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in Quantum Field Theory

Pierre Gosselin*

January 2024

Abstract

This paper introduces a comprehensive formalism for decomposing the state space of a quan-
tum field into several entangled subobjects, i.e., fields generating a subspace of states. Projecting
some of the subobjects onto degenerate background states reduces the system to an effective
field theory depending on parameters representing the degeneracies. Notably, these parameters
are not exogenous. The entanglement among subobjects in the initial system manifests as an
interrelation between parameters and non-projected subobjects. Untangling this dependency
necessitates imposing linear first-order equations on the effective field. The geometric charac-
teristics of the parameter spaces depend on both the effective field and the background of the
projected subobjects. The system, governed by arbitrary variables, has no dynamics, but the
projection of some subobjects can be interpreted as slicing the original state space according to
the lowest eigenvalues of a parameter-dependent family of operators. The slices can be endowed
with amplitudes similar to some transitions between each other, contingent upon these eigen-
values. Averaging over all possible transitions shows that the amplitudes are higher for maps
with increased eigenvalue than for maps with decreasing eigenvalue.
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1 Introduction

Composite objects in quantum field theory are typically treated as combinations of various states
or fields through perturbative computations or non-perturbative methods such as operator prod-
uct expansion. This work takes a different approach, starting with an arbitrary field theory and
considering states that decompose into constrained substates, built from subfields referred to as
subobjects throughout this paper. These subobjects define a field theory themselves, but due to the
constraints arising from the decomposition, these fields become entangled with each other. Thus,
the decomposition describes interacting tensor products of fields defined by subobjects.

For each decomposition, we consider the projection of the states of one or several subobjects
onto some background or some operator eigenspace. Doing so, the projected subobject keeps track
of some degrees of freedom of the field we started with and of the interactions with the remaining
subobjects. The projected subobjects constitute a background on which the remaining subobjects
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are defined. The degeneracy of the background state induces the emergence of effective parameter-
dependent fields, reducing the initial field theory to an effective field theory depending on these
parameters. These parameters are exogenous in the first approximation, and this effective field
theory may be considered to be defined on an a priori parameter space.

However, this parameter space keeps track of the characteristics of the initial system and the
projected subobject as well as their interactions with remaining subobjects. Due to the entangle-
ment of the subobjects, the remaining field’s degrees of freedom globally condition the geometry
of the parameters. Imposing independence to the first order between the effective field variation
and parameters leads to some field equations. Both the remaining degrees of freedom and the pro-
jected background determine the metric of the parameter space. This dependency in the projected
background is the trace of the states from which the parameter space has emerged.

Alternatively, this approach can be described in terms of operators and states formalism. The
intertwined objects can be projected onto some operator’s lowest eigenspace with degeneracy. This
projection operator acts on the state space of one or several subobjects, so that the projected states
are similar to the subobject background previously described.

Due to the subobjects’ entanglement, the projection operators along with their eigenvalues, on
which we project onto, depend on the remaining subobject degrees of freedom. The resulting state
space is decomposed into "slices,” each consisting of states of the effective field theory such that the
lowest eigenvalue depending on these states has a given value. These slices are not orthogonal with
each other, as the state-dependency of the eigenvalue implies that two different states correspond
to different projection operators: the eigenvalues are not the eigenvalues of a single operator, but
all of them are the minimum eigenvalues of a state-dependent set of operators.

These projections result in describing the effective system in terms of states and operators de-
pending on some degeneracy parameters, one of these parameters being distinguished from others.
The field equations resulting from the independence between field variations and the parameter
space are recovered. This approach allows computing amplitudes between states with different
distinguished eigenvalues: for each eigenvalue, we consider the corresponding slice. Then, we can
compute transitions between slices. Indeed, the states for a given eigenvalue generate a state sub-
space, and we can define a map between these subspaces. They are defined by summing infinitesimal
transitions maps between close slices. The form of the transitions is similar to some path integrals
between slices. These maps and the corresponding amplitudes depend on the states and on the
background constituted by the projected subobjects. The geometry underlying the transition is
local, since the projection defining the effective states varies with the states themselves. It implies
that the transition between states includes both the projected subobjects and the non projected
subobject. That is, the apparent geometry underlying transitions depends on the states but also
on some apparently inert background.

The field theory presented here is defined on an abstract parameter space, and no dynamics
occur. However, after projection on the background, the set of lowest eigenvalues defining the
slices in the state space along with their amplitudes, allows defining an analog of such dynamics.
Considering the averaged transitions between slices, we can show that under some conditions about
the number of states in each slice, the amplitudes are weighted for transitions corresponding to an
increase in eigenvalues. This asymmetry results from the characteristics of the slices. The number
of transition maps between these spaces increases with the eigenvalue, which induces a bias of
transition amplitude towards an increase in this variable.

This work is organized into four parts. The first part presents the formalism for the particular
case of a state space defined by functionals of one field. Section 2 presents the initial field theory,
the full space of states, and some notations. The states are functionals of a field defined on some



parameter spaces, including some constraints on these parameters. We consider independently the
tensor products of the field arising in the states. The states are thus functional of the field tensor
power with some constraints on the parameters.

In section 3, the state space is decomposed into two particular subobjects, i.e., entangled fields
together with their state spaces. We present the resulting decomposition of the initial field theory.
Section 4 derives the projection on the background of one of the subobjects. It results in an
effective field theory for the non projected subobject. The degeneracy of the background translates
into an effective field depending on parameters describing the symmetries of the background. We
describe the effective projected field theory. The remaining subobject absorbs these parameters and
becomes a field theory defined on this parameter space. However, due to the constraints between
initial subobjects, these parameters are not globally independent from the field.

Then, section 5 studies the consequences of this decomposition. Dependency of parameters in
the field translates into joint variations of these two variables. We show that these variables can be
considered as independent if the field satisfies some first-order equations. These equations involve
the field over the entire parameter space. Averaging over this space yields equations for one value
of the parameters, similar to some local equations.

Section 6 focuses on the constraints of the parameter space and the geometry of this space. The
mutual dependency between parameters and field translates into a description similar to some set
of metric spaces depending functionally on the field and the projected background, which implies
that the field dependence of metric depends on some inert quantity.

In section 7, we develop an equivalent approach. Rather than considering solutions to saddle
point equations for one of the subobjects, we rather project the space of states onto the minimal
eigenstates of an operator acting on this subobject. Due to the constraint between the two subob-
jects, the eigenvalues and the projected state space depend on the states for the remaining object.
This approach allows defining subspaces of effective states, depending on the eigenvalues of the
operator. For each eigenvalue, we consider the subspace and parameter values corresponding to
this eigenvalue. In section 8, we define the transitions between such subspaces, or slices. Integrat-
ing over infinitesimal variation of slices, corresponding to a variation in eigenvalues, yields a path
integral formulation for transitions between subspaces of states. These transitions are also defined
for operators.

Section 9 builds on this approach to define average transition between slices in the state space.
We show that for a given slice, the average amplitudes of transitions towards other slices arise with
an increase in eigenvalues.

The second part develops a general formalism for decomposing the state space of a field into
several subobjects. Section 10 presents the setup and the main elements. Defining formally a sub-
object independently from any decomposition, as a composite of states, we consider the sequences
of inclusion between subobjects, that is, composed subobjects. In section 11, we introduce all
possible decompositions of the initial field and state space. We include the possibility that in a
given decomposition, any subobject itself decomposes in subobjects of the subobjects defining the
decomposition. The formalism results in describing the system as sets of maps between various
constrained parameter spaces. These maps describe sequences of inclusions between subobjects.

Sections 12, 13, 14 and 15 focus on the case of a projection of all subobjects except one.
We recover the description of the first part: the effective field, the field equations corresponding to
independent parameters, and the geometric aspects for the constraints. In section 16, we also study
the transformation properties of the field under reparametrization. In section 17, we consider the
general case, where an arbitrary number of subobjects remain unprojected. This allows presenting
the emergence of several fields and parameter spaces, arising from an arbitrary initial formalism.
Section 18 presents the alternative method of projecting over some eigenspace of an operator and



derives the transitions in the general formalism.

The third part presents an alternative and less general formalism that is closer to the usual
formalism of field theory. We also consider decomposition of states into several types of objects,
but the formalism starts directly from states in section 19 and with operators in section 20. We
recover the main characteristics of the formalism developed in the two first parts. Transitions are
considered in section 21. Due to our choice to start with states, these transitions are first derived
in a context similar to a first quantized system and then reconsidered in a field second quantization
context.

The fourth part concludes this work by outlining several potential developments. Section 22
interpret the preceding formalism as a field theory on a singular fibred space, with the dimension of
the fiber contingent upon the points in the basis space. In section 23, we focus on the constraints
that define the system. We examine their continuous variations as the state defining the system
undergoes changes. These variations in the constraints manifest as differential equation in the
state space, akin to some sort of dynamical equations. Section 24 considers discrete, i.e. non
continuous, modifications of the contraints. Imposing some consistency conditions between different
modifications imply some commutation relations for degeneracy operators.

Part I Decomposition of state space in two
subobjects and resulting parameter space.

We present the decomposition of the functional space for a field into two subobjects. The realiza-
tions of the field decompose into sums of products of realizations, with each product constrained
by relations between the parameters defining the subobjects. Projecting onto a degenerate back-
ground state for one of the subobjects provides an effective description of the resulting system.
The degeneracy of the background state implies that the system can be described as an effective
field theory for a field depending on certain parameters. These parameters are exogenous only at
first glance. In reality, the initial entanglement between subobjects results in intertwining between
the remaining subobjects and the parameters. The interrelation between the two initial subobjects
implies that the parameter space itself is a dynamic object in the effective theory. Untangling the
constraints between this parameter space and the effective field implies an analogue of dynamical
equations for the effective field. The dynamical characteristic of the parameter space translates
into a relation between the metric characteristics of the space and the effective field. These geo-
metric characteristics also includes an inert part due to the projected background of the projected
subobject.

2 General set up and fields functional description

We describe the system as space of functional of an arbitrary field ¥. This field is defined over
some parameter space U. To a field is associated its set of realizations, i.e. the infinite set of values
this field can take. Each of these values is a function defined over U. To such a realization ¥,
we associate usually a weight given by exp (iS (¥,)) where S is a given action functional. In the
sequel, since we consider decomposition of a field into other fields, called subobjects of the field,
we will work at some points with the realizations of the field rather than with the field itself. For
this reason, we will consider the tensor product of the field ¥®™ as an independent field defined on
U™ including some constraint on this set. This amounts to consider multiple states as themselves



as basic elements. Actually, a realization of the product ¥®™ is a is an infinite sum of products
U,,... ¥g,,, an intricate relation between the realization of ¥®™ and those of ¥, which justifies our
choice.

Moreover, considering a functional for ¥ as a sum of linear functional of ¥®™, we will restrict the
functionals in the ¥®™ to be linear. Any product of functional of the ¥®™ can be itself considered
as a series of liner functionals of the w®™'

2.1 States basis:

We consider some parameters spaces U,U*,... with U* is given by k copies of U. We introduce
implicit relations:
U/c(U),...U*/c(U")

where the ¢ (U*) are constraints.
This is leading to states combinations of:
plus some implicit constraint:
lui) ® ... ® ‘uzk> /e (uil, ,ulk)
— ‘uilﬁ...,uik>

so that states are:

Z [ui) ® ... ® ‘ulk> Je ((uiy, ,uzk)k)

k,il...ik

— Z ‘uil,...,uik>

kyiq...ig

2.2 States and functionals

If we fix a basis |u;), general states in this set up have form:

Z@S\If (i) Juiy) = Z H\I/(uis)|ui1>®...®’uik>/c((ui1,...,uik)k)

kyiq Ll S

They are considered as particular realization |¥) of a field ¥:

|\IJ> = Z\II®/€ (uilv"'7uik) ‘uil,...,uik>

with W% (u;, ..., u;, ) represents the "wave function” of the state in the basis |u;, ..., ui, ).
and more genrally, products write:

®k ) ) ) @ ) ) _ ) @ @ O]
Z@llll ! (uih...,uikl) uil)...,uikl>/c ((uih...,uikl)l) = Z v ((uih...,uik )l) ‘(uih...,uik )l>
(i1 g);
In a perspective of second quantized formalism, we consider functionals:

@) () tor, () () ) () o ok (1) Q)
Z<ui17 ...,uik;/ H\If v\ gy g, Fi{u, e Uy, l,’(uil’m’uikz)l H\IJ l(“h,""uikl)

4 4

- ST (o) 2 (o) (ol TLH ()

@ O]
Uip, s Uiy >




that are thus linear combinations of:

gieX ky u-(l,) u-(l,) F u-(ll) U'(ll) (U(-l) U(l)) ‘I’®Zkl((u('l) U(l)))
iy, w0 Ui, y iy, o Uiy, 1/7 i, Yig ) i, Yig )

This expression will be compacted as:

P () () YwelS el (W W) (0 0)
i1, Lpt y 11, k) 11 Tp! v 11, R/

so that we will consider a single field:

gy ((Ug/)...,ugl/)) ,(ul(-l)...,ul(-l)) ) — ek (U")
’ k! v 1 ki /)

so that U stands for a product U x U.

The fields ¥®* (U*) will be dealt with as if they were independent quantity. Actually, up to
the constraints, a realization ¥+ (U*) is not the product of two realizations of U®* (U*) and
W= (UY), but rather a sum of products of such realizations:

S wet () we (U M

(e

In coordinates it means that a realization W& (u; ..., u;, +l) can decomposed as sum of products
of realization:

PORH (uil, e uikH) — Z \Ilgk (uil, e uzk) \Ilgl (uin, "'7uik+z)
The constraints are included by identifying some parameters:
(U =v®(UY) /f
and the tensor product of realizations of W (U) is a particular realization of ¥ (U'). In coordinates:

Uy (1) @ oo @ W (i) /f ((wigsoestsy))

is a realization of W (U') = W (u;,, ...u;, ) where implicitly (us,, ...us, ) stands for (i, ..us, ) /f ((wiy, -us,))-
All realizations of the field ¥ (U') are given by linear combinations of products of realizations ¥ (u;, ).

Using the all sequence {¥®* (U*)} as variables allow to restrict the functionals that define the
states to linear combinations:

F(U(U)) =Y Fin (¥** (U"))
k

2.3 Remark

1. This decomposition will be generalized later to several collections of sets {U;}; to write the
decomposition in fields.
2. Since a realization of:

\I]®k+l (UkJrl)

writes as a sum:

[e3



the product of the realizations of two fields:
\I/@k (Uk) \Ij®l (Ul)
is a particular realization of W®*+! (Uk+),

3. In terms of of states, i.e. functional, decomposition (1) becomes sums of terms of the type:

S" Frgin (U2 (U)) Fiam (0% (UY))

3 Decompostion in two types of fields

3.1 Decomposition and states

We consider the decomposition of the previous system for field U®* (U*) into two subsystems or
subobjects, each of them defined by a field written ¥%' (U!) and ¥$* (UF) respectively along with
their associated state space. The states generated by these two fields, modulo some constraints
entangling subobjects, span the entire states’space of the system. This description generalizes the
tensor product decomposition (1).

Assume a system described by fields:
QU™ (U™ / fn)

with some constraint f,, on U™ and H ((U)) the spaces of linear functionals of @¥®™ (U™/f,.). We
consider that the parameters:
U fm

decompose into two different families in parameters by the following map:

SSU g SV S (U7 iy % UE 1) iy

ljkz
where:
l, .
ljvki

denotes the set of subvarieties of:

e 5 (it <005.)

Ljk;

with implicit constraints. The previous decomposition is not a decomposition into the powers of
subsets of U. Due to the arbitrary form of the constraint, we assume that the full series may enter
in the decmposition of a given U™/f,,. Associating to an element of U™/ f,, subvarieties of U;; is
analog to the description of some bound state in field theory in which such state is described by
an infinite series of products of states, involving an infinite number of variable, later integrated to
produce a state, the infinite series coming from some perturbative expansion. We will write for
each V C V, we write the decomposition:

V= UV,



with:
L ;
Vig; =V N (Uj’/flj X Uikl/fki) [ fi; i

Previous formula leads thus to assume at the field level the corresponding decomposition in
subobjcts:

VU Y S [ gy O UL UR ) WS (U) S E (U4) 6 (fu. (U UE) dujau
Ve ’ kvl
VCg(Um/fm) V:Uvi,j ©J

That formula has to be read is in terms of realization. The realizations ¥®™ (U™/f,,) write as
series over products of realizations of fields W, (U}), ¥; (UF). Including the constraints, the tensor
products represent series expansions:

U, (U @ U; (UF) 6 (fu (UL UF))

k
= Z‘I’J,a (Ugl) Via (Uzk) § (fur (Ujl-, UZ’“))

similar to that arising in the tensor product (1).
At the level of states, the functionals:

Z/am ™) wE™ (U™) (2)
expand as:

Z/am(lm) > X /h@?n (U™, U5, UF, Vi) W5 (U) @ W3 (UF) 8 (Ju (U}, UF)) dU;dUY

VCg(U™ /) fm) V=UV; 4

The sum:

)DINND SR B CENGRATY
,J

VCg(U™/fm) V=UVi;

can be replaced by an unconstrained integral:
[ (O ULUE V) 8 (1 (0 UL U)
where the ¢ functions:
o (f (U™, U5, 7))

implement the condition UV; ; C ¢ (U™/ ). The integral:
S [ an ™) by (U ULUE Vi) 3 (£ (U™, UL, UF))
is a function a; (U}, UF) and the functional (2) writes:
S [ (UL US) W5 (U) 9L (UF) 6 (e (U1.U1)) avav
which leads to consider a decomposition of spaces of state:

H(U)) cH{(U;),(Ui})



Given that the space H ((U)) is an infinite series of tensor products, we assume in the sequel that:

Note that the decomposition presented above represents the reverse path compared to the one
leading to the formation of a composed states. We decompose a given state into a series of products
of functionals associated with different subobjects. In the next sections, we will work directly with
the products:

WS, (U1) @ Wk (U) 8 (s (UL, UF)

3.2 Partial states

Usually, a state for one single field, say {W?l} , is defined by some functional of this field:

> [swh vy @) aut Q

that is, by the set of functions {s (U})}.

However, in the present context, both fields arising in the decomposition are subject to some
constraints {fy, (U}, UF)}. Thus, we have to consider that a state for one field is subject to some
constraints in its integration variables.

We begin by defining the evaluation functional at (U!, UF) for two realizations of the field ¥%*
and U9

vt o <qf§l ® W) w3 (U]) @ WE (UF)

and impose the constraints & (fi. (UL, UF)) between these two subobjects:
evugr (5" W) 8 (s (U1.01)) = 3" (0 g 95 (02) 3 (e (01 02) 8

The definition of a partial state for ¥$' or W$* should thus respect the constraints. We define a
state for ¥$' by a set of functions:

5= {SUf (U]l)}(

ut,uk)

and a functional of W% ® TP defined by the combinations of evaluations (4):

S [ son ) v (95" 95 ) 6 (i (03 08)) av

= 3 [ (U)W (U1) 8 WP (WF) 5 (e (U3 UF) 8 (e (U308 )

Note that we will alternatively write s = {SUch (\IJ@]N)} or {SUJZ (\I/?k)} to define a partial func-

tional of ¥§' or W{* rspectively.



4 Projection over functional minima and effective field

Once the system has been decomposed into subobjects ¥ (U!) and ¥$* (UF), we examine the
projection of WP (UF) onto the space generated by the saddle-point solutions of a functional S,
analog to the background states in a typical action functional. Given the interdependence of

subobjects through constraints and the initial system’s dependence on products such as ¥ (U 71) ®
I ki

U, (UF), we posit that the functional whose saddle points determine the projection depends on
both fields ¥5' (U!) and W¥* (UF), i.e. on both sets of realizations ¥§' (U!) and W§* (UF). The

3

projection that defines the states minimizing S will consequently depend on ¥ (U}) ® ¥; (UF) and
kol
potentially on some functional v of ¥§' (U!) that characterizes a state for U5 (U!). We thus write

S (\I/J (U}) ® Uy (UF) ,v) for this functional or S (v) for short.

4.1 States and projections

We consider the projection of states onto a background of the subspace defined by field w$* (UF).
Additionally, we assume the existence of a basis of states v for ¥%', i.e. functionals of the fields ¥%"

so that:
> I0

represents the identity. As a consequence, the states are projected onto spaces:

I 11

min S(v)

by projecting the ¥¥* onto the minima of S (v) which depend on ¥%' through states v. This reflects
that the decomposition is carried out for entangled states, that is, interacting fields.
To write a functional in the basis {v}, recall that each element of this basis is defined by a collec-

tion: {UU_k (T } Starting with an arbitrary functional respecting the conservation d (fi. (U}, U}")):

[ o @) w5 ©)) v UF) 6 (. (U1,UF)) )

that can be rewritten in the basis {v} as:

S [ 00U s (25 vy (05 (UF)) 8 (e (U1, 09)) (6)

where:
evgr (V7* (UF)) = 97" (UF)

is the evaluation functional for ¥?*. The states Uk (\I/?l) on which the projection arise depend on
the constraint 6 (fi. (U}, U})).
In coordinates, we can solve the constraints and vy« (¥5') writes:

v (5') = / o (U5/ fu {UE}) W5 (U i {UF}) d (U fur)

and v (U}/ fur, {U}'}) is the functional density associated to vy (T5h.

10



Given the infinite number of realizations, i.e. components involved in the products, we consider
the multiple functional and replace:

Vyk (\I’?l) eVyk (‘I’?k) 7 Vyk (\I’§l(x) evyk (‘I’}@Z)

for each realization o.
Note that we can consider these functionals:

vigry ({25}

as eigenstates of some operator:

b
i (qf?’“l Uk \11®k>
. ’ Rk ) 1 I
swIh

that depend on the UF and ¥$* through the constraint and some operators involving interactions
between both subobjects.
4.1.1 Remark
We will assume in general that fields are already chosen as eigenstates of A so that the ) is
performed for a collection:
UL/ fik ®l
) ViuR) {w5'}

Ut/ fun

I Ly = S ) = w5 U s (UF)

which corresponds to sum over the evaluation at points sz_ /fu. and the decomposition is performd
with respect to the values of Ujl /fri- We can also consider restrict the projection to a subspace V

Of Ujl/flk
oy (95} = 951 (V. {UF))

which reduces the evaluation to (V,{Uf}).

4.2 Action functional saddle point and projection

We assume that the projection of \I!?Z (UF) comes from the minimization:

exp (—S ({W% (v7) @ wie (U’“)} {vpr (v52) o9 a}{vk}»

This form of S emphasizes that the primary object is the initial field ¥®™ (U™/f,,). Multiple
realizations of the fields are implicated, as a consequence of our assumption about decomposition,
indicating that realizations of the field ¥®™ (U™/f,,) involve multiple realizations ¥5!, ¥9%. We
have assumed the functional depends on some specific intertwined states v {Uk} on which the field

\I/®k is projected to model that the projection of \If®k depends on a state for U . This reminiscent
of current-current interaction involving some functionals (usually local) of the ﬁelds
In appendix 1, we decompose the solutions of the saddle point equation as:

{\I{®l @\P®k (Uf) } jgm, = {\I/?’S (Uik)}q,gaz (1)

I'sm

11



and write a series expansion for \IJ%’S (UF). We show that:
Voo (UF {25}
- > /d <{Ujll}l> d ({Ufi/fkm}k . >IC0 ( ; ,{U]l.i}l‘ , {Uiki/fkili}i> \I/?aziénli ((U]ll))
$ilirols i irli ;

where:

() X I )

Ky (Uf, {U;i}l_ : {Ufi/fkizi}) =Ko (Uf, {U;i}l_ : {Ufi/fkizi}) IIv (Uﬁ U;i/fkili)

The dependency in « is justified by the fact that an element of {«/ } o is « or arises in the action
in products involving «.

and:

4.3 Degeneracy of saddle points

So far the formulas have been obtained for one saddle point. However, considering the presence
of multiple realizations of the field in the functional, we can expect some symmetry permuting
or combining these realizations to arise. We will assume certain symmetry groups that imply the
degeneracy of the saddle point.

4.3.1 General formula

Consider the action:

s({ert @ goiien} o (et ovit) )

depending on a sequence of realizations:

{wgg (v1) g w3 (Uk)}

[0}

that can also be written:

{wit, ) g vit )}

We look for the invariance of S as a fnction of a given sequence {\If‘i?laz (U 71)}

1=1,...,n...

We assume the existence of sequences of groups of transformations fo’fffﬁz <{\I/‘§f>la (Ul-) } - )

with n > 1, written G¥iFn fr short, such that there is an invariance of S by action of Gy,

e (V)]

The transformations for a set of realizations are parametrized by AL{1 l<"}] [V, v] with [{ki<n}] =
(k1,...ky) and aq, ...a,, is a n—uplet of realizations. These parameters span for example the symmetry
groups of a series of the form:

s ((vie (v)) )

XS ol VI () F i (o (e
™ {kicm pc{kicn } ‘

.....

12



where the transformation acts on n realizations:

aren () {wmw»):( el (el ot G0
i=l..n isn iZlon soiq \ Tk

with RE l<<”}} acting on indices az, ...

aie), (Aot (o om) = o[l (Al ’<2}]>] Wik (g, U

. i

and:

i ) Y PArAallibbblo A Llag,...,

acts on the coordinates (U-’”). The parameters { L{ <"}]} describe the group elements. The

transformation depends on the {\If(j?loyZ (U]l)} so that in the sequel,we will write:

i=1,...n

for the set of parameters of the group G*i--*» acting on several realizations ax, ..., a,. The k;¢,, are
integer variables.

More genrally, we can assume that the transformations mix the elements of a collection of
n—uplet of realizations. We write {a;<,} for an arbitrary collection {ai,...,a,} of such n—uplets.
In this case, the transformation writes:

iy (M) (I (o)), ®

1..n

ST e ()] i )

(O/17“~7OZ,I,L)E{O¢Z‘<7L} i=1..n

(A[{aki@}]ﬂ (#hs-0) acting on

where the sum is over the collection considered, and with [R {i

indices ax, ..., ap:

{ricn} (2 ki< }]\ g @k (ki ki
R{al<7l} A{aig'rl} \I]Lai (gkl """ anZ ) (9)
fren} (A0t N ok
- 2 2. [R{“;n} A{%‘;} ( ) VLol (gki ----- kUi )
(o). an)e{aicn } afe(ad, ) “Lrenon) Loy

the parameters A[{{ f”}}] [P, v] are local coordinates for the transformation G {a<k’}’ (A[[ikf”}}v

Considering all transformations, the full set of parameters is thus:

(o),

13



where { [{{a ’:"}}] (@, u]} describes all set of parameters for a given collection {ai<n}.

Alki<n}]

When all realizations {«;<,} arise, the variables { {oren} [P, 1/]} is independent from a given
Ain

set ai,...,a,. As a consequence, considering the symetry groups for {\IJ?ZZZ (U kl)} and assume
’ i<n

K3

that one of the index is a given realization «, the set {f&[{kig"}} ] [P, 1/]} only depends on « and we
Ain

{alfrtetie, )

(),

for n running from 1 to co when all sets of parameters are taken into account. We show in appendix
2 that the fields solving saddle point equation write:

Wk (Uﬁ, ({AL{’“”“"S“}] [%,u]})n , {\y?l})

We also show in appndix 2 that for transformation groups that satisfisy:

write:

and:

le, ,kn C G s kn41

0417 On41

(),

describes set of infinite dimensional flag manifolds, all starting with Al [P, v].
In the sequel we note:

the whole set of parameters:

Rualirs] = |
Aol = (

and:

Al (w0 = { [ohienid ]}

i
AW w0 = ({ el ]})

When these states are independent from a, that index will be removed.

4.3.2 Example: Case of reparametrization invariance for original field
We start by considering general terms:

(o), w) T % (00 2, ((00) Yo ({05 0irm) )

oM O t=1,...,0

Qf Ty

(10)

14



arising from the power functions in the initial field theory:

/ f ({U’“ U/ fo }i:LmJ ’ [\I,J]> :11—[ l P& ki) ({U’“ U/ fo, }HMZ) (11)

or equivalently, from:

/ f({UZ“%Uéi/fkizi}i_lwl,[M) ikt ({ WU ) )l) (12)

Starting with (12), we can consider some reparametrization invariance:

o8 e ({oting) )
i+l Uiki
s (P ), )
( {vfi }) OlUki+l;) ({Ufi, Ujl-i/fkili}i_l7...7l)

depending on the symmetries of the function

f <{Uiki, Ujl-i/fkili}izl)m)l ’ [\I/J])

kg
where R (g{Ui }) is a differential operator acting on {Uiki, Ujl-i/fkili}‘

=1,
In this case, the transformation for (10) is

o). T1 8, (05))

t=1,...,l

r( ) LT wes, (o (02))

t=1,...,1

- kg
Here the parameters A[’“i’ ~kil (@ ;] for transformation g{Ui } are independent from the copies. The

1 l
v ki, ..., k; l ki,..., k;
~ o

comes from inclusion of symmetry groups of f <{U{”, Ujl-i/fkili}._l o [\I/J]) and f <{U{”, Ujl-i/fkili}._l l,[\I/J]).

4.3.3 Example 2: partial reparametrization symmetry

As an example we consider reparametrizations that do not originate from initial field. In (7) we
look at the following second order term in ‘I’?ZZ (U .k"):

K2

Z /\Ijé]glal ( U'i/fkilivUiki)/) \IJ?ZZZ ((Uiki)/) (13)
f((Uéi/fkizi,Ufi) (03 o 05) L00) 055 (U i U ) 05 (0 a ({0500 )

15



which arises from the decomposition of quadratic terms in the original field theory:

/(W@kﬁrli (Ui’fi’ U]l‘i/fkili)) f <(U;i/fkili’ Ufi)17 (U]l‘i/fkili’ UZ.’%) , [\IJJ]> kit (Ui’fi, U;i/fkili) (14)

The depence in [¥;] being functional, i.e. arising from integrals of function in ¥ .
The term (13) is invariant for any transformation Gy, i, [\I/@?la ,\I/®l ,} acting on (\IJ?’;ZZ (U.kl) ,\IJ?E? (U.’“i))7

2 K2

preserving the form (13). Writing this action:

ity (A ) (o (08) oy (00)) = | TT %0 [misy (Al )] ot (ot )

/
0‘10‘ Ot Qg0
’
o' =ay,af

The dependency in [¥ ;] arises from its realizations \I,@]ala , ‘P?Z(-

This symmetry is still present, if we assume a series expansion:

s (i (v)))
= Zan </ (\1/®ki+li (Ufi,UJl»i/fkizi)) f ((U;i/fkilﬂUfi)/? (Ujl»i/fkiszfi) , [\IJJ]) POkt (Ufi’UJl’i/fkin)n

n

In this case the symmetry groups are:

Gkivki [\I/J] C Gkivki [\I/J] X Gki,ki [‘I’J] C ...

More generally, considrng expression (10), it is preserved for transformations G
rlztns:

az for one set of

compatible with the symmetries of functns f ((Ujl-i/fkili, Ufl) (U '/ frit;s U; ) [\IIJ]). If a collection

of realizations is involved in the transformation, the transformatn formula is rathr given by (8) and

o it 2 (R) - sy (3 [{{aif:}}]>

The inclusion between groups arises if G* {Za <AE k_ign}] contains some subgroups:

}
(e (A1)« (e (Al)) e (afa)
with the inclusion of subgroups:
(&)« iy ()

}
(s (W) < ey ()

16



4.3.4 Remarks

1. Except for the case of reparametrization invariance of the original theory, the parameters

A[ki""’ki] [V ;] depend on realizations {agl), .

(ol ® al(.p )} of ¥ in general. In functionals, by change

of varlables in integrals, we may expect they can be identified with parameters independent from
the realizations, i.e. that the various actions are copies of the same groups.
2. If S ((\IJ?ZZZ (Ufi))) depends only on the state v, then:

(w5 (00))
- e B ()

N NN G

T vy (950 ((007m0008),) st (05) ) ({00805 })

LTI k ..... i
A[ \I/J —>A (l)} \IjJa

(ol I <1> .

4.3.5 Projection over minima

Minimization of the action functional including degeneracy can be performed and yields the pro-
jected field:

\I/}@Z ,0 (Uk A([)Ig] [\I/Ja V] ) {\P?Z}J (15)

YT a{u, e,

* silieds{ei}

X9 (00 (0 ), (0 ), A 00

where the kernel:

Ky < FA{o) Al [q:,],y])
— K <Uf, {Uj}l LAl [\If,],y]> [T (v vl /i)

[
includes possibly derivatives in the various variables.

4.3.6 Restriction including constraints

Up until now, the derivation has been performed without taking into account the constraints
between the two fields. Accounting for these constraints will reduce the symmetry group. As we
need to consider the following terms in the functionals:

w3 (U) et (UF) 6 (fu (U5, UF))
we have to restrict saddle point solutions \IJ®’“ (UF) by including a factor 6 (fu. (U}, Uf)) and replace:

pok (Uik) — pok (Uf) 5 (fur (Ugl‘v Uzk))

17



This restriction reduces the symetry group to a subgroup preserving the constraint. This also applies

to the terms including [, \I/?l;,_ (U;l) in (15) which imposes the constraints & (fliki (Ufl,UJll))
: B

We show in appendix 2 that locally, this amounts to reduce AL [U;, 1] to a set depending on
{Ujl-"gs} = {U;l} and rewrite the variables ./A&L]Z]@ [V, v] as functions of the set {U;l}

AWM w0 — AW [\IJJ,V, {UleH = ({Ag{k,kignl}] |:\I]J,V, {UJllH }) (16)

and:
A%C-,]oz Vs, v] — Aml [\I/J, v, {UJZZH _ {Aa{k,kignl}] |:\I]J, ” {UyllH}

4.4 Projected functional and effective field

Once the saddle point has been found, we can compute the projected functional (6):

S [0 00 vy (95 TT v (99 1) 8 (4 (U.01) (")

’UU{C min S(v)

by replacing U$* (UF) with its saddle point value. This will enable to describe the effective theory
after projection, as states of an effective field including the degrees of freedom of U* (UF).
The computation is presented in appendix 3 under the assumption:

v (U508 o) = o (02 8 (e (01,01

corresponding roughly to current-current interaction. As before, defining the realization « as a sum
of products of realizations:

na () = S Ty ()

Defining also:
(o {or ), Al [0 {01]])
= /g (v, Uik) Ko ({U]ll}lz , {Ulkl/szzl}lgn , Agko])a |:\I/J, v, {UJZZH> dUik/fkl HdUiki/fkili

formula (17) writes:

S [o (o {oi}, A froe {3} (03))) (w5851 ({1}, AL [0 {01)] )
with:
i (o} A [ {g )] o) = w5 ({0} wa (AL [ {0 }] o)
and:

o((v1)) =X ILv ()

S i€eS

18



Setting g, — g since the fnctnls are arbitrary and the v dependency can be absorbed in the definition

of g. If the:
Al (v {Up}] = AW vy, v, {U)i ]

are independent from «, we find the projected functional:

Ja({or}, A o for ) 5 (U},

wth the field given by a sum over realizations:

g =it) ({vr}, Al [wsv {ui}] v)
= Z@?&Zili) ({U;z}l) ({sz}l,fxg’g] |:\I}J,l/, {U;ZH ,U)

If the AL@,Q [\I/ IV, {U Jl’ H are not independent of the copies \I/?Zp 0, the identification is local. The

=

[W],V,{U;i}} ,U) (18)

fields \I/?(Zi ) are effective fields after projection of the field ¥;. They depend on some parameters
that both keep track of the projcted states, and the remaining object, through the field ¥ ; and the
state v. This dependency arises from the fact that the saddle point equations, and the symmetry
groups depend on those quantities. We will detail below the form of the constraints and their
dependency on the parameters AL’Z],Q [\IJJ, v, {U;’H, the field ¥; and state v.

4.5 Averaging over cloud substratum and local field

We aim at describing the effective field:

\I]?(Zili) ({U;z}l,.&g’j} |:\I]J,V7 {UJZZH ’U)

involved in the functionals (18) as a more usual field defined at some given points. This is achieved
by showing that Al [\I/ IV, {U leH can be depicted as cloud of points surrounding these particular
points.

4.5.1 Cloud of points

To explain this point, we assume, at least in first approximation that:

A Jwo,v {up ] = (A9 [wo,v {ui}] An [ws.m {03 }])

where {U]lz} = {U;igs} when insertd in products [[,, \I/?Z; (Ujlz)
We have given above the description of Al{F#i<n-1}] (W, v,Ul] in terms of set of flag manifolds

starting with A¥ [w;, v, U 1. As a consequence, the field:

W?(Zz ;) ({Uﬂll}z 7 (A[k] |:\I/J, v, {UJZZH 7 {A[{kignfl}] |:\I/J, v, {UJZZH })n 70)

dscribes both the integratd presenc of a cloud, that is the points of a space, with distinguished

points A¥ [0, v, Ul]. These points bear the physical quantities {U;l}

19



4.5.2 Series expnsion of the field in cloud variables

To describe more precisely { [{k <n-1]] (V,,0,U}] }, we use our two previous assmptions:

Al [o o {Ui] = (&M [wron{ui}]}
A [0 {02 )] = (A% [w o {0l }])

Thus, the set {f&[{ki@ 1] [\I/J v, { } } consists of sequences:

|
i o ] (30 [ {0 }] A o {01
(5 e (] A o 03] 25 o))

Each A¥i [U;, 1] is described by an infinite number of representants. Consequently, if we consider

the expansion of \IJ?(Zi O

) () 4 o ] o).
© ({0 e ] e ]} )

+Z\1/ G (o) AW [wyo {0t ] (A% [wgw {08 )] AR w0, {UE)] ] o) +

ki1/2

and:

in terms of representations of the Gy, . ,:

where {Ak' {\IJ] v, {U H} is the set of all the A*i [W, ] for given k;, and {Aki’l |:\I/J, v, {UJlZH , Akiz |:\I/J, v, {UjllH}

the set of the (A% [wy,v, {Uf}] A% (W, v, {U}}]) for given ki, ki
The field is thus a series:

G (ot A8 o)) m
P2 (=it) ({U;i}i,f&[k] [\IJJV{UJZH A )—i—\If (234 ({U;l}i,[&[k] [\IJJV{UJ’H ,VQ,U) +o.

v={{A% e {ur ]},

gathering all the states {A’“i [V, u]}.

for:

4.5.3 Averaging over cloud variables

Given that we have considered independently the tensor power \IIQJ?Z (U}), we can decompose the
effective field into series of products of realizations of several fields:

S (o) A e (v ] i)
’ Z i Y ({ } A [y {08)] i )\If?ﬂ%ﬁi“l;) ({U;i}i,m (w0, {08 ] Vi) +

ki1/2

20



where:

Vi, = {A% [w,, 0 {Ui}]}

By expanding the field as functional of one point, two points and so on:

o ()
I A ({vr}, A¥ W, n.U]) Ak, 0)
A.

(

+ 3 \IJJ,CEl

1 2
AD AP

[xI/J,u ul], Vki,v)

{ } A[k ‘I’J,VaUJl‘]’Agfli)’Agfi)’v)+

where Ay, are coordinates in Vj,. Consequently the field can be seen as an average and expands in
series:

gt )({ } AV [w,,0,U1] Vi, 0) (20)
CR W () A e )] ot

The fields at stake are thus fields depending on one set of parameter variabls Al¥] [\If I Vs {UJI’H,
but also include in an integrated manner, the internal space of points.

5 Variations of fields

5.1 Infinitesimal variation of the field

The field:
it ({ub) AW, e {0} )

encompasses the parameters AL@,Q [\I/ I,V {U Jl’ H . Since \Ilf? Zili and \Ilf,9 ik are intertwined through
the constraints, AL]Z]Q [\IJ], ,{ ”H depends on ¥; and {Ujll} A variation of ¥; modifies AL’Z]Q.

We aim at finding the conditions for parameters AL .« to be locally independent from ¥, so that
the field can be considered as function of the parameter space and that a field variation does not
affect this parameter space.

We begin with the field decomposed as a sum over product of components:

5 ({0, A e 1]
© S (o) A [ (01]] ) = S () e (A [ 03] )

This field will be inserted in the state-functionals for one realization by introducing;:

(o (88 o 01 (4550)

which represents the constraint defining AL’Z]@ [\I/ JsV, {U leH The field can thus also be written by
including this constraint:

VEE ({01} A o 1]
= \Il?aZz 5 ({Ujl'i}i’AL@’o‘ |:\I]J,V7 {U;Z}} ,’U) 1) (hi (A([l{klén}] [\I}Jﬂ/u UJl] , (\I’?Z,U))>
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Since \I/?E“"li depends both directly in w54 (Ul.i) and indirectly via ALY [W;,1, U], a set of varia-

J
tions {5\1/@]32 (Ul-")} for each Ujl-’i, induces a variation:

J

suso (Ui}, Al [ws v {05} o)
sust (1))

s ({o ) Al [ i} )
bt <(Uf))

51&@@ |:\I/J,V, {Ujll}} V.o \IJ®Zili ({Ull} ,AL’Z]Q [\IJJ’V’ {U;ZH 7v)

(k] J,o
. N/ Aoo,a ’ J
st (1))

+

with:
M o g sl
21, LY [\L@,a = o, Y A[{k,kignil}]
00 ) a (Uy) n{kkicn-1} 000 (Uj) “
and:

EE ({ur), A o {01

swsh ((Uj)/)
®>5;1

represents the variation of w5 21" for constant A.
In turn, this associates the variation of the state v:

/v ((Ulz)) 5\11?(121 Uy ({UJZZ}17AL@Q |:\I/J;V7 {UJZZH 70)
J 5\11(332 <(U7l‘)/>
_ /v ((U,Ll)) 5"1’?%1‘% ({U;i}i’AL@’O‘ |:\I]J,V, {UJZlH ,v)
W ((U;—i)/)
o) — B 55 (), A oo
) S o () A 3]

sush ((Uj.i

and invariance writes for this state:

A LK) A |

If Akl independent from copy, and if in first approximation

A LE]
SA .
o0, is independent from o,

i ()
oA o [ {U)] 6AY [wyw {Ul)]
wis (o)) o))
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the variations can be summed over realizations and the invariance of parameters space with respect
to field variations implies the effective field equation:

A [F] L
o fron” Sl ) atfonnien)
5.2 Fields in local coordinates

When equation (22) is satisfied, the field can be rewritten:
Rt (o), Al e (g (At hedl, (5. 0)) (23)

with the same A%l for all fields \i/? 2ili The field \IJ%Z')Q, v is some reference realization from which
the Al{F*i<n-1}] are defined and:

G (), A =9 () A o 1)

is obtained by change of variable. This description implements locally the independence between
field variation and parameter space, since in (23) the parameters depend on a fixed reference \I/?l&a

and remains inert with respect to the variations of @?Zi i,

The equation for \i{@fz"li ({U;l} ,./A&L]Z],v,a) is:

oo K3

0= /v whHT ([\IJJ,V, ul], (Uj)’) VG ({UJI} ,Ag’jj,v,a) (24)

where:

A K] li A Lko] L —1
(oo 57) -2l ) (119
wi ()

Equation (24), is a first order differential equation similar to a spinor equation, where the equivalent

of the v matrics are:
r <(Uj) ,U}) —v(U)T <[\11J,y, ], (Uj) ) (25)

/
In (25); the variables U} and (U;l) act as spinor indices. In the case where these variable are

discrete, a sum replaces the integral and we can rewrite (24):
i Y p®2ili i A
O_Zr<(Uj) ,U}) VAL;Z]\I/JE ({Uj }i,AL]Z],v,a) (26)
Ut
J

which looks like massless spinor equation.
(K]

However, in (26), the parameters AL represents the entire cloud of points, rather than single
coordinates. Local variation of \i/? 2ili ({U;l}
modifying globally the cloud. This point is studied in the next paragraph by considering the
averaged field.

) may locally modify the points of A¥ without
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5.3 Averaged field variation
5.3.1 General form

Equation (22) can be rewritten for the averaged field (19). Considering only the first term in (19):

55 (o] A o ] )

where V' is a V;,, the variation equation becomes:

0 = /v () &ZS;IE(VUJI{;;)H R A ({vr}, A¥ (v v vy} vie)  @0)

S ) Sy A e ] v

The computation of the variation is similar for other terms of (19). In (27), the first term corre-
sponds to a local variation, while the second one describes global effect through a deformation of
the manifold V.

Using the integral form (20), allows to rewrite (27):

/U ((v4)) va (i) ({Uj-i}i,fﬂk] (w0 {Ui}] Vo) (28)
) > W@(Eili) ({Uj} Al [\I/J,V, {UﬂlH , (Aki)T,v) a(Ay)

R N i)
fo(l Z/ o0 (E) ) o ({20 e fo] o) oy

() (e ()
S ({Uj} AW [\IJJ v, {UjH ,(Aki)r,v) d(Ax,)"

with B [(V4,;)"] the boundary of (V4,)" and:

vl Y o ‘S(A—’%)T
h ((Aki) g ((Uj ) )) " suen ((Uli)/)

)
Ul
A
(

5\I/®l

J

This last equation depends on (Ax,)". Formula (28) can be rewritten as:

JC0) Sy et A e v

) %MM ({vi} A9 [wy, {U2)] BV) o)

- [o () (e () w5 ({oi) 0 e e} v
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If we assume in average a proportionality factor ¢ between the field on the boundary B [(Vkl)r] and
the field on the entire (Vki)r, we can write:

B g8 ([t A [wy0 {0}] (V). 0)

S ((Uj) /)

e T A i

So that, we have in average:

[ () o s () A s {1} ) )
0v; ((Uj ) )

— [o((v)) | e—Y (v, e vt p&(Z:t) vl AW w0 (Ul v
JoED gy o () 5 ) o

where h <V, \Ifggl" <(U7“)/>> is the average of h ((Aki)r,\ll,@]gli ((Ugi)/>> over V.

J

Given (29), equation (27) writes:

. /U((U;i))w’—”m%w@(zz>({UJz_Z}i AW w0 {09 720) (30)

U <(Uj))
o)) | e——2Y" A Ujf‘/ \1/?(22'”) ulit AW e {uti v
JoED sy o () 5 ) o 9

J

Considered as an equation where the parameter space is integrated, this looks like an equation for

a local field. The variation in \I/?(Ei ) induces a modification of this parameter space at its border.

This induces an analog of a mass term in (30), through its last contribution.

5.3.2 Field expansion and coherent states

Formula (30) can be computed if we expand the field \I/?(Z" L)

\I](?(Zl l;) ({Ule}l Al |:\I]J, v, {UJZZH v, v) (31)
- S (o, A e (1] oy )y
For coherent states, formula (31) reduces to:

o ({or}, A8 fero {ur ] ) S STL (0 (V) (52)

as a function of V:
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/
The computation leading to (29) can be performed directly in this case. Neglecting h <V, \Il?li ((Ujll) >> ,

the variation of the second part in (32) is:

sl B

_ E/Bm mww Vo o I e () a(ve)
= Sy (98 (@) ) 5 e DAL ¥ (7))

Now, defining;:

/B<V> ‘ (B V), 3" ((sz)’» V(B(V)v)
- C (qf‘f(zi L) ((Uj.i)/,jx[k] wsv{oi}] U))

the invariance equation (30) becomes:
o= oty S et
swl ((U;) )
+C( 2(Xi 1) ((U;i)/,A[k] [\I,J% {UJlH U)) \I,?(Zili) ({U;i}i7A[k] {\I,J,% {UJZH v U)

After changing of variable for local coordinats, it also rewrites:

0 = /U(U?)r([\IJJ vul], (U) )) s = (o ({Alse ) oa)ss)
o (5358 () 045 (o, (M)

which is analogous to the dynamic equation of a massive field.

w5 (01 A0 [ (01}] )

5.4 Generalization: projective invariance

More generaly, rather than considering full invariance, we can consider only projective invariance
with local additional contribution. In that case, equation (22) is not satisfied anymore, but includes
an additional term:

5AL{k,ki<n*1}] [\I’Ja v, {Ul }}

(] e ) A o )

S ffj)?{U;;i::i’“;T;;ffé;;;yweam e o)

26



Appendix 5 shows that in this case, we can still define, at least locally a field depending on fixed
set of parameters. In this case, the initial variation of the field rewrites:

U (o}, A [ f01)]) =955 (0) W53 (AL, [ 0]

which is performed at fixed Al [\If 7.V, {U i H As a consquence, even if the effective field \If® 2ili

is not invariant, there is a related field \II®ZZ * that can be defined locally as a function of an
invariant family of parametrs A([xla |:\IJJ, v, {UjllH
The fields ﬁl? g" ‘i writes:

i (), Al [ (U1 ])
= Wt (o), Al ve)o (7 (Ao (Vi)

M[{ Kin— 1}]
() (;A;l{k(m 1}]> e ) ¥ ({05, AR e {07 ])
Ao L e o))

e i
o ((019)) :/” ((Ul) > W;ZZD(Z((UZ ) )

6 Constraints and geometry of parameter space

®Zz i

If, as before is independent from realizations, \If satisfies:

where:

So far, we have set aside the functional relation between the field ¥%" and the parameter space.
We assumed that this space describes the parameters of some transformation groups among the
realizations of the field ¥¥*. Considering that the generators of these groups satisfy some algebraic
relations conditions the parameter space through some defining equatns. The equations defining
ths space depend on the fields ¥%" since the action to minimize depends on these fields. This implies

that the metric on the parameter space depends on ¥$', but also on the background for the fld
ook,

6.1 Form of the constraint and metric

We assume that The constraint describes relations on the symmetry operators for n € N:

P ({Lgy (U5 e {US o ((90),UL0) ) = 0 (34)

where the functionals h; ((¥), Ujl-, v) have the form:

(0 {05 = | () ) (TD03" (05 )0 (0)
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and U¥ acts on functlons of Uk as the multlphcation operator by UF. Expression (35) corresponds
to consider states F' \IJ ) localizd at U
We then evaluate (34) the projected states:

[Tweko (vk Al [ws v o)} (w51}

k

defined by the saddle point solutions ¥ o 0'
wih o (Uk, A, [wgv {uf ] {wsy,) (36)

- S ({u) A o {1 ) (v {ur}, Al 10001)

and equation (34) becomes a relation for each realization a:

0 = /hkn ({AW, [wsw {0 }]}, AUEY 1y ((20), U 0) (37)

T fwiho (V4 AL e fur ] 43y, )| au

If we assume the independence of parameters from the realizations:

A s {0 = A8 o )]
AL [0 {0 }] = A8 [w,0 {0}

we can sum over realizations before evaluation of (34) on the projected states. Defining:
vih (U8 AL [wo v {ui}] (w),) = S wsh (R AL, (v {Ui}] {5'))  38)
equation (34) becomes a relation:

/hkn(A [\IJ]V{ H {UF} by (¥ )Ujle))H’\I/%(Uf,AH [\IJ]V{ H {\I/®l})’ dU* = 0

(39)

and:

We can expand hy, as a series of products:

P (B [0 {US }] AU} 1y (90,0, 0))
= S (An [ {U5 ] (UFY s ((00) UL 0) ) B ({U1)

and equation (39) writes:
0= Zh DA [wov {Or ] AU oy (90), U3 0) ) B (955) (40)

with:

H (955) :/ (U} H’\I@k (UF Al [wy,v {up}] (w5, )’ dU¥ (41)
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Given the form of h, ((¥,),U},v), the constraint (40) depends on:

() {05 (U)o (05)}

The form of W / ((38) and (36)) and H,, (‘I’?Z,o) defined in (41) omply that the dependence of

d
the constraint in {\I/?li (U;Z) }  Hy, (Qf%’;)o) can be described as function dependence in \11‘? 2iligc
through:

: Ol ([l ALK Y|P LY Al
/hm ({Uf})];”\p] ({vy} . Al [wov {opd )| o <Uf,{Uj }li LA [\If,],y])
Remark that we can consider non localized states by replacing:

S ({u) A [ {01
S (A ) = [ ([ 9 (o A o)l

6.2 Lowest order expansion and metrics on projectd states

2
duf

A second order expansion of the previous constraint enables to define a metric on the parameter
space. It depends both on the field \11‘? il and the background \I/%’S.

6.2.1 Local functional

For a local functional at the lowest order:

o = b (o ({47 01) i (978)) ) (fe [ )]
o )] (o {05 (01 02)) ) e o 1))

and redefining operators by translation, we find:

0= (W, )+ { At [wo, v, {UF ] b o ({0l el W { (57 (UF) B (956)) }) { AR [wo, 0 {Uf }]}
(42)
with:

ki] = [ki1...k1n,]
[kg] = [kgyl, ceny k27n2]

The scalar functional has the form (we reintroduce the notation ¥, '):
a(Vy) = / whAw; + / UARAN 3

At the quadratic order the quadratic form defined in (42) becomes:

M ({ka] B} W, { (95" (U)o (955)) 1)

M (k). fialy v {05 Ko )
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that is, in the projected space, the metric is dynamicaly an object defined by the field:
Wt (VEAY [w,,0, {04 )] {951,)

Ultimately, if (22), or its versions (30) of (33) are satisfied, the sytem is described by dynam-

ical quantities \I/? 2 li, M ({[kl] ,[k2]}, Uy, v, (\I/?li (UJ“))  Ho, (‘I’%Z,o)) and is built on apparently

exogeneous parameter space {AL’Z]Q}

For one variable A¥ [\IJJ, v, {UjllH the metric tensor deriving from:

M ({Dei]. Baly v { 95K })

o (09,19 e (05 (02 (032)))

and depends on the projected field. This ones includes Z\I/QJ9 2ili ({Ujll} AL [\IJJ,I/, {UjllH) as

is written:

needed and the background. K, <Uik, {U le}l Al (P, 1/]). The metrics depends on the integrated

background.
Considering the constraint for one variable A* [\I/ TV, {U JllH

(R [ (0 0 (00 (95 (05 (978)) - (R o ] o 0 =0

we recover some “usual” metric tensor:

o (19,19 e (05 (02 (932)))

g (11K, 11}, v {5 " Ko })

that also writes:

The metric depends functionally of \I/?Zil", as needed, but also on the integrated field Ky. The
metric component depends on physical characteristics of space.

6.2.2 Non local functional

For non local functional, the derivation is similar, where:
(W55 (8 w01)) = (55 50)

replaces \I{é]@l" (Ujll) We have for the quadratic form:

M ({Der] B} v, { (v (W5 ) B (955) ) }) = M ({0 Do} { (v (95 o) })

and for any variable, the form of the associated metric:

o (19 0 (o (955 (058)) ) = (06000 (55 )
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6.2.3 Expression in terms of averaged field

The constraints can also be rewritten in terms of the averaged fields. They were defined in (19) as
6 () 88 o]0
- ) o))
) ({vr}, A¥ v {uf}] viv) + v ({U;i}i,[x[kl (v v {uf}] vee) +

where: {{ [‘I’J v, { H}}k

depicts the entire set of parameters {Akl (@, u]} and Al¥ [\IJJ, v, {UjllH is a given parameter. Using
the same decomposition for the constraints:

P ({Lgay (95}, AU oy ((9),UL0) ) = 0

evaluated on a state of the field (36):

o 5 (G, o ] 00 ) (0 o), A ) ),
vields:
0 = /hkn (AW [wy.v {UB Y] AVEY AURY, By (). UL 0))
<P ({or} ) e (o), A [‘I’JV{ P
x Ko <{Uf}k : {Uj}l AW [\If,],y]>
and this become an equation:

0=H (AW W, 0], v (xy?(zl' li)) ,/co)

This a manifld equation depending on the state of the system and the background kernl Ky. This
means that the metric of this manifold:

g <AW (0,0, v <\If?(z”i)> ,IC0>

oo (8091050, 05 ) (A0 1w,.,0]) o (43)
+/91 ([ﬂkl [0, 0], i) (AW [w5,4)) Ko, (A [w,,4]) > /\1/?(21‘”) <(A[k1 [\IJJ,V])’> a (AW [qz,,,y])'
+/91 ([ﬂkl 0], 05 ) (A9 [w5,00) o (A [w5,01) (AW [q:,],y])")

g (Zit) ((AW [\IJJ,V])/) d (AV“] [\IJJ,V])/\IJ?(ZZ' ) ((A[’fl [xI/J,u])”) d (AW [\IJJ,V])”

d{v*}ya{Uf},

is a series expansion:
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where the ¥ (X:h) (A[k] [P, u]) are some apparent local fields arising from expansions of:

W?(Ei i) ({U;i}ivmk] |:\IJJ,I/, {UJ”H AVEY ,U)

The series (43) is similar to the one we would obtain by considering perturbative expansion for
a system where metric and field interact, execept that here, we have not tried to derive some
equations relating those quantitites. Our formula is only a general result without considerations
about the way these quantities should interact. The main difference comes from the background

kernel:
Ko (UZ-’“,{U;?}L AW oy, ])

that does not appear directly, since the corresponding subobject has been proected and integrated
in the fields, but this kernl should take part to the metric gtns.
6.3 Change ef variable

We write for short:
vk (U;«,Agg [q,w, {szlH (we, ) y Sl

o oy (ot At (e ]

We can then consider a change of variable:

M ({lk] o)} {0560 })
= U ({al 10D N ({04 kT { w50 } ) U7 (I [kel})

where the vector of parameters is:

where:

Under this change of variable:

AT [ww, {0tY] = 0 ) | (il By, {5 o Al w0, {0}

with:

U ({1], ka]}) = U ({[8], Bk ]}) \/N ({0a] Ikal}, {95 >0 )
The variation of parameters in this change of variable is given by:

oAl [ {00} oo ey

oALK] [WJV{Uj}}  9Al [\IJJ,V,{UJ’.Z'

0 (V7)o (giq]. Bel) ey
oAl [\I/JV{UJIH a(@ziz%o) n

Any associated tensor transforms as

) Al [wy,v {Uf }] + 0 (0] eal})

(o {Uf }] + U (] o))

0 (V5" Kn) 00 (1) D) el DU (] B 4 ]2 (V5 )

Rpale) = oAl T (U1} 0 (w5 0) ] i o(v5>"tio) oAl [wyw {U}]

+U ({[Ki], [ka]}) ’[k,l])[k&]ﬁ_l ({{k2], [k5]})
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it includes the inert contributions that depends on Ky through 111(3<> i lilCO. The tensor Rk, can
be seen as a generalized curvature, involving any set of points.

6.4 Invariance of constraint by change of parametrization

We consider the quadratic form M and assume the general form:

(0 0 (5 (2). e 0]
IR(CINLEE ) est (ur)auy ) w5t (o
%;mi(@@%{WJ [ko]} {/1?(U7)W (U‘)dU })w (U )

where {f G (Ujl/) g (U}l) dU}l} is a set of aribitrary functionals of the w%" (Ujl/)
If this quadratic form is invariant through:

U, =gV, =V, (gU)
then globally the entire set of parameters {AL’?L [\IJJ, v, {UjllH} is invariant under :

o {8 o o))} = (A8 o) = (40 o)

Locally, assume that there is an action:

Uy, gV, =V, (gU))

such that:
v (V)
and the:
{/G Ul’ ®l’ Ul/) dUl }
If there are representations R[ K]’ [kQJ, such that:

Bl

(i ) Al ol { [ (07 w5 (v vy } ) s ()

- Y R XR[‘Q]()mi ((U;),{[kﬂ,[kz}},{ J & () wsr (v avy }) v (o)
i) ]

we can rewrite the transformed constraints:
k i k i
0= (y,v) + {R[[k}]]A[ Uy o] } G ({ka], [k}, W, 95 (1)) {R[[kz]]A[ w0 {U! H}
The representation R[[l;}]] is a symmetry of parameter space:
1

~ k! ) ~ k! )

ALﬂ[@Jﬂ4{U?}}—>RKHALﬂ[wJﬂg{U¢y
and the function G ({[ki], [ko]}, ¥, ¥%" (U})) transforms as:

G ({], Bal}, w5, 95" (U))) = By G ({llr] o]} 0, 95" (U7)) B2
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7 Operators perspective: Average values on eigenstates of opera-
tors

We present an equivalent description to the one developed in the previous section. We begin with
functional states and project onto the lowest eigenspace of operators acting on the state space of
U (UF). This operator depends on the states of ¥§' (U!) and we denote A (U5") the eigenvalues.

) J
Degeneracies induce as before parameters {A[ i [\I/ I,V ,{UJliH}_, and fields depending on these
parameters. The projection amounts to comput averages over tilese eigenstates. The projection
involves computing averages over these eigenstates. This approach has the particularity of dividing
the state spaces into slices with respect to the eigenvalues. These spaces are not orthogonal to each
other, as different eigenvalues correspond to different operators depending on different states from
w3l ()

Then, we can define states and operators acting on these subspaces. For a given eigenvalue, we
recover a similar formalism to the states and operators Hamiltonian formalism. For a given A (\If‘i?k),
we can locally describe the degrees of freedom for a state and an operator by some functional of ¥$*

and some {AL’?L [\IJJ, v, {U Jl’ H } . States and operators have internal degrees of freedom defined on

some parameter space at A (\IJ@]M) We can then define transitions between states for infinitesimally
different eigenvalues A (¥5%) and A (U5*) + oA (¥5"), that is, transition operators between the
different eigenspaces. Summing such transformation defines transitions between state spaces with
different eigenvalues.

7.1 Principle
We start with the functionals without projection:
Z / ar (ULUF) S (U W§E (UF) 6 (fur (UL, UF)) dULAUF (44)
and as above replace:
v (U))
by:
U5, (U} fue, {UF})

to parametrize the functional by the {UF} nd rsdual parameters. Then, we will replace ¥§* (UF)
in (44) by its the average on the minimal eigenstates of an operator:

5y ({\I,?I; (UF) 71-[\&,2([]5)}]c , {\If‘f?la (U} fuk, {Uzk})})

with:
)

Mogt(o8) = 5usr 0F)

K3

This is a similar approach to the previous one, but it replaces the formalism of saddle point by
some projection over background eigenstates.

7.2 Average over eigenspaces

If the operator considered has only one eigenstate, this one has the form:
kg li
o {uis) )] 5
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state functional of ¥$* depending on a given U5! . The functional includes the contraints between
U9k and WU
In general including explicitly the constrant :

vt (k)8 (fu (U, UF))

state (45) writs:

o f{or} (o)) = f () ot} o] w2t () s (01 0)

As before, the tensor @ stands for series of products of identical copies of fields, or in terms of states
series of products of realizations. Th dependency in Uiki depicts the constraints between {\If?loﬁ}

ki (7rki . . . .
and W& (U - 1). This rewrites as series expansion:

2

B [{i ) {wii}]
B Zl d ({Ual}l) d ({Uiki/fkili}km) ) HUJZ} : {Ufi/fkiziﬂ ]:[\If?i (U;) 0 UEh (Ufi)

RSP s

Including symetries and degeneracy amounts to introdce parameters { A([ii]a {\If I,V {U L H } and

given a state v for U5 | th states Fy H\I/?Z’} , {\II?ZH becomes: j
F [{wskd {usit o] (46)
> af{ord, Ja({ormal,, ) A0 o b ot} T (o) enw o (0

EN ST ls

- .
where U%_"®% are the transformd fields induced by the inverse transformation A~!. The average

values of U&* (UF) in these states are:

(it U= [ et n e [{wgi} {uss} o] | TIo {wis}
Then, using a change of variabl: )
\Ifﬁ;lm" o

we find ultimately the averages:
(0 (U4)) = (o (0 = ot (0h L) A2, [ {02)) (a7

We rewritr the functional (44) using (47) in appendix 5. As before if the set A[k] o {\IJJ, v, {Ul.iH

o0, J

are independent of the realization, it becomes:
Fram ({95 (UD)},) (43)
S R R (A W R (o B

2

where the expression for \II?Z” and g are given in appendix 5. The parametr A (\I/?k) is the genval
considered. The functn g is an averaged functional.
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Appendx 5 also provides exprssion for projected functionals over space of vector valued eign-
valuess. Functional (48) is similar to previous section and involves the effctive field:

w5t (v} A [wo {UE}] A (955 o) (49)

the differenc with the previous sections is tht prmtrs AL {\IJJ,V, {UjllH have been decomposd in

AY [WJV{Uj}} nd A (09F).

7.3 Variations

Once the effective field (49) is obtained, the same principles as in the first approach apply. The
independenc t frst rdr f prmtrs with rspct to \I/?Eli yields the fllwng qtn, smlr t (22) where the
role of A (U%*%) is distinguishd:

. /v o) SAL] [\IJJ,V, {Uyl}] .\I,?(Ei i) ({U;}17A§ [\I,J’V, {Uﬂl}] (W) ,v) (50)

i (o)) ™

SAL [, v f UL B N .
e N;i@{i)')ﬂ oyt 5 () A o fe] 40590

and if averaged fields are considerd, we find an equatn similar to (30):

o = [o((o)) DLt Ul g L ws ) (o) A [0 {0 )] (95, 0) &y
Sws ((Uj) )
[ () S w9 ({87 [w o )] 05,10

swst ((vr))
o) | )/)—h@v‘l’?l"((U?)')> oy ({or ) A e )] )

5w ((Uj.i

where V is similar to V in the derivation of (30) but with the parameters restricted to ,A[k] [\IJJ, v, {U“ H .

o0

7.4 Fixed \ (V) slices

We consider the projection of the constraint on background states such that, at the lowest order:

0 = ({An [wow (Ul ]} M ({a) Dol wi, 95 (1) { AR [ws,, {02} ]}

Nl ]y w0, 05 (U {ASY [wo {U5 ]+ a (@) = A (w)

implements A (¥ ;) bounded from below. A change of variable leads to:

{An! (v {Uf ]} o (e Doy w95t @) {R057 [wsm {07 }]} + e = Aws) =0
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This can be also written n a form where the parameters are not distinguished:

2 [ki]

(A A (w)

by a change of variable:

leading to:

A [wov {Up ] M (), Dol w0, 95" (U1) A [0 {U ] + (@) = A (@) =0 (52)

Recall that o (V) is a functionl of ¥;:
o (U)) :/\1/3At1:,1+/qf}\1133\1/,]\11,]+...

and note for later purpose that the number of states saisfying the constraint (52) increases with .
since the quadratic relation involves tensor products of states. The higher the quadratic quantity,
the higher the number of states satifying the equation:

A [wow (U1} M (0] Bl w0, 05 (U1) A 00,0, {00 +a (@) = A} 2 e a(wy) 2

8 States and operators

We detail the states on the subspaces defined by parameters (A[k] [\IJJ, v, {U llH A (\IJ?’“)) This

o0 J

will allow to compute transitions between those spaces.

8.1 Functionals for projected fields
The states after projections are described by fields of the type:

Fo () 957 (o 82 [ fo23] 05 ) ()
and the values A" nd A (09%) r functionals of the fd and state v. Note that:
(AEZ] (w50, {UE}] 2 (959)) = AY vy, {U}}]
For functionals, we replace v ((Uj))

o((©)) = o (U5 A [roow fUi ) 2 (05)

We assume that a change of variable in intgrals leaves unchanged the boundary condition and we
can replace:

&Y [ {00)] = A9 (0,0
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so that a general functional writes:

> Jo((u) & [won{ur}] x wsh) (53)
g (’U,AOO [\IJJ,V, {UJIH A (\11?’“))

\I,®z:li ({UJI} A[k] [\I,J, {UJZ}
Z/ L) A (5)

This formula describes functionals of the field:
w5l (AL (5,00 (U5 0) (54)
_ /v ((Uj) AT w00 (\1/?’“)) el ({Uj} A w08 (w8 ,v) d (Uj)
This effective field will be the bss to describe the states on subspaces defined by X (¥5%).

8.2 States associated to functionals

This description can be translated in terms of states for the field (54). Functionals (53) are equiv-
alent to states: "
v {AL o]} A@)

with v is a functional state of ¥ ;. in the sequel, we omit the subscript & in {f&[k] [\I! Js ]}k

Assume such state v can be parametrized through some parameters space U). The projected
states become: §
‘Uo‘), {ALO] [Uw} } A (U<j>)>

where the parameters U) are analogous to some U Ujl-j . For example, any functional:
V(W)= v ()= Z/at (Ujys s Uj,) W5 (Ujys s Uy,
t t

where the U;, er cmpnt f U;, can be parametrized by {a; (U;,,...,U;,)}, and thus we cn chs:

]) = {at( J1="'7th)}t

o {82 [ 0)

are combination of products of states:

e, {82 [y (0,

Since UY) nd {A Ut ]} are related through the constraints, we will use these constraints in the

Practically:

sequel to reduce locally the number of parameters.
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8.3 Constrained states

If some components [UW] of UU) can be replaced by functions of Af ) [U@] through the constraints,
the states can be rewritten in the follwing manner. We start by writing the constraints:

o (82 0]y (00.09)) =0

so that if h, ((¥;),Ul, v) includes combinations of the a; (¥;), some of them may be replaced by:
~ K )
a () = o ({A [v]})

{t'y c {t}

with:

and the states write in a reduced form:

S o o] oo ({ax [0} A (0))), [{a= v} 2 (09),

We will omit the subscript v in the sequel. Moreover, if the A[k] [U(j)] can be locally identified with
[k], we find the states:

52 o o] o] (A2 4 (o)) A} (09) e

In the sequel we replace {A[ﬂ} — {AOO}, that stands for all realization of the Affj .

fixed parameters A

8.4 State space for a given \

Until now, we have considered the state as depending on the states parametrized by UV). We can
reverse this point of view and regroup states such that A (U (j)) = ), for each value of .
We first consider linear combinations of states (55) rewritten as:

S {Asp A () 1 ({8} A (9))) e (56)
(B} A (09)))y = [0 [00] [09] (1A} 2 ()

The subscript U reminds that the identification is local, since th {AOO} are functionals of U().

wth:

Then, we restrict states U to subspaces U such.that. A (Uij )) = )\, and we write states (56)

AR (E Y = e ) (A

where the relation for ) is satisfied:

(1 (A 2)07) =

and the constraint writes:

o (0 [ 3 ({820, (0 1 ({3}, 2) 8)) =0
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We also define the space spanned by states:

Hoffantepory = { B} 0 ED) b,
A
which is als written H, for short. States belonging to this space are series expansions:

3 o ({8 M) 53 1 ({8}.3).09) ) (B} o ()

n, Unj

Remark:
1. locally, these states can be generated by a field:

vy (Uj/ U], {Am} ,/\)
2. Covariantly the states are functionals a (X) (standing for o (S (UW)).
8.5 Operators
In this context, using a basis of states defined by some parameters A, operators write,:
[A|Z[4]

with the notation:
)= I ) a1

where:
A = [y o] o] ({A o (v)) {a<T} o (v )]
= ({82 () o (B2} (09)]
and:
= [ L ] (B (). (A ()]
- B0,
The {AL"} stand for any collection of {A%'}.

In terms of eignvalues A and X and with the decompsition in terms f Uij ) this also reduces to:

[Uj/ UANCEN RYPRRE ,A] = | W/ W) ({AL’Z” o w) (A X]
g

The same forms are recovered in part 3 starting directly from states and operators formalism. In
the sequel, we write {A[ki]} fr{Aii]}. Conclude by noting that locally, these states and operator

are states build from fields:

v, (U3 10;], {2} )
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9 'Transitions between spaces H)

In this section we consider the state transitions betwn states due to transition prtr btwn spaces
H)\O — Hax.

9.1 Transformation H,, — H,

Consider two eigenvalues \g and A\. We assume that there are isomorphism of spaces:

" (Ao-{A[ki] (v@) v }) = (A,{AM GRS })

where:
Hofas o)) ~ U B DR D
given by:
B ok )o@ }) T s ) o}
so that:
B o {85 ) 1 ({87,)),0 < { A1) [ (127 1)) )
Remark

The transformation can be considered covariantly by replacng:

R (5 (3041, R0 o 5 (50

where % {f&[ki]} are hypersurface of {A[ki]}. The transformation rewrts:

Togueay oiary [P RS D (D), (RS ) 1 ({A4})) 0}

9.2 Amplitudes

To describe the amplitudes of transitions between states, we assume that infinitesimlly, the trans-
formation has the form: _ _
6Tanson = AV (U7, U5,

where operator 6Th . sx is a transformation:

TTontox - H@{ﬂw] () 09} - H(k-kék,{é[ki](UgjﬁaA)’Ui{gM}>

To find the transformation 7Ty, 1sx recall that the states of H (/\ { can be built

Alkil (Uij)) u® })
from fields:

v (U3 10;], {A"} )
The amplitudes:

oy (0o (03 0 {R™ ) [T [ (@) [iy] {B"} ),

u;)'
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are computed by pulling back the field state:

L

(o (01107 {8) ) = o (051 7))

}) to H<A,{“[’€i] (U&j)),Ugj)} by some parallel transport operator

from H ( A

(k] G ,
>‘+5>‘={A[ ](Uijﬁax)-rUi{ﬁM

Pyyisx and then computing the matrix elements of the pulled-backed transformation:

n H(A"{A[ki] (Uﬁj))-rUij)}) ” H(A,{AM (Uij))-rUij)})

so that the transition is the compositn:

0T x+6x = PuarnD

9.2.1 Global identification

We assume in first approximation that the parameters {AM} are global. The pull back of the

fld state Pyaisx is trivial: we can identify the various spaces, the transport involves standard
”derivatives”. Formally, it is generated by the operatr:

N N i LA 0
(32 (5000 B o) =0 (1100 {8} 2)) s

= L, (v, {AM) ) R

that can be exponentiated:

Pyrisy = exp /ié/\%\lu (Uj/ U], {AU%J} 7)\) o (Uj/ [Uj, {AM} ”\) DY, (Uj/ [U;], {A[’%]} ,/\)

Assuming a standard form for the transformation part 6Ty, with 6 } ) separable

6\pJ<Uj/[Uj],{A[ki] A
from other variables:

Txrton =V <‘1’J (Uj/ U], {AM} ,/\) vV{A[ki]}‘I’J (Uj/ [U5] {A[ki]} J\))

4]

v (CIEARTN Y

the composition:
Pax6x0T 150

can be simplified by the computation of the matrices element of:

exp /m%% (Uj/ [U;1, {AM} ’A) 5T, (Uj/[Uj’ {AM DY, (Uﬂ'/[Uﬂ'] ’ {AM} ’A)

0
0w, (/03] {2} 0)

xexp | iVa
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so that the transition is generated by:

S(¥y)
= 5 <d(f\\1kz (U /U], {A[ki]} ,)\) ’V{A[ki]}\y‘] (Uj/[Uj] : {AM} ,/\) Uy (Uj/ [U;], {A[ki]} /\)>

9.2.2 Local identification

When the identifications are local, the transport is non trivial. Changing the variables, modifies
the states. The transpot is generated by some covariant derivatives. We show in appendix 6 that
the general form for the amplitudes of this operator are generated by some functional:

S ()
(e ) ) g 0 005 ) s (5.

with:

and:

SAY, T (U/ k{A } )

N
_ a\I/J(U/[a])\{A ) (s @/ ) ws (W3 0D {4 0)),

are some covariant derivatives with connection matrics:

(e )

connecting the states with different values of \.
The matrix elements of transitions Ty, are obtained by exponentiation of S. Actually:

Thy = H (14 0Txx+55) (57)

so that:
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9.2.3 Remark 1

These amplitudes between states can also be rewritten covariantly:
(= {Ar}[ (o (2 {aR})] o exn (35 (v (v ) {A0T])) ) [ {A0 ) far (={A%TF)),

with local invariance with respect to transformation of {A[ki]}.

9.2.4 Remark 2
The connection

= ((A{A[ki]}> (U;/ [U;]) (Ax) (Uj/[Uﬂ))

is itself a field dependent object, since it is derived from the constraint. Given the form of the
constraint, it has the form:

R(r) = F (v, (U 0, {&"} 0) Ve (U 10, {2} )

and some transition amplitude should be associated to this quantity.

9.2.5 Non uniqueness of connection and modification of amplitude

Even if connections are considered as inert, there should be several possible connections correspond-
ing to the transport:

(o (0100 48} 2 3) | (o 0100 {3 )

since there should be multiple way to send a state with parameter (Uj/ U;1, {AM} JAF 5)\) to

(Uj /U;], {A[ki]} ,/\). This corresponds to the fact that some relative dimension may arise between
these two spaces of parameters:

dim ((U;/ U] {A[’”]} A+ox) /() [05), {A[’”]} A)) >0

and that there are many maps sending (Uj/ U;], {AM} ,/\) to (Uj/ 0,1, {A[ki]} S A+ 6/\).
The amplitudes thus should modify (58). Actually, we first consider that §T\;s» is replaced by

the set:
<5T)\<£$Q\AH(UJ')A+¢M)>
(Uj) = (

accounting for all possible maps from one space to the other. Then (57) is modified by taking into
account of these multiple paths, so that we replace:

UJ'),\+d,\

14 0Thxsos — R 5Tf§f§2ﬁ(’]j I (59)
(UJ')A‘_}(UJ')AM)\

and the transitions are:

Ty = H 1+ Z 5TA()§K§Z\A‘_)(UJ‘)A+@)

(Uj)A{_}(UJ'))wrd)\
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In terms of amplitudes this becomes:

<\I/J (Uj/ U, {AM} ’/\/)
= (v, (vi/ W], {AM} A+

((UJ‘))\(_}(UJ'))wrd)\)
X H H exp (15/\5 (\I/J, <A{[\[k1]}’ (A)J) )) ’\I/J (Uj/ [UJ] y {A[kz]} ,/\)>
oA o

(Uj)AH(Uj)A+dA

vy (U3 0;), {A"} ) (60)

Ty

The upperscript ((Uj)/\ — (Uj)>\+d)\) reminds that the connections <A{A[ki]}’ (A,\)> depend on the

path chosen. Assuming that we can replace in average:

((UJ)AH(Uj)A+dA)
(g ) = (aray )

the transition becomes:
(wy (U5 031, {8} )

A T [0y (U3 0], {&"} 2))
A

= (ws (v W3] {A"} A+ 6n)
N ((U)y = U)ysan) [Texw <ms <\1uJ, <A{A[ki]}, (Aﬂ))) vy (U], {A" ) 0)
Y -

where N ((Uj))\ — (Uj))\+d>\) is the number, or the volume of set of maps ((Uj)A — (Uj)A+d)\).

Ultimately, the transitions become:

SHCAT RIS RY
_ <\1:J (Uj /Ui, {A[’”]} A 5)\)

<N ((U3) = (Uy)y,) exp <i/5)\5 (\yJ, <A{A[ki]}, (AQ))) vy (/03] {A™}0))

with N ((U;), = (U;),,) the number, or the volume of set of maps ((U;), < (Uj),,)-

Ty

v (Ui 103], {2} 0)) (61)

9.3 Particular states
We consider a particular case in which a state can be decomposed into two separate sets:
ulim = (Uéj/p),UéJp))
Ulle) = (U(j/p)7U(jp))
where \ (Uéj)) = (Uéj/p)) and A (UW)) = A (UG/P). Tt describes a decomposition in which U/? is

much larger than UU?) and determines the parameter space, while the stes defined by UU?) consists
in some system evolving in these parameter space. We consider the states:

{A[kil}’AHh ({A[ki]}7A),U(j)>U(j): {A[ki]}/p,)\> {A[k”}p> h({A[kiJ}p,A»Um
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large set {A““”}/p and a small set {A[’”]
DA™, = DAY (), A ) ({A))
LB R (E,)),0 1 (EL)),,

This corresponds to sum tensor products of fields states. The parameter space decomposes into a
A A } describing the system studied.
p
V({A[ki]} > <<V<{A“”]} >
P /p

whr:

and:

e 540~ o (.59, 2. (. 4,

and:

s (v (03 w1 (8"} ) =5, (s (w0 {8 ) s (v (300 2™} 0))

Then we can factor:

<z{w}p <H (z{w}p)

m (),

and interaction with full field arises through T.

9.4 Transitions for operators:

We consider some operator:

H (A,{A[’”] (U)o }) ~H (A',{A[’“i] (090 })

with matrices elements:

A8} ()] o [ 48 (AT )],

We consider that these matrices elements can be decomposed between /p and p states:

e (8, ) ()] w DR (087, ) (87,

for A (UW) ~ A ((U(j))/). Here |UUP) is at scale of some system. We assume that dim UW? <<
dim U, so that A® (UV)) and {AM} can be considered independent from UWP and A (UW) =
A9 For operators depending only on the U%?, we can discard the U)/?, (U(j)/p)/

Rstricting to:
2 k] 2 1kl 2 [Ki] 2 [Ki]
o b ()], o A (§85)1,.,
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One can also write the states as function of some state |[U)?) by using:

h ({A[kil}p» _ /gm (U< i <{AV€ ! )) vor ayor

and: ’ [k4] G)pr ~ [ki] )
[A’{A }’UJ p}Uw@ [’\’{A }’U”}Um
HA/W }> {X’ U(j)p/} U@y ® [/\’ U(j)p} U@ <{A[ki] }‘
_ ‘{A/[k”}>/g(3‘)1‘ ((Uwp)’,h ({&[’%1} ))
p
x [N, U(j)p/} iy P [/\7 U(j)p} o) g (U(j)l’, h ({A[ki] }p)) dUWrg (U(j)p)l <{A[ki] }‘
writing:

[/\0’ U(j)p/] von 2 [AO’ U(j)p} v [U(j)p/} von ® [U(j)p} U@

- [ (o) (5 ))
oo (10 (1) V) 0], 207, 0 (109 )V
o (v ({8"),))wora (o) (8"

The usual transformation corresponds to the case where V is diagonal in the basis U@W? and
A (U(J) ) A (U( )

) )
C e ( A (V( m) m))) [U(j)pl}ywq)[U(j)p}m)

- H&WD /gT ((Uo)p)/,h ({&““”}p)) g (UO’)P, h ({A““”}p)) (62)
exp <_Z- CREY <V <(U<j>p)' _v (U<j>p))> v o [wor] "

xdUWrg (U(j)p)/ <{A[ki} }‘

and:

9.4.1 Example

For operators:
PO,ur]w [A0,u7] = ot (|

formula (62) writes:

{at}) for (ot ((8",.0) ) s st (e ({8), ) oy ({21}
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In the usual set up, we can consider translatn invarianc:

o (v (2™} ))a (o ({8")))) =eo (7 2"}
. » : p p+k/p

where p + k/p stands for the set {AM} . parameters {A[ki]
P+

gvn by:
HMMD /exp (Z.Uf+k/p_ {A[ki]}wk/p)

This is similar to a usual field descrption in terms of creatn and annihilation operators.

} excluded, so that the operator is
p

o) (wplavgavy ' ({3

10 Number of states and connections amplitude

10.1 Number of states

We write the constraint:

(A" oo} or (il ety w005 @) fAM o] +aqen - acen =0

where:
a(w) = [wjav,+ [wjwiBe,w, ..

We assume that the number of states satisfying o (¥ ;) = X increases with A:
IV (UF) = £{S (00),a (S (92) = A}/ fr o (W) /7

with S (V) denoting any state of ¥ ;. This is justified since the constraint:

N [kz] n ki/
A = {8 [ ]} a1 (6] By w095 @) {85 [, 0]} 4w
involves a quadratic quantity depending on the states. Since this is computed on tensor products
of states, increasing A (¥ ;) implies a larger number of states satisfying this equation.

10.2 States combinations:

We consider some smeared transitions combining the transitions defined in the previous sections.
For a set decomposed into global system and local one through decomposition (U @/p yhr),
we define the smeared state by «a as:

U(J_).A(U(J_)):Aa (Um) ’U@)/p, U, ) (UU)) 7 { Al (U(j)) }>

S o (Uo)) ‘Uwp’ ey (UU)) , {A[’%J (UU)) }>

U@, MUG) =a—1(N)
}a, U\, {AM}>

We can consider the map:

o (i), 4

RCORRIY

for X > X since §N (Uif)) > #N (U ij)) with X > A. The corresponding amplitude are computed
through (61).

{a’}
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10.3 Connection

We consider the set of infinitesimal maps

Ok : H<A,{A[ki] (U§j>)7U§j>}> - H<A+5M{A[m (U)(\j)),U)(\j)})
summed up by following graph:
|A>+f1|>\>
N +02A) = A =N+ N)
\ .
M)+, M)
where |\) represents H(}\){A[ki] (U@),U@}) and |A\) + dx |\) stands for H(H%{A[k” (U)(\j)),U)(\j)}). Our

aim is to sum transitions over all these maps and compute an average é\. In the sequel, we assume
that the parameter A (UY) is defined by the ”surrounding” part of the system:

I\ (Uu)) ~ )\ (Uo‘)/p)
We also consider the number of maps between |\) and |A) 4+ 4 |\):
N ((Uj)x — (Uj)M.(s)\)

counting the number of maps from (U;), to (U;), s,
) . !
N (U,i] - (U,@zs,\) >
o

AR pawy = _
A { })\ u > ),ZN<U§j> . (Uﬁ)&)/) TUﬁj)v( XFox

Ny, > > Np,k#ko
N (Um - (U9 )’)
A AHSX
SR> () D VY U (0)’
(U/(\Qfs/\)/ LN <U’\ — (U’\+5’\) )
We will consider the transitions for states composed from:

‘U<j>> — ‘U<j)/p> ’U<j>,,>

oT

y A&, o)

(G

and smeared by coefficients a:

B |
> =A0

And a sequence of infinitesimal transitions will write:

1 i o [Fq] 2 i < [k
a0 {A }Agw> = [a@ 2P, U (A }A52)> N

(n) y(n) 17() < [k]
« 7)‘0 7U] pu{A )\(()n)

with:
Ay > A

Covariantly, this sequence writes also:
o (1) o () s (6))

A (U,(lj)) > A (Ul(j))

with:
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10.4 Mechanism:
10.4.1 Global principle

Recall that: _
U)(\J) =W st. A (U(j)) =\

The transition for a state ( uW/e U(J)p writes:

IV (U<j>/p7 U(J)p
)\
(4) (4) (Y _ (4) (@) 7rG)
_ | Z N (U — Uy ) exp( ()‘ (U)\ ) ;\7)([] )(7)) 14 (UAJ ,UAf) )) ’(U(j)/p7 U(j)p)AO . o, {A
@ A (U) = ZUg\J)’)\(UgJ)):)\N (U,\O — Uy )

which rewrites after smearing:

o (Ump)o o, {AM}A >
0
oy oy Moo (e vy (00.00)a (U5)

vl U(J) ZUgg)y/\(Ugj)):/\_’ N (Uﬁf)) — U(J))
A(U(])) M(U(ﬁ) o v@ AU ) =2

Ong—A

(Uu)/p’ U(j)p) o, { A Fi
Ao

As before, we assume that we can decompose the degrees of freedom U P and Uy 0)/p,

v (U)(\J)7 Uif))) -V (U)(\J)P, U)(j))p) LV (U)(\])/:D, U)(\‘Z))/p)

: eXp( A )‘ U(; /v, 176 ,{A[ki]ho>
T & <(UW) ,< >)\<va (o >> SCSN

As a consequence, the statistic transition is:

« UA])p Ao {_[k]}A >
0

N (0 - o)

Oxo—A

>

U A (U =x N (Uﬁé) - Uij))
U A(UF) =20

x 3 a(UyO'))7 ((Uo)p) 7(U<j>p)> ‘(Uo/p), (U@p)) A {A[ki]} >
U A(U3)) =20, Yo A A

6A0—>AU§JO):U)(\J)

Y (U@’ o, (U07) AO)
U AU ) =2

(U(j/p)’ (U(j)p))A’/\’ {A[ki]}A> - ’a U SR { " ]}A>
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which writes in a compact form:

i), ) -

As before, locally, we can assume that:

{A[ki]})\o _ {A[ki]})\ _ {A[ki]}

and that the change in manifold:
{ A[ki]} A
A

is included in the transition V through the sum over maps.

Ong—A

o5 )

10.4.2 Infinitesimal transitions

6‘(U(j)/p,U(j)P)A ,)\07{A[ki]}A >
0 0
sy NERoueagia(og) - )

. . . . ) () (4) (4)
P o wsusa(Ufl)) =6 2o ZU/(\JO)J,-éU%) N (U/\o — Uy +0Ux )

X exp (i(S/\V (U)(\j), U)(\é )) ’(U(j)/p7 U(j)p) N o, {A[ki]})\o>

with 6U §f) ) elementary modification. thht s:

. !/ . . . / .
B(sul)) #ou U — (U)oU)

]

o (Ump)o Do, {A™ }AO>
> X )

U A(UD)=r0 O U sUDjx (sU 1)) =
N (U(j> 79 ) (-5/\‘/ (Uo) U(j)))
xo " Uxgten ) €Xp (1 xotox Uxg a(U)(\j)) ‘(Um/p U(j)p) Ao {A[’”]} >
©) () 0 ’ PSR G DY
26 ZUgj)y)\(U)(\j)):)\oJré)\y N (UAO — Uy, ) 0 0

+0A

Ui?.,A(U&?):,\O

3 3 o (U@, a, o), Ug)p)

A o su P oa(sUfl)) =6
&, (UU)p) Ao + O, {A[ki]} >
Ao+oA

If we consider the UUP states and assuming that locally we can identify the { A[ki] }/\ with a constant

st f prmtrs: N .
(), ()

i i ~ [k;]
U U 20 + 0, { A }kom>

ol



then the transition becomes

51(097), 0 (BY) = [(099), o eon A

— exp (A7) ‘(U(j)p)o o + O\, {A[ki]}>
where:
exp(@A) =% % 2

A U AU ) =x0 U +ou o (sU ) ) =6 2o ZU@,/\(U@):AOH,\,
U A (U ) =0

N (Ui? - U}S?—i-tw\) exp (i5)\v (U)(\g)-;-é)u Uﬁé))) o (U(j))
N (Ui? — U%LM) N

and ) is given by a first order expansion:

A= 3 X 3 N (U = U, ) a

)] Yy, 6A 7709) (49) (N
vy ,)\(UAO )_AO U +sU7) 5 (5U>\0 )_M

under our previous hypothesis N (U §f)) - U ,@MA)  for 6X . Then the averaged parameter is
positive:
SA>0

As a consequence the connection between the different spaces H (/\ { are weighted

Al (U)o })
such that in average 6\ > 0. In other word, the amplitudes:

H(A,{AM (v?).o® }) - H(M{AM CGAY })

are greater for X' > A.

Part II General formalism

We extend the previous formalism in the following manner. We assume that decompositions can
involve an arbitrary set of subobjects, and they can be multiple; that is, several possible de-
compositions may be considered simultaneously, akin to a superposition of states. Additionally,
decompositions can have an impact on subobjects. To achieve this, we consider that each state
space involved may itself include subobjects, representing some bound states that concentrate a
series of states in the considered space. Furthermore, any subobject may itself be decomposed
by the decomposition of the space to which it belongs. In other words, an initial subobject may
be decomposed into subobjects of this subobject. This is achieved by introducing products and
compositions of decompositions.

11 Fields formulation

11.1 General set up

We keep the formalism and notations of the first part and consider some parameters spaces U, U*,...
with U* is given by k copies of U. We also consider implicit relations:

U/c(U),...U*/c(U")
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where the ¢ (U*) are constraints and states on UU*/c (U¥) are tensor products plus constraints:

D lui) @@ fuig) fe (i, wi),)

kyiq...ig

— Z ‘uilﬂ...,uik>

k,il...ik

As before, the states are built from fields ¥®* (U*) and up to the constraints, a realization W@+ (U**)
is a sum of products of such realizations:

so that a realization WO (u;, ..., u;, +l) can decomposed as sum of products of realization:

\If®k+l (’U,il, ...,uikH) — Z‘I’Sk (uil, ,ulk) \Ifgl (uin, ...,uikﬂ)
(o7

The constraints are included by identifying some parameters:
v (Uh) =we(UY /f
ndrstd tht Uf stnds fr UF/c (UF). and the tensor product is a particular realization of W (U*):

11.2 Subspaces, subobjects

We generalize the notion of decomposition. To do so we detail the notion of subobjects and maps
of subobjects.

11.2.1 Subobjects maps

For the set:
(p) k
U C oU;

We consider a collection of subjects, that is a st f mps:

Wiy, ={u® &y (@u))}

p

The set V (©,UF) is formally a collection of submanifold of @&xU}. t includs th sngl pnt * fr k = 0.
Maps p are running over a set of indices. For a given collection (p;), we describe the maps:

poos U =V (@U))
uP) 5 @y {(uil, uzk) (u(pl))} s fr (uil, ...uik,u(”l)) =0

where {(u;,,...u;,) (u?))} is the subvariety defined by several equation:

fr (uil, ...uik,u(pl)) =0

93



These maps have a translation in terms of states:
s+ H (U)™) = @ HZ (U5)

To detail s,, we dfn:
(Uy)* — HE* (U))

(uil, ...,uik) — ‘uil, ,ulk>

() = /(Uj)’“mpl (ulo0) Tk (“(pl)’”) i (1)

The maps g p, characterizes th pplctn p;. To shorten the notations and since k and p; rss explictely
through w??) nd u, we will write g for gy,
In coordinates:

Sp }U(pl)> - Z /(“il ..... uik)G;Dl (u(Pl)) g (U(pl), i 7u%) ‘uil’ o uzk>

it includes |1) fr & = 0.
Then we can define S, that translates p; at states levl:

i -

and we define s, as

Sp + @HEM ((Uj)(pl)) — o H* (U))
which is defined by its components sp, l.
®kz . (®k ((Uj)(m)) N @kH®k (Uj)

obtained by tensor products

?Lkl : ugm) ukl > Z Z / (u; EPl( (Pz)> Hg"‘m( (pl) uze>8€0‘m) |ui1""’uik>
16 e€am

(O‘WL)m<l EP(k)

11.2.2 Fields and functionals

The states map allow to consider associated field, whose functional generate the states. Defining:
®k
L ( p’)) Zg ( u,(cfl) Uiy -..7Uik) vk (UF)

field {\If?’;i) l }k define the subject field define by a map p; of the collection. We consider this fields

as independent quantity to model the emerging agregate object that may arise within the initial
stt space. As a cosequence, we consider that the states in terms of functional are given by sums f
fnctnls over subjcts. The fnctnl t cnsdr ar ths:

D Fian (W5 (UF) /1) + 303 B (w5 (w0)™) /1)

(»)

11.3 Composed subobject

More genrally, we may expect sequences of sbbjcts, i.e. sbbjct f sbbjct nd s n. W ths hv t cmps
sbjcts mps. Ths dn n tw stps
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11.3.1 Subobjects of subobjects

We first define subobjects of subobjects in a similar manner as in previous section.

consider: )
) p k
{(@”)" Evan (w)”)'}
p/
and collections of subobjects of subobjects are given by maps:
(p1) k
Plu ((Uj)(pu)) Y (@k ((Uj)(Pu)) >

U(Pl,u) S o (ug?), uz(:)) (u(m,u)) f (uz(,?)7 "'UE:),U(M'“>) =0

. . ®Rk; : .
The map s, ,, and its states translations sp, | and Sy,  are given by:

sppo  H (((Uj)“’“))(m) = epH ((U;) ™)

Plu

Ok . [k (((Uj)(pu))(pl)> < @ HOF ((Uj)(Pu))

and:

Sz 01 ()™)Y o opmree ((0,)0)

we also write:

((Uj)(pu7plu)>

((<Uj><“>)(”’“) )

for:

11.3.2 “Composed Maps:

We aim at defining the composition of subobjects maps at the level of stats:

(pl,u)
Sp(l),u = Spu © Spl,u : ®H®kl <((UJ)(pU)) > — @kH®k (UJ)

To do so we first define the product of maps:

Products of maps We consider products of sbbjcts:
Piy X Dy ¢ (Uj)(pll) X (Uj)(plz) -V (@kU]k)

Define:
b (um) = UV (pl (“pz))

with the UJ’-C are the components of p;.
The product is defined by:

Py X Py (upzl x U%) = Uk (Vkl (Ph (u:ﬂzl)) X Vieky (plz (u%)))

For exmple, considering;:
Uj, x Uj,/c(Uyy,Uj,)
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the image of p;, x py, is:

o on) )},
uPll

J

) () (12)
At level of hilbert spacs, we have the map:
Spry ® Sy By i, (HEM ((U)00)) © HEM (U7)2))) = @t (U))

written in coordinates:

®k; Rk
. 1 2.
Sp Spyy Spiy

P P
ug ll), ...,u,(cllll)> i

- ) 11 /<(ul_e)e€%)€<mi (ut(pli)» };[igami <u§ff")7(uie)eeami> |ty ooy i)

k=k1tk2 (am,) €P(k;) =1

)l

m;<ly

as before the maps ga,,. characterize p;, x pi,.

Compositn of mps We can now compose maps of subbjct to define sequences of subobjcts.
Starting with:
[ (Uj)(pl) -V (@kU;ﬂ)

and:
’ k
P - ((Uj)(pl)) () -V <69k ((Uj)(pl)) >
these maps can be composed:
propy =V (9xU))

by considering first:

((Uj)(m)> (v -V (@kl ((Uj)(m))kl> = U {fueV}—V (@k ((Uj))k)

veuy (@k ((Uj)(”l)> k)

that transforms the parameters of the sub-subobject w, , , into:

Upy,py = PLY (upzﬁplyl/) = {upz €y (uplyp“,)} - H b (upl)

Up; €Py 1t upl,pl’l/)

with as before:
Dy (U’Pl) = U Vi (pl (U’Pl))
and:
21 (1) % w1 (1, ) = O (Vi (01 (1)) X Visy (21 (1))

For states, the composition leads to:

S,

PispPy 1

= Spl ° Spm/ : @H®k <((Uj)(pl)) (p“l)> - ®kH®k (U;)
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On the 1 states, it is given by s?;kll,':

(o) <m>>

®ky

Spl " 1 ,...,ukl/

kl (Oz,m/) ,<kl,€

le’) () ’ (o) )
- Z Z /( Pl)) >€pl<u Py ) Hgo‘ ! ( Um 7( zfl )eEQm,> uy”! ,...,ukIZl >

eco
€a, 1

with s,, dfnd s bfr:

Spy pz) /
Z (i voemrtiiy )€ (m)))

Then, on the full states space, we have:

9k (u(pl)u uilu seey ulk) ’ui17 "'7uik>

_ ®k .|, (P1) (p1) ) .
Spl - SPl ' ’ul ukl (») Jam m ule)eeam ‘uH’ "'7u1k>
k (om) g €P(K ““ﬂ e€am ) (ut ))

and:

kyr ®ky (i”l l’) (Pl l’)

1 _ . ) ,

szvpz,z/ = Sy O Spyy * Uy oo U,
SRR YRR Y
1, l’ Pl .
(0‘ ’)m/<k,ep(kl ( ( ie )eeam,)(ule)eeam>
(am)m<l€P(k)
(Pr) (o)
X H gam/,am (um 9 ( ’Le 9 (uie)eeam ’ui17 "'7uik>
Qpt,m X!

with:

60, {(6) ) (o)

and the functions:

G o <ur(npl,z/)7 (ugm)) ’(uie)eea ) = e (ur(npl’l/)v( Z(Pl)) >gam (ugl), (uie)eEa )
m e eeam/ m m € eeam/ m

characterizing the compositions of mps.

12 Decomposition in subspaces

We generalize the notion of decompositions to an arbitrary set of arbitrary number of subobjects.
We will assume that these decompositions are compatible downward for subobjects.

o7



12.1 Decomposition and maps

We consider the assumption that there is a collection:

P (Uj)(pl) -V (@kU]k)

such that:
Sl (U;) = &) S 1s®l((H ((Uj)(pl)))®kl>/ II fowm
P1;--Pm
= By Bt (H((Uj)(pl)))®kl/ II fowm
Plsees Pm

i) = by () ) @i ([l ) TT o

(ky) °Pu Dlyeens Pm
S o () ) 0 () T S
k) P1sPm

The constraints fp, . p,, are assumed to arise from operator invariance:
K ‘uil, ceey ulk> =0

that is, written in term of the previous decomposition:

5y (o) ) S ()

(k)

) le) =0

We may assume that implies an equation on the parameters:
() -o
1
and:

’uil,...,uik>=Zh ®k; ((uﬁpl) u,(cfl)) S Wig s ees ulk)Hé(fpl((i ))) ‘ (pl), ulle>

We extend this relations to decompose subobject into subobject of subobjects:

P ((Uj)(pl)) (rur) -V <@kl ((Uj)(pl))kl)

Using the notation:
((Uj)(l’l)) (pl’ll) = (Uj)(Pl;Pm)

we hv:

©,H®* (((Uj)(Pz)>> — ®Z?:18pl’,l (@kz/H®kl/ (((Uj)(mmz/z)»)/ H Ip1 P

P15 Pm,l

= iy (on B (@)1 TT v
P10l Pm,l

= @(k,) @y (H®kl’ (((Uj)(pl=pl’l))>>/ H fPl,L»»»:Dm,z
DLl Prm,l
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Then at the level of entire state space, defining:

H(U;)) = enH®(U;)

({0} ) = s e (@)™ TL o

P1;---sPm

we have the decomposition:

(7)) = s ()

%({(Uﬁ@l’pl'l)}l,gm) = 0,y @ Sy, (H ()N /T Sy

P1,15Pm,l
H({(Uj)(wm)}l <m> = o S, (2P (@) ON) 1 TT Foviea,
U'sm/ P15 Pm/
12.2 States decomposition
12.2.1 General formulation: Fields decomposition
Writing:
((U;gk)(m) o UJ@;g) ] .y (U®k) g ((U(_gk)(m))

|Ui1 ®...®uik> — ‘ (pr) ® .. ®u(iﬂz)>

we translate the dempstn n trms f flds. We assume that stts F (¥ (U;)) can be decomposed along
the field decomposition:

V) 5 D@D hen ((( J)(”))kl>l,Uf>

s
m pl m Pl

<5 (i () %530 (7))

wth D™ standing for the possible decompositions:

where we define

((Uj)(m))kl _ (ugpz)7 "'7u§£l))

UJ’? = (U1, ooy uk) JC (U1, oy Uk)

The u{"” are coordinates on (U;)®’, with u; the coordinates on U;. We also define the subobject

fields:
vt ((007)") = (w5 ((@)"))

In a way that is similar to the states transformation:

(i (@) -2 2 fe

'U.
k (am)y,<€P(k ic) e€am

and:

Gpl

( " ) Hgam ( u, uze)eeam) \I/?k (uil, ,uzk)
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The tensor products ® in the decomposition stands for series expansion of products of independent

pPi
k
copies of the \Iléfkf@kl (((Uj)(pl)) l). As in the first part, any field realization of ¥$* (UF) is decom-
Jisp, b
posed as a series expansion of products of realizations of the fields \If®kgkl,. The constraints are
. 757’1’,1

taken into account through some Dirac functions:

g (i (o)) 530 (0))

Pl

_ 25(fm ((ugm))) \I,?ZS@M (((Uj)m))kl)

Pl

k
Note that the h g, ((((Uj)(pl)) l) ,U]’?> include constraint between objects of the type:
Spy .

o (e)))

where v is an index for the several contsraints.

12.2.2 Subobjects decomposition

We also assume that subobjct are decomposed similarly:

W?Izéku (((Uj)(pu))k“> = @/ @ h(’é,uk)l/ <<(((Uj)(pl,iﬂm)))kl,>

S
1 TP
D(_pl’pl’l)’m’m »
J:Pu

SR (G (G

(pl P ) m,m’
JPu

where the symbols:

stand for the possible decompositions:

H((W)™)) = ({(UM””’I")} tm )

'sm/

and: )
() = (o)

where ui(pl/’l) are coordinates on (Uj)(p v7vt) | We define the subobject fields:

Wit () ™) =t (o (((wa)™))
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As before, the products ® stands for series expansion of products of independent copies of the
Py

ki
®kgk ((((Uj)(p vp l’l))) : ) For the fields realizations, the tensor products represent series expan-
l/

Slo;lgll
23 (s () 522, (@)
o (47))) e (o))

Remrks 1. As before that the:

e, ((@lrm)) (=)

Sy g

include constraint btween objcts:

o (e )

where v is an index for the several constraints.

2. We can identify:
Rk ' ey
\I/J l®kl, (((Lj)(php“)) )

oy N

and:

s (97, (((w»ww))’”’)) = sty (o5 (((@lre))™)
= v, (@)™

Py (1)

12.2.3 fields and subobjcts decomposition

We can gather the decompositions for fields and subobjects. Writing:

((Uj)(p“))ku
(@)}

ko
[Pu]
k.,
(o0, pri]™

and expressing the constraints as:
0 (fpz) = 0 (fpz ((“z('pl))))

) < (e ()
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we can rewrite the decompsition is:

w ) @ vt (1)

)(Pu)

(u
- D D ( ®kl [Pz UJ’“) gé(fpz) q}?ké@kl ([pl]kl)

m D;’lvm Pl

S & (™) ™) = 8 (F,) ¥ %, ([pl,pm]’“l')l>

’ Spy »Spyr
m D(pl,pl/l),m,m’ Ui URL
Jpu

It translates that Uf’k is terminal, the relation is "aggregated” on the w%* (UJ‘-@’“) side. However,

\I/®kl ((UJ@’“)(Z) ’)) yields intricate relations.

expressing ¥§* (U®*) as a function of o

12.2.4 States functional decomposition
The decompsition of a state functional has the form:
N ku
i (V54 (UF) = [ £ (05 By ) 05* (0PN 07 + X i (9552, ((0))) (09
(pu) “

where subobjects are included. Note that this can be expanded recursively:
Fiin (95" (U))
= / f <U]®’“ ! U@k) UGk (UER) duP*

+Z/f1 UJ (pU)) ’ﬂ<(U_)(Pu))k" \I]?]:;?ju (((Uj)(pu))ku>

(pu)

@ 2 (00 e |7 ((000))

(p'u. u
+o.

Using the decomposition, states (63) can be rewritten in the following manner. The First term
is generated by sums:

Fun (85 (UF) = B (29", ((0))")) (64

)Spl

= 5 g ({(@07)} ) g w5 ((@07))

n
m D;)l o7

where:
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The second term describes subobjects terms and includes in the decomposition:
kuw
Fin (‘P?kgju (((Uj)(p")) )) (65)
Ky
FED o (2920 ((@0)")
(Pu) (»1) ®k NEAK
- 55 ({(0)} ) gst T ot ((w0m)")

S ,S
m le Py < I<m °P]

with:

3 ({0, s (0 o) (o))

plus contributions from subobjct:

Fiin (\y?kgku ([pur““)) > > g<([pl,pm]kl')lyl,> @ v, (Ippe™)

m. pPL™ o m! D(Plypl/l),m,m’ pl/l
JsPu

where we have:

g (([pzvpz/l]k")lyl)
o (e ) () ) T 1))

oy ) Py

Both terms can be regrouped by writing:

Rk k ®k ’ ®k ki
v (00) @ v, (o) = @ vE, (Ipepnl™)

J,s s s
Py CPir g J, Dy
l (pl’l v pl’l) i

with: k
[plvpl/l]kll _ ((Uj)(pl,pl/l)) l

where the id map:
k
IO ((Uj)(m)) ) (EBk ((Uj)(m)) )
(Uj)(m) s (Uj)(m)

is added to the set of (p, /). The full functional writes:

Fion <@ (ip.] ku)) % z 3 g<(m,pm]’%')”,) A (i o)) | (66)
m Dplm (Pl pl’l) mom! ’ Spl’l
DJPu
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12.2.5 Partial states
As in part one we can define partial states for one of the subobjects, written 0 to distinguish it
from others subobjects. A partial functional for this objects and its subobjects characterized by

their fields \I/®kgk is a collection:

75pl/ 0

Rk, k
i - / ( py u)
{U[Phlﬂz/l]kl < J)%?fl’)} . {U[Plvpl/l]kl [pO b 0] }[ . ]kl’ [ . ]klf (67)
! [pl 7101/1] v P0,Pyg s [ PPy

of densities that can be inserted in integrals of tensor products, so that a partial functional is given
by the collection:

Y 5 o s L (i (At T (At (i)
Py P
(68)

®k . . . ®k
where ev k, | 7L, | is the evaluation functional for ¥ "L
RE Tk Bk

’Spl’ 1 ’SPL’ 1

&k ®ky ( k.,
€v k v = U , 1
[plvplfl] 4 < ®kl’> 7 ®kl/ [pl7pl l]

Py Py

13 Projection on one particular subobject

13.1 Decomposition including a given subobjct
We will consider particular decomposition:

pPro-pPLm
J

standng for:

H Uy =1 ((0)™)) e n <{( >(”’}l<m>

and project the subbjct corresponding to the (p;) on some particulr states. That is, we project on

w(()7)

Since we add sbbjcts, we have to include also decomposition:

D(po PygPLPyy ) e
JsPu

standng for th decomposition:

() (@)Y oo o
'<m/

Considering again the id map we write:

®k k Rk kyr\ ®k k1
‘I’Jsgokpo ( po) @ v %kl, ([Pmpz'o] l) = @ 4 ékl, ([poapwo] ! )
500

Pllo) * e, (i”l’o) o
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and:

Rk Rk Rk k
v Gy ( ) D ékl, (pz,pm l’) @ v ékl, (pz,pm] l’)

»S S S
Py Py Py
i (pry) vl (pry) i

Th full functional then writes for this decomposition:

Friin {‘I’Q?kgkl, ([Po,plfo]kl/)} (69)

R0 (szo)

Sy 2 o({mee), (s

PLm 1
m pPO-PLT iy PO Py sP>Pyy ) s/
) D 110°PLPY
Jpu

( v, (Ipo.prol* ))( L (8 l'))

’SPl/ ’Spl/ i

13.2 Projection on H (((U )(pO))>

Projection on the states of H (((Uj)(p 0))) leads to an effective functionals integrating the degrs of
freedom for the projected states of \I/®kgkl, ([pz,pz/l]k")-
() o

As in the first part, we will by expressing the functionals of A ®kz/ ([Pmpz/o]k”) in the basis of

Spl/

some functionals. The remaining degrees of freedom defined by ¥ ®k will then be projected on

Spl’ l

some background, depending on the states considered.
13.2.1 Particular basis of states \I/®kgkl,

Jspyr g
We first describe a basis of states for \If®kgk, To do so, we assume that the state space for \If®kg,c ,'

,S J,s

Pi0 Pr 0

Rk, k1

H {\I’J é?’w ([po,pm] l)}
"Spl/

(Pz'o)

decomposes as a sum of projection
id=> 11

where the partial states {v}form an arbitrary basis defined by densities, as in (67):

v {\I/?kl, ([poapl’o]kl,)} - {v[m,pm]kl/ (\Iji;%’fl) }[

The states {v} can be eigenstates of some operator:
@k 1)
(I) <\IJJ ! 6\I/®kl/>
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As before we write:
®kyr ks ®kyr ks ®kyr ®kyr
¥ s, ([Poapz'o] oW G, (popn]™ ) = oo o] o] \\ Y, 200 | OV sy
J,sp J,s Po:Pyg ) |PLsPy J,s J,s
7,0 Py P10 Py

where the evaluation ev[ computes:

po,pyo]kl' [P 7pl’l]kl,

at a point defined by the coordinates [po,pllo]kl’ , [pl,pl/l]kl’.
The constraints § ( Iy ([po,pllo]kl' ,[pl,pl/l]kl/)) are kept implicit for the sake of simplicity. The
decomposition for functionals with respect to v is performed by multiplying the evaluation by

. Rk
density L (\I/J ébku) (see 68):

Py g
Rk, Rk, k k
IBX e ) e [ w®h 5( ( Py z',{ oy z})) 70
L lpw] ( J,s;‘?lf}(;> [p1pi] < J,s;‘fzfjfl'> Fy [P0, 2ol ™, g [pr i) (70)

In local coordinats, the constraints:

®k ks
v gkl, ([Pmpzfo] ! )

Sy o

can be solved and \If®kgkl/ ([po,pl,o]kl’) is replaced by:

J,8
PPy

®k Tk Ky
\I]J fglﬂcl, ([pf)upllo] ! 7{[plapl’l] t })

’SPZ/’O
with:
ki ki _ ks —1 ki
[po, Prro]™ 7{[1)1,1?1'1] ! } = [po. prro]™ / H Foraepmr o For g,y {[pzvpz/l] ! }
P1,1+ P! 1
.. k ®k ®k k
Implicitly ¥%* and ¥ stand for ¥©"%% and v** .
J J L J.s2H
»Spg CPy

As a consequence, (70) writes:

®ky &k ks ky
ot (558 S (525, ) 00 Gt )

1o oy

/v (m, {[pl’pl'l]kl/ })

®kys ﬁ{ ) kl/}) (ﬁ) ®ky
X\I/J ®ky/ ([povpl O] ) [plapl l] d [p()vpl O] 02y ev[mﬁpl/l]kl, v ®ky/

oy

Rk, Rk
= U[Pl o ]kl, v l®kl’ & ev[m . ]kl, 3 l®kl,
Rl J’Spl’,o Rty J7spl’,l

where we have:

Rk,
(A 1
U[Plypl/l]kl/ ( J,Sfi?%) (7 )
% K,/ ®k % Ky, %
= /U ([po,plfo] t ,{[plvpz'l] t }) x U ékl, ([povpzfo] ! 7{[1)1,1?1'1] ! }) d([po,plfo] l)
”Spl’,o
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We assume below that fields are chosen eigenstates of A so that the >  is performed for a collection

As an example, we can consider a particular case, we can choose for v[ ]kl,:
PPy

Ky
Rkyr [PO;PIIO] l ®kyr
v g, | @ = E v v
LD ( J’ngl(;> Iy [plvi”m]kl, stf’z;]jl(l)
’ [o.pyro] ™V 7

where

kr
P0,Pyrg| ¢ ®k k
SRR V) SR (T
==  |P1:Py J’Spl’,o

[po.piro]

This formula amounts to sum over the evaluation at points [po,pllo]kl/ and the decomposition is
performed with respect to the values of [po, pyo]®. We can also consider to restrict the projection

c— -
to a subspace V' [Porrol ™! of [po, prro]':

3 C[PO A ok ‘,C Ry k
F170 / /
’UE; P ]kl/ \I] l®kl/ = \Ij l®kl/ [po’pl/O] 9 {[pl7pl/l] l/}
S — A1) o J,spl,’o

[povpzfo]kll

Cik/
which reduces the evaluation to V' [Po-rro]™ , {[pz,pm]kl’ }

13.2.2 Projection along the basis
Once the partial states {v} are chosen, the states functionals of EB) \Il®kgkl/ ([pl,pl/l]kl/) are projected
(i) %P1
by operator:
> IIe 11
v min S(v)

Start with projection []. This is done by first rewriting the functional (69) with the decomposition:

)SED DED DENED SN C( V70 k) W (N (72

m /
m D;)O'pl m D(PO’Pl/o’f’l'pl’l)'m’m,
Jrpu

®k / k / ®k ’ k /
x (@w 1 (1o, prol )) (@w Ly (Ippn) ))
roJ v

T Epy
and express this functional in the basis of states {v}, each of them defined by the collection

{v[p o] (\I/mgkl,)} given in (71). To do so, we insert in (72) the identity operator > T]
1P J v

,S
Py’ 0
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so that the functionl becomes:

SOS > % % o({merd, Aons)

m
vom Dpo PLT m/ D(PO»Pl/o»Pl’Pl/l)»m’m'

JsPu
\I] kl/ \I/ kl’
® ®kl, [po, pro) ® ®kl, [P, 1)
’SPZ/ 0 75Pl/ 1

- ZHZ Z Z Z 9({[pzvpz/l]k"}lyl,,v>

m U
vom DPO PLT m D(PO»Pl/o»Pl’Pl/l)»m’m'
JPu

&k &k ) kl’)
®U[m-,pm]k" (\I/J ®kl/> (\I/J By ([pl,pl 1] )

»Spyr 75pl/ !

and this becomes a functional of:

®kyr ®kyr ki,
v[pl . ]kl’ v @k, v ®ky/ ([plapl’l] !
i) ]Spl’() ]Spl’l

We have thus performed a change of basis in (73), by replacing the evaluation functionals for the

field \If®kgk, by the basis of states L <\I/fkgkl,>. The functns g ({[plvpl’l]kll}l ) ,v> are the

’SPl/ »Spyr

coefficients of the functional in this new basis.

13.2.3 Projection of the degrees of freedom of \I/®kgkl,

Py

As in the first part, we consider that the projection comes from the minimization of a given
functional of the form:

k Rk, ®/€ k
exp (=5 [ { @™ ([po,pzfo] ) © v” ([pz,pzfz] l’) X e (U ek, | @0 ([pz,pm] ”)
v, spl, N sp i PLPy Tspu'y ) 1L, spl, /

where the indices denoting the realizations are implicit.
The projection of functionals by:
> II= 11

min S(v)

will be:

%y > (), )

v D;’Ovl’lvm m! D(pO’pL’O’pl’pl/l)’m’m/
JPu
®kyr ®kyr ( ®kyr ky
v ko | ¥ ®‘I’ Dis Pt )GXP D ®‘I’ P prt)
i) (95 ) 2y (o) o STL (97 (e
Minimizing S leads to AR ok ([pl, pl,l]kl’) with multiplication with a background:
J, 75pl,l
el ,
l/®kl, ([phpm] ! )
J,O,sp ,
U
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and the functional reduces to:

IIEDIEDY > 9({[]917P1'z]k"}”,av>

ST ! ’
m Dpo’pl D(poyplloypl,pl/l),m,m’
Jpu

Rk, Rk, k
& P g ( l/)
{[plvpz’l]k”}< J)g%) ( J,O,sgflz, o]

The part:

Pt

’ ky } V)] X QW ky QW Ry ( ’ ll)
g ({[plapl l] I ) ) {[szm] G } 7 Sg: o "o, S®kl, [plupl l]
is a functional Of:

Qkyr ®k;
v o | @Y QU ( Dy u)
{[pl’pl’l]kl } (l’ “?f) (l' Jospu lpr,pr]

l

13.2.4 Saddle point solutions without degeracy

The background ®\If ®ku ([pl,pl,l]kl’> is obtained by minimisatn:

J’O’Spl’ .

Rk ki Rk, Rk, K/
s ({m (Ipospwol™ ) & w55, (I )} R (w ) 20", (Ionpe ))

R 7 Qe T) ’Spl/ ’Spl/ i

The tensor:
Ky
®\PJ ®ky ([po,puo] ) o v, ([pz,pm] l )

14 Spl’ o N4 Jspl,

stands for set of realizations:

®kyr k &k k
QWU @k ([po,plfo] l/) @ W ®ky/ ([plapl’l] l/)
U Ja, Spl’ L Ja, spl,

0 N

and:

®kl’ ®]gl, k.
v[Pl,Pl/l]kl, (\IJ] ®kl/> ® \IJ] @k, ([plapl’l] ! )
0

ey
is evaluated at the considered realization:

&k ®kyr
®ky < k)

J,oz,spl/’o J,a, 2Spy 1

v

We will write the functional v[ & in components:

PPy

Rk
v[p p/]kl' @T %k
Py l ]Spl’()

k k k k
= /v ([po,pzfo] " [pespin] l’) x v @kl, ([po,pzfo] " [pepin] l’) d([po,pzfo] l’)

Spl/

As before, including the id map, we have:
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®k Rk, ks
v (k) D o, (Iprpi]™)

Uy Sp J, »Sp
: (prr) gt I<m (ry) 1<m
U'<m’ U'<m’

®]€ / 12 ®]€ / / /
v {‘I’J : } = Z/U ([po,plfo]kl ) o ([po,plfo]kl ) d [po, puro) "

As in the first part, the series expansion of the saddle point solution is:

@ \If®kl/

J,0,s

k
oy (Ipr ™)

Py

We also write:

&k k
v (oo™ o) (74)
J,O,spl/ .
— iy i3
= 1
Z d {[pOapl’O] } ggs/ d |:pl17pl’1l1:| 11 <my £ |:pl27pl/2l2:| lo<mo
(5", [p ') s lh<m ty<m

(o o K]), 5

—r by by
><ICO {[pOapl’O] } ) |:pl15pl’1l1:| ) |:plzapl’2l2:|
I<s

<m lo<m
[ 1xm1 2m2
I'<s l’lgm’l llggmlg
\I/®kl’,i kyr klll &k
X H &k, [pOapl’O] ) pllaplllll 1}|: :|kl/2 \IJJ
i PiyHPy!
Iss, Domug hsmi | 1y<ms 270l
U'ss h<my/ b <ml

where:

ool = ()Y = () om) ) T fonn,

P1,l>Pm/ 1

and where the f,,  ,..p, describe the constraint involving (Uj)(p 070) and the (U;)* and their
subobjcts. Note that:
{[po,pl'o]k”} I<s
U<’

are s copies of:

{[p07pl’0]kl,}

I<s!
We have also defined:
0, 0", k') = {po, pro, ki } i1<s

U'<s’
and:
/ / !
(mvm a[papvk])LQ = {pllapl’lllaklll} 7{plgapl’2l25kl’2}
l1<my ll2<m/2
1) <m) lasmy

Gathering indices p;,, pi,,.. as p;, and defining the following partitions of

kyr
{ |:pl1 7pl'1l1i| ! }
l

—

ki
pllvplllllj| :
li<my

! !
13<my

= [pzppzflzl} ; {pzppz;zl} '
P
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we find a more compact formulation for the saddle point solution without degenerac:

Rk kyr
W (I ) (7)
J’O’Spl’,l
I r— &
_ 1
E {[Poapzfo] }lfis’ ) [pll ’pl/1l1:| h<my Lyl
(s.5".[p.0" . K']) \S hsm

(o [ ]),

ki klll
xKo {[povpzfo] ! } ; {pll,l)ﬂlzl}
I<s 1<
U<s’ lllzm/l
18
®ky PR kyy ®ky
X H v Qky [pOapl’O] ) pllaplllll H’U klll \I/J
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13.2.5 Including degeneracy: general formula

As in part one, we conside transformations parametrized by:

({0 (5 ), { (100 ()} )
Al ), )

. kp. . kp. ., kys
with in general <<A(pl’pl”“kl’) (\I/Qj Fol ,v))) ~ <A(p”p“vl) <\IJ? ro.d ,v>> )

In the sequel, we will write the parameters in a more compact form:

(pl)pl,’l)kl’)
{ (A. (pl’pl,’Nkl’) (\I]‘?kpo,u 7 ’U)) } N A_
Py {17,013 0]

The upper indices account for the decomposition of the initial field, indicating that the degener-
acy parameters depend on the subobjects decomposition. This dependency involves the mappings
(pi,p11) and the tensor power ky of the subobject arising in the saddle-point solution. The lower
indices account for the dependence of symmetries on the remaining non-projected field. The sym-
metry parameters are functions of the states in which this effective system is considered!.

In (76), the arrow indicates that we will omit A, which represented the parameters in the previ-
ous sections, to retain only the parameters main determinants—the mappings between subobjects.

(pl,p s k /)
T, 0]} ] (76)

1n fact, note that in this formula, taking account of subobject implies that the parameters implicitely stand for:

k k
(pll’pl’lll’ L’1> (pll'pl’lll' l’l)

A = A

{2 71,01}, [pospyro) V!

[€07013[pospuro] V] {{mu',on,ffk“ . ([P“’pl’ﬂ]kl/)}
"a”spl’,O
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&k
J,0,s

If the subobjects are included, the generators of transformations between realizations of ¥ ok,

Py
are:

L (\I/?kpo,v) = Z d <{[po,pl'0]kl/} I<s ) d {{plppl’lzlrli }hém (77)
U<’

(5,8, [p.p' k']) <m/
(m1,m,[p.p’ K'])

(U 11 ool 4 | }’“l’l oo {w5)
/ /
[phpl,l]kw [phpl,l]kw PosPrrol * 5 [Pl Py L<m kl,l J
Py Py
17t li<m

h<m/
lll <m/

We will wrt:
(mlum/la [p7p/7 k/]) = (mu m/a [pap/u k/])l

(pvpu, k)
{01}, v]

(p1. i1, k) "
{1,001}, 0] |’

k ’
(o1 b ]) v ®ky ([pl,pl'z]kl/ ;

[{\IJJ [l/,O]} ,1)] J"O’Spl’,l

and 1 has components dual to

] so that, we write the solution is given by grp ctn:

&k k.,
v @k, [plapl’l] ! )
J,0,8p

V1

B ' ®kp0 (pl,p/ ,k/)
= exp (zL (\I/J ,V) . (P, [ll’,l()]}l, v] ‘| )

and the dependency in (\IJ?k” 0) is kept implicit. Inserting this result in the saddle point equation
(75) yields:

(leapll,’zlakz'l) ] } ,v> (78)

Rk k
v Rk ([plupl/l] v ) {
10550 {0, [, 0]}, 0]

oy ki
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lismy
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kyr kl/
XICO {[pfhpl’o] ! } ) |:p117pl/1l1:| !
I<s

I'<s’ 1<my
<S8 l’lgm’l lllgm/
®ky PR ki ®ky
X H v ®ky [vapl’O] ) pllaplllll HU klfl \I/J
I<s J-,Spl/’o P/ Ppc |:pl1 7Pl/111:|
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with:

(pll yPly, 1y kl’l) 1 }

{1, 0]}, ]

- K
ki !
Ko {[PO;PZ'O] ! } ) {[plwpl’lh] 1}11<m ’ {
I<s /

<m’
l/gsl ll\m

-l (Gt ) |5 o

l1<my /22/ l’lgm’
1<m)
ki
and the operator L (\I/?kp 0) acts on the [pll, Py ll} : degrees of freedm. We will also wrt:
w0 = v, (79)
l/

J’Spl’,o

13.2.6 Projected functional

ks Ky Piys Py 7kl’)
LA ®Rk;/ ([plapl’l] ! ’{[ ( . v ! ]},’U)
0.5, {01}, ]

1k . .
(pll’pllll’ 11) ] } ,v) to obtain a projected background state, and

To each state:

[{w,[,0]}, 0]
this leads to define the generic projected functional (see appendix 7):

we associate coefficient ¥ ({

Ky ky ( SRV ZAE) Ky )
Z /gK: |:p07pl20j| ) { |:pl1 7pl/1l1:| ! } » U, { b plllll h ‘| } (80)
’ Y li<m [{\I]J [l 70]} 7U]
(s,s 7[p.,p ,k ]) ll1< ,1 1<
(man [ 1), i <
®Fk;r ky kyr ®ky/
X H |\ ékz’ ([po,pl;o} 7{[pl1apl’1l1} 1} ) H ) Ky )4 @}kl,
1<s ']75Pl/(7): P/ Pe£) |:pl17pl’1l1:| 1 J,Splll 2)
<! ) ’

Diys Piy ,kl') k &
(1 o ]} v |d {[povpzfo] ll}lgsa{{plppl’lll} ' Iy <my dv

[{\I}J [ZI,O]},’U] s’ 1 <m

1<m
! !
l3<my
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13.2.7 State dependent effective field

Reintroducing the realization index «, this is a functional of the state:

ek +Shy (T 1k (pro-pigay - Fy )
v ky )Y ®kl, ®kl1, ([po,plgo} Vo ! ll,ll i X
{nrgn] ) s {0,000l

S
o”’l/o 1<

®ky 1k ky
= / Z H v ®ky/ [p(Japl;O ) { [ph’pl'lll} ! }
b P

ectoguia} IS, Tl g
’ / Ky
(pll’pllll’kll) ]} U d{{pllvpl’ll} ll}
[{\IJJyOé [l/a O]} ) 1)] ! !

pSm
I3<my

®kyr
X H v kl, LG \I]oz
[pll’pl’lll] 1

Pe£) J, {a } Spl’

If the coordinates are independent of «, we can sum over components and the functional depends
on the effective field:

®Zkl’ +>° k. ky
v Y 1 o
klll ®kl, ®kl, Do, Pro

S LT
ZU k1 v ®kl, &k [p(),pléo} v,
[pzl ’pl'lll] 1

k2 k2
J,a, Spl’ o ’Spl’ o

(pllapl’lllakl’l) 1 } v (81)

[{w, [ 0]}, 0]

(pllapl’lllaklll) ‘| } v

[{w, [, 0]} 0]

13.2.8 Local effective field

In appendix 7, we rewrite the genrc functional (80) by summing over v and by introducing series
of realizations, as in part one. It yields for the generic functional:

(pllapl’lllakl’l)
{2, 1101} [po,preo]*” 0]

— ks
Z /ZQK: {[p07pl’0] ! }lgs )
! !
(5,5, [p.p' K']) ¢ bss
(m.m",[p.p" K']),

k
l<s Ja, Spl/ 0 |:{\IJ] [l/v O]} ) [p()vpl’O] v ’ I'<s
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PPy Ky .. . ’ .
If the set ( Db ) , is independent of the copies \11®ng ,, this becomes:
10 1,01}, [po, bl 0]

NeoN Spl/ 0

a 1 (pllvplllllvkl’l)
(Sysly[pzﬂpl.’k/]) /g/C {[pOapl’O]k }/22/ ’ { |:{\I/J [l/7 O]} , [p(Japl’O]kl/ ,’U:| (82)
(m,m/,[p,p/,k/])l

Q3 ky ko, (pllapl/l 5kl’)
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JHL’ ‘Spl/ I<s |:{\I/J [l 70]} ) [vapl’O] v , U
<!

/
d [po,pl/o K gs>
<4

I<s {{‘I/J [, 01}, [po, prol™ s v
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where the local field is defined by:

®D_yr kyr ki, (pll7pl/l 7kl/
= Fpun | {9 {[po,pyo] ’} , '
JIT o

Rk, k (pllupl/l ) kl’
vt ®k {[povpzfo] "} ) [ ! y
I<s , U

AT {2, 1,00} [po. prro)*

, Py, i k)
Z H ®Ekl ([pfhpllo] l,) \Ijot ( ! llll ll , U

a I<s Jre, Spl’ ,0 {{\IJ] [l/’ O]} ) [povplIO]kll ’v}

I'<s

Pty Py Ky . . . . . .
If the ( vt ll) . are not independent of the copies \1/?’;1’ 0, identification is
{2, 1,01} [po,prro]*” 0] ,

local.

14 Variations

14.1 Local invariance

The principle is similar to part one. Starting with the effective field after projection:

@3k kyr (pl yPirg 7kl/)
\I]J I llS@l)/kl/ {[pou pl’O] ! } ) { ! 14 1 , U (84)
v Py’ o I<s
r<s’

{w, [V, 01}, 0]

,{ (pllupl’lllukl’l) ]},U,a
S

{w,[I',00}, ]
® kyr s Pl ky
= ST (ot o) ({] o) 1)
a I<s pl/ 0 [{\IJ] [l 70]} ) 1)]
'<s’
We request that variations of fields states does not affect the parameter space. More generally we
will consider the state dependent field (81). Using (84), it can be rewritten more compactly as:

’ ® 1Ky ’ (pl y P s Ky ) ’
/1} {[pOapl’O]kl } Zl ékl/ {[povpllo]kl } ) Lo T , U d{[p07pl’0]kl }
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where:

v {[po,plfo]k“}

I<s

U'<s’
. . " Ky ko,
includes some delta functions to account for the partition {[pl17pl,1 11} 1 }7 [po, pl’.o] in (81). The

integral element d {[po,pllo]kl’} will be omitted.
I<s
U'<s’
The variation of \If®kgkl/ ([ﬁoaﬁz'o]k" ,B) in the previous expression leads to:
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where ¢’ is the variation with cnstnt prmtrs. The first order independence of [ (pll’pllll’ h ]
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Or in local coordinates, as in the first part:

/Z [E(ki) <{{\I]J[l/70]} A<kl>)a}>‘|a7v VA(k )\IJ®ZZ ' {[poupl’o]kll} 7A<kl/1)7a U, &
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14.2 Averaged field and global invariance

As in the first part, we can rather require a global invariance for an averaged field. This one is
defined as a local field, defined in one point, with cloud of parameters that are considered in an
integrated manner.

14.2.1 Averaged field

To explain the forementioned claim, we assume that for a sequence of included group of symmetry:
{ (pllapl’ll17kl/1) 1} _ { i [pliapl;liukl;} 1}

{w,[I',0]}, ] | {03 ,0] |)
{ [ [plivplglia kl2:| ‘| } _ {pzi,pl;li, kl;:|i<n

fwswonyel [\ oyl | )

[pli’pl;liakl;}ign _ (plppl’lllakl’l) ] {pli’pl;li’kl;}ign
fes ool | \LHws oo | Keswoyel |f))

with (pll,pylll,klrl) an initial st f prmtrs. That is the parameter spaces is a set of infinite flag

with:

manifold starting with one set of parameters:

(pzl,pl’lll,klfl) ]

[{w, [, 0]}, ]

(mppmpkg)] @mpwwhﬂKn .
{ws ool |7 | despsopel [f)

7

and the field can be described by:
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@k [p07pl’0] v )
]Hl’ Sp o I<s
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which accounts both the integrated presenc of a cloud, that is the points of a space, with

distinguished points

! k / . . ..
(p b Pryn ll) ] . These points bear the physical quantities dependncy.
(@, [, 00}, 0]

14.2.2 Series expansion of the field in cloud variables

As in part one, we can expand the field in series of the cloud variables. Given that:

{Pliapz;liakl;}Kn
{0, 1,01}, 0] §
is a set of sequences:

{[ (plppl’lllvkl’l) ]} {l (plppl’lzlakz'l)7(1?127171'2127/@1’2) ]}
(w00 1) (v, .01} 0]

and given the hypothesis of group inclusions, we can decompose the parameters depending on

several indices as:
_ < (plguplélgaklg) ‘|>
{w,[V',0]},]

%,k . . .
and, as a consequenc, we can expand ¥ 2 é’kl, as series of one point, two points..:
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In this sum, the set:
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appears through an infinite number of representants, since there are an infinite number of flags
arising in the sum. As a consequence, the field is thus a series:

(pllvpllllpkl/l) ‘| [(pll?pl;ll,klg)}zgn v

®Zl’ kl’ k
@k [pOapl’O] v )
I<s
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and this series enables to rewrite \I/®§l’ ké)'k as the following functional:
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for the set of points:

Vv = {
. k
(o)

14.2.3 Averaging over cloud variables

PusPrigs ki ”
[{\I/J [l/,O]},'U] (Pl-=pl’1-’kl’>

As in the first part, this can be rewritten as an average over cloud variables:
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where the A are local coordinates for V' .
(pli)pl{ili7kl{i> (pli’pl;li’kl;>

14.2.4 Invariance for averaged field

For the averaged field, the local invariance of the parameter space with respect to the fluctuations of

p® = ké'k may be diregarded if we consider that only the entire cloud should not be affected. This

J Hl’ Spl’l
corresponds to impose that the variations at the border are cancelled. Starting with the equation
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(85) and imposing the invariance (we only write the first term of (86), the computation is similar

for the higher order terms):
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A derivation similar to (30) leads to the following relation:
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is the average of:
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7 (3

15 Constraints

15.1 General dependency

So far we left aside the form of the constraints. The treatment is very similar to the particular case
of the first part, so that we only generalize the results. The constraint describes relations on the
smtr operators for n € N:

P ({Tgacy (95} AUEY, By (W), UL 0) ) = 0 (87)

where the {Uf}l. are the initial parameters for the projected fields, the Ly, ; (\If?l) act on the set
of projected fields and where the functionals h; ((¥),U}, v) have the form:

(0§ ).) = | o (05 ) (095 () ) )| T 95" (02)

Evaluated on the projectd states, and assuming the independence of parameters from the real-
izations, this becomes a relation:
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where \I/®k"®,cl, has been defined in (78). A series expansion of the constrnt in the {U}}, shows
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that the constraint become functional relations between the parameters, and:
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Alternatively, the constraint depends on the kernel defind in (78):
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that keeps track of the projected states in the definition of the constraint.

15.2 Lowest order expansion and Metrics on projected states

A second order expansion of the previous constraint enables to define a metric on the parameter

space. It depends both on the field {¥ [I’,0]}, and the backgrnd \I/®k"®kl/ through H,, (\IJ@C“ ®kz/>‘

’ ’Spl’,l
For a local functional at the lowest order we find:
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{ws 0000l

The scalar functional is a series expansion of integrals for the fields {¥ [I’, 0]}.
Formula (89) implies that in the projected space, the metric is dynamicaly an object defined

by the projected field:
{pliapl;liu kz;} 1 } v)
[{w,[I",0]}, ]

and that the metric tensor for one point is a functional of:

g ({ (pli,pl;zia kl;) ; (pljvpl;.lja kl;.) } v AT (0] /CO})

See dicussion in part one.
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16 Constraints, and reparametrization

16.1 Constraints defining the parameters

Assuming that the dependency in T?k” can be described by the constraints:

i’ ;Z,k; ) l _
" <{ [{g;j [l]’jly,ln]}l7 [)v]] 1 } ’ {\I}?k ; [Pos 1 0]}) 0

. . .. . . . oy, ke
We implement this condition in functionals by including ¢ <H ({ (p > Pt li)

o)
{Ys ['n,ml}, [v]]

/@ ({[povpz'o]}l/ ) {{ [(plppl,’ilia kl,’i)} }})

\I/ng:;;ill, ({[po,pzfo]k"’i ) [(pzi,pz{ili,kl;)} }) ) (H ({ [(pli,pl;li, kli)} } ,\IJ?k”))

1.0
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where the ((pli,pl/_li, kl/_)) are local coordinates. The relation H ((pli,pl/_li, kl/_) ,\If?kp) is global.
In coordinates, we assume a relation involving the linear function:

h. ((plivpl,’ilia kl,’i)) = hf (plppz{ilivkl;)

and relation:

0=H (h- ((pli,pl;ziv kl;)) a‘I’?kp ({ (pli,pz;lia kl;) }))

where \I/?kp ({ (pli,pl(ili, kl;) }) is an averaged field over independent degrees of freedom:

5 (i)
= /U ([p07pl’0]kl,) ‘I’?kl, ([Poapllo]k“7 {(plwpl;li’ kl;) }) d ([Poapl’o]k”)

k.,
for some function v ((Uj)(p 0P 1’0)) : ) The constraint expresses parameters of (L (\Ifggk” )) as

functions of \IJQJMP . The {(pli, Dy kl/_)} become metric spaces, with metrics, functional of \If?kp.

16.2 Reparametrization and field transformation

We do not include subobject, for the sake of simplicity.

16.2.1 Changes of variables in the parameters

We assume that in the sets:

% _ (pzi P, kl;)
(mopig ) {w, 1,0}, 0]
(pli VAR klg)
(@, [, 00}, 0]
Under these assumptions, we consider some transformations described by some group elements
Ky, . .
g acting on the field o” l®',jl, . We consider the tranformation:

J,s v

the variables

] transform as the initial parameters U; in a change of variables.

P10
@k k. ®ky ; Ky
o0 (popeol®) = g0 G (ool ™)
J.sp i J,s i
Py o Py o
®ky 1 k
= ¥ oak, (g - [po; pro]™ )
J"SPL/ K

We also assume that the kernel Ky arising in the saddle point equation:
ky . / k /
‘s 4 bi;s P, R
ICO {[poupllo]kl ’Z} ) { |:pli7pl’.li:| lla ( ! i 2) ] } )
< v ' {ws[,0},0] |),
ppp’.-vk’.) s kys
( L Pl P }) Ko <{[p07pz'0]kl ’Z}l, . { [plppz;lz} ll} )

= exp (iL (‘I’?km) : { {00}, ]
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transforms in the following way under g:

0 <{[p0’pl/0]kl/'i}l/,i 5 {m7 l [EI\)IZ zl;,lz),]flfz] 1 }>
S (G W e i R e Som |

These kernel arise in integrals while computing the saddle points. This involves products of variables

ki
k., . U, . . .
{[po,pllo] l’ﬂ} , and {pli,plr_ll} i in the kernel. We can assume a translational invariance, so that
Vi i

(pl,-,pl;ziakl;) ]} ) (90)
[{\I}J [ZI,O]},’U] i

(pliapl;liv kl;) 1 } )
({g. W, [l',0]},0] ]),

We rewrite (90) by considering the transformation properties of the degeneracies operators. We
define the operators:

by change of variable::

Ky s Ky
g'ICO {[p07pl’0] ’Z}l, i ) |:pliapl;li1| ‘,

Ky g kl%
— Ko {[povpzfo] ’Z}l, S g. {plppl;zl} )

16.2.2 Transformations for degeneracy generators

U

[pl 7plfl]kl/ ) H[Pl 7plfl]kl/

ki
of multiplication and derivation by coordinates of (( )(p vP l’l)) "

To study the invariance properties of the states, we assume the general form for the generators
ok
L(w5):

®k Q) ,
L ( po) Z 1 < Plva kl 7H[P17P1’ ] I [pOapl’O] PO {[plvpl’l]kl } lém/) (91)

i,kp;

(#)
X {H/d[po,plfo]k”od{[plvpz'l]kl/} 1<m

'<m

) g
k k ®kp; kS
v (([po,pzfo] P, {[pz,pm] ”} I<m )) o, <[po,pzf ]P0 {[pz pui "} 1<m )}
U'<m/ 'sm/

where the 1 are defined in (154):
11U 11 1()10) v
[Plvpm]kl” [mvpm] e [Poa 1'0] {[Pl pl’l] }152/
If these operators satisfy also some linear transformations properties:

gl <U[lepl/l]kl”H[pl=pl’] l,,[Poapz/o] ” ) 8- {[Pz,pm] “} z<m>

I'sm

= ’ / ’ 14
]. <g'U[pl.,pl/l]kl, 3 Hg»[Pl-,Pl/ ]kl’ 9 [pOu D O] l {[plu D1 l] } l§$l>
and if this action of g is given by the action of some operators:

Mg U kyr s II Kyt
[pli’plgli] o [pli’plgli] g
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16.2.3 Transformations for the kernel

Using (92), the transformation (90) for the kernel is thus:

ot ({omarte, (T [ (ot 1))
— <{[p , Duro) l} {g-[plwplwrl;’ [{E;lé’f ElfOﬁ)v] H)

. > ;s Ky ( Py _,k /)
= exp|tMg | U T I o Ko ({[Po,pllo]kl 'l}l/ .7{[7%-7171;11} ll7 b, plilll v } )
{pli’pl;li} @ |:plz-7pl;li:| @ ot [{g'\I]J [l 70]} 7U] i

k.
The linear transformation on the [pli,pl/_ li] “ translates on the operator generating degeneracies:

exp (ng (U [pli,pl;li}kl; ,H[plwpl;lirl;)) (93)
- Pl Pk » .
X exp (zL (g.\If?kz) , < [{g\h Elf, O]; ,)v] ])) exp ( iMg (U [pli ,pl;li]kwn[mi ,pl;li]klg))
T8 Pk
- <2Lg (w03, ( [{(gpl\yf fif,o]}lf,) o D)

where L8 (g.\If?k’) is the operator with generator:

,’L

(2)

1 11 / kpo { . ’ kl/}
(Ug[Plel/l]kl/ 5 g~[17lxpl/l]kl, 5 [p()vpl 0] ;18 [plapl l] I<m

's<m’
p.,p,_,k,)
(lz Uil M ]‘|>7we

Given that we assumed dual linear transformation for the parameters <
{g. s [,0]},v

find:
(plivpz;lia kl;) 1 )) (94)
[{g- W[, 0]}, v]

(Pl“pl;zia kl;) ] ))
[{g. W, [I',0]}, ]

exp <iLg (g.ﬁ/?k’) ) (
= exp <iL (g.\IJ?kZ) . <g.
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Then, using (93) nd (94), we can deduce the transformation property for the kernel:

Ko <{[P07Pl'0]k”’i}z',z {gm’ Ezpl‘;fl;l 0];]1’/) ] ”)

= exp|iMg | U kz"
[pzi ,pl;li] ¢ pz Py,
k: / N
exp <’LL (g‘ll?kl) . < (pll,pl il l ‘|>> exp _ZMg U k., 7H k.
{g. v, [l',0]} [pli’plgli] 5 [miapl;li] v
. . ky
xexp | iMg [ U oy [poapl/o] ! ’Z}l, ) [pliapl;li] ‘
[pli’pléli] ' pl Pil . i
. ) ) k ! /5 o
= exp i (g‘l’?kl) .| 8. (plz pl Li l {[pf)upl’O] ! ’Z} , , 8- [pliupl(li:| h
g, (1,0} o] i ' ;

16.2.4 Transformation for functionals and effectiv fld

Inserting previous formula in (80), the function characterizing the generic formula is transformed

as:
71%/ kl’ (pl , Py 7k ! )
/g’C g. |:p0,p120:| , g { |:pl17pl’1l1:| 1 } , U, { 1 lllll [
limy {0 1,00} o] h<

lllgmll
. kys ky . o .
where the actions g. {po,pl/_o] , g [pll,plll l1:| 15 take into account the initial change of variables.

K
. . . . 1
Since we have assumed some invariance, we can assume that the integral of g* over { [pzl, pl’llJ ! }

is invariant, so that we can replace:

g |:pl17pl’1l1:| - [plppl’lll}

A second change of variable:

kl/ kl’
g. {po,Plgo} - . [po,Plgo}

As a consequence, in (82), g€ is invariant, and the effective field (83) is replaced by:

@3 ky _ . (pi,p,._,k/.)
Ay g L. [po, pro] ™7, & Lo ity M
; gy 1,00} 0] |,

J,l;[spl/’é
and this implies the transformation property of the effective field:

®Zik/i k. (plivp/.~;k’.) ®sz" — k.
g\IJ ®lél; ({[povpllo] Ui ’ [ ll/lz ll v ®lé/ g 1' [pOapl’O] e ) 8-
Iy, ¢ {e- ¥, [0}, 0] ] ), T Moy & K

(plwpl;lpkl;) ]})
e v, 1,00} 0] |
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16.3 Constraints and transformation

If the parameters (p Lo Puity» By ] satisfy equations of the form:

{w, [V, 0]}, ]

o

where the vector functions h, ((¥;)) have the following functional form:

(pll- 2 Prie;s kl;) /
{P,[V,0]},v] ] ’{hp (), [po:p 0])]’) (95)

_ ik ®ky ; ik N ®kyr ko
hy (%), [po, prro]) = /hp ([po,pzfo] l’) LA ([po,pzfo] l’) d [po, puro]™ | UGk, ([po,pzfo] l’”)
Jﬂsﬁl’,(; J,spl,’(;

We can write the transformation property for these functionals:

g8hy (Vy) = hp(g (V)
= = kyr ®k’,i = = kyr = = ks ®k’,i k.
= /hp (g. [Po, Prro] l)g-‘l’ égkl,_ ([poapl/o] l)d[]ﬂoapz'o] "lew égkl,_ ([Pmpz'o] ”)
Jys- v Jysy, b
R 27 PPy o

Consider first a set of functions:

k. ®k i k.
{hp (g. [po, prro]™ ”) g.v éz)kl,_ ([p07pl’0] ! l)}
J’Spl’,(;
belonging to some representation R (g) of g, and transforming as:

/o @k ; /o /o ®k’,i /.
{hp (g. [po, prro]™ ’Z) g.v l®}cl,_ ([povpzfo]kl ’2) } =R (g) {hp ([po,plfo]k’ ’Z) v l®kl,_ ([povpzfo]kl 1)}

J,s K Ts i
7 P o

so that:
g-hy (Us)) =R (8)hy ((¥))

Consider also that at the lowest order approxmtn, the function f involves some scalar products:

([ Goreoie) T o, qay) = 7 orate) o, oy
{@, [0}, 7] [, (', 01}, ]
Under these assumptions, the constraints (95) satisfy some invariance property:

/ ( (b ) ] {hy ((wm})

[{w,[I',0]},]
This relation is satisfied if we consider the lowest order constraint:

¥ (lepz;liakz;) 1G< (pliupl;livkl;) ],\I/ ) (lepz;liakz;) 1_ U )
(Z< {ws 1, 0]},0] oo 1) s woya | T
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and if we also assume that v (U)) arising in the constraints are invariant under transfrmation of
the parameters.
7 (8 ¥s) =7(¥)

(pli DU kz;)
[{¥, [I',0]}, 0]

,g.%> = (R (g) ' G (

As a consequence, function G ( ,\IU) transforms as:

G <R0 (g)

or written differently:

Ro(g).G< (pli’pléli’klé)

[{w, [, 0]}, 0]
17 Several components

(pzl- P, kl;)

) ] o)
[{w,[I,0]},] | 7| Ry (8)

{0} v

(pzl- » Pty kl;) -1 -1
v, 1,01}, 2] ] ® '\PJ> Rl

,\IJJ> = (R (g) ' G (Ral (g)

17.1 General set up

The same procedure applies if there are several fields corresponding to sevral types of non projected
sbbjcts. We replac:
(po) P9 k
U;"’ SV (@xU5)

with the collection:
{ul) By @ |

Pn

The corresponding field for subobject n writes as a vector component:

Rk, s ks Rk, k /s
U ' ([pmpn’n] M) =¥ ngzﬂcl,n ([pnvpn’n} M)

J,a,sp ,’7 J, o, sp,
n'n l n
The whole set of remaining subobject is thus:
Rk, s k s
mn n'n
N4 ®Fk, / ([pnvpn’n} 7)
J,a,s (N
1S9y
nn

Similarly, we define the vectors:

k &k, 1, k k
|:[p7]7p77,77} 77”’7:| and |V Itlgkn/n <[p7]7p77,77} nlnv{[plapl’l] ll})

with components:
k s ] k,,/,,

[[pnvpn’n] "" ” = [pmpn’n} T

and:

k_s kyr ®k7’7 k,,/ k.
v n%k n ([pnapn’n] nn?{[phpl’l] ! }) =V Iékn/n (I:p”lﬂp’/]l”]} In?{[plupl/l] ! })

J,a,spn/n

4n
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The sets [py, pyy] ' are [Pns oy P/ quotiented by constraints imposed by {[pl, o)™ }
We will also consider the product of remaining fields:

k n'n ’
1_[\11® ® ( [P, Do) K ﬂ)

k/
J,a,s
pnn

and for their subobjects:
®Fk, T Tk ’
H\I/ n%kn/n <[p7]7p77,77} nnv{[plapl’l]kl }>
n'n

17.2 Projected states

The states are decomposed as:

t=> 11 =211
{ont{on} P11

which accounts for a decomposition relative to multiple states.
Including the projection on background states for some subobjcts yields the projection:

> 1= 11
[v] [v] min S([v])

We start with the projection []. The basis of states is:

Rk n k. s
nn — nn n'n
v v @k, = an v Bk, ([pmpn’n] )

J,a,s J,a,s
[k n Pyly

and including the evaluation functional on other fields yields as before:

Rk, / Rk Kk, ki
CH R %’kw’n ® eU[PL-,Pl/l]kll (qj] l®kl'> g (f’y ([[pmpnln] ”7} 7{[pl7plll] l }))
Ja Pty Spyr
ks ks
/an ([pnupn’n] , {[plapl’l] ! })
n

&k, k k k Rk
x|, ([pn,pnfn} ”'”,{[pz,pzfz] "}) d ([pn,pnfn] ”"7> @evy ot (¥ e,
J,a, Spl’ i)

J7spl’,l

Rk, s Rk,
v[ ]kl’ LA %k , ®ev[ ]kl’ v fg,k,
PPy J,a,5p n'n P1sPy1y J,5p ,l
n'n l

with the implicit notation:

k kpr | — k — kyr
[[pn,pn/n] ”’”} ,{[pz,pm] l }: [[pn,pnfn] ””7]/ II  fovveoprr Fodom, {[pz,pm] ! }

P1,l>-5Pm/ 1

As a consequence, projection on the states [v], amounts to include the following contributions in
the functional :

Rk, Rk,
H — |v ko | T ® ev T
[;Dzypl/l] n'n [;Dl.,pl/l] T 1

[v] Sesp, R

H5 (fn (W, {[pl,pl/l]k“ }))

n
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where:

\I]®k7ll7l
Rk _;
Jya,sp ,n n
nn

o [T (o i)

Once the decomposition with respect to the states [v] is performed, we consider the projection
coming from:

U[pl ’pl’l] h

qj@kl, &k <[p’7’p’7/’7} knln’ {[pl’pl,l]kl/ }>] ! <H [pn’pﬁ'n} kn/n)

J,a,s
P 0 n

Rk, ks Rk, k
n'n 1 ’
exp [ =S| S@ | ¥ "L ([pnpyn] ") @O L (oo™ ) ¢
n'n [ l
J’a’SP 'n "Spl’,l
®/€7/ Rk, k
() 1 ’
Y Ke T LT ([pzvpm] ! )
PPy Ja,s, 10 Jsp,t
P,,I/,7 1,1

17.3 Projected functionals and effective fields

Computations similar to the previous sections leads to the projected functionals (for one realization
). Assume a collection {n;} among the remaining subobjects. Choosing the valuation for v,,:

Uny = {pm ) pn;,m}

the projected functional is:

k_ s
K MM
Z /g {[pmapn;,m} ' } i<s 7{
o
{ (s,s’7 {an)n,n}i Z_/) } i <Ss

(m,m/,[p.p K])

(pliapl;lw klé) ] } [v]
[{\IJJ [pnapn’n} } ,v] |

Rk s ko ( k ) k..
LA i pliapl;liu v i
X H )4 ®k"7/-/’7i (|:p77i7p771,./77i:| ' ) v ({ [{\I/ [ ]} } ,['U] d {[pniapn;,ni} ' } I<s
i<s Jﬂi’spn’./:z- J [PnsPy/n|y v Vs
i'<s il "
with:
([pvplv k/])z = {pm"pn;m’ knim} .
i<s
igs/
and:
(m7 mlu [p7p/7 k/]) = {plupl’lu kl’}
I<m
U'<m/
and:

[U] = {Um' }

k.
Constraints between components coming from Hp’”’pﬁ’-,m} m—,m} 7 {[pl, pm]k“} and the variables

Ao (\IJQJM” 0, [v]) are implicit. Considering general states:

ks ki
§ {[pwnam} } =1l ([%pn;mz} )

1< i<s
./ / .
TS i’ s’
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the effective fields have the form:

X X
./ / -/ !
i <s i <s

k) Mgl

{®sa; [Pos D] 50

We can define a global field by summing over realieations if the variables

(pli » Pty kz;) ]

, L . , [{Csa; [Posyn] } 5]
are independent from realizations. In this case, we find a single composed field:

®Ei//€n/ n; k_s (pl Dy k/)
i M s Pl 1o
N ®kn/l ) { {pnwpn’.,m} Tt } ) { v ) [U]
o i ]
i<s

[{\IJJ [pmpn’n} } U
i’ <’

kot g < kot g (pp pri, kl’)
= v, [pi,p{, J Z”> v ERR (0],
Z H ®k71 0 n M ™ [{\I/J,ai [pn,pn/n] } 7,0}

The projection has led to a single composed field. However, when the transformation group are, at

least in first approximation, independent and can be written L, (\If?ﬁp 0) with a formula similar to

(pzl- » Piti; kl;)
[{\I’J,ai [pm pn’n] } ) U}

(91), we can assume that the parameters are independent, and that, the

effective field becomes:

®%k, g Bl s
X e e, (wrga] )| | ¥
[ g

(pliapz;livklg) | ]},[v]) (98)

H‘Ijlﬂ [pmpn’n]}

J, a“SPW;/m‘
H\P "/"zk <{p D rng,m— { (lepz;liakl;) 1 } " )
Ok, i Pl ’ » Un
2 Jaw‘sp ]/ :], ' [{\I/Ja |:p777p77,77:|}7v}
. . ®kl”’7
and the system is described by several field ¥ Bhy, -
J"SPL/ K
5N

In general this decomposition is not ensured. We may assume that the constraints defining the

generators L, (\IJ?? 0) and thus the parameters depend on all the ¥; ™. Expanding the series in

constraints and assuming the independency in first approximation, we can assume the constraints
to have the frm:

(ORI GO IRIL RN (Cep )
2N, ({{ ntat (¥ ®kp0)}i<n}n,{Uf}i,{hp((\If?ﬁ”o) 0 )h>
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where the sum is over any arbitrary set [n] of nn prjctd stts. If the h,(c’;) are positive, we may expect
that the parameters are defined such that:

A ({ o (W5)} A0 o (9550) 0 0) ) =

(pl“plgli’ kz;) 1 } ,vn>. The remaining re-
[{\I]Jxa [pnvpn’n] } 7U}

) ({{ncen (55 b0, (o (055 )}, ) =0

are constraints between some parametrs. Changing of variables leads to reinterpret this constraints
as ¢ functions in the functionls that becomes series involvng products:

\IJ nm: ( oy kn;/ni 7{ (pzi,pz;li,kl;) ] }70 z) N { (pliaplélpkz%) 1}
H Sty [ ! nilm} [{\I]J,a [pnvpn’n]}vv} ! l;I [{\Ij""’ [p"’p"l"} } ’U] n

7 Jisp /
Ths constraints imply that some localty in this functionl has to be introduced.

so that we recover fids ®k/ <[p77’p77’n] Ky , {

DSpy

lations:

"77,'

17.4 Variation and averaged field
Writing the variation of the effective fld:

®Z.l M4 k?]’,/’!]i
5\11 ®k ;o { |:p7]i7pn£/77ij| i }
<

n’,m;

1

(plivplgli’ kl;) ‘| } [v]
[{\IJJ [pnapn’n} } ’v] |

JIlsp ,° i<s
— [ ol it i<’
= . /

Pni> Pyl n; &5 ki &,
i<s oU A B | ™"
i/<S/ ®k77;17 mEnn
X

J’Spn’n
!

(Pli P, kl;)

[{\Ij,],a [pnvpn’n} } 70}
field variations, we are led to the field equation:

Imposing that the variables {

] } are independent at the first order from the

5{ (pli7pl(ili7kl;) ] }
' /v {[p"“p";'"irnglm} ®Z[{/\I;J, [Py: Paa] } 0]

. k
. voomn _ nn
i<s o / 4
i< 5 Sk Pns Py

S
)
Pyin

(Pli P, kz;) v
} Y

[{‘I/J [pmpn’n] } U

® Zi, kn;/ 5 k";/ un
xV ) LT Pris Pl ’
{ Pu;s Pty R } sy il i<s

) o ,
[{\IJJ,a [pn,pn/n} } ,’U] il My i'<s’
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which becomes in local coordinates |:(pli7pl,-li7 kl/_) ,n}:

o= [ % ({twstowmnaly [(oomsoe) s )7,

Ot bt

k_/

<V w (PP } NICETEARIE

{{(Pziypz’.ziyku)m}} Jns®kn£m¢ {pm Pufyms . Plis Prjg» B ) 11
i i 11sp ) <

-/ !
i'<s

where:

= ({von (k) )T,
5{ (lepz;liakl;) ]} (pliupl;livkl;) ] -
{90 [Py pyn] } 0]

[{\pla [pnvpn’n} } ’”]
k1 k
léz’ 5\Iffsé§7cl/n ([ﬁmﬁl,n} l%) ) [(pliapl;li, kl;) ,77]

P

with identifications:
k.
v = [P, Do) 7
and this equation mixes components due to the constraints.

17.5 Averaged field variation

As before considered successive inclusions of grps of transfrmations, the effective fld is a series:

gk
DI n’,m; kn’_,ni DPi;sPry,s kl’.
\\J v i v il i
®k , Dnis Pty ’
n’,m; i

‘| 7V k ,/l)
e oo LU Prpg] Foo] | (rmsig)
il "71./777; i’<5/
@Dk ks ( k )
nlyn /0 Diys Dy, Ky
+U n Prgs Py | , R V2 |+
®k,]/_ n: i Fn i U k
TIlsp , " i<s {2 [pn.pora] } 0] Pl Pua; mig
iy i'<s’

for:

v :{ (pospgoh) ]}
(rorgict) ~ UL {9 [paspal § 0]
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and the variation equation for this averaged field is:
(pli,pl;zia kz;) ] }
{Ps [pn, Py} 0]
n

)
Kt g Kl g
0 = /d [pmapn;,m} ’ v [pmapn;,m} ’ By, kl)

i<s i<s 0T oy, ([ﬁnv Piry)]

i'<s’ i’ <’ TSy,

(pli » Pty kz;)

‘| 7V , U
{2 [P 2] } 5] (plrplgli-rkz;)

®Zi/k ’o k_/
.M %M
xV \\ v |: . ’ :| i/
DL Dy k/ ®k77/./”h' { pnlupniﬂh - )
i’ lili’ li JI1s z i<s
] il i<

[{\IJJ [pmpn’n] } » U

kn’.,ni kn’.,ni
+[d {pm"pn;,m} i v {p"i’pn;,m} i

i<s i<s
i'<s’ i'<s
6V<
plwpzf.z-’sz.)
it i ®Zl/ kl’ k.
€ ®kyryy K\ o hV, i ;¥ ®kyr [P0, Piro]
ov ®k ’ ([ﬁnvﬁl’n] 71) plfpl;li" l; J, l_[l’ SPl/ 0 fgsl
s ¥'m I'<s
’ Pl/
®E-/ k ' ( k
;1M pllvpl’l s Ryt
xW ®kn, {[POapl’O] t } 171 ,V( i ),U
Jlsp , Is {9 [pn.piya] } 0] PLiPiiig "
n "71-/’72 <

18 Average values on eigenstates of operators

This is an equivalent description already presntd in the first part. We start with the functionals
without path integration:

Rk,
Friin <{\I’ f@kl, [po, prro)” /} )
]Spl/
l/

Z Z Z Z 9({[pl,pl'l]}l,z/a{[Po,pl'o]}y)

m ’
m D?O'pl m D(po,plzo,pl,pl/l),m,m’
Jrpu

®/€/ ®Fkyr ks
H fgﬂcl, ([Poa prro )H‘I’ l®kl, ([plupl/l] ! )

J ’Spl/ ’SPl/ i

and replace:

®k ks
v gkl, ([Pmpz'o] ! )

’SPL/
by:
®kll ky /
l 1
\I]J ®Fks [pOapl’O] / H fpl,l...pm/’” pll Pl 1 {[plapl’l] <m
,S ’ ’
Py’ o P15 P/ 1 'sm
. k ®k ®k k
Implicitly 5" and ¥ stand for ¥ fé,ok and ¥® foky
Jsp Jspl

We will consider the average of the ﬁeld

®k;/ k
H‘I’ l®kl, (pzvpz/l] ")

PL’ l
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on minimal eigenstates of an operator:

®k , ®k Ky
" J g’“l’ ([pl,]ﬂz'z] l ) ’H\If®k” ([pz,pm]kl’) 7{\I]J fg”kl' ([po’pll()] : )}

ey Sk Py 0 v
) pl/,l l,l,
with: 5
H‘I’®kl,k ([pl’pl’l]kl/) B sk b
JS;‘?IZ’ ®ky [p1, pir1]
[ ;Spl/ 1

18.1 Average over one eigenspas, one remaining subobject

If there is only one eigenstate, the projctd functional has the follwing form (we assume one remaining
subobject, the general case will be studied belw):

Rk Rk
. fur )|
‘Spl/

/Fo [[Phpz'z]k” : [ ®kp°” ® ‘I’®kékl, ([plapz'l]k") d ([Plapl/z]k“)

TSy,

, Rk Rk, / ’
= [ F [l [95] ] @ 0 (1l ) d (1l

Sy

Fy

The dependence \If?kp ] is through a functional of the type v (\I/?k” O), as in the previous sections.
As before, the tensor ® stands for series of products of identical copies.

k
<pl1’pl,1l1’ l’l)

ncldng symtris parmtrized by A , th functnls bems:

{w[¥,0]},v]
{Pl“pl;ziakl;} 1 H
(W, [, 0]}, 0]

o5t0] {1
J,spl/ .
average values in this state:
[plivpz;li, kz;] ] })
{w, [, 0]}, ]

Rk, , Rk ) ok
<H\PJ éz’kl’ ([pl’plll]kl )> N H\I/ ézﬂcu <[plvpz'z]k’ 5 {\IJJ po} ’{

v Sy v Sy

Fy

where:

®kz/ p " { ®kp0j| pzﬂpz 1; 7kl
, lupl’l] .Y )
1w Ty ( 7 {w;[I',0

v
®kpg | ®kl/
k¥
E J Spl’

®k / ’
/ H U (Ipepe™) {
"Spl/
nd th measure is invariant for this transformation. Then
o @ y ®kpg Pllapz I 7kl’
Rk, [plupl’l] ) |:\Ij jl 7{[ ]})
ll_’[ oy ( {w, (1,0

Rk ®kpq | ®]€/
/H‘IJ l®kl/ plapl’l] l/) |:\IJJ ro { l }
- ]Spl/

Pl/

Fy

2
P P, 7kl’}
{w, [0

®kl/
Rk,
l
J,spl/ .

Fy

pl“pl l; 7kl’}
{w, [0

ok
®kl/
Tspp



As a consequence, replacing:

Rk, ’
[Tv) %, (i1, el )

’Spl/

by its average over the eigenstate con&dered in the functional, and considering linear combinations

over these states:
[pli,l?l;zi, klﬂ ] })
{0}, 0]

[o(e0 () T, (ot (3] {
{Pliapz;liakl;} ]})
Soy [{¥, 1,0}, v]

Spl/
®kl/ [p G |:pll } pl’.li ’ kl/:|
, 1, D l/l] , U, ° 4
( { {00} 0]

and:

Rk k Rk
\I/J l®kl, ([plapl’l] v ) |:\I/J P0:| a{

has an expansion:

e ks
k 1
= Z d {[p07pl’0] l/} %és ) { |:pll5pl,111:| ! }[1<m1)ll7gl
(mm’\[p.p" K']),
PR kz’l b [Pli »Puti;s kl’.]
XVO {[pOapl’O] } ) |:pl17pl’1l1j| ) /l v
I<s [{\IJ] [l aO]} ,’U]
1 <mf
®k Tk W ®k
H v fglﬂcl, ([pOapl’O] t ) { |:p117pl/1l1:| 1} ) HU klll {\I]J ll}
I<s J, Pl/ P pc |ipl1’pl/1l1:|

U'<s’
(5.8, [pp' K']) 52 1h<mf
<
11<m
l/<5/ 1xm]
4 <s

and the functionals decompoe for one realization:

Rk k.
Fy in {\ijsﬁ?;’fl’ ([po,puo] Z)}(%) (100)
[T 1M } [pzi SO kz;}
;;/ (S)S/)%/7k/]) d {[pOapl 0] ! }l/lzz/ ) { [plppllh} ;iiZi d{ [{\I/J [l/, 0]} , v]

(m,m,[p.p" K]),

Xg ({[plapl’l]}l,l’ , {M}l,) Vo {m} <s ) {[phvplllll}klll }Zl;ml , {

[pliapl;liv kz;} 1 }
{w,[I",0]}, ]

<
I'<s’ ’<m/1
H \11®k“ <[P0 prr]™ {[Pl i }klll} ) Hv k {\I/QM“} U <{ [pl“pl/'li’kl/} 1})
®k/ » PU ’ 1Pl f 7 i i
o e ! p) e ] [{w, [I,01} 0]
U<s’

where D¥*"'"™ stand for decomposition

H(U,) =H (((Uj)(po))) ®H ({( )(pz)}l<m>

96



/
Po:Py1g-PLsPy )M ..
and D( vopupin) for decomposition:

1 ((0))) = (((Uj)@o,pl,o)) ) o <{( oY, )
U'<m/

By changing variables in (100), we show in appendix 7 that:

®k/ /
F¢iin ({ s é@ku ([Poa Prro) l)} )
o (pvo)

£x/ ([ZD ol }ﬁiild{ [EzJﬁl',l01}l,11]}

([0 K])
X§ {[po pl/o]kl/} [pliupl;liakl;} ®Zl/kl/ H[Po o] l’,i {pliapl;liakl;}
’ i<s L {®s 1,00}, 0] I g ’ L s 00y,

U'<s’

l/ a
Introducing explicitely the eigenvalue on which the projection occurs, the effective field is similar

to the one component case:
®Zl’ kl’ k. |:pli7pl’.l-7kl’.:| /

v 1 [povpl’ ] e i g aA([{\IJ] [l,O]},’UD
IlTspy! (H ’ {0 (1,01} 0]

— Pz:a [I;IS ii:ﬂ ([Poa prol™ { {plppl’lzlrli} ,{l [{éji;p[ll;/ljé)]k}lg,}v] ]})
; o Le® ) g [pzi,pz;li,kz;} _ }) {l [pzi,pz;li,kz;} ]}
171 [pry oy, ] {\IJJ }\P <{l {0 1,01}, 0] | ! {0 [V, 0]}, 0]

18.2 Average over eigenspaces, several remaining subobjects

This case is similar to the case one remaining subobject. If the remaining subobjects cannot be
separated, the projection yields the composed effective field similar to (96):

kn’., Ul kn,/ i
d [pm‘ ) png,m} ‘ v {pm ) png,m}

i<s i<s
i’ <s' i’ <s'
®> k o k.1 . 1k /)
X\IJ 4 |: , , :| "71-/’77,} , (pl15pl1l15 ll , ,A \IJ , , ,
8 ({ g BB (0 ] )

J; H SPn/

g

If, on the contrary several components can be isolated (see (82)), the system is described by
the fields, indexed by 7, the remaining objects:

k
\IJ® 71’,711 kn;/ n
®k’1//7h pﬁivpnz’.,m- )

Jsp/ )
1/7'

(P k) | ] } ) A ({5 [P 2]} ,v])) (101)

[{\IJJ [pmpn’n} } » U
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18.3 Transitions

As in part one, we can redefine the fields (101) if the remaining subobject can be disentangled:

s s 7520, )
Jsp /”7”’7 [p pn 77] /|:[p pn 77} :| [{\I/J [l/nun]}7v] []

n'n

k k . .. k
where [py, pyn] "7/ [[pn, o ’7"7} describes the remaining free parameters of [p,,p,,| ”" when

(p lis P léli’kli)] ] } are solved. Equivalently, effective field

[{\IJJ [l/na 77]} , U
(pliapl;ziakl'l) ]} . /\>
N2 RN

If the subobjects remain composite, an effective field for a collection of subobjects 7;, 7}, rewrites

k_; @3k, ks ( k )
MM My i nl,m; bi;sPra;s ~r
/ {[pmvpn;,m} ' } v e, {{pm-vpn;/m} ' } { ) gl 0] |
i<s i<s J Py P’y v

JH Sp_s
(102)

the constraints with the parameters {

write:

’ ’ Rk, , ,
v ([pnvpn’n} b n/ “pmpn/n] & ’7}) v %gn’ <[p77’p77’77]kn n/ [[pnvpn’n} ky n} , {

/’7i
-/ / -/ !
i'<s i'<s

with:
kn’./ i k’l’-/ i k"'-/ i
{pm‘ , png,m} = {pm ) png,m} v {pm ) png,m} ‘

1<s
s
i <s

The transitions for the fields (101) (similar formula are obtained for (102)) are generated by a
functional:

S \I]®kg;77/7 , %,z z)\
J.,s,,n,;’ ov T (pzppz;livkl’l) }
T opy Y [Py oyra] } 0]

with o ’®Z " defined in (101), and the covariant derivatives are:

Spl/

®k, k_/ ks plupllvkl’
ZA_Q"" 7,7777[7,7777} (l
{A[kz]} Jsf’:,n/n <[pn pnn} / [pn p7777:| { I:{\IJ] pn,pnn

S
o)
)

Spn’n {\I’J Dy Py n

Kk, k_, K, (pzﬂpzl ko
+ <(A)k \I/J %gﬂ,n <([p7]7p77,77} K ”7/ |:[p77’p77/77] ! n:|)k/ ! {

({9 [Py, 2]
A=4
{

- V{A[ki]}\yfkgi? Iy <[pnvpn’n}k"l"/ [[pmpn,n]kn’n} {l [ (plzapl[ ’kl’ ‘|
)
}

Pyln

with:

(pli VAR kl’l) }

{7 [, pya] } 0] ]
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and:

(P12 ) ] } ol X ({5 [Py o]} =U])>

[{\I]J [pmpn’n” =U]

(s H [} /\>

RN NS

(s (ot [ )

Sp_y
are some covariant derivatives. Indices k are some local coordinates in the space of maps:

([pmpn’n]kn/n/ [[pnvpn’n} knlnD

so that the connections are matrices.
The transitions generalizes (61). For two states A and A4’, it writes:
(A" N Ty |9, (UJ /U], { } )\)> (103)
= (o (/i {87} A 0)]
N (({wprd ™), = ({Pored™3), )

Kyt ]
X exp /5)\8 \I/® ®k/ ,T,z

k / /
P AVAN A ' ([pnvpn’n] & "/ [[pmpn’n} K "} 7{

0 Rk, s ’ /
- 8)\\IJJ %z?, ([pmpn’n]kn "/ {[pnvpn’n}kn n} ’{

(pzi,plgli, kl’l) }ZA |4, \)
]

{9 [y, o] } o0

with N (({ [Pns Py k"'"})/\ — ({ [Pys Doy k"'"})/\/) the number, or the volume of set of maps be-

tween the two sets of maps:
ks, K,
({[pmpn’n} ! I}))\ ({[pmpn n] I"})A,

Note these maps do not always factor as:

H (([pnvpn’n] k",")/\ - ([pnvpn’n] k",")/\,)

Depending on the values of X some fields may be independent or glued as one global object (see
comments after (96)).

Part III States and operators approach

We introduce an alternative approach, which is less general than the field formalism described
previously but retains the key aspect of decomposing state space into entangled spaces. Beginning
with a direct description of states and operators, we retrieve the essential elements of the field
formalism. Notably, spaces of parameters dependent on the states emerge as a characteristic feature.
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19 States formulation

We begin by delineating states resulting from the decomposition of a parameter space and the
associated state space into entangled subspaces. Projecting onto one of these subspaces allows us to
describe states as dependent on certain seemingly exogenous parameters. In fact, the entanglement
of the initial states is still present, by the way of constraints conditioning hese parameters. This
description retains the main features introduced in the preceding sections of this work.

19.1 States and projection on partial states

We start with the decomposition of a state space into two subspaces entangled through some
constraints. These constraints arise as eigenvalues of operators defined on the entire initial states
space.

19.1.1 Set up

Consider U divided in two different collections (plus identification constraints) (U®) and (U)).
The U® nd UU) stand for the previous UUF, UU} in the field approach. In term of states they
encompass tensor products.

Disregarding first the identifications, one is left with a collection of parameters:

{ (Uu) | U(j)) }

with associated states:

‘Uu) | U(j>>

<U<i> | U(j)}

which is a short cut for some combinations, up to constraints, of basis states:

k,l

(6 100) - (10)

The states (104) form a basis of an internal spce.
The whole space being set of linear combinations:

Sa (Uu), U(j)) ‘U@ | U(j)>

We assume that the stts ’U(i) | U(j)> can be divided in sectors through some operator M eigenvalues
(or equivalently, they are defined as eigenstts of this operator). This implies

I1 ‘Uu) | U<j>>
M=m
Assume also that M is a combination of two operators M = f (M;, M;) acting on the U® and

U@ part. Thus:
Z H oo | (7<j>> _ Z H ‘[y<i>>
m 5(

m M=m F(M;, U@ )—m)

(7<j>>
For a basis ’U(j)> of eigenstates of M;, the constraint becomes § (f (MZ-, U(j)) - m) and:

> 1 =1

m 5(j'(Mi,U(j))7m) U@
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19.1.2 Partial diagonalization of projection operator

We will project the states space on the eigenstates of some operator. This projection accounts for
constraints between the two states spaces, so that it follows several steps. An example base on
some basic model is given in appendix 8.
We define:
ﬂi,j = Zﬁ;l)fli(l)
1

where ﬁj(-l) and H" act on the ‘U(i)> and ‘U(j)> respectvl. We assume ﬁj(-l) commute with M; and
have common eigenstates ]U(j)>:

(@)
a® ‘U<j>> 7" ] <U<j>

ﬁ 3 ’U(j>> <U(j> a® ﬁ _ ’U(j)> ﬁ S <U(j)

a® ‘U<j>> <U<j>

U@ 1 U u@ 1 U
(@) (i)
- ’U<j>> I1 & (Uo)) II <U<j>
U U@

@ L@
We consider the operators [[ H; (UY) [ and their eigenstates:

[44€)) U@
ﬁ H, (Um) 1(‘)[ — 1(‘)[ Z<U<j>’ a® }U(j)>f1§l) ﬁ N ’A (Uo)) 7 {Ai (U<j>)}_> (105)
UG) vG) UG uG) ’

The A; (UY)) eigenvalues of set of operators {f&i (U (j))}. Operators{[&i (U (j))} describe some de-
generacy. As an example we can consider:

(1)}, = )

for some fixed set of parameters A; (U (j)). This corresponds to a constraint

(1 {5 (0))) e

and the state space decomposing accordingly to:

o3 (0), - (o))
M) =1 (8 (09), - (3. (0))
(0. 9) (2. 9),)

We can write the states arising in (105) as a linear combination:

pE) ) - S ) ) ) o
T ) 9] - ) s(a )
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where S (A (U9))) is the entire space defined by the A (UU)). The states arising in (107) are the of
the same type as the ones defined in the first part. They represent states that are series depending
on increasing sequences of parameters, forming a vld of pnts.

In terms of functionals, this translates in states:

v(A(v?).s(a(v?)))
a functional defined on the space S (A (UYW)).

. O] .
The A; (UY) are defined on projected space [] . The A; (U9)) are function of the constraint:
U

A; (Uo)) = A, ([Uo)D

) ) (2)
wth [U()] denotes the components of U that define ] .
U
As an exemple, we can consider in first approximation that the constrait at the quadratic rdr:

(8 ()} {3 ()} ()0 (o)) )
o ()} ) ) o)) o

where the cnstraint has one realization on each state |(A; (U(j)))l e (A (U(j)))n>:

(0 (0)), o (0 )2 (9) () =
19.1.3 Projected states

(2)
We assume that the projectn [] are defined as some eigenstates of an operator M;:
U ()

(@) (@) (@)

- 1 -

vO - Mi=m(UD) - Mi=m([UD])
The A, (UY) commute with M, and thus there is a relation:
s (o)) = ((0v])
we assume that this relation may be inverted, which implies that:
et {Ju) p (0) 4 ([])],))
can also be written:
{0109, [0 @D (09) )} = {80 o0 cana (o) 1)

for any given set of {A;}, whereas as in part one [UY) ({A;})] is the subspace of parameters that is
expressed as a function of the {A;}. The remaining independent parameters UW)/ [U()] wil be also
written U0/ A
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We gather the U0/ {143 U0 ({A;})) [A(UY)), A;) with a given A (UW) and consider:
mt{ U@/AA} G) ({Ai})> }A (Uu)) ,{Ai}>}
Thus any states in this space writes:
N\, UD/AAG @) (A,
~/)\(U(j))—)\ "/’ ( ’ ’ [ ({ })})
- ()/A? (@) ) ()/A? (@) ) i
- Z/A(Um)_)u) (LT [09 ((aD)]) [ [0 (1aD)] ) 2 A7) dA

A(U@))=x

U 0D ({A)) N As) dAs

which leads to describe such state by the functional:
o (LU 09 (4)] 8 ()
a functional of the function UU)/A" (A) over S (A).

19.1.4 Remark: inverting the relation

If we assume the |A (U@)),{A;}) can be written in terms of a common basis |A;) independent of

UG-
’/\ (U(j)),AZ— (U(j>)>:/h()\ (U(j)) A-(U(j)) [xi) |A;) dA; (108)
’Um/{&-},{Uu)({Ai})D’A(U(ﬁ),{Ai}> Z’U {Uu) ({A; })D ( (U@')),m (UU)),AZ-) )

where as before [UVY) ({A;})] represents the degrees of freedom of UU) that can be expressed as
function of {A;}.

. _ ) ()
The A; are of the form A®" and [UY] denotes the components of UY) that define []. If
v

h ()\ (UD),A; (UD) ,./_&Z-) is invertible, we have:

>t (n(u) {a: (v)} &)

A (U0G))

U /AL {Um ({f_‘i})b ‘/\ (U(j)) A Z—}>
S U(j)/z‘xi,;&i>ht (A (U<J‘>) A, (U(j)) Ix) h (A (U(j)) A, (U(j)) ,{Ag}) [{A})
Ai(U(j)) A

_ Vﬂ”/Aa{UU7({A¢H}>‘A(Lﬂﬁ),{Kﬁ}>

However, if h (A (UW),A; (UY)),A;) is not invertible, we can write only on some subspac:
St (A (Um) A, (Um) 0) U(j)/Ai75i> ‘/\ (U(j)) A>
(U(j))
U@/ R _>h¢(A(UUU’AiOﬂﬁ)”xoh(A(UUO’AiOﬂﬂ)’Ao‘AD

> X
U@/ (Ai)> ‘A (Uu)) ,,11.> &)

>l

(U(J)) (U(J))

>

A (U)
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19.2 States Covariantly

The degeneracy for the projected prtr wrts:

[(Uu))’} (v) 1O ()

for some of the {A; (UYW)} arises for the more compact form (173)

[U@} A, (Uu)) —0

il
Voo () v

H; (U(j)) —H {Uu),Ai (Uu)ﬂ

o (0) {0 <o

and consider that this arises from more general constraint on operators:

G ({Aa (U(j))}) ~0 (109)

We rewrite this relation as:

where prtrs A, (UY)) are gvn b:
A, (Uu)) — Ao (Uu)) A, (Uo‘))

Assuming that thr s trnsfrmtn M@ {A,, (U))} prsrvn:

6 (310 (29)}) =

Ths trnsfrmtn m rs frm:

1 (A, (19} = {Aa ((Mm)l U(j))}

We assume that thr trnsfrmtn trnslt n st:

O {8 (00) 1) = R (M) [{ae (V7))
{e (u0)}) = () | (21) ™ {2 ()}

This means that the states [{A, (U?))}) dpnds n th ntr spe (109):
e (@)} =2 ()
(e (09} =0 {00 ()"}
(0N =Sy o0 (s (79 ot (09) | (09

(Ao (U (j)))k> is defined for given values of the variables. The invariant state is thus an

so that we have:

where

averaged state.
Considering rather representation R (M (i)), we are led to consider components:
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S(09)), =5 [ e (100 (69) oo (69) [{ (00} )
where R (M) acts on these components:
() 5 (),
= R O) S (b (69) s (09) [ (7))
) [ 0} =7 (09 (e ()
?E (U“’)> -[{a: (U“’)}> - }(M“’)l {4 (09)}) = (09) {0 (09)})
PEIEIC () s (V) A (0) {s (09) 1) = ]2 (v2) {4 (09))

and we recover our previous formulation by choice of coordinates.

19.3 Operators induced by states
The states |[UW/Ai (A;)) [A(UY)), A;) and spaces:

veet {[UO/A (A1) A (U)MDY,
can be derived from some field theory, if we consider the field operator:

’U(i’)> ’U(J—')> v (gm, o), u®, U(i’)) <U<J‘>’ <U(i)’

that can be projected through operator 11 . This projection yields:
U@ A(UD)

[T = w (U9 (A0) A A = I\ A) W (U9 (A, 0) (A A
U@ (UMW)

The spce (6;) ndwd wt G (/\ (U9, A, (U(j))) depends on W (UU)/Ai (A;)):

0 (0) A 0) 0 (v 0 1)

20 Operator formalism

In this section, we rather start from an operator formalism and describe directly the constraints
and projections in terms of operators.
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20.1 Operators and constraints

Keeping the decomposition (104) presented in the previous section, we write an operator under the
following frm:
<g<j>

[((j(i))' | (Um)’} W [0 00)] = /‘(UU>)'> ‘(Uu))’> " ((Uu))’, (Uu‘))’,[y(i),go)) (00 )

N ! N I
(U(J)) > ‘(U(Z)) > represent a basis (104). Operator (110) can be decomposed as a sum:

where the

o [0] =X [ |E9) 1(09)] (),

where the V&
(i)

VN 1@ | oW a
Ve v; ) [U | uY } dej(z‘),(Uu))’,(y(j),(mj))’
U(i),(g(i))’,o(j),(g(j))’

(0OY 00 (G0 model some constraints and are defined by equations:

I I
< e @ (@ 7@ (7@ -
Vﬁ(i),(mi))’,mﬂ,(fm-))f - f <U 7(U ) U ,(UJ ) ) =0

The sum is over the various constraints, or functions f* (« describing any set of constraints).
For example assuming constraints factoring as:

o (Uu), (Uu))’) g (Uo‘), (U<j>)’>

where g; and g; may be multicomponents and take values v € V, one has:
e [ [ 10 () o]
9 (U<i>,(ryu))'>:gj (mj),(mj))’>:v

Usually we can think the constraints as some conservation relations. If U® and U@ depend on
some variables k; and kj;, the constraints are of the form: k; — &} = k; — k7.
The constraints may be written using § functions:

oelo] - za:/ [(ﬁ(i))l | (U(j))l} (#)o (Vl?(i),(ﬁ(i))’,c}(j),(ﬁ(j))’> (vi) [0@ | 00]
xd (U@), (U@’))' 0, (Uo))’)

More is said about the constraints in appendix 9. We describe these constraints as equations
satisfied by operators, and recover the states resulting from these constraints.
20.2 Projection operators
20.2.1 Global projection operator

The operator defnng th prjctn are defined following the previous decompostn: \I/EV) — HZ-(V), \I/E-V) —
v,
J

> [(U(i))’| (U(j))’} (Ai(w) " (fl§v)) {Um | UU’)} (111)

% Vo) (o)) 00), (6
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We assume that for all U@, (ﬁ(i)) prtrs 4 ( 70 (U(i))’)U(j))(U(j))/> ﬁj(-v) have common eigenstates

i
@ 7@ (76 o
ha (U DUW, (U ) ) 4 (VU(Z) (U(z'))’,U(j))

— A . A . /
where VU(i),(U(i>)’ are possible remaining constraints such as {gi <U(1), (U(Z)) > =veE VU@ (5®Y v }

|UW) with eigenvalues:

Disregarding V¢ f we also assume that the eigenvalue h,, <U(j), U®, (U (i)) ) is build from

i) (U(i))’ U
operators A; (UY) commuting with H} V) written as o V) (A; (UY))) (similarly to a band hamilto-
nian) including some degeneracy. Operator (111) ertes

Sl o [@0) 1 (89) ] (307) (1) [501 69 [60) (00
<6 (VGio oy ooy ) 4 (09 (09)')

Sl [ @) ] () [po]w (.00, (59) ) (o)
Jleoy[(@0)] (7 (7)) [60] (v

The operator [(U(i))l} ( 7, (U(j))) {U(i)} may include constraints Vg(i

@

) (60 ot P that (111 writes:

= Z [(U(i))/ | U(J’)} (f[Z(V)) o x (HJW)) [U(i) | U(j)jl (112)

5 (00) v
. A . A . / .
where the h,, (U(J), U@, (U(l)) ) are eigenvalues of the HJW) in stts ‘U(J)>.

20.2.2 Generalization: local diagonalization

The previous set up can be generalized. If § ( ) H J(V) have common eigenstates:

ORGIONRIONHON

‘U<j>>

(00,(0™)") ’U(j)>z-

. N /
depending on (U @), (U (1)) ) with eigenvalues:

/
@) 7@ (7@ o
he <U J , UV (U ) > J <VU(Z) (U(i)),,U(j)>

where V2 v . are the possible remaining constraints such as:

U (4) (U(l)) U@
s A\
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and the decomposition (111) becomes:

ST ) ] 6),. ) o),
a U(i),(f](i))’,f](j),(U(J’))’
<U<i>, (Uu))’)

- / v, [(m)'} (B) [00] b (Uo),z}m, (Uu))’)a(vg(l) (U(i)),w))<
> [(U(i)) |U(Um (Uu)y)} (glm) X (H]W)) {Um U (U(U (Um)/)]

o 5 (0@ v6)

A~ . A . /
Writing Fg , the fibre of V , over a given U® (U(l)) , we can decompose:

0, (00)

D (00) 0@ (00)
{Uu), (Uu))’} — Upe {Uu)’ (Uu))’}m
(0}~ ) Py )

N i
Along a basis { U® (U (Z)) } , the operator:

Fa

with:

a (V)
0 (Vf](i),(mi))',(y(a‘),((y(a‘))') Hj

5 <<U(j), ((j(j))/> C Fa> AV

A . / A .
We can assume that the § (( Uw (U(J)) ) C Fa) HJW) have common eigenstates |[U0)) _,.Decomposing

writes:

the measure of integration along the fibre:

p (Uu)’ (Um)’) _ g {Uu), (U@)/} JF°

Fo

formula (113) becomes ultimately:

Z/’U J> . [ z)) } (H<V>) [[j(i)} ha (U(j),(j(i), (U“'))/) d{(}@'), (Uﬁ'))/}
Z/[ |U§32] (#92) (5) [00 | uf) ape

dre

<U<j> .

Fo

with:
A~ A A . A . /
av) =aVs <U(”, (09 < Fa)

20.3 Projection on partial states: Bass f eigenstates depending on U\

Consider the sum of projections along the eigenstates UU):
IS
J J
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and decompose the operator (112 along this decomposition. For each eigenstate, we obtain an
operator acting on the (U(i)) degrees of freedom of the states space:

T [([j(i))l | U(j)} (7)) o (5) [0 v0)]

o), (00 v

WSS @) | ()« @ [oo]
" V@ (00 o)

As before, we assume that:
@)y, « el
ve
HORGIONRIE)
commute with a familiy of operators A, (U(j)) depending on UU) and that the relation:
f (H (U(j)) A (U(j)) ,a (U(j))) -0

stands for each of the U;. As a consequence, the diagonalization of:
S| a0y, o« wp[e0)

"5 (00 w6)

yields degenerated spaces:

S[e)]oa(0),, « - wale) (0] men ] po.a )
o Y50 (00 w0)

The constraints V<

o (0M) U@
initial states space. The relation

f (H (U(j)) A, (U<J’>) @ (UU))) ~0 (114)

allows thus to replace some parameters [U;] as functional of the eigenvalues {A; (UY)), A (U;)} and
states:

imply that the states |A(U;),A; (UY)) do not generate the entire

U A @), 8 (U9))

are linear combinations of states of the form:
(i ) ) ({As (V) }) A @) ) A, A (09)) (115)

The parameters U,/ [U;] represent the remaining parameters after using the constraint (114) has
been imposed and [U;] ({A; (UW)}) describes the part of U; written as a function of {A; (UW)}.
Note that this replacement depends on (114) and thus on A (U;),A; (UY). This change of variable
is local: the parameters UY) describing some fundamental state, determines the eigenstates defined
by (A(U;),A; (UY)) and thus the decomposition. The entanglement between the U® and U
degrees of freedom translate in this interdependence between the parameters and the apparent
system’s degrees of freedom U,/ [U;].

Remark also that the states (115) are similar to the states described in the first and second
part of this work. There is local relation between the apparent degrees of freedom and the effective
parameter space described by (A (U;), A; (UYD)).
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20.4 Projected operators for fixed value of A\

As in the first part, we can consider the linear span of the states such that A\ (U;) = A and project
operators along the basis (115). Starting with an operator:

[(U@)/ | (Um)’} W [0 | 0]

it can be expressed in a basis corresponding to the projection operator. Introducing the change of

basis:
’ (Uj/ 03], [U;] ({Az (U(‘j)) }) A (Uj))> ’)\ (Uj), A (U(j))>

— /g (Uj,A(Uj) A, (Uo)) 7U<i>7g<j>) o | U(j)>d[j(i)d(j(i)

[(Uu>)’| (Uo))’] {Uu) | U(J’)} (116)
(U A, (U(J)))

<[{as 0V )} MU/ 7). vy ({8 (V9) }

x/gT

~ . ~ . !/
(U] A U(J)) U, U(])) d (U(Z))
Formula (116) defines an operator:
Ul

A () xver el v ({4 (V) )] [{ac (09) pox o [u ({0 (09)

(

QL —
[E—
(S
—
>
—~
<
v
H,—/
>’
=
~
=
Q
—~
— =
>
/~
d
)
N—
—_—
N—
[a—

) AU D a9 ax

N

acting on stts such that A (U;) = A.
In the sequel, we will consider the notation:

Uil Wi [vs ({4 () })] = v

to depict the decomposition of U; in which [U; ({A; (UY))})] is the part of U; rewrtten using
the constrnts as a fnction of {A; (UY)} and U;/[U;] are the remaining free parameters. As a
consequence, the operator rewrites:

HAi (U(J"))} MU/ U], [Uj,]} v HA (U(j))} AU/ UL U]

Consider that the eigenstates of operators A; (UW) generate:

vect {’/\ (U;), A (U(j))>}

so that a change of variable
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allows to consider the parameters {A;} and {A;} as exogeneous variables. The change of variable
is performed by integrals:

{A AU/ [Up], [Up]] @ {A}, N U5/ (U5, (03] (118)
- /hT (/\ (U(J">) A (U(J">) ,A;)

< [{as (0N} 1wy [up) [og)] v [{as (U9) ) o5/ 03], 03]

xh ()\ (U(j)) A (UU’) A)

where h (A (UW)), A; (UD), A;) performs the change of basis, see (108).

20.5 Remark:

Similarly to part one, the previous approach can be generalized to a multiple decomposition of
the initial parametres space: [U(i) | U | U(k)...]. Somes stats are prjctd, and some constraints Vi
between U®), U®*) translates on the projected states between the remaining degrees of freedom and
the parameters arising in the projection.

21 Transformation ‘Uéj >> — |U (j)> and amplitudes

21.1 States description

We start with the states where part of the U are written as functions of {A;}:
‘A (Um) ,{;&i}> ‘Uo’)/{fn}, [Uw ({Ai})D - ‘A (Uo)) 7 {Ai}> h ({A:}))yo (119)

where as before [UW) ({A;})] represents the degrees of freedom of U that can be expressd as
function of {A;}. The subscript U® reminds that

1 ({Ai})p = [T/ [0 (a)])

depends on U through the constraints and the free parameters U/ {A:},

Note that the identification is only local in general, due to the constraints sets {A;} and states
h({A;}) are not independent. This impacts the amplitudes between two states with different
parameters. We will use this remark below.

Gathering states such that A (U)) = X the state writes:

AAA) |k ({Ai})>U(i)})\:)\(U(j))

o fmae) ey
For later purpose, we consider a decomposition:
Uo) _ (Uo)/p,U(j)p)

which is preserved for the eigenstates parametrs:

{Ai} = ({Aivp} ’ {Ai}/P)
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so that the state |h ({Ai})),(; of this space decomposes as:

A RN gor = AR, ) [ (1A ,)), ) [Bah) Iy (Rs}dr (120)

Subspace spanned by states (120) are series expansion:

[o (MR, Kat (1R ,) b (Rh)) MR, [0 (B2 ,))

{Aip}) [h ({Ain}))

(121)

Ui)

States in (120) decompose the system between few degrees of freedom and backgrnd.

21.2 Transformation ‘Uéj)> — ‘U(j)>

As in first and second part, we aim at consider transitions between two stts wth different values of
A. Our assumption is that
for U and U there exists:

R CHE DI CICHCUIED)

that is, the transfrormation T),x:
By (P (09) ) 0 (AD)yo b = (P (09) Y I (RD e},
0

21.3 Amplitudes of transitions

Given that the states for which we compute the transitions are analog to those in the first part,
the derivation follows the same stp.

We consider the infinitesimal transition 67T, .

Given that 6T/, transforms states from one spaces to another space, the transition include some
transport operator. In addition, the transition depends on the operator acting on the set wth gnvl
. As a consequence, the transition depends on two parts.

The transport, involves ”derivatives” {f&i}/\, - {Ai})\ + A ({Ai}x)’ the connectn A ({Al}x)

correcting the fact that {Ai}x nd {f&i}/\ do not act on the same space.

The second part of the transition depends on operators {f&z} and {H f\@} acting with multipli-
cation by A; and differentiation by Aj;:

AN AR [ ({A})) g = A& [ (K)o
Iz, VAR [P ({A3)pe = Va M AD [F{AD)) v

However, the second action also has to be corrected due to the constraints. Modifying {A;} —
{A;}+6{A;} through vV a, modifies the state h ({A:}) and should be modified including a covariant
derivative.

We present the technical derivation of the transition in the next paragraphs, starting with the
case where the parameters are global, and then consider the implications of only local identification.
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21.3.1 Global identfcation

We assume in first approximation that the parameters A; are global. The amplitudes

i) <hl ({Ki}/)
are computed by pulling back the field state:
</\+6/\’ {‘&i}l‘m) <hl ({Ai}/) - <)" {&:) UG <h ({Ai}/)

from H(/\+6/\,{{f&i}’(Uﬂ&),UﬂM}) to H(/\){Ai<U§j))7U§j)}) by some parallel transport operator Pyyisx

and then computing the matrix elements of:

(A+0x (&Y

0Tatox |\ {A:}) [h ({Ai}) )y (122)

P20 +sx

Assuming that the parameters {A;} are global, the transport is trivial: we can identify the
various spaces, the transport involves only derivatives.
Formally, it transports h ({A;} (A +6X)) to h ({A;} (\)) and the parallel transport is generated
by the operator:
5 O{A; (N} 5

(A O+ M OID T T = o (a0

and by exponentiation, the transport is:
. - 1) _
P)\)\_;’_(;)\ = exp (/ ZéAzA {A-z (A)} mp {A-z (A)})

Inserting this opertor in the matrix elements of an arbitrary expression exp (zF (H { 7\1-(/\)}))’ the
saddle point computation allows to replace:

d{A; (N}
Ay =7~ 45
As a consequence the transition operator involves the variables A; (\) nd 8{%’;’\)}. By exponential-

tion of infinitesimal matrix elements leads to transitions:

NE -
o (1 (&) e ( [ ({fxi W}, {W}) dx) (A o (A

(U@),)
_ /U . (n({&})

AR} ={A) _ a{A; ()}
/exp (l /{I\i(xo)}_{fxi} . <{Ai (A)} 7{ OA }> dA)

<DRs (V) o ({&:})) 0 d (A} d{A} (123)

(MR

21.3.2 Local identification

Again the amplitudes:

(A+ar (&Y 0Tatox |\ {A:}) [h ({Ai}) )y (124)

50 <hl ({Ki}/)
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are computed by composing some parrallel transport operator Py is» and then computing the
matrix elements of:
Pax6x0T 150

As in the global case, the transport Py).sx is performed through generator of translation operator:

9
d{A; ()}

However, since A (A +6)) and A; (\) do not act on the same space, their difference is not the
derivative of a set of variable A; (\) that be defined for every A. This derivative has to be corrected
to account for the change in spaces the modification of A accounts for.

Given the constraints:

{Ai(A+6N} —{A: (N}

and the transport writes:

Pyxysx = exp (/ i6AV, {Ai (N} mp {A; (/\)}>

The matrix elements of are computed using dual basis, involving amplitudes of the form:

)
s{A; (N}
exp (i ({8 W} = {& W} Tz,001)
where II; (Uj /U;], {AM} ,/\) are elements of dual basis. By parallel transport back to A + é\ we

can write:
(A} = (A A+ oY

so that matrices elements involving write:

exp (WL (A (V) H{MM})
The matrix contribution of any operator depending on IT (K} is:
exp (I0AZ, {A&s (W)} Iz, 0y ) exp (iF (Tz,001))
obtained by saddle point equation:
Iz, ) = Vs {A; (\)} + something including the field (125)
Moreover, matrix elements of A; (\) involve terms:
{Ai +0A;} — {Ai}

since in amplitudes A; (\) acts on different values of A;()\), see (124). Due to constraints this
variation in parameters {A;} involves a change in the state, so that the matrix element A (V)
between two states evaluated at {A; + 6A;} and {A;} induces a contribution:
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h({Ai+6A:), N —h({A),N) = 64, <ﬁh (A}, N) + Az, b ({A:) ,A)) (126)
- ‘miz{fxi(,\)}h ({Ai}.A)
Gathering (125) and (126), we find that the infinitesimal transitions have the form:
L ({& W} AT (A} Yyz,00 )

where the {A; (\)} are independent sts of variables {A;}, one for each A and (Z/\ {A; (N}, ¥ (A /\)})
are defined in (125) and (126). Exponentiating and composing the infinitesimal transformations
yields the amplitudes:

A U(J))

< ’ I v <h ({Ai}l) ‘ o (i/A(((Um)O) t ({& W} {Zk {A: ()} ’z{f\i(M}}) d/\)(m?)
Yo, {Ai}) [ho ({Ai}))

{R}={a:} _ _
/U(J) {A } ‘ /ex ( /{A ()\O)} {A } ({Ai ()\)} ’ {z)‘ {Ai ()\)} ’Z{I_‘i@)}}) dA)

xDA; (\) |ho ({AZ—})>U(§J-) d{A;} d{A;}

For states (120) the system decomposes as:

NG
</\’ {Ai}l/P U0) <h ({Ai’p}/) ‘ P (i/,\(((U(j))) ) L ({Ai W} {ZA {A: (N} ’z{fxm)}}) d)\) (128)
o (A ) o ((8in))) o
~ {Rin}={a:} _
B /U<j) </\’{Ai}/p U(j)/ P < /{A (o} —{As} ({Az (/\)}a{Z,\ {A:(V} Via, ,\)}}) d)\> ’)\o,{A i >

DA, (N d{A}, d{A.,} d{As,}d{A.} (129)
and:
L({& )} A AR ) Yz, })
= Ly (18, {T B0} Ty )+ (R, { T B0 )2, })
+Lpp (U‘i}/p : {YA {Aip (N} ’z{fxi}/p} : {ZA {Aip N} E{z@}p})
The first term describes the main part of the system acting as a background, the second one,

the subsystem partly isolated from the background, while the third one represents the interaction
between them. Note that the entire system determines the covariant derivatives.
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21.3.3 Field formulation of the transition

In the previous paragraphs we have considered a ”first quantized” formalism, where the number
of states is preserved. More generally we can consider the transitions to depend on the field from
which states derive:

w, (UM [ (A)] . 2)
A derivation similar to that presented in part 1, shows that the transitions are generated by:

AMU@

(LAY, . (h ({Aip})[exp <Z /A ((UU); | L (\IJJ)d)\) Do, (&3}, 1o ({(Ren})yo

where:

L (%)
= S (Y Yya,0) wr (VAR [0 (Ah)] A) vy (UOAAY, 09 ((Ap)] 2))

21.4 Transitions for the operators:

21.4.1 Operatorial form of transition

0>

Under the apprxmation of global identification the identification {A;}, the spaces H VN 1)
()‘ {{Ai}(UAO )’UAO })
and H (W1 I_XZ_}<U§J-))7U§J-) _}) can be identified. so that the transitions can be seen as an operator of

the global parameters A;, 1T (A}

Tygr = €xp (z (/\—/\O)V({Ai},H{Ai})) (130)

such that the transitions:
(MAY g (8| e (0= 200V ({Adf 11a ) oA [ho (A0 (181)

are equal to (123). This is achieved by the usual change of basis: at the infinitesimal level, the

U

matrix elements of a term exp (i6/\F (H { Az})) is computed as:

/exp (i5)\ ({Ki}/ — {KZ}) w{/—\i}) exp (i5)\F (w{/—\l})) dﬂ'{j—xi}
a{A;(M}

where T(A,) are eigenstates of II (A} These integral lead to replace TA) T Tan and
transitions of the form (123).

21.4.2 Transition for operators in the eignstates basis

We can use (130) to rewrite operators as a function from of their value at a given \o.
Using the form (119) for states, formula (118) for operators:

{Aé}th({M})UQ,) UEAG AU/ U] U5]) = {A A [ Uy [Up ] [U]] @ [ {As A TR ({Ad})

ud)
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along with (131), the transition for operators is:
(A AU/ [Up], [Up]] ® {A, XU,/ (03], (U]
a0 v ([ 1)
LB 2 [V BAT( 4)
X exp (z A=)V ({A} ,H{Ai}))

If we use the decomposition (120), the projection of this operator on the states:

v ()

AR ) e (A3 ,)) ) KB 1o ((Ris]) i
we find an operator:
VALY, AR kg (185 ,) b ((Rap D] @ [N (RS, by ({84} ,) B ({Bi )]

If we consider an operator depending only on h ({A] p}) and which is identity over the other
compnents, we obtain a decomposition:

ARty (B3 ,) ) 1{Ran)) [ (483 (0O )] [y ((Rand) - (U] ((Ran} [ (0 (RS, B (Rs))
Moreover, if the transition operator respects the decomposition:
(10207 ({415, )
= e (i0-a0) (Vi (A}, ey )43 ((A, g, )

and that globally ‘)\, {A} 1o P ({z_&;} /p)> |{A;p}) is invariant by transition, we are left with:

AR, e ((A2)),)) (A} [ (R, D] [y ({Rin )] ({Rin } (A (A3, by ({Ri})|
= PRt (182,)) R e (00— 200 Ve ({8, Tx )

% [hy (AL, 1] [y ({Ri})]

o (0= 20 ¥a (&), 1145y ) ) (Band [ (WA, iy (Ri})

which correspond to the usual definition of fld evolution, with th spc as some inert surrounding in
frst pprxmtn.

21.4.3 Transformation of operators in the initial basis

Considering only the subsystem wth evolution:

exp (=i (A = Xo) Va) [{AL,}) [ho ({7, 1)] W [hy ({Aip})] ({Aip ] exp (0 (A = 20) V2)

and rewrite this operator as a function of the initial basis of operator:

{(Uu‘))’ | (Um)’} w [0 00)]
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We can decompose this basis according to our decomposition:
U@ (U<j>/p7U<j>p)
and consider an operator depending only on UUP, so that it is the identity on other coordinates:
[(U(j)p)/] ] {U(j)p}

The change of basis similar to the inverse transform of (116) writes:
[ ({A5p )] W [ ({Ai})]
= /gT ((U(])P) 7 ({K })) [(U(j)p)/} N [U(j)p} g (( ])P) , ({A p})) ( J)P)/dU(j):D
and using the transitions:

(&) [t ((00r) o (R D ) [ () | w oo o ((097) 1, (A1)
“d (U(j>p) AU ({A; )|

= {ai e (=i = 20)V2)

X/ T((U(j)p)/, (A, })) [(Uw)’] T {Uo)p}g((mm)’,hp ({Ai,p})>d(UU>P)/dU(i>P

x exp (i (A — Ag) Va) <{A p}‘

[(Uo)p)’} w [yor] = [)\0, (Uo)p)’] W [20.007]
The usual transformation corresponds to the case where V is diagonal in the U0)?:
o (-1 (3 (0) =) ) [(797) ] 9 7] e 1 4 (07) - ) ¥
— oxp (_i (A (U9) = 20) (V ((Ump)’) v (Uo)p))) [(Uw)'} W [007]

where we identified:

and:

&) [ ((097) e (B D) (o) | a0
<a () by ((Rip)) ) (007) awir (R, )

= {&L [ (=i (1 (09) =) (v ((097) ) - v (007)) ) [(wr)
ng(( g)p)) L (A p})) [( g)p)’}@[(]w}g(( g)p)7 L (A, p}))d( J)P)/dU(j)P<{Ki7P}‘

Exemple For operators:

{(U@p)} [Ur] = o) (yor|
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the conjugate representation writes:

|{5i7p+k}>/gt (U9 by (R ))) ‘U<j>p+k> (00r|g (0971, ({&L,))) dvva (U (J):D) ({A.,)]
In the usual set up, where translation invariance is considered:
' (VO by (Bapn})) 1 (U9, by ({Rig})) = exp (0702, {R sy}

where {A; 11/, } corresponds to the the degrees of freedom of {A; 41} except those of A; .
Consequently, the operator becomes:

[)\(i), (U(i)p)/} N, [)\ U l)p} ‘{Az p+k}>/exp (iU(j)p-Hc/p. {Ai,erk/p}) ’U(j)p+k> <U(j)p

similar to a usual field in terms of creation and annihilation operators.

dU(j)pd( J)P) (A}

Part IV Further developments

This fourth part serves as a conclusion, presenting various potential developments arising from the
. . -~ k'L
present work. We focus on the role of the constraints relating the degeneracy parameters {A[ ]

and the state v.in the structure of the effective formalism. We posit that this formalism should be
locally described by fields on a fibered space. Subsequently, our attention turns to the modifications
of the constraints induced by modifications of the apparent state. resulting from changes in the
apparent state. From this, we derive linear equations for the modified states similar to some
dynamical equations and establish commutation relations between generators of modifications.

22 Collection of several states and parameters spaces
Given that the space of parameters varies with the state v, there is no field defined globally on the

set:
{[ ) ]}

In fact, we should rather consider collections of objects:

([ frorsom) ) )

{pnvpn’n} U ({pnvpn’n})

[k4]

defined by sets of clouds of parameters {A } These parameters describe the eigenstates of some

families of operatrs satisfying the constrnts:

({3} (o ke o (rman}) 0 5

where H is a vector with infinite number of components, gathrng the cmponnts equations of
{v™ ({py.pyn})} is a vector of functionals for several remaining subobjects. The kernel

Ko ({pli,plgli, kz;} ,{om ({pn,pn/n})}) is defined by the background states for some degrees of free-
dom.
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The set of constraints (132) defines one or several manifolds {V' (v(")} with sets of points { A[ki]}
and depending on states v(”. These manifolds do depend on the symmetries conditionned by the
states |[{v™ ({py,pyn})}), so do their dimensions.{V, (v ))}

When local variations v deform continuously V (v), and V (v) =~ V (v + 5v() we can
consider that the V' (v() form a collection of spaces {V,} fibred on the subspaces of the state space
defined by the v(™. Locally the V, are defined by coordinates ({A[ki]} ,v(”)) solving (132).

Defining fields over a set V,, corresponds to consider state spaces H (V,,) described locally by th
fields ¥ (A[ki]) or ¥ (U(n)7 f&[ki]). Maps of inclusion between such spaces:

VB -V,

corresponds to consider degeneracy subspaces, with inclusion of subsets of degeneracy generators
{L}; ¢ {L},. Such maps should translate into maps:

H (Vo) = H (V)

and products of maps:
VB X V,@' -V
Vg
where Vj; 5 represents the constraints between both parameters spaces VzandVj should translate
into the decomposition of fields:

whe ( ) >l ( ) e (A[Bk’])

where the decomposition is for realizations, as described in the first and second part.

The full system should thus be given by the sets {V,} together with maps between these sets
and decomposition of fields corresponding to these maps.

In this context, the state [{v™ ({py.py,})}) conditioning the constraints (132) can be inter-
preted as a type of global state of the system. The set of parameters changes along these states.
However, considering small deviations |{6v™ ({py,p,,})}) from the state [{v™ ({py.py,})}) may
maintain the global state by keeping the constraints invariant. In this case, dv represents a small
variation of the state, akin to a microstate. In the next section, we examine the impact of the
constraints on this variation.

23 Continous variation of state and constraint modification.

23.1 First order variation

To express the variation of the constraints resulting from a change in state, we refer to (87),
disregarding the realization index and the dependence on (\If?l). Additionally, we implicitly consider
the dependencies {UF}. and (¥ ), U} to formulate the set of constrained variables in a manner analog
o (132):

H({L},v)=0 (133)

or, if we have several types of stts as in part II:

(1w {o0)) o

The constraint has been rewritten in terms of generators of parameters stats.
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Modifying states [{v™}) to [{v™ + §v™ }) modifies the symmetry parameters L. This may both
consist in a modification L — L + AL+AL where A is a continuous infinitesimal transformation,
and AL is a discrete deformation changing the number of parameters. For instance, we can suppose
a deformation AL generated by some ALT + AL~where AL adds a symmetry generator, and AL
removes one generator. The modified set operator writes:

L — (L,AL)

The AL have also to be considered as acting on an additional set of eigenstates. This could
correspond to the creation or destruction of a parameter. We write the full deformation of paramtrs
0L = AL+ (1 + A) AL. This modifies the constraint (133) as

H ({L+ 8L}, {0 + 50 }) =0 (134)
Considering the transformation (1 + A), this becomes, applied on states:
H ({L+ 8L}, {o@ + o0} ) [{(1+ 4) A Ny ‘A[A1]> 0 (135)
Then, using that L + 6L = (1 + A) (L + AL) and applying a global transformation (1 — A) yields:

(1= A)H ({L+ oL}, {o + 50 }) 1+ 4) (1 - a) [{1+4) A"} ™) =0

(e an o)) [ - 05°7) <o

o 1w ({4 AT o) ()
We consider a first order expansion of (134) of the form:
0 = - mgen ([E) e o) ) ) s

+(1- A)A[Aﬂ HA[AU&;(W) ({A[kz]} : {U(n)}) SoM I (A[Al]) ‘{A[ki]}> ;[A1]>

where H (A[A ]) encompasses the action of the modified parameters A A For the sake of simplicity,
we have assumed a separable form for this action.
We then write the first order expansion of H ({ } {v M 4 5o }) in 6v( as:

i ({85 o e }) = ({A) ) g ({87 (o))

Using that the following constraint is satisfied at the zeroth order:

o 8 ({8 (P A4 =

(1-A)

formula (136) becomes:

0 = (1-A)za0Hsm ({AM} : {v(”)}) v HAMD ’A[Aﬂ> (137)

Al Hytanl o ({AW} {0} o0 (A[Aﬂ) HAM}>

Equation (137) can be written more compactly:

~ [A1]
H&y(n) (1 - A)A[Al] v ‘A ' > + (1 - A)A[Aﬂ HA

[Al](;v(n)
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or equivalently as an equation for a state:

5v(n)7A[A1]> su ’A[A11>

as:

~

(Hos + Hyostgn H (A7) = Agions (B + Hypougy o (7)) ) [0, 25) =0 (138

Equation (138) for state

5v(”),A[A1]> describes the tangent deformation of the constraint by a

state characterized by internal degrees of freedom §v(", and apparently a-priori parameters A[Aﬂ.

In fact, this parameter keeps track of the projected backgrnd, as described in Part IT and II.

23.2 Composition of modifications

We can compose two infinitesimal variations preservng the constraints. As before, see (135), we
can write for the first modification:

# ({L+or}, {o + 50 ) [ {1+ A A"

Inserting the operator (1 — A;), this becomes:

A[A”> —0 (139)

0= (1= A0 H ({L+ oLy o + 5 }) (14 A (- A [{0+ 40 A"

;[A1]>

that can be simplified as:
0=H ({L + AL}, {vm) n 5v§”)}) HAMD ’(1 ~ Al)A[A1]>

This transformation can be composed with a second modification 5v§’7) and we are led to:
0=(1—Axn)H ({L + AL + 85, L}, {v(n) + 61;%77) + &én)}) ‘{A[kz]}> ’(1 _ A1)A[A1]>

The second transformation As; models that transformation acts on states already transformed by
A, and should a priori depend locally on this transformation. The invariance of the constraints
with respect to the composition of transformations becomes:

1 (L AL+ AnL) o0+ 50l 1 a0 ) (AR (1 Aa) (- A0 &)

At least, even if the constraints are modified by both transfrmations, we can derive conditions
for these two deformations to commute:

~ [A
0 = Hyy ((1- A1) (1 A1) = (1 - Asz) (1 - A2)) 50 [A)
A A
+ (1= A1) (1= Ay) Hyay1, ) Hot (A[ 11) (1= ) (1= Ag) Hygay, o Ho (A[ 11) S

That can be factored in the following manner:

1 < [Aq] < [Aq]
0 = (1-An)(1-A1)—(1-Ap)(1-A2) (H&J(n) +3 {HA[AUM(")HN (A ' ) +Hyiang, o Hiz (A ' )}) v

1 A N
+((1—A2)(1—A1)+(1— A1) (1_A2))§{HA[ gy (71)H21 (A[ 1]) _HA gy (7;)H12 (A[ 1])}6’0(”) (140)
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We may assume that the coordinate transformations write, at least in first approximation:
Az = Asuf” + A (50" — 5v{")

and symmetricaly:
A12 = A15’U§n) + A/ (5’0577) - 5U§n))

since for (5v§") — 5v§")) =0, the two modifications are identical and commute.
Similarly, for the modifications of generators we assume:

Hay, (A[A”) _ gy (A[Aﬂ) (&jgm _Mn))

and:
Hu (A[Aﬂ) _ gy (A[Aﬂ) (Mn) _ 5U§n>)

We can compute the quantities involved in (140) with these formula:

(1=A2)(1-A1)—(1-A12)(1-Az))
= (1= A2) (1= A1) = (1- A1) (1 - A2) = A (30" = 50f”) (1= Ar) + (1 - As))

and:
~ [Ad] 2 [Ad] 2 [Ad] < [Ad]
H;[Al]év(n)Hzl (A 1 ) _HA[Al](;U("?)le (A 1 ) — H;[All&,(n) (50577) _ 6v§n)) (H/ (A 1 ) + H/ (A 1 ))

and:

<A ~ A ~[A <A
s (827) o i (87) = g (369~ 000) (0 (5°7) - (4

Sov(m)

The commutation relations should be independent from (51}5") - 5v§")), so that any decomposition

sv = 5v§’7) + 6v§’7) should lead ultimately to the same result. As a consequence, assuming:

(1-A2)(1-A1)—(1-A1)(1-A2)=0

[Aq]

the commutation relations imply H’ (A ) =0 and A’ =0 .That is both "global” part of the

transformations commute, and the local modifications cancel. This means that the transformation
is global.

This conditions are restrictive, so that we can expect that some holonomy should appear while
composing transformations. This is studied in the next section.

23.3 Second order expansion

We consider the second order expansion of a transformation preserving the constraint. This enables
to study the consequence of this invariance for a product of states. Define first:

so = 50((1")51)!5")

for two states 605" and sv{™, and:

ALA1]>



Assuming that the constraints are invariant at the first order in modifications, the second order
variation of the constraints with respect to su8" and 51;15") writs with these notations:

~ [Aq]
0 = (1—A) g 00" H, o) (n)5vz(;n) }A ' > (141)

A
F(1—A) (a 0DH, oo i (A [A”) ‘A >
A[Al] a A[A1]6 (77)6 (77) b

Assume that at least in first approximation the terms H

so(mov(') and HA[AHM(W)M("/) can be factored:
Hy ysor) = Hap = cHoHy
and:
HA[A”MWU(W’) - dHA[Al]aHA[Al]b

corresponding to a constraints which is a sum of tensor products of operators.
In this case, averaging equation (141) over ‘Ai A£A1]>:

0 — <A[A1] <A1[7A1] A[ ]> A£A1]>

{5’05 )5’015 )H 5’0 n)Hb(S’U =+ 51)5, ) 1577 )HA[AI]GHA[Al]bavt(ln)Hbavlgn)}

(1= Az (1= A)zia

b

can be expanded as:

0 = c(AM s | (A 5"
[ 1] (77) [A1] (n')

+ (A, 00| (Ao,
(8"

Al[; 1]

2 [A1]
(1 - A)AEAH Ha 2a ' a

,5v(’7)> <A[A1]5 (o )‘ (1—A) 1a, Hy
A,

AéAl] 7 5’01577 ) >

[A ]
(1= A)zaq Hyjay, ‘ "o (")>

AP 5 )>

(1 - A)Al[zAl] HA[AU

In the case

, 0Uy (v > ‘A[AI] 6vl(1")> that is, when two identical modifications are performed,

we have:

N 2
(1= &) gan Ha [R50

a

0 = ¢ <A[A1],5Ué")‘ <A£A1]6U£n )

~[A N 2
+c <A¢[z 1 vt )‘ <Ab zg )‘( —A)zian Hyag, ‘Ai 1]75vén)>
(A1l o () [Aﬂ sulm
and depending on the value of ¢ and ¢, states |A, ,dvg > A
constraint on the number of states should arise in the context of commutations relations, which is
the topic of the next section.

> may exist or not. This

24 Discrete transformations

Up until now, our focus has been on continuous deformations of the constraints, and we have
explored the implications of state modifications that preserve these constraints. We now delve into
the possibilities of discrete deformations that entail a change in the number of parameters.

We will consider two transformations of state v(” that do not preserve the constraints. In other
words, these transformations modify the space V (v(")). We do not assume that these transforma-
tions induce the same modification of the constraints but rather impose some conditions on the

124



difference between these modifications. These conditions translates into commutation relations be-
tween the generators of transformations. To illustrate these ideas we will only consider a simplified
example.

Suppose the states space to which the v(” belong, is composed of sums of tensor products,

(k4]

contingent on the parameters {A } through the constraints. We consider in this example that

modifying v by tensoring or destroying one state results in transforming the set {A } by adding,

or removing one or several parameters, with multiplicity. In part I and II this transformation

arose from the projection onto some background state (see section 4.3). The degeneracy operators

were dependent on the considered state. Tensoring a given state v(" by some §v(" involves more

realizations of the non-projected field in the series expansion of the background state. This increase

in the number of realizations induces more symmetriesthat mix the realizations of the fields.
When considering two successive modifications creating and destroying a state:

- +
v = ol A(§ Y A&;(n)”(n)

or destroying and creating a state:
SO ) Ry |

6v(n)AE§v(ﬁ))/v

the first modification increases the number of parameters from {A[ki]} to {{AM} A } and then
i

2 7[ }/A ]A[AI]}

reduces this set to {{f&[ki]} A } /A A" While the second one modifies the set {{ A
Here, we define { } /A A®

{A[’%]} /A[AZJ _ CJ g
SUAA2] :{A[ki] }
where U is the dlSJOlHt union. Note that in the definition of {A ‘ }, the value of any parameter A[ki],
including A A® , can arise with multiplicity. Removing A 42l corresponds to reduce this multiplicity
by 1.

The two sets {{AM} A }/A and {{ [k ]}/A A[Aﬂ} are identical if A[A2] £ A

whereas: {{ [kd} /A [Aﬂ} _ {{A[ki]} 7A[A1]} /A[Aﬂ &A[Aﬂ

In terms of modifiication operators, we can write:

{{A[ki]} /A" A[Aﬂ} AT Al]Ai[Az] {AM}

{{ [k ]} /A A[Aﬂ} Ai A+ {A[ki]}

Aq]
where A;{[ a,) increases the multiplicity of a value A[ U of the parameter by 1, while AA A, Teduces

[Aq]

and:

it by 1. These sets gather eigenstates of the set of operators {L} U { } and {L} U

{A};[Aﬂ AR[AZ] ) L} respectively.
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In the sequel, we will neglect the continuous transformations (1 — A;) on the parameters. As a
consequence, given our assumptions, the first modification of the constraints writes:

o <A+ A {AM} , {vm) +Aav;n>Aa+vgﬂ>v(n)}>
and its expansion in terms of operators has the form:
H (A+ Ao {a™1, { K T (n)v(")}) (142)
Y1
- (A o))
D (A ) A+ 2 (A1) (59) g A A
while the second modification is:
H (A};[AﬂA;X[Az] {AM} { '+ A (n)A5 <n)”(n)}) (143)
- ([ o 4
+H<+Aj ({A[k”} 7 {Um)}) Aimﬂf‘gmz} n H&A) ({AM} : {U(m}) A;ng)AglAﬂAgm)Af ™~

If 50\ £ 5u{” | both modified states are identical and the modified contraints have to be identical.
Moreover, since:
~ (ki [Az] [A2] 2 [A1]
{{ar) A% A = {{AT /AT AT

for A ;é A® , we can deduce that the difference of modifications:

o falml L falml o
H(AA[AMAA[AQJ {A } { oA (W)A5 (n)“(n)}>_H <A SN {A } { '+ A (n)AMgn)”(")})

should include a factor: N X
5 (A[ 2] —A[ 2]) 5 (6v§n) B &jén))

We thus impose:

+ - ~ [ki] _ + _ ~ [ki] ) _
H (A;\[AﬂA;\[Az] {A } { m 1A (n)AJU(mU(")}) - H (AA[Al]AA[A2] {A } oM LA (n)A5 (n)”( )

-5 (A[AQ] —A[A2]) 5 (50577) _ &)én)) He ({A[k ]} 7 {v(”)})

with some vector function H¢ ({ Al } { n)})

Note that the presence of § ( A% A[A2]) can be checked directly in the term:

) (A"} (50 ) g 2 (8 o) 17

Y ({A[’“]},{UW}) AA[AI]A’[AQ] Y ({A[ki]},{v(n)}) Ai[AﬂAg[A”

and:
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arising in (144)%. Actually, these operators are evaluated between <A[Aﬂ,5v§")‘ <A[ 2l 61}2”)‘ and

A[Al] gn)> ’A[AQ],5U§H)>
Writing:

0 (A o)) =

for any index t leads to express the left hand side of (144) as

N _ ~ ki) - + A il -
H(AA[AHAA[AQ] {A } { A (n>A6 (n)“(")}> _H(AA[AHAA[AQ] {A } +A (n) (o 0(145)
_ ~[A2] 2 [A2] () - ,,) _
=0 (A —A ) (H A (n)A o HIA (n)A;_U(n)
1
(m) (n) (A) g+ - (M) - +
+0 (5”1 — v ) (H+AA[A11AA[A2J - H+AA[A2JAA[A11>
(VA) + _ (v,A) ~ [ki] ) _ +
A(; (n) A[A1]A5Uén)1A[A2] —Hy ({A },{v ! }) A (n) A[AQJAMgn)A[Aﬂ
where:
A aaar = Ag g8
+ +
6@5’7),A[A1] A6 (W)A [Aq]

The identification of (145) with the right hand side of (144) leads to:

5@[”] A )5(&) s <”>) He

_ AlB2l 4 () A+ - 7 A- +
=9 (A A ( A6 (n)A N A5 (n)Aévgn))
A _
+3 (60f" — 0" (Hi_)AA[Aﬂ ian — HE A AT )
(.A) gD ({A I
+HHIZAT o gl Ag o gea ~ oy ({A } { (n)}) o alsalAg o gl
with: "
He = He ({87} {})
Since the modification are discretes, nothing guarantees the equality H(fr), = Hﬂ, Assume to
simplify that we can normalze ‘H(fr)_‘ = |H! | | =1=|Hc|, this mplies that:
_ - - + AlB2] 2[4 (n) (n)
0 = AT AL AL AT (,7)+5(A — A7) 6 (00 — oui”)
_ - - [A2] [A2] (m) (n)
0 = Al A o £ 4 AL, +0 (A7 =A%) 6 (507 — 5uf”)
_ g+ - - 2] ;lA2] (n) (n)
0 = Al aendy oz iAévgn))A[AzlAé (o glan T (A -4 )5 (5”2 —0v) )

leading to some commutation or anticommutation relations between operators involved in the
modifications of the constraints.

*These terms are derived from (142), (143) and (144).
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Appendix 1: solutions of the saddle points equations and effective
theory

We solve formally the saddle point equation for S. The results allow to describe the effective field
theory by replacing the results in the field functionals.

Solution of the saddle point

We study the minimization of the action functional for \I/?’;

o (-5 ({ot ) g wit o) (o (132 0925) )

The tensor products:
w5 (U)) & wE* ()

and:
vipry ({25'}) © ¥7* (UF)

will stand implicitely for:

and:
s {55 0 988 (02)

The indices « will be reintroduced later.
We will write the solutions of the equations:

{05 () D s U9} 1 = {955 (U1}
l';m/ 7 \p?l (UJI)
Writing the saddle point equation as:

J ol ! ®k @k ok _
WS <{\I/J) (U) ® \IJ (U ) {U{Uk} (WJ7Q) ®\I/I’a}{Uik} =
We assume that S is a series in the variables:

{ust, 0 g wis )]}

[0}

and the functionals:

{”{U’“} ( ) ®\IJI°‘}{U’€}
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so that the saddle point equation for \If?’; has the form:

0 = Z Hd(U /fras) (fi)Hd(Uﬁi’) (146)

t61 ..... 62

xGo <Uf, (UL, [ fu, UFs Y, {UZ.’TB;/}Z_/ : {\p% CHERT (Uf)} vy (955) @ w5k, }{Uk} /¢a>
s t

X (‘I’Qﬁi (U ./ 1, UF) TT W58 (U 6,/ fuas Ul ) WER (UFs,) T1 ”{ } ({W%}) Uia (Uﬁﬂi/)
8,

r=2 r'=1

~

S

Forpey ({‘I’?Za}) [T 95 (U s/ fu Uks,) 925 (UFs,) T1 “{ } ({‘I’%}) e (Ufﬁ;,))
b

r=1 rl=2

where Gy is a kernel depending on {\I/?fl, (Uh E?C Q/%Z, (Uik)}a/#a. We assume that this kernel in-
cludes some delta functions:

8 (UF = Ulg,)
and:

6 (Uf - Uty )

to account for the possibility of some usual quadratic, or higher order, terms in the action:
U (77l k (7rk L7k
J (w5t @) g wit @) aviavt s

This equation (146) can be solved recursively for each series expansion:

V6 (UF{P5'})

- = Hd(U [ fra,)d (ff)]ijd(vﬁi’)

sl
({815 200 TE02 00 ) T (0,
We assume that Ky is independent from the set {«;}, that is:

/Co(Uik { s J/fkl} ,{Uiki/}i,a{ai}):’% (Uik { i J/f’”} ’{ iki/}i’)

In the sequel, the realizations are understood. We also write:
Wk (U (951) (147)

- X [ ne) (o) TTe()

.....

X’CS(U;@{ i J/fkl} {1 U /fk,l,},)H\If?li(Ujl-i/fkili,Ufi)H\I/?k(U /Fryts If’)

i i
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where:

K (UE U8 U3 ey AUE U e}, ) =Ko (UFAUE U g} ) TTo (U5 0 P, )

il

(148)
Changing the notation where i, is replaced by i, formula (147) writes:
wgs (UF, (5') (149)
- 2 I (U / uac) d (UF) ks (U AUl 05 ey ) TTS" (U5 s UF)
..... JAs 1 7
By changing variables in the functionals:
v (UF {w5')
= ;:ld<¥ﬁﬁh>d({Uﬁ/hm}@@>IIW?iUw)K%(Uﬁ{Ufh/{U?/hm})
Reintroducing the realization indices this becomes:
Vo (UF{25'}) (150)
- SlZl /d ({U]lz}l) d ({Uik"/fkizi} ,zl> Ky ( ! ,{U]l.l}li , {Uiki/fkili}i> {%: H\IJ@]@Z; (Ujlz)
yeesls o s [
where

CECOR R 10D
ot

The dependency in « is justified by the fact that the action S is such that an element of {ai} _ Is
a or arises in the action in products involving «. B

Projected functional

Introducing (150) into the functionals of the form:
[ o008 oy (U5} w5+ (UF) dedu’

is performed first by evaluating these functionals on states ev (U?i) ({\1/?11}) that replaces \IJS% by
. ®1; . 1.
its value 3™ ( ) Then multiply by v ( iU /szll)- and integrate over d <{Ujl}l ) to recover
l K3
visy ({¥5'1)-
Practically this amounts to remove the integrals over d <{U le}l ) in (150) and consider:

Ky (Uf { LU /szzl} )HU(UfilaU;i//fki,li,)

i/
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then, we replace the kernel in (148) by:

ks (UFA{vlUp e} 05U B} ) (151)
— ’CO( { U /fkllz} {Ufi,’Ujl'i//fki/lil}i,) U(Ufivujl'i/fkili)

11
= Ko (U a{ i J/fkl})HU( i J/fkl)H (Ufi',UJl-i//fki,li,)

l;

and then resatblish integrals over d ({U jl}z )

Then the result is inserted in:
[ o008 oqury (057)) 05" (U2) dodu’
To write the result, we change the variables arising in the fnctnls. We write:
uf = ({05}, U*/ fu)
where {U}} are coordinates in UF/ (UF/fi). Then we replace:
UF AU s} = (RO UF ) {08 e} = Uiy {0l (152)

i.e. we include the variable U*/fy, in the set indexed by i (by including a label 0 for this
variable). Moreover, using (151), we rewrite:

Ky ({U;i}li , {U;a/fkm}ign) ~ Ko ({U;i}li AUk} ) TTo (V.05 i)
and the functional becomes ultimately:

/g(v,Ul_k) Ko ({U;} ‘,{Uiki/fkili}i@)]'[ (U U ) (153)
><ZI_IKIJJ{ }( )Hd{U;i’Uiki/fkilivA[a{%] [\I]va]}

Appendix 2: degeneracy

To write the dependency of the saddle point solution we start with the transformatuin parameters.

We write: ( .
~ [1kign
{A{aign} [\I/J, I/]}

for the set of parameters of the group Gy, . r, with varying k;<,. The full set of parameters is:

.....

({af )

(Al ),
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We also note:



the parameters associated to an infinite given sequence {k;}. We also assume that the eigenvalues
of symmetry parameters satisfy functional relations:

o ({AE N w0 Loy (). 010)) =0

We can write the vector kernels of transformations:

Keoiicn 5 iy = Ko 5] (154)
- 2 e (o)) T ()
Loy i<

(IR [ 7)) X M)

<7L

since the generators are the sum for all realizations arising in the action. The kernel k has compo-

nents dual to { [{{ :’:g] (U, u]}. We note L,_, (¢5') the operator with kernel K,_, (¥5").

The solution is given by the group action:

{‘I’}eﬂ’éfa (Uf% <{Aﬁfj}}] (@, V]}>n , {\If?l}> } (155)
{exp( S Lica (99 {A[{{j;}” v, ]}) wit, (uf %{\If‘??l})}

The dependency in (W?l) kept implicit. To isolate one of the solution:

i (vs ({A et} ) 4931)

we write:

() o
- T () [ (.05, {Ay[q{],y]})y(];i),\l/?j’g((Ufi)l,{\lf??l})

IS o) foo (099 {805 wst) )i (0 005)

n kz<n

and we will use the notatn ({AL{’“”%“}] [P, y]}) for the set <{ [{k hicn-1]] [P, u]}) arising

{0‘7,<n
in the realization W?Z,O . This notation is valid, since the domain of the variables A[j g
for all realizations. Consequently, the field writes:

it o (A i) o)

is the same
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Particular case

For transformation groups that satisfies:

Gk kn C Gk

i7~~~7kn+1

e

we can assume that: . .
Aa{ ’ i@t*l}] [\I/J,V] C AL{ ’ ign}] [\IJJ,I/]

so that for given sequence {k;}:

(A([l{k,kignl}] (W, u])

is an infinite dimension flag manifold, starting with A!¥ [U,v]. The entire set of parameters:

(e ),

is thus an infinite number of flag manifolds, all starting at Al [P, v].
To simplify we may assume that:

n

AL ki<n )] (W, 0] = {A[ki] [\I/J,u]}
and that the groups parameters are constrained such that:

({altse Py} ) = (A1 w00, AL .01}

keeping in mind that this represents a distinguished set of points bearing some properties of UF.
This cloud of points is a background space. For such parameters, the constraints write:

he, ({A[jﬂ [WJ,U;,V}}

Note ultimately that in general:

3

7h:D ((\I}J)vUJl”V)) =0

i<n

Al [, 0] = (Afg [pr,y])

Restriction including constraints

Since we have to consider functionals:
v (U;) OFt (UF) 8 (fue (U, UF))
we have to restrict U¢* (UF) to & (fu (ULUF)):
UEH (UF) — PR (UF) 6 (fu (U} UF))

and the same applies to the Uik i

wik (Ul) et (U)o ({ e (U, U5 })
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The notation ¢ ({flm (U;i, Uiki) }) stands for the product:
[1# (1. (.07
Ly

that is we take into account the whole constraints fi,, (Ujl-i, Ufl) for I; variables.
This means that transformations (155) have to be restricted to projected fields:

{\1/}873?; <Ul ({ [[{j;n} [0, v }) {\IJ?Z})zi({fliki (UjU’“)})} (156)
= o (1t (05 {0 s} ) wdl, (0 05 6 ({s (03 05) ) |

so that we consider transformations that commute with the projections & (fu. (U, UF)).
These constraints are not independent. Assuming the form:

fe (UF) = £, () (157)
o ) (11} s

for o« running over finite set, such that U, { }

or more generally:

J

=1
o ({fun (wr0t) }) = ITe (2 (v 0%))

and the rest of constraints are compatibility between the U Jl’
Choosing a = 1, for simplicity, we have:

6 ({ e (U UF)}) = 6 (fiars (U} U)) (159)
for some given I;.

Due to the constraint, the parameters {A[{kig"}] [P, u]} are restricted to subsets:

Ui } we can replace:

{O‘ign}

{ [{{aii:]}] [\I/J’V]}é(fziki(U;i,Ufi)) { [{{;:f] [\I/J,V]}

Practically, when ﬁ/?gi (U -ki) is inserted in (153) this subset of parameters is submitted in the s-th

K2

term of the sum to s constraints due to the products:

H‘I’?l{a N (Uli)

and this corresponds to consider parameters of transformation that write:

(R o)
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where the constraints § ( s (U LU kl)) have been solved by introducing the dependency in {U ;igs}

g7
and by choosing particular I; in UJl-"g“"} to implement the s constraints (157). In the text, given
our assumptions, we will replace:

(A o] Al o for)]}

or:

if any k is distinguished.

Appendix 3: Projected functional

Disregarding constraint

Without constraints in variables, including some degeneracy in solutions (150) corresponds to
consider parameters dependent kernels:

{;cz; <{Ujlf}l_<s {utsna <m;1 s {001, { alfsen)] [\Pm}) )} 00)

Linear combinations of degenerat background amounts to replace:

/CS (Uik, {Uiki, U;Z/szll} )

B

in (149) or (150) by the following contribution:

v (A8 fwsw fup= ] fal T s ) ) (161)
v l; k; N li\n N [{kz\n}]
ICO (Uikv{Uj }ligs 7{Ui /fkili}igs, <A[alj] |:\IJ,]7V5{U]'< }:| 7{AO¢ < [\I/Jau] .
We change variables arising in the functionals. We write:
uf = ({Uj}.U*/ fu)

where {U!} are coordinates on U/ (Uf/ fi). Then we replace:

L)
K2

— ({Ujl} ,Ufi/fkizi) ; {Uik"/fkizi, {Ag{kign}] [‘I’J,V]}Z}

vk, {AR w0} {Uf”/fkizi, {AL{%”H [, V]}l}l- (162)

- (o ot A )

K2

That is we include the variable U*/f; in the set indexed by i (this is done by including a label 0
for this variable). Similarly we replace:

Al {\I/J,u, {UJZK" H 7{AL{ki<n1}] [\IJJ,V, {U;Z@H}l N {AL{k,kignl}] {q;],u, {U;Kn H}l
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Moreover, using (151), we rewrite the krnel as:

ks ({u), forima) - ({ARe T w,}) )
= Ko ({Uyll}lz : {Uiki/fkizi}ign, ({Aa{k’kignl}] [\I/J,V]})n) IIv ( i Uj /szll)

%

where S runs over the subset of {1,...,n}.
As a consequence, in a functional of tensor products:

v (U))  vit ()
a copy for a single realization:
[ o (0.0 oy (U5 w5+ (UF) dedu’:
is thus replaced by:
/g(vai’“) Ko ({Uii}lia{Ufi/fkizi}i@,({AL{'“”@1} W, v }) )Hv( ks, J/fm)(163)
P o () e (({A M) o) TLa{uf vl s Al .01}

As in the core of the text, we write:

oy ({w5h}) = [ (vl vl ) wst, @)

and use our previous change of variable (162), to include {U!},U}/fu in the set indexed by i.
Ultimately, functionl (163) rewrites:

[owumeo({or}, vk}, ({8 P ) JTTo(vkof/sa)ion
) 2 g, 3 () ({8} o)

X Hd {U/v U; i/fkili} d <{Aa{k7ki<nl}] W V]}>n

including constraint

We include the constraints for parameters. We choose n values of /; in U Jllg"} arising in (164) to
implement the n constraints (157). We then come back to the derivation of (153) and remove the

integrals over d ({Ufi/ fkili}l ) in (163) to write the functionls:

[o.u8) K ({Uﬁi}li,{Ufi/fkili}i@,({AL{’“”%L1” [\IJJ,V]})")H ( 5 UL Fi, Y165)

3

ST () () s

136



This has projected the functional over the states defined by the set{]_[l \IJ?l{ A ( )} This implies
(s ()

vt (u) o ({fn (0307)})

cn b mpsd b sng th vrbl Ujl-i, s tht w wrt th prmtrs dpndnc:

({allsela, o (1) })

the constraints (159):

and the restriction:

and functional (164) rewrites:

[owonye ({o7}, ormal,, - ({AE Y uwfvr=)]}) ) ¥ TTo (o006

S,0eSies

x e (U ZH\I/?Z{ 5 (U7) e (({Aa{’“”%”l}] {W]U{U;g}}}>n’u)
XHd{ L Z/szll} ({AL{;@,;@KM}] [\IJJV{UF}]D

We choose the form:

n

(0103500 = 0 (02) (s (0102

corresponding to current-current type interactions. As a consequence, defining as before:
® Zign Ly
v (U)) = Z H‘I’J{ 4 ()

as well as:

g(v,{U;a}ign,({Aa{kﬂfsn1}1 (v, Ui ]}))
= [owone ({o}, fokrnad ({8 o o= ] Yavk Lo

Formula (166) is given by:

/g (v, {Uj—i}m, ({AL{’“”“““}] [%m]}) ) (167)

< > TTv(v) wsh @) gl Zient (U;);a( {AL{’“”“KMH [xIJJ,u]}> ,v)

S,0e51ieS n

_ / ( {Uj,AL][\I/J,u,Uﬂ}Kn>v(( y))(wgfzm) <{U;i}i,({jxg{k-,ki<n1}][\1,(]#]})”,1)))

S
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with:

20 () (o)
N
win @ gt (o) we ({8, o)

o((©) = X T (v)

S,0eSies

and:

As a consequence, functional (167) becomes:

/g (U7 {Ujl_i7Ag€i] (W, v, U‘ﬂ}i) v ((U;)) (‘I]JSJFZ i) (UJ , ({ Allbred g y]}>n,v>)

Setting g, — g since the functionals are arbitrary and the v dependency can be absorbed in the
definition of g, this yields:

/ o((79)) 3 ({U;@-}i, ({AL{’“”“<”1H [qf]})) o) ({U;@-}i, ({AL{’“M“H m]}))

In the case where:

({AL{k,msnl}] v, V]})n _ ({A[{k,ki@q}] 0, V]})n

are independent from «, we can sum over the index and we have:

J (@) ({or), (e Hwn}) )3 w5 ({or] ({Alse sl wsa}) o)
- /v ((Uj)) g ({Uj} ({A[{kﬁisnfl}] [@J,y]})n) g () ({Uj} ({ Al{kkicn—1}] [\yJ,y]})n,v)

with:
0 (fup ) ((heen T, )

_ Z\I/?&Zili) ({Uyll}za ({[\[{k»kignfl}] [\IJJ,V]})H ,v)

Note that if the dependency in:

\I]?gZili) ({Ujll}Z , ({A[{k,kign—l}] [, I/]})n 7U)
/kv (sz_i) \D%zi 1) ({U;} ({A[{k,ki@fl}] v, ”]})n)

The functional becomes:

[o (@) a({or}, ({altse ) ol (fur} | ({alse T} )

with v ((U;’)) rescaled:

have the form:

o((©7) = T () 3 TT (v))

S,0eSi€S
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Remark

If we choose for the functionals:

Ul/f
vy (w5 = 95 (W)

that is a density which is a Dirac measure:

we find:

/ g ({oi} ({Altsend g, ) Yug@n) (Lot ([alskhe i, u)) o)
= Frin (\I/? 2ils ({Ujll}z, ({A[{k’ki@*l}] [‘I/,J,V]})n,v))
while if the AL{k’kK"*l}] [U 7, 7] not independent of the copies \I/?Zp o identification is local.

Remark

In (160) and (37), the kernel can be considered as representation of the GFAki<n-1} with n < s, so
that the krnel considered are rather:

{/CS <{U§i}ligs , {Uiki/fkili}igs, ({AL{’“”“‘“” [wJ,u]})n<s>} (168)

X

which corresponds to include the following contribution in (149):

. <( (oo, ) ) K ({U;z-}ligs forn) ({alre ]}>>

(169)
and the field is:

X

Z\P?ngzl i) ({sz}< ({A[{k,kignfl}] [, y]})n<s ,v)

Appendix 4: invariance

We start by assuming a projective invariance:

/U ( (U;)) sAllehicn-1}] [\D)",’;’ Ul VAQ{M@A}] o ( { Ual'i}i | ( { AllseN g, 0 }))

swsh <(Uj

is not equal to 0, but satisfies:

[o(() sl 1)) [w)]) vl Y (oo Y ({8 (Al }529)

i (05

Y ({wgl ({U;i}i, ({Ag{k’kig”l}] (@), Uﬂ})) })
- /U ({ (U )}) suh <(sz1)’, <{AL{kvki§nl}] [, v, Ujl]}) )
s (({uh (sl o)) )
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and we show that we can define, at least locally, a field depending on parameters independent from
field variations.
Note that the gradients are not included in the right hand side since they can be removed by

redefinition of:
(), (1 o))
Functional V is assumed to be defined as a series of functionals of the type:
qu (e (e M) )))
k k’L n—
-/ () )

U pru

(i . (fate V) )

Computing the variation:

i (o (W o)) )
oush ((Uf)/>

and using assumption (170) yields:

o= (for), (A oo} )
sust ((01)

s (fon) (e ) o)

- [ew) s (1))

(171)

J

# [o (v (s (o), ({8l wone}) )
{Aa{k”“i@l}] W, U;]Dn)

[ ) )

2 () (8w }) )
B (R (e )

and equation (171) writes:

with:
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sugzt ({on), ({al e P svun}) )
5wt <(U]l)/>
- (o () (e )
ey (@D (o5 (for, ({0 oo }) )})
(e o))

This can be factored as:

I
—
e

>,
—
S
|
/
q&\.‘
N
~
_l’_
<

o (fuz (), (1)) )

- /<6 (Uj - (Uj)/> +V, <{\IJ§§31 <{Ujl}l ({AL{k,kignl}] [0, 0,01] }>n> })) s ((Uj ,

As a consequence, the initial variation of the field rewrites:

s (), (A

n

ru ()i (Ve )

which is performed at fixed ({[&L{k’ki@l}] [V, v, U] }) . Thus, even if \I/?CYZ"” is not invariant,

n

there is a related field \if?gili that can be defined locally as a function of an invariant family of

[{#:kicn—1}]

parametrs Aa .
The solution:

12 () (R0 ) o)) )
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satisfies the equation:

[o(() {H(?[n Mgz () ({1 ) )
J,a J

Pl N ESETE )
owsi (4 (

o) Al )

with:
"
" J,a J
o((01)) = [+ ((@))
T ®2 l;
ou5 = (u))
Al v, 001
If the —i A are independent from realiztion, as before, the sum over realiztions verifies the
wJa< ! )
equation:

AL IV, ®3, L I kikign—1 l
Jol = (), (0o

o i AlFkisn—1] g )
o L () (e e} )
=+ ({(m)}) Suh <{(U;i)’,AL{’“””WH [ U5] }>

Appendix 5: projection over eigenvalues of operators

Projected functional for single eigenvalue

Starting with the fnct (47):
(i (U))5 = of* (U {25} A [0 {01 }])

computing these averages of the field in the space spanned by states FOA \I!?ZZ , {\IJ??Z} , U} .needs to

consider linear combinations over these states with coefficients ¥ (Ai’ﬂa [\I/ Vs {U le H ,v). averages
(wk (Uf)) 4 are thus combined:

it )y~ [ (B (v (U] o) (95t WD) 5 B (v {U) )] (172)

_ /\If (Af,a [wov {Ui}] o) ot (Uh, {w5h} AY (w0 {02 }]) A" | (w0 {U2)]

Use that:
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has an expansion:
o (01 i) A2 oo 1)
= Z / ( Jl }l ) H\I/®l UJl) (Uk {UJl}l AL’Z]@ [\I]J,V7{Ujl_i}}>
As a consequence, replacing:

wER(UF) 6 (fur (U, UF))

in the functional (44) by its average (172) and change variables as before:
l Ly Ly
Uj’{Uj }z - {Uj }z
Li (17l L li
wit @) [Tws (v) - ITws" (u)
leads to the functional, written for a single realization:

[a({oi b & [ {i ) T 5" (0F) @ (B2 [waon {e}] )

where:
g ({v0 & o]} ) = [ o @E/n0,01) v (Uf,{U;i}li AL [ww Uk }DdU’“/fm
Introducing the eigenvalue explicit:
Ve <Uf,{UJl-i}li,A£fla {\IJJV{UJ!}D ooy <Uf,{Uji}li,AL’ja [\IJJV{UJ’H ,A(xy?’f))
v (Affia (v {vpl]0) - v (AL’Z]Q (o {Uf ] o (957))

As before if the set:
(B2 o {3} = (A2 o {02}

does not depend on the realiztn, this becomes:
Fytin ({‘I’?l (Ugl')}z)
= [o({urh B fwaw {u}] a o)) = ({o3 ] AL [ {5} 2 (95 )

where:
W=t ({0} 2% o,

J o0

v AUB}] N (255 0) = szz ({vi) A% o {Ui )] A (w5 0)
and:
v ({o b AL (v v {Uf ] o (w59)) = H\I/ (Ul) wa (A [ {U23] w5

and:

o ({13}, A  f11)] 052
= [o@!na 0} v (Uf, {v}, Al [wsv {up}] (\If?’“)) AU/ fu
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Average over severl eigenspaces

If we consider the average over several eignspcs, we write:

((v8) [ {or}])
([ {3 }] A o fuy }])

with the eigenvalues of the operator considered. A can be multi-valued. The eigenstates write:

P[5 4971, (A2 [ 1)

and the average values in this state are:

(U (0F) = o (0 (95 0 A [0 {0)])

of* (U8, 1051 (VA w00 {0 }])
= Juronn [ ) (vAL) [ (e} T2 (05

and functionl becomes:

Fytin ({‘I’?%ko (((Uj)(po’pm))kl/) }( ))

ST S fa(tma {08 {1} )

’ ! !
m D;_’O'pl’m m D(”O’pl’()’pl’pl’l)’m’m/ rsm
Jrpu

xqf?kgkl, <[Poapz'o] : {(/\,AL]Z]) w0 {004} e ) d{[po, prol}op d (A,A[j}) vy {Ui)]

S ’'<m’

the variables:

where:

Appendix 6: general form for amplitudes

The transport Pyyisyx is performed through generator of translation operator:

(o (0 (5 ) = 050, (8} 0) ot

[ki]

. kg -
Since w, (U;/ (U] {A Al } A+6)) and , (/U] {A
their difference is not the derivative of an operator ¥ (Uj /U;], {A[ki]} ,)\) that can be defined for
every A. This derivative has to be corrected to account for the change in spaces induced by the

modification of \.
Given the constraints:

R R R GRS )
(k4]
o (a% (U/[U;] {A }’A)Jr((AA)Z’ (U;/ [U;]) ¥ ((Ug/[UJ])k/,{AW]}’A));@)

} ,/\) do not act on the same space,

o\

AT\ (U3 03], {AM} )
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and the transport writes:

Pyyisy = exp (/ia/\VA\I/J (Uj/ U], {A[ki]} ,/\) ] - DU, (Uj/ v, {A[ki]} /\))

oy (Uj/ [Uj] ) {A[k ]} 7/\)

The matrix elements of: 5

S CHICART S By
are computed using dual basis, involving amplitudes of the form:
exp (i (w5 (/0] {A"} 3) = v, (U w31 {8} 2) ) s (/0,0 {2} 1))

where 11, (Uj/ U;1, {A[ki]

A+ 0\ we can write:

},)\) are elements of dual basis. Using the parralel transport back to

v, (uy/ ;) {4

so that the matrices element involving

~ [k]

}7/\)_>\IJCI(U7/[U7]7{A }7/\+6/\)

5 (Uj/[Uj(]s,{;\[ki] }/\) writes:

exp (1079, (U7 [0, {A"} 2 (105 (/03] {4} )
The matrix contribution of:
exp (132,30 (U3/ [U3), {&"} X (10 (v3/ 03) {&™ ) 2)) Y e (i (11 (/03] {4} 0)))
is then obtained by saddle point equation and we find:
I, (Uj/ U3l {A[ki]
Matrices elements involving nl ¥ ; (Uj /U], {A[ki]

hy, ({A[ki] [\I;L U(j)] }i  hy ((\IIJ) 7 U(j))) -0

} ,/\) =V, ¥, (Uj/ U], {AM} ,)\) + something including field

} ,)\) Snc th cnstrnts r:

Nn lcl trms wr:

v (Uj/ il {A[ki]} +9 {A[ki]} ’/\) -V (Uj/ [U;] {AW]} 7)\)

- 5{A[k”}(v{gki]}% (v {27} ) + (A{A[ki]ﬁ W/ 03)) s ((Uj/[Uj])ku{A[ki]},/\)))

= 5{A"y (e} (U3 w31, {A"} )
and matrx elements:

<‘I’J (Uj/ [U;] {

= <‘I’J (Uj/ [U;] {

infinitesimall, this is generated:

S(¥vy)

s (s 00 5} ) gy (0 (A 0) 0 (00 (A)0))

o) [ (5, (%))

AU%] A
A[ki]} A+ 5/\) ‘ exp (z‘é/\S (\I/J)) "I’J (Uy/ [U7] ) {A[ki]} ,/\)>
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Appendix 7 General formalism. Projected functional and effective
field

Saddle point approach

Starting with a generic functional and inserting the solution of the saddle point equation yields:

ks Rk,
/g([plvpl’l] ! ,1)) xv , kyr <\I/ l®k/>
{[pl’pl l] } J"Spl’,lo
(pllﬁplllllﬁklll) ‘|} ,U \IJ {
;[0
[{ J[ ) ]},1}] <

. kys .
with v{[pz,pyl]kl’} <\11® l®kl/> was defined in (71):

,S
Py’ 0

Rk,
U[P Py ]kl, v l®kl’
1P/ J"Spl’,O

’ ’ ®kyr / / /
= /U ([pOapl’O]kl a{[plvpl’l]kl }) X ‘I’] l®kl, ([p07pl’0]kl 7{[pl,pl'l]kl }) d([pOapl’O]kl )

. ’Spl’,o

Rk, k
Xy , [plvp / ] v )
" [{w, (1,01} ]

J"O7Spl’,l

(pllaplllllvkl’l) ] } v | dv
l

Expanding the solution leads to:

kl/
Z /gK: {|:pl17pl’1l1:| 1} 7'U7{
lismy

(o [ 1))
(o [ ),

®ky, (T, ky ®k
x H v l®7kl/ <[p07pl’0] t ’ { |:pllapl,1l1:| ! } ) H v Ky {\I/J ll}
i P/ PAD [plypz'lzl] !

lfisl J)Spl/v(;
<s

YUSRY LI 7kl’) ki kll
x U { ( ! 171 1 } , U d {[p07pl’0] ! }lgs 7{|:pl17pl'll1i| ! l1<my dv
7
l

(pllapl’lllvkl’l) 1}
s 0. ],

/ / 1
13<my 7

{w, [I",0]},v] U<s’

7 7
13<my

where:

Ky —
9" {[pzl,pl;zl] 1} ,{[po,pz/o] l’} ,v,{
I<s

U'<s’

(pzppzflll ) kl’l) ] }

{w, [V, 0]}, ]

(pllaplllllakl’l) 1 }

{w, [, 0]}, ]

ky ky kg
= Zg ([plapl’l] 7U) ICO {[p07pl’0] } ) |:pl17pl’1l1i| )
l ly<my,l1#l

I<s
! !
<
U'ss lllgmll
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and:

®hky
o 105}

v
Piy Py :|
lo<mao |: 2 l2l2

15<ml,
;o 1Ry kl/g ®ky/ AR LA kl/g ;o 1Ry
- H v [p07pl/0] ) |:plzvpl’2l2:| x W ®kyr [p()apllo] ) |:plzapl’2l2:| d [p07pl/0]
Tspp o
la<ma ’
légmé

Gathering p;, and p;, — pi,, and [po,pllo]kl/ nd [p{J,p;,O} kl’, the previous formla becoms:

S fr (]} e e {| ) [

(s,s'.[p.0' K']) 2225 Ugs’
(mm’\[p.p" K']), S

®ky ; %oy ky
X H v l@}g[,. [pOupl/O] ! 7{|:pl17pl/1l1:| 1}l1<m1 v {

I<s J-,Spl,yé

(pllapl’lllvkl’l) 1} v
RIS

1 <my 1<my
' lh<m
kl/ klll
xd {[pOapl’O] }lgs ) |:pl17pl/1l1:| l1<my dv
v <}
where:
_ ky % (pl P ,kz')
g’C {|:pl17pl/1l1:| 1} a{[pOapl/O] ! } I<s , U, { ! /1 ! 1
l1<my s’ [{\IJJ [l 70]} ) U] <
1y <m!, }\m/l
1S™M] 1 <m),
kyt k (Pl yPiry 7kl’)
A {[pzl,pl;zl] 1} ,{[po,pz/o] l’}P,v,{ N
PP Py {W,[l',0]},v]
li<my
th<m}
k.
k 1
X HU {[po,plfo] ll}Pc , { {plpngh} 1}
Pe P§
along with:
ky _ kyr kyr
[P0, Prro] = [P0, Prro] » 1 [Po, Prrol
li<my P Pe
th <m
and:
|:pl17pl’1l1:| - |:pl15pl/1l1:| ) |:pl15pl/1l1:|
i <my P1 Pt
lllgm/
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Changing variable leads to rewrite the functiona as:

L (i R o[ e |

(s,s/,[p,p/,k/]) 1Sm1 = l1<my
(mm/ [pp' k'), lismy 1 <mh

®ky
XH‘I’ l®kl,(p0apl’] )‘1’ {

I<s Pl/ ,0
v <s

I'<s

! !
13<my

with:

kl/ kl/
|:p117pl/1l1:| = |:pl17pl/1l1:| / H fpl,l"'pm/’l

P1,1>Pm! 1

and this is equal to:

_ - Ky v pl17p/11,k,1

1S
(m,m,,[p,p/,k’])l 13<my

% H \If® é@kl, ([po,pllo]kl ) U { Py pllll1 1 ]} v |d ({[Poapzlo]kl } <s ) dv
i<s Doy [{¥, [, 0]}, v] < I'<s’
r<s y<m

I3 <my

Ultimately, if we choose for the functional:

[po.pyro)™ ®ky
v =0 v
{[T’l=1’l'l]kl, } [ 7pm]kl’ a Joo s?fj .

evaluated at o= ok, OF equivalently if we consdr sbbjcts that are choosen as eigenstates of oprtrs
e Spll ()
A the functional snnpliﬁes:

_ ks (pzppz'l 7kl’)
§ /g’C {[p07pl’0] t } 1<s > v !
/

(et o) vse | [€ws 003 [po,peo) |

(mm/\[pp’ K']),

®ky / (ph’pl/l 7kl’) ,
H v l®kl, (povpzfo]kl ) v , v k, v ]d {[po,pl’o]kl }zgs
i<s e {{‘I’J [I", 01}, [po, puro] ™ }

s’
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Projection over eigenstates of operator

By changing variables in (100), it writes:

ok, ko
Fyin ({\P]Sé?kz/ ([Poapuo] ! )} )
i (szo)

/ L I " o P b
2/ ( %Z:w et }lfiizd{ [£2J§i7101}l,11 Hg iz }{ [ﬁz@l’fonil] H

(mm’,[pp"#]),
[pliupl;livkl;} ] })
{ws[I",0]}, ]

Rk 7]@ kl’ ok
x H \IJ l®kl/ <p07pl'0] 1/7{[pl17pl/1l1:| 1} ) HU kl,l {\IJ] ! }\IJ <{
I<s Pl/ P pc |:P117;Dl11h:|

I<s’
{ |:pli7pl;li7kl;:| 1}
<UL Hws 00} o)
= /9 ({[plapl’l]}u/ 7{[p07pl’0]}l’>
HVo {po,pl'o l/}z 7{{1711,1)1’111]%/1} v{
I <my

7 {[poaplfo]kl/}

NN
V)

<s
! !
I'<s

i ’.,L-,k; ﬁ
[E;jf[;lf’lo]}l’ 1] ]} d{pli’plili} :

o
13<my

Introducing the sum over copies:

Rk, ’
Ffiin ({‘I’] l®kl/ ([p07pl’0]kl )} )
*Pir0 (prvo)

ZZ/Z Z d{[Pomz'O]k“} I<s d{

" (s o' e
(o o' ),

— k,
®k 1 ®k
X | | \IJ] g ®kl/ ([poapl’ ] v {|:pl1apl’1l1:| 1} ) I Iv kl/l {\I/J ll}\pa <{
I<s * P/ Pc [plrpz'lzl]

pyr 0
U<s’

[lepz;zivkl;} ]} PRL { [lepz;ziakz;} P
v, oo |7 ol };EZ’ RAGINEEY

{pli’pl;lﬂ kl;} ] })
(@, [, 00}, 0]
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. Dy _,k / . . . .
As before if the set {{ [p Lo P lz} ] }} independent of the realization, it becomes:

{00}, v]

Rk k.
Fyiin {‘IJ] l®kZ, ([p07pl’0] l)}

(prro)
X%/ i ol }zfii'd{ [ﬁﬁfonil]”

(m.m,[p.p" K']),

— ki
xXg {[pf)upllo] t } 7{
I<s
’

U'<s

w® e by ks [pzi,pz;li,kz;}
Ve (H[p”’ prol’ H (w10} 0] H)
ks
= > ]I \11®le o (po,pl’ e {[pzl,pulzl} zl} {
P

P, I<s
(o ({

[pliapl’.liv kl’.:| 1 } ®Zl’ kl’ <H [p v {
v g 07pl’0 v,
]

{w, [, 0]}, v JHspl,

{plwpz;liv kl;] ] })
{@, .0}, 0]

where:

[plivpl;livkl;} ]})
{@,[,0]}, 0]

[pli,pl;li,kl;} ‘| }) d{ [ [plwpléliaklj ] }
(W, (', 0]}, ] {ws[,0]}, 0]

An example can be detailed by considering a system involving some boson + fermions system,
classically described by the hamiltonian (the free fermion part is omitted):

s’
l/

X k

v
pc |:pl1 )pllllli|

Appendix 8. Exemple

H = [AW) A8 +5 (1) A () 70 (< — 1
or by the alternative form:

/A( /¢ (r) A (k) 79 (—k2) & (k + k1 — )

We consider this system defined by two spaces of states, one for bosons and one for fermions
constrained by momentum conservation. We will rewrite the constraint in a form suitable for the
present formalism and then project the state space for bosons along eigenspaces depending on
the fermion degrees of freedom. This corresponds to the case where one type of states, i.e., the
bosons (corresponding above to the states depending on U®), is projected onto some subspace to
produce an effective theory for the fermions (the subspace parameterized by U()). However, due
to constraints, this projection also depends on the states parameterized by UU).

The application of our procedure follows several steps. First, rewriting the constraints in terms
of operators. Then decomposing the operator along which we want to project in terms of eigenvalues
of fermion degrees of freedom. Then, given this decomposition, project each partial Hamiltonian
in this decomposition onto the lowest boson eigenstate.
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Constraint

First, introducing:
¢ (k1) A (k) v (—k2) = A (k) B (k1 — k2)

whose commutation relation with momentum operators are given by:
[K}l’f),A (k)} = kA(K)S (k: - k)
[Kb(’“'),B (k’)} = KBH)s (K - )
by imposing the constraints:
(w0, 409) = - | &) 5w

we recover the initial form including 6 (k + k1 — k2). In the basis |\, k), for A(k), |\ k)5 for B (k)
the states satisfying the constraint are:

LTI R g Aoy =Fr) g coe [N ) o L o) g L2y —Fa) oo s —ha)

< 11 0,/%>A... 0,/%’>

ot ey R £~y

B

Decomposition of the hamiltonian in fermions eigenstates

To project the boson states on some eigenspaces, we have to decompose the interaction terms in a

way that is diagonal in the fermion degrees of freedom. We write ‘S(j)> the common eigenvectors
of:

/{ﬂ (k1) yip (k1 — k) dky

and rewrite the Hamiltonian for A:
/ka;a,; + Ks@ /17) (k1) v (—k1 — k) dky ‘S<J’>>] ai + [<S(j) /17; (k1) 70 (—k1 + k) dky ]s@ﬂ ax

/k <a; + % Ksm’ /17, (k) i) (—ky — k) iy ’s<j>>]> <a,; + % Ksm’ /17, (k) i) (—ka + k) ey ’5(]‘)>]>

(59 ‘2

Hy

—% ‘ /@(/ﬁ)mﬁ(—kl — k) dk, ’5(‘j)>

For a given state SU), this can be written H4 (S) and this corresponds to the operator H; (U())
in th decomposition (105). This hamiltonian depends on the fermion degrees of freedom.

Boson eigenstates

The eigenstates for Ha (]S7)) are, for gvn state |SU)):

I s + 1150

[0 (ks = by by ’SU)>D 0)
i (S(j))> = exp (—@) exp (—ck (S(j)) a:) |0)
o (S(j)) _ % <5(j)
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where we define:

}@k (S<j>)> — ’k75<j>>

‘0 (k s<ﬂ'>)> ‘0 (kl . S(j)) > 5 (k1 + ko — k)

. Then:

Decomposition in bosons eigenstates

The interaction part:
¥ (k1) (A (k) 7) ¥ (=k1 = k)

can then be rewritten decomposing the boson states according to the basis |Ny) (Ny| with:

/w k)7 (e — dk1}5(]’)>’> (ak+%}<5(j) /w(kl)w(—kl—k)dkl}5<a‘>>’>

]\/vzC = (ak } S(])
We have:

P () (A(R) ) (~1 — B)
=[x 50 5 (5] 050 4 @1 5 [0y v0 (b = Ry )

N/

j > <S(j) dk

Projection on lowest boson eigenstate

Now we project:
D INk) (Ni| A (k) [N7) (N

!
Ny,N},

0 (52)) (0 ()]

so that the field A (k) is replaced by:
| Ni) (Ni| A (k) [ Ng) (N

0 (S9)) D2 (0n (S9) ] INe) (Nl A k) [N]) (NI [0

k;-,Nk

on the lowest boson eigenstate:

() (0 ()]

Gvn that:
(Npr| A (k) |Nk)

is non nul for N;; = N, &1, we can use that;

<Nk’| A (k)l |Nk> =Vvn + 15k’,k

( 5<j>)>

to rewrite:

> (00 (S9) ] ING) (Nl A () [NG) (N7 |0

I
@
>
o}
/I—\
[N
~
o
ol
A
raun
B2
tv/,
N—
: =
+
=
3
_|_
—
-
raun
C’g
s’
N——
@
>
o
/I—\
—
N U
(=
N
~—

I
@
>
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Q
ESIC)
—
N Uy
o
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>
o
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S
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—
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As a consequence, the projection of the interaction part along the lowest eigenstts for A wrts:

W (k) (A (k) 7) 9 (=k1 = k)

<S<J> ) (Nl A (R)ING) (NG [ ) (= = ) i ) i

> 5<j>> <5<j)
- /Z > i (S(j))>ck (sm) <0,€ (sm)‘ <s<j>‘ /{p(kl)7¢(_kl — k) dky ‘5<j>> <5<j>‘ dk
> (S(a))> (so)) <s<j> /{p (k) v (—ky — k) dky }5<J’>> <@k (Sw)‘ <5<j>

)3

(59)) £ (5 /w (k1) v (= + ) by [ S

S<J>}/¢ (k1) v (—ky — dk:l’S >< (S(J))KSU)’dk
16 ()

dk

Il
—
-M

If:

0)

the projection reduces to:

O (k) (A(k)y) o (k1 — k)

6>/ (/¢(1€1)7¢(—k1 + k) dkl) % (/¢(k1)7¢(—/€1 — k) dkl) dk (0]

Note that the projection on the |05 (S\7)) leads to effective amplitudes:

/Z ’S(”> <S(j>’ /&(kl)w (—k1 + k) dklé/@(kl)w}(—kl — k) dks ’S(j>> <S(j>’dk

that is, to an effective self interaction term:

/ </17)(k1)”ﬂ/)(—k1 + k) dklé /ﬂ)(kl)m/; (k1 — k) dk1> dk

Remark 1

The results corresponds in term of path integral to integrate the boson degrees of freedom:

Jow (_/ (A (B KA (k) + 9 (1) (7) © (—h1 = B) + 9 (k) (ag) & (s +k)>) DA (k)

. (—/(/w(kl)ww(—lﬁ-i-k)dkl) H (/wkl)w(—kl—k)dkl))

with boundary conditions A (k) + 4 (k1) ¥ (—k1 — k) — 0: which projects on the |0, (SW)).

Remark 2:

We can rewrite the constraints in terms of conditions on parameter spaces. In this example, states:
I1 ’()k (3(j>)> ‘S<j>>
k
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can be parametrized as:
[T 10k () [s9) 5 <Ak ~ (59| /17) (k1) 70 (—ky + k) dky \S<j>>>
k

where states ‘Ok ()\k)> are defined by:

A A2 A
’01@ ()\k)> = €exp (—ﬁ) exp (—?aﬂ 0)
The [ 4 (k1) (—k1 + k) dky commute and the [SW)) are thus parametrized as:

Huk}keR>

so that states become:

H }Ok ()\k)> ’{Mk}k€R> O (Ak — pk) = H }Ok (/\k)> ’{/\k}keR>

k k

with the condition that |[{\;},.z) = 0 for non admissible values of the {\;}. The eingenstates of
S (k1) v¢ (—k1 + k) dk;, and A (k) are constrained by & condition.

Appendix 9. Formulation in terms of constrained prtrs and de-
scription of States:

This section describes more precisely the constraints in the initial parameters spaces as constraints
between operators. We also study the consequences of the operator constraints on the states. We
provide an example in the end.

Projection operator and Constraints in terms of operators

Starting with operators (U;) H; (U;) acting on the states spaces over the parameter space U; and
depending on the U; parameters, we assume they can be written as combinations of some operator
A; (U;) similar to some band hamiltonin:

(U)) H, (U;) = H, (U;, A (U) (173)

where A; (U) is a combination of the operators U® of multiplication by sum of tensor products
of U; and IV (U®) is conjugate to the U®. The combination depends on (UV)). Acting on the
U; states, prtrs A; (U;) belong the the space of operators on the larger states space spanned by the
’U(i) | U(j)>. We aim at writing the constraint between U® and U degrees of freedom as a relation

between the A; (U;) and some operators acting on the state space corresponding to the U().
We start by considering by some functions, possibly milti-valued, A? (U(j)) satifisfying:

F (Ai, U(j)) -0

with F a vector value function of (A%, U()).
This can be written as an equation operators with eigenvalues A%, U) when operatrs commute:

F (Ai,U(j)) =0
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The commutation condition is satisfied if we assume that A’ is a function of the unconstrained
generators A; and conjugate ITj .. This is an identity for the matrices elements. The constraints
become in terms of operators:

PR A1) 09) = (I 11}, 09) =0

with IT* conjugate to the A; and UV defined as multplication over the states {|U;)},. This allows
to rewrite some combination A7 of the eignvalues of UU) as functions of the eigenvals of the (A;).

This expression is not local since {A;}, {sz} do not commute.
The states for gvn A can then be written:

{|2 A AD) s (a mi0;) |Ui>}

As an example, the states A’ (A;,1I') |0) can be assumed to be series 3, 5 (A:)* (Hi)ﬂ acting on
some vacuum |0) with A; = (A;)" + (Ay), II" = (A;)" — (A;)”, and we have:

A’ (A;,TT) 0) = Zam( 05)" 1oy

and the eigenvalues of A; (Ai, Hi) are sums of tensor powers of eigenvalues (A;)
The constrt written in terms of eignvals:

F(au9) =0
translate in writting p coordinates of states |UY)) by functionals h of series Y, b, (A;)

|UWD) = ’h (Zm bl (A;) m) ,U(J/p)> where U0U/P) descrlbes the remaining degrees of freedom.
The states can then be written as:

W) (A [n (A, 09 (174)

A

XKm

®m and

an infinite number of coordinates A; of A; are involvd in the series expansion of this state. More
precisely, an infinite sequence consistng of an increasing number of points arises in the expansion.
This is similar to the flag manifold described in the first part. Note that we also recover the form
of states divided into parameter dependent states and remaining degrees of freedom.

Similar to some covariant formulation, we can also consider the states:
SO ) AAD) R (1A, U0
In the sequel, we will assume that the constraint is global so that we can write the (U;) H; (U;) as:
H; [U@, {AZ—}] 5 (f(pj) ({AZ—},AU))) (175)

where the {A;} is a set of unconstrained operators. The constraint has to be understood for the
matrices elements of the f (rs) ({A:},AY)) in a tensor basis of eigenvectors of {A;} and AY). The

expansion of f (r;) ({A;},AY) is non local and involves infinite number of eigenvlues {A;} through
integrls.
The eigenstates write:

A (T3), A [ (A, U

and the {A;} rzpresent degeneracies. Or covarianntly:
12 (A (U;), {Ai})) ‘h (A}, U(j/p)>
Remark: For given UV the ¥ (X (U;), {A;}) are eigenstates of commuting set of operators: {A;} (UW):
(AVAP = APAD) B ((U)), {A}) =0
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Description of the constraint
Using (175):
H, [U(j),A(i)} 5 (f(pj) (Um,A(i)))

there are p; operators A() combination of some components of A; and conjugate ITj .. Function
f with p; components constrains the A®) and U“). When no confusion arises, p; is written p.
The index corresponds to the number of contact pont U, U, There are p; eigenvalues of A®

that can be expressed as functionals of the {A;}, eigenvalues of {f&l} (see (174)). Introducing the

corresponding p; eigenstates |a()) of the operators A():

‘U<j>> ~ Vect{‘a<i>>} ‘U<j>/p>

The state |U@/?) denotes the remaining independent degrees of freedom. The |a(?) generate a
subspace defined by parameters UP,

’U(j)> ~ ’U(j)p> ‘U(j)/p>
After projection on some eigenstates for AV (UG)), {A;}:
A () (A6 (1 (1A}, a)) [0@) = \D (U0, (A ) b (1A, 002) ) |y (176)

The function h ({A;},UY)/P) with p components. The dependency in UW/P will be considered
implicit and we write h ({A;}).

The states |A® (UWD) {A;}) |k ({A;})) combine with coefficient H (h({A;})) to produce also
states:

[ H B O A (A

that correspond to ”wave functions” |H ({A;})).
We can assume that the eignvls {A;} can be divided into {A;}, and {A;},, so that:

’Au) (U(j)) ,{Ai}> ’h ({Ai} , U(j)/p)> ’U<j>/p> — ’Au) (Uo‘)) ,{Ai}/,,> ’h ({Ai}p 7 U(j)/p)> ‘U<j>/p>

Exemple

Assume the eigenstates of A(®)

‘A(i)> = ’(a(i), N, Ha(i))>

Considerng the particular form of (175):
H; [Uo),om} s (f(pj) (Uo),A(i)))
= (o)) - ) 00)))
) (f(pj) (Uu),A(z‘))) La (Uo‘))
where:
§ (N = N7)
A<j>>

ol (U(j)) - <A(i)
o (U(j)) <A<z')

A<i>> 5 (f(PJ‘) (UU), A(i)))

N7
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and h ({A; (UD)}) = h; (A;)

A E)) = (A )} o))
A}, 50, 50 )
= (47 ,)"" qan o)

and for several {A; (U)}

|h ({Ai})) |h ({A} n0)s Ha)))
|{Al} y Tg(i) 5 Hig(4) >

= (45,,) ™ dan o
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