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Influence of the surface states on the nonlinear Hall effect in Weyl semimetals

Diego Garćıa Ovalle,∗ Armando Pezo,† and Aurélien Manchon‡

Aix-Marseille Université, CNRS, CINaM, Marseille, France.
(Dated: November 9, 2022)

We investigate the influence of surface states on the nonlinear Hall response driven by the Berry
curvature dipole in non-centrosymmetric time-reversal invariant Weyl semimetals. To do so, we
perform a tomography of the Berry curvature dipole in a slab system using a minimal two-band
model. We find that in the type-I phase, the nonlinear Hall response is not particularly sensitive
to the presence of Fermi arcs or other trivial surface states. However, in the type-II phase, we find
that these surface states, be they topologically trivial or not, contribute substantially to the Berry
curvature dipole, leading to a strong thickness dependence of the nonlinear Hall response. This
feature depends on the nature of the surface states and, henceforth, on the slab geometry adopted.
In order to assess the validity of this scenario for realistic systems, we performed Berry curvature
dipole calculations by first principles on the WTe2, confirming the dramatic impact of surface states
for selected slab geometries. Our results suggest that surface states, being topological or not, can
contribute much more efficiently to the nonlinear Hall response than bulk states. This prediction is
not limited to topological semimetals and should apply to topologically trivial non-centrosymmetric
materials and heterostructures, paving the way to interfacial engineering of the nonlinear Hall effect.

I. INTRODUCTION

Conventional wisdom inherited from Hall’s founda-
tional work [1, 2] states that Hall currents flowing trans-
verse to the injected charge direction are only permitted
as long as time-reversal symmetry is globally broken. In
other words, ordinary, anomalous or topological Hall ef-
fects only exist either in the presence of an external mag-
netic field or in magnetic materials displaying a net mag-
netization [3]. However, this long-lived statement has
been recently challenged by two important observations.
First, it has been realized that anomalous Hall effect does
not necessitate the presence of a net magnetic moment to
exist. For instance, in an antiferromagnet the Hall effect
can be nonzero as long as no crystal symmetry reinstalls
the time-reversal effectively. This is particularly true for
certain classes of antiferromagnets with a non-collinear
magnetic configuration [4–7] (see also Ref. [8]). Second,
the time-reversal symmetry breaking necessary to obtain
Hall effect is not required anymore at the second order
in the electric field. Under certain conditions, anoma-
lous Hall effect can appear in non-magnetic materials to
the second order of the electric field [9–11]. Recently, it
has been proposed that such a second-order Hall effect
exists in collinear antiferromagnets where the linear Hall
effect is absent, e.g., CuMnSb [12] .Whereas the intrin-
sic contribution to the linear anomalous Hall effect in
ferromagnetic and antiferromagnetic compounds is asso-
ciated with the Berry curvature of the material’s ground
state, the second order, nonlinear anomalous Hall effect
(NLHE) is rather associated with the Berry curvature
dipole (BCD). From a symmetry standpoint, the min-
imal requirement is inversion symmetry breaking which
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ensures that the Berry curvature does not vanish, but this
is not sufficient: mirror symmetry also needs to be broken
to obtain a finite BCD. Sodemann and Fu [9] identified
the crystallographic point groups that possess the mini-
mal requirements for the observation of NLHE, a study
recently refined by Du et al. [13] to include both intrinsic
(BCD related) and extrinsic mechanisms [14] allowed by
symmetry.

Different material candidates have been explored ex-
perimentally and theoretically as suitable options to
obtain NLHE. From an experimental point of view,
quadratic responses in the electric field have been de-
tected, among others, in bilayers and few layers of WTe2
[10, 11] which have C2v point group. From a theoreti-
cal perspective, other possibilities for large BCD values
have been proposed, including transition metal dichalco-
genides [15–20], graphene [21–23], and especially Dirac
[24] and Weyl semimetals (WSM) [25] (See also Ref.
[26]). Ab initio simulations [27] have stimulated fur-
ther theoretical studies of BCD in 3D WSMs, because of
their rich geometrical features and their potential bene-
fits to create highly efficient electronic transport devices.
NLHE in WSMs has also been verified analytically by
applying perturbation theory [28], suggesting that the
transport is sensitive to intraband processes, the chemi-
cal potential and the tilting of the Weyl nodes. Besides,
similar optical effects such as second harmonic generation
can be confirmed by applying Floquet [29] and many-
body quantum formalisms [30]. Last but not least, a full
Green function theory of the NLHE has been proposed
recently [13], pointing out the differences between extrin-
sic and intrinsic contributions. The former is associated
with higher moments of the impurity potential whereas
the latter is solely associated to the band structure. In
this article, we focus on the nonlinear response arising on
the intrinsic mechanism driven by the BCD.

Nonmagnetic WSMs such as TaAs or WTe2 are partic-
ularly interesting platforms for the realization of NLHE
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because inversion symmetry is necessarily broken and
Berry curvature diverges at the Weyl nodes. WSMs pos-
sess pairs of doubly degenerate linearly dispersive states,
forming Weyl cones at Fermi level [31]. According to
the Nielsen-Ninomiya theorem [32], each pair of nodes
carries Berry curvature monopoles of opposite chirality
which are connected via Fermi arcs lying at opposite sur-
faces of the slab [33]. Type I WSMs, such as elemen-
tal Tellurium [34], Janus superlattices [35] and Ta or As
compounds [36–38], are characterized by point-like Fermi
surface in the bulk and vanishing density of states. Type
II WSMs, such as MoTe2 [39, 40] and WTe2 [41, 42] but
also the magnetic candidate Co3Sn2S2 [43–48], offer a
slightly different paradigm as the Weyl cone spectrum
is tilted in momentum space, breaking Lorentz invari-
ance. As a result, the Weyl points arise at the boundary
between electron and hole pockets. Notice that certain
compounds can support type I as well as type II Weyl
nodes [49, 50].

A remarkable aspect of WSMs is the nature of their
surface states. As mentioned above, alike topological in-
sulators WSMs possess topologically protected surface
states in the form of spin-momentum locked Fermi arcs
that connect bulk Weyl nodes of opposite chirality. In
type I WSMs, the Fermi arcs coexist with the projec-
tion of electron (or hole) pockets when the chemical po-
tential lies away from the neutrality point. In type II
WSMs, the Fermi arcs coexist with projected electron
and hole pockets irrespective of the value of the chemi-
cal potential, as well as with trivial closed loops called
”track states” [51]. As a consequence, surface states of
WSMs can be rich, resulting in enhanced Edelstein effect
[52], and unconventional patterns in quantum oscillation
experiments [53–55] (see also Ref. [56]). Previous works
pointed out that topological materials defined in slab ge-
ometries can exhibit interesting transport properties due
to finite size effects and the behavior of surface states in-
side the samples. In this context, it has been shown that
the anomalous Hall conductivity is highly influenced by
surface states such as Fermi arcs in Weyl systems without
time-reversal symmetry [57], even in presence of disorder
[58]. Additional studies have been performed in confined
geometries to clarify, among others, the behavior of chi-
ral magnetic effects [59], the magnetoresistance [60] and
the quantum Hall effect in Dirac semimetals [61].

In this work, we seek to understand how the sur-
face states of nonmagnetic WSMs influence the NHLE
response driven by the BCD. To do so, we consider a
minimal 2-band model of a time-reversal invariant WSM
with inversion symmetry breaking in a slab geometry, so
that bulk and surface states are treated on equal footing
[51]. This model exhibits four Weyl points: the minimum
number of degeneracies due to time-reversal symmetry.
These four points are associated with local divergencies
of the Berry curvature, as depicted on Fig. 1. In this
sense, after neglecting the vanishing components of the
BCD tensor due to mirror symmetries in the 3D lattice,
Zeng et al. [25] recently reported that NLHE requires

Weyl cone tilting and an asymmetric Fermi surface when
the nodes lie at the same energy. The NLHE is also
influenced by the distance between nodes. Accordingly,
our study gives further insight about the implications of
the Fermi arc configurations on the BCD. Remarkably, it
also complements a recent study that comprises a surface
BCD due to the projection of Fermi arcs in type I WSMs
[62].

Our paper is organized as follows. In Section II, we
recall the general formalism for nonlinear Hall transport
driven by BCD and basic physical considerations for our
model of interest. In Section III, we provide and dis-
cuss our results regarding the connection between sur-
face states and NLHE, its dependency on the Weyl cones
tilting and its layer decomposition. In Section IV, we
also collate these outcomes with realistic numerical sim-
ulations on a WTe2 slab with different cuts. Finally, we
summarize and state our main conclusions in Section V.

FIG. 1. (Color online) Berry curvature of the Hamiltonian (4)
in the (kx, kz) plane with ky = 0 and intrinsic parameters
k0 = π

2
, m = 2, tx = 1

2
, γ = 1 and t = 1. Note that the

Berry curvature of the two-band model is not sensitive to the
value of γ [51]. The solid lines represent the Berry curvature
vector field (Ωx, Ωz), whereas the blue (red) dots represent
the local positive (negative) divergencies taking place at the
Weyl nodes.

II. GENERAL THEORY AND MODEL

Let us begin by recalling basic elements of NLHE the-
ory [9]. We start with a nonmagnetic crystal and its
corresponding Bloch Hamiltonian Hk, whose eigenstates
|unk〉 satisfy Schrödinger equation Hk |unk〉 = εnk |unk〉
with eigenenergies εnk. If the crystal is subjected to a suf-
ficiently small electric field E =Re[E exp(iωt)], E ∈ C3,
such that the adiabatic limit is still valid, and assuming
weak disorder, the first order Hall current is induced by
the Berry curvature [3]
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Ωnk = i
∑
m6=n

〈unk|v̂k|umk〉 × 〈umk|v̂k|unk〉
(εnk − εmk)2

, (1)

where v̂k = ∂kHk is the velocity operator. Upon time
reversal operation T we have T ΩnkT −1 = −Ωn−k,
and thus the anomalous Hall effect vanishes. Nonethe-
less, when inversion symmetry P is further broken, then
PΩnkP−1 6= Ωn−k, and one can show to the lowest or-
der in scattering time τ , that the (rectified) second order
Hall current reads [9]

j0a =

(
e3τ

2~2

)
εadcDbdEbE∗c . (2)

Here, latin indices refer to the components of the usual
cartesian basis and εadc is the Levi-Civita tensor. Dbd is
the BCD defined as [9]

Dbd =

∫
BZ

d3k

(2π)3

[∑
n

(vnk)b(Ωnk)d
∂fnk
∂εnk

]
, (3)

with vnk = ∂kεnk the eigenvalues of the velocity op-
erator and fnk the Fermi distribution function. In the
zero-temperature limit, ∂εnk

fnk → −δ(εnk − µ), setting
µ as the chemical potential. Equation (2) neglects the
intrinsic contribution to NLHE that appears when time-
reversal is broken as well as higher order extrinsic contri-
butions (i.e., side-jump and skew scattering) [13, 14].

The nonmagnetic WSM slab is built on the spinless
2-band model in a cubic lattice introduced in Ref. [51].
The bulk Hamiltonian reads

HB = γ(cos 2kz − cos k0)(cos kx − cos k0)σ̂0

−
[
m(1− cos2 kx − cos ky) + 2tx(cos kz − cos k0)

]
σ̂1

− 2t sin kyσ̂2 − 2t cos kxσ̂3, (4)

with σ̂i, i = 1...3 being the 2 × 2 Pauli matrices, σ̂0 =
12×2 and the cubic Brillouin zone is C = [−π, π]

3
. The

parameters of Eq. (4) are set to k0 = π
2 , m = 2, tx = 1

2
and t = 1. This WSM possesses four Weyl nodes of
zero energy located at k∗ = ±π2 (x̂ + ẑ) (see Fig. 1).
Importantly, for the parameters adopted in this work,
γ = 2 sets the transition point between type I (γ < 2)
and type II (γ > 2) WSM phases. In the remaining of
this paper, the transport properties will be investigated
as a function of the chemical potential µ as well as of the
tilting of the Weyl cones controlled by γ. Interestingly,
Eq. (4) is constrained by the following mirror symmetries
[25]

M†xHB(kx, ky, kz)Mx = HB(−kx, ky, kz), (5)

M†zHB(kx, ky, kz)Mz = HB(kx, ky,−kz), (6)

which impose that the Fermi arcs connecting the Weyl
nodes lie on the (z, x) surfaces. In addition, these sym-
metries constrain the BCD tensor, so that the only non-
vanishing elements are Dzx and Dxz. In other words, a
second order Hall current can only be obtained in the
(y, z) (≡ Dzx) and (x, y) (≡ Dxz) planes. Conse-
quently, the Fermi arcs cannot contribute to the NLHE
response. Nevertheless, as discussed below, other trivial
surface states can substantially impact the second order
response.

We now design the slabs by discretizing Eq. (4) along
a given direction, x̂, ŷ or ẑ, of the cubic Brillouin Zone
(see, e.g., Ref. [63]). The Hamiltonian loses periodicity
along the chosen axis. The new Hamiltonian Hn̂S of size
2L × 2L, with n̂ = x̂, ŷ, ẑ depending on the growth
direction, and L the number of layers, is given by

Hn̂S =



Hn̂0 Hn̂1 Hn̂2 0 ... 0

Hn̂†1 Hn̂0 Hn̂1 Hn̂2
. . .

...

Hn̂†2 Hn̂†1
. . .

. . .
. . . 0

0 Hn̂†2
. . .

. . .
. . . Hn̂2

...
. . .

. . .
. . .

. . . Hn̂1
0 . . . 0 Hn̂†2 Hn̂†1 Hn̂0


. (7)

For the block matrices in Eq. (7), Hn̂0 is the intralayer
Hamiltonian that retains in-plane periodicity after the
cut, while Hn̂1 and Hn̂2 are the nearest neighbor and
second nearest neighbor interlayer Hamiltonian, respec-
tively. For the cut along x̂, the block matrices are given
by

Hx̂0 = −γ cos k0(cos 2kz − cos k0)σ̂0

−
[
m

(
1

2
− cos ky

)
+ 2tx (cos kz − cos k0)

]
σ̂1

− 2t sin kyσ̂2, (8)

Hx̂1 =
γ

2
(cos 2kz − cos k0) σ̂0 − tσ̂3, (9)

Hx̂2 =
m

4
σ̂1. (10)

A cut along ŷ leads to

Hŷ0 = γ(cos 2kz − cos k0)(cos kx − cos k0)σ̂0

−
[
m sin2 kx + 2tx(cos kz − cos k0)

]
σ̂1

− 2t cos kxσ̂3, (11)

Hŷ1 =
m

2
σ̂1 + itσ̂2. (12)

Finally, a cut along ẑ gives
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Hẑ0 = −γ cos k0(cos kx − cos k0)σ̂0

−
[
m(1− cos2 kx − cos ky)− 2tx cos k0

]
σ̂1

− 2t sin kyσ̂2 − 2t cos kxσ̂3, (13)

Hẑ1 = −txσ̂1, (14)

Hẑ2 =
γ

2
(cos kx − cos k0) σ̂0. (15)

FIG. 2. (Color online) Band structures of the WSM slab of
25 layers, with γ = 1 (a-c) and γ = 3 (d-f) along the high
symmetry path of the cubic lattice for different cuts: (left
panels) x̂ for ky = 0 and kz ∈ [−π, π], (center) ŷ along the
path A1 = (−π, 0,−π) → Γ = (0, 0, 0) → A2 = (π, 0, π) and
(right) ẑ for ky = 0 and kx ∈ [−π, π]. The central panels
clearly displays type I (b) and type II (e) Weyl cones. The
surface states at the top and bottom surfaces are represented
with a solid red line. The flat red bands in (a), (c), (d) and
(f) are surface states at zero energy that are highly localized
at the corresponding surfaces.

We illustrate the slab band structures for each cut in
Fig. 2, for γ = 1 (type I WSM) and γ = 3 (type II WSM).
Since the slab Hamiltonians retain a Berry curvature per-
pendicular to the plane of the slab, we define Dx̂

zx as the
BCD associated withHx̂S when the electric field is applied
along ẑ, and Dẑ

xz is the BCD associated with HẑS when
the electric field is along x̂. These are the only relevant
BCD components for the slab geometries presented above
due to the symmetry restrictions. We now move forward
to the method for calculating the layer decomposition of
transport coefficients in the slabs. Since the periodic part
of the Bloch function can be written in terms of the com-
plete layer basis as |unk〉 =

∑L
l=1 |ωlk〉 〈ωlk|unk〉, one can

extract information about layer l by applying the projec-
tion operator Sl = |ωlk〉 〈ωlk|, l ∈ [1, L] to an observable

O. In this way, it is easy to see that O =
∑L
l=1 SlO and∑L

l=1 Sl = 12L×2L. We use this description to separate
the contributions of the density of states for a slab with
a fixed number of layers,

Dlk = − 1

π
Im
[
Tr
(
SlGR

k

)]
, (16)

with the retarded Green’s function

GR
k = lim

η→0+

[
(ε+ iη)1−Hn̂S

]−1
. (17)

This decomposition provides an insight about the influ-
ence of the surface states for each growth direction. Ad-
ditionally, in order to obtain the contribution of layer l
to the NLHE response along, say, ŷ, one simply needs
to perform the substitution v̂y → Slv̂y into Eq. (1) and
then into (3).

III. RESULTS AND DISCUSSION

A. Band structure and surface states

Let us first consider how the Weyl cone tilting impacts
the slab band structure and its surface states. Since only
Dx̂
zx and Dẑ

xz are non-vanishing, and because the Weyl
nodes are located in the (kx, kz) plane, we focus on slabs
composed of L = 25 layers and normal to the x̂ and ẑ
directions. Without loss of generality, we fix the chemi-
cal potential to µ = 0.2 and select the exemplary cases
γ = 1, 3 to illustrate the differences between a type I
and a type II WSM, respectively. To better understand
how bulk and surface states evolve upon tilting the Weyl
cones, we represent the density of states in the 2D Bril-
louin zone and projected on a set of representative layers,
ranging from the bottommost surface to the topmost sur-
face. Our results are depicted in Fig. 3(a, c) for the x̂-cut
and Fig. 3(b, d) for the ẑ-cut.

Figures 3(a, c) and 3(b, d) show different behaviors of
the bulk and surface states when tuning the tilting pa-
rameter. When n̂ = x̂ [Fig. 3(a, c)], notice two distinct
situations depending on the value of γ: if γ = 1 [type I,
Fig. 3(a)], the density of states is dominated by the Weyl
nodes across the whole slab, with a surface state com-
posed of the projected nodes connected by degenerate
Fermi arcs. When γ = 3, [type II, Fig. 3(c)], the density
of states of the central layer is composed of electron and
hole pockets touching at the Weyl nodes, as expected.
These pockets result in large trivial surface Fermi pockets
enclosing the nodes, whose connections change direction
from ẑ (type I) to x̂ (type II) WSMs [51]. A map of the
Fermi arcs’ reconnection and surface states’ evolution as
a function of the tilting γ can be found in Appendix A.

On the other hand, for n̂ = ẑ [Fig. 3(b, d)], we ob-
tain a different behavior. Whereas for γ = 1 [type I, Fig.
3(b)], the Weyl nodes remain disconnected throughout
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FIG. 3. (Color online) Projected density of states (DOS) for (a, c) n̂ = x̂ and (b, d) n̂ = ẑ as a function of the momentum
coordinates for selected layers l for the type I (γ = 1) (a, b) and type II (γ = 3) phase (b, d). For the x̂-cut in the type I phase
(a), the Weyl nodes dominate in the bulk and get connected by degenerate Fermi arcs at the surface, whereas in the type II
phase (c), large trivial Fermi pockets appear across the slab. For the ẑ-cut in the type I phase (b), the Weyl nodes remain
disconnected across the slab, whereas in the type II phase (d), trivial Fermi pockets dominate in the bulk with track states and
projected Weyl nodes at the surface. The track states’ projections are centered around kx = 0,±π, which are indicated with
blue arrows on each corresponding layer.

the slab, for γ = 3 [type II, Fig. 3(d)], a surface con-
tribution appears due to the emergence of track states
[51]. Nonetheless, the surface Fermi pockets associated
with the projection of the bulk electron and hole pockets
remain very small and the surface states are dominated
by the Weyl nodes, in sharp contrast with the x̂-cut dis-
cussed in Fig. 3(a, c). We therefore expect the surface
states to have completely different impact on the NLHE
signal in these two different slab geometries.

B. Nonlinear Hall response

Let us now turn our attention towards the NLHE re-
sponse for the two slabs. We compute the BCD com-
ponents given by Eq. (4) in both slab geometries, (a)
Dx̂
zx/L (x̂-cut) and (b) Dẑ

xz/L (ẑ-cut), as well as in the
3D bulk structure, D3D

zx(xz) (black symbols), in order to

better identify the impact of the surface states. Notice
that the BCD calculated in the slab geometry is normal-
ized by the number of layers L to allow for a quantitative
comparison with the BCD calculated in the bulk. By def-
inition, the BCD is therefore unitless. In the following,
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we set the chemical potential to µ = 0.2 and represent
the BCDs as a function of the tilting parameter γ, as
displayed in Figs. 4(a-b). In addition, the correspond-
ing ratio between the BCD and the density of states is
reported on Figs. 4(c-d) and discussed further below.

FIG. 4. (Color online) BCD components as a function of
the tilting parameter γ for slab and bulk systems. (a) Slab
(Dx̂

zx/L) and bulk (D3D
zx ) components for the x̂-cut, for dif-

ferent slab thicknesses. (b) Slab (Dẑ
xz/L) and bulk (D3D

xz )
components for the ẑ-cut, for different slab thicknesses. (c,
d) Corresponding ratio between the BCD coefficient and the
corresponding density of states for bulk and slab systems for
the x̂-cut (c) and ẑ-cut (d).

For the x̂-cut [Fig. 4(a)], the bulk BCD (D3D
zx , black

symbols) displays a nonlinear dependence as a function
of the tilting parameter, as observed by Zeng et al. [25]:
it first increases smoothly with γ, reaches a maximum
and decreases for large γ. We attribute this tendency to
the contribution of the Fermi surface between the Weyl
nodes, as also mentioned by Zeng et al. [25], and the
upper limit that should reach the tilting parameter re-
garding the inclination of the Weyl nodes. In contrast,
the slab BCD (Dx̂

zx, colored symbols) increases sharply
and reaches a plateau at large γ. Furthermore, the value
of this plateau is substantially larger than the maximum
value obtained in the bulk although it slightly decreases
when increasing the number of layers, suggesting that
surface states play a major role in the NLHE response.
Since the transition between type I and type II regimes
produces a change in the configuration of the surface
states, with the apparition of large Fermi pockets [Fig.
3(c)], it is clear that the mismatch between the slab and
bulk responses arise from the influence of the Fermi pock-
ets’ projections on the BCD across the slab.

Conversely, for the ẑ-cut [Fig. 4(b)], the bulk and slab
BCDs show a similar behavior, increasing continuously
and displaying local plateaus at the type I-type II tran-
sition, as well as for large tilting parameter γ. Based
on Fig. 3(d), we infer that the surface track states and
other trivial states do not affect qualitatively the behav-
ior of BCD in finite slab samples. In fact, in the ẑ-cut,
the slab BCD converges faster towards the bulk BCD
when increasing the number of layers than in the x̂-cut
configuration.

Since the density of states of carriers also changes when
tuning the band structure, we report the corresponding
ratio between the BCD and the density of states in Figs.
4(c-d). In Fig. 4(c), for a slab normal to x̂, the renor-
malized BCD exhibits a qualitatively similar trend across
the type I-to-type II transition, although the slab BCD
is markedly larger than the bulk BCD when approaching
the type II regime. Therefore, the Fermi pockets’ projec-
tions on this slab enhance the value of the BCD due to
the reconfiguration of the surface states and the presence
of more local states within the unit cell. In contrast, for
a slab normal to ẑ in Fig. 4(d) shows a smaller discrep-
ancy between the slab and bulk calculations suggesting
that the BCD is weakly impacted by the track states and
other trivial states.

The calculations displayed in Fig. 4 have been per-
formed at µ = 0.2. Looking a the band structures in
Fig. 2, one expects the relative contribution of bulk and
surface states to the NLHE to vary when increasing the
chemical potential. In particular, when µ leaves the re-
gions of the Weyl cones, the bulk states should dominate
the transport. Nonetheless, as further discussed in Ap-
pendix B, we find that as long as the chemical poten-
tial lies close to the Weyl cones, the distinct behavior of
the BCD in the two different slabs, x-cut and z-cut, is
qualitatively the same in the type II regime: the surface
states substantially contribute to the nonlinear transport
for the x-cut, whereas they are negligible in the z-cut.

To complement this analysis, we compute the layer de-
composition of the NLHE in slab geometries, for γ = 1, 3
and L = 25. The result is reported in Fig. 5 for (a)
γ = 1 and (b) γ = 3 for x̂- (black) and ẑ-cut (red).
As we can see from Fig. 5(a), in a type I WSM the
NLHE response strongly differs at the edges, i.e, at the
top (l=1) and bottom (l=25) layers. From Figs. 3(a)
and (b) we attribute this behavior to the surface states
driven by the degenerate Fermi arcs that only appear in
the x̂-cut. In the case of the type II WSM, Fig. 5(b), we
note that the magnitude of the central layer (l = 13) in
the x̂-cut is larger than that in the ẑ-cut. Actually, the
main contributions stem from layers located underneath
the surfaces (l = 5, l = 21) rather than on the surface
layers. This fact corroborates our claim that in type II
WSMs a decisive factor to enhance NLHE is the pres-
ence of Fermi pockets’ projections at the surface rather
than track states. It is worth mentioning that as long as
the surface states are topologically protected (i.e., Fermi
arcs), a weak influence of surface disorder is expected.
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FIG. 5. (Color online) Layer dependent contribution for the
BCD normalized by the number of layers (in this case, L =
25). We show the tomography for a type I WSM with γ = 1
in (a) and for a type II WSM with γ = 3 in (b).

Nonetheless, topologically trivial states, such as the ones
that contribute the most to the NLHE in our study, are
more sensitive to surface disorder, which should impact
their overall response. We leave this observation to fur-
ther studies.

Finally, let us comment on the experimental signature
of the surface contribution to the NLHE. Based on the
analysis provided above, it is clear that the surface states
contribute substantially to the overall signal in the x̂-cut,
whereas it contributes marginally to the signal in the ẑ-
cut. As a consequence, one expects a strong difference
between these two slabs when measuring the NLHE as a
function of the thickness. Figure 6 displays the thickness
dependence of the NLHE in a type II WSM calculated
at µ = 0.2 and γ = 3, in both ẑ-cut (blue) and x̂-cut
(red). Whereas the NLHE of both slabs converge to-
wards the bulk values at large thicknesses (dashed lines),
they exhibit a distinct behavior at small thicknesses. In
the x̂-cut where the surface states contribute massively to
the NLHE (see Fig. 4), the signal increases substantially
at small thicknesses, whereas in the ẑ-cut no such behav-
ior is reported. This distinct feature can be used as an
indication of surface state-driven NLHE in experiments.

IV. NONLINEAR HALL EFFECT IN WTE2

SLABS

Let us now consider a realistic system, WTe2 in its
orthorhombic phase, and compute the NLHE from first

FIG. 6. (Color online) Thickness dependence of the BCD
in a type II WSM for the ẑ-cut (blue) and x̂-cut (red), as
compared to the bulk values (dashed lines). The x̂-cut shows a
very strong deviation from the bulk value at small thicknesses,
illustrating the importance of the surface states in this case.

principles. WTe2 is a well-known type II WSM [41, 42],
in which NLHE has been originally reported [10, 11].
For the density functional theory simulations [64, 65],
we used the Perdew-Burke-Ernzerhof [66, 67] exchange-
correlation functional. The geometry optimizations were
performed using a plane-wave basis as implemented in
the Vienna Ab-initio Simulation Package (VASP) [68, 69].
We have employed 400 eV for the plane-wave expansion
cutoff with a force criterion of 5 µev/Åand a reciprocal
space sampling containing 16 × 16 × 14 k-points within
the Brillouin zone. The ionic potentials were described
using the projector augmented-wave (PAW) method [70],
post-processing calculations were performed using Wan-
nierTools [71]. The band structure is displayed in Fig. 7
with the inset showing the unit cell. The band crossings
are located within the X − Γ path in momentum space,
such that the Fermi level was set to zero near this region.
With this consideration, we can project the Weyl points
on selected surfaces, i.e., ẑ (corresponding to the (001)
direction) and x̂ (corresponding to the (100) direction).

Let us first look at the density of states in the bulk and
at the surface. Fig. 8 displays the projected density of
states in the bulk (a-c) and at the surface (b-d) for a slab
cut along the ẑ direction (a-b), and for a slab cut along
the x̂ direction (c-d). As can be observed from Figs. 8(a-
b), in the ẑ-cut the resulting density of states of the slab
is larger at the surface than in the bulk, especially near
the origin (Γ̄ point). On the other hand, the opposite
situation happens when the slab is normal to x̂, as can
be noticed from Figs. 8(c-d). From these results and
comparing to the lattice model in Fig. 3, we deduce that
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FIG. 7. (Color online) Bulk band structure of WTe2 type
II WSM obtained from density functional theory simulations.
The inset displays the unit cell.

the surface states highlighted in Fig. 8(b) should enhance
the value of the BCD for the slab normal to ẑ, being
strongly dependent on the thickness of the slab, whereas
the geometry normal to x̂ should be less sensitive to the
Fermi arc diversity on the sample.

FIG. 8. (Color online) WTe2 density of states at Fermi level,
projected on the bulk (a,c) and top surfaces (b,d) for a slab
geometry containing 25 layers. Panels (a,b) correspond to a
cut along ẑ whereas panels (c,d) correspond to a cut along x̂.

We now move on to the computation of the surface
contribution of the NLHE for the two cuts considered
above. For the calculation of the BCD, we have used
Eq. (3) performing the sum over a sample Brillouin zone
containing 500× 500 k-points. Figures 9(a) and (b) dis-
play the band structure and the BCD, respectively, com-
puted for a slab cut along the ẑ direction. The color bar
in (a) represents the projections on the top and bottom
surfaces of a slab containing 25 layers. One can distin-
guish both surfaces by the dark and yellow lines near the
Fermi level. In panel (b), the BCD is computed as a
function of the energy for slabs containing an increasing
number of layers, from 15 to 25. It is clear that the en-
ergy profile of the BCD strikingly depends on the slab
thickness. This thickness dependence reflects the influ-
ence of the surface states. For the sake of comparison,
we also reported the value of the BCD computed in the
bulk (dashed line). For an infinitely thick slab, the peaks

present below the Fermi level and associated with the
surface states disappear. Similarly, Figs. 9(c,d) display
the band structure and BCD, respectively, calculated for
a slab cut along the x̂ direction. In contrast to the ẑ-
cut discussed above, the surface states cannot be clearly
identified in the band structure that is instead dominated
by bulk states. In panel (d), the BCD is computed for
three different slab thicknesses. Interestingly, the quali-
tative behavior of the BCD is similar, displaying a peak
whose position is weakly influenced by the slab thickness.
For an infinitely thick slab, the bulk BCD (dashed line)
conserves the overall structure, with a slight reduction in
magnitude. These calculations show that surface states
do substantially impact the NLHE in realistic materials.
An analogous behavior is obtained for the minimal model
in the type II regime (γ = 3), see Appendix B.

FIG. 9. (Color online) Band structure of a WTe2 slab con-
taining 25 layers and cut along ẑ (a) and x̂ (c). For this case
the color bar represents the projections on the bottom (-1)
and top (+1) layers. (b,d) Corresponding BCD for bulk and
slabs containing 15, 20 and 25 layers.

V. CONCLUSIONS

We have investigated the influence of surface states
on the NLHE response of non-centrosymmetric time-
reversal invariant WSMs. Using both a model Hamil-
tonian and realistic first principles calculations, we have
demonstrated that depending on the direction of the cut,
surface states emerge that can substantially contribute to
the NLHE of the slab. Notice that the topological nature
of the surface state (topologically protected arcs, or track
states) has no impact on the overall BCD, only the rela-



9

FIG. 10. (Color online) Layer-resolved density of states of the topmost (top panels), central (middle panels) and bottommost
(bottom panels) surface of a system with 25 layers and µ = 0.2. The red arrows indicate the Fermi arcs, and the blue arrows
point to the center of the track states. Finally, indexes (a-d) show the cases γ = 1, 2, 2.5, 3, respectively, i.e., tracking the
transition from type I to type II WSM. The mismatch between the top and bottom surfaces is in agreement to what is reported
in [51], and we assign this behavior to the absence of mirror symmetry along ŷ in the original Hamiltonian given by Eq. (4).

tive number of states occupying the surface and the bulk
matters. We emphasize that the relative contribution of
the surface states with respect to the bulk states is in fact
very large, leading to dramatic thickness-dependence of
the NLHE response, in particular in type-II WSMs. This
observation, confirmed by first principles calculations on
WTe2 slab geometries, suggests that surface states can
contribute much more efficiently to NLHE than their bulk
counterpart. We expect that the experimental signature
of the surface-driven NLHE can be identified upon vary-
ing WSMs film thickness, depending on the growth ori-
entation of the slab. These conclusions are not limited
to WSMs and should apply to other topological systems
and topologically trivial classes of non-centrosymmetric
materials.
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Appendix A: Fermi arcs reconnection upon tilting

When transiting from type I to type II WSM, increas-
ing the tilting of the Weyl cones induces a reconnection
of the Fermi arcs. This is clearly observed in the y-cut, as
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reported on Fig. 10. We observe a clear transition from
Fermi arcs to Fermi pockets on the surface states (top
and bottom panels). Indeed, a strong tilting can severely
enlarge the Fermi pockets surrounding the Weyl nodes,
leading to the merging between them and the generation
of a trivial pocket. This is in fact what is happening at
γ = 3 in Fig. 3(d). In other words, if one increases the
tilting of the Weyl cones, the connectivity of the Fermi
arcs is modified and can even induce the emergence of
a trivial Fermi pocket from the merging of two Fermi
pockets surrounding two opposite nodes.

Appendix B: Dependence on the Fermi level

All our calculations were performed away from the neu-
trality point, for µ = 0.2. One might wonder how the
Fermi level impact the relative contribution of the sur-
face states and the bulk states to the NLHE. In Fig. 11,
we show the dependence of the BCD as a function of the
Fermi level for the (a, c) x- and (b, d) z-cut, for type
I (γ = 1) and type II (γ = 3) WSM. We find that the
scenario proposed in the main text qualitatively holds:
the x-cut, which possesses a strong surface contribution,
exhibits a very strong difference between bulk BCD and
slab BCD, regardless of the Fermi level, contrary to the
z-cut whose surface states are much less prominent. This
effect is similar to that observed in the realistic calcula-

tions of WTe2, see Fig. 9.

FIG. 11. (Color online) Dependence of the BCD as a function
of the chemical potential for the (a, c) x-cut and (b, d) z-cut,
for type I (γ = 1) and type II (γ = 3) WSM.
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