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Abstract: The extremely high pseudo-magnetic field emerging in strained graphene suggests that an oscillating
nano-deformation will induce a very high current even without electric bias. In this paper, we demonstrate the
sub-terahertz (THz) dynamics of a valley-current and the corresponding charge pumping with a periodically
excited nano-bubble. We discuss the amplitude of the pseudo-electric field and investigate the dependence of
the pumped valley current on the different parameters of the system. Finally, we report the signature of extra-
harmonics generation in the valley current that might lead to potential modern devices development operating

in the nonlinear regime.

1. INTRODUCTION

An interesting and powerful property of graphene is
its ability to be stretched elastically up to 25%, and to
control the induced strains in different ways [1, 2]. In
addition, the unique coupling between mechanical defor-
mation and electronic structure along with the possibility
of deformation makes graphene attracts considerable at-
tention [3, 4]. This interplay was examined by observing
the Landau levels that can form in graphene due to an
induced strain [4]. Indeed, deformed graphene (Fig. 1)
can generate an effective gauge field A [4], to which one
can associate a pseudo magnetic field (PMF), B = VxA.

Fig. 1. A mechanical deformation of a graphene sheet. The
bump which can have different shapes (spherical, Gaussian,
...) induces an out-of-plane stretching of the hoppings between
neighboring atoms.
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This stimulated pseudo magnetic field would allow elec-
trons to behave as if they were subjected to a strong real
magnetic field with strength a few orders of magnitude
higher than the one generated by superconducting mag-
nets. [5].

Currently, there is a great interest in generating and
controlling the valley degree of freedom of electrons
in semiconductors. Indeed, the ability to manipulate
valley electrons can potentially enable advanced valley-
resolved electronic devices. In particular, this valley con-
trollability opens up the possibility of using the momen-
tum state of electrons, holes, or excitons as a completely
new paradigm in information processing [6]. Moreover,
pure valley currents are interestingly non-dissipative cur-
rents with no accompanying net charge flow, akin to pure
spin currents [7]. This property is very useful in seeking
ultra-low power devices. Different routes have been pro-
posed for generating valley currents such as using quan-
tum pumps with a Dirac gap [8], and using electrically
induced Berry curvature in bilayer graphene [7].

In the quantum pumping technique, a cyclic change
of the AC voltage of the gates leads to the variation
in the scattering matrix of the device and the genera-
tion of a DC current [8]. This method of generating
a charge DC current without bias voltage between two
electrodes [8, 9] can be generalized to account for the
spin or even the valley degree of freedom. In this work,
a time-dependent nano-bubble in graphene, that can be
created by a time-dependent voltage of an Atomic Force
Microscopy (AFM) tip, capacitively coupled to the de-
vice [10], will be utilized as a quantum pumping device
to examine the possibilities of generating a nonzero val-
ley current with a zero net charge current. The deforma-
tion itself can be initially created by different techniques
such as corrugated substrate engineering [11, 12] or gas



inflation [13].

The pseudo magnetic field associated with the deforma-
tion in graphene is valley dependent and changes its sign
between the two valley points K and K’.This feature al-
lows the PMF to preserve time-reversal symmetry unlike
a real external magnetic field. Consequently, a time ma-
nipulation of the PMF will induce different behaviour for
the K and K’ electrons and thus a valley-resolved study
of the current is necessary [14]. It is worth mentioning
that different studies have looked at the effect of other dy-
namical strains on the electronic transport. Ref. [15] for
example, considered in-plane strain in a gapped graphene
to induce a topological current, Ref. [16] looked at
the symmetry requirements for pumping valley current,
while Ref. [17] investigated the pseudo quantum Hall
regime due to strain. Other shapes or mechanisms to get
the valley filtering were also investigated [18, 19]

2. MODEL
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Fig. 2. Tight-binding model for a quasi-1D graphene system
with zigzag edges. a) shows the local deformation as a local
bump in the center of the graphene sheet, altering the transla-
tional invariance of the quasi 1D waveguide. b) shows a face
side of the Gaussian strain bump which is centered in the mid-
dle of the system. The green links in the zoom of c) represent
the interface through which the pumped current is calculated.
The red parts in c) are the leads (reservoirs) that indicate that
the system is infinite in that direction. An animation sketching
the system can be found in [20]

Graphene consists of carbon atoms, that are arranged
in an hexagonal honeycomb structure. This arrangement
is a triangular lattice with a basis of two atoms per unit
cell where the lattice vector for this structure are a; =
4(3,4/3) and @, = (3,—+/3) (Fig. 2) and the constant
a is carbon-carbon distance with value dy ~ 1.42 4 [21].
The electronic structure of strained graphene is studied
by utilizing a first nearest neighbor tight-binding model
approximation, H = — Y., jc,Tc ; where the sum runs
over the nearest neighboring atoms. Figure 2 shows the

semi-infinite graphene system, where the plane waves
are coming along the zigzag direction from left and right
leads. Experimentally, the deformation can be created in
a graphene sheet by using an atomic force microscope’s
tip [10, 22, 23]. In the presence of a nano-bubble the
nearest neighbors hopping parameters become all dif-
ferent. Thus, the strain can be included in the system
by altering the hopping parameter to the strained bond
length. The adjustment of the hopping in the presence of
the strain can be described by

= toe Pl Y, (1)

where fp = 2.7 eV, B = 3.37 for graphene structure [24].
d;; represents the length of the strained lattice bonds
whereas d is the lattice constant in the absence of strain.

3. RESULTS
3.1. Pseudo Magnetic Field

In our model, the graphene out-of-plane deforma-
tion is local with a characteristic width 6 = 5Snm, a

maximum height hy = 3.5 nm [3, 4, 25] and an over-
_y?

all Gaussian shape modeled by z = hge 202 . In the

limit of low-energy carriers, the deformation is equiva-

lent to an induced effective vector potential given by [1]

A8

Jeas ((Exx — €)% — 2€y,9), where the stress tensors

&;; can be calculated by €; = 3[(diz)(d;z)]. A straight-
forward calculation leads to the following form of the
vector potential,

—hB
eapoct

Ay = —322((x* —y?) - 2099). @)
The corresponding pseudo magnetic field can be ob-
tained by Eo =V x Ap:

= 4B 5, 5 2
By = -3 Z. 3
0= pr0ob? (v’ —=3x7y)2 3)

The pseudo magnetic field shows alternating positive and
negative regions in the deformation position as shown
in Fig. 3. This magnetic field is valley dependent and
changes its sign between the high symmetry points K and
K’ and is responsible for the valley filtering in graphene
nano-bubbles [3].

Using eq.1, we can demonstrate that the maximum rel-
ative change in the hopping parameter is proportional to
Bh3/c?. This implies that for a small deformation width
o, it becomes necessary to reduce the maximum height
to remain within the constraints of stretchable graphene
[1, 2]. In our particular case, a numerical examination



3.2 Induced Pseudo Electric Field
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Fig. 3. The color map indicates the threefold symmetric

pseudo-magnetic field caused by the circularly symmetric
Gaussian deformation. The vector field illustrates the stim-
ulated electric field by the time-dependent pseudo-magnetic
field. ’a’ is the lattice constant.

of max(At;; / t;j) confirms that we are, indeed, within this
specified limit.

3.2. Induced Pseudo Electric Field

The dynamics of the charge carriers in graphene under
a dynamical external mechanical strain is a challenging
problem. The generated frequencies of the perturbation
projects into the sub-Terahertz domain with reported fre-
quencies up to 200 GHz [26]. We note in passing that
such frequencies are much smaller than the bandwidth
of graphene. Therefore, standard techniques like Floquet
theory [27-33] are hard to apply, which makes a full nu-
merical treatment necessary and which will be the sub-
ject of our work. Things become more interesting when
the strain is a nano-bubble exhibiting a few hundred Tes-
las pseudo magnetic field. Indeed, an oscillating bump
with a height 7 = hy + 8Ah(¢) will change the vector po-

tential to a new form A = (1 + 52—5’))250. In the Weyl
gauge, the Maxwell equations show an induced pseudo

electric field in the limit 52—(()’) < 1, to the lowest order:
o Sh(t) -
E(xvy) =-2 h(() )AOa (4‘)

where the dot represents the time derivative. This result
accounts for the small perturbations due to a small am-
plitude in the out-of-plane vibration of the nano-bubble
which allows us to keep our interpretation within the lin-
ear response theory. It is worth noting that although the
pseudo magnetic field is strong (hundreds of Teslas), the
induced electric field is only a few kV/cm. This is mainly

explained by the fact that these large values of By are
rather due to the large gradient of Ao (variation on very
short scales) than to its magnitude. The pseudo-electric
field map is depicted in Fig. 3 where a threefold symme-
try emerges and the system alternates between an inward
and outward pseudo electric field for the K and K’ val-
leys.

Current (nA)

Fig. 4. The generated currents through the interface shown in
Fig. 2. The two types of currents at K and K’ are in phase and
average to zero. The charge current is obtained for 4y = 3.5 nm
and 84 = 0.35 nm. Ep = 0.28¢y. T is the period of oscillation
of the bubble.

3.3. Charge and Valley Currents

As, in the case of charge-pumping by the dynamics
of a skyrmion deformation [9, 34] and spin-pumping by
the precession of magnetic textures [35, 36], an oscil-
lating nano-bubble is expected to alter the charge den-
sity and induce a charge/valley current through the in-
terface between the system and the lead [37]. To in-
vestigate this property, we adopt a nano-bubble oscil-
lating at hundreds GHz with 8A(t) = dhgsin(wyt + ¢)
with a height modulation strength 49 = 3.5 nm, a char-
acteristic width 0 = 5 nm and a perturbation magnitude
S8hp = 0.35 nm. The way to generate these oscillations is
unimportant at this stage but can be initiated by a capaci-
tively coupled atomic force microscope’s tip or a laser on
top of the strained part. The first step towards the calcu-
lation of the charge current is to solve the time-dependent
Schrodinger equation to obtain the wave functions at dif-
ferent times and then calculate the different currents in
the system in one-body formalism [38, 39]. It is impor-
tant to mention that a more accurate procedure involves
an integration over the different contributions from all
energies in the Fermi sea. This was safely avoided due
to the small driving frequencies (compared to the Fermi
level Er = 270 meV) and the small excitations consid-
ered in this study (i@w/Er < 1). This reduces the needed



3.3 Charge and Valley Currents
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Fig. 5. The charge current (Left) and the valley current (Right)
pumped through an interface with the lead (see figure 2). The
average of each of them is zero. The charge oscillates at the
same frequency as the nano-bubble, whereas the pumped valley
current shows higher order harmonics.The blue dots represent
the times at which the current maps were plotted in Fig. 7. T is
the period of oscillation of the nanobubble

numerical resources and keeps the problem at the Fermi
surface (similar to the case of the spin-pumping theory).
Figure 4 shows the result of the pumped charge cur-
rent Ieharge = Ix + I, Which expectedly averages to zero
as explained by the scattering approach to parametric
pumping. Indeed, varying one parameter is not enough
to generate a sustainable charge current [9].

The frequency of the signal is the same as that of the
oscillating nano-bubble. So far, these results look like the
same as for the spin pumping of Iy, Iy and I¢haree in Ferro-
magnets (precessing around the z-axis): zero average and
the same frequency as the driving perturbation. Since the
pseudo electric field is valley dependent, the contribution
coming from each K-point to the charge current is inves-
tigated and plotted in Fig. 4. The two currents, Ix, and
Ix have amplitudes of the same order of magnitude and
both oscillate at the same angular frequency wy. The two
currents are not exactly the same, because for a Fermi en-
ergy slightly higher than zero, the modes in the two dif-
ferent valleys are non-symmetric and have slightly dif-
ferent wavenumbers. The valley current, which is de-
fined as Iyayey = Ix — I is of huge interest in low energy
consumption devices. The reason behind it is that the net
charge transferred can be zero whereas at the same time
the valley current is not vanishing. This eliminates the
dissipation of energy as heat while transporting informa-
tion through the valleys’ degrees of freedom. The valley
current is well defined in the interface region (away from
the bubble), because the lead is uniform and the conduct-
ing modes (incoming wave functions from the lead) do
not mix. One has to compute the time-dependent wave
function for each mode, using T-kwant package [38, 39],
and identify the different modes in each valley. The con-
tribution of each mode to the current between sites a and
b reads:

1 =i (v} Hao) wo—ViHaw,) )

where, V) is the wave function of a given mode at

4

site a(b). H,yp is the matrix element between sites a and
b (in our case, it represents the hopping parameter be-
tween a and b in graphene). The contribution of modes
of a given valley are summed together to finally express
Lyaliey. Inside the scattering region, this procedure can
still be used, but the current is not exactly a pure val-
ley current. Indeed, the scattering between the valleys is
possible, yet it remains small (the points K and K’ are
far apart in the Brillouin zone) [14]. For this reason, the
approximation of the local current in the scattering re-
gion is still valid [14]. Another approach is to project
the wave functions on the valley-resolved ones of pris-
tine graphene [24].

Fig. 5 shows the result for the valley current pumped
through the same interface. The average is again zero
and the amplitude is much smaller than that of the charge
current. The most important thing to notice is that the
frequency of the Iyapey is not exactly the same as that
of the nano-bubble. As we can see in Fig. 7, the val-
ley current exhibits a main frequency of 3wy with small
contributions from @y, 2@y and Swy. The appearance of
higher-order harmonics was recently reported for spin-
pumping in the presence of spin-orbit interaction [40] or
in the presence of non-collinear magnetic structure [41].
In our case, none of the discussed causes in [40, 41] are
present in our system. The charge and valley pumping
depend on the parameters of the system. As we can see it
from the expression of the pseudo electric field, the latter

is proportional to the perturbation B}Z”. Naturally, this is
expected to be the same for the charge and valley cur-
rents. Fig. 7 b) shows the amplitude of the Iparge and

Lyaney which are clearly linearly varying with the change

5,1130 . For stronger perturbations, higher non-linear effects

are expected to manifest. Another way to increase the
different pumped currents is to play with the frequency
and use a Terahertz spectrum. This is a challenging task,
but very promising results suggest that this projection is
reachable [26]. The zero-average of the valley current
makes it very difficult to exploit in devices since no ac-
cumulation can be obtained and only oscillating current
redistribution of the valleys is achieved. With proper en-
gineering, we still can think of it as the basis for a poten-
tially new Field-effect transistor [42].

3.4. Local currents

Since the pseudo electric field is local and mainly ap-
pears in the central system, investigating the current at
different regions than the interface with the lead might
be of a great interest. The plot of the current map will
show how the regions of the maximum pseudo magnetic
field influence the current direction and generation. The
wave functions are calculated at all sites of the systems
which allows us to express the local currents. Fig. 6 il-
lustrates the map obtained at different times during one
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Fig. 6. The current map of the pumped charge current (top) and the valley pumped current at different times for 6 modes with
Ep = 0.07ty. The nano-bubble size is ¢ = 5 nm and the height 64y = 0.1k . The position is expressed in nm.The times at which
the maps are plotted are inside one period of oscillation and increase from left to right. (the 4 different phases of an oscillation).
The blue dots in Fig. 5 show the time where the maps are plotted. ( for these figures, the time increases from left to right.)
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Fig. 7. Left) The Fourier transform of the Valley current.The
signal exhibits higher order frequencies (multiple of @y).
Right) (blue curve) The amplitude of the pumped electric cur-
rent vs the amplitude of the bump oscillation. (green curve) The
amplitude of the valley current vs the amplitude of the bump
oscillation. hy = 3.5nm, 6 = 5 nm and the Fermi energy is
Er =270 meV. The width of the system is W = 50 nm.

period. The current lines for the charge and the valley
are symmetric which is just the reflection of the symme-
try of the Gaussian bump considered in this work. This
will be different if a triaxial strain was adopted. In fact,
it is known that a Gaussian deformation filters the val-
leys whereas the triaxial one splits them [3].The Fermi
energy is chosen low to reduce the number of modes
due to the limited computing resources in this kind of
2D maps (current is calculated between each two links,
at each time) and this doesn’t change the general conclu-
sions. The maps for the valley current and the charge cur-
rent are intrinsically different: for the charge current, it is
hard to see the positions of the valley-dependent maxima
of the pseudo-magnetic field. The situation is different
for the valley current. We clearly notice loops of differ-
ent orientations showing the dependence of the pseudo-
magnetic field on the valley of the carriers. The size of
the current’s loops can be changed via the parameter ¢
ie, creating very peaked bumps or smoothly varying ones
over a larger region. The number of modes for the cho-
sen Fermi energy is very small. In order to increase the

current, one needs to increase it either by changing the
width of the system or by increasing the Fermi energy.

It’s worth mentioning that we did investigate deforma-
tions with elliptical symmetry, deliberately tilting them
to disrupt left-right symmetry. Unfortunately, this ap-
proach did not lead to a sustained average valley current.

CONCLUSION

The pseudo magnetic field generated by a strained
graphene sheet was analyzed. In the presence of a time-
dependent oscillating strain, a corresponding pseudo
electric field is stimulated giving rise to a redistribution
of the quantum states in momentum space, leading to
charge and valley pumping. We demonstrated that the
valley current exhibits extra-harmonics and that on av-
erage, the pseudo electric field did not sustain a direct
current, and rather a zero average was obtained. This
work opens the door to further interesting studies like
the pseudo-electric field generated by the propagation of
mechanical waves in graphene or the distribution of local
electric currents due to phonons and temperature effects
on graphene.

ACKNOWLEDGMENT

The authors acknowledge computing time on the su-
percomputer SHAHEEN at KAUST Supercomputing
Centre and the team assistance. A.A. and M. V. gratefully
acknowledge the support provided by the Deanship of
Research Oversight and Coordination (DROC) at King
Fahd University of Petroleum and Minerals (KFUPM)
for funding this work through exploratory research grant
No. ER221002.

[1] M. R. Masir, D. Moldovan, and F. Peeters, Pseudo mag-
netic field in strained graphene: Revisited, Solid state
communications 175, 76 (2013).

[2] F. Guinea, A. Geim, M. Katsnelson, and K. Novoselov,
Generating quantizing pseudomagnetic fields by bending
graphene ribbons, Physical Review B 81, 035408 (2010).

[3] M. Settnes, S. R. Power, M. Brandbyge, and A.-P. Jauho,
Graphene nanobubbles as valley filters and beam splitters,
Physical review letters 117, 276801 (2016).

[4] E De Juan, A. Cortijo, M. A. Vozmediano, and A. Cano,
Aharonov—bohm interferences from local deformations in
graphene, Nature Physics 7, 810 (2011).

[5] F. Guinea, M. Katsnelson, and A. Geim, Energy gaps and
a zero-field quantum hall effect in graphene by strain en-
gineering, Nature Physics 6, 30 (2010).

[6] S. A. Vitale, D. Nezich, J. O. Varghese, P. Kim, N. Gedik,
P. Jarillo-Herrero, D. Xiao, and M. Rothschild, Val-

leytronics: opportunities, challenges, and paths forward,
Small 14, 1801483 (2018).

[7] Y. Shimazaki, M. Yamamoto, I. V. Borzenets, K. Watan-
abe, T. Taniguchi, and S. Tarucha, Generation and detec-
tion of pure valley current by electrically induced berry
curvature in bilayer graphene, Nature Physics 11, 1032
(2015).

[8] J. Wang, Z. Lin, and K. S. Chan, Pure valley current gen-
eration in graphene with a dirac gap by quantum pumping,
Applied Physics Express 7, 125102 (2014).

[9] P. Brouwer, Scattering approach to parametric pumping,
Physical Review B 58, R10135 (1998).

[10] N. N. Klimov, S. Jung, S. Zhu, T. Li, C. A. Wright,
S. D. Solares, D. B. Newell, N. B. Zhitenev, and J. A.
Stroscio, Electromechanical properties of graphene drum-
heads, Science 336, 1557 (2012).



3.4 Local currents

[11] A.R.P. et al, Strain superlattices and macroscale suspen-
sion of graphene induced by corrugated substrates, Nano
Lett 14, 5044 (2014).

[12] A. H. C. N. S. Viola Kusminskiy, D. K Campbell and
F. Guinea, Pinning of a two-dimensional membrane on top
of a patterned substrate: The case of graphene, Phys. rev.
B 83 (2011).

[13] J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der
Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen,
Impermeable atomic membranes from graphene sheets,
Nano lett. 8, 2458 (2008).

[14] J. G. Nedell, J. Spector, A. Abbout, M. Vogl, and G. A. Fi-
ete, Deep learning of deformation-dependent conductance
in thin films: Nanobubbles in graphene, Phys. Rev. B 105,
075425 (2022).

[15] A. Vaezi, N. Abedpour, R. Asgari, A. Cortijo, and
M. A. H. Vozmediano, Topological electric current from
time-dependent elastic deformations in graphene, Phys.
Rev. B 88, 125406 (2013).

[16] Y. Jiang, T. Low, K. Chang, M. I. Katsnelson, and
F. Guinea, Generation of pure bulk valley current in
graphene, Phys. Rev. Lett. 110, 046601 (2013).

[17] E. Sela, Y. Bloch, F. von Oppen, and M. B. Shalom, Quan-
tum hall response to time-dependent strain gradients in
graphene, Phys. Rev. Lett. 124, 026602 (2020).

[18] J. Amasay and E. Sela, Transport through dynamic pseu-
dogauge fields and snake states in a corbino geometry,
Phys. Rev. B 104, 125428 (2021).

[19] A. Belayadi, N. A. Hadadi, P. Vasilopoulos, and
A. Abbout, Valley-dependent tunneling through electro-
statically created quantum dots in heterostructures of
graphene with hexagonal boron nitride, Phys. Rev. B 108,
085419 (2023).

[20] A. A. et al., Supplemental material on website, Phys. Rev.
B xxx, xxxx (2023).

[21] R. Carrillo-Bastos, D. Faria, A. Latgé, F. Mireles, and
N. Sandler, Gaussian deformations in graphene ribbons:
Flowers and confinement, Physical Review B 90, 041411
(2014).

[22] C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of
the elastic properties and intrinsic strength of monolayer
graphene, science 321, 385 (2008).

[23] P. Nemes-Incze, G. Kukucska, J. Koltai, J. Kiirti,
C. Hwang, L. Tapasztd, and L. P. Bir6, Preparing local
strain patterns in graphene by atomic force microscope
based indentation, Scientific reports 7, 3035 (2017).

[24] T. Stegmann and N. Szpak, Current splitting and valley
polarization in elastically deformed graphene, 2D Materi-
als 6, 015024 (2018).

[25] J. Pengfei, C. Wenjing, Q. Jiabin, Z. Miao, Z. Xi-
aohu, X. Zhongying, L. Rongda, T. Chuanshan, H. Lin,
D. Zengfeng, and W. Xi, Programmable graphene
nanobubbles with three-fold symmetric pseudo-magnetic
fields, Nature Communications 10, 3127 (2019).

[26] Y. W. etal, 200 ghz maximum oscillation frequency in cvd
graphene radio frequency transistors, ACS Appl. Mater.
Interfaces 8, 25645 (2016).

[27] A. Eckardt and E. Anisimovas, High-frequency approx-
imation for periodically driven quantum systems from
a floquet-space perspective, New Journal of Physics 17,
093039 (2015).

[28] M. Bukov, L. D'Alessio, and A. Polkovnikov, Universal
high-frequency behavior of periodically driven systems:
from dynamical stabilization to floquet engineering, Ad-
vances in Physics 64, 139 (2015).

[29] M. Vogl, S. Chaudhary, and G. A. Fiete, Light driven mag-
netic transitions in transition metal dichalcogenide het-
erobilayers, Journal of Physics: Condensed Matter 35,
095801 (2022).

[30] D. A. Abanin, W. D. Roeck, W. W. Ho, and F. Huve-
neers, Effective hamiltonians, prethermalization, and slow
energy absorption in periodically driven many-body sys-
tems, Physical Review B 95 (2017).

[31] M. Rodriguez-Vega, M. Vogl, and G. A. Fiete, Low-
frequency and moiré—floquet engineering: A review, An-
nals of Physics 435, 168434 (2021).

[32] M. Vogl, P. Laurell, A. D. Barr, and G. A. Fiete, Analog
of hamilton-jacobi theory for the time-evolution operator,
Physical Review A 100 (2019).

[33] M. Vogl, M. Rodriguez-Vega, and G. A. Fiete, Effective
floquet hamiltonian in the low-frequency regime, Phys.
Rev. B 101, 024303 (2020).

[34] A. Abbout, J. Weston, X. Waintal, and A. Manchon, Co-
operative charge pumping and enhanced skyrmion mobil-
ity, Phys. Rev. Lett. 121, 257203 (2018).

[35] Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Spin
pumping and magnetization dynamics in metallic multi-
layers, Phys. Rev. B 66, 224403 (2002).

[36] G. Tatara and S. Mizukami, Consistent microscopic anal-
ysis of spin pumping effects, Phys. Rev. B 96, 064423
(2017).

[37] This current might vanish on average, .

[38] T. Kloss, J. Weston, B. Gaury, B. Rossignol, C. Groth,
and X. Waintal, Tkwant: a software package for time-
dependent quantum transport, New Journal of Physics 23,
023025 (2021).

[39] C. W. Groth, M. Wimmer, A. R. Akhmerov, and X. Wain-
tal, Kwant: a software package for quantum transport,
New Journal of Physics 16, 063065 (2014).

[40] O. Ly and A. Manchon, Spin-orbit coupling induced
ultrahigh-harmonic generation from magnetic dynamics,
Phys. Rev. B 105, L180415 (2022).

[41] O. Ly, Noncollinear antiferromagnetic textures driven
high-harmonic generation from magnetic dynamics in the
absence of spin-orbit coupling, Journal of Physics: Con-
densed Matter 35, 125802 (2023).

[42] W. Y. Choi, H. jun Kim, J. Chang, S. H. Han, A. Abbout,
H. B. M. Saidaoui, A. Manchon, K. J. Lee, and H. C. Koo,
Ferromagnet-free all-electric spin hall transistors, Nano
Lett. 2018, 18, 12, 7998-8002.



