared to previous works and so 

elevate the precision and trustworthiness of biometric 

identification techniques to new heights. 
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