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Abstract

A novel method is proposed for solving quadratic programming problems arising in model predictive control. The method is
based on an implicit representation of the Karush-Kuhn-Tucker conditions using ramp functions. The method is shown to be
highly efficient on both small and fairly large Quadratic Program problems, can be implemented using simple computer code,
and has modest memory requirements.
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1 Introduction

Model Predictive Control (MPC) has been a great suc-
cess in industry [10], and since its initial development
in the 1970’s (see, e.g. [12]) it has found application in
a wide range of industrial processes. The main feature
of MPC distinguishing it from classical control design
methods such as Linear Quadratic Regulator is the abil-
ity to take into account constraints in both inputs, state,
and outputs. However, the strong abilities of MPC do
not come without a cost. In the conventional MPC for-
mulation, an optimization problem has to be solved on-
line, and for large systems and/or systems requiring high
sampling rates, the computational loadmay become pro-
hibitive. Many approaches have been studied in order
to reduce the computational requirements of MPC, in-
cluding input blocking [2] and utilizing structure in the
optimization problem (e.g. [11]). This paper will make
no attempt at covering all such approaches.

This article proposes a new approach to solving strictly
convex Quadratic Programs (QP) problems resulting
from MPC problem formulations, based on an implicit
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problem formulation via ramp functions. Numerical re-
sults are provided that demonstrate that the QP prob-
lems are solved very fast, for a wide range of problem
sizes. The MPC problem is represented exactly, without
any simplifications or approximations. The computer
code required to implement the solution method is very
simple, and the computer memory requirement is mod-
est. The paper is organized as follows. Section 2 provides
preliminary results, and describes the MPC formulation
used in the paper. Section 3 provides the main result,
and in Section 4 the application of the main result for
efficiently solving QP problems is described. Section 5
demonstrates the efficiency of the method on a range of
MPC problems. A discussion is provided in Section 6,
focusing on infeasibility detection and infeasibility han-
dling, while Section 7 concludes the paper.

Notation. For a vector y ∈ Rn, yi indicates its ith com-
ponent. For a matrixM ∈ Rn×m,M(i,j) denotes its (i, j)
component, M(i,·) denotes its ith row, and M(·,j) indi-

cates its jth column. Let DN denote the set of diago-
nal matrices of dimension N , the set of positive (semi-
)definite matrices as Sn>0(≥0) = {M ∈ Rn×n | M =

M⊤,M >(≥)0}, and A ⊆ {1, 2, . . . , N} defines the ma-
trix IA ⊂ DN , with IA(i,i) ∈ {0, 1} and IA(i,i) = 1
if i ∈ A, IA(i,i) = 0 if i /∈ A. We also denote Ac =
{1, 2, . . . , N} \ A. We denote ei the ith vector of the
canonical basis of RN .
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2 MPC formulation and preliminary results

2.1 QP-MPC formulation

Consider the discrete state-space model

xk+1 = Axk +Buk (1)

with xk ∈ X ⊆ Rn and uk ∈ U ⊆ Rm, ∀k ∈ Z≥0, where
X and U are polytopic sets. Given the objective function

J(u, xk)=x⊤
k+NPTxk+N +

N−1∑
i=0

x⊤
k+iPixk+i + u⊤

k+iRiuk+i

(2)
where u = [u⊤

k · · · u⊤
k+N−1]

⊤, and Pi ∈ Sn≥0, Ri ∈ Sn>0

∀i = 1, . . . , N −1, and PT ∈ Sn≥0. As discussed in [1, Sec
2.1], the MPC problem is formulated as:

minimize
u

1

2
u⊤Hu+ x⊤

k F
⊤u (3)

subject to Gz ≤ Suxk + w

where the matrices H,F,G,and Su depend on the con-
straints defining X , U , and on the matrices defining sys-
tem (1) and the objective function (2). Since Ri ∈ Sn>0,
we have H ∈ Sn>0 thus an invertible matrix. Also follow-
ing [1], the variable change z = u+H−1Fxk results in

minimize
z

1

2
z⊤Hz (4)

subject to Gz ≤ Sxk + w

where S = Su + GH−1F . In this paper we search for
solutions to the above problem based on the solution of
an implicit equation in terms of ramp functions. Some
properties of the ramp functions as detailed below

Definition 1 The ramp function r(y) is given by

r(y) =

{
0 if y < 0

y if y ≥ 0
(5)

Lemma 1 The ramp function is the only function satis-
fying, ∀y ∈ R

(r(y)− y)r(y) = 0 (6a)

r(y) ≥ 0 (6b)

(r(y)− y) ≥ 0. (6c)

Proof. First note that the ramp function can be ex-
pressed as the unique solution to the convex optimiza-
tion problem parameterized in y (thus depending on y)
with strictly convex objective function as follows

minimize
r

1

2
(r − y)2 subject to r ≥ 0. (7)

With the Lagrangian associated to the optimization
problem, L(r, λ) = 1

2 (r − y)2 − λr, we obtain the
Karush-Kuhn-Tucker (KKT) conditions

(r − y)− λ = 0; λr = 0; r ≥ 0; λ ≥ 0

which are necessary for optimality and also sufficient
since the problem is strictly convex. To obtain a descrip-
tion in the variables (y, r) one can use λ = (r− y) above
to obtain r ≥ 0, (r − y) ≥ 0, r(r − y) = 0. ■

For y ∈ Rm let us define the function r : Rm → Rm, the
vector-valued ramp function, as

r(y) =
[
r(y1) r(y2) · · · r(ym)

]⊤
Remark 1 Note that, due to the piecewise definition of
the ramp function in (5), we have that vector r can also
be expressed as the product r(y) = IAy where IA ∈
Dm, with its diagonal elements verifying IA(i,i) ∈ {0, 1}.
Clearly, the set A ⊆ {1, 2, . . . , N} depends on y. ⌟

3 Main results

This section shows how a Linear Complementarity Prob-
lem (LCP) can be associated to a QP-MPC to obtain
a piece-wise affine (PWA) representation implicitly de-
fined in terms of the vector-valued ramp function r. Sec-
tion 4 details how this implicit PWA representation can
be exploited to quickly calculate solutions to the QP-
MPC problem.

Theorem 1 The solution of the QP-MPC is a PWA func-
tion on the variable x, given by

u(x) = −H−1F⊤x−H−1G⊤r(y) (9a)

y = −Sx+ (I −GH−1G⊤)r(y)− w. (9b)

Proof. The following are the KKT conditions associated
to (3) as presented in [1, eq.(15)]

Hz+G⊤λ = 0 (10a)

λi(S(i,·)x+ wi −G(i,·)z) = 0 (10b)

λ ≥ 0 (10c)

Sx+ w −Gz ≥ 0. (10d)

From (10a) we obtain z = −H−1G⊤λ, and using this
expression in (10b)-(10d), gives the following LCP con-
straints

λi(S(i,·)x+ wi +G(i,·)H
−1G⊤λ) = 0

λ ≥ 0

Sx+ w +GH−1G⊤λ ≥ 0.
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The above set of constraints can be rewritten as

λi

(
λi −

(
−S(i,·)x+ (I −GH−1G⊤)(i,·)λ− wi

))
= 0

λ ≥ 0(
λ−

(
−Sx+ (I −GH−1G⊤)λ− w

))
≥ 0.

By defining

y = −Sx+ (I −GH−1G⊤)λ− w, (11)

we observe that the above set of inequalities and the
complementarity constraint become

λi (λi − yi) = 0, λ ≥ 0, (λ− y) ≥ 0.

According to Lemma 1, the set of multipliers λ is given
by the ramp function of variable y, namely

λ = r(y) (12)

then, from (11), we have that y satisfies the implicit alge-
braic equation (9b), while (9a) follows from the change
of variables u = z−H−1Fx, from (10a) and (12). ■

From the above theorem, we have that, given x, the com-
putation of the control action, u, can be carried out by
solving the implicit equation in (9b), yielding y. From
this solution, the Lagrange multipliers λ can be com-
puted according to (12). The computation of u(x) in (9a)
thus boils down to the solution of the implicit equation.

The next section proposes an algorithm to solve this
implicit equation by exploiting the fact that the ramp
function can be written as amatrixmultiplication r(y) =
IA(x)y where we indicate the dependence of the set of
active constraints A on the value of x. Indeed, if the
solution, depending on x, gives yi < 0 then i /∈ A. If
instead, yi ≥ 0, then i ∈ A.

4 Implementation

It is clear from Theorem 1 that the KKT conditions
for the MPC optimization problem is an LCP. This is
well known both for QPs in general (see, e.g. [9]), and
within the MPC literature (e.g. [3, 6]). However, this
knowledge has not been utilized to devise an algorithm
for solving the MPC QP problem, using ramp functions
to take advantage of the structure and continuity of the
problem.

In this section, we present an algorithm to solve the alge-
braic equation (9b). The algorithm exploits the fact that
the ramp function can be expressed as a matrix multipli-
cation by a diagonal matrix as pointed out in Remark 1.
That is, that (9b) can be written as

y − (I −GH−1G⊤)IAy = −Sx− w (13)

for some matrix IA to be determined. The set A cor-
responds to the set of active constraints, namely to the
set for which the values of multipliers λ are not zero.
Therefore, according to the ramp function defining the
multipliers, if yi < 0 then the corresponding value of the
multiplier is λi = 0, and in this case, IA(i,i) = 0, that
is, the the corresponding diagonal element of IA is zero.
If instead yi ≥ 0 then IA(i,i) = 1. The following defini-
tion gives the definition of the pairs (y, IA) allowing to
establish an equivalence between (9b) and (13).

Definition 2 For a given x, a pair is said (y, IA) compat-
ible if (y, IA) satisfy (13) and IA(i,i) = 1 if yi ≥ 0 and
IA(i,i) = 0 if yi < 0.

Based on the above observations, the solution to the im-
plicit equation (9b) is obtained whenever we satisfy (13)
with a compatible pair (y, IA). We shall denote A(x) as
the set of active constraints for a given x defining the
right hand side of (9b). To search for a solution to (9b),
we propose below an algorithm that searches for the set
of active constraints by adding elements to or removing
elements from the set A, thus modifying matrix IA one
element at the time, and updating the solutions y using
the matrix inversion lemma, which is recalled below.

Lemma 2 (Matrix Inversion Lemma) LetQ ∈ RN×N be
an invertible matrix, we have

(Q+quqcqv)
−1 = Q−1−Q−1qu(q

−1
c +qvQ

−1qu)
−1qvQ

−1

where qc ∈ R \ {0} is a scalar, qu ∈ RN , and q⊤v ∈ RN ,
that is qu is a column vector and qv is a row vector.

Remark 2 Noting that (q−1
c + qvQ

−1qu) is a scalar, it
is clear that the update of Q−1 when adding the rank
one term Q−1quqvQ

−1 requires only sums and multipli-
cations and a single division by a scalar. ⌟

Let us define

Q(A) =
(
IAc +GH−1G⊤IA

)
and observe that the solution to the linear system (13)
is obtained following

y − (I −GH−1G⊤)IAy = −Sx− w

Q(A)y = −Sx− w

y = Q(A)−1 (−Sx− w) .

Consider the case where i /∈ A and defineA+i = A∪{i},
namely i enters the set A. Since IA+i

= IA + eie
⊤
i , and

IAc
+i

= IAc − IAc(·,i)e
⊤
i , we have

Q(A+i) = Q(A)− (IAc −GH−1G⊤)(·,i)e
⊤
i .

The above matrix Q(A+i) presents a sum of Q(A) with
a rank one matrix as in Lemma 2, with, respectively qc =
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−1, qv = e⊤i and qu = (IAc − GH−1G⊤)(·,i). Following
the matrix inversion lemma, we have the update of the
inverse by adding i to A as

Q(A+i)
−1 =Q(A)−1

− (−1 + e⊤i Q(A)−1(IAc −GH−1G⊤)(·,i))
−1×(

Q(A)−1(IAc −GH−1G⊤)(·,i)e
⊤
i Q(A)−1

)
.

By defining v(A, i) = Q−1(A)(IAc − GH−1G⊤)(·,i), we
obtain

Q(A+i)
−1 =Q(A)−1 (14)

− (−1 + v(A, i)i)−1
v(A, i)

(
Q(A)−1

)
(i,·) .

We also have the update of y, denoted y+[i] as

y+[i] =Q(A+i)
−1 (−Sx− w)

=Q(A)−1 (−Sx− w)

− (−1 + e⊤i Q(A)−1(IAc −GH−1G⊤)(·,i))
−1×(

Q(A)−1(IAc −GH−1G⊤)(·,i)e
⊤
i Q(A)−1

)
(−Sx− w)

=y − (−1 + e⊤i Q(A)−1(IAc −GH−1G⊤)(·,i))
−1×(

Q(A)−1(IAc −GH−1G⊤)(·,i)
)
yi,

that is, y+[i] = y − yi(−1 + v(A, i)i)−1v(A, i).

Similarly, consider the case where i ∈ A and define
A−i = A \ {i}, namely i is removed from the set A,

Q(A−i) = Q(A) + e⊤i (IAc −GH−1G⊤)(·,i)

The above matrix Q(A−i) presents a sum of Q(A) with
a rank one matrix as in Lemma 2, with, respectively qc =
1, and, as above, qv = e⊤i and qu = (IA−GH−1G⊤)(·,i).
thus, similarly to above, the following expressions for the
inverse and solution updates

Q(A−i)
−1 =Q(A)−1 (15)

− (1 + v(A, i)i)−1
v(A, i)

(
Q(A)−1

)
(i,·) ,

y−[i] =y − yi(1 + v(A, i)i)−1v(A, i). (16)

Given the above steps to update the inverse and y, we use
the following criteria to choose which elements to add to
or to remove from the current set of active constraints
A. These criteria are based on elements of the pair (y,A)

• If yi < 0 for i ∈ A, then constraint i is removed from
A and the inverse of Q(A−i) and an update of y are
computed.

• If yi ≥ 0 for i /∈ A, then constraint i is added to
A and the inverse of Q(A+i) and an update of y are
computed.

The order in which we carry out the inclusion and re-
moval of elements in A is as follows

• Remove first fromA constraints corresponding to neg-
ative yi. If there are more then one such constraint,
remove first the one corresponding to the most nega-
tive yi.
• Then add to A a constraint that is not a member of
A and corresponds to a positive value of yi. If there
is more than one such constraint, add first the one
corresponding to the largest yi.

The above steps are described in Algorithm 1 below.
The solution of the algebraic loop in (9b) is obtained
with Algorithm 1 and its use in the QP-MPC to obtain
the control input uk from the vector u as detailed in
Algorithm 2.

Algorithm 1 Solution to the algebraic equation (9b)

Require: GH−1G, A, invQ, y satisfying y =
invQ(−Sx− w)
while (A, y) not compatible do

if ind(sign(y,−1)) ∩ A ≠ ∅ then
L← ind(sign(y,−1)) ∩ A
i← ind(min(y, L))
v ← invQ(IAc −GH−1G⊤)(·,i)
A ← A \ {i}
q0 ← 1

else if ind(sign(y, 1)) ̸= A then
L← ind(sign(y, 1)) \ A
i← ind(max(y, L))
v ← invQ(IAc −GH−1G⊤)(·,i)
A ← A∪ {i}
q0 ← −1

end if
invQ← invQ− (q0 + vi)

−1
v (invQ)(i,·)

y ← y − yi (q0 + vi)
−1

v
end while

return A, invQ, y

Algorithm 2 Solution to the QP-MPC (3)

Require: GH−1G, S, w, F as in (9b) and (3)
while MPC running do

Obtain xk

invQ← I
A ← ∅
y ← (−Sxk − w)
y ← Algorithm1(GH−1G,A, invQ, y)
u(xk)← −H−1F⊤xk −H−1G⊤r(y)
Apply u(xk) to the plant

end while

5 Numerical Results

To illustrate the performance of the proposed approach,
numerical results are provided for MPC applied to three
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systems of different size. The simulation times are re-
ported for simulating 100 timesteps using the implicit
QP solution approach described in the previous sec-
tion, and compared to the simulation times when using
qpOASES[4, 5] (starting from the same initial state). The
simulations are performed in Matlab on a Windows PC.
The calculation times can vary a little from run to run,
since Windows is not a real time operating system. The
simulations are therefore repeated multiple times, and
the average time is reported.

The solver qpOASES is a highly regarded QP solver for
MPC problems. It takes advantage of the observation
that the state x on the right hand side of the constraints
in (3) is unlikely to change very much from one timestep
to the next. At time k, a parametric active set approach
is used to follow a homotopy path from the optimal so-
lution for xk−1 to the optimal solution for xk. In the
examples, the upper and lower constraints for u are
separated from the other constraints in (3), and given
to qpOASES separately, as recommended in [5]. At each
timestep except the initial one, the hot start functional-
ity in qpOASES is used.

The two optimization solvers give essentially the same
results, and they would be indistinguishable in plots
showing the closed-loop behavior of the systems. There-
fore we do not illustrate the time responses of the closed
loop. Instead, the focus here are on the simulation times,
which document the efficiency of the proposed method.
In each example, constant weights Pi = P and Ri = R
are used in (2), and the terminal weight PT is set equal
to the solution of the algebraic Riccati equation for the
weights P and R.

Example 1 Consider the double integrator example
from [8]. The system dynamics are given by

xk+1 =

[
1 1

0 1

]
xk +

[
1

0.3

]
uk

with the input constrained between −1 and 1, and each
state constrained between −5 and 5, P = I, and R = 1.

The prediction horizon N = 10 is used, and the system
with control is simulated for 100 time steps. The average
time for 5 runs starting from x0 = [5 −2]⊤ when solving
the QP using ramp functions is 0.0020s, whereas the
average time when using qpOASES is 0.0023s. ⌟

Example 2 We now study the four-state system from

[8, 7]. The discrete-time dynamics are given by

xk+1 =


0.928 0.002 −0.003 −0.004
0.041 0.954 0.012 0.006

−0.052 −0.046 0.893 −0.003
−0.069 0.051 0.032 0.935

xk

+


0 0.336

0.183 0.007

0.090 −0.009
0.042 0.012

uk

yk = Cxk =

[
0 0 −0.098 0.269

0 0 0.080 0.327

]
xk

with each input and each measurement constrained to
lie between −1 and 1, P = C⊤C and R = I.

The prediction horizon is N = 30, and the initial state
x0 = [25.5724 25.3546 9.7892 0.2448]⊤. Simulating 100
timesteps when solving the QP using ramp functions
took on average 0.0041s, while the average time for
qpOASES was 0.0090s. ⌟

Example 3 The final example is based on the 82-state
binary distillation column model by Skogestad [13]. The
control inputs are four in total: the top product flowrate,
the top reflux flowrate, the bottom product flowrate, and
bottom boil-up (energy supply). The outputs are the top
and bottom compositions, and the liquid levels in the
top accumulator and the column bottoms. The levels are
open loop integrators.

First the model is balanced and reduced to 25 states.
Next, the reduced model is converted to discrete time.
Both the original system and the reduced model equa-
tions and initial state are not listed here for space rea-
sons 1 .

Using a prediction horizon N = 30, the resulting QP
problem has 1562 constraints and 120 degrees of free-
dom. Simulating 100 timesteps when solving the QP us-
ing ramp functions took on average 0.0055s, while the
average time for qpOASES was 0.0401s. ⌟

Table 2 summarizes indicators for the performance.
Note, in particular, that few of the time steps required
the maximum number of iterations in Algorithm (1).
Note also the sparsity of matrix Q(A)−1, which is
smaller for the example with more states.

1 They can be obtained for morten.hovd@itk.ntnu.no on re-
quest, together with the weights used in the MPC objective
function.
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Algorithm 2

Ex. n N max. # it-
erations

k with max.
# iterations

average #
iterations

max. # ele-
ments in A

Worst sparsity
of Q−1(A)

avg. time per
time step (µs)

worst time
(k = 1) (µs)

1 2 10 6 1-2 1.2 7.6% 8.7% 20 465

2 4 30 4 1-14 1.47 0.95% 1.3% 41 388

3 25 30 4 1 1.02 0.26% 0.26% 55 962
Table 1
Order of the system (n), prediction horizon (N). All examples ran 100 time-steps from the reported initial conditions. For
Algorithm 2 the table reports the maximum number of iterations of Algorithm 1 within a time step, time steps in which the
maximum number iterations of Algorithm 1 were executed, average number of iterations of Algorithm 1 for the 100 time-steps,
maximum number of active constratins (as percentage of total), percentage non-zero elements in Q−1(A), average time step
for the 100 time steps and maximum time taken within one time-step (corresponding to the first time k = 1).

Algorithm 2 qpOASES

Ex. Total time (ms) Total time (ms)

1 2.0 2.3

2 4.1 9.0

3 5.5 40.1
Table 2
Total execution time for 100 time steps of Algorithm 2 and
qpOASES considering the same initial conditions (both from
the average of several runs).
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Fig. 1. Solution times in seconds per timestep for a single
run of Algorithm 1 and qpOASES, for each example.

The solution time per timestep is shown, for each exam-
ple, in Fig. 1. qpOASES is the faster solver initially for
Example 1, but the rest of the time Algorithm 1 is faster.

Figure 2 shows the simulation times for 100 simulation
runs, each of length 100 timesteps, for Algorithm 1 and
qpOASES. For run i, i = {1, . . . , 100} the same initial
conditions are used for Algorithm 1 and qpOASES. The
initial conditions are randomly generated, although only
feasible initial conditions are retained for comparison
of simulation times. Algorithm 1 more often results in
shorter simulation times.
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Fig. 2. Solution times in seconds for simulation runs of length
100 timesteps for Algorithm 1 and qpOASES, for each exam-
ple.

6 Discussion

Relationship to active set methods.
Algorithm 1 updates the set of active constraints at each
iteration, and may thus be categorized as an active set
method. However, conventional active set methods solve
the KKT conditions (in the form of a set of linear equa-
tions) for each candidate active set tried, in order to
determine a step direction and thereby find which con-
straint to add or drop. In contrast, Algorithm 1 updates
invQ through a rank 1 update, and the constraint to be
added or dropped is found simply from looking at the
values of the elements of the y vector, taking into account
whether the corresponding constraint is in the active set.

Memory requirements for Algorithm 1
The computer memory required for implementing Algo-
rithm 1 is clearly very modest, consisting mainly of the
storage of GH−1G⊤), S, and w, which is the minimum
required to define the LCP, as well as the leadingm rows
of H−1F⊤ and H−1G⊤ that are required for calculat-
ing u from x and λ (see Theorem 1). In addition, Q−1

and the set of active constraints A needs to be stored
(and updated), but storing these as sparse matrices can
save significant memory, since, as noted above, the num-
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ber of active constraints cannot exceed the number of
degrees of freedom. Indeed, for the above numerical ex-
amples, a full matrix Q−1 would contain n2

c elements,
where nc = 66, nc = 316 and nc = 1562 respectively
for examples 1, 2 and 3. However, since only a few of
these elements are not zero, as detailed in Table 2, col-
umn Worst sparsity of Q−1(A), the sparse storage al-
lows to reduce the storage space to a small fraction of
the dimensions of Q−1(A).

Initial data for Algorithm 1
One possible input data for the solution of the implicit
equation using Algorithm 1 isA = ∅ corresponding to no
active constraints, giving QA = I, hence y = −Sx− w.

This initial input is clearly very efficient when there are
no active constraints. However, with the proposed rules
for removing or adding constraints to the active set given
in Section 4, the numerical experiments showed that the
solution method is still very efficient, and the number of
solver iterations within one timestep have not been found
to exceed the number of (actually) active constraints by
much.

Typically, the value of the state will not change much
from one timestep to the next, and it may therefore seem
advantageous to start the optimization from the active
set at the previous timestep. However, it is important to
take advantage of the fact that Q−1 typically is a highly
sparse matrix. It is observed that when (over multiple
time steps) hot starting the optimization from the ac-
tive set at the previous time step, then Q−1 will gradu-
ally fill up with elements of magnitude around the order
of eps, i.e., elements that should have been set to zero
when adding and later removing constraints. The small
non-zero values are due to finite precision in the calcu-
lations. This both slows down the calculations and for
large problems significantly increases the requirement
for computer memory. The problem is easily handled by
cleaningQ−1 of such very small elements (e.g., using the
Matlab function clean), but it is found that this takes
more time than starting each iteration with an empty ac-
tive set, corresponding to Q−1 = I. However, there are
situations where it may be possible to do the cleaning
of tiny elements from Q−1 without incurring significant
time loss, especially if parallel computing is an option:

• There is actually a sequence of calculations that need
to be carried out within each timestep: first measure-
ments are obtained, next the model is updated from
measurements (typically using state estimation), only
thereafter are theMPC calculations performed. It may
therefore be possible to clean Q−1 while the model is
updated.
• In some cases there may be ample time for calcula-
tions within each sample interval, but it is desired to
minimize the time delay within each sample interval
associated with the MPC calculations. In such a situ-
ation, the cleaning of Q−1 can be performed after the

MPC calculations and after the new input has been
implemented, but before the end of the sample inter-
val.

Infeasibility detection
To detect infeasibily we have relied on the heuristics of
checking the value of (−1 + v(A, i)i) when adding con-
straints. Indeed, we observe that these values become
very small when an inconsistent set of constraints is se-
lected.

Infeasibility has been investigated for all examples above
by scaling the initial state until the problem becomes
infeasible. Using a threshold value of 10−13 for (−1 +
v(A, i)i), infeasibility was correctly determined in all
three examples, to within an accuracy of three decimal
places in the scaling factor.The appropriate threshold
value will depend on, and should be significantly larger
than, the machine precision. Clearly, setting the thresh-
old too large will result in the algorithm declaring in-
feasibility unnecessarily. Even though we implemented
this procedure for infeasibility detection, it has not been
detailed Algorithm 1.

Soft Constraints
From an application point of view, a quite different issue
is what should happen when an MPC problem is infea-
sible. The basic options are either to have some backup
functionality bringing the system to a safe state (which
often means shutting down the system entirely), or to
design the MPC to “make the best of it”, trying to min-
imize whatever damage might be caused by operation
in an infeasible region of the state space. Such damage
minimization can be achieved by using soft constraints,
by adding slack variables to constraints where violations
are physically possible and operationally (temporarily)
tolerable, and adding corresponding penalty terms to
the objective function.

A desirable property is for the soft constraints to be ex-
act. This is achieved by a sufficiently large weight on
a penalty term linear in the slack variable. What is
sufficiently large can be calculated as described in [8].
Quadratic terms in the penalty function do not affect
whether the soft constraint is exact, and quadratic terms
are therefore sometimes dropped. However, when solv-
ing the MPC QP using ramp functions, the Hessian ma-
trix needs to be invertible (positive definite), and hence
weights on quadratic terms in the penalty functions are
required.

Precision of the Lagrange Multipliers and complementar-
ity KKT conditions
Although of little importance in practical applications,
it is interesting to observe that the complementarity con-
straint of the KKT conditions is fulfilled with very high
accuracy for the proposed method. That is, the λ’s for
the inactive constraints are identically zero (or of mag-
nitude similar to machine precision), whereas conven-
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tional optimization routines will give λ’s for inactive con-
straints in the range of some tolerance specification –
often in the range of 10−8.

Need for Rank 2 updates

The expression for the control law (9) in Theorem 1 is
obtained from the general convex QP formulation (4).
Recall that Algorithm 1 uses rank 1 updates to compute
a solution to (9). We point out that Algorithm 1, com-
bined with the infeasibility detection described above,
has been effectivelly applied to QP problems arising from
MPC formulations discussed in Section 2 and illustrated
in examples in in Section 5.

Although, in the authors’ experience, Algorithm 1 works
very well for QP problems arising from MPC formula-
tions, strictly convex QP formulations exist for which a
modification of the algorithm is required. This modifica-
tion copes with the need for rank two updates. To illus-
trate such a case, consider the problem (4) with S = 0
and

H =

[
11 9

9 11

]
, G =


1 0

0 −1
− 1√

2
− 1√

2

− 3√
10
− 1√

10

 , w =


−0.5
−0.8
− 1

2
√
2

− 0.15√
10

 .

Since there are only two degrees of freedom in the corre-
sponding QP, the maximum number of strongly active
constraints is two. Starting Algorithm 1 with an empty
active set, A = ∅, constraint 2 is the first to add to the
active set, and then constraint 4 should be added. The
active set A = {2, 4}, results in

y =
[
0.2833 5.2444 −0.0589 5.0772

]⊤
.

which, following Algorithm 1, is not a compatible solu-
tion. Thus, constraint 1 should be added to the active set
- but since the problem has only two degrees of freedom,
this would lead to a rank defect Q matrix. Therefore,
one of the constraints in the active set has to be removed
when introducing constraint 1 into the active set, even
though all constraints in the active set have positive y
values, namely a rank 2 update.

The following procedure can be used to identify the con-
straint to be removed. Let the index i denote the con-
straint to be added to the active set, and note that
the problem only arises when the number of constraints
already in the active set equals m. The current (non-
optimal) solution point can be calculated from (9a) and
the current value of y. Clearly, the solution point needs
to move in a direction for which the value of constraint
i decreases. Start with v0 = −G⊤

(i,:) as the candidate di-

rection for changing the solution point, and set S0 = I.

Obviously, the solution point cannot move in a direction
in which the values of the constraints in the active set
increase.

(1) For k = 1 : m, define j as the constraint index (row
index in G) for element k of A.

(2) Select a constraint index k such thatG(j,:)vk−1 ≥ 0.

(3) Set vk = (I − r⊤j (rjr
⊤
j )

−1rj)vk−1, where rTj =

Sj−1G
⊤
(j,:) and Sj = (I − r⊤j (rjr

⊤
j )

−1rj)Sj−1. Note

that rjr
⊤
j is a scalar, so the inversion is actually a

scalar division.
(4) Repeat from (2) until G(j,:)vk−1 ≤ 0 for all remain-

ing unselected constraints.

The constraint to be removed from A is then the first
constraint to become inactive when moving the solution
point in the direction vm. If vm = 0 the problem is in-
feasible.

Following these steps in the above example, we find that
constraint 2 should be removed from the active set. It is
easily checked that A = {1, 4} is optimal.

The corresponding rank 2 update to Q−1 can be carried
out either using the matrix inversion lemma directly,
or applying two rank 1 updates, by first removing the
constraint to leave the active set.

7 Conclusions and Perspectives

A novel method for solving QPs arising fromMPC prob-
lems has been proposed. The method is shown to be ef-
ficient for a wide range of problem sizes, and can be im-
plemented using short and simple computer code. The
method is currently limited to strictly convex QP prob-
lems, semi-definite Hessian matrices cannot be accom-
modated.

Future work will address this limitation, and also at-
tempt to extend the method to LP-MPC. Finally, both
for general QPs and for QP-MPC in particular, we did
not study the convergence of the proposed algorithm,
this is a topic for future research.
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