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Global controllability of the Boussinesq system

with Navier-slip-with-friction and Robin

boundary conditions

F. W. Chaves-Silva∗ E. Fernández-Cara† K. Le Balc’h‡

J. L. F. Machado§ D. A. Souza¶

Abstract

In this paper, we deal with the global exact controllability to the trajectories of the Boussi-

nesq system posed in 2D or 3D smooth bounded domains. The velocity field of the fluid must

satisfy a Navier slip-with-friction boundary condition and a Robin boundary condition is im-

posed to the temperature. We assume that one can act on the velocity and the temperature on

a small part of the boundary. For the proof, we first transform the boundary control problem

into a distributed control problem. Then, we prove a global approximate controllability result

by adapting the strategy of Coron et al [J. Eur. Math. Soc., 22 (2020), pp. 1625–1673]; this

relies on the controllability properties of the inviscid Boussinesq system and the analysis of

appropriate asymptotic boundary layer expansions. Finally, we conclude with a local control-

lability result; as in many other cases, this can be established as a consequence of the null

controllability of a linearized system through a fixed-point argument. Our contribution can be

viewed as an extension of the results in [J. Eur. Math. Soc., 22 (2020), pp. 1625–1673], where

thermal effects were not considered. Thus, we prove that the ideas behind the controllability

properties of the Euler system and the well-prepared dissipation technique can be adapted

to the present situation. Furthermore, we cover all the classical boundary conditions for the

temperature, that is, those of the Robin, Neumann and Dirichlet kinds.

Keywords: Boussinesq system, Navier-slip-with-friction boundary conditions, global controllabil-

ity, boundary layers, global Carleman inequalities.

Mathematics Subject Classification: 35Q35,76D55, 93B05, 93C10.

1 Introduction

Let Ω ⊂ Rn (n = 2 or 3) be a smooth bounded domain with Γ := ∂Ω and let Γc ⊂ Γ be a

non-empty open subset which intersects all connected components of Γ. It will be said that Γc is
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the control boundary. Let us set

Hc := {u ∈ L2(Ω)n : div u = 0 in Ω, u · ν = 0 on Γ\Γc},

where ν = ν(x) is the outward unit normal vector to Ω at the points x ∈ Γ. Here, the equality

u · ν = 0 on Γ\Γc must be understood in the following sense:

〈u · ν, g〉H−1/2(Γ),H1/2(Γ) = 0 ∀g ∈ H1/2(Γ) with g ≡ 0 on Γc.

For a given vector field f , we denote by [f ]tan, D(f) and N(f) the tangential part of f , the

deformation tensor and the tangential Navier boundary operator, respectively given as follows:

[f ]tan := f − (f · ν)ν, D(f) :=
1

2

(
∇f +∇f t

)
, N(f) := [D(f)ν +Mf ]tan. (1)

Here and hence forth, it is assumed that M = M(t, x) is a smooth, symmetric matrix-valued

function. It will be called the friction matrix and will be viewed as a measure of the boundary

rugosity. We will also set

R(θ) :=
∂θ

∂ν
+mθ,

where m = m(t, x) is another smooth function, again related to the properties of the boundary,

known as the heat transfer coefficient.

Let T > 0 be a final time. We will consider the (incomplete) Boussinesq system
∂tu−∆u+ (u · ∇)u+∇p = θen, div u = 0 in (0, T )× Ω,

∂tθ −∆θ + u · ∇θ = 0 in (0, T )× Ω,

u · ν = 0, N(u) = 0, R(θ) = 0 on (0, T )× (Γ \ Γc) ,

u(0, ·) = u0, θ(0, ·) = θ0 in Ω,

(2)

where the functions u, θ and p must be respectively viewed as the velocity field, the temperature

and the pressure of a viscous Newtonian fluid subject to thermal effects and en is the n-th vector

of the canonical basis of Rn. Regarded as a control system, we will interpret that the state is (u, θ)

and the control is the lateral trace of (u, θ) on (0, T )× Γc.

1.1 Main result

Let us introduce the notation

XT (Ω) := [C0
w([0, T ];Hc) ∩ L2(0, T ;H1(Ω)n)]× [C0

w([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω))].

Here, for any Banach space B, C0
w([0, T ];B) denotes the space of weakly continuous B-valued

functions, that is, the functions φ : [0, T ] 7→ B such that t ∈ [0, T ] → 〈ψ, φ(t)〉B′,B is continuous

for every ψ ∈ B′.
We have the following result:

Theorem 1.1 Let T > 0 be a positive time, let (u0, θ0) ∈ Hc × L2(Ω) be a given initial state and

let (u, θ) ∈ XT (Ω) be a weak trajectory of (2). Then, there exists a controlled weak solution to (2)

in XT (Ω) satisfying

(u, θ) (T, ·) =
(
u, θ
)

(T, ·). (3)
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Remark 1.1 For the precise notions of weak trajectory and controlled weak solution, see Def-

inition 2.1 below. Essentially, what we require to (ū, θ̄) and (u, θ) is to belong to XT (Ω) and

satisfy (2) in the weak (distributional) sense.

Remark 1.2 In Theorem 1.1, we do not indicate explicitly which are the controls. As already

said, once the controlled solution is found, the associated control is the lateral trace of the solution

on (0, T )× Γc.

Remark 1.3 Theorem 1.1 is stated as an existence result. The lack of uniqueness comes from two

main reasons. First of all, there exist many controls that drive the solution to (2) to the desired

trajectory. Secondly, even if we select a criterion in order to fix the control without ambiguity, it is

obviously unknown whether the associated state is unique in the 3D case (in 2D, it is known that

the corresponding weak solution is unique; see for instance [2, 26] for the Navier-Stokes case).

1.2 Bibliographical comments

We now recall some existing results in the literature related to Theorem 1.1.

There are several papers where the controllability properties of the Boussinesq equations are

investigated. Most of them are local results covering boundary conditions of various kinds. For

instance, in [14] the local exact boundary controllability to the trajectories was obtained with

boundary controls acting over the whole boundary; in [15], the exact controllability with distributed

controls and periodic boundary conditions was analyzed; in [19], the author proved the local exact

controllability to the trajectories with Dirichlet boundary conditions; this situation is also handled

with a reduced number of controls in [10, 17]. For non-viscous Boussinesq fluids, this subject has

been investigated by Fernández-Cara et al. [11].

On the other hand, the literature on the Navier-Stokes and Boussinesq equations with Navier-

slip boundary conditions is scarce. Let us recall some controllability results obtained for the Navier-

Stokes system: in [7], a small-time global result for the 2D equations has been proved where the

exact controllability can be achieved in the interior of the spatial domain; the residual boundary

layers are apparently too strong to be handled satisfactorily during the control design strategy.

Guerrero proved in [18] the local exact controllability to the trajectories with general nonlinear

Navier boundary conditions. Finally, the small-time global exact controllability with Navier slip-

with-friction boundary conditions towards weak trajectories was proved in [8] by Coron, Marbach

and Sueur; this article provides a positive answer to the famous open question by J.-L. Lions

concerning global null controllability of the Navier-Stokes equations when the boundary conditions

are of this kind. Recently, in [25], this result was extended from Leray weak controlled solutions to

the case of smooth controlled solutions. In what concerns the Boussinesq system with Navier-slip

boundary conditions, see [23, 29] for some local results.

1.3 Strategy of the proof and plan of the paper

Let us briefly indicate the main ideas and results needed for the proof of Theorem 1.1.

In Section 2, we will reduce the task to the solution of a distributed controllability problem by

applying a classical domain extension technique. Then, we will limit our considerations to smooth

initial data by using the smoothing effect of the uncontrolled Boussinesq system.

In Section 3, starting from a sufficiently smooth initial data, we prove a global approximate

controllability result by adapting the strategy introduced by Coron, Marbach and Sueur in [8] in

the Navier-Stokes case.
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In Section 4, we prove a local controllability result. Here, we use an appropriate Carleman

inequality for the adjoint of a linearized system (which leads to the null control of a related

linearized system) and a fixed-point strategy.

In Section 5, we combine all these arguments and achieve the proof.

2 Domain extension and smoothing effect

2.1 Domain extension

Let us consider a smooth extended bounded domainO such that Ω∪Γc ⊂ O and Γ\Γc ⊂ ΓO := ∂O.

In the sequel, if there is no ambiguity, we will also denote by ν(x) the outward unit normal vector

to O at the points x ∈ ∂O.

Let us introduce the following notations:

OT := (0, T )×O and ΛT := (0, T )× ∂O.

In the sequel, we will assume that M and m are extended to [0, T ] × ∂O as smooth functions in

such a way that M is symmetric on (0, T )×∂O. This will allow to speak of N(u) and R(θ) on ΛT .

In general, the notation will be abridged. For instance, if u ∈ H2(O)n and θ ∈ H1(O),

‖(u, θ)‖H2×H1 will stand for the norm of (u, θ) in the space H2(O)n×H1(O). The scalar product

and norm in L2 spaces will be respectively denoted by (· , ·) and ‖ · ‖. The symbol C will stand for

a generic positive constant.

We will need the space

H := {u ∈ L2(O)n : div u = 0 in O, u · ν = 0 on ∂O}.

The following proposition enables us to extend the initial conditions to the whole domain O:

Proposition 2.1 Let (u0, θ0) ∈ Hc × L2(Ω) be given. Then, there exist (u∗, θ∗) ∈ L2(O)n+1 and

σ∗ ∈ C∞(O) with Suppσ∗ ⊂ O \ Ω such that

u∗ = u0 and θ∗ = θ0 in Ω, div u∗ = σ∗ in O, u∗ · ν = 0 on ∂O,
‖u∗‖+ ‖σ∗‖ ≤ C‖u0‖ and ‖θ∗‖ ≤ C‖θ0‖.

(4)

Proof: Let θ∗ ∈ L2(O) be the extension by zero of θ0 to the whole domain O. Then we have

‖θ∗‖ ≤ ‖θ0‖.

Next, in order to find an appropriate extension of u0, we first note that the space

Hc := {φ ∈ C1(Ω;Rn) : div φ = 0 in Ω, φ · ν = 0 on Γ\Γc}

is dense in Hc. Let us put Γc =
⋃k
i=1 Γic, where the Γic denote the intersections of Γc with the

connected components of Γ and let (O\Ω)i denote the subset of O\Ω for which ∂(O\Ω)i∩∂Ω = Γic.

Also, let ωi ⊂⊂ (O \ Ω)i be a non-empty open subset and let σi∗ ∈ C∞c (ωi) be given with∫
(O\Ω)i

σi∗ = 1 for i = 1, . . . , k.
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Let us assume that u0 ∈ Hc and let (u0,m)m≥1 be a sequence in Hc with u0,m → u0 in Hc. For

every i ∈ {1, . . . , k} and m ≥ 1, the following non-homogeneous elliptic problem admits a unique

solution wim ∈ H1((O\Ω)i):

−∆wim = −aimσi∗ in (O\Ω)i,

∫
(O\Ω)i

wim = 0,

∂wim
∂ν

= u0,m · ν on Γic,

∂wim
∂ν

= 0 on ∂(O\Ω)i \ Γic,

where aim :=

∫
Γc

(u0,m · ν) dΓ. It is clear that, for every i ∈ {1, . . . , k}, aim converges to some

ai ∈ R and wim converges to some wi ∈ H1((O\Ω)i) as m→ +∞.

Let us set

u∗ :=

{
u0 in Ω,

∇wi in (O\Ω)i, for i = 1, . . . , k.

It is then clear that u∗ ∈ L2(O)n, div u∗ = σ∗ in O for some σ∗ ∈ C∞c (O\Ω) and u∗ · ν = 0 on ∂O.

On the other hand, we see that, by construction, (4) is satisfied. 2

Let us introduce the following notation:

WT (O) := [C0
w([0, T ];L2(O)n) ∩ L2(0, T ;H1(O)n)]× [C0

w([0, T ];L2(O)) ∩ L2(0, T ;H1(O))].

The notion of solution used throughout the paper is the following:

Definition 2.1 Let T > 0 be a positive time and let (u0, θ0) ∈ Hc × L2(Ω) be given. It will be

said that (u, θ) ∈ XT (Ω) is a controlled weak trajectory of (2) with initial condition (u0, θ0) if (u, θ)

is the restriction to (0, T )×Ω of a weak Leray solution, still denoted by (u, θ), in the space WT (O),

to the nonlinear system
∂tu−∆u+ (u · ∇)u+∇p = θen + v, div u = σ in OT ,
∂tθ −∆θ + u · ∇θ = w in OT ,
u · ν = 0, N(u) = 0, R(θ) = 0 on ΛT ,

u(0, ·) = u∗, θ(0, ·) = θ∗ in O,

(5)

where

• v ∈ C0([0, T ];H1(O)n) ∩ H1(0, T ;L2(O)n), w ∈ C0([0, T ];H1(O)) ∩ H1(0, T ;L2(O)) and

σ ∈ C∞(OT ) are supported by (0, T )× (O \ Ω) and

• (u∗, θ∗) is an extension of (u0, θ0) furnished by Proposition 2.1, satisfying div u∗ = σ(0, ·).

Let us recall an existence result of weak solution to (5); it is taken from [27] (see Proposition 3.7

in that reference) and see also [4, Proposition 2.2].

Proposition 2.2 Let us assume that T > 0 and v, σ, w and (u∗, θ∗) are as in Definition 2.1.

Then there exists at least one weak Leray solution (u, θ) to (5).
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2.2 Smoothing effect of the uncontrolled Boussinesq system

The goal of this section is to show that, starting from L2 initial data, at small time the solution is

smooth. For convenience, this property will be stated as follows:

Lemma 2.1 Let us assume that T > 0 and (u, θ) ∈ C∞(OT )n+1 is such that div u = 0 in OT
and u · ν = 0 on ΛT . Then, there exists a smooth function ΨT : R+ 7→ R+ with ΨT (0) = 0 such

that, for any (r∗, q∗) ∈ H × L2(O) and any weak Leray solution (r, q) ∈WT (O) to
∂tr −∆r + (r · ∇)r + (u · ∇)r + (r · ∇)u+∇π = qen, div r = 0 in OT ,
∂tq −∆q + (r + u) · ∇q + r · ∇θ = 0 in OT ,
r · ν = 0, N(r) = 0, R(q) = 0 on ΛT ,

r(0, ·) = r∗, q(0, ·) = q∗ in O,

(6)

the following property holds:

∃ t0 ∈ [0, T ]; ‖(r, q)(t0, ·)‖H3×H3 ≤ ΨT (‖(r∗, q∗)‖) .

The proof of this lemma is quite classical but, for completeness, will be given in Appendix A.

3 Approximate controllability problem

In this section, we prove an approximate controllability result starting from sufficiently smooth

initial data.

Proposition 3.1 Let us assume that T > 0, (u, θ), v, w and σ be as in Definition 2.1. Suppose

that (u, θ) is, together with p, an associated solution and assume that the triplet (u, p, θ) belongs

to C∞(OT ;Rn+2). Let (u∗, θ∗) ∈ [H3(O)n ∩H]×H3(O) be an initial state. Then, for any δ > 0,

there exist regular controls v, w and σ, again supported in O \Ω, and an associated weak solution

to (5) satisfying

‖(u, θ)(T, ·)− (u, θ)(T, ·)‖ ≤ δ.

For the proof, we will follow the strategy introduced by Coron, Marbach and Sueur in [8]. Let

us explain how it works.

First, a change of scale associated to a small parameter ε > 0 is introduced and (5) is trans-

formed into a Boussinesq system with small viscosity ε that must be controlled in the (long) time

interval [0, T/ε], starting from a small initial state, see (7). The advantage of this scaling is that

we can benefit from the nonlinear terms (u · ∇)u and u · ∇θ.
Formally, by taking ε = 0, we obtain the inviscid Boussinesq system, see (11). For this hyper-

bolic system, we can construct a very particular nontrivial trajectory that connects (0, 0) ∈ Rn+1

to itself and sends any particle outside the physical domain before the final time T . By linearizing

the inviscid Boussinesq system around the previous trajectory, we obtain a new hyperbolic linear

system that is small-time globally null-controllable (actually, what we do is to apply the so called

return method, due to Coron, see [5]; note that the linearization around the trivial state leads to a

non-controllable system).

In the particular case of a “special slip” boundary condition for the velocity and a Neumann

boundary condition for the temperature, that is, with M such that [∇×u]tan = 0 on ΛT and m ≡ 0,

we immediately conclude by estimating the remainder terms. We do not need to use the long
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interval time [0, T/ε] to control in this case, since the solution is already small at intermediate

times T∗ ∈ (0, T/ε).

Unfortunately, in the general case, a boundary layer appears. This phenomenon was already

taken into account in [12, 22] for the Navier-Stokes PDEs. Thus, we have to introduce some

corrector terms in the asymptotic expansion of the solution depending on ε, in order to estimate

the residual layers. It is found that the boundary layer decays but not enough. Hence, the corrector

is not sufficiently small at the final time T/ε and we still cannot conclude.

In order to overcome this difficulty, we adapt the well-prepared dissipation method, introduced

by Marbach in [28]. Here, the idea is to design a control strategy that reinforces the action of

the natural dissipation of the boundary layer after an intermediate time. A desired small state is

obtained at final time and we can finally achieve the proof.

In the sequel, we will frequently need vector functions (u, p, θ, v, w, σ) representing adequate

states (u, p, θ), controls (v, w) and auxiliary functions σ, corresponding to some linear or nonlinear

systems. In all cases, it will be implicitly assumed that v, w and σ vanish outside [0, T ]× (O \Ω).

3.1 Time scaling

Let us introduce{
uε(t, x) := εu(εt, x), pε(t, x) := ε2p(εt, x), θε(t, x) := ε2θ(εt, x),

vε(t, x) := ε2v(εt, x), wε(t, x) := ε3w(εt, x), σε(t, x) := εσ(εt, x).

In these new variables, (5) reads
∂tu

ε − ε∆uε + (uε · ∇)uε +∇pε = θεen + vε, div uε = σε in (0, T/ε)×O,
∂tθ

ε − ε∆θε + uε · ∇θε = wε in (0, T/ε)×O,
uε · ν = 0, N(uε) = 0, R(θε) = 0 on (0, T/ε)× ∂O,
uε(0, ·) = εu∗, θε(0, ·) = ε2θ∗ in O.

(7)

Thus, we work along a large time interval [0, T/ε], starting from the small initial data (εu∗, ε
2θ∗).

The counterpart is the small viscosity. Accordingly, (7) must be viewed as a singular perturbation

of a nonlinear inviscid system.

In order to prove Proposition 3.1, it is sufficient to check that

‖uε(T/ε, ·)− εu(T, ·)‖ = o(ε) and
∥∥θε(T/ε, ·)− ε2θ(T, ·)

∥∥ = o(ε2).

3.2 A special slip boundary condition

In this section, we consider a special situation where the fluid perfectly slips and the proof of Propo-

sition 3.1 is much simpler (there is no boundary layer). For the moment, we will assume that the

target trajectory is zero, i.e. (u, p, θ, v, w, σ) ≡ 0 and we will try to control (7) during the time

interval [0, T ] instead of [0, T/ε]. The goal is to prove

‖uε(T, ·)‖ = o(ε) and ‖θε(T, ·)‖ = o(ε2). (8)

Thus, let us assume that the friction coefficient M is the Weingarten map (or shape operator)

Mw. Thanks to [8, Lemma 1], on the uncontrolled boundary one has zero normal velocity and zero

tangential vorticity, that is,

u · ν = 0 and [∇× u]tan = 0 on ΛT . (9)
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3.2.1 Ansatz with no correction term

Let us introduce an asymptotic expansion of the solution to (7):{
uε = u0 + εu1 + εrε, pε = p0 + εp1 + επε, θε = θ0 + ε2θ1 + ε2qε,

vε = v0 + εv1, wε = w0 + ε2w1, σε = σ0.
(10)

There is some intuition behind (10). The first term (u0, p0, θ0, v0, w0, σ0) is the solution to

an inviscid system, take ε = 0 in (7). It models a reference trajectory around which we linearize

the original system, exactly as is done when applying Coron’s return method, see [5]. It will be

chosen in such a way that the associated flow flushes the particles out of the physical domain

before t = T , see (13) below for a more precisely explanation. The second term (u1, p1, θ1, v1, w1)

takes into account the initial data (u∗, θ∗) and will be controlled to zero in the physical domain

Ω, see Lemma 3.2 below. Then, (rε, πε, qε) contains higher order terms, see (19). At the end,

using (10), what we have to prove is that ‖(rε, qε)(T, · )‖ = o(1), in order to be able to conclude (8).

3.2.2 Inviscid flow

By taking ε = 0 in (7), we obtain the following system
∂tu

0 + (u0 · ∇)u0 +∇p0 = θ0en + v0, div u0 = σ0 in OT ,
∂tθ

0 + u0 · ∇θ0 = w0 in OT ,
u0 · ν = 0 on ΛT ,

u0(0, ·) = u0(T, ·) = 0, θ0(0, ·) = θ0(T, ·) = 0 in O,

(11)

where v0, w0 and σ0 are spatially supported in O \ Ω.

Let us introduce the flow function Φ0 := Φ0(s; t, x) associated to u0. That is, for any (t, x),

Φ0(· ; t, x) solves the ODE problem{
∂sΦ

0(s; t, x) = u0(s,Φ0(s; t, x)),

Φ0(s; t, x)
∣∣
s=t

= x.
(12)

Then, we look for trajectories such that:

∀ x ∈ O, ∃ tx ∈ (0, T ) such that Φ0(tx; 0, x) ∈ O \ Ω. (13)

This property is obvious for the points x already located in O \ Ω. For the points x ∈ Ω, we use

the following result, whose proof can be found in [6, 8] in the 2D case and [8, 16] in the 3D case:

Lemma 3.1 There exists a non-zero solution to (11) (u0, p0, θ0, v0, w0, σ0)∈C∞([0, T ]×O;R2n+4)

such that the associated flow Φ0, defined in (12), satisfies (13). Moreover, we can choose u0, θ0

and w0 such that

θ0 = w0 = 0 and ∇× u0 = 0 in [0, T ]×O (14)

and u0, p0, v0 and σ0 are compactly supported in time in (0, T ).

Note that, in the proof of this result, the assumption that Γc intersects all connected components

of Γ must be used.

In the sequel, when needed, it will be assumed that (u0, p0, θ0, v0, w0, σ0) has been extended

by zero after time T .
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3.2.3 Flushing

In accordance with Lemma 3.1, we take θ0 = w0 = 0 in (10). Let (u1, θ1) be the solution to the

linear problem
∂tu

1 + (u0 · ∇)u1 + (u1 · ∇)u0 +∇p1 = ∆u0 + v1, div u1 = 0 in OT ,
∂tθ

1 + u0 · ∇θ1 = w1 in OT ,
u1 · ν = 0 on ΛT ,

u1(0, ·) = u∗, θ1(0, ·) = θ∗ in O,

(15)

where v1 and w1 are forcing terms, spatially supported in O \ Ω. Thanks to (14), we have ∆u0 =

∇(div u0) + ∇ × (∇ × u0) = ∇σ0. Thus, this term can be absorbed by v1. Of course, (15) is a

linear uncoupled system.

Lemma 3.2 Let us assume that (u∗, θ∗) ∈ [H3(O)n ∩H]×H3(O). There exist forcing terms

v1 ∈ C1([0, T ];H1(O)n) ∩ C0([0, T ];H2(O)n), w1 ∈ C1([0, T ];H2(O)) ∩ C0([0, T ];H3(O)) (16)

with

Supp (v1, w1) ⊂⊂ [0, T ]×O \ Ω, (17)

such that the associated solution (u1, θ1) to (15) satisfies (u1, θ1)(T, ·) = (0, 0) in Ω. Moreover, u1

belongs to C0([0, T ];H2(O)n) ∩ L∞(0, T ;H3(O)n) and a similar property holds for θ1.

Proof: First, note that the result for u1 is proved in [8, Lemma 3]. Second, for θ1 we have a

similar situation and we can apply the same arguments. For completeness, let us sketch the main

ideas.

We will use the smooth partition of unity {η` : 1 ≤ ` ≤ L} defined in [8, Appendix A], which

is related to Φ0 as follows: thanks to (13), we can find γ > 0 and open balls B` for 1 ≤ ` ≤ L

covering O with the following property:{
∀`, ∃t` ∈ (γ, T − γ), ∃m` ∈ {1, · · · ,M} such that

Φ0(s; 0, B`) ⊂ Qm`
∀s ∈ (t` − γ, t` + γ),

(18)

where the Qm`
are squares (or cubes) that never intersect Ω that cover a compact set K in O such

that K ∩ Ω = ∅ and

∀ x ∈ O, ∃ tx ∈ (0, T ) such that Φ0(tx; 0, x) ∈ K

and M ∈ N is the number of such a cubes; hence, every ball spends a positive amount of time

within a given square (cube) where we can use a localized control to act on the θ1. Here, it is

assumed that the η` satisfy 0 ≤ η` ≤ 1,
∑
η` ≡ 1 and Supp (η`) ⊂ B`.

Let us introduce a smooth function % : R 7→ [0, 1], with % = 1 on (−∞,−γ) and % = 0

on (γ,+∞). For each `, consider the solution θ` to{
∂tθ` + u0 · ∇θ` = 0 in (0, T )×O,
θ`(0, ·) = η`θ∗ in O,

and set θ`(t, x) := %(t− t`)θ`(t, x). Since %(T − t`) = 0 and %(−t`) = 1, θ` solves the linear problem{
∂tθ` + u0 · ∇θ` = w` in (0, T )×O,
θ`(0, ·) = η`θ∗, θ`(T, ·) = 0 in O,
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where w`(t, x) := %t(t− t`)θ`. Since %t vanishes outside (−γ, γ), one has (18) and η` is compactly

supported in B`, it is easy to see that w` is supported in [0, T ]×Qm`
.

At this point, we take θ1 :=
∑
` θ` and w1 :=

∑
` w` and we see that the second PDE and

the second initial condition in (15) are satisfied. Thanks to this explicit construction, the spatial

regularity of w1 and θ` are the same. Therefore, w1 ∈ C1([0, T ], H2(O)) ∩C0([0, T ], H3(O)). The

fact that θ1 belongs to C0([0, T ];H2(O)) ∩ L∞(0, T ;H3(O)) readily comes from the fact that the

θ` satisfy the same. This ends the proof. 2

Lemma 3.2 is a null controllability result. Thanks to the linearity and reversibility of (15), it

leads to an exact controllability result:

Lemma 3.3 Let us assume that (u∗, θ∗), (uT , θT ) ∈ [H3(O)n ∩H]×H3(O). Then, there exist v1

and w1 as in (16) and (17) such that the associated solution to (15) satisfies (u1, θ1)(T, ·) =

(uT , θT ). Moreover, u1 belongs to C0([0, T ];H2(O)n) ∩ L∞(0, T ;H3(O)n) and a similar property

holds for θ1.

3.2.4 Equations and estimates for the remainder

The equations for rε, πε and qε in the extended domain OT are
∂tr

ε − ε∆rε + (uε · ∇)rε +∇πε = fε −Aεrε + εqεen + εθ1en, div rε = 0 in OT ,
∂tq

ε − ε∆qε + uε · ∇qε = hε −Bεrε in OT ,
rε · ν = 0, [∇× rε]tan = −[∇× u1]tan, R(qε) = −R(θ1) on ΛT ,

rε(0, ·) = 0, qε(0, ·) = 0 in O,

(19)

where we have introduced

fε := ε∆u1 − ε(u1 · ∇)u1, Aεrε := (rε · ∇)(u0 + εu1),

hε := ε∆θ1 − εu1 · ∇θ1, Bεrε := εrε · ∇θ1.

We can establish energy estimates for the remainder by multiplying (19)1 by rε and (19)2

by qε. Indeed, after integration by parts, and thanks to the interpolation inequality in [2, Theo-

rem III.2.36]), we easily obtain the following estimates:∣∣∣∣∫
∂O

qεR(θ1) dΓ

∣∣∣∣ ≤ ‖qε‖L2(∂O)

∥∥R(θ1)
∥∥
L2(∂O)

≤ C‖qε‖H1

∥∥θ1
∥∥
H2 ,∣∣∣∣∫

∂O
m|qε|2 dΓ

∣∣∣∣ ≤ C‖qε‖L2‖qε‖H1

and

1

2

d

dt
(‖rε‖2 + ‖qε‖2) + ε(‖∇× rε‖2 + ‖∇qε‖2)

≤ C(ε+ ‖σ0‖L∞ + ‖u0 + εu1‖L∞ + ε‖∇θ1‖L∞)(‖rε‖2 + ‖qε‖2)

+
ε

2
(‖∇× rε‖2 + ‖∇qε‖2) + C

[
ε
(
‖u1‖2H2 + ‖θ1‖2H2

)
+ ‖fε‖2 + ‖hε‖2

]
,

(20)

where the boundary term for rε is bounded as in [8, Section 2.5].

From Gronwall’s inequality and Lemma 3.2, we deduce that

‖rε‖2L∞(L2) + ‖qε‖2L∞(L2) + ε
(
‖∇ × rε‖2 + ‖∇qε‖2

)
= O(ε).
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Consequently, at time T , since (u0, θ0)(T, ·) = (u1, θ1)(T, ·) = (0, 0), we have

‖uε(T, ·)‖ ≤ ‖εrε(T, ·)‖ ≤ O(ε3/2) and ‖θε(T, ·)‖ ≤ ‖ε2qε(T, ·)‖ ≤ O(ε5/2).

This concludes the proof of Proposition 3.1 in a special case of the slip boundary condition (9).

3.3 The case of Navier-slip-with-friction boundary conditions

We come back in this section to the general case.

3.3.1 Ansatz with correction term

Let us introduce a smooth function ϕ : Rn 7→ R such that{
ϕ = 0 on ∂O, ϕ > 0 in O, ϕ < 0 in Rn\O and

|ϕ(x)| = dist(x, ∂O) in a small neighborhood of ∂O.

Then, ν = −∇ϕ near ∂O and ν can be extended smoothly within the full domain O.

According to the original boundary layer analysis of Navier slip-with-friction boundary condi-

tions proved in [22] by Iftimie and Sueur, we introduce the following expansions of the variables

and the forcing terms:
uε(t, x) = u0(t, x) +

√
ερ (t, x, ϕ(x)/

√
ε) + εu1(t, x) + · · ·+ εrε(t, x),

pε(t, x) = p0(t, x) + εp1(t, x) + · · ·+ επε(t, x),

θε(t, x) = θ0(t, x) + ε2θ1(t, x) + ε2qε(t, x),

(21)


vε(t, x) = v0(t, x) +

√
εvρ (t, x, ϕ(x)/

√
ε) + εv1(t, x),

wε(t, x) = w0(t, x) + ε2w1(t, x),

σε(t, x) = σ0(t, x).

Thus, since u0 cannot satisfy the Navier-slip-with-friction boundary condition on ΛT , we in-

troduce in (21) a corrector ρ. This profile is expressed in terms of both the slow spatial variable

x ∈ O and one fast scalar variable z = ϕ(x)/
√
ε. In the expansions in (21), the missing terms will

be defined below, see Section 3.3.3; they will help us to prove that the remainder is small. We use

the couples (u0, θ0) and (u1, θ1) (extended by zero for t > T ) introduced in the previous sections;

see Sections 3.2.2 and 3.2.3. The following sections are devoted to determine, analyze and estimate

all the terms.

The boundary layer corrector will be given by the solution to an initial boundary value problem

with a boundary condition associated to the extra variable. More precisely, as in [22], we will require

that ρ = ρ(t, x, z) satisfies
∂tρ+ [(u0 · ∇)ρ+ (ρ · ∇)u0]tan + u0

[z∂zρ− ∂zzρ = vρ in R+ ×O × R+,

∂zρ(t, x, 0) = g0(t, x) in R+ ×O,
ρ(t, x, 0) · ν(x) = 0 in R+ ×O,
ρ(0, x, z) = 0 in O × R+,

(22)

where we have used the notation

u0
[ (t, x) := −u

0(t, x) · ν(x)

ϕ(x)
and g0(t, x) := 2χ(x)N(u0)(t, x) in R+ ×O,
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for a smooth cut-off function χ satisfying χ = 1 in a neighborhood of ∂O.

We can formally obtain (22) by replacing the expression uε by u0 +
√
ε ρ(t, x, ϕ(x)/

√
ε in (7)

and keeping the terms of order
√
ε.

The following points are in order:

• vρ must be viewed as a smooth control whose spatial support is located outside of Ω. With

the help of the transport term, this control will enable us to modify the behavior of ρ inside

the physical domain Ω.

• ρ depends on n + 1 spatial variables (n slow variables xi and one fast variable z); thus, it

is not set in curvilinear coordinates. It is implicitly assumed that ν actually refers to the

extension −∇ϕ of the normal vector; in turn, this furnishes extensions of the identities in (1).

• We will check that the construction above satisfies vρ · ν = 0. Since the equation is linear, it

preserves the relation ρ(0, x, z) · ν(x) = 0 at initial time, whence the boundary profile will be

tangential, even inside the domain; see [22, Section 2] for more details.

• In (23), the role of the function χ is to ensure that ρ is compactly supported near ∂O.

• Since u0 is smooth and tangent to the boundary, a Taylor expansion proves that u0
[ is smooth

in O.

• The boundary layer profile ρ does not depend on ε.

3.3.2 The well-prepared dissipation method

Unlike in the previous section, where T is the fixed time control, we will need here virtually long

time intervals [0, T/ε] to dissipate the boundary layer.

The most natural strategy would be to use that u0 is equal to 0 after time T . Then, (22)

would be reduced to a heat equation on the half line R+ with homogeneous Neumann boundary

conditions and the boundary layer would decay. Unfortunately, this is too slow: one can only prove

that
√
ερ(T/ε, · , ϕ(·)/

√
ε) = O(ε), see [8, Section 3.2]; therefore, by dividing by ε, u(T, ·) = O(1)

and this is not enough to use the local result at the end. This is why we use the source vρ to

“prepare” the dissipation of the boundary layer.

Let us introduce some weighted Sobolev spaces:

Hm,`(R) :=

f ∈ Hm(R) ;

m∑
|α|=0

∫
R

(1 + |z|2)`|∂αz f(z)|2dz < +∞

 ,

endowed with the corresponding (natural) norms. In [8, Lemma 7], the following result is proved:

Lemma 3.4 Let us assume that k ≥ 1 and let u0 ∈ C∞(OT ;Rn) be a fixed reference flow in (11).

There exist vρ ∈ C∞(R+×O×R+) with vρ · ν = 0 and support in (0, T )× (O\Ω)×R+ such that,

for any j,m ∈ N and any ` = 0, 1, . . . , k, the associated boundary layer profile ρ satisfies:

‖ρ(t, · , ·)‖Hj
x(O;Hm,`

z (R+)) ≤ C
∣∣∣∣ log(2 + t)

2 + t

∣∣∣∣1/4+(k−`)/2

, (23)

where the positive constant C depends on j, m, ` and u0, but is independent of t.

The interest of Lemma 3.4 is twofold:
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• The estimates (23) will be used to show that the source terms generated by the boundary

layer are integrable in long time and the equation satisfied by the remainder term is well

posed.

• Also, they will be used to prove that the boundary layer is sufficiently small at time T/ε.

Remark 3.1 A more ambitious idea would be to design a control strategy to get exactly

ρ(T/ε, ·, ϕ(·)/
√
ε) ≡ 0. But, unfortunately, it can be proved that (22) is not null-controllable

at time T/ε, see [8, Section 3.5].

3.3.3 Technical profiles

For a function f = f(t, x, z), we will use the notation {f} to denote its values at points (t, x, z) with

z = ϕ(x)/
√
ε. The full decomposition required for the states and controls will be the following:{

uε = u0 +
√
ε{ρ}+ εu1 + ε∇ζε + ε{β}+ εrε, pε = p0 + ε{ψ}+ εp1 + εµε + επε,

θε = θ0 + ε2θ1 + ε2qε, vε = v0 +
√
ε{vρ}+ εv1, wε = w0 + ε2w1, σε = σ0.

(24)

The functions β, ζε and ψ are defined as follows:

β(t, x, z) = −2e−zN(ρ)(t, x, 0)− ν(x)

∫ +∞

z

div ρ(t, x, z′) dz′,{
∆ζε = −{div β} in O,
∂νζ

ε = −β(t, · , 0) · ν on ∂O,{
ψ = ψ(t, x, z) satisfies [(u0 · ∇)ρ+ (ρ · ∇)u0] · ν = ∂zψ

and ψ(t, x, z)→ 0 as z → +∞.

(25)

It is not difficult to check that the definitions in (25) are compatible with (7) and, furthermore,

the following estimates hold:

‖β(t, ·, · )‖Hj
x(O;Hm,l

z (R+)) ≤ C‖ρ(t, ·, · )‖Hj+1
x (O;Hm+1,l+2

z (R+)), (26)

‖ζε(t, · )‖H4(O) ≤ C
(
ε−3/4‖β(t, · , · )‖H4

x(O;H2,0
z (R+)) + ‖ρ(t, · , · )‖H3

x(O;H0,1
z (R+))

)
,

‖ζε(t, · )‖H3(O) ≤ C
(
ε−1/4‖β(t, · , · )‖H3

x(O;H1,0
z (R+)) + ‖ρ(t, · , · )‖H2

x(O;H0,1
z (R+))

)
,

‖ζε(t, · )‖H2(O) ≤ C
(
ε1/4‖β(t, · , · )‖H2

x(O;H0,0
z (R+)) + ‖ρ(t, · , · )‖H1

x(O;H0,1
z (R+))

)
, (27)

‖ψ(t, ·, · )‖H1
x(O;H0,0

z (R+)) ≤ C‖ρ(t, ·, · )‖H2
x(O;H0,2

z (R+)).

3.3.4 Equation and estimates for the remainder

We will now analyze the remainder defined in (24), which is in fact a solution in the domain R+×O
to 

∂tr
ε − ε∆rε + (uε · ∇)rε +∇πε = {fε} − {Aεrε}+ εqεen + εθ1en, in R+ ×O,

∂tq
ε − ε∆qε + uε · ∇qε = {hε} −Bεrε, div rε = 0 in R+ ×O,

rε · ν = 0, N(rε) = −N(gε), R(qε) = −R(θ1) on R+ × ∂O,
rε(0, · ) = 0, qε(0, · ) = 0 in O,

(28)
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where gε := u1 +∇ζε + β|z=0. We have introduced in (28) the new operators Aε and Bε, with

Aεrε := (rε · ∇)(u0 +
√
ερ+ εu1 + ε∇ζε + εβ)− (rε · ν)(∂zρ+

√
ε∂zβ),

Bεrε := εrε · ∇θ1,
(29)

and the new forcing terms fε and hε, with

fε := (∆ϕ∂zρ− 2(ν · ∇)∂zρ+ ∂zzβ) +
√
ε(∆ρ+ ∆ϕ∂zβ − 2(ν · ∇)∂zβ)

+ ε(∆β + ∆u1 + ∆∇ζε)− ((ρ+
√
ε(β + u1 +∇ζε)) · ∇)(ρ+

√
ε(β + u1 +∇ζε))

− (u0 · ∇)β − (β · ∇)u0 − u0
[z∂zβ + (β + u1 +∇ζε) · ν∂z(ρ+

√
εβ)−∇ψ − ∂tβ

(30)

and

hε := ε∆θ1 − (
√
ερ+ ε(u1 +∇ζε + β)) · ∇θ1. (31)

We have to estimate the size of the remainder (rε, qε) at final time and check that it is small.

We begin by establishing an energy estimate. Here, we perform computations similar to those

in [18, Proposition 1.1] (see also [8, Section 4.4]).

Thus, we multiply (28)1 by rε and (28)2 by qε and we integrate by parts. We proceed as before,

term by term, the only difference being the treatment of the terms coming from the boundary.

We recall the following identity, which will be used in the sequel:∫
O

(−∆u) · v = 2

∫
O
D(u) ·D(v)− 2

∫
∂O

[D(u)ν]tan · v dΓ,

where u and v are smooth vector fields such that v is divergence-free and tangential to the boundary.

It follows that

−ε
∫
O

∆rε · rε = 2ε‖D(rε)‖2 + 2ε

∫
∂O

([Mrε]tan +N(gε)) · rε dΓ,

and, consequently, for any λ > 0,

2

∣∣∣∣∫
∂O

([Mrε]tan +N(gε)) · rε
∣∣∣∣ ≤ 2

∫
∂O
|Mrε · rε| dΓ +

∫
∂O
|N(gε) · rε| dΓ

≤ λ‖∇rε‖2 + Cλ(‖rε‖2 + ‖N(gε)‖2L2(∂O))

≤ λ‖∇rε‖2 + Cλ(‖rε‖2 + ‖gε‖2H2(O))

(32)

Let us absorb the term ‖∇rε‖2 in the right hand side (32). Thanks to the classical Korn’s

inequality, since div rε = 0 in O and rε · ν = 0 on ∂O, we have

‖rε‖2H1 ≤ CK‖rε‖2 + CK‖D(rε)‖2

for some CK > 0. Choosing λ = 1/(2CK), we get:

d

dt
‖rε‖2 + ε‖D(rε)‖2 ≤

(
‖σ0‖∞ + Cε+ ‖{fε}‖+ 2‖{Aε}‖∞

)
‖rε‖2

+
(
Cε‖gε‖2H2 + ‖{fε}‖+ ε‖θ1‖2

)
+ ε‖qε‖2

and

d

dt
‖qε‖2 + ε‖∇qε‖2 ≤

(
‖σ0‖∞ + ‖{hε}‖+ ‖Bε‖∞ + Cε

)
‖qε‖2

+
(
‖{hε}‖+ Cε‖θ1‖2H2

)
+ ‖Bε‖∞‖rε‖2.
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Adding these two estimates, we see that

d

dt
(‖rε‖2 + ‖qε‖2) + ε(‖D(rε)‖2 +‖∇qε‖2)

≤
(
‖σ0‖∞ + Cε+ ‖{fε}‖+ 2‖{Aε}‖∞ + ‖{hε}‖+ ‖Bε‖∞

)(
‖rε‖2 + ‖qε‖2

)
+
(
Cε‖gε‖2H2 + ‖{fε}‖+ ‖{hε}‖+ Cε‖θ1‖2H2

)
.

Applying Gronwall’s inequality in the interval (0, T/ε) and using the fact that the initial state

vanishes and

‖{Aε}‖L1(L∞) + ‖Bε‖L1(L∞) = O(1), (33)

ε‖θ1‖2L2(H2) + ε‖gε‖2L2(H2) = O(ε1/4), (34)

‖{fε}‖L1(L2) + ‖{hε}‖L1(L2) = O(ε1/4), (35)

we obtain:

‖rε‖2L∞(L2) + ‖qε‖2L∞(L2) + ε
(
‖D(rε)‖2L2(L2) + ‖∇qε‖2L2(L2)

)
= O(ε1/4). (36)

The estimates (33)–(35) hold in the whole interval [0,+∞). The estimates for {Aε}, gε and

{fε} can be found in [8, Section 4.4]. Here, we give some details to obtain the estimates for Bε,

θ1 and {hε}, which are new.

First, Bε and θ1 can be easily bounded using (29) and Lemma 3.2. This yields ‖Bε‖L1(L∞) =

O(1) and ε‖θ1‖2L2(H2) = O(ε).

Now, let us justify the estimate of {hε}. The first term of {hε} is O(ε), thanks to the regularity

of θ1.

The second term of {hε}, one can be treated as follows

‖
√
ε{ρ}(t, · ) · ∇θ1(t, · )‖ ≤ C

√
ε‖{ρ}(t, · )‖H1‖∇θ1(t, · )‖H1

≤ C
(√

ε‖ρ(t, · , · )‖H1
x(H0,0

z ) + ‖{∂zρ}(t, ·)‖
)
‖∇θ1(t, · )‖H1

≤ C
(√

ε‖ρ(t, · , · )‖H1
x(H0,0

z ) + ε1/4‖ρ(t, · , · )‖H1
x(H1,0

z )

)
‖∇θ1(t, · )‖H1

≤ Cε1/4‖ρ(t, · , · )‖H1
x(H1,0

z )‖∇θ
1(t, · )‖H1 ,

where we have used that the fast scaling variable enables us to “win” a factor ε1/4, see [22,

Lemma 3] and the Sobolev embedding H1(O) ↪→ L4(O) which is valid in 2D and 3D. Then,

integrating this last inequality with respect to time over (0, T/ε), using the fact that θ1 is bounded

in L∞(0, T ;H3(O)) and Lemma 3.4 for k = 4 and noting that there exists a positive constant

C > 0 such that (log s)/s ≤ Cs−1/2, for every s ≥ 1, we see that

‖
√
ε{ρ} · ∇θ1‖L1(L2) = O(ε1/4).

The third term of {hε} is O(ε), thanks to the regularity of u1 and θ1.

For the fourth term of {hε}, using (26) and (27), we have:

‖ε∇ζε(t, · ) · ∇θ1(t, · )‖ ≤ Cε‖∇xζε(t, · )‖H1‖∇θ1(t, · )‖H1

≤ Cε‖ζε(t, · )‖H2‖∇θ1(t, · )‖H1

≤ Cε
(
ε1/4‖β(t, · , · )‖H2

x(H0,0
z ) + ‖ρ(t, · , · )‖H1

x(H0,1
z )

)
‖∇θ1(t, · )‖H1

≤ Cε‖ρ(t, · , · )‖H3
x(H1,2

z )‖∇θ
1(t, · )‖H1 .
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Integrating this last inequality with respect to time, and using Lemma 3.4 for k = 3 and, again,

the fact that θ1 is bounded in L∞(0, T ;H3(O)), we find that

‖ε∇ζε · ∇θ1‖L1(L2) = O(ε1/4).

The last term of {hε}, can be estimated in a similar way, using (26).

3.4 Towards the trajectory

In this section, we deduce a small-time global approximate controllability result to the smooth

trajectories by arguing as in [8, Section 5]. For this purpose, we will use once more Lemma 3.4

and the estimates (36) on the remainder.

Let (uε, pε, θε) be the solution to (7). First, during the interval [0, T ], we put{
uε = u0 +

√
ε{ρ}+ εu1,ε + ε∇ζε + ε{β}+ εrε, pε = p0 + ε{ψ}+ εp1,ε + εµε + επε,

θε = θ0 + ε2θ1 + ε2qε, vε = v0 +
√
ε{vρ}+ εv1,ε, wε = w0 + ε2w1,ε, σε = σ0,

(37)

where u1,ε(0, · ) = u∗, θ
1,ε(0, · ) = θ∗, u

1,ε(T, · ) = u(εT, · ) and θ1,ε(T, · ) = θ(εT, · ). The couple

(u1,ε, θ1,ε) solves, together with some p1,ε, the first-order system (15) and obviously u1,ε and θ1,ε

depend on ε. However, since the reference trajectory is of class C∞, all the required estimates can

be made independent of ε. In a second step, for large times t ≥ T , we modify the expansions and

set: {
uε =

√
ε{ρ}+ εu(εt, · ) + ε∇ζε + ε{β}+ εrε, pε = ε2p(εt, · ) + εµε + επε,

θε = ε2θ(εt, · ) + ε2qε, vε =
√
εvρ + ε2v, wε = ε3w .

(38)

Note that, for t ≥ T , we have u0 = 0 and (u1, θ1) is the “main” trajectory. Changing (37) by (38)

allows to get rid of some terms in the equations satisfied by the remainder. Indeed, terms such as

ε∆u1, ε(u1 · ∇)u1, εu1 · ∇θ1 and ε∆θ1 will not appear any more in (30) and (31) because they are

already taken into account by
(
u, θ
)
. Actually, despite the presence of the profile (u1, θ1) in both

steps, the estimates obtained for the remainder profile are as in Section 3.3.4.

Let us introduce

u(ε)(t, x) :=
1

ε
uε
(
t

ε
, x

)
and θ(ε)(t, x) :=

1

ε2
θε
(
t

ε
, x

)
.

Then, thanks to (26), (27) and (36), we see that∥∥∥u(ε)(T, · )− u(T, · )
∥∥∥ =

∥∥∥ε−1/2 {ρ} (T/ε, · ) +∇ζε(T/ε, · ) + {β} (T/ε, · ) + rε (T/ε, · )
∥∥∥

≤ ε−1/2 ‖{ρ} (T/ε, · )‖+ ε1/4‖β(T/ε, · , · )‖H2
x(O;H0,0

z (R+))

+ ‖ρ(T/ε, · , · )‖H1
x(O;H0,1

z (R+)) + ‖{β} (T/ε, · )‖+ ‖rε (T/ε, · )‖

≤ ε−1/2‖ρ(T/ε, · , · )‖H0
x(O;H0,0

z (R+)) + ε1/4‖ρ(T/ε, · , · )‖H3
x(O;H1,2

z (R+))

+ ‖ρ(T/ε, · , · )‖H1
x(O;H0,1

z (R+)) + ‖ρ (T/ε, · , · )‖H1
x(O;H1,2

z (R+)) +O(ε1/8) .

We can use (23) to estimate the terms containing ρ in the estimates above. First, recall that

there exists a positive constant C > 0 such that (log s)/s ≤ Cs−1/2, for every s ≥ 1. Then, by

taking ε sufficiently small, the following is found for k ≥ 2:

ε−
1
2 ‖ρ(T/ε, · , · )‖H0

x(O;H0,0
z (R+)) ≤ Cε−1/2

∣∣∣∣ log(2 + T/ε)

2 + T/ε

∣∣∣∣1/4+k/2

≤ Cε−3/8+k/4,

ε
1
4 ‖ρ(T/ε, · , · )‖H3

x(O;H1,2
z (R+)) ≤ Cε1/4

∣∣∣∣ log(2 + T/ε)

2 + T/ε

∣∣∣∣−3/4+k/2

≤ Cε−1/8+k/4,
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‖ρ(T/ε, · , · )‖H1
x(O;H0,1

z (R+)) ≤ C

∣∣∣∣ log(2 + T/ε)

2 + T/ε

∣∣∣∣−1/4+k/2

≤ Cε−1/8+k/4,

|ρ(T/ε, · , · )|H1
x(O;H1,2

z (R+)) ≤ C

∣∣∣∣ log(2 + T/ε)

2 + T/ε

∣∣∣∣−3/4+k/2

≤ Cε−3/8+k/4.

Finally, we choose k large enough, we conclude that
∥∥u(ε)(T, · )− u(T, · )

∥∥ = O(ε1/8) and, from

(36), we have
∥∥θ(ε)(T, · )− θ(T, · )

∥∥ = ‖qε (T/ε, · )‖ = O(ε1/8).

This concludes the proof of Proposition 3.1.

4 Local controllability of the Boussinesq system

The results in this section are relatively well known. For clarity, they will be specified and their

proof will be sketched to some extent.

Let ωc and ω be two non-empty open sets such that ωc ⊂⊂ ω ⊂⊂ O\Ω and let χω be a cut-off

function such that χω = 0 outside ω and χω = 1 in ωc.

The goal of this section is to prove the local exact controllability to the trajectories of the

following Boussinesq system with distributed controls:
∂tu−∆u+ (u · ∇)u+∇p = θen + vχω, div u = 0 in OT ,
∂tθ −∆θ + u · ∇θ = wχω in OT ,
u · ν = 0, N(u) = 0, R(θ) = 0 on ΛT ,

u(0, ·) = u∗, θ(0, ·) = θ∗ in O.

(39)

Since (39) is nonlinear, we first begin by proving a (global) null controllability result for the

following system
∂tz −∆z + ((a+ b) · ∇)z + (z · ∇)b+∇q = hen + vχω, div z = 0 in OT ,
∂th−∆h+ (a+ b) · ∇h+ z · ∇c = wχω in OT ,
z · ν = 0, N(z) = 0, R(h) = 0 on ΛT ,

z(0, ·) = z∗, h(0, ·) = h∗ in O,

(40)

where the vector fields a, b and M and the scalar functions c and m satisfy the following assump-

tions:

(a, b, c) ∈ L∞(0, T ;H ×H × L2(O)) ∩ L∞(OT )2n+1, (at, bt, ct) ∈ L2(0, T ;Lr(O)2n+1)

M ∈ E := H1−`(0, T ;Wϑ1,ϑ1+1(∂O)n×n) ∩H(3−`)/2(0, T ;Hϑ2(∂O)n×n),

m ∈ F := H1−`(0, T ;Wϑ1,ϑ1+1(∂O)) ∩H(3−`)/2(0, T ;Hϑ2(∂O)),

(41)

with ` ∈ (0, 1/2) is arbitrarily close to 1/2, r = 2n, ϑ2 = (1/2)(3− n) + (1− `)(n− 2) and ϑ1 > 1

(arbitrarily small) if n = 3 and ϑ1 = 1 if n = 2. From well known Sobolev embeddings, we deduce

at once that E ↪→ L∞((0, T )× ∂O)n×n and F ↪→ L∞((0, T )× ∂O).

It is well known that the null controllability of (40) is equivalent to the observability of the

adjoint system
−∂tφ−∆φ− (a · ∇)φ−D(φ)b+∇π = c∇ψ, div φ = 0 in OT ,
−∂tψ −∆ψ − (a+ b) · ∇ψ = φ · en in OT ,
φ · ν = 0, N(φ) = 0, R(ψ) = 0 on ΛT ,

φ(T, ·) = φ∗, ψ(T, ·) = ψ∗ in O.

(42)
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The desired observability inequality will be a consequence of a global Carleman inequality for (42),

see Proposition 4.1 below.

4.1 Carleman estimates

Before stating the required inequalities, let us introduce several classical weights in the study

of Carleman estimates for parabolic equations, see [13]. The basic weight will be a function

η0 ∈ C2(O) verifying

η0 > 0 in O, η0 ≡ 0 on ∂O, |∇η0| > 0 in O \ ω′,

where ω′ ⊂⊂ ωc is a non-empty open set. The existence of η0 is proved in [13].

Thus, for any λ > 0 we set:

α(x, t) =
e2λ‖η0‖∞ − eλη0(x)

t4(T − t)4
, α∗(t) = max

x∈O
α(x, t), α̂(t) = min

x∈O
α(x, t),

ξ(x, t) =
eλη

0(x)

t4(T − t)4
, ξ∗(t) = min

x∈O
ξ(x, t), ξ̂(t) = max

x∈O
ξ(x, t).

We also introduce the following notation:

I(s, λ;φ) =

∫∫
OT

e−2sα
[
s3λ4ξ3|φ|2 + sλ2ξ|∇φ|2 + s−1ξ−1(|φt|2 + |∆φ|2)

]
dx dt,

where s and λ are positive real numbers and φ = φ(t, x).

The following Carleman inequality holds:

Proposition 4.1 Assume that the assumptions (41) are fulfilled. There exist positive constants λ̃,

s̃ and C = C(O, ωc) such that, for any (φ∗, ψ∗) ∈ H × L2(O), the corresponding solution to (42)

verifies:

I(s, λ;φ) + I(s, λ;ψ) ≤ C(1 + T 2)s15/2λ8

∫∫
(0,T )×ωc

e−4sα̂+2sα∗ ξ̂15/2(|φ|2 + |ψ|2) dx dt, (43)

for all λ ≥ λ̃ and s ≥ s̃. Furthermore, λ̃ and s̃ have the form λ̃ = λ̃0e
λ̃1T and s̃ = s̃0e

λs̃1(T 4 +T 8),

where λ̃0, λ̃1 and s̃0 only depend on ‖a‖∞, ‖b‖∞, ‖c‖∞, ‖at‖L2(Lr), ‖bt‖L2(Lr), ‖ct‖L2(Lr), ‖M‖E
and ‖m‖F , and s̃1 only depend on O and ωc.

The proof of Proposition 4.1 consists of three steps: (i) global Carleman estimates for φ and ψ

(see [18, Proposition 2.1] and [27, Appendix D]); (ii) estimates of the pressure by a local term

using elliptic Carleman inequalities, see [24]; (iii) estimates of local integrals of ∆φ and φt by

using global energy estimates. For more details, we refer to [27, Appendix E] and [4, Appendix C].

4.2 Null controllability of the linearized system

In the sequel, we take s = s̃ and λ = λ̃.

In this section we prove the null controllability of the linear system (40) as a consequence of

the inequality (43). To this end, let us introduce the space where the controls are searched for:

H := [H1(0, T ;L2(O)n) ∩ C0([0, T ];H1(O)n)]× [H1(0, T ;L2(O)) ∩ C0([0, T ];H1(O))].
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Proposition 4.2 Let (z∗, h∗) ∈ H × L2(O) be given and suppose that (41) holds. Then, there

exist controls (v, w) ∈ H such that the corresponding solution to (40) satisfies

z(T, ·) = 0 and h(T, ·) = 0.

Moreover, the following estimate holds

‖κ1/2vχω‖+ ‖κ1/2wχω‖+ ‖v‖H1(L2) + ‖v‖L∞(H1) + ‖w‖H1(L2) + ‖w‖L∞(H1) ≤ C(‖z∗‖+ ‖h∗‖),

where the positive constant C, depends only on O, ω, T , ‖a‖∞, ‖b‖∞, ‖c‖∞, ‖at‖L2(Lr), ‖bt‖L2(Lr),

‖ct‖L2(Lr), ‖M‖E and ‖m‖F , κ(t) = e4sα̂−2sα∗ ξ̂−15/2, α̂, α∗ and ξ̂ are defined in Section 4.1.

The proof of Proposition 4.2 is based on a penalized Hilbert Uniqueness Method; it follows the

ideas of [18, Section 3.1]. The details can be found in [27, Proposition 3.17].

4.3 Local exact controllability to the trajectories of the Boussinesq sys-

tem

We now prove the local exact controllability to the trajectories of (39).

Let (u, p, θ) be an uncontrolled solution to (39), that is, a triplet satisfying
∂tu−∆u+ (u · ∇)u+∇p = θen, div u = 0 in OT ,
∂tθ −∆θ + u · ∇θ = 0 in OT ,
u · ν = 0, N(u) = 0, R(θ) = 0 on ΛT ,

u(0, ·) = u∗, θ(0, ·) = θ∗ in O.

Let us assume that the following holds:

u ∈ X := H(3−`)/2(0, T ;Hϑ2+1/2(O)n ∩H) ∩H1−`(0, T ;Wϑ1+1/2,ϑ1+1(O)n),

u∗ ∈ H3(O)n ∩H, N(u∗) = 0 on ∂O,
θ ∈ Y := H(3−`)/2(0, T ;Hϑ2+1/2(O)) ∩H1−`(0, T ;Wϑ1+1/2,ϑ1+1(O)),

θ∗ ∈ H3(O), R(θ∗) = 0 on ∂O,

(44)

with `, r, ϑ1 and ϑ2 as in the beginning of Section 4.

Proposition 4.3 Assume that T > 0 and (u, u∗, θ, θ∗) satisfies (44). Then, there exists δT > 0

such that, for every (u∗, θ∗) ∈ [H3(O)n ∩H]×H3(O) satisfying ‖u∗−u∗‖H3 ≤ δT , ‖θ∗− θ∗‖H3 ≤
δT and the compatibility conditions

N(u∗) = 0, R(θ∗) = 0 on ∂O,

one can find controls (v, w) ∈ H and associated solutions (u, p, θ) to (39) with

u(T, ·) = u(T, ·) and θ(T, ·) = θ(T, ·) in O.

The proof is based on a Kakutani’s Fixed-Point Theorem. It is a straightforward adaptation

of the argument in [18, Section 3.2]. The details can be found in [27, Proposition 3.18] and [4,

Proposition 4.3]. See also [29] for a similar result.
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5 Global controllability to the trajectories

Let us explain how the previous arguments can be chained in order to prove the main result, that

is, Theorem 1.1.

First, we reduce the controllability to weak trajectories to the controllability to smooth trajec-

tories as follows.

Despite (u, p, θ) is only a weak solution in [0, T ], there exists a time interval [τ1, τ2] ⊂ (0, T )

such that (u, p, θ) is smooth in [τ1, τ2]. This statement follows from classical results; indeed, one

can easily adapt [21, Theorems 2, 3 and 9] or [30, Remark 3.2] (written for the Navier-Stokes

equations with Dirichlet boundary conditions and source terms) to our context.

Then, we can start our control strategy by doing nothing in [0, τ1], that is, taking v = w = σ = 0

in (5). The weak trajectory will move from (u∗, θ∗) to some (u, θ)(τ1, · ), that must be viewed as the

new initial data. Hence, without loss of generality, we can work with a smooth reference trajectory.

We split the control strategy into four steps:

Step 1 - Regularization of the data: We begin by extending Ω to a new domain O,

as explained in Section 2.1. We also use Proposition 2.1 to guarantee the existence of (u∗, θ∗) ∈
H × L2(O) and σ∗ ∈ C∞c (ω0) satisfying (4). We set σ(t, x) := ς(t/T )σ∗(x) with ς a smooth

nonnegative decreasing function such that ς ≡ 1 near 0 and ς ≡ 0 near 1/8. The function σ

must satisfy the compatibility condition div u∗ = σ(0, · ). Then, we let the system (5) evolve with

v = w = 0 in the time interval (0, T/8) in order to reach some data (u, θ)(T/8, · ) ∈ H × L2(O).

Next, by using the smoothing effect of the uncontrolled Boussinesq system starting from divergence

free data (see Lemma 2.1), we deduce that there exists T1 ∈ (T/8, T/4) such that (u, θ)(T1, · ) ∈
[H3(O)n ∩H]×H3(O). Accordingly, we can apply Lemma 3.3.

Step 2 - Global approximate controllability result in L2(O)n+1: Let us set T2 :=

T/2. Starting from the new initial data (u, θ)(T1, · ), we use the global approximate controllability

result stated in Proposition 3.1 in a time interval of size T2 − T1 ≥ T/4. Thus, for any δ > 0, we

can build a trajectory starting from (u, θ)(T1, · ) and such that

‖(u, θ)(T2, · )− (u, θ)(T2, · )‖ ≤ δ.

Step 3 - Regularizing argument: Now, we use again Lemma 2.1 to deduce the existence

of a time T3 ∈ (T2, 3T/4) such that

‖(u, θ)(T3, · )− (u, θ)(T3, · )‖H3×H3 ≤ ΨT/4(δ).

In particular, we can take δ small enough such that

ΨT/4(δ) ≤ δT/4,

where δT/4 is the radius of local controllability result given in Proposition 4.3 and the function

ΨT/4 appears in the regularity result for the free Boussinesq system; see Lemma 2.1.

Step 4 - Local controllability in H3(O)n+1: Finally, we use the local controllability

result in [T3, T3 + T/4], and get

(u, θ)(T3 + T/4, · ) = (u, θ)(T3 + T/4, · ).

Then, extending the control by zero for t ∈ [T3 + T/4, T ], we get (3) and the proof is complete.

Remark 5.1 A detailed analysis of the proofs of the results in Sections 3 to 4 shows that the

(intermediate) global approximate controllability result holds as soon as the components of ū

and θ̄ belong to L∞(0, T ;H3(O)) ∩ C0([0, T ];H2(O)) and the local exact controllability result

holds as soon as (ū, θ̄) satisfies (44).
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6 Additional comments and open questions

6.1 Controlling with less controls

A natural extension of the main result would be the global exact controllability with a reduced

number of controls acting on a small part of the boundary. Unfortunately, in order to solve this

problem, we cannot use the extension domain technique.

However, in the spirit of [10] and [29], one could try to establish a small-time global null

controllability for the internal control system (5) in 2D by acting only on the temperature. The

intuition behind a result of this kind is the following: the temperature θ is directly controlled by

w; then, θ acts through the coupling term θe2 to control the component u2 and then u2 acts as

bilinear control through the term u2∂x2
u1 to control the component u1.

One can also try get a global control result acting only on the motion, that is, with w = 0

in (5); for some local results in this direction, see [10, 3].

Note that, in the case of Neumann conditions on θ, i.e. with m ≡ 0, we have an obstruction:

Indeed, the total thermal energy associated with θ is conserved and we have∫
Ω

θ(T, x) dx =

∫
Ω

θ0(x) dx.

However, one could try to control to zero any initial data for the temperature θ0 ∈ L0, where L0

is a closed linear subspace of L2(Ω) given by

L0 = {θ∗ ∈ L2(Ω) :

∫
Ω

θ∗(x) dx = 0}

which is invariant for the equation of temperature.

Results of these kinds will be analyzed in the near future.

6.2 Other boundary conditions for the velocity field

Another natural question is whether Theorem 1.1 holds with u subject to other boundary condi-

tions.

By imposing Dirichlet boundary (no-slip) conditions on the velocity, we face a very well known

and challenging open problem related to a conjecture by Jacques-Louis Lions. As pointed out

in [8], the boundary layer found in the presence of Dirichlet conditions has a behavior which is not

so “good” as in the case of Navier boundary conditions. This implies many difficulties to estimate

the boundary layer profiles and the remainder terms. As an attempt to deal with this problem,

we refer to [9], where the authors prove that a kind of global boundary null controllability result

holds if we allow a distributed force, which can be chosen arbitrarily small in any Sobolev norm in

space; see also [20] for related results.

6.3 Other boundary conditions for the temperature

Let us see that Theorem 1.1 holds with Dirichlet boundary conditions on the temperature.

To prove this, we can adapt the strategy of the proof of Theorem 1.1 (see Section 5). After the

extension and regularization steps, the initial temperature θ∗ vanishes on the whole boundary ∂O.

Then, the temperature θ1, that solves (15)2, preserves this property in [0, T/ε].
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Indeed, since the flow u0 is parallel to the boundary, particles on the boundary cannot enter in

the domain O, i.e. Φ0(s; t, x) ∈ ∂O for all s, t ∈ [0, T/ε] and x ∈ ∂O (see [1, Theorem 5.1]). Thus,

in the estimates of the reminder qε (see Section 3.2.4), we get a zero boundary integral∫
∂O

qε
∂qε

∂ν
dΓ =

∫
∂O

θ1 ∂q
ε

∂ν
dΓ = 0.

Finally, a local control result for Boussinesq system with Navier-slip-with-friction boundary con-

ditions for the velocity field and Dirichlet boundary conditions on the temperature can also be

deduced and this completes the argument.

6.4 Some possible extensions

Theorem 1.1 can be easily extended to cover global control properties of a few systems of the Navier-

Stokes and Boussinesq kinds. For example, it can be applied to some pollution models, where the

motion and temperature PDEs are coupled to one or several additional transport-diffusion-reaction

equations. Some results will be given in the near future.

Nevertheless, there are other situations where the extension of the result seems more (or much

more) delicate. One of them concerns “complete” or “full’ Boussinesq systems. By this we mean

the equations {
∂tu−∆u+ (u · ∇)u+∇p = θen, div u = 0 in (0, T )× Ω,

∂tθ −∆θ + u · ∇θ = (∇u+∇ut) · ∇u in (0, T )× Ω,

completed with initial conditions and boundary control requirements as before. Another one is the

variable density Navier-Stokes system{
∂tρ+ u · ∇ρ = 0 in (0, T )× Ω,

ρ(∂tu+ (u · ∇)u)−∆u+∇p = 0, div u = 0 in (0, T )× Ω,

this time completed with initial conditions for u and ρ and, again, boundary controls acting on u.

Appendix A Regularity of the uncontrolled Boussinesq sys-

tem

Let us present the proof of Lemma 2.1. In the following, let us assume that M and m are regular

enough. In the sequel, we will use Korn’s inequality recurrently:

Lemma A.1 [Second Korn inequality] There exist two positive constants C1, C2 > 0 such that,

for every u ∈ H1(O)n, one has

C1 (‖u‖+ ‖D(u)‖) ≤ ‖u‖H1 ≤ C2 (‖u‖+ ‖D(u)‖) .

We will also need the following results:

Lemma A.2 There exist positive constants Cl, Cr,K > 0 such that, for every u ∈ H1(O)n, we

have

Cl‖u‖K,M ≤ ‖u‖H1 ≤ Cr‖u‖K,M ,

where ‖u‖K,M :=

(
K‖u‖2 +

∫
∂O

Mu · u+ ‖D(u)‖2
)1/2

.
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Lemma A.3 There exist positive constants Cl, Cr, γ > 0 such that, for every θ ∈ H1(O), we have

Cl‖θ‖γ,m ≤ ‖θ‖H1 ≤ Cr‖θ‖γ,m,

where ‖θ‖γ,m :=

(
γ‖θ‖2 +

∫
∂O

m|θ|2 + ‖∇θ‖2
)1/2

.

The proofs of these two Lemmas rely on the interpolation inequality [2, Theorem III.2.36]. In

particular, it is used that there exists a positive constant C such that

‖u‖L2(∂O) ≤ C‖u‖1/2‖u‖
1/2
H1 ∀u ∈ H1(O).

Lemma A.4 (Proposition III.2.35, [2]) Let p ∈ [1,+∞] and q ∈ [p, p∗], where p∗ is the critical

exponent associated with p. Then, there exists C > 0 such that

‖u‖Lq ≤ C‖u‖1+n/q−n/p
Lp ‖u‖n/p−n/qW 1,p ∀u ∈W 1,p(O).

Lemma A.5 (Pages 490–494, [18]) Let f ∈ L2(O)n and g ∈ H1/2(∂O)n. Then, there exists a

unique strong solution (u, p) ∈ H2(O)n ×H1(O) to the Stokes problem{
−∆u+∇p = f, ∇ · u = 0 in O,
u · ν = 0, N(u) = g on ∂O,

and there exists a positive constant C > 0 such that

‖u‖H2 + ‖p‖H1 ≤ C(‖f‖+ ‖g‖H1/2).

Moreover, if f ∈ Hk(O)n and g ∈ Hk+1/2(∂O)n for some k ≥ 0, then (u, p) ∈ Hk+2(O)n ×
Hk+1(O) and we have

‖u‖Hk+2 + ‖p‖Hk+1 ≤ C(‖f‖Hk + ‖g‖Hk+1/2).

Lemma A.6 Let S : D(S) → L2
div(O)n be the Stokes operator, where D(S) = {v ∈ H2(O)n ∩

L2
div(O)n : N(v) = 0} and S := −P∆. There exists a positive constant C > 0 such that, for every

u ∈ D(S), we have

‖u‖H2 ≤ C (‖Su‖+ ‖u‖H1) .

Moreover, if Su ∈ Hk(O)n for some k ≥ 0, then u ∈ Hk+2(O)n and we have

‖u‖Hk+2 ≤ C(‖Su‖Hk + ‖u‖Hk+1).

Lemma A.7 Let u ∈ H1(O) satisfying ∆u ∈ L2(O) and ∂u
∂ν + mu = 0 on ∂O. Then, there

exists a constant C > 0, only depending on O, such that

‖u‖H2 ≤ C(‖∆u‖+ ‖mu‖H1/2(∂O)).

Moreover, if ∆u ∈ Hk(O) for some k ≥ 0, then u ∈ Hk+2(O) and we have

‖u‖Hk+2 ≤ C(‖∆u‖Hk + ‖mu‖Hk+1/2(∂O)).

This last result is a consequence of [2, Theorem III.4.3].

Throughout the proof of Lemma 2.1, we will accept that the constants C can increase from

line to line and depend on T and the trajectory (u, θ). For simplicity, we will only consider the 3D

case. The proof is split in several steps:
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Step 1 - Weak estimates in (0, T/3). Let us first multiply (6)1 by r and (6)2 by q, integrate

by parts, and sum. We get:

1

2

d

dt

(
‖r‖2 + ‖q‖2

)
+ 2‖Dr‖2 + ‖∇q‖2 + 2

∫
∂O

Mr · r +

∫
∂O

m|q|2

= (qen, r)−
∫
O

(r · ∇)u · r −
∫
O
r · ∇θ q.

From the Cauchy-Schwarz and Young inequalities, we obtain:

1

2

d

dt

(
‖r‖2 + ‖q‖2

)
+ 2‖Dr‖2 + ‖∇q‖2 + 2

∫
∂O

Mr · r +

∫
∂O

m|q|2 ≤ C(‖r‖2 + ‖q‖2).

Using Lemmas A.2 and A.3, we deduce that

1

2

d

dt

(
‖r‖2 + ‖q‖2

)
+

2

C2
l

(‖r‖2H1 + ‖q‖2H1) ≤ (C + 2K)‖r‖2 + (C + 2γ)‖q‖2. (45)

By applying Gronwall Lemma, we have for a.e. t ∈ [0, T ] that

‖r(t, · )‖2 + ‖q(t, · )‖2 +

∫ t

0

(
‖r(s, · )‖2H1 + ‖q(s, · )‖2H1

)
ds ≤ eCt

(
‖r∗‖2 + ‖q∗‖2

)
. (46)

Therefore, from the Mean Value Theorem, we deduce by contradiction that there exists 0 ≤ t1 ≤
T/3 such that

‖r(t1, · )‖2H1 + ‖q(t1, · )‖2H1 ≤ C1

(
‖r∗‖2 + ‖q∗‖2

)
, (47)

for a positive constant C1 independent of t1.

Step 2 - Strong estimates in (t1, 2T/3). Let P be the classical Leray projector. We multiply

(6)1 and (6)2 by −Sr and −∆q, respectively, then integrate by parts. Since M is symmetric, we

obtain

d

dt

(
‖Dr‖2 +

∫
∂O

Mr · r
)

+ ‖Sr‖2

=

∫
∂O

(Mt)r · r +

∫
O

(
(r · ∇)r · Sr + (u · ∇)r · Sr + (r · ∇)u · Sr − (qen, Sr)

)
≤ C‖r‖2H1 + 1

2‖Sr‖
2 + C‖q‖2 + ‖r‖2L6‖∇r‖2L3 .

Also,

1

2

d

dt

(
‖∇q‖2 +

∫
∂O
m|q|2

)
+ ‖∆q‖2 =

1

2

∫
∂O

(mt)q · q + (r · ∇q,∆q)

+(u · ∇q,∆q) + (r · ∇θ,∆q)
≤ C‖q‖2H1 + 1

2‖∆q‖
2 + C‖r‖2 + ‖r‖2L6‖∇q‖2L3 .

Multiplying (45) by ς = max{K, γ}, adding the above inequalities and using Lemmas A.2 –

A.7, we deduce the following:

d

dt

(
‖r‖2ς,M +‖q‖2ς,m

)
+ ‖r‖2H2 +‖q‖2H2 ≤C(‖r‖2ς,M+‖q‖2ς,m+‖r‖2L6‖∇r‖2L3 +‖r‖2L6‖∇q‖2L3)

≤C
[
(‖r‖2ς,M+‖q‖2ς,m) + (‖r‖2ς,M+‖q‖2ς,m)3

]
.

(48)

Introducing Y (t) := ‖r(t, ·)‖2ς,M+‖q(t, ·)‖2ς,m, we see that Y is a.e. differentiable and, from (48),

we have that

Y ′ ≤ C(Y 3 + Y ). (49)
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In view of (49), we obtain:

Y (t)2 ≤ eC(t−t1)Y (t1)2

Y (t1)2 + 1− eC(t−t1)Y (t1)2
.

Let us take t − t1 ≤ τ1 small enough and such that eC(t−t1) ≤ 1 + 1
2Y (t1)2 . Then, Y (t)2 ≤

2eC(t−t1)Y (t1)2 and, from (47), we deduce that Y (t) ≤ CY∗, where Y∗ := ‖r∗‖2 +‖q∗‖2. Therefore,

‖r(t, · )‖2ς,M+‖q(t, · )‖2ς,m +

∫ t

t1

(‖r(s, · )‖2H2 + ‖q(s, · )‖2H2)ds ≤ CY∗ + C(Y∗ + Y 3
∗ )τ1.

Taking τ1 small enough such that τ1 ≤ (1 + Y 2
∗ )−1, we have that CY∗ + C(Y∗ + Y 3

∗ )τ1 ≤ C2Y∗.

Therefore, one has

‖r(t, · )‖2ς,M+‖q(t, · )‖2ς,m +

∫ t

t1

(‖r(s, · )‖2H2 + ‖q(s, · )‖2H2)ds ≤ C2

(
‖r∗‖2 + ‖q∗‖2

)
(50)

for t1 ≤ t ≤ t1 + τ1. This ensures the existence of t1 ≤ t2 < min{2T/3, t1 + τ1} such that

‖r(t2, · )‖2H2 + ‖q(t2, · )‖2H2 ≤
C2

τ1

(
‖r∗‖2 + ‖q∗‖2

)
.

Step 3 - Third energy estimate in (t2, T ). At this point, we differentiate (6) with respect

to time and multiply by ∂tr and ∂tq. Then, we integrate by parts to obtain

1

2

d

dt
‖rt‖2 + 2‖Drt‖2 + 2

∫
∂O

Mrt · rt

= −2

∫
∂O

Mtr · rt + (qten, rt)− (rt · ∇)r · rt − (ut · ∇)r · rt − (rt · ∇)u · rt − (r · ∇)ut · rt

≤ C
(
‖r‖H1‖rt‖H1 + ‖qt‖2 + ‖rt‖2 + ‖rt‖3‖∇r‖‖rt‖6 + ‖r‖2H1

)
and

1

2

d

dt
‖qt‖2 + ‖∇qt‖2 +

∫
∂O
m|qt|2 = −

∫
∂O
mtqqt − ((rt + u) · ∇q, qt)− (rt · ∇θ, qt)− (r · ∇θt, qt)

≤ C
(
‖q‖H1‖qt‖H1 +‖q‖2H1 +‖qt‖2+‖rt‖2+‖rt‖3‖∇q‖‖rt‖6

)
.

Consequently, using Lemmas A.2 – A.4 and adding the two above inequalities, we have

d

dt

(
‖rt‖2 + ‖qt‖2

)
+ ‖rt‖2H1 + ‖qt‖2H1

≤ C
((
‖r‖4H1 + ‖q‖4H1 + 1

)
‖rt‖2 + ‖qt‖2 + ‖r‖2H1 + ‖q‖2H1

)
.

Now, introducing Z(t) := ‖rt(t, ·)‖2 + ‖qt(t, ·)‖2, we find from (50) that

Z ′ ≤ C[(1 + Y 2
∗ )Z + Y∗]

for t2 ≤ t ≤ t1 + τ1. By applying Gronwall’s Lemma, we have for a.e. t ∈ [t2, t1 + τ1]

Z(t) ≤ eC(1+Y 2
∗ )(t−t2) (Z(t2) + CY∗(t− t2)) .

Since we have Z(t2) ≤ Ψ1(Y∗) for some nonnegative regular Ψ1 with Ψ1(0) = 0, we find that

Z(t) ≤ Ψ2(Y∗), with

Ψ2(s) := eC(1+s2)(Ψ1(s) + Cs) ∀s ≥ 0.

Therefore,

‖rt(t, · )‖2 + ‖qt(t · )‖2 +

∫ t

t2

(
‖rt(s, · )‖2H1 + ‖qt(s, · )‖2H1

)
ds ≤ Ψ3(Y∗) ∀t ∈ [t2, t1 + τ1], (51)
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where Ψ3(s) := C[(1 + s2)Ψ2(s) + s]. In particular, this yields the existence of t3 ∈ (t2, t1 + τ1)

such that

‖rt(t3, · )‖2H1 + ‖qt(t3, · )‖2H1 ≤
Ψ3(Y∗)

(t1 − t2 + τ1)
. (52)

Actually, it is not difficult to check that the set of times t3 ∈ (t2, t1 + τ1) satisfying (52) has a

positive measure.

Step 4 - Conclusion. Using (50) and (51), we deduce an estimate of r in L∞(H2). It

suffices to view (6)1 as a family of Stokes problems (see Lemma A.5 and the arguments presented

in [30, Theorem 3.8]). Then, looking (6)2 as a family of elliptic problems, we also find L∞(H2)

estimates for q, see Lemma A.7. Both estimates depend on Y∗ continuously. Therefore, repeating

the procedure, we see that (r(t3), q(t3)) ∈ H3 ×H3 with an estimate of the form Ψ(Y∗).
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