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Orbital Hall physics in two-dimensional Dirac materials

Armando Pezo,∗ Diego Garćıa Ovalle, and Aurélien Manchon†

Aix-Marseille Université, CNRS, CINaM, Marseille, France.
(Dated: December 21, 2023)

Orbitronics has recently emerged as a very active research topic after several proposals aiming to
exploit the orbital degree of freedom for charge-free electronics. In this communication, we investi-
gate orbital transport in selected two-dimensional systems to better understand which parameters
govern the intra-atomic and inter-atomic contributions to the orbital Hall effect. We study the
impact of the gap, the role of the materials’ topology and the influence of the disorder on spin and
orbital Hall transport. Starting from the Kane-Mele model, we describe how the orbital moment
behaves depending on the material’s topology and clarify the influence of the gap on the orbital
Hall conductivity. We then extend the study to realistic topologically trivial and non-trivial ma-
terials, and find that the topology has little qualitative influence on the orbital Hall conductivity.
In contrast, we observe that the energy dispersion has a more dramatic impact, especially in the
presence of disorder. Remarkably, our results suggest that the intra-atomic orbital Hall current is
more robust against scattering than the inter-atomic one, without further impact of the topological
properties of the system under consideration.

I. INTRODUCTION

Recent theoretical and experimental efforts suggest
that the orbital angular momentum of electrons can be
used as an alternative degree of freedom to the spin an-
gular momentum [1–6]. In contrast with the generation
of spin currents that necessitates either a ferromagnet
or a heavy metal, orbital currents can be induced elec-
trically using light metals, thereby presenting a poten-
tial technical advantage in terms of materials scarcity
[1, 3]. Current research is being developed along two di-
rections. A first direction takes advantage of the vast ex-
perience acquired on spin transport in transition metal
heterostructures [7, 8]. Tight-binding and first princi-
ples calculations have suggested that certain light metals
such as V, Cr or Cu can host large orbital Hall effect
[5, 9], resulting in the experimental demonstration of or-
bital torque and magnetoresistance [10–13]. In the last
years new experimental developments have unlocked the
synthesis of two-dimensional materials opening new pos-
sibilities for spintronics [14]. To date, most of the atten-
tion has been focused on graphene and transition metal
dichalcogenides, where valley Hall effect and orbital Hall
effect coexist [15–18].

In most early theoretical studies on the orbital Hall
effect, the orbital moment was assumed to be mostly of
intra-atomic origin, adopting the so-called atom-centered
approximation (ACA) [1, 2, 5, 9, 17, 19]. However, im-
portant developments in the theory of orbital magnetism
have demonstrated that ACA is not sufficient to properly
describe the orbital motion of quasiparticles in solids and
that the inter-atomic contribution cannot be neglected
[20–23]. Whereas the inter-atomic orbital moment is
small in the case of bulk transition metals [23], it is par-
ticularly significant in materials like graphene where the
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intra-atomic orbital character of the conduction electrons
vanishes [24]. Extending the ”modern theory” of orbital
magnetization to the orbital Hall effect, it recently ap-
peared that the inter-atomic contribution cannot be ne-
glected in general [6, 16, 18].

Building on our previous work on the modern theory
of orbital Hall effect in realistic materials [6], we inves-
tigate orbital transport in selected two-dimensional sys-
tems to better understand which parameters govern the
intra-atomic and inter-atomic contributions to the orbital
Hall effect in these systems. In particular, we investi-
gate the impact of the gap, the role of the materials
topology and the influence of the disorder on spin and
orbital Hall transport. We find that whereas the topol-
ogy has little influence on the orbital Hall effect itself,
the orbital transport exhibits markedly distinct behav-
ior depending on the nature of the gap (spin-orbit cou-
pling, staggered potential) and systematically increases
upon reducing the gap size. Our results also show that
the intra-atomic and inter-atomic orbital Hall conduc-
tivities experience different robustness against disorder.
Whereas the inter-atomic orbital Hall contribution sys-
tematically decreases upon increasing impurity scatter-
ing, the intra-atomic contribution remains mostly unaf-
fected in the gap region and decreases in the metallic
regime, suggesting that overall the intra-atomic contribu-
tion is more robust against disorder than the inter-atomic
one.

This work is organized as follows. In Section II, we
briefly remind the concepts of the modern theory of the
orbital Hall effect and use the two-dimensional Kane-
Mele model to determine the influence of the lattice
topology on the spin and orbital Hall transport. In Sec-
tion III, we investigate the spin and orbital Hall effects
in selected two-dimensional lattices computed using den-
sity functional theory (DFT) and show that orbital Hall
transport is substantially influenced by the proximity to
the gap and by the nature of the energy dispersion. Then,
in Section IV, we investigate the impact of the Anderson-
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type disorder on the orbital Hall effect and show that
intra-atomic and inter-atomic contributions behave dif-
ferently. Conclusions and perspectives are given in Sec-
tion V.

II. THEORY AND CONCEPTS

A. Modern theory of the orbital Hall effect

Let us remind the concepts related to the modern the-
ory of orbital magnetization and its extension to the or-
bital Hall effect. In crystals, the orbital motion of an elec-
tron arises from the self-rotation of the wavepacket in the
unit cell which includes both the intra-atomic and inter-
atomic contributions as mentioned above. In equilibrium,
this self-rotation gives rise to the orbital magnetization as
long as the time-reversal symmetry is broken [20, 22]. In
contrast, for materials with time-reversal symmetry, an
orbital magnetization can be generated out of equilibrium
as long as inversion symmetry is broken [25]. When both
time-reversal symmetry and inversion symmetry are pre-
served though, no orbital magnetization can be induced,
and only the orbital Hall effect survives.

Let us start with the real space definition of the orbital
moment, L̂ = (r̂× p̂− p̂× r̂)/4. Under the parallel trans-
port gauge condition applied on non-degenerate bands
(i.e., ⟨n|ṅ⟩ = 0), this expression can be projected on the
Bloch states |un

k⟩ and recasted in the form (see [16, 26])

⟨un
k|L̂|u

p
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e
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Im⟨∂kun
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Here, |un
k⟩ is the periodic part of the Bloch state asso-

ciated with the energy εnk, v̂ = ℏ−1∂kHk is the velocity
operator, Hk being the Hamiltonian in momentum space,
µB = eℏ/2me is Bohr’s magneton and gL = 1 is Landé’s
g-factor. This expression can be further formulated in a
more tractable identity given by

⟨un
k|L̂|u

p
k⟩ =

eℏ2

4µB
Im

∑
q ̸=n,p

(
1

εqk − εnk
+

1

εqk − εpk

)
⟨un

k|v̂|u
q
k⟩ × ⟨uq

k|v̂|u
p
k⟩ . (2)

In the Bloch state basis, the matrix element of the
orbital current operator, defined as J γ

i = 1/2{Lγ , vi},
reads
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where the orbital moment Lγ is either the atomic or-
bital moment operator (intra-atomic orbital current) or

Eq. (2) (total orbital current). In the following, we will
take Lγ = Lz since we focus on two-dimensional lattices.
In the linear response theory, spin and orbital currents
are time-reversal symmetric which allows one to consider
the intrinsic Fermi sea contribution of the Kubo formula
[27]. The orbital conductivity reads

σz
ij = −2ℏe

∫
BZ

d3k

(2π)3

∑
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Im
∑
m̸=n

⟨un
k|J z

i |um
k ⟩ ⟨um

k |v̂j |un
k⟩

(εnk − εmk )2
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where fn(k) is the equilibrium Fermi distribution func-
tion. The quantity that multiplies the Fermi function
is usually referred to as the orbital Berry curvature, in
analogy with the conventional Berry curvature where the
orbital current operator is replaced by the velocity oper-
ator [3, 17, 28].

B. Orbital Hall effect in Kane-Mele model

FIG. 1. Kane-Mele model band structure for the trivial phase
with the Berry curvature displayed in the color bar (a). The
orbital moment plotted for trivial (∆ = 0.25t, λSOC = 0) (b)
and topological (∆ = 0, λSOC = 0.25t) (c) phases for the
two valence energy bands. The black (red) curve refers to the
lowest (highest) valence band.

Due to the ubiquitous presence of spin-orbit coupling
in real materials, orbital currents usually coexist with
spin currents and probing orbital-only responses is exper-
imentally challenging. To overcome this difficulty, one
usually relies on materials with vanishing or low spin-
orbit coupling so that spin currents can be neglected
[11, 29]. In topological materials though, the topologi-
cal transition is mostly driven by the strong spin-orbit
coupling of the heavy elements, so that spin and orbital
currents are entangled. A pedagogical tool to evaluate
how these two effects behave in two-dimensional topolog-
ical materials is the Kane-Mele Hamiltonian [30]. This
model features a two-dimensional honeycomb lattice with
spin-orbit coupling and its Hamiltonian reads

H = t
∑
⟨ij⟩

c†i cj + iλSOC

∑
⟨⟨ij⟩⟩

νijc
†
iszcj +∆

∑
i

ϵic
†
i ci, (5)
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FIG. 2. (Color online) (a) Orbital Hall conductivity of the Kane-Mele model as function of ∆ for fixed values of the λSOC [0.25t
(black), 1.0t (red) and 1.5t (green)]. (b) Orbital Hall conductivity as function of λSOC with fixed values of ∆ [0.25t (black),
1.0t (red) and 1.5t (green)]. (c) Phase diagram for the orbital Hall conductivity as function of both ∆ and λSOC. Whenever
|3
√
3λSOC| > |∆|, the orbital Hall effect is larger than for the opposite situation. (d) Orbital Hall conductivity in the center of

the band gap as a function of ∆ (black) and λSOC (red).

where the creation and annihilation operators ci, c†i
are spinors representing the spin degree of freedom. The
first term is the usual nearest neighbour hopping (t), the
second term is the spin-orbit coupling term (λSOC) act-
ing on the next-nearest neighbours and the last term is
the on-site staggered potential term (ϵi∆, ϵi = ±1 on
the different sublattices), also called Semenoff mass gap
[31]. This last term leads to the appearance of an orbital
magnetic moment as pointed out in Refs. [16, 28]. To il-
lustrate the connection between the Berry curvature, the
orbital magnetic moment and the orbital Hall effect, let
us consider the effective Hamiltonian of the Kane-Mele
model, valid close to the neutrality point at K and K’
points in the Brillouin zone. In the absence of Rashba
interaction, the Kane-Mele model can be thought of as
a double copy of the Haldane model [32], each copy cor-
responding to a spin sector described by the two-band
Hamiltonian

Hηs = vF (ηkxσx + kyσy) + (∆ + ηsλ̃SOC)σz, (6)

where λ̃SOC = 3
√
3λSOC, σ is the pseudospin in the sub-

lattice space, s = ±1 refers to the spin projection and
η = ±1 to the K and K’ valleys, respectively. The gap is
given by ∆ηs = ∆+ηsλ̃SOC so that the non-trivial regime

is reached whenever |λ̃SOC| > |∆|. This Hamiltonian can
be written [25, 33]

Hηs = Îϵηsk + σ̂ · dηs
k , (7)

where ϵηsk is the energy dispersion of the individual bands
and dηs

k describes the hybridization between bands.

Therefore the Berry curvature and orbital magnetic mo-
ment read [25]

Ωηs
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mo,ηs
k,i = − e

ℏ
εijk

2(dηsk )2
dηs
k ·

(
∂dηs

k

∂kj
×
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)
, (9)

with ± referring to the conduction and valence band, re-
spectively and dηsk = |dηs

k |. Equations (8) and (9) show
that the Berry curvature and the orbital magnetic mo-
ment possess a very similar structure in momentum space
[16, 20], revealing that the orbital motion finds it origin in
the Berry curvature of the Bloch states. Since the Kane-
Mele model, Eq. (5), describes an effective four-band
model taking into account the spin degree of freedom,
the Bloch state does not carry any atomic orbital mo-
mentum (in other words, in this model the Bloch states
are typically s or pz). For this reason, the orbital moment
comes entirely from the details of the band structure in-
timately correlated to the Berry curvature, as displayed
as a color gradient in Fig. 1(a). Using the effective two-
band Hamiltonian, one obtains

Ωηs
k,z = ± ηv2F∆ηs

2(∆2
ηs + v2F k

2)3/2
, (10)

mo,ηs
k,z = − e

2ℏ
ηv2F∆ηs

∆2
ηs + v2F k

2
. (11)

One sees that both the Berry curvature and the orbital
magnetic moment are inversely proportional to the band
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gap [16]. The Berry curvature hot-spots appearing at
different valleys characterize the topological transition:
in the non-trivial phase both spin partners at the same
inequivalent point (K or K’) display opposite values of
the orbital moment, while they have the same sign in the
trivial regime, as seen in Fig. 1(b).

Following the procedure outlined by Bhowal and Vi-
gnale [16], the orbital Hall conductivity for spin s and
valley η reads

σηs
OH =

( e

2π

)(
mev

2
F

6ℏ2gL

)
∆2

ηs

(∆2
ηs + v2F k

2)3/2
, (12)

Therefore, the total orbital Hall conductivity is the sum
of individuals contributions, σOH =

∑
η σ

η
OH . In the

middle of the gap (k → 0), one retrieves the constant
value pointed out by Bhowal and Vignale [16],

σOH =
( e

2π

)(
mev

2
F

3ℏ2gL

)(
1

|∆+ λ̃SOC|
+

1

|∆− λ̃SOC|

)
.

(13)
This expression indicates that the orbital Hall conductiv-
ity decreases when increasing the gap, independently of
the topological nature of the gap. To assess the interplay
between the spin-orbit coupling strength λSOC and the
staggered potential ∆, Fig. 2(a) [Fig. 2(b)] shows the or-
bital Hall conductivity as a function of ∆ (λSOC) for dif-
ferent values of λSOC (∆). We find that the orbital Hall

conductivity reaches a maximum whenever ∆ ≈ λ̃SOC,
i.e., at the topological phase transition. We note that the
orbital Hall conductivity tends to be larger in the triv-
ial phase than in the topological phase, as confirmed by
the phase diagram presented in Fig. 2(c). In this panel,
brighter regions correspond to larger values of the orbital
Hall conductivity, located in the topologically-trivial re-
gions, |∆| > |λ̃SOC|.
Finally, in order to establish a connection between the

Kane-Mele model and the realistic two-dimensional ma-
terials discussed in the next section, we report the or-
bital Hall conductivity as a function of the gap size in
Fig. 2(d). Our calculations confirm that the orbital Hall
conductivity systematically decreases with the size for
the gap, be it driven by ∆ or by λ̃SOC consistently with
Eq. (13). When the staggered potential is turned off

(∆ = 0, red curve), at small λ̃SOC, the gap is located
close to the K and K’ points, as shown in Fig. 3, and Eq.
(13) applies. However, in the large spin-orbit coupling

limit, i.e., λ̃SOC ≈ t, the gap has moved to the M point
(Fig. 3). In this case, increasing the spin-orbit coupling
strength maintains a gapped spectrum while increment-
ing the Fermi velocity, which leads to an enhancement of
the orbital Hall effect, as depicted in Fig. 2(d). The two
situations reported in Fig. 3 are representative of the
case of germanene (small λ̃SOC, Dirac cones at K and

K’ points) and bismuthene (large λ̃SOC, Dirac cone at Γ
point) discussed below.

FIG. 3. Band structure for the Kane-Mele model with differ-
ent values of λSOC. In the non-trivial phase, the increasing of
spin orbit coupling not necessarily leads to the increase of the
gap, this is in connection to what is depicted in Fig. 2(d).

III. ORBITAL TRANSPORT IN REALISTIC 2D
MATERIALS

We now turn to the simulations performed in realistic
two-dimensional materials presenting different topologi-
cal characters. For the trivial systems, we consider two
cases: h-BN/graphene bilayer where the proximity effects
lead to the breaking of inversion symmetry [34, 35], as
well as hydrogene-decorated graphene in which a colos-
sal enhancement of the spin-orbit coupling has been pre-
dicted [36]. For the non-trivial systems, we have se-
lected bismuthene, proven to be a topological insulator
with a sizeable gap in its buckled hexagonal structure
[37], and germanene, characterized by a buckled structure
and a large enough spin-orbit coupling capable to open
a topological gap [38, 39]. For the DFT [40, 41] sim-
ulations, we used the Perdew-Burke-Ernzerhof [42, 43]
exchange-correlation functional. We performed the re-
laxation with the plane-wave basis as implemented in the
Vienna Ab-initio Simulation Package (VASP) [44, 45],
and employ a plane-wave expansion cutoff of 400 eV
along with a force criterion of 0.2×10−2 eV/Å with a
(15 × 15 × 1) k-points sampling of the Brillouin zone.
The ionic potentials were described using the projector
augmented-wave (PAW) method [46]. Finally, the Hamil-
tonian matrix was obtained through the Wannier90 pack-
age. The tight-binding representation was obtained by
using a set of localized Wannier functions via the Wan-
nier90/VASP interface [47]. To do so, we first provide a
trial set of functions which represent the actual atomic
orbitals in the system under study leading to a Hamilto-
nian written in terms of orthogonal Wannier functions.
The evaluation of any physical observable is performed
from the obtention of the eigenenergies and eigenvectors
of this Hamiltonian [47].
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FIG. 4. (a) h-BN/graphene heterostructure electronic band structure showing the band gap opening at the Dirac point the
inset, (b) spin Hall, (c) intra-atomic orbital Hall and (d) total orbital Hall conductivities. The grey shaded region in (a)
corresponds to the energy window where the Hall conductivities were calculated.

1. h-BN/graphene and graphene+H

The recent proposal suggesting gapped graphene as
an orbital Hall insulator has shed light on the nature
of the valley Hall effect [16]. Motivated by this real-
ization, we present the results on h-BN/graphene het-
erostructures. This system has been extensively studied
in the last years in various contexts [34, 48, 49]. While
free-standing graphene is a topological semimetal that
possesses a robust band structure protected by inversion
symmetry, it loses this symmetry by proximity with a ma-
terial like h-BN. The whole heterostructure resembles a
Kane-Mele model in the trivial phase with a gap opening
whose size is given by the interaction with h-BN. Theo-
retically it has been shown that spin manipulation would
be possible in this scenario [35]. Most importantly for our
purpose, graphene acquires a px-py orbital hybridization
when interfaced with h-BN, which promotes the onset of
intra-atomic orbital Hall effect. The Hall conductivities
are shown in Fig. 4 where a small spin Hall effect is ob-
served [Fig. 4(b)], whereas the orbital Hall response is
one to two orders of magnitude larger. In particular, the
intra-atomic orbital Hall effect [Fig. 4(c)] displays a mod-
erate value within the energy window around the charge
neutrality point while the total orbital Hall effect, which
contains both intra- and inter-atomic contributions, [Fig.
4(d)] attains the largest value of the three Hall responses.
Notice that the energy profile of the Hall responses are
similar, as both spin and orbital Hall effects are driven by
proximity with h-BN. We point out that d orbitals were
previously introduced in order to increase the accuracy
of the band structure compared with that obtained from
GW+DFT simulations [50]. By enlarging the orbital ba-
sis to account for such d orbitals, we found that their
contribution to the orbital Hall conductivity is close to
∼ 5%. This is rather negligible, especially in the present
case where the largest contribution comes from the total
orbital moment and is not related to the atomic orbital

character of the Bloch state.

FIG. 5. Graphene+H electronic band structure considering
spin-orbit coupling (a). Orbital texture (b) and spin texture
(b) for the most energetic valence band. In this case the
isolated flat bands come from the Hydrogen atom.

We now consider graphene decorated with hydro-
gen. The inclusion of hydrogen is sufficient to enhance
graphene’s spin-orbit splitting up to 100 µeV locally
[36, 51]. For this system, we have considered a 5× 5 su-
percell with a single hydrogen atom on top at the center
of the graphene flake. The band structure is presented in
Fig. 5(a) where spin-orbit coupling was also taken into
account, showing a good agreement with previous reports
[51]. The orbital and spin textures are shown in Fig. 5(b)
and (c) respectively, for the most energetic valence bands
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closer to the hydrogen states, well localized in the spec-
trum. Our results suggest a large imprinted px-py hy-
bridization which leads to the large value of the atomic
orbital momentum Lz having hot spots at inequivalent
points in the hexagonal Brillouin zone. This is encourag-
ing from the orbital transport perspective. Our calcula-
tions show that the intra-atomic orbital Hall conductiv-
ity (ACA) is around 0.6 (e/2π) whereas the total (intra-
and inter-atomic) orbital Hall conductivity is about 2.1
(e/2π), which is comparable to the h-BN/graphene case
discussed above. In contrast, the spin Hall conductivity
is about ≈ 0.15 (e/2π), still much smaller than the or-
bital Hall effect, but one order of magnitude larger than
the spin Hall effect computed in h-BN/graphene, demon-
strating the large spin-orbit coupling enhancement in this
heterostructure. This result is remarkable especially con-
sidering that it solely arises from the interaction between
graphene and hydrogen. On the other hand, the spin tex-
ture induces a local magnetic moment of ∼1 µB , leading
to a large spin splitting. The orbital Hall effect will also
appear in other graphene-based heterostructures whose
band structure is tuned by proximity effects [14, 52, 53].

2. Germanene and bismuthene

FIG. 6. (a) Germanene projected density of states showing
the pz (green), px , py (orange) and s (blue) states as a func-
tion of the Fermi level. (b) Corresponding orbital texture for
the most energetic valence band. (c) Germanene electronic
band structure, and (d) spin (blue), intra-atomic (black) and
total orbital Hall conductivities (green).

The next material we consider is germanene which pos-

sesses a narrow gap and has a buckled structure that fa-
vors a sp3 hybridization inducing a px-py hybridization
away from the neutrality point [Fig. 6(a)] which results
in an orbital texture in momentum space [Fig. 6(b)].
Alike Kane-Mele model with small spin-orbit coupling,
germanene possesses slightly gapped Dirac cones located
at K and K’ points [Fig. 6(c)]. The Hall conductivi-
ties are depicted in Fig. 6(d) where the spin Hall effect
(blue) reaches a (narrow) quantized plateau at the Fermi
level, associated with the non-trivial phase. Whereas the
spin Hall conductivity is peaked close to the gap, where
the spin Berry curvature is maximum, the non-vanishing
orbital texture in germanene leads to a finite value of
the orbital Hall conductivity (intra-atomic contribution
in black, total contribution in green) on a much broader
range of energy around the gap. Notice that the total
orbital Hall effect remains smaller than the intra-atomic
Hall effect, which implies that inter-atomic and intra-
atomic contributions partially cancel each other. A par-
ticular feature of germanene (and bismuthene, see below)
is that inversion symmetry is preserved, and therefore
the total orbital Hall response has its origin in the non-
abelian nature of the Berry curvature as already shown
[18].

FIG. 7. (a) Bismuthene electronic band structure. (b) Spin
(blue), intra-atomic (black) and total orbital Hall conductiv-
ities (green). (c) Orbital moment calculated for the two most
(red and black) and two less energetic (blue and green) bands
along the M −K − Γ−M kpath.

The last system we consider is buckled bismuthene,
which displays a much larger gap than germanene due
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to a much larger spin-orbit coupling [Fig. 7(a)]. In
this crystalline phase, bismuthene’s band character is in-
verted at Γ point due to spin-orbit coupling, following
the same process as described in the Bernevig-Hughes-
Zhang model [54, 55], exemplified above by the Kane-
Mele model with strong spin-orbit coupling (see Fig. 3).
This change in the band structure allows for a strong
s-character at this point in reciprocal space leading to
a quenched orbital texture [56]. The spin, intra-atomic
and total orbital Hall conductivities are displayed on Fig.
7(b). The absence of an orbital texture in terms of the
px and py near the gap leads to a vanishingly smaller
intra-atomic orbital Hall effect (black), which increases
away from the gap due to enhanced px-py hybridization.
In contrast, the total orbital Hall conductivity reaches
a large value (green), even larger than that of the spin
Hall conductivity (blue). These larger values can be un-
derstood by looking at the orbital moment distribution
along the momentum path M−K−Γ−M shown in Fig.
7(c). The hot-spots located at the Γ-point lead to a larger
value of the total orbital Hall conductivity compared to
the spin one. Notice that the spin conductivity is quan-
tized, whereas the total orbital conductivity is not. We
mention in passing that it has been recently suggested
that such non-quantized plateaus are related to high-
order topological insulating behavior [57]. Hence, the
overall scenario in bismuthene contrasts markedly with
that in germanene and follows the situation discussed in
the previous section using the Kane-Mele model. Con-
sequently, from a materials’ perspective, we are able to
draw differences on the orbital response based on details
of their band structures and orbital character.

IV. IMPACT OF DISORDER ON ORBITAL
HALL TRANSPORT

An important question that remains unanswered at
this point is the impact of disorder-induced scattering on
the orbital conductivity. As a matter of fact, a simple-
minded rationale suggests that the intra-atomic orbital
Hall effect, which arises from the atomic orbital moment,
would be less sensitive to momentum scattering than the
inter-atomic orbital Hall effect, which arises from self-
rotation of the electron wave packet in the unit cell.
To investigate the impact of disorder, we consider three
different systems: germanene, h-BN/graphene, the two
narrow-gap semiconductors studied above, and MoS2, a
large band gap semiconductor that has been predicted
to be an orbital Hall insulator [6, 17]. From the tight-
binding basis obtained by ab initio simulations, we in-
troduce disorder by the inclusion of an on-site Anderson
disorder which can be expressed mathematically like

H = H0 +
∑
i

Vi, (14)

where H0 is the bare Hamiltonian corresponding to a
10× 10 supercell and Vi is an onsite potential acting on

FIG. 8. (a,c) Longitudinal conductivity and (b,d) orbital Hall
conductivity near the Fermi level (ε = 0.1 eV) for germanene
(a,b) and h-BN/graphene (c,d) as a function of the disorder
concentration, the values plot correspond to the ratio orbital
Hall conductivity over its maximum value σ0

OH in the pristine
case. We computed both the intra-atomic (ACA - red) and
total contributions (green). The inset in (a) shows a sketch
of a disorder realization in the lattice.

the i site with values [−1, 1]eV . We calculated the Hall
conductivity for 40 random realizations of every fixed set
of parameters.
The results obtained for germanene and h-

BN/graphene are depicted in Fig. 8(a,b) and (c,d),
respectively. To understand how disorder affects the
orbital transport, we have considered two different
transport regimes: (i) the single band case, where the
carrier’s energy to close to the gap, ε = 0.1 eV (solid
lines), and (ii) the multiband case, where the carrier’s
energy is far from the gap, ε = −3.0 eV (dashed lines).
In the former, the band dispersion is mostly linear
and the longitudinal conductivity of germanene (a)
and h-BN/graphene (c) slowly decays as a function of
disorder due to enhanced scattering. In contrast, when
the energy lies far from the gap, in the multiband case
(dashed), the conductivity decay is more dramatic, as
expected in conventional metals. We have also computed
the intra-atomic and total orbital Hall conductivities
for these different situations (b,d). To better visualize
the effect of disorder, we report the ratio between
the Hall conductivities with and without disorder,
σOH/σ0

OH . In the single band transport regime, we find
that the intra-atomic conductivity (red) is mostly flat,
independent on the disorder. Nonetheless, the total
orbital Hall effect (green), which contrains both intra-
and inter-atomic contributions, is as a whole much
more sensitive to disorder and decreases continuously.
In fact, the intra-atomic Hall effect is controlled by
the orbital Berry curvature of the single band and is
therefore expected to be rather robust against disorder
whereas the inter-atomic Hall effect, which arises from
self-rotation of the wave packet in the unit cell is much
more sensitive to onsite energy fluctuations brought by
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Anderson disorder.
In the multiband transport regime (dashed lines), we

find that both the intra-atomic and total orbital Hall ef-
fect decay at a similar rate. This distinct behavior sug-
gests that the linear dispersion of the single band trans-
port regime has a strong impact on the robustness of the
intra-atomic orbital Hall effect. In contrast, the total or-
bital Hall effect, that contains the inter-atomic contribu-
tion, is much more sensitive to Anderson-type disorder.
We must note that the intra-atomic contribution is larger
than the total one in the case of germanene while the op-
posite is true for h-BN/graphene. This result indicates
that the inter-atomic contribution is much more sensitive
to disorder than the intra-atomic one, irrespective of the
transport regime.

FIG. 9. (a) Longitudinal conductivity for an energy of 1.5 eV
with respect to the zero energy (middle of the gap) defined
as the Fermi level. (b) Orbital Hall conductivities over the
maximum value (σ0

OH)in the pristine system, calculated by
the Kubo formula in a 10×10 supercell containing Anderson
type disorder, intra-atomic Hall conductivity (ACA) and total
orbital Hall conductivity are depicted with dashed lines for
an energy of 1.5 eV with respect to the zero energy defined
as the Fermi level. The solid lines correspond to the Hall
conductivites calculated the Fermi level. The inset shows the
actual values of the orbital conductivity for both intra-atomic
and total responses.

We now turn our attention to MoS2, a large band gap
orbital Hall insulator studied previously [6, 19]. The
band structure and orbital Hall conductivity are reported

in insert for reference. Here, we fix the carrier’s energy
at ε=1.5 eV above the center of the gap in a region where
the energy dispersion is quadratic. The value of the con-
ductivity decreases rapidly with increasing the impurity
concentration, as expected in a conventional, leading to
a decay over about two orders of magnitude, quite differ-
ent from linearly dispersing narrow-gap germanene and
graphene/hBN. The behaviour of the (normalized) or-
bital Hall conductivities is depicted in Fig. 9(b) where
dashed lines correspond to a transport energy of ε=1.5
eV and the solid lines correspond to a transport energy
taken in the middle of the gap. The inset shows the ab-
solute values for reference. The behavior we obtain is
qualitatively similar to the one observed in the narrow-
gap semiconductors discussed previously. In the gap, the
intra-atomic orbital Hall conductivity (solid red) is in-
sensitive to disorder, as expected from a Berry-curvature
driven effect, whereas the total orbital Hall conductivity
decays. It has been argued recently that the in-gap intra-
atomic orbital Hall conductivity is associated with intra-
atomic orbital polarized edge states [17, 19] that remain
insensitive to the disorder, although this picture might
change when considering open boundary conditions like
in nanoribbons for instance [58]. This contrasts to what
we find for the total Hall response where a drop of nearly
half of the initial value is observed. When the energy
is set in the conduction band, one finds that both intra-
atomic and total orbital Hall conductivities decrease with
a similar rate, as already observed in narrow-gap semi-
conductors.

To improve our study of the disorder we have con-
sidered 30 × 30 supercells of a two-dimensional model
system representing dxy − dx2−y2 and pz orbitals for a
3-band MoS2 [59], capable to display both intra-atomic
and inter-atomic orbital Hall effects (not shown). We
were able to retrieve similar results calculated using the
full Wannier Hamiltonian: in the gap, the total orbital
Hall response decreases upon increasing disorder while
the intra-atomic orbital Hall effect is preserved. These
calculations lead to qualitatively the same conclusions as
for the system with a larger number of orbitals. Our
simulations therefore suggest that the total orbital Hall
contribution is more sensitive to disorder and corrobo-
rates our previous comment regarding its relation with
the periodic functions living in the bulk.

The present study, based on a real-space random po-
tential distribution, in principle covers extrinsic scatter-
ing mechanisms such as side-jump and skew-scattering,
which are known to be central to spin and anomalous
Hall effects [60]. Indeed, the inclusion of disorder leads
to a drop of the orbital Hall conductivity for states in the
valence band, which seems to corroborate the conclusion
drawn in [61]. In this work, it is shown that for a 2-band
model system the side-jump contribution totally cancels
the Berry-curvature contribution. Furthermore, our re-
sults exhibit a similar behavior for both the intra-atomic
and the total orbital Hall contributions in the metallic
regime.
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V. CONCLUSION

In summary, we have explored the microscopic ori-
gin of the orbital Hall effect in model and realistic two-
dimensional Dirac materials. Since the orbital Hall ef-
fect is intimately connected with the Berry curvature of
the material, we first investigated the inter-atomic orbital
Hall contribution in the Kane-Mele model, that accom-
modates topological phase transition and in which the
intra-atomic contribution is absent. We found that al-
though the orbital moment itself behaves differently in
the topologically trivial and non-trivial phases, the re-
sulting orbital Hall conductivity is rather controlled by
the size of the gap, irrespective of its topological nature.

We then studied the orbital Hall effect in selected two-
dimensional materials, starting with graphene. Whereas
orbital Hall effect is absent of pristine graphene, it can
be turned on by inducing a global or local gap, either
interfacing graphene with h-BN or by using hydrogen
adatoms, respectively. In these cases, the emergence of
orbital and spin textures in reciprocal space stands out
as a key ingredient for the generation of orbital and spin
polarized Hall currents. These predictions are particu-
larly intriguing given that these two systems are made
out of light elements unable to portray a sizeable spin-
orbit coupling by their own. Although the experimental
distinction between entangled spin and orbital signals re-
mains a challenge even in materials with moderate spin-
orbit coupling, our results are encouraging as they show
that light materials with negligible spin orbit coupling
would display a large orbital Hall effect.

We then moved on to investigate the orbital Hall cur-
rents in two selected two-dimensional topological insu-
lators, germanene and bismuthene, which represent two
distinct realizations of the Kane-Mele model, with weak
and strong spin-orbit coupling, respectively. In ger-
manene, we have found that the intra-atomic orbital Hall
contribution displays a larger value than of the total or-
bital Hall one, resembling the weakly spin-orbit coupled
non-trivial phase of the Kane-Mele model (small spin-
orbit gaps at K and K’ points). The existence of the
quantum spin Hall effect in germanene is corroborated
with a narrow plateau appearing for the spin Hall con-
ductivity while the values for the orbital Hall effect re-

mains larger in a broader energy window. In bismuthene,
besides the spin Hall effect, we have found a large orbital
Hall conductivity coming from the orbital moment car-
ried out by the bands near the Fermi level. This situa-
tion resembles the strongly spin-orbit coupled non-trivial
phase of the Kane-Mele model (large spin-orbit gap at M
point).
Finally, we investigated the impact of disorder on the

intra-atomic and inter-atomic contributions of the or-
bital Hall effect in two-dimensional systems featuring
very different transport regimes (insulating, single-band
and multiband metallic regimes). We find that the intra-
atomic orbital Hall effect tends to be less affected by
disorder than the total orbital Hall effect, especially in
the insulating and single-band regimes, i.e., in situa-
tions where the orbital Berry curvature is smooth and
well-defined. In contrast, in the multiband transport
regime, both intra-atomic contribution and total orbital
conductivity. These results suggest that irrespective of
the transport regime, the intra-atomic part of the orbital
Hall effect is more robust than the inter-atomic part.
The present work sheds light on the mechanisms re-

sponsible for orbital Hall effect in two-dimensional mate-
rials, and in particular clarifies the role of the gap. The
intimate connection between the orbital Hall transport
and the Berry curvature of the band structure opens in-
teresting perspectives for the external control of the or-
bital transport through interfacial engineering or strain,
as demonstrated in Ref.[62]. From this standpoint Van
der Waals heterostructures made of light materials, such
as graphene and h-BN for instance, could be used for
the realization of nonlocal orbital devices, akin to the
all-electric valley or spin Hall transistor [63, 64]. In this
context, a more comprehensive understanding of the or-
bital relaxation induced by momentum scattering is nec-
essary.
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Rodŕıguez, T. P. Cysne, Y. Baba, V. Clericò, M. Vila,
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