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INTRODUCTION

Lur'e systems are feedback interconnections between a linear time-invariant (LTI) plant with a static nonlinear function (Khalil, 2002, Chapter 7), as presented in Figure 1. Under assumptions on the nonlinearity, as sector and slope bounds, conditions for absolute stability can be formulated in time domain, where the stability certificates are Lyapunov functions [START_REF] Gonzaga | Stability analysis of discrete-time Lur'e systems[END_REF][START_REF] Ahmad | A less conservative LMI condition for stability of discrete-time systems with slope-restricted nonlinearities[END_REF][START_REF] Park | A revisited Popov criterion for nonlinear Lur'e systems with sector-restrictions[END_REF][START_REF] Park | Stability criteria of sector-and slope-restricted Lur'e systems[END_REF]Bertolin et al., 2022a;[START_REF] Park | A less conservative stability criterion for discrete-time Lur'e systems with sector and slope restrictions[END_REF], or in the frequency domain, where the stability certificates are LTI systems called multipliers [START_REF] Khalil | Nonlinear Systems[END_REF][START_REF] Turner | On the existence of stable, causal multipliers for systems with sloperestricted nonlinearities[END_REF][START_REF] Turner | Discrete-time systems with slope restricted nonlinearities: Zames-Falb multiplier analysis using external positivity[END_REF][START_REF] Ahmad | LMI searches for discrete-time Zames-Falb multipliers[END_REF][START_REF] Ahmad | Convex LMI approach for stability of critically stable systems with slope-restricted nonlinearities[END_REF]Haddad andBernstein, 1994, 1993;Carrasco et al., 2012a[START_REF] Carrasco | Convex searches for discrete-time Zames-Falb multipliers[END_REF][START_REF] Carrasco | Zames-Falb multipliers for absolute stability: From O'Shea's contribution to convex searches[END_REF][START_REF] Safonov | Computer-aided stability analysis renders Popov criterion obsolete[END_REF][START_REF] Carrasco | LMI search for rational anticausal Zames-Falb multipliers[END_REF][START_REF] Carrasco | LMI searches for anticausal and noncausal rational Zames-Falb multipliers[END_REF].

For slope-bounded nonlinearities, the Zames-Falb (ZF) multipliers [START_REF] Zames | Stability conditions for systems with monotone and slope-restricted nonlinearities[END_REF][START_REF] O'shea | A combined frequency-time domain stability criterion for autonomous continuous systems[END_REF][START_REF] O'shea | An improved frequency time domain stability criterion for autonomous continuous systems[END_REF][START_REF] Turner | Zames-Falb multipliers: don't panic[END_REF] are the most effective method to assess stability. A positive realness condition must be verified for the overall system and the ℓ 1 norm of the impulse response of the multiplier must be bounded. For discrete-time Lur'e systems, the requirements on the bound of the ℓ 1 norm (called star norm) for infinite impulse response ZF multipliers [START_REF] Ahmad | LMI searches for discrete-time Zames-Falb multipliers[END_REF] and positive realness conditions are expressed in terms of linear ma-★ Supported by the Brazilian agencies: Coordenac ¸ão de Aperfeic ¸oamento de Pessoal de Nível Superior -Brasil (CAPES) -Finance Code 001, Project Stic-Amsud/CAPES NetConHybSDP, code 22-STIC-09, CNPq and grant 2019/10947-1 of São Paulo Research Foundation (FAPESP). trix inequalities (LMIs). These formulations consider a statespace realization of the multiplier. Although being effective to some extent, the ℓ 1 bound constraint can be conservative, and requires a scalar search. Moreover, the conditions apply only to odd nonlinearities. The finite impulse response (FIR) ZF multipliers [START_REF] Wang | A complete and convex search for discrete-time noncausal FIR Zames-Falb multipliers[END_REF][START_REF] Carrasco | Convex searches for discrete-time Zames-Falb multipliers[END_REF] offer a simpler solution to bound the ℓ 1 norm of the impulse response and the positive realness condition is still expressed with an LMI constraint. Besides, FIR multipliers handle odd or nonodd nonlinearities, and can be causal, anti-causal or noncausal.

Regarding control design for discrete-time Lur'e systems, most of the existing works are based on Lur'e-Lyapunov functions (Bertolin et al., 2022a;[START_REF] Kim | Robust static and fixedorder dynamic output feedback control of discrete-time parametric uncertain Luré systems: Sequential SDP relaxation approaches[END_REF]Louis et al., 2015b,a), with the exception of [START_REF] Bertolin | An LMI approach for stability analysis and output-feedback stabilization of discrete-time Lur'e systems using Zames-Falb multipliers[END_REF]) that used star-norm bounds for the ℓ 1 constraint and positive realness to derive synthesis conditions. In this paper, the aim is to propose a method for the output feedback control of discrete-time Lur'e systems based on FIR ZF multipliers. An iterative algorithm, where an LMI optimization problem is solved at each iteration, is first presented for absolute stability analysis and its extension to cope with control design is immediate. A control law using state or output feedback, that may also include the feedback of the output of the nonlinearity, can be designed jointly with the FIR ZF multiplier. Odd or non-odd nonlinearities, causal or anti-causal FIR multipliers of any given order can be considered. Numerical examples from the literature illustrate the performance of the proposed method.
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Regarding control design for discrete-time Lur'e systems, most of the existing works are based on Lur'e-Lyapunov functions (Bertolin et al., 2022a;[START_REF] Kim | Robust static and fixedorder dynamic output feedback control of discrete-time parametric uncertain Luré systems: Sequential SDP relaxation approaches[END_REF]Louis et al., 2015b,a), with the exception of [START_REF] Bertolin | An LMI approach for stability analysis and output-feedback stabilization of discrete-time Lur'e systems using Zames-Falb multipliers[END_REF]) that used star-norm bounds for the ℓ 1 constraint and positive realness to derive synthesis conditions. In this paper, the aim is to propose a method for the output feedback control of discrete-time Lur'e systems based on FIR ZF multipliers. An iterative algorithm, where an LMI optimization problem is solved at each iteration, is first presented for absolute stability analysis and its extension to cope with control design is immediate. A control law using state or output feedback, that may also include the feedback of the output of the nonlinearity, can be designed jointly with the FIR ZF multiplier. Odd or non-odd nonlinearities, causal or anti-causal FIR multipliers of any given order can be considered. Numerical examples from the literature illustrate the performance of the proposed method. Lur'e systems are feedback interconnections between a linear time-invariant (LTI) plant with a static nonlinear function (Khalil, 2002, Chapter 7), as presented in Figure 1. Under assumptions on the nonlinearity, as sector and slope bounds, conditions for absolute stability can be formulated in time domain, where the stability certificates are Lyapunov functions [START_REF] Gonzaga | Stability analysis of discrete-time Lur'e systems[END_REF][START_REF] Ahmad | A less conservative LMI condition for stability of discrete-time systems with slope-restricted nonlinearities[END_REF][START_REF] Park | A revisited Popov criterion for nonlinear Lur'e systems with sector-restrictions[END_REF][START_REF] Park | Stability criteria of sector-and slope-restricted Lur'e systems[END_REF]Bertolin et al., 2022a;[START_REF] Park | A less conservative stability criterion for discrete-time Lur'e systems with sector and slope restrictions[END_REF], or in the frequency domain, where the stability certificates are LTI systems called multipliers [START_REF] Khalil | Nonlinear Systems[END_REF][START_REF] Turner | On the existence of stable, causal multipliers for systems with sloperestricted nonlinearities[END_REF][START_REF] Turner | Discrete-time systems with slope restricted nonlinearities: Zames-Falb multiplier analysis using external positivity[END_REF][START_REF] Ahmad | LMI searches for discrete-time Zames-Falb multipliers[END_REF][START_REF] Ahmad | Convex LMI approach for stability of critically stable systems with slope-restricted nonlinearities[END_REF]Haddad andBernstein, 1994, 1993;Carrasco et al., 2012a[START_REF] Carrasco | Convex searches for discrete-time Zames-Falb multipliers[END_REF][START_REF] Carrasco | Zames-Falb multipliers for absolute stability: From O'Shea's contribution to convex searches[END_REF][START_REF] Safonov | Computer-aided stability analysis renders Popov criterion obsolete[END_REF][START_REF] Carrasco | LMI search for rational anticausal Zames-Falb multipliers[END_REF][START_REF] Carrasco | LMI searches for anticausal and noncausal rational Zames-Falb multipliers[END_REF].

For slope-bounded nonlinearities, the Zames-Falb (ZF) multipliers [START_REF] Zames | Stability conditions for systems with monotone and slope-restricted nonlinearities[END_REF][START_REF] O'shea | A combined frequency-time domain stability criterion for autonomous continuous systems[END_REF][START_REF] O'shea | An improved frequency time domain stability criterion for autonomous continuous systems[END_REF][START_REF] Turner | Zames-Falb multipliers: don't panic[END_REF] are the most effective method to assess stability. A positive realness condition must be verified for the overall system and the ℓ 1 norm of the impulse response of the multiplier must be bounded. For discrete-time Lur'e systems, the requirements on the bound of the ℓ 1 norm (called star norm) for infinite impulse response ZF multipliers [START_REF] Ahmad | LMI searches for discrete-time Zames-Falb multipliers[END_REF] trix inequalities (LMIs). These formulations consider a statespace realization of the multiplier. Although being effective to some extent, the ℓ 1 bound constraint can be conservative, and requires a scalar search. Moreover, the conditions apply only to odd nonlinearities. The finite impulse response (FIR) ZF multipliers [START_REF] Wang | A complete and convex search for discrete-time noncausal FIR Zames-Falb multipliers[END_REF][START_REF] Carrasco | Convex searches for discrete-time Zames-Falb multipliers[END_REF] offer a simpler solution to bound the ℓ 1 norm of the impulse response and the positive realness condition is still expressed with an LMI constraint. Besides, FIR multipliers handle odd or nonodd nonlinearities, and can be causal, anti-causal or noncausal.

Regarding control design for discrete-time Lur'e systems, most of the existing works are based on Lur'e-Lyapunov functions (Bertolin et al., 2022a;[START_REF] Kim | Robust static and fixedorder dynamic output feedback control of discrete-time parametric uncertain Luré systems: Sequential SDP relaxation approaches[END_REF]Louis et al., 2015b,a), with the exception of [START_REF] Bertolin | An LMI approach for stability analysis and output-feedback stabilization of discrete-time Lur'e systems using Zames-Falb multipliers[END_REF]) that used star-norm bounds for the ℓ 1 constraint and positive realness to derive synthesis conditions. In this paper, the aim is to propose a method for the output feedback control of discrete-time Lur'e systems based on FIR ZF multipliers. An iterative algorithm, where an LMI optimization problem is solved at each iteration, is first presented for absolute stability analysis and its extension to cope with control design is immediate. A control law using state or output feedback, that may also include the feedback of the output of the nonlinearity, can be designed jointly with the FIR ZF multiplier. Odd or non-odd nonlinearities, causal or anti-causal FIR multipliers of any given order can be considered. Numerical examples from the literature illustrate the performance of the proposed method. Lur'e systems are feedback interconnections between a linear time-invariant (LTI) plant with a static nonlinear function (Khalil, 2002, Chapter 7), as presented in Figure 1. Under assumptions on the nonlinearity, as sector and slope bounds, conditions for absolute stability can be formulated in time domain, where the stability certificates are Lyapunov functions [START_REF] Gonzaga | Stability analysis of discrete-time Lur'e systems[END_REF][START_REF] Ahmad | A less conservative LMI condition for stability of discrete-time systems with slope-restricted nonlinearities[END_REF][START_REF] Park | A revisited Popov criterion for nonlinear Lur'e systems with sector-restrictions[END_REF][START_REF] Park | Stability criteria of sector-and slope-restricted Lur'e systems[END_REF]Bertolin et al., 2022a;[START_REF] Park | A less conservative stability criterion for discrete-time Lur'e systems with sector and slope restrictions[END_REF], or in the frequency domain, where the stability certificates are LTI systems called multipliers [START_REF] Khalil | Nonlinear Systems[END_REF][START_REF] Turner | On the existence of stable, causal multipliers for systems with sloperestricted nonlinearities[END_REF][START_REF] Turner | Discrete-time systems with slope restricted nonlinearities: Zames-Falb multiplier analysis using external positivity[END_REF][START_REF] Ahmad | LMI searches for discrete-time Zames-Falb multipliers[END_REF][START_REF] Ahmad | Convex LMI approach for stability of critically stable systems with slope-restricted nonlinearities[END_REF]Haddad andBernstein, 1994, 1993;Carrasco et al., 2012a[START_REF] Carrasco | Convex searches for discrete-time Zames-Falb multipliers[END_REF][START_REF] Carrasco | Zames-Falb multipliers for absolute stability: From O'Shea's contribution to convex searches[END_REF][START_REF] Safonov | Computer-aided stability analysis renders Popov criterion obsolete[END_REF][START_REF] Carrasco | LMI search for rational anticausal Zames-Falb multipliers[END_REF][START_REF] Carrasco | LMI searches for anticausal and noncausal rational Zames-Falb multipliers[END_REF].

For slope-bounded nonlinearities, the Zames-Falb (ZF) multipliers [START_REF] Zames | Stability conditions for systems with monotone and slope-restricted nonlinearities[END_REF][START_REF] O'shea | A combined frequency-time domain stability criterion for autonomous continuous systems[END_REF][START_REF] O'shea | An improved frequency time domain stability criterion for autonomous continuous systems[END_REF][START_REF] Turner | Zames-Falb multipliers: don't panic[END_REF] are the most effective method to assess stability. A positive realness condition must be verified for the overall system and the ℓ 1 norm of the impulse response of the multiplier must be bounded. For discrete-time Lur'e systems, the requirements on the bound of the ℓ 1 norm (called star norm) for infinite impulse response ZF multipliers [START_REF] Ahmad | LMI searches for discrete-time Zames-Falb multipliers[END_REF] trix inequalities (LMIs). These formulations consider a statespace realization of the multiplier. Although being effective to some extent, the ℓ 1 bound constraint can be conservative, and requires a scalar search. Moreover, the conditions apply only to odd nonlinearities. The finite impulse response (FIR) ZF multipliers [START_REF] Wang | A complete and convex search for discrete-time noncausal FIR Zames-Falb multipliers[END_REF][START_REF] Carrasco | Convex searches for discrete-time Zames-Falb multipliers[END_REF] offer a simpler solution to bound the ℓ 1 norm of the impulse response and the positive realness condition is still expressed with an LMI constraint. Besides, FIR multipliers handle odd or nonodd nonlinearities, and can be causal, anti-causal or noncausal.

Regarding control design for discrete-time Lur'e systems, most of the existing works are based on Lur'e-Lyapunov functions (Bertolin et al., 2022a;[START_REF] Kim | Robust static and fixedorder dynamic output feedback control of discrete-time parametric uncertain Luré systems: Sequential SDP relaxation approaches[END_REF]Louis et al., 2015b,a), with the exception of [START_REF] Bertolin | An LMI approach for stability analysis and output-feedback stabilization of discrete-time Lur'e systems using Zames-Falb multipliers[END_REF]) that used star-norm bounds for the ℓ 1 constraint and positive realness to derive synthesis conditions. In this paper, the aim is to propose a method for the output feedback control of discrete-time Lur'e systems based on FIR ZF multipliers. An iterative algorithm, where an LMI optimization problem is solved at each iteration, is first presented for absolute stability analysis and its extension to cope with control design is immediate. A control law using state or output feedback, that may also include the feedback of the output of the nonlinearity, can be designed jointly with the FIR ZF multiplier. Odd or non-odd nonlinearities, causal or anti-causal FIR multipliers of any given order can be considered. Numerical examples from the literature illustrate the performance of the proposed method. Notation: For a symmetric matrix, 𝐴 > 0 ( 𝐴 < 0) means that 𝐴 is positive (negative) definite. For matrices or vectors ( 𝑇 ) indicates the transpose, He( 𝐴) = 𝐴 + 𝐴 𝑇 and 𝑑𝑖𝑎𝑔( 𝐴 1 , . . . , 𝐴 𝑛 ) represents a block diagonal matrix formed by the square matrices (or elements) 𝐴 1 , . . . , 𝐴 𝑛 . The symbol ★ represents a term induced by symmetry in a square matrix, ∼ indicates a statespace realization of a transfer function and Re{𝑀 ( 𝑗𝜔)} means the real part of 𝑀 ( 𝑗𝜔). The identity and the zero matrices are denoted, respectively, by 𝐼 and 0. B ⊥ represents a basis for the null space of B, i.e., BB ⊥ = 0. Throughout the text the dimensions of the matrices may be omitted for simplicity (being inferred from the context).

PROBLEM DEFINITION

Consider the discrete-time nonlinear Lur'e system given by

       𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵 𝜙 𝜙(𝑧(𝑘)) + 𝐵 𝑢 𝑢(𝑘) 𝑧(𝑘) = 𝐶 𝑧 𝑥(𝑘) + 𝐷 𝑧 𝜙 𝜙(𝑧(𝑘)) 𝑦(𝑘) = 𝐶 𝑦 𝑥(𝑘) (1) 
where 𝑥 ∈ R 𝑛 is the state, 𝑢 ∈ R 𝑛 is the control input, 𝑧 ∈ R, 𝜙 : R → R, and 𝑦 ∈ R 𝑛 is the measured output. Matrices 𝐴, 𝐵 𝜙 , 𝐵 𝑢 , 𝐶 𝑧 , 𝐶 𝑦 , and 𝐷 𝑧 𝜙 are real and have appropriate dimensions.

The nonlinearity 𝜙 is a monotonic function (odd or non-odd), that verifies the slope bound

0 ≤ 𝜙( ẑ) -𝜙(𝑧) ( ẑ -𝑧) ≤ Λ (2)
for all 𝑧, ẑ ∈ R, 𝑧 ≠ ẑ, and 𝜙( ẑ), 𝜙(𝑧) ∈ [0, Λ] where Λ is a given positive scalar.

System (1) is assumed to be well-posed, that is, the algebraic loop involving 𝑧 and 𝜙(𝑧) has a unique solution. A sufficient condition for well-posedness is given by

1 + Λ𝐷 𝑧 𝜙 > 0.
(3)

The main goal of this paper is to design a stabilizing static output-feedback controller for system (1). Considering the control law 𝑢 = 𝐾𝑦 + 𝐾 𝜙 𝜙(𝑧), the state-space representation for the closed-loop system is given by

� 𝑥(𝑘 + 1) = 𝐴 𝑐𝑙 𝑥(𝑘) + 𝐵 𝑐𝑙 𝜙(𝑧(𝑘)) 𝑧(𝑘) = 𝐶 𝑧 𝑥(𝑘) + 𝐷 𝑧 𝜙 𝜙(𝑧(𝑘)) (4) 
with 𝐴 𝑐𝑙 = 𝐴 + 𝐵 𝑢 𝐾𝐶 𝑦 and 𝐵 𝑐𝑙 = 𝐵 𝜙 + 𝐵 𝑢 𝐾 𝜙 .

As an important result that is used to derive the proposed conditions, the Finsler's Lemma (de Oliveira and Skelton, 2001) is reproduced below. Lemma 1. (Finsler's lemma). Consider matrices Q ∈ R ℓ×ℓ and B ∈ R 𝑚×ℓ , with 𝑟𝑎𝑛𝑘 (B) < ℓ and BB ⊥ = 0. Then, the following conditions are equivalent:

i) B 𝑇 ⊥ QB ⊥ < 0; ii) ∃X ∈ R ℓ×𝑚 such that Q + XB + B 𝑇 X 𝑇 < 0.

Stability conditions

By performing a loop transformation, stability analysis of the closed-loop system (4) can be investigated through the existence of a ZF multiplier 𝑀 (𝑧) [START_REF] Zames | Stability conditions for systems with monotone and slope-restricted nonlinearities[END_REF], such that Re{𝑀 (𝑒 𝑗 𝜔 ) G𝑐𝑙 (𝑒 𝑗 𝜔 )} > 0, ∀𝜔 ∈ [0, 2𝜋] (5) is verified, with G𝑐𝑙 (𝑒 𝑗 𝜔 ) = (1 + Λ𝐺 𝑐𝑙 (𝑒 𝑗 𝜔 )). Consider, without loss of generality, 𝑀 (𝑧) ∼ (𝐴 𝑚 , 𝐵 𝑚 ,𝐶 𝑚 , 1), with state space realization of 𝑀 (𝑧) G𝑐𝑙 (𝑧) given by

𝐴 𝐼 = � 𝐴 𝑝 0 𝐵 𝑚 𝐶 𝑝 𝐴 𝑚 � , 𝐵 𝐼 = � 𝐵 𝑝 𝐵 𝑚 𝐷 𝑝 � 𝐶 𝐼 = � 𝐶 𝑝 𝐶 𝑚 � , 𝐷 𝐼 = 𝐷 𝑝 , where 𝐴 𝑝 = 𝐴 𝑐𝑙 , 𝐵 𝑝 = 𝐵 𝑐𝑙 , 𝐶 𝑝 = Λ𝐶 𝑧 and 𝐷 𝑝 = (1 + Λ𝐷 𝑧 𝜙 ).
Then condition (5) can be verified through the following lemma [START_REF] Ahmad | LMI searches for discrete-time Zames-Falb multipliers[END_REF]. Lemma 2. System 𝑀 (𝑧) G𝑐𝑙 (𝑧) ∼ (𝐴 𝐼 , 𝐵 𝐼 ,𝐶 𝐼 , 𝐷 𝐼 ) is stable and positive real if there exists a positive definite matrix

𝑃 = 𝑃 𝑇 , such that � 𝐴 𝑇 𝐼 𝑃𝐴 𝐼 -𝑃 𝐴 𝑇 𝐼 𝑃𝐵 𝐼 -𝐶 𝑇 𝐼 ★ 𝐵 𝑇 𝐼 𝑃𝐵 𝐼 -𝐷 𝑇 𝐼 -𝐷 𝐼 � < 0. (6)

FIR multipliers

As presented in the previous subsection, besides the positive realness condition, 𝑀 (𝑧) must belong to the class of ZF multipliers to certify the absolute stability of the closed-loop Lur'e system (4). In this work, the following causal FIR multiplier is adopted

𝑀 (𝑧) = 𝑛 � 𝑖=0 𝑚 𝑖 𝑧 -𝑖 (7)
where 𝑛 𝑀 ≥ 1 is the multiplier order and 𝑚 0 = 𝐷 𝑚 = 1.

This particular structure for 𝑀 (𝑧) simplifies the constraint to bound the ℓ 1 norm 𝑀 (𝑧). As a matter of fact, such condition can be established in terms of linear programming involving the coefficients 𝑚 𝑖 , as presented in the next lemma for both odd and non-odd nonlinearities [START_REF] Carrasco | Convex searches for discrete-time Zames-Falb multipliers[END_REF]. Lemma 3. 𝑀 (𝑧) given in ( 7) is a ZF multiplier if i)

𝜎 = 𝑛 � 𝑖=0 𝑚 𝑖 ≥ 0, (8) 
with 𝑚 𝑖 ≤ 0, for 𝑖 = 1, . . . , 𝑛 𝑀 and 𝑚 0 = 1 for non-odd nonlinearities. ii)

𝜎 = 𝑛 � 𝑖=0 𝑚 + 𝑖 + 𝑛 � 𝑖=0 𝑚 - 𝑖 ≤ 2, (9) 
where 𝑚 𝑖 = 𝑚 + 𝑖 -𝑚 - 𝑖 , and 𝑚 + 𝑖 , 𝑚 - 𝑖 ≥ 0, for 𝑖 = 1, . . . , 𝑛 𝑀 , 𝑚 + 0 = 1 and 𝑚 - 0 = 0 for odd nonlinearities. In this paper, the search for 𝑀 (𝑧) ∼ (𝐴 𝑚 , 𝐵 𝑚 ,𝐶 𝑚 , 1) is simplified by adopting the following controllable canonical form

𝐴 𝑚 =            0 1 0 • • • 0 0 0 1 • • • . . . . . . . . . . . . . . . . . . 0 0 0 • • • 1 0 0 0 • • • 0            , 𝐵 𝑚 =           0 0 . . . 0 1           , 𝐶 𝑚 =         𝑚 𝑛 𝑚 (𝑛 -1) . . . 𝑚 1         𝑇 . (10) 
The search for anti-causal FIR ZF multipliers can be performed by transforming 𝐴 , 𝐵 , 𝐶 and 𝐷 as proposed in [START_REF] Carrasco | Convex searches for discrete-time Zames-Falb multipliers[END_REF]. Although in [START_REF] Carrasco | Convex searches for discrete-time Zames-Falb multipliers[END_REF] a non-causal multiplier can be computed by solving a convex optimization problem, the resulting conditions are not easily extended for control design, which is the main purpose of this paper.

MAIN RESULTS

As the main contribution of this work, the present section deals with the design of the static output-feedback gains 𝐾 and 𝐾 associated to the closed-loop system (4).

Theorem 1. Let the positive integer 𝑛 and the matrices 𝑋 ∈ R ( + )×( + ) , 𝑖 = 1, 3, 4, 𝑋 2 ∈ R ( + )×1 , with 𝑋 4 of full rank, be given. If there exist

𝑋 ∈ R ( + )×( + ) , 𝑖 = 1, 3, 4, 𝑋 2 ∈ R 1×( + ) , 0 < 𝑃 = 𝑃 ∈ R ( + )×( + ) , 𝐾 ∈ R × , 𝐾 ∈ R ×1 and 𝐶 ∈ R 1× such that Q + He �        𝑋 1 𝑋 2 𝑋 3 𝑋 4        ���� � 𝑋 1 𝑋 2 𝑋 3 𝑋 4 � � �� � � < 0, (11) 
where

Q =        -𝑃 -𝐶 0 𝐴 ★ -2𝐷 0 𝐵 ★ ★ 𝑃 -𝐼 ★ ★ ★ 0       
, and the conditions of Lemma 3 (𝜙 odd or non-odd) are verified, then the gains 𝐾 and 𝐾 stabilize the closed-loop system (4) and 𝑀 (𝑧) given in ( 7) is a FIR ZF multiplier.

Proof. Consider

B ⊥ = � 𝐼 -𝑋 -1 4 𝑋 1 -𝑋 -1 4 𝑋 2 -𝑋 -1 4 𝑋 3 �
as basis for the null space of 𝑋, that is, 𝑋B ⊥ = 0. Invoking Lemma 1, condition (11) is equivalent to B ⊥ QB ⊥ < 0, that can be rewritten as

      -𝑃 -𝐶 0 ★ -2𝐷 0 ★ ★ 𝑃       + He �        ( 𝑋 -1 4 𝑋 1 ) ( 𝑋 -1 4 𝑋 2 ) ( 𝑋 -1 4 𝑋 3 )        � 𝐴 𝐵 -𝐼 � � < 0. (12)
The above inequality is, again, in the form ii) of Lemma 1. Then, computing a basis for the null space of � 𝐴 𝐵 -𝐼 � , the following condition, equivalent to (6), can be obtained

� 𝐴 𝑃𝐴 -𝑃 𝐴 𝑃𝐵 -𝐶 𝐵 𝑃𝐴 -𝐶 𝐵 𝑃𝐵 -2𝐷 � < 0, (13) 
proving the positive realness of the interconnected system. The feasibility of (8) (non-odd) or ( 9) (odd) assures that 𝑀 (𝑧) is a ZF multiplier. As a consequence, the closed-loop system is stable.

The main advantage of Theorem 1 is that the variables 𝑃, 𝐶 and the matrices of the system appear affinely in the conditions. Thus, the stabilizing gains can be directly computed, without resorting to change of variables or any other algebraic techniques, which in general are difficult to be applied for static output-feedback control, even for linear time-invariant systems. Moreover, the multiplier 𝑀 (𝑧) can be of any given order 𝑛 ≥ 1. However, note that inequality ( 11) is convex because 𝑋 is a fixed matrix. Consequently, due to the lack of a general approach for choosing suitable matrices 𝑋 , 𝑖 = 1, . . . , 4, the results obtained through this sufficient condition may be conservative. A strategy to overcome this difficulty is the application of relaxations, as shown in the next theorem.

Theorem 2. Let 𝑋 = � 0 0 -𝜈𝐼 𝐼 � , where 0 < 𝜈 < 2(1+Λ𝐷 ) -1 and the change of variables 𝑀 (𝑧) ∼ (𝐴 , 𝐵 , 𝐶 , 1), for

𝐶 = � 𝑚 𝑚 ( -1) • • • 𝑚 1 � = � (𝜌 ( -1) 𝑚 ) (𝜌 ( -2) 𝑚 ( -1) ) • • • 𝑚 1 � , (14) 
and

𝐴 = 𝐴 = 𝜌𝐴 + 𝐵 K𝐶 𝐵 = 𝐵 = 𝜌𝐵 + 𝐵 K 𝐶 = 𝜌𝐶 (15) 
with 𝜌 > 0, K = 𝜌𝐾 and K = 𝜌𝐾 . Then, the conditions of Theorem 1 always have a feasible solution with a sufficiently small value of 𝜌.

Proof. The ZF multiplier 𝑀 (𝑧) ∼ (𝐴 , 𝐵 , 𝐶 , 1) can be equivalently rewritten as,

𝑀 (𝑧) = 𝐶 (𝑧𝐼 -𝐴 ) -1 𝐵 + 1 = 𝐶 (𝑧𝐼 -𝜌𝐴 ) -1 𝐵 + 1.
(16) Then, by ( 16) and from the choices made in ( 15), one has

𝐴 = � 𝜌𝐴 + 𝐵 K𝐶 0 𝜌𝐵 𝐶 𝜌𝐴 � , 𝐵 = � 𝜌𝐵 + 𝐵 K 𝐵 (1 -Λ𝐷 ) � , 𝐶 = � 𝜌𝐶 𝐶 � .
With 𝐴 , 𝐵 , 𝐶 in inequality (11), and fixing 𝑋 1 = 𝑋 2 = 0 and

𝑋 3 = -𝜈𝑋 4 = 0.5𝐼, one has         -𝑃 -𝐶 0 𝐴 ★ -2𝐷 0 𝐵 ★ ★ 𝑃-𝜈𝐼 0 ★ ★ ★ -1 𝐼         < 0.
With a sufficiently small value of 𝜌, 𝐾 = 𝐾 = 0 and 𝐶 = 0 (note that the conditions of Lemma 3 remain feasible), and applying a Schur complement, one has

      𝑃 0 0 ★ 2𝐷 -𝜈𝐵 𝐵 0 ★ ★ 𝜈𝐼 -𝑃       > 0.
Blocks (1,1) and (3,3) of the above inequality are feasible with 0 < 𝑃 < 𝜈𝐼. Finally, block (2,2) is feasible with the choice

0 < 𝜈 < 2(1 + Λ𝐷 ) -1 , because 2𝐷 -𝜈𝐵 𝐵 = 2(1 + Λ𝐷 ) -𝜈(1 + Λ𝐷 ) 2 𝐵 𝐵 = 2 -𝜈(1 + Λ𝐷 ) > 0, since (1 + Λ𝐷 ) > 0 by assumption (3).
Note that, adopting the initialization proposed by Theorem 2, Theorem 1 always produces a feasible solution thanks to the parameter 𝜌, which is a relaxation factor in matrices 𝐴 , 𝐵 , 𝐶 of the closed-loop system. With the proposed change of variables, 𝜌 appears affinely in condition (11). This way, 𝜌 can be maximized as an objective function to find the stabilizing gains 𝐾 and 𝐾 and also a valid multiplier 𝑀 (𝑧) which certificates the stability of the original Lur'e system (𝜌 = 1). While 𝜌 < 1 the resulting matrices 𝑋 , 𝑖 = 1, . . . , 4 can be used as new values of 𝑋 , 𝑖 = 1, . . . , 4, thus generating a new feasible solution. This is possible because ( 11) is structured in the form ii) of Finsler's Lemma, i.e., Q +He(XB) < 0. Then, as He(XB) = He(B 𝑇 X 𝑇 ), the choice B = X 𝑇 guarantees a feasible solution in a new test, ensuring that the value of 𝜌 cannot decrease.

The iterative procedure is presented in Algorithm 1 (the index (•) 𝑖𝑡 represents the value of the variable at iteration 𝑖𝑡). The input parameters are 𝑖𝑡 𝑚𝑎𝑥 , which defines a stopping criterion, 𝑛 𝑀 , multiplier order, and 𝑋, the initial matrix required by Theorem 1. If 𝜌 ≥ 1 at some iteration, then the stability of the closed-loop Lur'e system is certified. Unfortunately, although the sequence of values for 𝜌 is non-decreasing, the convergence to a value greater than 1 cannot be assured.

Algorithm 1 Iterative procedure for stabilization Input parameters: 𝑖𝑡 𝑚𝑎𝑥 , 𝑛 𝑀 , 𝑋; Make the changes of variables as in ( 14) and ( 15); 𝑖𝑡 ← 1; while 𝑖𝑡 ≤ 𝑖𝑡 𝑚𝑎𝑥 do maximize 𝜌 𝑖𝑡 subject to: (8) and ( 11) (𝜙 non-odd) or ( 9) and ( 11) (𝜙 odd) ; if 𝜌 𝑖𝑡 ≥ 1 then return 𝜌 𝑖𝑡 , 𝐶 𝑚,𝑖𝑡 and 𝑋 end 𝑋 = 𝑋 𝑇 ; 𝑖𝑡 = 𝑖𝑡 + 1; end Next theorem states that, if 𝜌 > 1 is obtained, then the controller gains and the FIR ZF multiplier 𝑀 (𝑧) for the original system (𝜌 = 1) can be computed as a convex combination of the solutions of two consecutive iterations. Theorem 3. Let 𝐴 𝑝 , 𝐵 𝑝 , 𝐶 𝑝 and 𝐶 𝑚 be as given in Theorem 2 and consider the existence of two consecutive solutions of conditions of Lemma 3 and (11) provided by Algorithm 1, respectively at iterations 𝑘 and 𝑘 + 1, such that

Q 𝑘 + He( 𝑋 𝑘 𝑋 𝑇 𝑘-1 ) < 0, 𝜌 𝑘 < 1, (17) Q 𝑘+1 + He( 𝑋 𝑘+1 𝑋 𝑇 𝑘 ) < 0, 𝜌 𝑘+1 > 1. (18) 
Then, the controller gains 𝐾 and 𝐾 𝜙 and the ZF multiplier 𝑀 (𝑧) for the original system (i.e., for 𝜌 = 1) are obtained from a convex combination of the solutions at iterations 𝑘 and 𝑘 + 1.

Proof. Consider the nonnegative scalars 𝜁 𝑘 and 𝜁 𝑘+1 such that,

𝜁 𝑘 + 𝜁 𝑘+1 = 1, 𝜁 𝑘 = 𝜌 𝑘+1 -1 𝜌 𝑘+1 -𝜌 𝑘 , 𝜁 𝑘+1 = 1 -𝜌 𝑘 𝜌 𝑘+1 -𝜌 𝑘 .
Multiplying (17) by 𝜁 𝑘 and (18) by 𝜁 𝑘+1 , and summing up, one has

𝜁 𝑘 Q 𝑘 + He( 𝑋 𝑘 𝑋 𝑇 𝑘-1 ) + 𝜁 𝑘+1 Q 𝑘+1 + He( 𝑋 𝑘+1 𝑋 𝑇 𝑘 ) = 𝜁 𝑘 Q 𝑘 + 𝜁 𝑘+1 Q 𝑘+1 + He 𝜁 𝑘 𝑋 𝑘 𝑋 𝑇 𝑘-1 + 𝜁 𝑘+1 𝑋 𝑘+1 𝑋 𝑇 𝑘 < 0. (19) 
Regarding the term = 𝐶 𝑝 (𝜁 𝑘 𝐶 𝑚,𝑘 + 𝜁 𝑘+1 𝐶 𝑚,𝑘+1 ) = 𝐶 𝑝 C 𝑚 .

𝜁 𝑘 Q 𝑘 + 𝜁 𝑘+1 Q 𝑘+1 ,
Since (19) holds and the convex combination also preserves the positive realness condition, the ZF multiplier associated with 𝜌 = 1 given by 𝑀 (𝑧) ∼ (𝐴 𝑚 , 𝐵 𝑚 , C 𝑚 , 1) assures closedloop stability with the gains 𝐾 = 𝐾 and 𝐾 𝜙 = 𝐾 𝜙 .

EXAMPLES

In this section, numerical examples are presented to illustrate the performance of Algorithm 1 (named A1) in stability analysis (fix 𝐾 = 𝐾 𝜙 = 0), and in control design with state, namely with 𝐶 𝑦 = 𝐼, and output feedback. Both FIR multipliers for odd and non-odd nonlinearities are investigated. The initial choices proposed for A1 are 𝑖𝑡 𝑚𝑎𝑥 = 250 and 𝜈 = (1 + Λ𝐷 𝑧 𝜙 ) -1 . Although the proposed method could deal with any given order for the ZF multipliers, 𝑛 𝑀 = 2 has been fixed in all tests for simplicity.

In the experiments, A1 is compared with the method from Bertolin et al. (2022b) (B22), that performs a line search of parameter 𝛼 ∈ (0, 1) (related with a bound to the ℓ 1 norm of the ZF multiplier) as follows: i) A bisection is used to find the maximum value of Λ, considering 10 equally spaced points for 𝛼 ∈ (0, 1); ii) For the value of 𝛼 that provided the best Λ in the previous step (defined by 𝛼 ★ ), two new bisections are performed, first considering 10 equally spaced points in the interval 𝛼 ∈ [0.75𝛼 ★ , 1.25𝛼 ★ ], obtaining a new 𝛼 ★ and then using 50 equally spaced points for 𝛼 ∈ [0.9𝛼 ★ , 1.1𝛼 ★ ] (70 searches in total). The implementation was made in Matlab-2022 using the Yalmip parser [START_REF] Löfberg | YALMIP: A toolbox for modeling and optimization in MATLAB[END_REF]) and the Mosek solver [START_REF] Andersen | The MOSEK interior point optimizer for linear programming: An implementation of the homogeneous algorithm[END_REF]), on a computer with Windows 10 operating system and Core i7 processor.

Experiment 1 -Stability analysis

Seven Lur'e systems from the literature are investigated. Systems 1 to 6 are from [START_REF] Carrasco | Convex searches for discrete-time Zames-Falb multipliers[END_REF] and system 7 is from [START_REF] Bertolin | An LMI approach for stability analysis and output-feedback stabilization of discrete-time Lur'e systems using Zames-Falb multipliers[END_REF]. The aim of the experiment is to search for the maximum value of Λ such that each system remains stable. For this purpose, the search for the maximum value is performed by a bisection procedure in Λ with precision given by 10 -3 . Using a transformation on the system matrices, A1 can provide ZF multipliers 𝑀 (𝑧) that are causal (𝑐) or anticausal (𝑎𝑐). Table 1 shows the results obtained using algorithm A1, and also (for comparison) the results from Bertolin et al. (2022b) (B22) also considering second order ZF multipliers, and from Carrasco et al. (2020) (C20) -noncausal FIR ZF multipliers with 𝑛 𝑓 = 𝑛 𝑏 , i.e., same number of causal and anticausal terms, presented in parenthesis.

As can be noted in Table 1, C20 provides the best results for stability analysis, both in terms of larger values for Λ and smaller computational effort. Neither A1 nor B22 compete with C20 in terms of stability analysis but, differently from C20, both can be extended to cope with the problem of control design for discrete-time Lur'e systems, as presented next. In a Table 1. Maximum values of Λ in stability analysis obtained by A1, B22 for causal (𝑐) and anti-causal (𝑎𝑐) multipliers, and C20 (noncausal 𝑛𝑐), considering 𝜙 odd and non-odd (shaded). The numerical complexity can be inferred from the time (𝑡) in seconds required to test each system. The value of 𝑛 = 𝑛 of C20 is given in parenthesis. comparison between A1 and B22, one can note that A1 presents superior values of Λ on almost all systems for both causal and anti-causal ZF multipliers. Moreover, the computational time spent by A1 is substantially smaller (order of hundred times) than the one required by B22, due to the scalar search performed on 𝛼 ∈ (0, 1) by the method from B22.

Experiment 2 -Control design

Since the main objective of this work is the synthesis of output feedback control laws for discrete-time Lur'e systems, this experiment evaluates the performance of A1 for the control design of state (𝑠 𝑓 ) and output (𝑜 𝑓 ) feedback gains. For that, matrices 𝐵 are given by (as in [START_REF] Bertolin | An LMI approach for stability analysis and output-feedback stabilization of discrete-time Lur'e systems using Zames-Falb multipliers[END_REF])

(1, 6, 7) : 𝐵 = 0 1 , (2, 3) : 𝐵 = 0 1 0 0 (4) : 𝐵 = 0 1 0 0 0 , (5) : 𝐵 = 0 1 0 , and 𝐶 = 𝐶 . As in the analysis experiment, the maximum value of Λ for each system is computed through a bisection procedure. In all the cases, A1 is first used with the conditions that ensure stability for non-odd nonlinearities. After convergence, the value of 𝑋 obtained at the last iteration is used as 𝑋 to initialize the algorithm in the search for the largest Λ associated with odd nonlinearities. This strategy can always be used since the feasibility of (8) implies that (9) always admits a solution. Moreover, with this initialization, the values of Λ cannot be smaller than the ones previously obtained for nonodd nonlinearities, resulting in less computational effort for A1 when dealing with the odd case.

The results (maximum values of Λ and time demanded 𝑡, in seconds) are shown in Table 2. As can be noted, when compared with B22, A1 demands considerably lower computational times for all the cases, being also superior in terms of the achievable values of Λ for almost all the systems investigated. Moreover, A1 can deal with both odd and non-odd nonlinearities while B22 is restricted tohe case of odd nonlinear functions. It is worth to mention that other values of Λ (possibly greater) could be obtained by increasing the order 𝑛 of the ZF multiplier.

CONCLUSIONS

An LMI-based iterative method has been proposed for the stability analysis of discrete-time Lur'e systems through FIR ZF multipliers of any given order, with immediate extension to cope with static output and state feedback control. Both odd and non-odd nonlinearities are considered. Anti-causal multipliers can also be obtained with a transformation on the system matrices. Future work will investigate noncausal FIR ZF multipliers with arbitrary number of causal and anti-causal terms for both stability analysis and control design using integral quadratic constraints (IQC) based strategies.

Table 2. Maximum values of Λ with odd and non-odd (shaded) in control design obtained by A1 and B22 for causal ( ) and anti-causal ( ) multipliers, considering state ( ) and output ( ) feedback. The numerical complexity can be inferred from the time ( ) in seconds required to test each system. The notation +100 means that values of Λ larger than 100 have been obtained. 
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 1 Fig. 1. Block diagram of a Lur'e system.

  one has for the block 𝐴 𝐼 𝜁 𝑘 𝜌 𝑘 𝐴 𝑝 + 𝐵 𝑢 K𝑘 𝐶 𝑦 0 𝜌 𝑘 𝐵 𝑚 𝐶 𝑝 𝐴 𝑚 + 𝜁 𝑘+1 𝜌 𝑘+1 𝐴 𝑝 + 𝐵 𝑢 K𝑘+1 𝐶 𝑦 0 𝜌 𝑘+1 𝐵 𝑚 𝐶 𝑝 𝐴 𝑚 = 𝐴 𝑝 + 𝐵 𝑢 𝜁 𝑘 K𝑘 + 𝜁 𝑘+1 K𝑘+1 𝐶 𝑦 0 𝐵 𝑚 𝐶 𝑝 𝐴 𝑚 = 𝐴 𝑝 + 𝐵 𝑢 𝐾𝐶 𝑦 0 𝐵 𝑚 𝐶 𝑝 𝐴 𝑚 and similarly for 𝐵 𝐼 and 𝐶 𝐼 𝜁 𝑘 𝜌 𝑘 𝐵 𝜙 + 𝐵 𝑢 K𝜙,𝑘 𝐵 𝑚 𝐷 𝑝 + 𝜁 𝑘+1 𝜌 𝑘+1 𝐵 𝜙 + 𝐵 𝑢 K𝜙,𝑘+1 𝐵 𝑚 𝐷 𝑝 = 𝐵 𝜙 + 𝐵 𝑢 𝜁 𝑘 K𝜙,𝑘 + 𝜁 𝑘+1 K𝜙,𝑘+1 𝐵 𝑚 𝐷 𝑝 = 𝐵 𝜙 + 𝐵 𝑢 𝐾 𝜙 𝐵 𝑚 𝐷 𝑝 , 𝜁 𝑘 𝜌 𝑘 𝐶 𝑝 𝐶 𝑚,𝑘 + 𝜁 𝑘+1 𝜌 𝑘+1 𝐶 𝑝 𝐶 𝑚,𝑘+1