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Magnonics or magnon spintronics is an emerging field focusing on generating, detecting, and manipulating
magnons. As charge-neutral quasi-particles, magnons are promising information carriers because of their low
energy dissipation and long coherence length. In the past decade, topological phases in magnonics have attracted
intensive attention due to their fundamental importance in condensed-matter physics and potential applications
of spintronic devices. In this review, we mainly focus on recent progress in topological magnonics, such as the
Hall effect of magnons, magnon Chern insulators, topological magnon semimetals, etc. In addition, the evi-
dence supporting topological phases in magnonics and candidate materials are also discussed and summarized.
The aim of this review is to provide readers with a comprehensive and systematic understanding of the recent
developments in topological magnonics.

1. INTRODUCTION: TOPOLOGY MEETS MAGNON

Since the discovery of the Giant Magneto-Resistance
(GMR) effect in magnetic metallic multilayers [1, 2], exten-
sive studies on magnetic materials, in particular, ferromag-
nets and antiferromagnets, have yielded various interesting
and remarkable results that form the basis for a new scien-
tific field called spintronics in recent decades [3–6]. Spintron-
ics explores the coupled electron spin and charge transport in
magnetic materials, and has attracted intensive attention for
its fundamental interest and potential impacts in logic oper-
ations and data storage devices [7–9]. Compared with the
traditional electronic devices in semiconductors, spintronics
has the advantages of nonvolatility, ultrafast data processing
speed, ultrahigh data storage density, and less electric power
consumption [3]. Nowadays diverse new concepts in spintron-
ics have sprung up, such as spin transfer torques [10, 11], spin
Hall effect [12–15], current-induced spin-orbit torques [16–
19], magnetic skyrmions [20–23], and magnon thermal Hall
effect [24–26].

In magnetic materials, the elementary excitations are rep-
resented by spin-waves (SWs), which were first introduced
by Bloch in 1929 with a spin wave theory in the Heisenberg
model of ferromagnetism [27]. Then the spin wave theory
was further developed to determine the ground state energy
and excitation spectrum in ferro- and antiferromagnetism [28–
32]. From a quasiparticle point of view, SWs are collective
quasiparticle excitations of the magnetic system, which can
be understood as a coherent precession of localized magnetic
moments [33]. Analogous to photons or phonons, quanta of
SWs are referred to as magnons, which are bosonic quasipar-
ticles. Essentially, the collective excitations of magnons can
be ascribed to both the short-range exchange interaction (e.g.
Heisenberg exchange interaction, Dzyaloshinskii–Moriya in-
teraction) and the non-local exchange or long-range inter-
action (e.g. magnetic dipolar interaction). As a magnon
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is a ‘charge free’ quasi-particle, it exhibits clear advantages
over traditional electronic devices both low energy dissipation
and long coherence length [34, 35], which renders magnons
a promising alternative to electrons as information carriers
[36, 37]. This gives rise to a new emerging research field,
so-called magnonics (or magnon spintronics), which aims to
deal with the excitation, propagation, control, and detection of
magnons [38–43]. Although magnonics is a young and devel-
oping research field, a flurry of research have unraveled vari-
ous properties of magnons, such as generation [44, 45], propa-
gation [46, 47], reflection and refraction [48, 49], interference
[50], diffraction [51], and Doppler effect [52, 53]. Hence, a
mass of devices and concepts, including magnonic interfer-
ometer [54], waveguides [55], multiplexors [56], splitter [57],
diodes [58], logic gates [59], all-magnon logic circuits [36],
and neuromorphic computing [60, 61], have been unearthed.

Over the past few decades, understanding and exploring
the concept of topology in condensed matter physics is an-
other hot topic. Following Ginzburg-Landau theory, phases of
matter are described by microscopic order parameters, which
characterize the internal structures of the physical system in
terms of corresponding symmetries. And the abrupt changes
of parameters are often associated with specific symmetry
breaking during a phase transition [62]. But in some special
cases such as the (fractional) quantum Hall states [63, 64],
quantum spin liquids [65, 66], topological insulators [67], and
magnetic skyrmions [68], order parameters can not be clearly
characterized by symmetry breaking. A different classifica-
tion paradigm so-called ‘topological order’ as a quantum or-
der was then introduced [63, 69], which defines a topological
phase by a global topological index rather than by the local
geometry [70, 71]. Although the topological index in these
systems is insensitive to smooth changes in a specific parame-
ter space without any symmetry breaking, the topological or-
der changes when the system passes through a quantum phase
transition [72–74].

More recently, the topological band theory has been es-
tablished to discover and understand salient characteristics
of topological states in a wide range of quantum materials
[75], such as insulators, semimetals, superconductors, and su-
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perfluids [76–80]. One of the core principles in topological
band theory is the connection between the topological invari-
ants and the nontrivial topological phases, for instance, the
Thouless–Kohmoto–Nightingale–den Nijs (TKNN) invariant
or Chern number corresponds to the gapless boundary states
in two dimensions electron system with time-reversal symme-
try breaking [63, 81]. So far, studies of topological band the-
ory have mostly concentrated on electron systems. In the last
decade, there has been a growing interest in systems consist-
ing of bosonic collective excitations, such as photons [82–84],
phonons [85, 86], Cooper pairs [87–89], excitons [90, 91], and
magnons [92–95].

In the present review, we aim to provide an up-to-date sur-
vey on the topological aspects of magnonic systems from the
point-of-view of theory and experiment, but do not wish to
deliver an exhaustive overview of the vast field of magnon
spintronics [43]. There are several excellent reviews related
to this topic [93–95]. This review attempts to give a simple
but detailed introduction to the current status of this topic, as
we have tended to cite more recent literature in the following
sections. However, it does not mean that this review could be
considered an exhaustive review of this fast-evolving topic. It
is organized as follows. In Section 2, we will first introduce
some basic notions and necessary theoretical fundamentals on
topological magnons, including the Berry phase, Chern num-
ber, Hall effect, and topological phase transition of magnons.
In Section 3, topological phases of magnons are classified.
We mainly focus on recent progress in magnon Chern insu-
lators, high-order topological magnon insulators, Z2 topolog-
ical magnon insulators, and topological magnon semimetals.
In Section 4, candidate materials and artificial structures are
summarized, which are the most successful platforms to ob-
served topological magnons. In Section 5, we provide a short
summary and outlook on this field.

2. UNDERPINNINGS OF TOPOLOGICAL MAGNONS

In this section, we briefly outline the topological band the-
ory in magnonic systems. We first review the linear spin-wave
theory and then give the Berry phase and Berry curvature
of magnons within the framework. Then, we introduce the
topological invariant in a magnonic system—Chern number
of magnons. Next, we introduce a semiclassical picture for
understanding the dynamics of magnon wavepackets. We also
discuss the Hall effect and the topological phase transition of
magnons.

2.1. Berry Phase and Chern Number of Magnons

First, we introduce the linear spin-wave theory (LSWT) in
magnetic systems with collinear magnetic moments (i.e., fer-
romagnets or collinear antiferromagnets) [96, 97]. Besides,
we encourage the reader interested in deeper discussions of
the LSWT for noncollinear magnetic systems, such as non-
collinear antiferromagnets and skyrmions, to refer to these
specialized articles [98–100], as well as the nonlinear spin-

wave theory for interacting magnonic systems with magnon-
magnon interactions to refer to the articles [93, 101, 102].

We consider the following generic spin Hamiltonian

H =

L∑
i,j

N∑
m,n

ST
i,mJmn

ij Sj,n, (1)

with spin operators Si,m and Sj,n, where indexes i and j run
over the L magnetic unit cells and m and n run over the N
magnetic sublattices in the magnetic unit cell. Magnetic in-
teractions between two spin operators are comprised in Jmn

ij ,
including Heisenberg exchange interaction, Dzyaloshinskii-
Moriya (DM) interaction, magnetostatic dipolar interaction,
and so on. Then we express the spin operators in Eq. (1) in
terms of magnon creation operator b̂†i,m and annihilation op-
erator b̂i,m by performing the Holstein-Primakoff transforma-
tions [28]

S+
i,m =

√
2S − b†bi,mbi,m,

S+
i,m = b†i,m

√
2S − b†bi,m,

Sz
i,m = S − b†i,mbi,m,

(2)

where we introduce the magnon ladder operators S±
i,m =

Sx
i,m ± iSy

i,m. In the low-temperature limit, the square roots
can be expanded in powers of 1/

√
S when considering 2S ≫

⟨ni,m⟩ = ⟨b†i,mbi,m⟩, because ni,m the number of thermally
excited magnons, is small. After a Fourier transformation,
we obtain the bilinear magnon Hamiltonian in the momentum
space

H(2)
m =

∑
k

Ψ†
kHkΨk, (3)

with the linear spin-wave matrix

Hk =

(
Ak Bk

B∗
−k A∗

−k

)
(4)

and the vector boson operator

Ψ†
k = (b†k,1, · · · , b

†
k,N , b−k,1, · · · , b−k,N ). (5)

At first glance, the magnon Hamiltonian is similar to a
Bogoliubov-de-Gennes Hamiltonian from superconductivity.
The linear spin-wave matrix is diagonalized by performing a
paraunitary Bogoliubov transformation

Ek ≡ T †
kHkTk

= diag(Ek,1, · · · , Ek,N , E−k,1, · · · , E−k,N ),
(6)

and the magnon Hamiltonian reads

H(2)
m =

∑
k

N∑
n=1

Ek,n

(
b†k,nbk,n +

1

2

)
. (7)
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Figure 1. a) A confining potential in a ferromagnetic nanoribbon.
Adapted with permission.[107] Copyright 2011, American Physical
Society. b) Self-rotation of a magnon wavepacket and a magnon edge
current. c) Edge current of magnon in equilibrium. d) Under the
temperature gradient, a finite thermal Hall current of magnon will
appear. Adapted with permission.[106] Copyright 2011, American
Physical Society. e) In equilibrium, the magnon edge currents within
the neighboring small regions cancel each other. f) Under the temper-
ature gradient, a net transverse current appears as the magnon edge
currents within the neighboring small regions do not cancel each
other. Adapted with permission.[92] Copyright 2017, The Physical
Society of Japan.

where Ek,n is the nth band energy of magnon. In addition,
the paraunitary Bogoliubov transformation must satisfy

T †
kGTk = G, (8)

where G = diag(1, · · · , 1,−1, · · · ,−1) with N values each
of positive and negative one along the diagonal. Different
from the analogous unitary matrix to diagonalize a fermionic
Hamiltonian, the paraunitary matrix Tk is not unitary in
bosonic systems. Then the Berry curvature of magnons in the
nth band is defined as [100]

Ωµν
nk = −2

2N∑
m̸=n

Im
(GT †

k∂µHkTk)nm(GT †
k∂νHkTk)nn

[(GEk)nm − (GEk)mm]
2 .

(9)
Finally, the Chern number for the nth magnonic bulk band is
given by the integration of its Berry curvature over the Bril-
louin zone (BZ)

Cn =
1

2π

∫
BZ

dkΩnk. (10)

Figure 2. a) The crystal structure of Lu2V2O7. The V4+ sub-
lattice is composed of corner-sharing tetrahedra. Adapted with
permission.[24] Copyright 2010, AAAS. b) The direction of the
DM vector on each bond of the tetrahedron. Adapted with
permission.[25] Copyright 2011, American Physical Society.

2.2. Rotational Motion of Magnons Under Nonzero Berry
Curvatures

Before discussing the Hall effect of magnons, let us first
briefly describe the dynamics of a magnon wavepacket in a
periodic magnonic system. When an external force is ap-
plied to an electron, it will undergo a transverse motion per-
pendicular to the external force, i.e., an intrinsic Hall effect
such as the anomalous Hall effect [103] and spin Hall effect
[15]. In semiclassical theory, when an electron wavepacket
is localized both in real and momentum space, its dynamics
can be described by the semiclassical equations of motion
[70, 104, 105]. In analogy with this, Matsumoto and Mu-
rakami [106, 107] propose a similar framework for magnons,
which gives the semiclassical equations of motion for the
magnon wave packet as

ṙ =
1

ℏ
∂Ek,n

∂k
− k̇ × Ωnk (11)

ℏk̇ = −∇U(r) (12)

where U(r) is a slowly varying potential for the magnons in
real space. Different from electrons, magnons are charge-
neutral quasiparticles, thus they are immune to the Lorentz
force from the external electric field. Analogous to the ap-
proach to describe the edge picture of the quantum Hall effect
in electron systems with a confining potential [108], U(r) can
be regarded as a confining potential that changes from zero to
infinity as the position r changes from inside the sample to the
outside (see Fig. 1a). This confining potential U(r) forbids
the magnon wavepacket from running away from the sam-
ple, and its gradient ∇U(r) exerts a force on the wavepacket.
From Eq. (11) we can see that there exists an edge magnon
current in equilibrium due to the anomalous velocity term
k̇×Ωnk = −∇U(r)/ℏ×Ωnk induced by the large gradient of
confining potential near the edge of the sample. Meanwhile,
the magnon wavepacket also shows a self-rotation motion due
to the Berry phase (see Fig. 1b). Hence, the angular momen-
tum of the edge magnon current and that of the self-rotation
motion give the total orbital angular momentum of magnons,
which has been demonstrated with linear response theory.

In addition, a nonzero Berry curvature is also necessary
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Figure 3. a) Thermal Hall effect of magnons. A magnon wavepacket moving from the hot to the cold side experiences a transverse motion.
b) Thermal Hall conductivity as a function of the external magnetic field. The red solid line indicates the theoretical results. Adapted with
permission. [24] Copyright 2010, AAAS. c) Fictitious magnetic flux due to the DM interaction in the kagome lattice (the [111] plane of the
pyrochlore lattice). Adapted with permission. [128] Copyright 2011, American Physical Society.

for the anomalous velocity to generate an edge magnon cur-
rent and the self-rotation motion of the magnon wavepacket.
Hence, similar to the spin Hall effect in electronic systems, it
requires some kind of “spin–orbit interaction” to ensure the
Berry curvature of magnons is nonzero. To the best of the
authors’ knowledge, all of the established materials or models
that exhibit a nonzero Berry curvature of magnons mostly rely
on the following three interactions:

1) The antisymmetric exchange interaction—DM interac-
tion. It is natural because the DM interaction itself origi-
nates from the spin-orbit interaction in first-order perturbation
theory, when the inversion symmetry of the system is bro-
ken [109, 110]. For example, the nonzero Berry curvature of
magnons in the ferromagnetic Mott-insulator Lu2V2O7 [24,
25], whose spin-1/2 V4+ ions are composed of corner-sharing
tetrahedra forming a pyrochlore structure (see Fig. 2a). There
is a nonzero DM interaction with DM vectors perpendicular
to the vanadium bond and parallel to the face of the surround-
ing cube (see Fig. 2b), because the midpoint between any two
apices of a tetrahedron is not a center of inversion symmetry
in the pyrochlore structure. Since the total DM vector of the
six bonds sharing the same site is zero, the ground state is a
collinear ferromagnet below Curie temperature (TC ≈ 70K).

2) The magnetic dipolar interaction for the magnetostatic
SWs with a sufficiently long wavelength (∼ µm) in a two-
dimensional magnetic thin film [106, 107, 111] or in some
artificial magnonic crystals [112–114]. In this case, the prop-
agation of magnons or SWs is dominated by the long-range
magnetic dipolar interaction rather than the short-range ex-
change interactions. The magnetic dipolar interaction depends
both on the orientations and the relative positions of the mag-
netic moments, hence it plays the role of the spin–orbit inter-
action and brings about a nonzero Berry curvature. Moreover,
the formalism of the magnon Berry curvature due to the mag-
netic dipolar interaction is quite different from that due to the
DM interaction, because magnons are sensitive to the sample
shape in the former case.

3) The magnon-magnon interaction. Beyond the linear
spin wave theory in terms of quadratic order boson op-
erators, magnon-magnon interactions become important at
higher temperatures, which can also be treated in non-linear

spin wave theory (a perturbation theory) by analyzing higher-
than-bilinear contributions (such as the cubic and quartic
terms) during the Holstein–Primakoff transformation. A few
existing studies show that magnon-magnon interactions renor-
malize the magnon energy bands as an origin of nontrivial
magnon topology and cause detrimental lifetime broadening
effects [115–121]. Since the interaction-induced self-energy
is non-Hermitian and the magnon band gaps or crossings oc-
cur at finite energy, non-Hermitian magnon topology could
be expected with topologically protected exceptional points
[93, 101, 102].

In addition, the detailed summary of other origination for a
nonzero Berry curvature is not given here, such as weak ferro-
magnetism with a nonzero scalar spin chirality or an external
magnetic field [122–125].

Under a temperature gradient, the transverse magnon cur-
rent appears. This phenomenon can be understood in the fol-
lowing semiclassical picture [92]: A magnet can be divided
into a lot of small regions, and meanwhile, there will exist
edge currents along the edges of each individual small region
due to the confining potential at the edge (see Fig. 1e). Since
the size of each region is very small, the difference between
neighboring regions should be negligible. Thus the internal
edge currents in each small region cancel each other, leav-
ing behind the magnon current along the edge of the magnet
(see Fig. 1c). When the temperature gradient is present, the
magnon edge currents in each region are different and do not
cancel between neighboring regions (see Fig. 1f), then a net
transverse magnon current is generated (i.e. the thermal Hall
effect of magnons, see Fig. 1d).

2.3. Hall Effect of Magnons

2.3.1. Thermal Hall Effect of Magnons

From (11), the semiclassical equation of motion for
magnons, magnon wavepackets will have a transverse velocity
(i.e. so-called anomalous velocity) perpendicular to the exter-
nal force (ℏk̇). That is the Hall effect of magnons. In the case
of the Hall effect of photons, a spatial gradient of the refrac-
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Figure 4. a) The spin Nernst effect of magnons in honeycomb anti-
ferromagnets. b) Temperature dependence of the spin Nernst signal
for selected DM interaction values in monolayer MnPS3. Adapted
with permission. [152] Copyright 2017, American Physical Society.

tive index often plays the role of an external force to supply the
anomalous velocity [126, 127]. For magnons, a temperature
gradient could serve as an external force, which induces the
thermal Hall effect of magnons also known as magnon ther-
mal Hall effect (see Fig. 3a). When a finite thermal Hall cur-
rent is driven by a longitudinal temperature gradient in a two-
dimensional magnet, the thermal Hall conductivity is given
by

κxy = −k2BT

ℏ
∑
n,k

c2
[
ρB (Ek,n)

]
Ωz

nk, (13)

where ρB (Ek,n) =
(
eEk,n/kBT − 1

)−1
is the Bose-Einstein

distribution. The weighting function is given by c2(ρ
B) =(

1 + ρB
)
ln2 1+ρB

ρB − ln2 ρB − 2Li2
(
−ρB

)
, with Li2

(
ρB

)
being the polylogarithm function. It shows that thermal Hall
conductivity is completely determined by the Berry curvature
of magnons with a temperature distribution.

The theory of the thermal Hall effect of magnons was first
established by Katsura et al. [128], who computed the thermal
Hall conductivity using the Kubo formula in a kagome lattice
ferromagnet with the DM interaction. In their theory, the DM
interaction imprints a lattice geometrical phase for magnons,
so-called fictitious magnetic flux (see Fig. 3c), which is impor-
tant to avoid cancellation of the effect of phase factor in the
unit cell. Subsequently, Onose et al. [24] observed the thermal
Hall effect in the ferromagnetic Mott-insulator Lu2V2O7 as
mentioned above. In the experiment, they measured the ther-
mal Hall conductivity and compared their data with theoreti-
cal results (see Fig. 3b). When switching the magnetic field,
the thermal conductivity shows a sign reversal. This confirms
that the thermal Hall effect originates from the magnons rather
than phonons. Up to now a growing number of studies have
been investigating the DM interaction driven thermal Hall ef-
fect of magnons on specific lattice geometries, including hon-
eycomb [129–132], triangular [133], kagome [26, 100, 134–
138], and Lieb lattice [139, 140]. Significantly, the thermal
Hall effect of magnons could be absent in some magnetic sys-
tems despite the presence of the DM interaction [25]. Mook
et al. [100] proposed that a broken effective time-reversal
symmetry and a magnetic point group compatible with ferro-
magnetism are two necessary requirements for the DM inter-

Figure 5. a) Topological phase transitions of magnon band structures
in kagome ferromagnets with selected lattice deformation parameter,
from left to right panel δ =0, 0.05, 0.1, 0.2. b) Chiral magnonic edge
states in a kagome lattice, from left to right panel δ =0, 0.1, 0.18.
Adapted with permission. The black lines are the bulk bands and the
blue/red lines are the edge states. Adapted with permission. [137]
Copyright 2021, American Physical Society.

action driven thermal Hall effect of magnons. Furthermore,
a few studies also show the thermal Hall effect of magnons
in some specific spin configurations without the DM inter-
action [124, 141–145], a two-dimensional magnetic thin film
due to the magnetic dipolar interaction [106, 107, 111], and
a Skyrmion lattice [146–150]. In the last case, the fictitious
magnetic fields due to the equilibrium magnetic texture lead
to the thermal Hall effect of magnons.

2.3.2. Spin Nernst Effects of Magnons

The spin Nernst effect describes a transverse pure spin cur-
rent as a response to a temperature gradient, which has been
observed in both electronic [151] and magnonic [152] sys-
tems. The spin Nernst effect of magnons (i.e. the magnon
spin Nernst effect) can be equivalent to an antiferromagnetic
analog of the thermal Hall effect of magnons in ferromagnetic
insulators, that two magnon currents with opposite spins flow
in opposite transverse directions under a longitudinal tempera-
ture gradient (see Fig. 4a). This effect could also be viewed as
the magnonic version of the spin Hall effect driven by the spin
Berry curvature of magnons. Cheng et al. [153] and Zyuzin et
al. [154] theoretically demonstrated the spin Nernst effect of
magnons in a collinear honeycomb antiferromagnet indepen-
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Figure 6. a) The two-dimensional kagome-lattice nanoribbon. The
temperature on the left side (TL) is higher than that on the right side
(TR). The two big arrows show the magnitudes and directions of the
magnon edge currents. b) The magnon band structure of the kagome-
lattice nanoribbon. The local energy current and density of state for
edge magnon transport under a temperature gradient in c) TL > TR

and d) TL < TR. The color of the arrows and dots indicates the
magnitude of the local current and density of states, respectively.
Adapted with permission. [172] Copyright 2013, American Physi-
cal Society.

dently. Significantly, the spin Nernst effect coefficient shows
a sign change due to the sign flip of the spin Berry curvature
across the von Hove singularities as seen in Fig. 4b. Differ-
ent from the thermal Hall effect of magnons requiring cer-
tain symmetries breaking, the spin Nernst effect of magnons
is much more robust in collinear antiferromagnets, which can
be driven by the DM interaction and even exists in systems
with both time-reversal symmetry and inversion symmetry as
long as a nonzero spin Berry curvature is present. In both
cases the thermal Hall effect of magnons is absent. Espe-
cially in the former case, the spin Nernst effect coefficient
changes sign with the reversal of the Neél vector. In addi-
tion, the spin Nernst effect of magnons is also widely pre-
dicted in kagome ferromagnets [155], collinear honeycomb
ferrimagnets [156], and noncollinear kagome antiferromag-
nets [157, 158] with the Rashba-like (in-plane) DM interac-
tion, bilayer two-dimensional van der Waals magnets [159],
antiferromagnetic skyrmion crystals [160], and even in para-
magnets [161]. Moreover, Kondo and Akagi [162] derived the
formula for the spin Nernst effect of magnons in the nonlinear
response regime, the so-called nonlinear magnon spin Nernst
effect. This effect originates from a dipole moment of the
Berry curvature (i.e. the Berry curvature dipole) of magnons

Figure 7. A schematic diagram of nth-order topological phases in d
dimensions. The first line with n = 1 corresponds to conventional or
first-order topological insulators with gapless states, including corner
states (d = 1), edge states (d = 2), and surface states (d = 3). The
lines with n ≥ 2 correspond to higher-order topological insulators
with gapless states, including corner states (n = d = 2 or 3) and
hinge states (n = 2, d = 3).

in the crystal momentum space when the inversion and rota-
tional symmetries in a system are broken even without the DM
interaction. They confirmed that the nonlinear magnon spin
Nernst effect could exist in the square lattice antiferromag-
nets with bond dependences of the nearest-neighbor exchange
interaction, and collinear antiferromagnets in the honeycomb
or diamond lattice under pressure.

To date, there is only one experimental observation of the
spin Nernst effect of magnons in a thin-film MnPS3 [152]. In
their experiment, a non-monotonic temperature dependence
of the spin Nernst effect signal detected by voltages through
the inverse spin Hall effect is indeed observed. But the sign
reversal of the spin Nernst effect coefficient has not been re-
ported, because the thermoelectric voltage could not be unam-
biguously separated from the inverse spin Hall voltage. The
dependence of the spin Nernst effect signal on a perpendicular
magnetic field was also not measured in the experiment. More
carefully designed measurements, such as using optical detec-
tion instead of electronic detection, are needed to identify the
theoretical predictions.

2.4. Topological Phase Transition of Magnons

Different from the familiar phase transitions described by
the Ginzburg-Landau theory such as the liquefaction of a
solid, topological phase transition manifests itself from the
changes in the topology of the bulk band structure. Topolog-
ical phase transitions have been observed experimentally in
topological insulators, which shows the evolution of the band
structure with a band gap closing and reopening [163–165]. In
magnonic systems, topological phase transitions of magnons
can be induced by tuning the magnon band structure using the
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Figure 8. a) and b) Confined antiskyrmion crystals at different external magnetic fields. c) and d) Magnon spectrum showing corner states (red
dots) and trivial bound states (blue dots) localized at the fractional antiskyrmions. e) and f) Probability density of the corner states. Adapted
with permission. [207] Copyright 2020, American Physical Society. g) The spatial distribution of the probability density. h) Magnon energy
spectrum. Red dots mark the in-gap magnonic corner states. Adapted with permission. [208] Copyright 2023, American Physical Society.

magnetic field, temperature, magnon-phonon coupling, strain,
or pressure [130, 137, 141, 166–171]. An example is given in
Fig. 5a, that the nontrivial band gap between the two acoustic
magnon branches closes around δ = 0.05, then reopens and
becomes trivial as δ increasing under the strain [137]. In this
process, two chiral edge states in the gap go from nontrivial
to trivial (see Fig. 5b). Similar results are found in honey-
comb ferromagnets [130], where topological phase transitions
accompanied by the sign reversal of the thermal Hall conduc-
tivity can be induced via tuning temperature or Zeeman field.

3. CLASSIFICATION OF TOPOLOGICAL MAGNON
PHASES

Before discussing topological magnons, let us first describe
the differences between topological magnon insulators and
topological (electron) insulators. In electronic systems, elec-
trons can not flow on the surface or inside a conventional insu-
lator due to the large band gap between the valence band and
the conduction band, which mostly forbids electrons in the va-
lence band jumping to the conduction band. Although topo-
logical insulators still have band gaps, there are edge states in
the gaps supplying some unimpeded channels on the surfaces
or boundaries for electrons flowing leading to the currents on
the surface or boundary of the sample. But the interior of
a topological insulator remains insulating. Since magnons
are bosonic quasiparticles, all the magnon bands including
the bulk bands and topological edge states contribute to the
transport properties. Thus, a (topological) magnon insulator
is never a ”true” insulator. As a matter of fact, the strict defini-
tion of the topological magnon insulator should be a magnon
insulator has both bulk magnon bands and topological edge
states, but the contributions to the transport properties from

the edge states should absolutely dominate them from the bulk
bands even being ignored. Then, recent extensive efforts have
been paid to find ways to realize topological magnons. To
date, a magnonic version of Chern insulators, high-order topo-
logical insulators, Z2 topological insulators, and topological
semimetals has been proposed. In this section, we will sys-
tematically review these types of topological magnons.

3.1. Magnon Chern Insulators

As explained in Section 2.2, there exist magnon edge cur-
rents along the boundary of magnets due to both confining
potentials and nonzero Berry curvatures in equilibrium. Un-
der a temperature gradient, a net transverse current is gener-
ated by the temperature difference between the neighboring
small regions when nonzero Berry curvatures are present. In
this case, the magnon edge currents essentially originate from
the topologically protected edge states in the magnon band
structure, i.e. the topology of the topological magnon insu-
lator. This is the magnon Chern insulator and we shall refer
to it simply as the "topological magnon insulator". Zhang et
al. [172] proposed the first topological magnon insulator in
a ferromagnetic insulator with the DM interaction as shown
in Fig. 6a. From the magnon band structure in Fig. 6b, we
can clearly see the magnon edge states in the gaps. As shown
in Fig. 6c and Fig. 6d, we can find that the magnon currents
prefer to flow along one edge changing with the direction of
the temperature gradient, which reflects the chirality of the
magnon edge states. That’s because the propagation direc-
tions (the red arrows) are determined by the directions of DM
vectors (they give the signs of the Berry curvatures), and at
the same time the magnons need to carry energy from the
hot side to the cold one following the second law of ther-
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Figure 9. a) Top view of the atomic configurations in the vertically stacked monolayer honeycomb lattices. b) Noncollinear magnetic order
under an external magnetic field. c) The magnon band structure as a function of ky with the open boundary condition along the x−z direction.
The red line in the middle of the bands marks the magnonic hinge modes. Inset: the magnon band structure with the periodic boundary
condition along the z direction. d) The non-Abelian Berry phase as a function of ky . e) and f) The wave function of the magnonic hinge modes
under opposite direction external magnetic fields. The periodic boundary condition is imposed along the y direction. The size of the blue dot
indicates the amplitude of the wave functions. Adapted with permission. [209] Copyright 2021, American Physical Society.

modynamics. It is worth noticing that there are small bulk
magnon currents inside the nanoribbon, although the currents
mainly localize around two edges. It reflects that a topolog-
ical magnon insulator is not a perfect topological insulator,
where magnons in bulk bands can still transmit. In the mean-
time, Shindou et al. [97] proposed a magnonic topological
insulator in a magnonic crystal, which provides topologically
protected chiral edge states for magnetostatic spin waves due
to the dipolar interaction. In these edge states, the SWs propa-
gate in a unidirectional way without backward scatterings. So
far, the topological magnon insulators have been theoretically
investigated in kagome [118, 135, 137, 138, 166] and hon-
eycomb [129, 130, 173–175] lattice in ferromagnetic systems
with the DM interaction. Mook et al. [166] present the bulk-
boundary correspondence using a Green function renormal-
ization technique in the topological magnon insulator. Their
results explain the sign of the transverse thermal Hall conduc-
tivity regarding topological edge states and their propagation
direction.

Besides, this topological magnon phase has been extended
to various antiferromagnetic systems like canted collinear
honeycomb lattice antiferromagnets [132, 176], canted non-
collinear triangular lattice antiferromagnets [141], and non-
collinear kagome antiferromagnets [100, 136, 167, 177]. In
these systems, the canting of spin configurations due to an ex-
ternal magnetic field or a weak in-plane DM interaction gives
rise to weak ferromagnetism, where a finite scalar spin chiral-
ity Si · (Sj × Sk) can also produce the nontrivial topological
magnon edge states even in the absence of DM interaction
[128]. Corresponding to the thermal Hall effect of magnons
in antiferromagnets, the two necessary demands for a topolog-
ical magnon insulator are broken effective time-reversal sym-

metry and a magnetic point group compatible with ferromag-
netism [100].

3.2. High-order Topological Magnon Insulators

According to the topological connection between the bulk
and boundary or namely the bulk-boundary correspondence
[73, 75, 77], a d-dimensional nth order topological insu-
lator has (d− n) dimensional topologically protected gap-
less states (d ≤ n) as shown in Fig. 7. For example, a
conventional or first-order (n = 1) topological insulator in
two dimensions (d = 2) shows one-dimensional topologi-
cal edge states in the band gaps (see Section 3.1). Re-
cently, another extension of the topological insulator fam-
ily, the so-called higher-order (n ≥ 2) topological insula-
tors, has become one of the cutting-edge research areas in
condensed matter physics [178–184]. Different from first-
order topological insulators, higher-order topological insula-
tors support lower-dimensional boundary signatures, which
host zero-dimensional corner states (n = d ≥ 2) and/or one-
dimensional hinge modes (n = d− 1 = 2) as shown in Fig. 7.
In spite of a few experimental observations of the higher-order
topological insulator in electronic materials [185–187], it has
been extensively realized in various artificial materials or sys-
tems, such as electric circuits [188–190], photonic [191–194],
acoustic [195–200], and mechanical [201–205] metamateri-
als.

In Section 3.1, we have discussed magnon Chern insulators
in two-dimensional magnets, which can be viewed as first-
order topological magnon insulators hosting one-dimensional
topological edge states. In recent years, the concept of



9

Figure 10. a) Schematic representation of spin excitations (Left) and edge magnon states (Right) in a ferromagnet. b) Schematic representation
of spin excitations (Left) and edge magnon states (Right) in an antiferromagnet. c) Plots of the magnonic band structure. The up magnon edge
states (σ = 1) are in red while down magnon edge states (σ = −1) are in blue. Adapted with permission. [215] Copyright 2017, American
Physical Society.

higher-order topological insulators has been similarly intro-
duced into magnonic systems. A first example is given by
Sil and Ghosh [206], who propose a second-order topologi-
cal magnon insulator with localized magnonic corner states
in two-dimensional breathing kagome ferromagnets. Then,
Hirosawa et al. [207] uncovered that two-dimensional an-
tiskyrmion crystals (see Fig. 8a and b) can also be used to
realize a second-order topological magnon insulator, whose
hallmark signatures are robust magnonic corner states. Tun-
ing an external magnetic field can induce the self-assembly of
fractional antiskyrmions along the edges of the sample (see
Fig. 8c), which carry fractional topological charges allowing
the emergence of corner localized magnonic edge states (red
dots in Fig. 8e). Despite being topologically trivial bound
states in the gap (blue dots in Fig. 8e), they locate inside the
fractional antiskyrmions far away from the corners. In the
case of the absence of fractional antiskyrmions as shown in
Fig. 8b, there are four significant edge modes near the corners
(see Fig. 8f), which spread over the boundaries and then flow
into the bulk of the sample due to mixing with bulk modes
(see Fig. 8d). Another example is from Hua et al. [208],
where they show that twisted bilayer honeycomb ferromag-
nets can be used to realize second-order topological magnon
insulators with magnonic corner states as shown in Fig. 8g. In
the magnon energy spectrum plotted in Fig. 8h, it is found
that two in-gap states (red dots) reside in the energy gap.
These higher-order topological edge states strongly depend on
the interlayer ferromagnetic exchange coupling. Their first-
principles calculations show that a θ = 21.78◦ twisted bilayer
van der Waals magnet, such as Chromium triiodide (CrI3),
could be the candidate material as experimental realizations
of their theoretical model.

However, since both the magnon Chern insulator in Sec-
tion 3.1 and the second-order topological magnon insulator
with magnonic corner states are realized in two-dimensional
magnets, they are not suitable to be applied to current infor-
mation technology tending to be three-dimensional integra-

tion. Recently, a three-dimensional second-order topological
magnon insulator with magnonic hinge modes has been pro-
posed by Park et al. [209] in vertically stacked honeycomb
magnets with a noncollinear magnetic order due to the x-
directional external magnetic field as shown in Fig. 9a and b.
Fig. 9c shows the magnon band structure with an open bound-
ary condition along the z direction. A pair of in-gap states
(red dashed line) emerges between K and K ′ points, which
localize at the corner of the x-z plane and show the nature of
the magnonic hinge modes (see Fig. 9e and f). Fig. 9d shows
the non-Abelian Berry phase. It is quantized and equal to π
where the hinge modes reside. This quantized Berry phase
gives rise to Z2-topological protected hinge mode. Most in-
terestingly, different from the conventional electronic hinge
modes, the magnonic hinge modes here localize only at the
two corners of one side surface. And the localization of
the hinge modes switches as the direction of the magnetic
field is reversed. Alternatively, Mook et al. [210] proposed
a second-order topological magnon insulator with magnonic
hinge modes in vertically stacked honeycomb ferromagnets.
Since ferromagnetism naturally breaks the time-reversal sym-
metry, the magnonic hinge modes are chiral without backscat-
tering.

3.3. Z2 Topological Magnon Insulators

In general, topological phases are characterized by their
topological invariants. The topological invariant of the Chern
insulator is the (first) Chern number or TKNN invariant
[63, 81], whose chiral edge states one-to-one correspond to
the value of the Chern number in the integer quantum Hall
effect with broken time-reversal symmetry [211, 212]. Nev-
ertheless, it was gradually realized that this bulk-edge corre-
spondence can also happen in systems with unbroken time-
reversal symmetry over the last two decades. In 2015, Kane
and Mele [72, 213] proposed that the intrinsic spin-orbit inter-
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Figure 11. a) Fcc BZ with high-symmetry points, field direction n, and Weyl points (dots). b) Normalized dipole vector field (Berry curvature)
of band 2 in the kx = kz plane. The color scale depicts the divergence of the vector field (blue: negative; gray: zero; red: positive); the two
Weyl points appear in the center of the blue and red spots, respectively. c) Magnon band structures at the (111) surface. The surface spectral
density is shown as a color scale (black: zero; white: maximum). c) and e show constant-energy cuts through the entire surface Brillouin
zone for energies indicated by red lines in d. d) Spectral density along high-symmetry directions of the surface Brillouin zone. Adapted with
permission. [227] Copyright 2016, American Physical Society.

action can open up a band gap at the Dirac points in graphene
without a magnetic field, which plays the role of the magnetic
flux in Haldane’s model with broken time-reversal symmetry
[214]. Then the system exhibits a quantum spin Hall effect
(QSHE) characterized by a pair of spin-helical gapless edge
states, which allow electrons with opposite spins to propa-
gate in opposite directions. This Kane-Mele model can be
equivalent to two copies of the quantum anomalous Hall ef-
fect (QAHE) with opposite spins in Haldane’s model, so that
the total system still holds the time-reversal symmetry. That
is, these helical edge states are robust against weak disorders
by time-reversal symmetry. This insulating phase is therefore
classified as a kind of symmetry protected topological insula-
tor [74], i.e. the Z2 topological insulator, whose topological
invariant is characterized by the Z2 topological order [213].

On the other hand, a few recent theoretical works have re-
ported the realization of Z2 topological magnon insulators,
where helical magnon edge states protected by an (effective)
time-reversal symmetry are expected to exist. Nakata et al.
[215] established the first magnonic counterpart model of Z2

topological insulators in semiconductors, who extended the
notion of symmetry protected topological phases to antifer-
romagnetic insulators with the magnetic Néel order due to
the electric field gradient-induced Aharonov-Casher (AC) ef-
fect. Under the assumption that the z component of the total
spin Sz remains a good quantum number, this conservation
law plays the role of the time-reversal symmetry (which is
broken by the antiferromagnetic order) and protects a pair of
magnonic helical edge states. The dynamics of magnons in
a collinear antiferromagnet can be described as the combina-
tion of two independent copies of magnons in a ferromagnet
[216] for each mode σ = ±1 (see Fig. 10a). Driven by the
AC effect induced by an electric field gradient, up and down
magnons with the same frequency perform cyclotron motion
in opposite directions (see Fig. 10b), which bring about a
pair of magnonic helical edge states in the band gap (see

Fig. 10c). Fig. 10b shows a magnonic version of QSHE,
and the antiferromagnetic system becomes a Z2 topological
magnon insulator characterized by the Z2 topological invari-
ant. Meanwhile, light can also control the topological phases
of magnon through the AC effect induced by a laser electric
field [217]. Both linearly and circularly polarized lasers can
generate magnonic helical edge states, but the difference is
that a linearly polarized laser gives the magnon spin Nernst
effect and a circularly polarized one shows the magnon ther-
mal Hall effect.

Subsequently, several models of Z2 topological magnon in-
sulator and magnonic QSHE have been proposed, such as in
a collinear antiferromagnet on a square-octagon lattice [218]
or a honeycomb lattice [219] with DM interaction, a canted
collinear antiferromagnet on a square lattice [142], A-type an-
tiferromagnet on the kagome bilayer system and G-type anti-
ferromagnet on the honeycomb bilayer system [220]. In addi-
tion, magnonic three-dimensional Z2 topological phases have
been realized in a diamond lattice system having two spins
at each site [221] and AA-stacked honeycomb ferromagnets
with antiferromagnetic interlayer coupling [222]. Yet it is
worth noting that an open gap is essential to obtain a magnonic
Z2 topological phases with helical edge states in all of these
models.

3.4. Topological Magnon Semimetals

Different from a topological insulator characterized by gap-
less surface states inside the bulk band gap, the topological
semimetal is a new class of quantum materials without the
band gaps, which show linear dispersion around nodes [74].
For instance, the bands of the Weyl semimetals disperse lin-
early in momentum space through a Weyl point [223, 224],
which carry topological charges (a nonzero Chern number)
that act as monopoles with a fixed chirality. The Berry curva-
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Figure 12. a) and b) Inelastic neutron scattering and calculated
S(Q, ω), respectively, along an H–P–H momentum trajectory. c)
Inelastic neutron scattering intensity distribution in 0.2meV intervals
in Q-space planes that connect P with its four neighboring N-points
(P–N planes). Adapted with permission. [249] Copyright 2018,
Springer Nature.

ture becomes singular at these Weyl points, or such a Weyl
point can be a source (+ chirality) or a sink (− chirality)
of the Berry curvature. Weyl points always come in pairs
in a Weyl semimetal with the requirement of either the time-
reversal symmetry broken or the inversion symmetry broken
[225]. When the time-reversal symmetry is broken but the
inversion symmetry is not, each Weyl point at k with topo-
logical charge q has its opposite partner with −q at −k, and
the minimal number of Weyl points is two. When the inver-
sion symmetry is broken but the time-reversal symmetry is
not, there must exist pairs of Weyl points with opposite topo-
logical charges at the same place in momentum space. That
is, there are at least four Weyl points. Additionally, when the
time-reversal symmetry and inversion symmetry coexist, the
bands cross at a two-fold spin degenerate Dirac cone, that the
node is a four-fold degeneracy of the Dirac point leading to a
Dirac semimetal [226]. In other words, Dirac semimetals can
be viewed as Weyl semimetals without symmetries breaking.

Over the years, the concepts of Dirac or Weyl points
have been widely extended to magnon spectrums. The first
model of Weyl magnons was constructed in ferromagnetic py-
rochlores [227, 228], where the (pseudo-spin) time-reversal
symmetry is broken by the symmetry-allowed DM interac-
tion. The projections of each pair of magnonic Weyl points
onto a surface are connected by magnon arcs due to the topo-
logically protected surface states as shown in Fig. 11. Sub-
sequently, several works proposed Weyl magnons in breath-
ing pyrochlore antiferromagnets [229–232], stacked honey-

comb ferromagnets [233–235], stacked kagome antiferromag-
nets [236], rare-earth double perovskites [237], and multi-
ferroic ferrimagnet Cu2OSeO3 [238]. Naturally, the time-
reversal symmetry is broken due to the magnetic order in mag-
nets. Meanwhile, Kramer’s degeneracy is not applicable for
magnons, because magnons are integer bosonic excitations
with T 2 = +1. These suggest that Weyl points may be gener-
ically familiar in magnonic systems.

On the other hand, Fransson et al. [239] show that
Dirac magnons are inherent in a two-dimensional magnet
on the honeycomb lattice due to the spatial sublattice sym-
metry. A ferromagnet exhibits magnonic Dirac points at
high-symmetry K and K ′ points in the reciprocal space,
while magnonic Dirac points transfer to Γ point in an an-
tiferromagnet. These Dirac magnons are proven to be ro-
bust against magnon-magnon interactions, which tend to only
rigidly shift the band structure. Pershoguba et al. [240] un-
derlined the role of interacting Dirac magnons, who demon-
strate that magnon-magnon interactions give rise to a sig-
nificant momentum-dependent renormalization of the band
structure and strongly momentum-dependent magnon life-
times. Besides, Dirac magnons have also been proposed in a
collinear or noncollinear kagome antiferromagnet [167, 241].
Whereas Weyl magnons lack experimental evidences, Dirac
magnons are widely observed by performing inelastic neu-
tron scattering measurements in recent experiments, such as
in a two-dimensional van der Waals honeycomb crystal fer-
romagnet CrX3 (X = I, Br) [242–245] and CrXTe3 (X = Si,
Ge) [246], honeycomb-lattice antiferromagnet BaNi2(AsO4)2
[247], stacked honeycomb lattice magnet CoTiO3 [248], and
three-dimensional antiferromagnet Cu3TeO6 (see Fig. 12)
[249, 250].

Overall, the realization of Weyl and Dirac magnon
semimetals offers new opportunities for experimental obser-
vation of the bosonic topological semimetals and edge states.
The Weyl magnon semimetal featured by Weyl points can be
detected by inelastic neutron scattering which has been used
to probe the Dirac magnons. For magnon arcs and magnonic
surface states, it is possible to detect them by using surface-
sensitive probe techniques, such as high-resolution electron
energy-loss spectroscopy, or spin-polarized scanning tunnel-
ing microscopy [251]. Besides, as the Weyl magnons will
result in the spin Hall and anomalous thermal Hall effects
[234, 236], they may be probed by measuring the spin and
heat conductances.

4. SURVEY OF CANDIDATE MATERIALS FOR
TOPOLOGICAL MAGNONS

From an experimental point of view, the research in topo-
logical magnons is still in its infancy and has been limited to a
handful of materials. Fortunately, there have been a number of
significant achievements in the field, for instance, the observa-
tions of the magnon thermal Hall effect and magnonic Dirac
points. Recently, Karaki et al. [252] presented an efficient
symmetry-based approach for searching topological magnons
in magnetically ordered crystals. After carrying out a search
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Table I. Possible materials for realizing topological magnons. (In this table, FM, FiM and AFM represent ferromagnet, ferrimagnet and
antiferromagnet.)

Material Crystallographic structure Magnetism Remarkable feature
Lu2V2O7 Pyrochlore FM Magnon thermal Hall effect [24, 25]

Weyl magnons [227, 228]
Cu[1,3-bdc] Stacked kagome FM Magnon thermal Hall effect [26, 134]

Magnon Chern insulator [134, 135, 172]
CrXTe3 (X = Si, Ge) Stacked honeycomb FM/AFM Dirac magnons [246]
CrX3 (X = I, Br) Stacked honeycomb FM/AFM Dirac magnons [242–245]

High-order topological magnon insulator [102]
Moiré magnons [270, 271]

α-RuCl3 Kitaev-honeycomb FM/Spin liquid Magnon thermal Hall effect [119, 125, 256]
Magnon Chern insulator [119, 256]

Cu2OSeO3 Pyrochlore FiM Weyl magnons [238]
MnPS3 Stacked honeycomb AFM Magnon Spin Nernst effect [152–154]

Z2 topological magnon insulator [220, 222]
Moiré magnons [267]

BaNi2(AsO4)2 Stacked honeycomb AFM Dirac magnons [247]
CoTiO3 Stacked honeycomb AFM Dirac magnons [248]
Cu3TeO6 Centro-symmetric cubic AFM Dirac magnons [249, 250]
Eu2Ir2O7 Pyrochlore AFM Magnon thermal Hall effect [232, 253]

Weyl magnons [229, 231]
CaCu3(OH)6Cl2·0.6H2O Kagome AFM Magnon thermal Hall effect [254]

among 198 compounds with an over 300K transition tem-
perature, 12 magnetic insulators supporting room-temperature
topological magnons have been identified. Here, we sum-
marize recent works and give a list of candidate Materials
that are currently being intensively investigated for topologi-
cal magnons in Table 1. However, this list is far from compre-
hensive and only aims to illustrate the diversity of topological
magnons.

In addition to the candidates in real materials mentioned
above, we highlight three further artificial magnetic candidate
materials in which topological magnon phases have been theo-
retically proposed and experimentally realized. The first such
artificial material is the magnonic crystals [42, 255]. Owing to
its periodic structure, the spin-wave volume-mode spectrum
of the magnetostatic spin wave with the longer wavelength
due to the long-range dipolar interaction forms allowed fre-
quency bands of spin-wave states (bulk bands) and forbidden-
frequency bands (band gaps). A wide variety of parameters,
such as the width, thickness, and saturation magnetization of
the sample, can be used to tune the spin-wave band structure.
Thus is a concept of band engineering in the magnonic system.
As mentioned in Section 3.1, a magnonic topological insulator
with topologically protected chiral edge states in a magnonic
crystal has been proposed [97, 112, 114]. Xu et al. [257]
proposed magnonic analogs of integer quantum Hall states in
a two-dimensional spin-ice model with disorders, where the
magnon bands show a direct transition from an integer quan-
tum magnon Hall regime to a conventional magnon localized
regime. Iacocca et al. [258] calculate the spin-wave band
structure for square artificial spin ices composed of geomet-
rically placed magnetic nanoislands coupled through dipolar
interactions, where an interfacial DM interaction was taken
into account by an adjacent heavy-metal layer. The topolog-
ically magnonic edge states due to the interfacial DM inter-

action can be easily tuned by spin configurations in magnetic
nanoislands. Hu et al. [259] realized topological magnonic
surface states in antiparallelly aligned magnetic multilayers,
who demonstrated that the bulk bands with nonzero Chern
numbers and magnonic surface states in the band gaps carry-
ing chiral spin currents are generated by the long-range chiral
interlayer dipolar interaction. The surface states are highly
localized and can be easily switched between nontrivial and
trivial phases by applying an external magnetic field. Most
recently, Feilhauer et al. [260] numerically demonstrated uni-
directional, topologically protected edge states in a magnonic
crystal composed of dipolar coupled Permalloy triangles. The
system undergoes a couple of topological phase transitions by
tuning the strength of the perpendicular magnetic field, which
gives rise to the change of direction of the topological edge
state.

The second artificial material is a magnet with topo-
logical spin textures. In Section 3.3, we mentioned that
a second-order topological magnon insulator characterized
by magnonic corner states has been predicted in a two-
dimensional antiskyrmion crystal [207]. Additionally, the
topological magnon and its thermal Hall effect have been
demonstrated in a ferromagnetic [261, 262], antiferromag-
netic [160], and ferrimagnetic [148] skyrmion crystal. In this
case, the fictitious magnetic fields due to the equilibrium mag-
netic texture act as the effective spin-orbit coupling leading
to the topologically protected magnonic edge state [146]. So
far, only one experimental work investigated the topological
magnon band structure in a lattice of skyrmion tubes in man-
ganese silicide by performing the polarized inelastic neutron
scattering [263].

The last artificial material is moiré superlattices compris-
ing twisted bilayers of van der Waals magnets, for instance,
chromium triiodide CrX3 (X=I, Br). Recently, signatures
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of magnetic ground states in twisted (double) bilayer CrI3
have been identified with micro-Raman spectroscopy mea-
surements [264]. Meanwhile, a magnetic skyrmion bubble
with non-conserved helicity was predicted in twisted bilayer
CrI3 [265]. Pioneering theoretical efforts have predicted that
topological magnons can be realized by twisting bilayer mag-
nets [208, 266–268]. So far, several experimental works have
investigated the magnon band structure identifying the proper-
ties of moiré magnons [269–271]. And one of them observed
the magnonic edge modes at an optimal twist angle and with
a selective excitation frequency [271].

5. SUMMARY AND OUTLOOK

In summary, we have provided an overview of the most
recent research on the topological phases of magnons in
magnonic systems, including Chern insulators, high-order
topological insulators, Z2 topological insulators, and topo-
logical semimetals. Throughout this review, we devoted our-
selves to building a bridge between topology and magnonics
utilizing the existing results of topological physics in elec-
tronic systems. We first introduce some basic notions and nec-
essary theoretical fundamentals, which are essential for read-
ers to understand this topic. Then to systematically summa-
rize the previous research and generalize the main focus, we
have highlighted several important achievements in the field
of topological magnonics mostly in the past decade.

Although a vast number of model studies and theoretical
predictions have been made over the past decade, few ex-
perimental realizations for topological magnons have been
achieved so far. Because experimental work on topological
magnons is still at a relatively early stage, only a handful ma-
terials have been verified for topological magnons. Therefore,
we summarized candidate materials including some artificial
structures for readers to get a better understanding of topolog-

ical magnons. As the Weyl magnons and high-order topo-
logical magnons have not been observed, another pressing
problem is to develop more advanced technology to detect the
topological surface states of magnons. Overall, the realiza-
tion of topological magnons will offer new opportunities for
experimental observation of the topological phases and edge
states. We believe that rapid progress in the field of topo-
logical magnonics will greatly deepen the understanding of
topological physics in condensed matter.
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