
HAL Id: hal-04363690
https://hal.science/hal-04363690

Submitted on 19 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-scale component-tree: A hierarchical
representation of sparse objects

Romain Perrin, Aurélie Leborgne, Nicolas Passat, Benoît Naegel, Cédric
Wemmert

To cite this version:
Romain Perrin, Aurélie Leborgne, Nicolas Passat, Benoît Naegel, Cédric Wemmert. Multi-scale
component-tree: A hierarchical representation of sparse objects. International Conference on Dis-
crete Geometry and Mathematical Morphology (DGMM), Apr 2024, Florence, Italy. pp.312-324,
�10.1007/978-3-031-57793-2_24�. �hal-04363690�

https://hal.science/hal-04363690
https://hal.archives-ouvertes.fr

Multi-Scale Component-Tree:
A Hierarchical Representation for Sparse Objects⋆

Romain Perrin1[0009−0001−6534−9727], Aurélie Leborgne1[0000−0001−8456−2745],
Nicolas Passat2[0000−0002−0320−4581], Benoît Naegel1[0000−0002−7695−1473], and

Cédric Wemmert1[0000−0002−4360−4918]

1 University of Strasbourg, ICube, France
2 University of Reims Champagne-Ardenne, CReSTIC, France

romain.perrin@unistra.fr

Abstract. Component-trees are hierarchical structures developed in the frame-
work of mathematical morphology. They model images via the inclusion rela-
tionships between the connected components of their successive threshold sets.
There exist many variants of component-trees, but to the best of our knowledge,
none of them deals with the representation of the image at different scales. In
this article, we propose such a variant of component-tree that tackles this issue,
namely the Multi-Scale Component-Tree (MSCT). We describe an algorithmic
scheme for building the MSCT from the standard computation of component-
trees of the image, seen from its lowest to its highest scale. At each step, a local
upscaling is performed on relevant parts of the image, corresponding to nodes
of the MSCT which are selected according to a stability analysis. The last step
builds elements which are part of the standard component-tree (at the highest, na-
tive scale of the image). The MSCT provides a compact, efficient representation
of images compared to the standard (single-scale) component-tree. In particular,
the MSCT is especially suited to analyse images containing sparse objects, which
require to be represented at a high scale, vs. large background regions that can be
losslessly represented at a lower scale. We illustrate the relevance of the MSCT
in the context of cellular image segmentation.

Keywords: Component-tree · Multi-scale · Hierarchical representation · Seg-
mentation · Mathematical morphology

1 Introduction

The component-tree [22] is a morphological graph-based model defined by considering
the connected components of binary sets obtained from successive thresholdings of an
image. Initially proposed in the field of statistics [10], the component-tree has been re-
defined in the theoretical framework of mathematical morphology and involved, in par-
ticular, in the development of morphological tools [4, 22]. In particular, the component-
tree allows to design connected operators [23] that can process images while preserving
contour information.
⋆ This work was supported by the French Agence Nationale de la Recherche (ArtIC, Grant

ANR-20-THIA-0006, and Grant ANR-23-CE45-0015).

2 R. Perrin et al.

The component-tree led to the development of various filtering and segmentation
approaches, mainly by building upon two paradigms: the selection of nodes by attribute
filtering [11] or the computation of optimal cuts within the tree [9]. The component-tree
was then involved in various application fields, e.g. medical imaging [24], astronomy
[1], agriculture imaging [3], microscopic imaging [14].

The popularity of the component-tree relies, on the one hand, on its ability to encode
an image in a compact and lossless fashion, and on the other hand to the low complexity
of its construction and handling. In particular, the component-tree can be built in quasi-
linear time [1, 5, 16]. Many algorithms have been proposed for its construction, based
e.g. on watershed-based, flooding-based or merging-based strategies (see [5] for a sur-
vey). More recently, efforts were geared towards its efficient construction in the case of
very large images. Götz et al. [8] presented a distributed-memory parallel method for
computation of component-trees, while Moschini et al. [15] worked on shared-memory
parallel computation at extreme dynamic ranges. Gazagnes et al. [6, 7] introduced novel
parallel algorithms for max-tree construction on tera-scale images. Recently, Blin et al.
[2] offered the first GPU implementation for building a component-tree.

Many variants of the component-tree were proposed over the last years. Some of
them are trees, e.g. the hyperconnection tree [21] (that extends the component-tree to
the case of hyperconnections), the multivalued component-tree [12] (that handles values
endowed with hierarchical orders), the shaping paradigm [25] (that builds component-
trees on component-trees), the complete tree of shapes [17] (that unifies the min- and
max-trees and links them to the tree of shapes). Others are directed acyclic graphs, e.g.
the component graph [19] (that handles values endowed with partial orders), the asym-
metric hierarchies [20] (that handle non-symmetric adjacency links). Nonetheless, to the
best of our knowledge, there has been no attempt to design variants of the component-
tree that deal with the multiscale modeling of an image. The closest works on that topic
deal with the notion of component-hypertrees [18], that provide a forest of component-
trees induced by a family of increasing connectivities. In this context, the notion of scale
was considered at the topological level.

In this article, we aim to design a variant of component-tree that handles the no-
tion of multiple scales at the spatial level. This new tree is called the Multi-Scale
Component-Tree (MSCT, for brief). By contrast with the standard component-tree, that
models the image without taking into account the local informativeness, the MSCT
aims to adapt the scale of modeling according to the carried information, with lower
(resp. higher) scales where few (resp. many) details / structures of interest are available.

2 Component-Tree

Let f : Z2 → N be a 2D image. In practice, this image is finite. Without loss of
generality, we can them assume that it is defined on a square support Sn = [[0, 2n−1]]2 ⊂

Z2 (n ∈ N), and then composed of N = 22n pixels.
We can also assume that it takes its values in a finite subset V ⊂ N, that can be

chosen asV = ⟦0,m−1⟧. The image f being finite, we assume that f (x) = 0 for any x <
Sn. We endowN (and thusV) with the standard order ⩽. We endow Z2 (and thus Sn) with
a connectivity framework inherited from the standard adjacencies in digital topology.

Multi-Scale Component-Tree: A Hierarchical Representation for Sparse Objects 3

(a) Image (b) Max-tree (c) Component-tree

Fig. 1: The max-tree (b) and the component-tree (c) of a grey-level image (a).

For any nonempty subset X ⊆ Z2, we note CC(X) ⊂ 2Z
2

the set of the connected
components (i.e. the maximal connected subsets) of X.

Let λ ∈ V. We note the upper threshold set of f at value λ as [f ⩾ λ] = {x ∈
Z2 | f (x) ⩾ λ}. The family {CC([f ⩾ λ])}λ∈V is increasing. Let λ ∈ V (λ , 0) and
Xλ+1 ∈ CC([f ⩾ λ + 1]) be a connected component of the threshold set of f at value
λ + 1. There exists a unique Xλ ∈ CC([f ⩾ λ]) such that Xλ+1 ⊆ Xλ.

This hierarchical organisation of the connected components can be represented in
an inclusion tree, which is called the max-tree. (By considering the dual order ⩾ on N,
one may define the dual min-tree).

More formally, the max-tree is defined as the Hasse diagram of the partially ordered
set (
⋃
λ∈VCC([f ⩾ λ],⊆). Its root (i.e. its maximum) is the set Z2, which is the unique

connected component of [f ⩾ 0]. Its leaves (i.e. its minimal elements) are the flat
zones of locally maximal value in the image. An example of max-tree is illustrated
in Figure 1(b) for the image depicted in Figure 1(a). One may note that a set may be
a connected component for many successive threshold sets. While the max-tree only
models such an element once, we may also consider this connected component at each
value where it appears, leading to a multiset of connected components instead of a set.
This paradigm provides a less compact version of the max-tree, that is sometimes called
the component-tree, illustrated in Figure 1(c).

3 Multi-Scale Component-Tree

In this section, we explain how to build the Multi-Scale Component-Tree. The purpose
of this construction process is to represent background and/or non-relevant parts of the
image within flat zones at the lowest scales, while representing relevant / fine detailed
parts of the image within flat zones at the highest scales. The proposed method, sum-
marized in Algorithm 1 and Figure 2, revolves around three steps:

1. downsampling of the gray-scale image (Section 3.1 and Algorithm 1, line 2);
2. definition of the Base Component-Tree at the lowest scale (Section 3.2 and Algo-

rithm 1, line 3);
3. iterative upsampling that promotes significant regions from one scale to the next

(Section 3.3 and Algorithm 1, lines 4–10).

4 R. Perrin et al.

Fig. 2: Illustration of the MSCT construction (see Section 3 and Algorithm 1).

Algorithm 1: MSCT construction.
Data: f : Sn → V (gray-scale image), k ∈ N⋆ number of scales
Result: G = (V, E) Multi-Scale Component-Tree of f

1 begin
2 F ←− { f0, . . . , fk−1} with f0 = f and ∀i ∈ [[1, k − 1]], fi ←− MaxPool(fi−1)
3 G ←− Gk−1 ←− MaxTree(fk−1)
4 for i from k − 2 down to 0 do
5 Ci ←− NodeS election(G, i)
6 foreach N ∈ Ci do
7 Gi(N)←− PartialMaxTree(fi,N)
8 Merge(G,Gi(N),N)
9 end

10 end
11 end

3.1 Downsampling process

The input of the construction procedure is an image f : Sn → V such as defined in
Section 2. From f , we define a set of downsampled images F = { fi : Sn−i → V}

k−1
i=0

where k is the number of scales (1 ⩽ k ⩽ n). For each i ∈ [[0, k − 1]], the image fi is the
i-th downsampled version of f , i.e. the image at scale 1

2i .
We have f0 = f . For each i ∈ [[0, k − 1]], the image fi+1 is obtained from the image

fi by collapsing the 2×2 sets of points of Sn−i into one point of Sn−(i−1). The max-tree is
an image model which is especially well-fitted for modeling images where the relevant
information is related to the local maxima in the image. Based on this fact, we assume
that in the MSCT, it is relevant to preserve the areas of greatest values vs. a background

Multi-Scale Component-Tree: A Hierarchical Representation for Sparse Objects 5

of lower values. As a consequence, we use a maximum policy to define fi+1 from fi.
More precisely, for any x ∈ Sn−(i+1), we set

fi+1(x) = max
0⩽a,b,⩽1

{ fi(2x + (a, b))} (1)

This operation that defines fi+1 from fi will be noted MaxPool (by reference to the
analogue operation usually considered in deep learning).

3.2 Base Component-Tree computation

The purpose of the MSCT is to represent the relevant information carried by a (poten-
tially large) image while minimizing its space cost and then the time cost required for
handling it. As a consequence, the construction of the MSCT starts from the max-tree at
the lowest scale, i.e. the max-tree of fk−1, which is defined on the set Sk−1 that contains
only 1

4k−1 N points, compared to f that contains N points. The max-tree of this lowest
scale image fk−1 is called the Base Component-Tree.

We note MaxTree : VZ
2
→ T the function that maps any (finite) image f : Z2 → V

onto its max tree G = (V, E) ∈ T (where T is the set of all the finite rooted trees). We
recall that the computational cost of optimal algorithms that implement MaxTree is
O(n log n) where n is the number of points of the image support [5].

Here, the Base Component-Tree Gk−1 = (Vk−1, Ek−1) ∈ T is computed from the
image fk−1 : Sk−1 → V, and the induced time cost is then N

4k−1 log N
4k−1 .

3.3 Upsampling process

The MSCT G = (V, E) is initialized as the Base Component-Tree Gk−1 of fk−1. At
this stage, the whole image f , including both informative and non-informative parts,
is represented at the lowest scale. The purpose is now to modify this tree G in order
to represent the informative regions of the image at higher scales, according to their
degree of relevance.

This process is carried out iteratively, scale by scale, from the lower to the higher
(Algorithm 1, line 4). At each iteration / scale i ∈ [[0, k − 2]], a set of nodes Ci ⊆ V is
selected from the tree G. These nodes are those assumed as containing a relevant infor-
mation that motivates the computation of a local max-tree on their associated region.
The procedure of selecting these nodes in G at scale i (noted NodeS election(G, i) in
Algorithm 1, line 5) is described in the next subsection.

For each selected node N ∈ Ci (Algorithm 1, line 6), the max-tree of the image
fi restricted to the region N ⊆ Sn−i is computed. This “local” max-tree computation,
noted PartialMaxTree(fi,N) is nothing but the computation of a standard max-tree on
a given (connected) region N. Note in particular that algorithmically, the behaviour of
MaxTree(fk−1) (Algorithm 1, line 3) is the same as PartialMaxTree(fk,Sn−k−1) (In our
algorithmic scheme, we used a version of Najman and Couprie’s algorithm [16]3). Once
this new partial max-tree Gi(N) = (Vi(N), Ei(N)) is computed, it must be embedded in
the MSCT G. This embedding and its side effects on the structure of G (Algorithm 1,
line 8) are detailed at the end of this section.

3 Although we only consider integer values, Najman and Couprie’s algorithm uses Tarjan’s
Union-Find method and is able to efficiently process floating-point values as well.

6 R. Perrin et al.

Nodes selection for local upsampling At each iteration / scale i, a set Ci of nodes
is selected for an upsampling procedure. The choice of the most relevant nodes is car-
ried out based on a priority score assigned to each node N ∈ V of the current MSCT
G = (V, E). This score is computed based on the notion of Maximally Stable Extremal
Regions (MSER) [13]. The MSER stability value of a node N ∈ V , that belongs to a
threshold set at value v ∈ V is defined as MS ER(N) = |N−∆ |−

∑
p |N

p
+∆
|

|N | where N−∆ ∈ V is the
ancestor node at value v − ∆ such that N ⊆ N−∆, and the N p

+∆
∈ V are all the descendant

nodes of N at value v + ∆, i.e. such that N ⊇ N p
+∆

. The nodes of V are then sorted by
decreasing stability.

The set of selected nodes is defined by choosing the nodes by decreasing stability in
the list. The selected nodes have to be non-overlapping, which means that for any two
distinct nodes N1,N2 ∈ Ci we have neither N1 ⊆ N2 nor N2 ⊆ N1. Indeed, each of these
nodes will become the root of a partial tree that will be embedded in the MSCT G. It
is then required that none of these new trees be part of another. As a consequence the
ancestors and descendants of the selected nodes are progressively discarded from the
list. The selection ends once the list is empty.

Local upsampling For each node N ∈ V selected from the above process, a max-tree
Gi(N) = (Vi(N), Ei(N)) of the image fi restricted to the support N is computed. This
new max-tree Gi(N) is then dedicated to replace the current subtree of G starting at
node N. However, the node N which is the root of the subtree to be replaced is defined
at a given value v ∈ V, and its parent node N′ is defined at a value v′ ∈ V with v′ < v.
By contrast, the new partial tree built in the region N has its root at a value lower than v.
In this context, the tree Gi(N) = (Vi(N), Ei(N)) has to be split into two parts, that must
be processed distinctly. On the one hand, all the nodes Nu ∈ Vi(N) that are defined for
a value u ∈ V with u ⩽ v′ have to be merged with the ancestor node N′u ∈ V at value
u, which is the ancestor of N in G. The “new” version of the node N′u then corresponds
to N′u ∪ Nu. On the other hand, all the nodes Nu ∈ Vi(N) such that their parent node
Nw ∈ Vi(N) is defined for a value w ⩽ v′ now become the root of a partial tree of fi
restricted to Nu, and this root Nu has to be connected to the node Nv′ . In other words, the
node N is replaced by a forest extracted from its max-tree Gi(N), that is connected to
the parent node of N, whereas the remainder of the tree is absorbed by the branch of G
located between N and the root. This policy leads in particular to a structure of MSCT
where each node may encode pixels at different scales. An example of such replacement
is illustrated in Figure 3.

4 Object segmentation using the MSCT

The built MSCT G = (V, E) now contains a hierarchy of flat-zones with pixels at dif-
ferent scales. The MSCT can be used, in particular, for segmentation tasks. A possible
use-case is cell segmentation, where high contrast denotes the presence of a bio-marker
(foreground) while low contrast denotes its absence (background). We propose a seg-
mentation method illustrated by Algorithm 2 which involves three steps. First, a set of
nodes of interest is extracted from the MSCT (line 3). Second, for each node of interest,

Multi-Scale Component-Tree: A Hierarchical Representation for Sparse Objects 7

(a) (b) (c)

(d) (e) (f) (g)

Fig. 3: Example of MSCT sub-tree replacement during upsampling. (a) is the input
image and (b) is the downsampled image at half scale. (c) is the max-tree of (b) also
referred to as the base component-tree of the MSCT. (d) is the partial max-tree of the
red L-shaped area of (a). (e) is the merging of the partial max-tree (d) on the MSCT (c).
(f) is the partial max-tree of the blue square-shaped area of (b). (g) is the merging of the
MSCT (e) with the partial max-tree (f) and is also the fully-built MSCT. It is important
to note that (f) introduces gray-levels that do not exist in the MSCT, even changing the
root of the MSCT (e) (levels 50 and 90) prior to being merged with (f).

its local sub-tree is filtered (line 4) according to a maximum MSER value. The filtered
nodes are intermediate clusters containing either objects or clusters of touching objects.
Third, each cluster is cleaned to remove the background around the object(s) (line 6)
and then undergoes a watershed to separate the cluster into individual objects (line 7).

4.1 Nodes selection for segmentation

The retrieval of objects of interest is analogous to the upsampling process described in
Section 3.3, given that the extracted flat-zones inherently encompass these objects. Sub-
sequently, the same function is employed to define a set of disjoint sub-trees, facilitating
the separation into distinct objects (line 3).

8 R. Perrin et al.

Algorithm 2: MSCT segmentation
Data: G = (V, E) MSCT, MS ERmax ∈ N maximum MSER value, f : Z2 → N input

image, n ∈ N subdivision factor
Result: P = {P0, . . . , Pk}

1 begin
2 P←− ∅
3 C0 ←− U psampleNodeS election(G)
4 C′0 ←− FilterTree(G,C0,MS ERmax)
5 for c ∈ C′0 do
6 c′ ←− FillHoles(Otsu(GaussianFilter(C0)))
7 S ←− Watershed(f , c,UltimateErosion(c′))
8 P←− P ∪ S
9 end

10 end

4.2 MSCT filtering

A first cluster separation can be performed by filtering nodes of the MSCT. A simplified
version of the MSCT sub-tree is computed. It consists of reducing each branch to a
single node representing a local flat-zone and being assigned the minimum MSER value
among all nodes of the branch. This simplified tree is filtered using a maximum MSER
value criterion (line 4). The function KeepNode (Equation (2)) is recursively called
on each node of the sub-tree starting at its root. Leaves of the filtered sub-tree are the
intermediate clusters.

KeepNode(n, v) =


True, if n.nChildren = 0 ∧ n.mser ≤ v

True, if n.children > 0 ∧ n.mser ≤ v ∧ ∀n′ ∈
n.children, n′.mser ≤ v

False, otherwise

(2)

4.3 Object segmentation

Each intermediate cluster c ∈ C′0 is processed separately (lines 5–9). In a first step, the
intermediate cluster is cleaned to retrieve the exact contour of its underlying object(s)
and get rid of background pixels (line 6). The presence of these background pixels is
a side effect of the upsampling steps due to the maximum nature of the downsampling
operations. They are removed using a Gaussian filter followed by a Otsu thresholding
and a hole filling operation. In a second step, the number of individual objects inside
an intermediate cluster is estimated by performing an ultimate erosion on its previously
cleaned flat-zone (line 7). The centroid of each ultimate erosion connected component
is then used to initialize a watershed algorithm resulting in a complete partition of said
intermediate cluster. The set of all watershed partitions of all intermediate clusters P is
the final segmentation result, with each partition being a connected component repre-
senting one individual object.

Multi-Scale Component-Tree: A Hierarchical Representation for Sparse Objects 9

(a) MSCT k = 2 (b) MSCT k = 3 (c) MSCT k = 4

Fig. 4: Computing-time differences for several downsampling factors. The MSCT (blue
curves) are shown relative to the max-trees (red curves).

5 Experimental results

5.1 Implementation

To assess the validity of the Multi-Scale Component-Tree and its ability to produce
satisfactory segmentations of cellular images, we have implemented it in Python. In
this section, we discuss important choices regarding algorithms and global parameters.

The main parameter to build the MSCT is the number of scales k that also defines
the number of downsampling and upsampling steps. It defines the size of the image
fk−1 used to build the Base Component-Tree Gk−1. The MSER parameter δ is computed
relative to the tree height at scale i (cardinal of the support set of fi) using a parameter
MS ERheight. Node selection is constrained by two parameters: the maximum area nodes
is set to Amax while the maximum stability of nodes is set to MS ERselect. Regarding the
segmentation, MS ER f ilter sets the maximum stability of nodes when filtering the tree.

5.2 Computational cost evaluation

The computation time required to build the MSCT depends on multiple factors: the size
of the input image, the number of objects or clusters of objects and their respective
size. An experiment (Figure 4) is made by generating synthetic images of a fixed size
composed of a variable number of bright objects on a dark background. We can observe
that the MSCT computation outperforms the regular max-tree when 30% of the image
surface consists of objects, using a downsampling factor k > 2 (Figures 4(b) and 4(c)).
When using a downsampling of k = 2, the size of the downsampled image f1 upon
which the Base Component-Tree is computed is only N

4 and the cost of choosing and
computing partial max-trees outweights the benefit of working with downsampled im-
ages (Figure 4a). This illustrates the effectiveness of building the Base Component-Tree
(Section 3.2) on a low scale version of the image especially when said image is sparse.

5.3 Space complexity analysis

To complete the second experiment in Section 5.2, the number of created nodes and
stored pixels have been measured for growing numbers of objects in the image. We

10 R. Perrin et al.

(a) Created nodes (k = 2) (b) Stored pixels (k = 2)

Fig. 5: Space complexity measures.

(a) Image 1 (b) Scale 1
16 (c) Scale 1

4 (d) Scale 1
1

(e) Image 2 (f) Scale 1
16 (g) Scale 1

4 (h) Scale 1
1

Fig. 6: Examples of images with their reconstruction after each upsampling step.

can observe that the number of created nodes is significantly lower for the MSCT (blue
curve in Figure 5(a)) compared to a regular max-tree (red curve in Figure 5(a)). The
number of pixels is roughly linear with respect to the sparsity of the image for the
MSCT (blue curve in Figure 5(b)) as opposed to constant and equal to the image size
for the max-tree (red curve in Figure 5(b)). The reason behind the low number of pixels
resides in the multi-scale nature of those pixels as only highly-contrasted flat-zones are
promoted from low scale to high scale during the upsampling process (Section 3.3).

5.4 Kaggle 2018

Our method has been tested on the Kaggle 2018 Data Science Bowl dataset4. It con-
tains gray-scale images of various sizes, blurriness, cell types and sizes. Only gray-scale

4 www.kaggle.com/competitions/data-science-bowl-2018

Multi-Scale Component-Tree: A Hierarchical Representation for Sparse Objects 11

(a) Image 1 (b) Mask (c) Prediction

(d) Image 2 (e) Mask (f) Prediction (g) Intersection over union curve

Fig. 7: Examples of Kaggle 2018 images (a,d) with ground truth masks (b,e) and the
MSCT segmentation results (c,f).

images with bright objects on dark background are considered. The following param-
eters have been used: k = 3, MS ERheight = 10%, Amax = 10%, MS ERselect = 1,
MS ER f ilter = 1.

Some examples of input images and their reconstruction at different steps of the
upsampling process are illustrated in Figure 6. A total number of n = 547 gray-scale
images have been segmented using the method described in Section 4. Figure 7 shows
some segmentation results. Kaggle uses an intersection over union (IoU) metric with
thresholds between 0.50 and 0.95. A prediction is deemed a true positive if the intersec-
tion IoU score of its mask with the ground truth mask is at least equal to the threshold.
Figure 7(g) shows the curve of precision per threshold. The global score for Kaggle
2018 is the average of the curve and equals 0.465. The large variability in acquisition
techniques and cell sizes presents a significant challenge in determining optimal param-
eters. Depending on the specific configuration of the image under consideration, these
methods frequently result in either under-segmentation or over-segmentation.

6 Discussion

We have introduced the concept of the Multi-Scale Component-Tree (MSCT) and pre-
sented an algorithm for its construction on gray-scale images. Our results demonstrate
the MSCT ability in storing flat-zones across various scales and its enhanced capability
to distinguish between flat-zones encompassing objects of interest and those consti-
tuting the background, especially when compared to its single-scale counterpart. The
efficiency of the MSCT has been further exemplified through its application in a cel-
lular segmentation task. More complex filtering schemes could be applied prior to the
segmentation step. Other attributes could be used as well such as the border gradi-
ent, complexity or compactness. When dealing with non-increasing attributes, shaping
could be employed, that is building a component-tree of the MSCT, filtering it and re-

12 R. Perrin et al.

constructing the MSCT. In terms of efficient building, the upsampling step could benefit
from parallel computing as all selected sub-trees are mutually disjoint by virtue of the
selection function. Indeed, partial max-trees could be computed in parallel on different
sets of pixels and only the replacement step in the MSCT has to be performed sequen-
tially. Other segmentation methods could be defined to avoid resorting to use watershed
like an ellipse fitting model that might offer improvements for the given examples.

References

1. Berger, C., Géraud, T., Levillain, R., Widynski, N., Baillard, A., Bertin, E.: Effective com-
ponent tree computation with application to pattern recognition in astronomical imaging. In:
ICIP. pp. 41–44 (2007)

2. Blin, N., Carlinet, E., Lemaitre, F., Lacassagne, L., Geraud, T.: Max-tree computation on
GPUs. IEEE Transactions on Parallel & Distributed Systems 33, 3520–3531 (2022)

3. Bosilj, P., Duckett, T., Cielniak, G.: Connected attribute morphology for unified vegetation
segmentation and classification in precision agriculture. Computers in Industry 98, 226–240
(2018)

4. Breen, E.J., Jones, R.: Attribute openings, thinnings, and granulometries. Computer Vision
and Image Understanding 64(3), 377–389 (1996)

5. Carlinet, E., Géraud, T.: A comparative review of component tree computation algorithms.
IEEE Transactions on Image Processing 23, 3885–3895 (2014)

6. Gazagnes, S., Wilkinson, M.H.F.: Distributed component forests in 2-D: Hierarchical image
representations suitable for tera-scale images. International Journal of Pattern Recognition
and Artificial Intelligence 33, 1940012 (2019)

7. Gazagnes, S., Wilkinson, M.H.F.: Distributed connected component filtering and analysis
in 2D and 3D tera-scale data sets. IEEE Transactions on Image Processing 30, 3664–3675
(2021)

8. Götz, M., Cavallaro, G., Géraud, T., Book, M., Riedel, M.: Parallel computation of compo-
nent trees on distributed memory machines. IEEE Transactions on Parallel and Distributed
Systems 29, 2582–2598 (2018)

9. Guigues, L., Cocquerez, J.P., Le Men, H.: Scale-sets image analysis. International Journal of
Computer Vision 68, 289–317 (2006)

10. Hartigan, J.A.: Statistical theory in clustering. Journal of Classification 2, 63–76 (1985)
11. Jones, R.: Connected filtering and segmentation using component trees. Computer Vision

and Image Understanding 75, 215–228 (1999)
12. Kurtz, C., Naegel, B., Passat, N.: Connected filtering based on multivalued component-trees.

IEEE Transactions on Image Processing 23, 5152–5164 (2014)
13. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally

stable extremal regions. Image and Vision Computing 22, 761–767 (2004)
14. Meyer, C., Baudrier, É., Schultz, P., Naegel, B.: Combining max-tree and CNN for segmen-

tation of cellular FIB-SEM images. In: RRPR (2022)
15. Moschini, U., Meijster, A., Wilkinson, M.H.F.: A hybrid shared-memory parallel max-tree

algorithm for extreme dynamic-range images. IEEE Transactions on Pattern Analysis and
Machine Intelligence 40, 513–526 (2018)

16. Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Transac-
tions on Image Processing 15, 3531–3539 (2006)

17. Passat, N., Mendes Forte, J., Kenmochi, Y.: Morphological hierarchies: A unifying frame-
work with new trees. Journal of Mathematical Imaging and Vision 65(5), 718–753 (2023)

Multi-Scale Component-Tree: A Hierarchical Representation for Sparse Objects 13

18. Passat, N., Naegel, B.: Component-hypertrees for image segmentation. In: ISMM. pp. 284–
295 (2011)

19. Passat, N., Naegel, N.: Component-trees and multivalued images: Structural properties. Jour-
nal of Mathematical Imaging and Vision 49, 37–50 (2014)

20. Perret, B., Cousty, J., Tankyevych, O., Talbot, H., Passat, N.: Directed connected operators:
Asymmetric hierarchies for image filtering and segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence 37, 1162–1176 (2015)

21. Perret, B., Lefèvre, S., Collet, C., Slezak, É.: Hyperconnections and hierarchical representa-
tions for grayscale and multiband image processing. IEEE Transactions on Image Processing
21, 14–27 (2012)

22. Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for image and
sequence processing. IEEE Transactions on Image Processing 7, 555–570 (1998)

23. Salembier, P., Serra, J.: Flat zones filtering, connected operators, and filters by reconstruction.
IEEE Transactions on Image Processing 4, 1153–1160 (1995)

24. Wilkinson, M.H.F., Westenberg, M.A.: Shape preserving filament enhancement filtering. In:
MICCAI. pp. 770–777 (2001)

25. Xu, Y., Géraud, T., Najman, L.: Connected filtering on tree-based shape-spaces. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 38, 1126–1140 (2016)

