
HAL Id: hal-04363933
https://hal.science/hal-04363933

Submitted on 26 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving LP-MPC problems using ramp functions*
Morten Hovd, Giorgio Valmorbida

To cite this version:
Morten Hovd, Giorgio Valmorbida. Solving LP-MPC problems using ramp functions*. CCTA 2023
- 7th IEEE Conference on Control Technology and Applications, Aug 2023, Bridgetown, Barbados.
pp.445-450, �10.1109/CCTA54093.2023.10252720�. �hal-04363933�

https://hal.science/hal-04363933
https://hal.archives-ouvertes.fr

Solving LP-MPC problems using ramp functions*

Morten Hovd1 and Giorgio Valmorbida2

Abstract—A new implementation of the Simplex method
for solving linear programming problems is developed, and its
application for solving MPC problems with linear objective
functions is described. A detailed comparison with existing
implementations of the Simplex method is beyond the scope
of this paper. However, initial numerical results indicate that
gains in calculation times may be achieved for problems of
small to moderate size.

I. INTRODUCTION

Model Predictive Control (MPC) has been a great
success in industry [1], and since its initial development
in the 1970’s (see, e.g. [2]) it has found application in
a wide range of industrial processes. The main feature
of MPC distinguishing it from classical control design
methods such as Linear Quadratic Regulator is the
ability to take into account constraints in both inputs,
state, and outputs. However, in the conventional MPC
formulation, an optimization problem has to be solved
online, thus incurring a significant computational cost.
Many approaches have been studied in order to reduce
the computational requirements of MPC, including input
blocking [3] and utilizing structure in the optimization
problem (e.g. [4]). This paper will make no attempt
at covering all such approaches. Instead, the ramp-
based approach to solving quadratic programming (QP)
problems, proposed recently in [5], is extended to linear
programming (LP) problems.

The next section describes the LP-MPC formulation
used. Thereafter, the main result of the paper, the ramp-
based solution to LP problems in standard form, is
presented, followed by a description of how the Sim-
plex method can be used with the ramp-based solution.
Numerical experiments are performed to compare the
calculation performance of the new approach to that
of of the well known commercial solver CPLEX[6] from
IBM. Initial results indicate computational advantages
for small to moderate-size problems.

II. LP-MPC FORMULATION

A linear programming problem in standard for can be
expressed as

*This work was supported by the French-Norwegian exchange
programme AURORA under contract 294676.

1Morten Hovd is with the Department of Engineering Cybernet-
ics, Norwegian University of Science & Technology, 7491 Trond-
heim, Norway. morten.hovd@itk.ntnu.no

2Giorgio Valmorbida is with L2S, Laboratoire des Sig-
naux et Systèmes, CentraleSupelec, CNRS, Université Paris-
Saclay, 3 rue Joliot Curie, Gif-sur-Yvette, 91192 France. gior-
gio.valmorbida@centralesupelec.fr

minimizez c⊤z (1a)

subject to

Gz = b (1b)

−z ≤ 0 (1c)

where G ∈ Rne×nz , c ∈ Rnz×1, z ∈ Rnz×1, and b ∈
Rne×1. Naturally it is assumed that ne < nz, as otherwise
there would be no degrees of freedom for optimization.

The system dynamics are given by the linear discrete-
time state space model

x(k + 1) = Ax(k) +Bu(k) (2a)

y(k) = Cx(k) (2b)

The constraints on the inputs u and outputs y are given
by polytopic sets1 of the form

ymin ≤ y ≤ ymax (3a)

umin ≤ u ≤ umax. (3b)

We wish to compute the input sequence that minimizes
the cost

J(y,u, x(k +N)) =∥Px(k +N)∥p+ (4)
N−1∑
i=1

∥Qy(k + i)∥p + ∥Ruk+i−1∥p

where y and u denote the concatenated vectors y =
[y(k + 1)⊤ y(k + 2)⊤ · · · y(k + N)⊤]⊤ and u =
[u(k)⊤ u(k + 1)⊤ · · · u(k + N − 1)⊤]⊤, respectively,
and Q ∈ Rnc×ny , R ∈ Rnu×nu . To have a sensible LP-
MPC formulation, it is naturally assumed that (A,B) is
stabilizable and (Q

1
2C,A) is detectable and R full rank.

The purpose of this paper is not the LP-MPC solution
per se, but rather to present a numerical solution strategy
to compute the input values u. Although terminal sets
and costs are important for recursive feasibility and
stability, and systematic approaches to calculating these
do exist also for LP-MPC [7], they will for simplicity be
ignored in the following, as they are not important for
presenting the contributions of the paper. Furthermore,
p = 1 will be assumed throughout the paper, although
LP-MPC using p = ∞ can also be formulated in a
straight forward way.

1One may have constraints on both x and y, but often it is more
natural to specify the constraints in terms of y. If there are state
constraints that do not directly correspond to a constraint on an
output, the output vector can simply be augmented with one or
more ’dummy outputs’.

In the following, it will be described how to trans-
late the objective function (4), dynamics (2a,2b) and
constraints (3a,3b) into an LP problem formulation on
the form (1a)-(1c). This development is rather stan-
dard, but the presented level of detail is necessary to
present the LP-MPC solution procedure that is the main
contribution of this paper. Repeated use of the system
dynamics dynamics (2a,2b) allow us to express the future
measurements as

y = CAx(k) + CBu (5)

where

A0 =


A
0
...
0


B̃ = diag{B}
C̃ = diag{C}

IA =



I 0 · · · 0 0
−A I 0 · · · 0
...

. . .
. . .

. . .
...

...
. . . −A I 0

0 · · · 0 −A I


and CA = C̃I−1

A A0 and CB = C̃I−1
A B̃. The output

constraints trivially translate to

y ≤ 1N ⊗ ymax (6a)

−y ≤ −1N ⊗ ymin, (6b)

where 1N denotes a length N column vector of ones, and
⊗ denotes the Kronecker product. Similarly, the input
constraints are expressed as

u ≤ 1N ⊗ umax (7a)

−u ≤ −1N ⊗ umin. (7b)

In order to translate the objective function in (4) with
p = 1 into the form used in (4), we split y and u into
positive and negative parts

y = yp − ym

u = up − um.

Introducing auxiliary variables sp, sm, sup, sum, the
equality constraint (5) together with inequality con-
straints (6a-7b) are converted to the equality constraint
(1b), with

G =


I −I −CB CB 0 0 0 0
I 0 0 0 I 0 0 0
0 −I 0 0 0 −I 0 0
0 0 I 0 0 0 I 0
0 0 0 −I 0 0 0 I

 (8)

b =


CAx(k)

1N ⊗ ymax

1N ⊗ ymin

1N ⊗ umax

1N ⊗ umin

 (9)

where

z = [yp
⊤ ym

⊤ up
⊤ um

⊤ sp
⊤ sm

⊤ sup
⊤ sum

⊤]⊤

in (1b) and (1c).
The objective function now follows from (1a) with

c⊤ =
[
c⊤y c⊤y c⊤u c⊤u 0 0 0 0

]
where

cy = 1⊤N ⊗ σ(Q)

cu = 1⊤N ⊗ σ(R)

and σ(Q) and σ(R) are row vectors of column sums of
Q and R, respectively, such that, for p = 1, we obtain

J(y,u, x(k +N)) = c⊤z.

III. Main results

This section first provides some background on ramp
functions, as presented in [5]. Next, it is shown how a
Linear Complementarity Problem (LCP) can be associ-
ated to an LP to obtain a PWA representation implicitly
defined in terms of ramp functions. Section IV details
how this implicit PWA representation can be exploited
to quickly calculate solutions to the LP-MPC problem.

A. Ramp functions

Definition 1: The ramp function r(y) is given by

r(y) =

{
0 if y < 0
y if y ≥ 0

(10)

Lemma 1: The ramp function is the only function
satisfying, ∀y ∈ R

(r(y)− y)r(y) = 0 (11a)

r(y) ≥ 0 (11b)

(r(y)− y) ≥ 0. (11c)
Proof: First note that the ramp function can be ex-

pressed as the unique solution to the convex optimization
problem parameterized in y (thus depending on y) with
strictly convex objective function as follows

minimize
r

1

2
(r − y)2 subject to r ≥ 0. (12)

With the Lagrangian associated to the optimization
problem, L(r, λ) = 1

2 (r−y)2−λr, we obtain the Karush-
Kuhn-Tucker (KKT) conditions

(r − y)− λ = 0; λr = 0; r ≥ 0; λ ≥ 0

which are necessary for optimality and also sufficient
since the problem is strictly convex. To obtain a descrip-
tion in the variables (y, r) one can use λ = (r− y) above
to obtain r ≥ 0, (r − y) ≥ 0, r(r − y) = 0. ■

For y ∈ Rm let us define the function r : Rm → Rm,
the vector-valued ramp function, as

r(y) =
[
r(y1) r(y2) · · · r(ym)

]⊤
Remark 1: Note that, due to the piecewise definition

of the ramp function in (10), we have that vector r can
also be expressed as the product r(y) = IAy where IA ∈
Dm, with its diagonal elements verifying IA(i,i) ∈ {0, 1}.
Clearly, the set A ⊆ {1, 2, . . . , N} depends on y. ⌟

B. Expressing the solution to an LP problem using ramp
functions

Theorem 1: The solution of the LP-MPC is a PWA
function given by{

u(x) = M1x+M2r(y) +m0

y = M3x+M4r(y) +m5
(14)

Proof: From the Lagrangian function L(z, λ) =
c⊤z + µ⊤ (Gz− b)− λ⊤z, we get the KKT conditions

c+G⊤µ− λ = 0 (15a)

Gz = b (15b)

−z ≤ 0 (15c)

λ ≥ 0 (15d)

λizi = 0 ∀i (15e)

With the matrices and vectors partitioned (and re-
ordered as necessary) as

G =
[
Ga Gb

]
, λ =

[
λa

λb

]
, z =

[
za
zb

]
with square and invertible Gb. Set[

λa

λb

]
=

[
r(ya)− ya

r(yb)

]
, (16)

we can reformulate the KKT conditions as

cp +

[
G⊤

a −Ia
G⊤

b 0

] [
µ
λa

]
−
[
0
Ib

]
λb = 0 (17a)

[
Ga Gb

] [za
zb

]
= b (17b)[

za
zb

]
≥ 0 (17c)[

λa

λb

]
≥ 0 (17d)[

λa

λb

]
×
[
za
zb

]
= 0 (17e)

where the subscript p on cp indicates that c has to be
reordered after partitioning z. In contrast, it is only
columns of G that are reordered, and hence there is no
need for reordering vector b.

With the ramp functions assigned to λa, λb as in (16),
we associate the complementarity conditions (15e) with
the complementarity (11a) of the ramp function. There-
fore, we obtain for za and for zb

λaizai = (r(ya)− ya)ir(ya)i = 0 ⇒ r(ya) = za (18a)

λbizbi = r(yb)i(r(yb)− yb)i = 0 ⇒ r(yb)− yb = zb.
(18b)

Define

Ξ =

[
G⊤

a −Ia
G⊤

b 0

]−1

which is partitioned as[
Ξ1

Ξ2

]
=

[
0 G−T

b

−Ia G⊤
a G

−T
b

]
.

We obtain from (17a)[
µ

r(ya)− ya

]
= Ξ

(
−cp +

[
0
Ib

]
r(yb)

)
from which we obtain

µ = −Ξ1cp + Ξ1

[
0
Ib

]
r(yb) (19a)

ya = Ξ2cp − Ξ2

[
0
Ib

]
r(yb) + r(ya) (19b)

From (17b) we have

Gar(ya) +Gb(r(yb)− yb) = b

and since Gb is invertible this can be expressed as

yb = r(yb) +G−1
b Gar(ya)−G−1

b b (20)

In summary, we obtain

z =

[
za
zb

]
=

[
r(ya)

r(yb)− yb

]
(21a)

λ =

[
λa

λb

]
=

[
r(ya)− ya

r(yb)

]
(21b)

µ = −Ξ1cp + Ξ1

[
0
Ib

]
r(yb) (21c)[

ya
yb

]
=

[
−Ia G⊤

a G
−⊤
b

0 0

]
cp −

[
0

G−1
b

]
b

+

[
I −G⊤

a G
−⊤
b

G−1
b Ga I

] [
r(ya)
r(yb)

]
= Mccp +Mbb+Mr

[
r(ya)
r(yb)

]
(21d)

Noting that for the MPC formulation above we have

b =


CAx(k)
ymax

ymin

umax

umin

 =


CA

0
0
0
0

x(k) +


0

ymax

ymin

umax

umin

 = bxx+ b0

therefore, (21d) becomes[
ya
yb

]
= M3x+M4

[
r(ya)
r(yb)

]
+m5 (22a)

M3 = −
[

0
G−1

b (:, 1 : n · ny)

]
CA (22b)

M4 =

[
I −G⊤

a G
−⊤
b

G−1
b Ga I

]
(22c)

m5 =

[
−Ia G⊤

a G
−⊤
b

0 0

]
cp −

[
0

G−1
b

]
0

ymax

ymin

umax

umin

 (22d)

where G−1
b (:, 1 : n · ny) indicates that we only retain the

n · ny leading columns of G−1
b . From (18a) and (18b) we

obtain

z =

[
I 0

−G−1
b Ga 0

] [
r(ya)
r(yb)

]
+G−1

b (bxx+ b0)

and noting that

u =
[
0 0 I −I 0 0 0 0

]
z = Pzz

we get

M1 = −PzM3 = Pz

[
0

G−1
b (:, 1 : n · ny)

]
CA (23a)

M2 = Pz

[
I 0

−G−1
b Ga 0

]
(23b)

m0 = PzG
−1
b b0 (23c)

■

IV. Implementation

In this section, we will first present a brief recap of the
Simplex method for solving LPs, and next detail how the
Simplex method can be implemented via the ramp-based
description developed above.

A. The Simplex method

In the Simplex method, the decision variables z are
partitioned into ne basis variables zB and nz − ne

variables z0 that are set to zero. To the variables z0
(corresponding to active inequality constraints) we can
associate Lagrange multipliers λ0. We have from (1b)
that zB = G−1

B b, where GB consists of the columns of
G corresponding to zB . A solution for which zB ≥ 0 is
termed a basic feasible solution. If a Lagrange variable
λ0i < 0, this indicates that the objective function can
be reduced by allowing z0i to increase from 0, i.e.,
by allowing z0i to enter the set of basis variables. If
there are more than one negative Lagrange multiplier,
we will assume that the first to enter the set of basis
variables is the one with the most negative value. The
corresponding variable to leave the active set is the first
variable to become zero as variable entering the active
set is increased. We find that the first basis variable to

become zero is the variable zBj corresponding to the
minimum value of

δj =
zBj

G−1
B(j,:)G(:,i)

=
zBj

αj

The division indicated above need only be performed
if αj > 0. The Simplex method assumes that a basic
feasible solution is available. In each iteration, new basis
variables and new Lagrange multipliers are calculated.
An optimal solution is found if all Lagrange multipliers
are non-negative.

B. A ramp-based implementation of the Simplex method

To recap, we are looking for solutions to (35):[
ya
yb

]
= Mccp +Mbb+Mr

[
r(ya)
r(yb)

]
We will (with some abuse of concept) call the set of
variables y for which y = r(y) as the active set, denoted
A, and the set of inactive variables, for which r(y) = 0,
denoted AC . A solution to the LP is found if yi > 0 ∀i ∈
A and yi ≤ 0∀i ∈ AC . We also have the set of variables
A for the y’s corresponding to za as well as B for the y’s
corresponding to zb.

Thus for any consistent candidate active set, we may
solve for the corresponding y by solving

(I −MrIA)y = Mccp +Mbb

where IA is a diagonal matrix with IA(i.i) = 1 for i ∈ A
and IA(i.i) = 0 for i ∈ AC

The set of basis variables of the Simplex method
correspond to

B = {i|i ∈ A ∧ i ∈ A} ∪ {i|i ∈ B ∧ i ∈ AC}

A consistent candidate active set is therefore one for
which the number of basis variables equals ne, and in
addition Q = (I −MrIA) is invertible. For a consistent
candidate active set we can calculate the corresponding
y from

y = Q−1(Mccp +Mbb)

We then have

zi = yi, λi = 0 if i ∈ A ∧ i ∈ A
zi = 0, λi = −yi if i ∈ A ∧ i ∈ AC

zi = 0, λi = yi if i ∈ B ∧ i ∈ A
zi = −yi λi = 0 if i ∈ B ∧ i ∈ AC

Denote by GB (as above) the matrix consisting of
the columns of the matrix G for the variables in B.
The inverse of this matrix is required in the Simplex
method. The fact that we can extract z directly from
the calculated y means that G−1

B can be found from

G−1
B = IBQ

−1
B Mb (24)

where IB is a diagonal matrix with +1 on the diagonal
for row i if i ∈ A ∧ i ∈ A, and −1 on the diagonal of
row i if i ∈ B ∧ i ∈ AC , and Q−1

B consists of the rows i

of Q−1 for which i ∈ B. Furthermore, since the leading
na rows of Mb are identically zero, we can reduce the
computation of the G−1

B to

G−1
B = −IBQ

−1
B,na+1:na+nb

G−1
b

i.e., involving only the last nb columns of Q−1
B .

Since y contains the Lagrange multipliers, these do not
need to be calculated separately, and the identification of
the variable to enter the basis is trivial. However, we still
need G−1

B to calculate the αj ’s required for identifying
the variable to leave the active set.

Note, however, that α = G−1
B G(:,i). Instead of cal-

culating the whole of GB as explained above, we may
instead pre-compute GI = G−1

b G =
[
G−1

b Ga I
]
, as

storing GI (at least when storing as a full matrix) does
not require more memory than storing G. At runtime,
we therefore first calculate

QI
B = −IBQ

−1
B,na+1:na+nb

(i.e., extracting a sub-matrix from Q−1, and flipping the
sign of some rows) and then calculate α directly from

α = QI
BG

I
(:,i) (25)

where i is the index of the variable entering the basis.
Next, having described how to identify the variable to

enter and the variable to leave the basis - and hence what
variables enter and/or leave the active set, we need an
efficient method for updating Q−1.
Let k be an iteration counter, and at each iteration

one variable enters and one variable leaves the basis. We
then have

Qk+1 = Qk +
[
M4,i M4,j

] [si 0
0 sj

] [
e⊤i
e⊤j

]
(26)

where ei and ej are the ith and jth unit vectors, si = 1 if
variable i leaves the active set, and si = −1 if variable i
enters the active set (and similarly for sj). Clearly, Qk+1

is a rank-2 update to Qk. Knowing Q−1
k we may thus use

the Matrix inversion lemma to efficiently calculate Q−1
k+1:

Q−1
k+1 = Q−1

k −Q−1
k U(S−1 + V Q−1

k U)−1V Q−1
k

U =
[
M4,i M4,j

]
S =

[
si 0
0 sj

]
V =

[
e⊤i
e⊤j

]
When calculating Qk+1 using the matrix inversion
lemma, we make use of the fact that the product V Q−1

k

is obtained by simply extracting rows i and j from Q−1
k .

Also, if constraint i (or j) is already in the active set,
then column i of Qk is

Qk(:,i) = ei −M4(:,i)

and hence

Q−1
k M4(:,i) = Q−1

k(:,i) − ei

and

Q−1
k(i,:)M4(:,i) = Q−1

k(i,i) − 1

Further, noting that S−1 = S, we calculate Q−1
k+1 by

1) Extract rows i and j from Q−1
k to obtain V Q−1

k .
2) Multiply V Q−1

k and U (accounting for whether col-
umn i or j is already in the active set, as described
above)

3) Invert (S−1 + V Q−1
k U). This is a 2 × 2 matrix, so

the inversion is trivial.
4) Calculate Q−1

k U (accounting for whether column i
or j is already in the active set, as described above)

5) Calculate Q−1
k U(S−1 + V Q−1

k U)−1V Q−1
k .

6) Add Q−1
k and Q−1

k U(S−1 + V Q−1
k U)−1V Q−1

k .

C. Initial feasible solution

The Simplex method iteratively improves on a basic
feasible solution, and hence an initial basic feasible solu-
tion must be available. The standard approach to obtain-
ing a basic feasible solution is known as the Phase 1 of
the Simplex method. In Phase 1, the problem description
is augmented by slack variables, in such a way that it
is trivial to define a basic feasible solution in terms of
these slack variables. The objective function for Phase 1
weighs only these slack variables, and a basic feasible
solution for the original problem is found if the value
of objective function for Phase 1 is zero. However, the
Phase 1 procedure can introduce a significant number
of slack variables, and can easily find a basic feasible
solution far away from the optimal point of the original
problem.

Instead, we start with the basic feasible solution from
the previous timestep, and follow the approach described
by Maros [8] for Phase 1, where the objective function
only weighs the negative basis variables. This means that
the parameters of the objective function may change
for each iteration of the modified Phase 1 procedure.
Observe that once the updated Q−1 is available, one
can extract the rows involved in calculating the basis
variables. Having calculated the values of the basis vari-
ables, one can then modify the vector of weights for the
objective function (based on the value of the basis vari-
ables), before updating the Lagrange multipliers. Once
a basic feasible solution is found, with no negative basis
variables, the objective function weights are fixed to the
values in the original LP formulation.

V. NUMERICAL RESULTS

In this section, computational times for solving LP-
MPC problems are compared, for the proposed ramp-
based LP solver as well as the commercial solver CPLEX
[6]. It should be noted that the ramp-based solution
is programmed in Matlab m-code, whereas CPLEX is
called as a compiled .mex file. The MPC is simulated
for 100 timesteps, starting from the same initial state for
both solvers. For CPLEX the primal simplex solver is

chosen2. Both solvers are warm started from the solution
at the previous timestep, for the ramp based solution
this is done by specifying the initial basis, whereas for
CPLEX the optimal solution from the previous timestep
is specified. The two solvers produce the same system
responses (as they should), and system responses are
therefore not shown. The resulting computation times
obtained on a Windows PC are given in Table I. To
account for the fact that Windows is not a real time
operating system, the average computation time over
multiple runs is listed.

Example 1: Consider the double integrator example
from [5], [9]. The system dynamics are given by

xk+1 =

[
1 1
0 1

]
xk +

[
1
0.3

]
uk

with the input constrained between −1 and 1, and each
state constrained between −5 and 5. The weight on the
input is 1 and the weight on each output is 10.

Prediction horizons N = {1, 5, 10} are used, to com-
pare the growth in computation times with problem size
for the two solvers. The initial state is x0 = [5 − 2]⊤. ⌟

Example 2: We now study the four-state system from
[5], [9]. The discrete-time dynamics are given by

xk+1 =


0.928 0.002 −0.003 −0.004
0.041 0.954 0.012 0.006

−0.052 −0.046 0.893 −0.003
−0.069 0.051 0.032 0.935

xk

+


0 0.336

0.183 0.007
0.090 −0.009
0.042 0.012

uk

yk = Cxk =

[
0 0 −0.098 0.269
0 0 0.080 0.327

]
xk

with each input and each measurement constrained to lie
between −1 and 1. The weight on each input is 1, and
the weight on each output is 10.

The prediction horizon is N = 30, and the initial state
x0 = [25.5724 25.3546 9.7892 0.2448]⊤. ⌟

2It should be noted that this is not necessarily the fastest LP
solver available with CPLEX.

TABLE I: Computation times in seconds for simulating
LP-MPC for 100 timesteps with CPLEX and the ramp-
based solution. Prediction horizon N , number of equality
constraints ne, number of variables nz.

Example N ne nz CPLEX Ramp
1 1 8 12 0.4067 0.0200
1 5 40 60 0.4344 0.0306
1 10 80 120 0.4378 0.0504
2 30 300 480 0.6037 2.4898

VI. CONCLUSIONS

A new implementation for the Simplex method for
solving LPs, based on ramp functions, is proposed. Initial
results indicate computational advantages for problems
of small to moderate size. Although significantly reduced
computation times may be obtained by programming
the ramp-based solution method in a high-performance
computer language, results on large problems indicate
that significant further improvements in the solution
method are required to make it competitive for large
problem.

References

[1] S. J. Qin and T. A. Badgwell, “A survey of industrial model
predictive control technology,” Control Engineering Practice,
pp. 733–764, 2003.

[2] J. Richalet, A. Raoult, J. L. Testud, and J. Papon, “Model pre-
dictive heuristic control: Application to industrial processes,”
Automatica, pp. 413–428, 1978.

[3] R. Cagienard, P. Grieder, E. Kerrigan, and M. Morari, “Move
blocking strategies in receding horizon control,” Journal of
Process Control, vol. 17, no. 6, pp. 563–570, 2007.

[4] C. V. Rao, S. J. Wright, and J. B. Rawlings, “Application
of interior-point methods to model predictive control,” J. of
Optimization Theory and Applications, vol. 99, no. 3, pp. 723–
757, December 1998.

[5] G. Valmorbida and M. Hovd, “Quadratic programming with
ramp functions and fast online QP-MPC solutions,” Automat-
ica, vol. 153, p. 111011, 2023.

[6] IBM, “IBM ILOG CPLEX optimizer,” Accessed January
2023. [Online]. Available: https://www.ibm.com/products/
ilog-cplex-optimization-studio/cplex-optimizer

[7] C. Danielson, “Terminal-cost design for model predictive con-
trol with linear stage-costs: A set-theoretic method,” Optimal
Control Applications and Methods, vol. 42, pp. 943–964, 2021.

[8] I. Maros, Computational Techniques of the Simplex Method,
ser. International Series in Operations Research & Management
Science. Springer, 2003.

[9] M. Hovd and F. Stoican, “On the design of exact penalty func-
tions for MPC using mixed integer programming,” Computers
& Chemical Engineering, vol. 70, pp. 104–113, 2014.

