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Influence of the surface states on the nonlinear Hall effect in Weyl semimetals

We investigate the influence of surface states on the nonlinear Hall response driven by the Berry curvature dipole in non-centrosymmetric time-reversal invariant Weyl semimetals. To do so, we perform a tomography of the Berry curvature dipole in a slab system using a minimal two-band model. We find that in the type-I phase, the nonlinear Hall response is not particularly sensitive to the presence of Fermi arcs or other trivial surface states. However, in the type-II phase, we find that these surface states, be they topologically trivial or not, contribute substantially to the Berry curvature dipole, leading to a strong thickness dependence of the nonlinear Hall response. This feature depends on the nature of the surface states and, henceforth, on the slab geometry adopted. In order to assess the validity of this scenario for realistic systems, we performed Berry curvature dipole calculations by first principles on the WTe2, confirming the dramatic impact of surface states for selected slab geometries. Our results suggest that surface states, being topological or not, can contribute much more efficiently to the nonlinear Hall response than bulk states. This prediction is not limited to topological semimetals and should apply to topologically trivial non-centrosymmetric materials and heterostructures, paving the way to interfacial engineering of the nonlinear Hall effect.

I. INTRODUCTION

Conventional wisdom inherited from Hall's foundational work [START_REF] Hall | On a New Action of the magnet on Electric[END_REF][START_REF] Hall | On the "Rotational Coefficient" in nickel and cobalt[END_REF] states that Hall currents flowing transverse to the injected charge direction are only permitted as long as time-reversal symmetry is globally broken. In other words, ordinary, anomalous or topological Hall effects only exist either in the presence of an external magnetic field or in magnetic materials displaying a net magnetization [START_REF] Nagaosa | Anomalous Hall effect[END_REF]. However, this long-lived statement has been recently challenged by two important observations. First, it has been realized that anomalous Hall effect does not necessitate the presence of a net magnetic moment to exist. For instance, in an antiferromagnet the Hall effect can be nonzero as long as no crystal symmetry reinstalls the time-reversal effectively. This is particularly true for certain classes of antiferromagnets with a non-collinear magnetic configuration [START_REF] Chen | Anomalous Hall Effect Arising from Noncollinear Antiferromagnetism[END_REF][START_REF] Kubler | Non-collinear antiferromagnets and the anomalous Hall effect[END_REF][START_REF] Nakatsuji | Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature[END_REF][START_REF] Nayak | Large anomalous Hall effect driven by non-vanishing Berry curvature in non-collinear antiferromagnet Mn3Ge[END_REF] (see also Ref. [START_REF] Bonbien | Topological Aspects of Antiferromagnets[END_REF]). Second, the time-reversal symmetry breaking necessary to obtain Hall effect is not required anymore at the second order in the electric field. Under certain conditions, anomalous Hall effect can appear in non-magnetic materials to the second order of the electric field [START_REF] Sodemann | Quantum nonlinear hall effect induced by berry curvature dipole in time-reversal in-variant materials[END_REF][START_REF] Ma | Observation of the nonlinear hall effect under time-reversal-symmetric conditions[END_REF][START_REF] Kang | Nonlinear anomalous hall effect in few-layer WTe2[END_REF]. Recently, it has been proposed that such a second-order Hall effect exists in collinear antiferromagnets where the linear Hall effect is absent, e.g., CuMnSb [START_REF] Shao | Nonlinear anomalous hall effect for néel vector detection[END_REF] .Whereas the intrinsic contribution to the linear anomalous Hall effect in ferromagnetic and antiferromagnetic compounds is associated with the Berry curvature of the material's ground state, the second order, nonlinear anomalous Hall effect (NLHE) is rather associated with the Berry curvature dipole (BCD). From a symmetry standpoint, the minimal requirement is inversion symmetry breaking which ensures that the Berry curvature does not vanish, but this is not sufficient: mirror symmetry also needs to be broken to obtain a finite BCD. Sodemann and Fu [START_REF] Sodemann | Quantum nonlinear hall effect induced by berry curvature dipole in time-reversal in-variant materials[END_REF] identified the crystallographic point groups that possess the minimal requirements for the observation of NLHE, a study recently refined by Du et al. [START_REF] Du | Quantum theory of the nonlinear Hall effect[END_REF] to include both intrinsic (BCD related) and extrinsic mechanisms [START_REF] Nandy | Symmetry and quantum kinetics of the nonlinear hall effect[END_REF] allowed by symmetry.

Different material candidates have been explored experimentally and theoretically as suitable options to obtain NLHE. From an experimental point of view, quadratic responses in the electric field have been detected, among others, in bilayers and few layers of WTe 2 [START_REF] Ma | Observation of the nonlinear hall effect under time-reversal-symmetric conditions[END_REF][START_REF] Kang | Nonlinear anomalous hall effect in few-layer WTe2[END_REF] which have C 2v point group. From a theoretical perspective, other possibilities for large BCD values have been proposed, including transition metal dichalcogenides [START_REF] Du | Band signatures for strong nonlinear hall effect in bilayer WTe2[END_REF][START_REF] You | Berry curvature dipole current in the transition metal dichalcogenides family[END_REF][START_REF] He | Giant nonlinear hall effect in twisted bilayer WTe2[END_REF][START_REF] Singh | Engineering weyl phases and nonlinear hall effects in t d -MoTe2[END_REF][START_REF] Zhang | Electrically tuneable nonlinear anomalous hall effect in twodimensional transition-metal dichalcogenides WTe2 and MoTe2[END_REF][START_REF] Zhou | Highly tunable nonlinear hall effects induced by spin-orbit couplings in strained polar transition-metal dichalcogenides[END_REF], graphene [START_REF] Battilomo | Berry curvature dipole in strained graphene: A fermi surface warping effect[END_REF][START_REF] Pantaleón | Tunable large berry dipole in strained twisted bilayer graphene[END_REF][START_REF] Zhang | Giant nonlinear hall effect in strained twisted bilayer graphene[END_REF], and especially Dirac [START_REF] Samal | Nonlinear transport without spin-orbit coupling or warping in two-dimensional dirac semimetals[END_REF] and Weyl semimetals (WSM) [START_REF] Zeng | Nonlinear transport in weyl semimetals induced by berry curvature dipole[END_REF] (See also Ref. [START_REF] Facio | Strongly enhanced berry dipole at topological phase transitions in bitei[END_REF]). Ab initio simulations [START_REF] Zhang | Berry curvature dipole in weyl semimetal materials: An ab initio study[END_REF] have stimulated further theoretical studies of BCD in 3D WSMs, because of their rich geometrical features and their potential benefits to create highly efficient electronic transport devices. NLHE in WSMs has also been verified analytically by applying perturbation theory [START_REF] Gao | Second-order nonlinear hall effect in weyl semimetals[END_REF], suggesting that the transport is sensitive to intraband processes, the chemical potential and the tilting of the Weyl nodes. Besides, similar optical effects such as second harmonic generation can be confirmed by applying Floquet [START_REF] Morimoto | Semiclassical theory of nonlinear magneto-optical responses with applications to topological dirac/weyl semimetals[END_REF] and manybody quantum formalisms [START_REF] Rostami | Nonlinear anomalous photocurrents in weyl semimetals[END_REF]. Last but not least, a full Green function theory of the NLHE has been proposed recently [START_REF] Du | Quantum theory of the nonlinear Hall effect[END_REF], pointing out the differences between extrinsic and intrinsic contributions. The former is associated with higher moments of the impurity potential whereas the latter is solely associated to the band structure. In this article, we focus on the nonlinear response arising on the intrinsic mechanism driven by the BCD. Nonmagnetic WSMs such as TaAs or WTe 2 are particularly interesting platforms for the realization of NLHE because inversion symmetry is necessarily broken and Berry curvature diverges at the Weyl nodes. WSMs possess pairs of doubly degenerate linearly dispersive states, forming Weyl cones at Fermi level [START_REF] Wan | Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates[END_REF]. According to the Nielsen-Ninomiya theorem [START_REF] Nielsen | The adler-bell-jackiw anomaly and weyl fermions in a crystal[END_REF], each pair of nodes carries Berry curvature monopoles of opposite chirality which are connected via Fermi arcs lying at opposite surfaces of the slab [START_REF] Armitage | Weyl and dirac semimetals in three-dimensional solids[END_REF]. Type I WSMs, such as elemental Tellurium [START_REF] Rodriguez | Two linear regimes in optical conductivity of a type-i weyl semimetal: The case of elemental tellurium[END_REF], Janus superlattices [START_REF] Meng | A type of robust superlattice type-i weyl semimetal with four weyl nodes[END_REF] and Ta or As compounds [START_REF] Lv | Experimental discovery of weyl semimetal TaAs[END_REF][START_REF] Xu | Discovery of a weyl fermion semimetal and topological fermi arcs[END_REF][START_REF] Sun | Topological surface states and fermi arcs of the noncentrosymmetric weyl semimetals TaAs, TaP, NbAs, and NbP[END_REF], are characterized by point-like Fermi surface in the bulk and vanishing density of states. Type II WSMs, such as MoTe 2 [START_REF] Deng | Experimental observation of topological fermi arcs in type-ii weyl semimetal MoTe2[END_REF][START_REF] Tamai | Fermi arcs and their topological character in the candidate type-ii weyl semimetal MoTe2[END_REF] and WTe 2 [START_REF] Bruno | Observation of large topologically trivial fermi arcs in the candidate type-ii weyl semimetal WTe2[END_REF][START_REF] Wu | Observation of fermi arcs in the type-ii weyl semimetal candidate WTe2[END_REF] but also the magnetic candidate Co 3 Sn 2 S 2 [START_REF] Guin | Zero-field nernst effect in a ferromagnetic kagome-lattice weyl-semimetal Co3Sn2S2[END_REF][START_REF] Morali | Fermi-arc diversity on surface terminations of the magnetic weyl semimetal Co3Sn2S2[END_REF][START_REF] Li | Surface states in bulk single crystal of topological semimetal Co3Sn2S2 toward water oxidation[END_REF][START_REF] Wang | Large intrinsic anomalous hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic weyl fermions[END_REF][START_REF] Okamura | Giant magneto-optical responses in magnetic weyl semimetal Co3Sn2S2[END_REF][START_REF] Ikeda | Critical thickness for the emergence of weyl features in Co3Sn2S2 thin films[END_REF], offer a slightly different paradigm as the Weyl cone spectrum is tilted in momentum space, breaking Lorentz invariance. As a result, the Weyl points arise at the boundary between electron and hole pockets. Notice that certain compounds can support type I as well as type II Weyl nodes [START_REF] Meng | Ternary compound HfCuP: An excellent weyl semimetal with the coexistence of type-i and type-ii weyl nodes[END_REF][START_REF] Zhang | Coexistence of type-i and type-ii weyl points in the weyl-semimetal OsC2[END_REF].

A remarkable aspect of WSMs is the nature of their surface states. As mentioned above, alike topological insulators WSMs possess topologically protected surface states in the form of spin-momentum locked Fermi arcs that connect bulk Weyl nodes of opposite chirality. In type I WSMs, the Fermi arcs coexist with the projection of electron (or hole) pockets when the chemical potential lies away from the neutrality point. In type II WSMs, the Fermi arcs coexist with projected electron and hole pockets irrespective of the value of the chemical potential, as well as with trivial closed loops called "track states" [START_REF] Mccormick | Minimal models for topological weyl semimetals[END_REF]. As a consequence, surface states of WSMs can be rich, resulting in enhanced Edelstein effect [START_REF] Johansson | Edelstein effect in Weyl semimetals[END_REF], and unconventional patterns in quantum oscillation experiments [START_REF] Potter | Quantum Oscillations from Surface Fermi-Arcs in Weyl and Dirac Semi-Metals[END_REF][START_REF] Bulmash | Quantum oscillations in Weyl and Dirac semimetal ultrathin films[END_REF][START_REF] Wang | Anomalous Phase Shift of Quantum Oscillations in 3D Topological Semimetals[END_REF] (see also Ref. [START_REF] Moll | Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac semimetal Cd3As2[END_REF]). Previous works pointed out that topological materials defined in slab geometries can exhibit interesting transport properties due to finite size effects and the behavior of surface states inside the samples. In this context, it has been shown that the anomalous Hall conductivity is highly influenced by surface states such as Fermi arcs in Weyl systems without time-reversal symmetry [START_REF] Breitkreiz | Large contribution of fermi arcs to the conductivity of topological metals[END_REF], even in presence of disorder [START_REF] Lopez | Multiterminal conductance at the surface of a weyl semimetal[END_REF]. Additional studies have been performed in confined geometries to clarify, among others, the behavior of chiral magnetic effects [START_REF] Gorbar | Chiral separation and chiral magnetic effects in a slab: The role of boundaries[END_REF], the magnetoresistance [START_REF] Alekseev | Magnetoresistance of compensated semimetals in confined geometries[END_REF] and the quantum Hall effect in Dirac semimetals [START_REF] Schumann | Observation of the quantum hall effect in confined films of the three-dimensional dirac semimetal Cd3As2[END_REF].

In this work, we seek to understand how the surface states of nonmagnetic WSMs influence the NHLE response driven by the BCD. To do so, we consider a minimal 2-band model of a time-reversal invariant WSM with inversion symmetry breaking in a slab geometry, so that bulk and surface states are treated on equal footing [START_REF] Mccormick | Minimal models for topological weyl semimetals[END_REF]. This model exhibits four Weyl points: the minimum number of degeneracies due to time-reversal symmetry. These four points are associated with local divergencies of the Berry curvature, as depicted on Fig. 1. In this sense, after neglecting the vanishing components of the BCD tensor due to mirror symmetries in the 3D lattice, Zeng et al. [START_REF] Zeng | Nonlinear transport in weyl semimetals induced by berry curvature dipole[END_REF] recently reported that NLHE requires Weyl cone tilting and an asymmetric Fermi surface when the nodes lie at the same energy. The NLHE is also influenced by the distance between nodes. Accordingly, our study gives further insight about the implications of the Fermi arc configurations on the BCD. Remarkably, it also complements a recent study that comprises a surface BCD due to the projection of Fermi arcs in type I WSMs [START_REF] Wawrzik | Infinite berry curvature of weyl fermi arcs[END_REF].

Our paper is organized as follows. In Section II, we recall the general formalism for nonlinear Hall transport driven by BCD and basic physical considerations for our model of interest. In Section III, we provide and discuss our results regarding the connection between surface states and NLHE, its dependency on the Weyl cones tilting and its layer decomposition. In Section IV, we also collate these outcomes with realistic numerical simulations on a WTe 2 slab with different cuts. Finally, we summarize and state our main conclusions in Section V. 

II. GENERAL THEORY AND MODEL

Let us begin by recalling basic elements of NLHE theory [START_REF] Sodemann | Quantum nonlinear hall effect induced by berry curvature dipole in time-reversal in-variant materials[END_REF]. We start with a nonmagnetic crystal and its corresponding Bloch Hamiltonian H k , whose eigenstates |u nk satisfy Schrödinger equation H k |u nk = nk |u nk with eigenenergies nk . If the crystal is subjected to a sufficiently small electric field E =Re[E exp(iωt)], E ∈ C 3 , such that the adiabatic limit is still valid, and assuming weak disorder, the first order Hall current is induced by the Berry curvature [START_REF] Nagaosa | Anomalous Hall effect[END_REF] 

Ω nk = i m =n u nk |v k |u mk × u mk |v k |u nk ( nk -mk ) 2 , (1) 
where vk = ∂ k H k is the velocity operator. Upon time reversal operation T we have T Ω nk T -1 = -Ω n-k , and thus the anomalous Hall effect vanishes. Nonetheless, when inversion symmetry P is further broken, then PΩ nk P -1 = Ω n-k , and one can show to the lowest order in scattering time τ , that the (rectified) second order Hall current reads [9]

j 0 a = e 3 τ 2 2 adc D bd E b E * c . (2) 
Here, latin indices refer to the components of the usual cartesian basis and adc is the Levi-Civita tensor. D bd is the BCD defined as [9]

D bd = BZ d 3 k (2π) 3 n (v nk ) b (Ω nk ) d ∂f nk ∂ nk , (3) 
with v nk = ∂ k nk the eigenvalues of the velocity operator and f nk the Fermi distribution function. In the zero-temperature limit, ∂ nk f nk → -δ( nk -µ), setting µ as the chemical potential. Equation ( 2) neglects the intrinsic contribution to NLHE that appears when timereversal is broken as well as higher order extrinsic contributions (i.e., side-jump and skew scattering) [START_REF] Du | Quantum theory of the nonlinear Hall effect[END_REF][START_REF] Nandy | Symmetry and quantum kinetics of the nonlinear hall effect[END_REF].

The nonmagnetic WSM slab is built on the spinless 2-band model in a cubic lattice introduced in Ref. [START_REF] Mccormick | Minimal models for topological weyl semimetals[END_REF]. The bulk Hamiltonian reads

H B = γ(cos 2k z -cos k 0 )(cos k x -cos k 0 )σ 0 -m(1 -cos 2 k x -cos k y ) + 2t x (cos k z -cos k 0 ) σ1 -2t sin k y σ2 -2t cos k x σ3 , (4) 
with σi , i = 1...3 being the 2 × 2 Pauli matrices, σ0 = 1 2×2 and the cubic Brillouin zone is C = [-π, π] 3 . The parameters of Eq. ( 4) are set to

k 0 = π 2 , m = 2, t x = 1 2
and t = 1. This WSM possesses four Weyl nodes of zero energy located at k * = ± π 2 (x + ẑ) (see Fig. 1). Importantly, for the parameters adopted in this work, γ = 2 sets the transition point between type I (γ < 2) and type II (γ > 2) WSM phases. In the remaining of this paper, the transport properties will be investigated as a function of the chemical potential µ as well as of the tilting of the Weyl cones controlled by γ. Interestingly, Eq. ( 4) is constrained by the following mirror symmetries [START_REF] Zeng | Nonlinear transport in weyl semimetals induced by berry curvature dipole[END_REF] 

M † x H B (k x , k y , k z )M x = H B (-k x , k y , k z ), (5) 
M † z H B (k x , k y , k z )M z = H B (k x , k y , -k z ), (6) 
which impose that the Fermi arcs connecting the Weyl nodes lie on the (z, x) surfaces. In addition, these symmetries constrain the BCD tensor, so that the only nonvanishing elements are D zx and D xz . In other words, a second order Hall current can only be obtained in the (y, z) (≡ D zx ) and (x, y) (≡ D xz ) planes. Consequently, the Fermi arcs cannot contribute to the NLHE response. Nevertheless, as discussed below, other trivial surface states can substantially impact the second order response.

We now design the slabs by discretizing Eq. ( 4) along a given direction, x, ŷ or ẑ, of the cubic Brillouin Zone (see, e.g., Ref. [START_REF] Manchon | Semirealistic tight-binding model for spin-orbit torques[END_REF]). The Hamiltonian loses periodicity along the chosen axis. The new Hamiltonian H n S of size 2L × 2L, with n = x, ŷ, ẑ depending on the growth direction, and L the number of layers, is given by

H n S =             H n 0 H n 1 H n 2 0 ... 0 H n † 1 H n 0 H n 1 H n 2 . . . . . . H n † 2 H n † 1 . . . . . . . . . 0 0 H n † 2 . . . . . . . . . H n 2 . . . . . . . . . . . . . . . H n 1 0 . . . 0 H n † 2 H n † 1 H n 0             . ( 7 
)
For the block matrices in Eq. ( 7), H n 0 is the intralayer Hamiltonian that retains in-plane periodicity after the cut, while H n 1 and H n 2 are the nearest neighbor and second nearest neighbor interlayer Hamiltonian, respectively. For the cut along x, the block matrices are given by

H x 0 = -γ cos k 0 (cos 2k z -cos k 0 )σ 0 -m 1 2 -cos k y + 2t x (cos k z -cos k 0 ) σ1 -2t sin k y σ2 , (8) 
H x 1 = γ 2 (cos 2k z -cos k 0 ) σ0 -tσ 3 , (9) 
H x 2 = m 4 σ1 . (10) 
A cut along ŷ leads to

H ŷ 0 = γ(cos 2k z -cos k 0 )(cos k x -cos k 0 )σ 0 -m sin 2 k x + 2t x (cos k z -cos k 0 ) σ1 -2t cos k x σ3 , (11) 
H ŷ 1 = m 2 σ1 + itσ 2 . (12) 
Finally, a cut along ẑ gives We illustrate the slab band structures for each cut in Fig. 2, for γ = 1 (type I WSM) and γ = 3 (type II WSM). Since the slab Hamiltonians retain a Berry curvature perpendicular to the plane of the slab, we define D x zx as the BCD associated with H x S when the electric field is applied along ẑ, and D ẑ xz is the BCD associated with H ẑ S when the electric field is along x. These are the only relevant BCD components for the slab geometries presented above due to the symmetry restrictions. We now move forward to the method for calculating the layer decomposition of transport coefficients in the slabs. Since the periodic part of the Bloch function can be written in terms of the complete layer basis as |u nk = 

H ẑ 0 = -γ cos k 0 (cos k x -cos k 0 )σ 0 -m(1 -cos 2 k x -cos k y ) -2t x cos k 0 σ1 -2t sin k y σ2 -2t cos k x σ3 , (13) 
H ẑ 1 = -t x σ1 , (14) 
H ẑ 2 = γ 2 (cos k x -cos k 0 ) σ0 . (15) 
D lk = - 1 π Im Tr S l G R k , (16) 
with the retarded Green's function

G R k = lim η→0 + ( + iη)1 -H n S -1 . ( 17 
)
This decomposition provides an insight about the influence of the surface states for each growth direction. Additionally, in order to obtain the contribution of layer l to the NLHE response along, say, ŷ, one simply needs to perform the substitution vy → S l vy into Eq. ( 1) and then into (3).

III. RESULTS AND DISCUSSION

A. Band structure and surface states

Let us first consider how the Weyl cone tilting impacts the slab band structure and its surface states. Since only D x zx and D ẑ xz are non-vanishing, and because the Weyl nodes are located in the (k x , k z ) plane, we focus on slabs composed of L = 25 layers and normal to the x and ẑ directions. Without loss of generality, we fix the chemical potential to µ = 0.2 and select the exemplary cases γ = 1, 3 to illustrate the differences between a type I and a type II WSM, respectively. To better understand how bulk and surface states evolve upon tilting the Weyl cones, we represent the density of states in the 2D Brillouin zone and projected on a set of representative layers, ranging from the bottommost surface to the topmost surface. Our results are depicted in Fig. 3(a,c) for the x-cut and Fig. 3(b,d) for the ẑ-cut.

Figures 3(a,c) and 3(b, d) show different behaviors of the bulk and surface states when tuning the tilting parameter. When n = x [Fig. 3(a,c)], notice two distinct situations depending on the value of γ: if γ = 1 [type I, Fig. 3(a)], the density of states is dominated by the Weyl nodes across the whole slab, with a surface state composed of the projected nodes connected by degenerate Fermi arcs. When γ = 3, [type II, Fig. 3(c)], the density of states of the central layer is composed of electron and hole pockets touching at the Weyl nodes, as expected. These pockets result in large trivial surface Fermi pockets enclosing the nodes, whose connections change direction from ẑ (type I) to x (type II) WSMs [START_REF] Mccormick | Minimal models for topological weyl semimetals[END_REF]. A map of the Fermi arcs' reconnection and surface states' evolution as a function of the tilting γ can be found in Appendix A.

On the other hand, for n = ẑ [Fig. 3 the slab, for γ = 3 [type II, Fig. 3(d)], a surface contribution appears due to the emergence of track states [START_REF] Mccormick | Minimal models for topological weyl semimetals[END_REF]. Nonetheless, the surface Fermi pockets associated with the projection of the bulk electron and hole pockets remain very small and the surface states are dominated by the Weyl nodes, in sharp contrast with the x-cut discussed in Fig. 3(a,c). We therefore expect the surface states to have completely different impact on the NLHE signal in these two different slab geometries.

B. Nonlinear Hall response

Let us now turn our attention towards the NLHE response for the two slabs. We compute the BCD components given by Eq. ( 4) in both slab geometries, (a) D x zx /L (x-cut) and (b) D ẑ xz /L (ẑ-cut), as well as in the 3D bulk structure, D 3D zx(xz) (black symbols), in order to better identify the impact of the surface states. Notice that the BCD calculated in the slab geometry is normalized by the number of layers L to allow for a quantitative comparison with the BCD calculated in the bulk. By definition, the BCD is therefore unitless. In the following, we set the chemical potential to µ = 0.2 and represent the BCDs as a function of the tilting parameter γ, as displayed in Figs. 4(a-b). In addition, the corresponding ratio between the BCD and the density of states is reported on Figs. 4(c-d) and discussed further below. For the x-cut [Fig. 4(a)], the bulk BCD (D 3D zx , black symbols) displays a nonlinear dependence as a function of the tilting parameter, as observed by Zeng et al. [START_REF] Zeng | Nonlinear transport in weyl semimetals induced by berry curvature dipole[END_REF]: it first increases smoothly with γ, reaches a maximum and decreases for large γ. We attribute this tendency to the contribution of the Fermi surface between the Weyl nodes, as also mentioned by Zeng et al. [START_REF] Zeng | Nonlinear transport in weyl semimetals induced by berry curvature dipole[END_REF], and the upper limit that should reach the tilting parameter regarding the inclination of the Weyl nodes. In contrast, the slab BCD (D x zx , colored symbols) increases sharply and reaches a plateau at large γ. Furthermore, the value of this plateau is substantially larger than the maximum value obtained in the bulk although it slightly decreases when increasing the number of layers, suggesting that surface states play a major role in the NLHE response. Since the transition between type I and type II regimes produces a change in the configuration of the surface states, with the apparition of large Fermi pockets [Fig. 3(c)], it is clear that the mismatch between the slab and bulk responses arise from the influence of the Fermi pockets' projections on the BCD across the slab.

Conversely, for the ẑ-cut [Fig. 4(b)], the bulk and slab BCDs show a similar behavior, increasing continuously and displaying local plateaus at the type I-type II transition, as well as for large tilting parameter γ. Based on Fig. 3(d), we infer that the surface track states and other trivial states do not affect qualitatively the behavior of BCD in finite slab samples. In fact, in the ẑ-cut, the slab BCD converges faster towards the bulk BCD when increasing the number of layers than in the x-cut configuration.

Since the density of states of carriers also changes when tuning the band structure, we report the corresponding ratio between the BCD and the density of states in Figs. 4(c-d). In Fig. 4(c), for a slab normal to x, the renormalized BCD exhibits a qualitatively similar trend across the type I-to-type II transition, although the slab BCD is markedly larger than the bulk BCD when approaching the type II regime. Therefore, the Fermi pockets' projections on this slab enhance the value of the BCD due to the reconfiguration of the surface states and the presence of more local states within the unit cell. In contrast, for a slab normal to ẑ in Fig. 4(d) shows a smaller discrepancy between the slab and bulk calculations suggesting that the BCD is weakly impacted by the track states and other trivial states.

The calculations displayed in Fig. 4 have been performed at µ = 0.2. Looking a the band structures in Fig. 2, one expects the relative contribution of bulk and surface states to the NLHE to vary when increasing the chemical potential. In particular, when µ leaves the regions of the Weyl cones, the bulk states should dominate the transport. Nonetheless, as further discussed in Appendix B, we find that as long as the chemical potential lies close to the Weyl cones, the distinct behavior of the BCD in the two different slabs, x-cut and z-cut, is qualitatively the same in the type II regime: the surface states substantially contribute to the nonlinear transport for the x-cut, whereas they are negligible in the z-cut.

To complement this analysis, we compute the layer decomposition of the NLHE in slab geometries, for γ = 1, 3 and L = 25. The result is reported in Fig. 5 for (a) γ = 1 and (b) γ = 3 for x-(black) and ẑ-cut (red). As we can see from Fig. 5(a), in a type I WSM the NLHE response strongly differs at the edges, i.e, at the top (l=1) and bottom (l=25) layers. From Figs. 3(a) and (b) we attribute this behavior to the surface states driven by the degenerate Fermi arcs that only appear in the x-cut. In the case of the type II WSM, Fig. 5(b), we note that the magnitude of the central layer (l = 13) in the x-cut is larger than that in the ẑ-cut. Actually, the main contributions stem from layers located underneath the surfaces (l = 5, l = 21) rather than on the surface layers. This fact corroborates our claim that in type II WSMs a decisive factor to enhance NLHE is the presence of Fermi pockets' projections at the surface rather than track states. It is worth mentioning that as long as the surface states are topologically protected (i.e., Fermi arcs), a weak influence of surface disorder is expected. Nonetheless, topologically trivial states, such as the ones that contribute the most to the NLHE in our study, are more sensitive to surface disorder, which should impact their overall response. We leave this observation to further studies.

Finally, let us comment on the experimental signature of the surface contribution to the NLHE. Based on the analysis provided above, it is clear that the surface states contribute substantially to the overall signal in the x-cut, whereas it contributes marginally to the signal in the ẑcut. As a consequence, one expects a strong difference between these two slabs when measuring the NLHE as a function of the thickness. Figure 6 displays the thickness dependence of the NLHE in a type II WSM calculated at µ = 0.2 and γ = 3, in both ẑ-cut (blue) and x-cut (red). Whereas the NLHE of both slabs converge towards the bulk values at large thicknesses (dashed lines), they exhibit a distinct behavior at small thicknesses. In the x-cut where the surface states contribute massively to the NLHE (see Fig. 4), the signal increases substantially at small thicknesses, whereas in the ẑ-cut no such behavior is reported. This distinct feature can be used as an indication of surface state-driven NLHE in experiments.

IV. NONLINEAR HALL EFFECT IN WTE2 SLABS

Let us now consider a realistic system, WTe 2 in its orthorhombic phase, and compute the NLHE from first FIG. 6. (Color online) Thickness dependence of the BCD in a type II WSM for the ẑ-cut (blue) and x-cut (red), as compared to the bulk values (dashed lines). The x-cut shows a very strong deviation from the bulk value at small thicknesses, illustrating the importance of the surface states in this case.

principles. WTe 2 is a well-known type II WSM [START_REF] Bruno | Observation of large topologically trivial fermi arcs in the candidate type-ii weyl semimetal WTe2[END_REF][START_REF] Wu | Observation of fermi arcs in the type-ii weyl semimetal candidate WTe2[END_REF], in which NLHE has been originally reported [START_REF] Ma | Observation of the nonlinear hall effect under time-reversal-symmetric conditions[END_REF][START_REF] Kang | Nonlinear anomalous hall effect in few-layer WTe2[END_REF]. For the density functional theory simulations [START_REF] Hohenberg | Inhomogeneous electron gas[END_REF][START_REF] Kohn | Self-consistent equations including exchange and correlation effects[END_REF], we used the Perdew-Burke-Ernzerhof [START_REF] Perdew | Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[END_REF][START_REF] Perdew | Generalized gradient approximation made simple[END_REF] exchangecorrelation functional. The geometry optimizations were performed using a plane-wave basis as implemented in the Vienna Ab-initio Simulation Package (VASP) [START_REF] Kresse | Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[END_REF][START_REF] Kresse | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[END_REF]. We have employed 400 eV for the plane-wave expansion cutoff with a force criterion of 5 µev/ Åand a reciprocal space sampling containing 16 × 16 × 14 k-points within the Brillouin zone. The ionic potentials were described using the projector augmented-wave (PAW) method [START_REF] Kresse | From ultrasoft pseudopotentials to the projector augmented-wave method[END_REF], post-processing calculations were performed using Wan-nierTools [START_REF] Wu | Wanniertools : An open-source software package for novel topological materials[END_REF]. The band structure is displayed in Fig. 7 with the inset showing the unit cell. The band crossings are located within the X -Γ path in momentum space, such that the Fermi level was set to zero near this region. With this consideration, we can project the Weyl points on selected surfaces, i.e., ẑ (corresponding to the (001) direction) and x (corresponding to the (100) direction).

Let us first look at the density of states in the bulk and at the surface. Fig. 8 displays the projected density of states in the bulk (a-c) and at the surface (b-d) for a slab cut along the ẑ direction (a-b), and for a slab cut along the x direction (c-d). As can be observed from Figs. 8(ab), in the ẑ-cut the resulting density of states of the slab is larger at the surface than in the bulk, especially near the origin ( Γ point). On the other hand, the opposite situation happens when the slab is normal to x, as can be noticed from Figs. 8(c-d). From these results and comparing to the lattice model in Fig. 3, we deduce that We now move on to the computation of the surface contribution of the NLHE for the two cuts considered above. For the calculation of the BCD, we have used Eq. ( 3) performing the sum over a sample Brillouin zone containing 500 × 500 k-points. Figures 9(a) and (b) display the band structure and the BCD, respectively, computed for a slab cut along the ẑ direction. The color bar in (a) represents the projections on the top and bottom surfaces of a slab containing 25 layers. One can distinguish both surfaces by the dark and yellow lines near the Fermi level. In panel (b), the BCD is computed as a function of the energy for slabs containing an increasing number of layers, from 15 to 25. It is clear that the energy profile of the BCD strikingly depends on the slab thickness. This thickness dependence reflects the influence of the surface states. For the sake of comparison, we also reported the value of the BCD computed in the bulk (dashed line). For an infinitely thick slab, the peaks present below the Fermi level and associated with the surface states disappear. Similarly, Figs. 9(c,d) display the band structure and BCD, respectively, calculated for a slab cut along the x direction. In contrast to the ẑcut discussed above, the surface states cannot be clearly identified in the band structure that is instead dominated by bulk states. In panel (d), the BCD is computed for three different slab thicknesses. Interestingly, the qualitative behavior of the BCD is similar, displaying a peak whose position is weakly influenced by the slab thickness. For an infinitely thick slab, the bulk BCD (dashed line) conserves the overall structure, with a slight reduction in magnitude. These calculations show that surface states do substantially impact the NLHE in realistic materials. An analogous behavior is obtained for the minimal model in the type II regime (γ = 3), see Appendix B. 

V. CONCLUSIONS

We have investigated the influence of surface states on the NLHE response of non-centrosymmetric timereversal invariant WSMs. Using both a model Hamiltonian and realistic first principles calculations, we have demonstrated that depending on the direction of the cut, surface states emerge that can substantially contribute to the NLHE of the slab. Notice that the topological nature of the surface state (topologically protected arcs, or track states) has no impact on the overall BCD, only the rela- [START_REF] Mccormick | Minimal models for topological weyl semimetals[END_REF], and we assign this behavior to the absence of mirror symmetry along ŷ in the original Hamiltonian given by Eq. ( 4).

tive number of states occupying the surface and the bulk matters. We emphasize that the relative contribution of the surface states with respect to the bulk states is in fact very large, leading to dramatic thickness-dependence of the NLHE response, in particular in type-II WSMs. This observation, confirmed by first principles calculations on WTe 2 slab geometries, suggests that surface states can contribute much more efficiently to NLHE than their bulk counterpart. We expect that the experimental signature of the surface-driven NLHE can be identified upon varying WSMs film thickness, depending on the growth orientation of the slab. These conclusions are not limited to WSMs and should apply to other topological systems and topologically trivial classes of non-centrosymmetric materials.

reported on Fig. 10. We observe a clear transition from Fermi arcs to Fermi pockets on the surface states (top and bottom panels). Indeed, a strong tilting can severely enlarge the Fermi pockets surrounding the Weyl nodes, leading to the merging between them and the generation of a trivial pocket. This is in fact what is happening at γ = 3 in Fig. 3(d). In other words, if one increases the tilting of the Weyl cones, the connectivity of the Fermi arcs is modified and can even induce the emergence of a trivial Fermi pocket from the merging of two Fermi pockets surrounding two opposite nodes.

FIG. 1 .

 1 FIG. 1. (Color online) Berry curvature of the Hamiltonian (4) in the (kx, kz) plane with ky = 0 and intrinsic parameters k0 = π 2 , m = 2, tx = 1 2 , γ = 1 and t = 1. Note that the Berry curvature of the two-band model is not sensitive to the value of γ [51]. The solid lines represent the Berry curvature vector field (Ωx, Ωz), whereas the blue (red) dots represent the local positive (negative) divergencies taking place at the Weyl nodes.

FIG. 2 .

 2 FIG. 2. (Color online) Band structures of the WSM slab of 25 layers, with γ = 1 (a-c) and γ = 3 (d-f) along the high symmetry path of the cubic lattice for different cuts: (left panels) x for ky = 0 and kz ∈ [-π, π], (center) ŷ along the path A1 = (-π, 0, -π) → Γ = (0, 0, 0) → A2 = (π, 0, π) and (right) ẑ for ky = 0 and kx ∈ [-π, π]. The central panels clearly displays type I (b) and type II (e) Weyl cones. The surface states at the top and bottom surfaces are represented with a solid red line. The flat red bands in (a), (c), (d) and (f) are surface states at zero energy that are highly localized at the corresponding surfaces.

L

  l=1 |ω lk ω lk |u nk , one can extract information about layer l by applying the projection operator S l = |ω lk ω lk |, l ∈ [1, L] to an observable O. In this way, it is easy to see that O = L l=1 S l O and L l=1 S l = 1 2L×2L . We use this description to separate the contributions of the density of states for a slab with a fixed number of layers,

  (b, d)], we obtain a different behavior. Whereas for γ = 1 [type I, Fig. 3(b)], the Weyl nodes remain disconnected throughout

FIG. 3 .

 3 FIG. 3. (Color online) Projected density of states (DOS) for (a, c) n = x and (b, d) n = ẑ as a function of the momentum coordinates for selected layers l for the type I (γ = 1) (a, b) and type II (γ = 3) phase (b, d). For the x-cut in the type I phase (a), the Weyl nodes dominate in the bulk and get connected by degenerate Fermi arcs at the surface, whereas in the type II phase (c), large trivial Fermi pockets appear across the slab. For the ẑ-cut in the type I phase (b), the Weyl nodes remain disconnected across the slab, whereas in the type II phase (d), trivial Fermi pockets dominate in the bulk with track states and projected Weyl nodes at the surface. The track states' projections are centered around kx = 0, ±π, which are indicated with blue arrows on each corresponding layer.

FIG. 4 .

 4 FIG. 4. (Color online) BCD components as a function of the tilting parameter γ for slab and bulk systems. (a) Slab (D x zx /L) and bulk (D 3D zx ) components for the x-cut, for different slab thicknesses. (b) Slab (D ẑ xz /L) and bulk (D 3D xz ) components for the ẑ-cut, for different slab thicknesses. (c, d) Corresponding ratio between the BCD coefficient and the corresponding density of states for bulk and slab systems for the x-cut (c) and ẑ-cut (d).

FIG. 5 .

 5 FIG. 5. (Color online) Layer dependent contribution for the BCD normalized by the number of layers (in this case, L = 25). We show the tomography for a type I WSM with γ = 1 in (a) and for a type II WSM with γ = 3 in (b).

FIG. 7 .

 7 FIG. 7. (Color online) Bulk band structure of WTe2 type II WSM obtained from density functional theory simulations. The inset displays the unit cell.

FIG. 8 .

 8 FIG. 8. (Color online) WTe2 density of states at Fermi level, projected on the bulk (a,c) and top surfaces (b,d) for a slab geometry containing 25 layers. Panels (a,b) correspond to a cut along ẑ whereas panels (c,d) correspond to a cut along x.

FIG. 9 .

 9 FIG. 9. (Color online) Band structure of a WTe2 slab containing 25 layers and cut along ẑ (a) and x (c). For this case the color bar represents the projections on the bottom (-1) and top (+1) layers. (b,d) Corresponding BCD for bulk and slabs containing 15, 20 and 25 layers.

FIG. 10 .

 10 FIG. 10. (Color online) Layer-resolved density of states of the topmost (top panels), central (middle panels) and bottommost (bottom panels) surface of a system with 25 layers and µ = 0.2. The red arrows indicate the Fermi arcs, and the blue arrows point to the center of the track states. Finally, indexes (a-d) show the cases γ = 1, 2, 2.5, 3, respectively, i.e., tracking the transition from type I to type II WSM. The mismatch between the top and bottom surfaces is in agreement to what is reported in[START_REF] Mccormick | Minimal models for topological weyl semimetals[END_REF], and we assign this behavior to the absence of mirror symmetry along ŷ in the original Hamiltonian given by Eq. (4).
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Appendix A: Fermi arcs reconnection upon tilting

When transiting from type I to type II WSM, increasing the tilting of the Weyl cones induces a reconnection of the Fermi arcs. This is clearly observed in the y-cut, as Appendix B: Dependence on the Fermi level All our calculations were performed away from the neutrality point, for µ = 0.2. One might wonder how the Fermi level impact the relative contribution of the surface states and the bulk states to the NLHE. In Fig. 11, we show the dependence of the BCD as a function of the Fermi level for the (a, c) x-and (b, d) z-cut, for type I (γ = 1) and type II (γ = 3) WSM. We find that the scenario proposed in the main text qualitatively holds: the x-cut, which possesses a strong surface contribution, exhibits a very strong difference between bulk BCD and slab BCD, regardless of the Fermi level, contrary to the z-cut whose surface states are much less prominent. This effect is similar to that observed in the realistic calcula-tions of WTe 2 , see Fig. 9.