
Building the Topological Tree of Shapes
from the Tree of Shapes⋆

Julien Mendes Forte1, Nicolas Passat2[0000−0002−0320−4581], and
Yukiko Kenmochi1[0000−0001−9648−326X]

1 Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, F-14050 Caen, France
2 Université de Reims Champagne-Ardenne, CReSTIC, 51100 Reims, France

Abstract. The topological tree of shapes was recently introduced as a new hier-
archical structure within the family of morphological trees. Morphological trees
are efficient models for image processing and analysis. For such applications, it
is of paramount importance that these structures be built and manipulated with
optimal complexity. In this article, we focus on the construction of the topolog-
ical tree of shapes. We propose an algorithm for building the topological tree of
shapes from the tree of shapes. In particular, a cornerstone of this algorithm is the
construction of the complete tree of shapes, another recently introduced tree uni-
fying both the tree of shapes and the topological tree of shapes. We also discuss
the cost of the computation of these structures.

1 Introduction

Graphs are popular mathematical structures for the representation of objects and their
relationships. In particular, they are widely used in mathematical morphology, espe-
cially in the field of connected operators [26]. In this context, they offer an efficient
means for organizing information hierarchically, for modelling and manipulation pur-
pose. The induced structures are often trees which encode hierarchies of partitions.

In mathematical morphology these trees often model the structure of images, with
regard to their spatial and spectral information, via the topological organization of the
connected components related to their flat zones. In the family of partial partitions,
the main two subfamilies of hierarchical structures are component-trees and trees of
shapes. The component-tree [25] models the inclusion relation between the connected
components derived from the threshold sets of an image. The tree of shapes [16] models
the nested inclusion between (the boundaries of) these connected components.

At the confluence of these two subfamilies, the topological tree of shapes was re-
cently introduced [18]. It was initially designed for modelling the two orders—inclusion
and nesting—associated to component-trees and trees of shapes. In particular, the topo-
logical tree of shapes is structurally derived from the min- and max-trees of an im-
age (two dual component-trees) and the adjacency-tree (a binary variant of the tree of
shapes) [24] of each threshold set.

⋆ This work was supported by Région Normandie (thesis grant RIN), Partenariats Hubert Curien
(grant Sakura 49674RK) and ANR (Grants ANR-22-CE45-0034 and ANR-23-CE45-0015).

2 J. Mendes Forte et al.

The topological tree of shapes and the tree of shapes3 derive (by a decreasing home-
omorphism) from the complete tree of shapes, which is also introduced in [18]. This led
to a construction scheme of the topological tree of shapes from the tree of shapes, via
the complete tree of shapes. A first non-optimal algorithm was proposed in [19].

In this article, we propose an algorithm for building the topological tree of shapes
that improves the one of [19]. It aims to minimize the space cost of intermediate struc-
tures by avoiding the storage of redundant information. Doing so, it also reduces the
time cost for their construction and handling, leading to an overall cost optimization.

This article is organized as follows. Sect. 2 recalls previous works on component-
trees and trees of shapes. Sect. 3 provides useful definitions. Sect. 4 describes the al-
gorithmic scheme for building the topological tree of shapes from the tree of shapes.
Sect. 5 provides a complexity analysis of this algorithm. Sect. 6 concludes this article.

2 Related works

The trees developed in mathematical morphology can be divided into those that model
total partitions (e.g. binary partition trees, watershed trees) or partial partitions. We
focus on the second, which mainly include the component tree and the tree of shapes.

The component tree [2, 25] is based on the inclusion of the threshold sets of an
image. Initially designed for grey-level images, it also led to variants dedicated to im-
ages on partially ordered values (e.g. [14]), and alternative connectivity paradigms (e.g.
[22]). It was involved in various applications, mostly for filtering and segmentation
based on attribute selection [12] or optimal cut computation [11]. More recently, it was
also investigated as a way to embed topological information in deep-learning frame-
works [21]. Beyond its potential applications, many efforts were geared towards devel-
oping efficient construction algorithms for component trees [4]. More recently, parallel
algorithms were proposed, including distributed paradigms [10, 8] and GPU-based ap-
proaches [1].

The tree of shapes [16] is based on the nested relation between the level-lines of
an image. It is often described as a self-dual version of the component-tree, since these
level-lines are defined by the hole-closing of the connected components of the min- and
max-trees. The tree of shapes also led to variants dedicated to multivalued images [5],
or compact versions focusing on the topological structure of the level-lines [27]. The
adjacency tree [24], introduced as a topological descriptor for binary images, is also a
variant of tree of shapes. The tree of shapes was involved in various image processing
and analysis applications, mainly including segmentation. It is for instance related to the
minimum barrier distance in images, and allows in particular to estimate it with various
potential applications [17]. Many strategies were proposed for efficiently building the
tree of shapes, e.g. based on a union-find structure [9] or via root-to-leave strategies
[15]. Some parallel approaches were also investigated [7].

3 The term “shape” as used in this paper originates from the definition of the tree of shapes in
[16]. A shape is hence represented by its set of boundaries, with one being its outer boundary
and the others (possibly none) being its inner boundaries. In the case of the tree of shapes, only
the outer boundary is used to represent a shape. In the case of the complete tree of shapes and
the topological tree of shapes, all the (outer and inner) boundaries are considered.

Building the Topological Tree of Shapes from the Tree of Shapes 3

Within the literature dedicated to the construction of the component-tree and the tree
of shapes, some algorithms rely on the first to build the second [6, 3] or vice versa [28].
This is motivated by the strong links that exist between them. In [19], we introduced
the unifying notion of a complete tree of shapes, that provides a continuum between
both structures. The complete tree of shapes contains the nodes of the min- and max-
trees, and allows to derive the tree of shapes by a decreasing (reversible) homeomor-
phism. Since the topological tree of shapes can also be derived from the complete tree
of shapes by a decreasing (yet non-reversible) homeomorphism, we propose to build
the topological tree of shapes from the tree of shapes via the complete tree of shapes.

3 Background notions

We consider images defined on a discrete support U where the Jordan-Brouwer prop-
erty holds. In practice, we assume U = Zd (d ⩾ 2), endowed with the digital topology
framework [13]. We also consider that images take their values in a finite, totally or-
dered set (V,⩽). Without loss of generality, we assume that V = [[⊥,⊤]] ⊂ Z. An image
is defined as a function F : U → V. We assume that the number of points x ∈ U such
that F (x) > ⊥ is finite. This number n is considered as the size of the image.

Let v ∈ V. The upper- and lower-threshold sets of F (see Fig. 1(a)) at value v are
the subsets of U defined as

Λ◦v(F) = {x ∈ U | v ⩽ F (x)}
Λ•v(F) = {x ∈ U | v > F (x)} (1)

Let X ⊆ U. We note Π[X] ⊆ 2U the set of the connected components of X. For all
v ∈ V, we define the following sets

Θ◦v = Π[Λ◦v(F)] Θ◦ =
⋃

v∈V Θ
◦
v

Θ•v = Π[Λ•v(F)] and Θ• =
⋃

v∈V Θ
•
v

Θv = Θ
◦
v ∪ Θ

•
v Θ = Θ◦ ∪ Θ• =

⋃
v∈VΘv

(2)

3.1 Trees

We recall the definition of classic and more recently introduced trees. We consider
the partial order relation ⊆ on Θ◦ (resp. Θ•) and we note ◁◦ (resp. ◁•) the reflexive-
transitive reduction of ⊆ onΘ◦ (resp.Θ•). (The reflexive-transitive reduction of a binary
relation removes the transitive redundancies and ensures that elements are not related
with themselves.) We define a tree by a set of elements linked by arcs. Here, these arcs
are represented via a relation notation (and not via a set notation).

Definition 1 (Component tree(s) [25]) The max-tree (resp. min-tree) of F is the tree
TΘ◦ = (Θ◦,◁◦) (resp. TΘ• = (Θ•,◁•)). Both trees are also called component-trees.

Let X ⊂ U be a (connected) set. We note τ(X) = Xτ ⊇ X the set obtained by closing
the holes of X. We note Θτ = {Xτ | X ∈ Θ}. We consider the partial order relation ⊆ on
Θτ and we note ◁τ the reflexive-transitive reduction of ⊆ on Θτ.

4 J. Mendes Forte et al.

4

1

A

H

C

D

3
A

B
HD

F

2

B GE

A

A

(a) Image and threshold sets

A[5, 5]

A[4, 4]

A[3, 3]

A[2, 2]

B[2, 2]

B[3, 3]

C[4, 4] F[3, 3]

D[4, 3]

E[2, 2]

G[2, 2]

H[3, 4]

(b) Complete ToS

A[5, 5]

A[4, 2]

B[2, 2]

B[3, 3]

C[4, 4] F[3, 3]

DE[4, 2]

GH[2, 4]

(c) Topological ToS

A

B

C F

D

E

G

H

(d) ToS

Fig. 1. (a) An image F (top) and its upper (white) and lower (black) threshold sets (bottom). (b)
The complete tree of shapes of F represents the inclusion (green arcs) or nesting (red arcs) of the
connected components of the threshold sets of F . (c) The topological tree of shapes of F “com-
presses” the nodes of the complete tree of shapes with regard to their topological relationship
(strong deletability). (d) The tree of shapes of F represents the nesting of the outer boundaries of
the threshold sets of F . The topological tree of shapes and the tree of shapes are obtained by a
decreasing homeomorphism from the complete tree of shapes.

Definition 2 (Tree of shapes [16]) The tree of shapes of F is the tree TΘτ = (Θτ,◁τ).
(See Fig. 1(d).)

Let us suppose that V = {⊥,⊤} with ⊥ , ⊤. Then F : U → V is a binary image
equivalent to the binary set Λ◦⊤(F) ⊂ U. Reversely, any (finite) set X ⊂ U is equivalent
to a binary function 1X : U→ {⊥,⊤} defined such that 1X(x) = ⊤ ⇔ x ∈ X.

Definition 3 (Adjacency tree [24]) The adjacency tree of a set X ⊂ U is the tree of
shapes of the binary image 1X .

Remark 4 Let F : U → V, and v ∈ V. Each upper-threshold set Λ◦v(F) of F is
composed by a set of connected components Θ◦v = Π[Λ◦v(F)]. The adjacency tree of
Λ◦v(F) is the tree TΘv = (Θv,◁

v) which is the tree of shapes of 1Λ◦v (F). This allows us
to link the component trees TΘ◦ and TΘ• , as (Θv,◁

v) models nested relations between
elements of Θ◦v and Θ•v for any v ∈ V.

Let ⊑ be the partial order relation defined on Θ by X ⊑ Y ⇔ (X ⊆ Y) ∨ (Xτ ⊆ Yτ).
We note ◁ the reflexive-transitive reduction of ⊑ on Θ.

Definition 5 (Complete tree of shapes [19]) The complete tree of shapes of F is the
tree TΘ = (Θ,◁). (See Fig. 1(b).)

Building the Topological Tree of Shapes from the Tree of Shapes 5

(a) (b) (c) (d)

Fig. 2. (a) A set Λ ∈ U. (b–d) The red part of Λ depicts D ⊆ Λ. (b) The set D is strongly deletable
since there is a bijection between the connected components of the set and its complement before
and after the removal of D. (c) The number of connected component(s) of the background is
different before and after removal. Then the set D is not strongly deletable. (d) The number of
connected components is the same for the object and the background before and after removal.
However, there is no bijection. Indeed, the hole of the initial object has been merged with the
infinite background while a new hole has been created. The set D is not strongly deletable.

Let D ⊂ Λ ⊆ U. Let ι : Π[Λ \ D] → Π[Λ] and ι : Π[Λ] → Π[Λ \ D] be the two
functions defined by X ⊆ ι(X) and Y ⊆ ι(Y). We say that D is a strongly deletable set (of
Λ) if ι and ι are bijective [23] (see Fig. 2). Let X,Y ∈ Θ such that X ◁Θ Y . If X is unique
for this property and Y \X is a strongly deletable set of Y , then we note Y ↘ X. We note
∼ the equivalence relation onΘ derived from↘. We note H = Θ/∼. Let ⊑H be the order
relation on H defined by X ⊑H Y ⇔

∧⊑ X ⊑
∧⊑ Y . We note ◁H the reflexive-transitive

reduction of ⊑H on H.

Definition 6 (Topological tree of shapes [19]) The topological tree of shapes of F is
the tree TH = (H,◁H). (See Fig. 1(c).)

Property 7 ([19]) There exists a decreasing homeomorphism from the complete tree of
shapes to the tree of shapes (resp. to the topological tree of shapes).

3.2 Composition of tree nodes

The trees defined above allow to model images. This requires in particular to establish a
correspondence between the nodes of these trees and their corresponding regions within
the image. These regions are named proper parts.

Definition 8 (Proper part in the component tree(s)) Let X ∈ Θ◦ (the same definition
holds for Θ•). The proper part of X in the component-tree TΘ◦ = (Θ◦,◁◦) is defined by
ρ(X, Θ◦) = X \

⋃
Y◁◦X Y.

Definition 9 (Proper part in the tree of shapes) Let X ∈ Θτ. The proper part of X in
the tree of shapes TΘτ = (Θτ,◁τ) is defined by ρ(X, Θτ) = X \

⋃
Y◁τX Y.

Definition 10 (Proper part in the complete tree of shapes) Let X ∈ Θ. The proper
part of X in the complete tree of shapes TΘ = (Θ,◁) is defined by ρ(X, Θ) = X \⋃

Y◁X Yτ.

Remark 11 Each point x ∈ U is contained in exactly one ρ(X, Θ◦) (resp. ρ(X, Θ•),
ρ(X, Θτ), ρ(X, Θ)). More precisely, {ρ(X, Θ◦) | X ∈ Θ◦}, {ρ(X, Θ•) | X ∈ Θ•} and
{ρ(X, Θτ) | X ∈ Θτ} are partitions of U. The set {ρ(X, Θ) | X ∈ Θ} may not be a
partition since some proper parts may be empty.

6 J. Mendes Forte et al.

4 Building the topological tree of shapes

We now describe an algorithmic scheme for building the topological tree of shapes
of an image from a precomputed [9] tree of shapes. This scheme relies on four steps:
enrichment of the tree of shapes (Sect. 4.1); construction of the graph of shapes from
the enriched tree of shapes (Sect. 4.2); construction of the complete tree of shapes from
the graph of shapes and the tree of shapes (Sect. 4.3); construction of the topological
tree of shapes from the complete tree of shapes and the graph of shapes (Sect. 4.4).

4.1 Enriching the tree of shapes

The cornerstone of the construction of the topological tree of shapes is the construction
of the complete tree of shapes. Indeed, the first is obtained from the second via a de-
creasing homeomorphism. The complete tree of shapes is made of the set Θ = Θ◦ ∪Θ•

of the nodes of the min- and max-trees, whereas the tree of shapes is made of the
(smaller) set Θτ where each node is an equivalence class of nodes of Θ◦ or Θ•.

Based on this fact, it is required to assign each node of Θτ to the class ◦ (resp. •) if
it is related to nodes of Θ◦ (resp. Θ•). In the tree of shapes, it is usual to associate each
node Y ∈ Θτ to its “altitude” Alt(Y) ∈ V, which is characterized by

Alt(Y) =
{∨
{v ∈ V | X ∈ Λ◦v(F) ∧ Xτ = Y} if Y is in the class ◦∧
{v ∈ V | X ∈ Λ•v(F) ∧ Xτ = Y} if Y is in the class • (3)

where
∨

and
∧

are the supremum and infimum respectively. We assume that the tree of
shapes TΘτ is natively endowed with this function Alt : Θτ → V. Then, we can classify
each node of Θτ into the class ◦ or • from Alt and the structural information of TΘτ by
defining the function Class : Θτ → {◦, •} as

Class(Y) =

◦ if Y = U
◦ if (Y ◁τ X) ∧ (Class(X) = ◦) ∧ (Alt(Y) > Alt(X))
• if (Y ◁τ X) ∧ (Class(X) = ◦) ∧ (Alt(Y) ⩽ Alt(X))
• if (Y ◁τ X) ∧ (Class(X) = •) ∧ (Alt(Y) < Alt(X))
◦ if (Y ◁τ X) ∧ (Class(X) = •) ∧ (Alt(Y) ⩾ Alt(X))

(4)

From this classification, two useful information can be derived for each node Y ∈
Θτ: (1) the “origin” of each edge incident to Y , and (2) the interval I(Y) of values
associated to Y . Regarding the origin of each edge (Y ◁τ X), if Class(X) = Class(Y)
(resp. Class(X) , Class(Y)) then this edge derives from the component trees (resp. the
adjacency trees) and will be referred to the function φ (resp. ψ). The functions ψ and φ
will be defined in the next section.

The interval I(Y) = [[α(Y), ω(Y)]] of each node Y ∈ Θτ can be defined by

I(Y) =

[[⊥,⊥]] if Y = U
[[Alt(X) + 1, Alt(Y)]] if (Y ◁τ X) ∧ (Class(Y) = Class(X) = ◦)
[[Alt(X) − 1, Alt(Y)]] if (Y ◁τ X) ∧ (Class(Y) = Class(X) = •)
[[Alt(X), Alt(Y)]] if (Y ◁τ X) ∧ (Class(Y) , Class(X))

(5)

Note that we may have α(Y) ⩽ ω(Y) or α(Y) ⩾ ω(Y), i.e. the intervals are “oriented”.

Building the Topological Tree of Shapes from the Tree of Shapes 7

4.2 Building the graph of shapes

Each Y ∈ Θτ of the tree of shapes corresponds to an equivalence class T (Y) of nodes
of either Θ◦ or Θ•. The nodes X ∈ T (Y) are characterized by τ(X) = Y . If we assume,
without loss of correctness, that the nodes of the component trees are defined at each
threshold set, I(Y) and T (Y) are in bijection, since each node X ∈ T (Y) is a connected
component of the threshold set Λ◦v(F) (or Λ•v(F)) for a specific value v ∈ I(Y). In other
words, {Y}×I(Y) models a subset of nodes ofΘ◦ (orΘ•). More generally,

⋃
Y∈Θτ {Y}×I(Y)

models the set Θ. In particular, each node X ∈ Θv ⊆ Θ is modeled by the couple (Xτ, v)
(v ∈ I(Xτ)).

The set Θτ endowed with the set of intervals IΘτ = {I(Y) | Y ∈ Θτ} is a compact
model of the nodes of the component trees and the adjacency trees (since |Θτ| ⩽ |Θ|).
Similarly, the edges of the tree of shapes, i.e. the elements of ◁Θτ , represent some edges
of the component trees and the adjacency trees. However, this representation is partial.
Our purpose is to build the graph of shapes, which enriches the tree of shapes with
additional edges that will model all the edges of both the component trees and the
adjacency trees. We first define the two functions φ and ψ that model these edges.

Definition 12 The function φ : Θ → Θ associates each node of the component trees
to its parent. It is defined, for any X ∈ Θ◦ \ {U} (resp. Θ• \ {U}) by X ◁◦ φ(X) (resp.
X ◁• φ(X)). The function ψ : Θ→ Θ associates each node of the adjacency trees to its
parent. It is defined, for any X ∈ Θv \ {

∨⊆Θv} (v ∈ V) by X ◁v ψ(X).

As Θ and
⋃

Y∈Θτ {Y} × I(Y) are in bijection, we can rewrite the functions φ and ψ as

∣∣∣∣∣∣∣∣
φ : Θτ × V→ Θτ

(Xτ, v) 7→ Yτ s.t.
{

X ◁◦ Y ∈ Θ◦v−1 if X ∈ Θ◦v
X ◁• Y ∈ Θ•v+1 if X ∈ Θ•v

(6)

∣∣∣∣∣∣ψ : Θτ × V→ Θτ

(Xτ, v) 7→ Yτ s.t. X ◁v Y ∈ Θv
(7)

The graph of shapes is defined by (Θτ,◀), where the set of edges ◀ is partitioned
into {◀φ,◀ψ} such that ◀φ (resp. ◀ψ) contains the edges related to φ (resp. ψ).

Let Xτ ∈ Θτ. If Xτ , U there exists exactly one edge (Xτ,Yτ) in ◀φ, i.e. exactly one
Yτ ∈ Θτ such that Xτ ◀φ Yτ. This edge (Xτ,Yτ) defines the function φ for (Xτ, α(Xτ))
by φ(Xτ, α(Xτ)) = Yτ, while the function φ for the other (Xτ, v) with v ∈ I(Xτ) \ {α(Xτ)}
is defined by φ(Xτ, v) = Xτ and then need not to be modelled by an edge of ◀φ. Then, φ
is fully defined by Θτ endowed with IΘτ and by ◀φ with a space cost O(|Θτ|).

Let Xτ ∈ Θτ and v ∈ I(Xτ). If Xτ , U then there exist(s) σ(Xτ) edge(s) (Xτ,Yτ)
in ◀ψ, i.e. there exist(s) σ(Xτ) node(s) Yτ ∈ Θτ such that Xτ ◀ψ Yτ. Each such edge
(Xτ,Yτ) defines the function ψ for (Xτ, v) for a given v ∈ I(Xτ) by ψ(Xτ, v) = Yτ. The
function ψ may be constant over successive values v ∈ I(Xτ). In practice, the required
number σ(Xτ) of edges of ◀ψ needed to model ψ for {Xτ} × I(Xτ) satisfies 1 ⩽ σ(Xτ) ⩽
|α(Xτ) − ω(Xτ)| + 1. As a counterpart, each edge E = (Xτ,Yτ) of ◀ψ has to be endowed
with the interval I(E) = [[α(E), ω(E)]] where it is defined. In other words, the function

8 J. Mendes Forte et al.

X[2, 8]

Z[0, 1] A[1, 1]

Y[2, 5] B[3, 2]
[2, ?]

(a)

X[2, 8]

Z[0, 1] A[1, 1]

Y[2, 5] B[3, 2]
[2, ?]

(b)

X[2, 8]

Z[0, 1] A[1, 1]

Y[2, 5] B[3, 2]

(c)

X[2, 8]

Z[0, 1] A[1, 1]

Y[2, 5] B[3, 2]
[2, ?]

(d)

Fig. 3. Partial definition of the edges of ◀φ and ◀ψ in the graph of shapes from the information
φ and ψ in the tree of shapes. The elements A, . . . , Z correspond to nodes of the tree of shapes
(Θτ). The elements endowed with their interval (A[1, 1], . . . , Z[0, 1]) correspond to nodes of the
graph of shapes (Θ). The arrows in (a,c) correspond to edges of the tree of shapes; those in (b,d)
to edges of the graph of shapes. The green (resp. red) edges relate to φ and ◀φ (resp. ψ and ◀ψ).
We focus on the node X. We recall that the intervals are oriented. As such, depending on the class
of a node N, it is possible that α(N) ⩽ ω(N) or α(N) ⩾ ω(N). In the tree of shapes, X has exactly
one outer arc E which is related to either ψ (a) or φ (c). In case (a), E is related to ◀ψ in the graph
of shapes (b); the bound α(E) of I(E) is defined by the bound α(X) of I(X). In case (c), E is related
to ◀φ in the graph of shapes (d). The transitive relations (Eqs. (8–9)) allow to determine in the
graph of shapes the edge φ and ◀φ (b) and the edge ψ and ◀ψ (d). See Alg. 1, lines 7–14.

Z[0, 1]

X[2, 8] B[3, 2]

C[5, 4]

D[6, 6]

E[9, 7]

[2, 3]

(a)

Z[0, 1]

X[2, 8] B[3, 2]

C[5, 4]

D[6, 6]

E[9, 7]

[2, 3]

[4, 5]

(b)

Z[0, 1]

X[2, 8] B[3, 2]

C[5, 4]

D[6, 6]

E[9, 7]

[2, 3]

[4, 5]

[6, 6]

(c)

Z[0, 1]

X[2, 8] B[3, 2]

C[5, 4]

D[6, 6]

E[9, 7]

[2, 3]

[4, 5]

[6, 6]

[7, 8]

(d)

Fig. 4. Complete definition of the edges of ◀ψ in the graph of shapes. The process starts from a
configuration illustrated in Fig. 3(b, d). The successive edges E of ◀ψ and their interval I(E) are
obtained from the transitive property of Eq. (9) (a–d). See Alg. 1, 18–25.

ψ is fully defined by ◀ψ endowed with the set of intervals I◀ψ = {I(E) | E ∈ ◀ψ}. Note
that
∑

Xτ∈Θτ |σ(Xτ)| = O(|Θ|). The space cost of ◀ψ is then O(|Θ|).
Our purpose is to build the two sets of edges ◀φ and ◀ψ, in order to obtain the

graph of shapes. One important pre-processing step of the algorithm concerns the node
Xτ = U. As initially computed by the tree of shapes, we have Class(U) = ◦ and I(U) =
[[⊥,⊥]]. It is however important to note that Xτ actually belongs to both the threshold
set Λ◦⊥(F) and Λ•⊤(F), and thus Xτ is part of both classes. Moreover, one node of the

Building the Topological Tree of Shapes from the Tree of Shapes 9

X[2, 8]

Y[. . .]E1[3,8]

E2[4,6]

E3[7,8]

E4[7,8]

(a)

X2 8
E1

E2

E3

E4

X1 X2 X3 X4

(b)

Yk[. . .]

X1[2, 2]

X2[3, 3]

X3[4, 6]

X4[7, 8]

(c)

Fig. 5. Definition of the nodes of the complete tree of shapes (c) from the nodes of the graph
of shapes (a) and the intervals of the edges of ◀ψ (b). (a) The node X in the graph of shapes is
associated to 4 inner edges Ei of ◀ψ with intervals I(Ei). (b) These intervals induce a partition of
I(X). This partition allows to define the nodes X j derived from X in the complete tree of shapes.

equivalence class of Xτ is present in each Λ•v(F), which is not explicitly encoded by
the tree of shapes. Thus, we set Class(Xτ) = • and I(Xτ) = [[⊤,⊥ + 1]]. A part of ◀φ
and ◀ψ is natively provided by the set of edges ◁τ of the tree of shapes. Let Xτ ∈ Θτ.
If Xτ , U then there exists exactly one edge (Xτ,Yτ) in ◁Θτ . If Class(Xτ) = Class(Yτ)
then this edge defines φ for (Xτ, α(Xτ)) by φ(Xτ, α(Xτ)) = Yτ and we have Xτ ◀φ Yτ. If
Class(Xτ) , Class(Yτ) then this edge defines ψ for (Xτ, α(Xτ)) by ψ(Xτ, α(Xτ)) = Yτ

and we have Xτ ◀ψ Yτ. In other words, for each Xτ, either the (unique) edge of ◀φ is
already defined while the σ(Xτ) edges of ◀ψ remain to be defined, or one edge of ◀ψ
is already defined while the unique edge of ◀φ and the remaining σ(Xτ) − 1 edges ◀ψ
remain to be defined. Fig. 3(a,c) illustrates how these properties allow to initialize the
definition of ◀φ and ◀ψ in the graph of shapes from the information on φ and ψ carried
by the tree of shapes.

These remaining edges to be defined can be computed by a transitive closure pro-
cedure that relies on tree properties that link φ and ψ [19]

φ(X) = [φ ◦ ψ ◦ ψ](X) (8)
ψ(X) = [φ ◦ ψ ◦ φ](X) (9)

φ(X) = [φ|V|−2 ◦ ψ](X) (10)

This transitive closure, illustrated in Fig. 3(b,d) regarding its initialization and Fig. 4 for
its iterative part, is performed on the tree of shapes, from its root to its leaves. Note that
the third property effectively applies only for the nodes Xτ ∈ Θτ such that Xτ ◁Θτ U.
This is summarized in Alg. 1.

4.3 Building the complete tree of shapes

The tree of shapes can be obtained from the complete tree of shapes by a decreasing
homeomorphism [19]. This homeomorphism consists of collapsing the branches of the
complete tree of shapes with respect to the equivalence relation on Θ induced by the

10 J. Mendes Forte et al.

Algorithm 1: Construction of the graph of shapes from the tree of shapes.
Input: Θτ, ◁τ, Class, IΘτ
Output: ◀φ, ◀ψ, I◀ψ
Notation: “A := B” means that A is set with B; “A← B” means that B is added to A;
“A→ B” means that B is set as an element removed from A

1 L := {(U, ∅)} // L is a FIFO list

2 while L , ∅ do
3 L → (X,Y)
4 if X , U then
5 if Y , U then Z := φ(ψ(Y, ω(Y)), ω(Y))
6 else Z := Y
7 if Class(X) , Class(Y) then
8 ◀φ ← (X,Z)
9 φ(X, α(X)) := Z

10 ψ(X, α(X)) := Y

11 else
12 ◀φ ← (X,Y)
13 φ(X, α(X)) := Y
14 ψ(X, α(X)) := Z

15 Ŷ := ψ(X, α(X))
16 α̂ := α(X)
17 repeat
18 E := (X, Ŷ)
19 ◀ψ ← E

20 ω̂ :=
{∧
{ω(X), α(Ŷ)} if Class(X) = ◦∨
{ω(X), α(Ŷ)} if Class(X) = •

21 I◀ψ (E) = [[α(E), ω(E)]] := [[α̂, ω̂]]
22 ψ(X, ω̂) := Ŷ

23 α̂ :=
{
ω̂ + 1 if Class(X) = ◦
ω̂ − 1 if Class(X) = •

24 Ŷ := φ(Ŷ , α(Ŷ))
25 until ω̂ = ω(X)

26 foreach Z ◁Θτ X do L ← (Z, X)

hole-closing τ (following the same way as for turning the nodes of the component trees
into those of the tree of shapes). This homeomorphism is reversible. Each node of the
tree of shapes can be duplicated to form a branch of nodes linked by edges of φ. The
definition of these branches (by the nodes composing them) is given by the information
carried by the relation ◀ψ. This is exemplified by Fig. 5.

Let X ∈ Θτ, associated to the interval I(X) = [[α(X), ω(X)]]. Let us consider the
k edges (k ∈ N) Ei = (Yi, X) (1 ⩽ i ⩽ k) of ◀ψ that link other nodes Yi of Θτ to X.
Each edge Ei is associated to an interval I(Ei) = [[α(Ei), ω(Ei)]] (Fig. 5(a)). These nodes
Yi define the holes of the nodes of the tree of shapes that derive from X over I(X). A
node is in particular defined by a specific combination of holes Yi. It follows that the

Building the Topological Tree of Shapes from the Tree of Shapes 11

Algorithm 2: Construction of the complete tree of shapes.
Input: Θτ, ◁τ, ◀ψ, I◀ψ , IΘτ
Output: Θ, ◁, IΘ = {I(X) = [[α(X), ω(X)]] | X ∈ Θ}

1 (Θ,◁Θ) := (∅, ∅)
2 L := {(U, ∅)} // L is a FIFO list

3 while L , ∅ do
4 L → (X,Y)
5 Build Ω(X) = {[[α(j), ω(j)]]}ℓj=1

6 for j from 1 to ℓ do
7 Build X j

8 I(X j) := [[α(j), ω(j)]]
9 Θ← X j

10 if Y , ∅ then ◁← (X j,Y)
11 Y := X j

12 foreach Z ◁τ X do L ← (Z,Y)

different nodes of the complete tree of shapes derived from X are in bijection with the
partition of intervals induced by the various I(E), that refines the interval I(X). We note
Ω(X) = {[[α(j), ω(j)]]}ℓj=1 (with 1 ⩽ ℓ ⩽ 2k) this partition of intervals, with α(1) = α(X),
ω(ℓ) = ω(X), α(j) ⩽ ω(j) for all 1 ⩽ j ⩽ ℓ and ω(j) + 1 = α(j + 1) for all 1 ⩽ j ⩽ ℓ − 1
(the same holds with X ∈ Θ• by substituting α(j) ⩾ ω(j) to α(j) ⩽ ω(j) and ω(j) − 1 to
ω(j)+ 1), see Fig. 5(b). The partition Ω(X) can be built in a time O(k log k). Once Ω(X)
is built for each node X, the structure of the complete tree of shapes can be obtained
from the tree of shapes by substituting a branch composed by a number of nodes equal
to the size of Ω(X) to the node X (Fig. 5(c)). This procedure is summarized in Alg. 2.

The tree generated from Alg. 2 is isomorphic to the complete tree of shapes. How-
ever, the nodes of this tree do not contain the information required to link that tree to
the image. More precisely, their proper part (Def. 10) is not yet defined. It was proved
in [19] that when splitting a node X of the tree of shapes into ℓ nodes Xi of the complete
tree of shapes, the “first” node X1, characterized by α(X1) = α(X) inherits the proper
part of X, while the other ℓ−1 nodes Xi (2 ⩽ i ⩽ ℓ) have an empty proper part. Alg. 2 can
be slightly modified (without extra time cost) to deal with this procedure by embedding
the required proper part at the creation of each node (line 7).

4.4 Building the topological tree of shapes

The construction of the topological tree of shapes from the complete tree of shapes
is a procedure that consists of gathering the nodes of Θ into equivalence classes with
respect to the notion of strong deletability. In [19], it was observed that this equivalence
between two nodes X ◀φ Y could be assessed by locally observing the structure of their
children nodes with respect to ◀ψ in order to characterize a putative bijection between
them. In [19], this checking was carried out in the so-called graph of valued shapes, a
non-compact structure equivalent to the current graph of shapes. The characterization
established in the graph of valued shapes can be rewritten in the graph of shapes.

12 J. Mendes Forte et al.

New F (Θτ,◁τ) (Θτ,◀) (Θ,◁) (H,◁H)

O(n) O(n) O(n) O(n) O(n)O(n log n) O(n) O(n log n) O(n)

[19] F (Θτ,◁τ) (Ξ,◀Ξ) (Ξ,◁Ξ) (Θ,◁) (H,◁H)

O(n) O(n) O(nδ) O(nδ) O(n) O(n)O(n log n) O(nδ) O(nδ) O(nδ) O(nδ)

Fig. 6. Synthetic comparison of the two algorithms for building the topological tree of shapes: the
former algorithm [19] on the first line and the new algorithm on the second line. The intermediate
structures are depicted by the boxes with their space cost in orange. The algorithmic steps for
building each structure from the previous are depicted by arrows with their time cost in blue.
Both space and time costs are expressed with respect to the size n of the image F .

Let X,Y ∈ Θ be such that X ◁ Y . If Y = ψ(X) then X and Y cannot be equivalent.
Let us assume that Y = φ(X). Let Xτ and Yτ be the nodes of Θτ associated to X and
Y , respectively. We assume that Xτ is the only node such that Xτ ◀φ Yτ (otherwise, X
and Y are not equivalent). Let EXτ be the set of edges of ◀ψ of the form (Xi, Xτ) such
that α((Xi, Xτ)) = α(Xτ). Let EYτ be the set of edges of ◀ψ of the form (Y j,Yτ) such
that ω((Y j,Yτ)) = ω(Yτ). If these two sets of edges have distinct cardinals, X and Y are
not equivalent. Otherwise, X and Y are equivalent iff there is a bijection between the
elements Xi and the elements Yi characterized by Xi = Yi or Yi ◀φ Xi.

Based on this characterization of the equivalence between the nodes of Θ, we can
derive an algorithmic process that involves exactly twice (once for the value α(E) and
once for the value ω(E)) each edge of the set ◀ψ in the graph of shapes. This algorithmic
process, which allows to gather the nodes of Θ into equivalence classes leading to the
set of nodes H of the topological tree of shapes, then presents a time cost O(|Θ|).

5 Complexity analysis

The image F has a space cost n. The construction of the tree of shapes, which is the
input of the proposed algorithm, has a time cost O(n log n) [9]. The space cost of TΘτ

is O(|Θτ|) with |Θτ| ⩽ n. The enrichment of the tree of shapes (Sect. 4.1), i.e. the con-
struction of Class(Y) and I(Y) for each Y ∈ Θτ, and the classification of each edge of
◁τ into either φ or ψ presents a time cost O(|Θτ|). The overall space cost of the enriched
tree of shapes remains O(|Θτ|). The construction of the graph of shapes (Sect. 4.2) of
size O(|Θ|) from Alg. 1 has a time cost O(|Θ|). The construction of the complete tree of
shapes (Sect. 4.3) of size O(|Θ|) from Alg. 2 has a time cost O(|Θ| log |Θτ|). The con-
struction of the topological tree of shapes from the complete tree of shapes and the graph
of shapes (Sect. 4.4) has a time cost O(|Θ|). The overall process of building the topo-
logical tree of shapes from the tree of shapes then presents a space cost O(|Θ|) = O(n)
related to the intermediate structures and a time cost O(|Θ| log |Θτ|) = O(n log n).

This algorithm presents a lower complexity, compared to the former approach in
[19] (see Fig. 6). Indeed, we now use the graph of shapes, a compact structure where
both redundant nodes and edges are modeled only once and endowed with an interval
of definition, while in [19], they were modeled extensively in a structure called the

Building the Topological Tree of Shapes from the Tree of Shapes 13

graph of valued shapes (Ξ,◁Ξ) of size O(nδ) where δ = O(|V|) is the average size of the
interval of values where the nodes in the component trees of F exist. The optimization
factor in terms of space (resp. time) cost between both algorithms is then δ (resp. δ

log n).

6 Conclusion

In this article, we continued our study of the topological tree of shapes initiated in [18,
19]. Here, we focused on the design of an efficient algorithm for building the topological
tree of shapes from the tree of shapes. We aim to release an implementation of this
algorithm in libraries dedicated to mathematical morphology, such as Higra [20]. We
presented a theoretical analysis of the cost of this algorithm, that focuses on asymptotic
behaviour. Short term perspectives will be to refine this theoretical analysis, and to
experimentally assess the cost of its implementation on various datasets of images, to
understand how the image properties (size, grey-level range. . .) may influence that cost.
As of now, we proposed to build the topological tree of shapes from the tree of shapes.
It may be relevant to investigate if/how it may be built ex nihilo from the image.

The topological tree of shapes opens the way to the development of new image pro-
cessing / analysis operators. On the one hand, the topological tree of shapes can be seen
as a rich topological invariant; it may then allow to describe, analyze and/or compare
images. On the other hand, as any other tree in the field of morphological hierarchies, it
may be used to develop connected operators, e.g. for filtering, segmentation or simpli-
fication. Longer term perspectives will consist of investigating such applications.

References

1. Blin, N., Carlinet, E., Lemaitre, F., Lacassagne, L., Géraud, T.: Max-tree computation on
GPUs. IEEE Transactions on Parallel and Distributed Systems 33, 3520–3531 (2022)

2. Breen, E.J., Jones, R.: Attribute openings, thinnings, and granulometries. Computer Vision
and Image Understanding 64(3), 377–389 (1996)

3. Carlinet, E., Crozet, S., Géraud, T.: The tree of shapes turned into a max-tree: A simple and
efficient linear algorithm. In: ICIP. pp. 1488–1492 (2018)

4. Carlinet, E., Géraud, T.: A comparative review of component tree computation algorithms.
IEEE Transactions on Image Processing 23, 3885–3895 (2014)

5. Carlinet, E., Géraud, T.: MToS: A tree of shapes for multivariate images. IEEE Transactions
on Image Processing 24, 5330–5342 (2015)

6. Caselles, V., Meinhardt, E., Monasse, P.: Constructing the tree of shapes of an image by
fusion of the trees of connected components of upper and lower level sets. Positivity 12,
55–73 (2008)

7. Crozet, S., Géraud, T.: A first parallel algorithm to compute the morphological tree of shapes
of nD images. In: ICIP. pp. 2933–2937 (2014)

8. Gazagnes, S., Wilkinson, M.H.F.: Distributed connected component filtering and analysis
in 2D and 3D tera-scale data sets. IEEE Transactions on Image Processing 30, 3664–3675
(2021)

9. Géraud, T., Carlinet, E., Crozet, S., Najman, L.: A quasi-linear algorithm to compute the tree
of shapes of nD. In: ISMM. pp. 98–110 (2013)

14 J. Mendes Forte et al.

10. Götz, M., Cavallaro, G., Géraud, T., Book, M., Riedel, M.: Parallel computation of compo-
nent trees on distributed memory machines. IEEE Transactions on Parallel and Distributed
Systems 29, 2582–2598 (2018)

11. Guigues, L., Cocquerez, J.P., Le Men, H.: Scale-sets image analysis. International Journal of
Computer Vision 68, 289–317 (2006)

12. Jones, R.: Connected filtering and segmentation using component trees. Computer Vision
and Image Understanding 75, 215–228 (1999)

13. Kong, T.Y., Rosenfeld, A.: Digital topology: Introduction and survey. Computer Vision,
Graphics, and Image Processing 48(3), 357–393 (1989)

14. Kurtz, C., Naegel, B., Passat, N.: Connected filtering based on multivalued component-trees.
IEEE Transactions on Image Processing 23, 5152–5164 (2014)

15. Monasse, P.: A root-to-leaf algorithm computing the tree of shapes of an image. In: RRPR.
pp. 43–54 (2018)

16. Monasse, P., Guichard, F.: Scale-space from a level lines tree. Journal of Visual Communi-
cation and Image Representation 11(2), 224–236 (2000)

17. Ngoc, M.O.V., Boutry, N., Fabrizio, J., Géraud, T.: A minimum barrier distance for multivari-
ate images with applications. Computer Vision and Image Understanding 197-198, 102993
(2020)

18. Passat, N., Kenmochi, Y.: A topological tree of shapes. In: DGMM. pp. 221–235 (2022)
19. Passat, N., Mendes Forte, J., Kenmochi, Y.: Morphological hierarchies: A unifying frame-

work with new trees. Journal of Mathematical Imaging and Vision 65(5), 718–753 (2023)
20. Perret, B., Chierchia, G., Cousty, J., Ferzoli Guimarães, S.J., Kenmochi, Y., Najman, L.:

Higra: Hierarchical graph analysis. SoftwareX 10, 100335 (2019)
21. Perret, B., Cousty, J.: Component tree loss function: Definition and optimization. In: DGMM.

pp. 248–260 (2022)
22. Perret, B., Lefèvre, S., Collet, C., Slezak, É.: Hyperconnections and hierarchical representa-

tions for grayscale and multiband image processing. IEEE Transactions on Image Processing
21, 14–27 (2012)

23. Ronse, C.: A topological characterization of thinning. Theoretical Computer Science 43,
31–41 (1986)

24. Rosenfeld, A.: Adjacency in digital pictures. Information and Control 26, 24–33 (1974)
25. Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for image and

sequence processing. IEEE Transactions on Image Processing 7, 555–570 (1998)
26. Salembier, P., Serra, J.: Flat zones filtering, connected operators, and filters by reconstruction.

IEEE Transactions on Image Processing 4, 1153–1160 (1995)
27. Song, Y., Zhang, A.: Monotonic tree. In: DGCI. pp. 114–123 (2002)
28. Tao, R., Qiao, J.: Fast component tree computation for images of limited levels. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence 45(3), 3059–3071 (2023)

