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Abstract. The kinematics of a micro-structured material is geomet-
rically modeled through the framework of fiber bundle geometry. The
material continuum is a fiber bundle M ! B where B is compact and
orientable. It is commonly agreed that connections with curvature and
torsion can describe defect densities in micro-structured materials. The
aim of this work is to introduce a method to derive these objects from
the kinematics in an intrinsic way. The material bundle M is therefore
placed in the Euclidean fiber bundle E ≡ TE ! E using a placement map
φ : M ! E . A first-order transformation F : TM ! TE generalizing Tφ
is then introduced. Finally, using F, a metric on B, a connection on M
and a solder form on M are inferred from the Euclidean structure on E .
These new objects are grouped into a single one, called a pseudo-metric,
which allows us to describe the current state of matter through, among
other things, the curvature (disclinations) and torsion (dislocations) ten-
sors. On one hand, we see that the torsion tensor can be non-zero even
in the holonomic F = Tφ case. On the other-hand, in order for the ma-
terial to have a non-zero curvature tensor, we see that one must have a
non-holonomic first-order transformation: that is, F ̸= Tφ.

Keywords: Generalized continuum · Fiber bundles · Connection · me-
chanics

Introduction

We are interested in the study of micro-structured materials. That is, materials
in which the microscopic state at a point plays an import role in its macroscopic
behavior and therefore have to be included in its geometric description. Math-
ematically, an n-dimensional micro-structured material with a k-dimensional
micro-structure (or a n× k material for short) is therefore a fiber bundle man-
ifold M πM−! B of rank k over a compact orientable n-dimensional manifold B,
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which is the classical macroscopic body.

At a point b in the macroscopic body B, the micro-structure of a micro-
element is represented by the fiber Mb of M over b. Those elements are in-
terpreted as first order infinitesimal neighborhoods of geometrical macroscopic
points (eventually embedded in a bigger space of higher dimension), as it is com-
monly considered for crystal modeling. For this reason, M is often closely related
to a tangent space (not necessarily TB). In our case, the material is embedded
in the Euclidean space. Therefore, n ∈ {1, 2, 3} and k = 3.

Fig. 1: The standard horizontal representation of a generic material bundle. The
macroscopic space is represented horizontally and micro-elements are shown to
be inside the macroscopic points. Note that neither B nor Mb is assumed to be
1-dimensional, this is only done for illustration purpose.

Examples of micro-structured materials include the 1-dimensional beams
(1×3 materials), the 2-dimensional plates (2×3 materials) and the 3-dimensional
Cosserat continuum (a 3×3 material). Some authors [5, p138-141] choose to use
the principal bundle (see section 2.2). It is a fiber bundle over the same base
manifold B whose fibers are not the micro-elements but their possible configu-
rations (a sub-group of GL(3)). This is why, at first, those examples may seem
to have different micro-structure as, in practice, one often ends up manipulat-
ing the principal bundle. Those could for example, depending on assumptions
made on the material, be isomorphic to the 1-dimensional circle SO(2) ≃ S1 (for
planar inextensible beams), the 2-dimensional space SO(2)×R∗ (for planar ex-
tensible beams) or the 3-dimensional space SO(3) (for some plates and Cosserat
continuum).
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The standard interpretation

Figure 1 shows the standard representation of a generic material bundle. This
interpretation of the mathematical model is central to our problem. It states that
micro-elements are inside macroscopic points and are therefore imperceptible to
an experimenter. In general, this interpretation states that the projection, to the
macroscopic spaces B and E, of any kinematic object of our model can be seen
as a kinematic object of the classical continuum mechanics. For example, this
implies that φ : B ! E (defined later on) corresponds to an usual macroscopic
placement map that can be observed and measured by an experimenter.

That the macroscopic kinematics is classical does not mean that the macro-
scopic dynamics will be. Macroscopic kinematic object are independent of the
micro-structure, but microscopic or mixed objects can depend on the macro-
scopic states. This means that a coupling between the macroscopic and mi-
croscopic variables can append in the dynamics’ equations. In other words, in
general, φ will not behave classically.

1 First formalism

1.1 Placement map

By analogy with M, the ambient space is modeled as the Euclidean fiber bundle
E ≡ TE πE−! E of rank 3 over the usual ambient space E, the 3-dimensional
Euclidean space. We chose a Lagrangian approach. Accordingly, one defines a
placement map. This latter is a fiber bundle embedding φ : M ! E which maps
the micro-element over b ∈ B to the micro-place over φ(b) ∈ E where φ : B ! E
is called the shadow of φ (see the commutative diagram bellow). This placement
map φ defines a macroscopic material placement map, via its shadow φ and the
differential Tφ.

TE TE E E TE

TM TE B E TM

TπE πTE
πE πTE

TπM

F

πTB

Tφ φ

πM

φ

πTM

F

In order to also have a description of the material’s defects, one must have
a generalized material placement map. To complete the description of a gener-
alized material placement map, one additionally has to introduce a generalized
first order placement map F : TM ! TE . The standard interpretation then
requires F (VM) ⊂ VE . Physically, this means that a microscopic change in the
material causes a microscopic change in the ambient image. In particular, this
implies that F can be seen as a fiber bundle morphism between TM TπM−! TB
and TE TπE−! TE (notice the change of base spaces and projection maps, see the
commutative diagram above).
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The standard interpretation then also requires that the shadows of F with
respect to the usual structures and these new structures are, respectively, φ :
M ! E and Tφ : TB ! TE. Those two requirements reduces the degrees of
freedom of F to k · (k+ n) ∈ {12, 15, 18} real coefficients, which are scalar fields
on M (i.e. F lives in a (k+n)×(k ·(k+n)) vectorial fiber bundle). In the classical
case F ought to be the differential of φ − i.e. F = Tφ − but as it turns out, this
assumption is too restrictive and corresponds to the absence of disclinations in
the micro-structure (see [7]).

1.2 Metric, connection and solder form

The existence of a first order placement map allows one to superimpose the
tangent of the body over the tangent of the ambient space. Doing so, first order
functions of the ambient space such as tensors, can be seen in the material space.
Mathematically, this correspond to a pull-back by the first order placement map.

First, there exists a metric g on E: the Euclidean metric. This allows the
measure of angles and lengths. Using the first order macroscopic placement Tφ,
one can pull it back as a metric G on M, which gives the Cauchy-Green tensor
(see1 the equation and diagram below). In the case of generalized continua, the
macroscopic metric is accompanied by two micro-structured linear applications:
the connection and the solder form.

∀b ∈ B Gb := T∗
φ(b)φ · gφ(b) · Tbφ

T∗B T∗E

TB TE

T∗φ

G

Tφ

g

Figure 2 shows the vertical representation of a generic connection on a mate-
rial bundle. A connection on E can be defined as a right-inverse Γ : TB ! TM
of TπM : TM ! TB (i.e. TπM · Γ = IdTB − please note that other equivalent
definitions also exist [1,6,5]). While it does not induce a notion of length or angle,
it still induces a notion of local geodesics and, as shown on the figure, parallel
transport of micro-elements along the horizontal lift of a macroscopic path. This
later, allows to connect close microscopic spaces by following the flow generated
by Γ. If the macroscopic path is a closed curve in B, one may witness some lack
of closure of the horizontal lift in M. This lack of closure is measured by the
curvature and torsion in a way similar to the way Frank and Burgers vectors are
introduced and used in crystallography (see [3]).

On E , one has the Levi-Civita connexion, which is defined as the unique
connexion with no torsion whose geodesics are those of the Euclidean metric.
Coordinate-wise, it corresponds to the inclusion TE ≃ E ↪! E × {0} ⊂ E ×R6 ≃
TE . In a similar way to what has been done for the metric, the connection on M,
1 Here T∗φ : T∗E ! T∗B is the transpose of the differential Tφ : TB ! TE of
φ : B ! E.
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which is not a tensor, is then obtained by pulling back this Euclidean Levi-Civita
connection γ of E into a connection Γ on M. This involves the use of the fiber
bundle morphism F : TM ! TE to superimpose TM over TE . The formula and
associated diagram are as follows:

∀b ∈ B, ∀m ∈ Mb, Γm := Fb
−1 · γφ(m) · Tbφ

TM TE

TB TE

F

TπM TπEΓ

Tφ

γ

A solder form on E is, in an analog fashion, an injective2 map ϑ : TxE ↪! VpE
for any x ∈ E, p ∈ Ex. While a connection glues microscopic grains together, a sol-
der form glues a grain to the macroscopic space. From a vector at a macroscopic
point, it generates a vector field inside the microscopic grain at that macroscopic
point. As an ambient solder form, we choose the canonical Euclidean solder form
ϑ which comes from the identification E ≃ TE. Just like for γ, ϑ can be pulled
back onto M as Θ : TB ↪! VM. The formula and associated diagram are as
follows:

∀b ∈ B, ∀m ∈ Mb, Θm := Fb
−1 · ϑφ(m) · Tbφ

VM VE

TB TE

F

ϑ−1Θ

Tφ

ϑ

Fig. 2: The vertical representation of a generic material bundle. The macro-
scopic space is represented horizontally and micro-elements are unfolded verti-
cally above it. Note that neither B nor Mb is assumed to be 1-dimensional, this
is only done for illustration purpose.

2 A quick comparison of dimensions gives dim(TxE) = 2 dim(E) = 6 = 2 rank(E) =
dim(VpE). Hence, in the Euclidean case, ϑ is a bijection.
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1.3 Pseudo-metric

Another way to interpret the connection and solder form is as embeddings.
The connection can be seen as an application which takes a macroscopic vec-
tor v ∈ TE and embeds it in the total tangent space as γ (v) ∈ TE which
can be interpreted as the corresponding vector with the same macroscopic part
(TπE · γ · v = v) and no vertical3 part (vγ · γ · v = 0).

Similarly, ϑ(v) ∈ VE ⊂ TE can be interpreted as the corresponding vec-
tor with the same vertical part

(
ϑ−1 · vγ · ϑ · v = v

)
and no horizontal part

(hγ · ϑ · v = 0). In this interpretation, ϑ−1 · vγ : TE ! TE can be seen as a
"microscopic" projection. In particular,

Tϖ = Tπ + ϑ−1 · vγ : TE ! TE

is also a projection which will be called the projection of interpretation as
it gives the sum of the macroscopic part and the microscopic part, both seen in
the macroscopic space TB, which is how one interprets v.

This projection of interpretation gives an alternative approach for the gen-
eralization of the metric. Indeed, one can simply pull-back the Euclidean metric
g : TE ! T∗E onto TE using Tϖ. One then obtains

g : TE −! T∗E
:= T∗ϖ · g · Tϖ

Its kernel is the kernel of Tϖ. Those are the vectors whose macroscopic part
is the opposite of their microscopic part. In particular their microscopic and
macroscopic part are of the same magnitude, which mean these are not physi-
cally acceptable vectors. The kernel of g, as it turns out, is the horizontal space
Hγ−ϑ = Im (γ − ϑ) of the connection γ − ϑ. The solder form ϑ is, by construc-
tion, isometric with respect to g|VE : VE ! V⋆E and g. This means that, from
g, one can extract γ − ϑ and ϑ up to a "rotation" in O

(
g, g|VE

)
.

The tensor g is called the ambient pseudo-metric as it is symmetric and
positive but its kernel is non-trivial (otherwise it would be a metric). As g with
Tφ, g can be pulled-back on TM using F. One obtains the material pseudo-
metric

G : TM −! T∗M
:= F∗ · g · F

Similarly to the ambient case, one has that ker (G) = HΓ−Θ and that Θ is an
isometry for G and G|VE . This means that, if G is known, one can extract the
connection Γ−Θ and the orbit of Θ under O

(
G,G|VE

)
from G. Nevertheless,

G : TB ! T∗B cannot be extracted from G : TM ! T∗M directly, unless
3 We use here the standard notation hγ = γ · TπE and vγ = IdTE − hγ such that
TπE · hγ = TπE and TπE · vγ = 0.
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F : TM ! TE is entirely known (in which case G is also known). The pseudo-
metric G is a canonical extension of the right Cauchy-Green tensor G. As G
plays a central role in the classical case, one expect G to also play a key role in
the generalized case. These observations therefore justify the use of G, Γ and Θ
as our primary tools.

2 Constitutive equations and structure group

2.1 Stress and constitutive equations

By formulating continuum mechanics using differential geometry (as in [4,1,2])
one obtains a geometric formulation of static equilibrium that can be generalized
to the micro-structured case. For example, the macroscopic Cauchy stress S and
the macroscopic second Piola tensor Σ are:

S : T∗E −! TE Σ : T∗B −! TB

In the generalized version, tensors on E (resp. B) naturally become tensors
on E (resp. M). This gives

S : T∗E −! TE Σ : T∗M −! TM

Which, for consistency, are required to be morphisms for both structures TE πTE−!

E and TE TπE−! TE
(
resp. TM πTM−! M and TM TπM−! TB

)
. This is a manifesta-

tion of the standard interpretation, just like it was for F, which also requires
that the shadows be IdE and S

(
resp. IdM and Σ

)
.

The notion of elasticity and hyper-elasticity can be generalized to the micro-
structured case. The elasticity simply states that S (resp. Σ) is a linear function
Ŝ

(
resp. Σ̂

)
of F, or a linear function of G in the isotropic case. The hyper-

elasticity on the other side states that this function Σ̂ is obtainable as the
differential TW of a functional W of F (resp. G in the isotropic case) called
the energy density. Such an energy, in the isotropic case, can depend on invari-
ants of G, Γ and Θ. Already existing formulae for the macroscopic case can be
extended by replacing G with G. For example, identifying TM and T∗M for
simplicity (this is roughly equivalent to having a reference pseudo-metric), the
Saint Venant-Kirchhoff constitutive law gives, under the substitution G ! G:

W (G) :=
a

4
tr (G− Id) +

b

4
tr
(
(G− Id)

2
)

Σ := a tr (G− Id) Id + b (G− Id)

Under a specific frame induced by Γ, G splits into blocks as[
Tπ∗

M ·G · TπM 0
0 (Id− Γ · TπM)

∗ ·G · (Id− Γ · TπM)

]
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Hence, we see that even with a naive extension of the Saint Venant-Kirchhoff
formula, there is a micro/macro coupling occurring through the term

tr (G− Id) = tr (G)− k + tr
(
(Id− Γ · TπM)

∗ ·G · (Id− Γ · TπM)
)
− 3

If we place ourselves in the holonomic case φ ≡ Tφ and F = Tφ. That is, if the
microscopic kinematics is a copy of the macroscopic one. Further computations
show that one has tr(G) = 2tr(G) and, up to a constant rescaling of a and b, Σ
is just two (diagonal) copies of Σ. That is, the microscopic part of the stress is
just an independent copy of its macroscopic part and therefore the dynamics is
classical. In general, however, it is not the case.

It should be noted that, simply extending classical formulae this way does
not provide all possible energies, as other invariants exist. For example, even
tr (G) will not be accessible as it will be replaced with tr(G) in the generalized
case. Furthermore, this would not necessarily lead to geometrically exact laws
as the micro-structure is ignored. Therefore, invariants of the pseudo-metric G
need to be used instead. That is, invariants of the connection Γ and the torsion
Θ on M must be used, in addition to those of the metric G on B. In theory, this
could allow the formulation of geometrically exact constitutive equations making
use of the micro-structure. Equations which could use, for instance, the torsion
and curvature tensors of the connection to quantify these generalized strain and
stress.

2.2 Structure group and principal formalism

Although we took care to omit this detail until now, fiber bundles are not merely
spaces locally isomorphic to Cartesian products. They are actually equipped with
a group, called the structure group [1], acting on its typical fiber. This group can
be physically interpreted as the group of admissible change of coordinates or the
set of microscopic configurations. Objects of the theory are therefore required to
interact properly with it. The structure group is usually simpler than the typ-
ical fiber of M. For this reason, using the principal bundle associated to M is
sometimes easier. The principal bundle associated to a fiber bundle M ! B is a
fiber bundle PM whose base space, structure group and (in some sens) transition
maps are the same but whose typical fiber is the structure group GM itself. For
example, in the case of planar and inextensible Timoshenko–Ehrenfest beams,
the structure group is SO(2) which is isomorphic to the circle S1. Therefore, the
principal material bundle is PM ! B whose typical fiber is GM ≃ S1.

Objects defined on M and E can canonically be defined (or transferred)
on PM and PE (see [1,5]). A placement map φ : M ! E can for example
be decomposed as a macroscopic placement map φ : B ! E and a material
section (i.e. a microscopic configuration) µ : B ! GM. In the case of the planar
and inextensible Timoshenko–Ehrenfest beam, we see that a material placement
map is therefore described by a classical placement map φ : B ! E and an angle
θb ∈ S1 ≃ [0, 2π[ at each b ∈ B (see figure 3).
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Fig. 3: Deformation of a Timoshenko beam. The normal section rotates by
an amount θx with ∂w

∂x ̸= sin (θx)
(
∂w
∂x is the z-aligned part of Tφ

)
. Source:

Wikipedia
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