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On the problem of identifying metabolic network dynamics from
steady-state data: metrics and constraints

Elif Köksal and Eugenio Cinquemani

Abstract— We address inference of dynamic metabolic net-
work models from steady-state metabolite concentration and
flux data. As a case study we rely on simulation of an example
branched metabolic pathway. In general, steady-state data
fitting does not guarantee appropriate dynamical performance.
In order to tackle this problem, we propose tools for the
assessment of the accuracy of dynamical model approximations,
and suggest the use of constraints on the expected dynamical
system behavior, in the form of reaction-rate constraints over
a region of interest, to improve the dynamical properties of the
model inferred. Numerical results demonstrate the potential of
the approach.

I. INTRODUCTION

The metabolism of a cell is the family of chemical
reactions that govern the transformation of substrates (e.g.
sugars) into products (ATPs, aminoacids, etc.) necessary for
the functioning of the cell. Metabolic reactions are typically
mediated by enzymes, proteins whose production via gene
expression is controlled by regulatory mechanisms involving
metabolic co-factors. Mathematical modeling of metabolism
is thus essential for understanding cellular physiology and
engineering modified cell functions.

Mathematical modeling of metabolic dynamics has a long
history [1]. For a well-characterized network, reaction kinet-
ics can be written in terms of nonlinear parametric models
(ODEs), that may in turn be used to explore the dynamic
response of metabolism and the sensitivity of steady-states
to environmental perturbations, the role of variable enzyme
concentration on the metabolic fluxes (i.e. reaction rates
at steady state), etc. Even for well-characterized reaction
networks, however, kinetic parameters are often unknown
and need to be determined from experimental data.

Inference of metabolic models from experiments poses
several challenges. From the experimental viewpoint, a popu-
lar approach is to observe the variation of the system steady-
state in response to perturbations of enzyme or external
metabolite concentrations (see e.g. [17]). Metabolite concen-
trations are measured in steady-state, and the corresponding
fluxes are quantified by the help of flux balance analysis
(see e.g. [13] and references therein). In this case, the
parameters of a dynamical model are estimated from steady-
state metabolite concentrations and associated fluxes, sepa-
rately for every reaction [10], [6]. Alternatively, metabolite
concentrations can be observed dynamically [20], but the
corresponding reaction rates are typically unavailable. In this
case, model inference exploits time course data of metabolite
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concentrations only (see e.g. [16]), leading to a single,
but more complicated, estimation problem. Often, data are
corrupted by outliers and missing entries, certain metabolites
are not observed, and a model reduction step is needed to
cope with this lack of information. Finally, full-blown models
of metabolism are nonlinear.

All of the above motivates the interest in approximate
models of metabolic dynamics such as linear, lin-log, power-
law models [4], [6], [3], to name a few. Motivated by
different mathematical or physical arguments, these model
classes provide tractable approximations of metabolic dy-
namics at least in a region of interest, are amenable to
biological interpretation and allow for analytic solution,
identifiability analysis, and model reduction [2], [9]. Yet,
the inherent discrepancy from the real system dynamics
raises questions about the accuracy of models for dynamic
predictions, especially if they are inferred from steady-state
data. Simulation-based evaluation of approximate models has
been performed e.g. in [14], [16], [15], showing the potential
of different modelling formalisms but also emphasizing the
limits of validity of the approximations and the importance
of costraints at the inference stage.

In this paper, we address the problem of estimating dy-
namic models of metabolism from steady-state metabolite
concentration and flux data. In general, accurate steady-state
data fit does not imply good dynamic modeling overall. The
objective of the paper is to propose tools for the quantita-
tive assessment of dynamical approximations of metabolic
networks, and methods for improving estimation of dynamic
metabolic models from steady-state data.

We rely on a small, yet biologically relevant case study, the
synthetic branched metabolic pathway of [11], and consider
inference of approximate dynamic models from steady-state
data obtained by in-silico perturbation of the system. We
propose vector-field metrics for analyzing the dynamic prop-
erties of the models, and investigate optimization constraints
as a means for ameliorating dynamic model inference from
steady-state data. We propose constraints on vector-field
properties, such as reaction rates away from steady-state, as
an alternative to individual parameter constraints (see e.g.
[5]) or steady-state flux constraints (see e.g. [13]), and show
that they may lead to better dynamical model approximations
overall. While the discussion is carried out with reference to
lin-log and power-law models, most of the tools proposed
and the considerations drawn apply equally well to different
metabolic model classes.



II. MATHEMATICAL FRAMEWORK

A. Modeling Approaches

Kinetic models of biochemical reactions are described by
ODEs [1]. The general formulation of metabolic network
dynamics with enzyme-catalyzed reactions is

ẋ = F(x) = N · v (1)
vh = eh · fh(x,u,ph), h = 1, . . . ,m (2)

where x ∈ <nx denotes the vector of internal metabolite
concentrations of a nx-dimensional system described by
F(x), which can be written as a multiplication of the vector
of reaction rates v ∈ <m and a stoichiometry matrix N ∈
Znx×m. For every reaction h = 1 . . . ,m, vh is proportional
to enzyme activity eh ∈ < and a nonlinear function fh
of internal metabolite concentrations x, external metabolite
concentrations u ∈ <nu and kinetic parameters ph.

A fully parametrized form of the functions fh is often diffi-
cult to manipulate and to determine from experimental data.
Therefore, approximate modeling formalisms are routinely
used to describe the behavior of the network around reference
conditions of interest. Among several approximate kinetic
models of the nonlinear function f , lin-log and Generalized
Mass Action (GMA) power-law models are widely used [2].
In lin-log kinetics, inspired by thermodynamic principles and
in connection with metabolic control analysis [2], [6], the
rate of every reaction is assumed proportional to a sum of
logarithms of metabolite concentrations. That is, dropping
index h for simplicity,
v

e
= f(x,u,p) = c+

∑
i

ai ln(xi) +
∑
j

bj ln(uj), (3)

with parameters p = (a,b, c). In the GMA power-law
approach, inspired by mass-action kinetics, reaction rates are
proportional to a product of enzyme levels and metabolite
concentrations with kinetic exponents (4),

v

e
= f(x,u,p) = γ

∏
i

xαi
i

∏
j

u
βj

j , (4)

with parameters p = (α, β, γ), where γ > 0. For every
reaction, in (3) and (4), only metabolites that participate in
the reaction are included. Both models are well defined as
long as x > 0 and u > 0, whereas power-law may cope
with null metabolite concentrations, and is more generally
believed to be better suited than lin-log models for metabolite
concentrations that may get small values [7]. In this work we
will only consider these two formalisms, and assume that
the enzyme concentrations e are known and fixed. Since
their values can be absorbed into the model parameters,
without loss of generality we set e = 1 for all reactions,
and write vh(x,u,p) without reporting the dependence of
reaction rates on enzyme concentrations.

B. Estimation Problem

The problem we consider is that of reconstructing an
approximate metabolic network model around a known refer-
ence point v∗,x∗,u∗, based on simultaneous measurements

of x and v in different steady states obtained by K separate
constant perturbations of the inputs u. We assume N to be
known. Using the assumption that the models must satisfy (2)
at x∗, u∗, v∗, one gets the relations

v − v∗ = fLL(x,u,p) ,
∑
i

ai ln(
xi
x∗i

) +
∑
j

bj ln(
uj
u∗j

),

(5)

ln(
v

v∗
) = fPL(x,u,p) ,

∑
i

αi ln(
xi
x∗i

) +
∑
j

βj ln(
uj
u∗j

),

(6)

holding for every individual reaction. Therefore, the problem
becomes that of estimating the parameter vectors a and b,
for the lin-log model (5), or α and β, for the power-law
model (5). Note that, for given a and b (resp. α and β), the
value of c (resp. of γ) is determined by Eq. (3) (resp. (4))
evaluated at the reference point. Thus, for shortness, we
will generally speak about estimation of p. Given a set
of steady-state data points (xk,uk,vk), where xk and vk

are obtained in response to the constant perturbation uk,
with k = 1, . . . ,K, let us define vkLL = vk − v∗ and
vkPL = ln(vk/v∗). We consider estimates of the lin-log
and power-law parameters drawn by solving the optimization
problems (one per reaction)

min
p

K∑
k=1

(
vkLL − fLL(xk,uk,p)

)2
, (7)

min
p

K∑
k=1

(
vkPL − fPL(xk,uk,p)

)2
. (8)

In absence of constraints, these are least-squares problems
that can be solved explicitly.

Several aspects of the problem deserve discussion. First,
in a real context, data for both xk and vk can only be
collected in steady state. On the other hand, one would like
to use the resulting model also for dynamical analysis. It is
a priori unclear if steady-state data may provide sufficient
information for matching the real system dynamics with a
necessarily approximate model, or what additional informa-
tion can be used to enforce well-behaved estimates. Note
that, for both modelling frameworks considered here and
other model classes, the existence of nonnegative solutions
of the ODEs (1)-(2) may not be guaranteed if the models
are used to simulate the system far away from x∗,u∗,v∗,
e.g. for small concentrations or certain combinations of
inputs. Finally, models should be biologically relevant, i.e.
parameters should reflect the regulatory effect (enhancement
or suppression) of the various chemical species on the system
reactions. With the aid of a case study, the purpose of this
work is to explore these aspects in connection with the
expected behavior of the system, i.e. the a priori information
that one may use while solving parameter estimation.

III. CASE STUDY
A. The System

We consider the Mendes-Kell synthetic metabolic network
of [11], [6]. This branched pathway (Fig. 1) includes 8 in-



Fig. 1. Representation of the Mendes-Kell metabolic pathway from [6].

ternal, 3 external metabolites and 8 reversible reactions with
allosteric interactions represented by Hill, ordered bi-bi and
uni-uni kinetics equations. The detailed equations are given
in [6]. Using the two conservation rules [AH] = T1 − [A]
and [M5] = T2− [M2]− [M3]− [M6], the system reduces to
a 6-dimensional ODE, one per independent internal metabo-
lite, with state x = ([M1], [M2], [M3], [M4], [M6], [A]) and
inputs u = ([S], [P1], [P2]). At the reference state x∗ =
(1.094, 0.170, 0.042, 0.101, 0.202, 0.019)mM, obtained for
u∗ = (1.1, 0.1, 0.2)mM with (T1 = 0.1 and T2 = 0.3), the
(locally linearized) system has 6 negative real eigenvalues
and is hence asymptotically stable. From now on, we will
refer to this simulated system as the real system.

B. Inference of approximate models from simulated data

We consider the inference of a lin-log and a power-law
model around the reference point (x∗,u∗,v∗) from steady-
state perturbation data. Data consist in the steady-state values
of x and v resulting from K = 100 different external
metabolite concentrations u, where each component of u
is drawn at random according to a uniform distribution over
±10% of the corresponding entry of u∗. In practice, data
are obtained by simulating the system of Section III-A until
steady-state is reached (all experiments we consider are such
that reactions are never reversed). Models are estimated by
solving problems (7) and (8) in the relevant parameters. The
dynamic behavior of the resulting models starting from a
state different from the steady-state x∗ is compared to that
of the real system in Fig. 2.

Results from this simulated inference enable already some
considerations. First of all, steady-state data may allow for
the identification of reasonable dynamic models, provided
the data is sufficient to make estimation well-posed. Yet,
the residual error in fitting the data says little about the
goodness of the resulting model dynamics. This can be seen
in Fig. 2, where comparable residuals of fit (reported in
the caption) give rise to predictions of the system response
to perturbed initial conditions of markedly different quality.
In other words, an accurate fit may not correspond to an
accurate model approximation away from the data points

Fig. 2. Dynamic behavior of the original model (MK) and of the lin-
log (LL) and power-law (PL) approximations starting from x = 0.8x∗.
Parameters of the LL and PL models are the solution of (7) and (8), with
fitting residuals 7.70E-5 and 1.10E-4, respectively.

Fig. 3. Vector fields of lin-log (left) and power-law (right) models of
Fig. (2). Segments indicate the local vector field direction, oriented toward
the equilibrium point at the intersection of the nullclines of M1 and M2

(green and red lines, respectively). All other states are kept at the reference
point. Vector field magnitude, not represented, increases much faster for the
power-law model when moving away from the equilibrium.

themselves. As an example, the appearence of the vector
field for M1 and M2 of the lin-log and power-law models
in the vicinity of the reference point is shown in Fig. 3. The
different behavior when moving away from the reference
point is apparent.

The observations above are easily explained in terms
of the relation between (approximate) modeling and lim-
ited informativeness of the data. If the parametric model
class used for model inference contained the real system,
then a well-posed estimation problem (data is enough to
determine all unknown parameters) would return a model
that is identical to the original system. Unfortunately, in
general, the real system does not belong to these model
classes. Even a well-posed estimation problem ensures that
the model resembles the original system only in proximity
of the data points. Away from the data points, the model



behavior is determined by the model structure and not by
the original system. This is especially an issue if the data is
limited (few or concentrated data points, or obeying implicit
constraints, which may typically be the case for steady-state
data [9]) and if the structure of the model class is not a good
replica of the real system (a fact that, in general, cannot
be determined a priori). Still, we argue that results can be
improved significantly by a better statement of the estimation
problem, even if the data remains limited and the model class
suffers from limited approximation capabilities. The core of
what follows is to show that introducing constraints on the
expected dynamics of the system allows one to compensate
for structural approximations and the loose exploration of
the system provided by the data, thus making the estimated
model better behaved at a negligible price in terms of data fit,
and that in cases of interest the constraints can be formulated
in terms of linear, hence tractable, optimization inequalities.

IV. IMPROVING MODEL INFERENCE

Model inference discussed so far was based purely on
data fitting, and was shown to have uncertain implications on
the model ability to replicate the original system dynamics.
From now on, we address the dynamic performance of the
models inferred from steady-state data more systematically.
We introduce tools for quantifying the accuracy of the
dynamical approximation of the system, consider a variety
of common and original estimation constraints to account
for prior information on the expected system dynamics, and
discuss their effects on the estimated system dynamics.

A. Vector Field Metrics

Let F(x) be the vector field that determines the original
system dynamics ẋ = F(x). Let F̂(x) be the vector field of
an approximating model, as it can be obtained by inferring
e.g. a lin-log or power-law model from data. To quantify the
difference between the original and approximating model at
x, we define several quantities. First we define the vector-
length difference at x

l(x) = ‖F(x)‖ − ‖F̂(x)‖,

where ‖ · ‖ denotes the L2 norm, and the cosine between
vector fields at x,

θ(x) =
F(x)T F̂(x)

‖F(x)‖ · ‖F̂(x)‖
.

Based on this, we quantify the difference between models
over a region X of interest by the indices

L(X) =
1

vol(X)

∫
X

| l(x) |dx,

and
Θ(X) =

1
vol(X)

∫
X

θ(x)dx.

By these definitions, L(X) ≥ 0 and Θ(X) ∈ [−1, 1] quan-
tify, in the order, the average discrepancy of the magnitude
and the average alignment of the vector fields over X . The
closer L(X) is to 0 and the closer Θ(X) is to 1, the more

similar the vector fields. F̂ is a perfect approximation of
F over X if and only if L(X) = 0 and Θ(X) = 1. In
practice, an approximation of integrals L(X) and Θ(X) shall
be computed by gridding X . We note that a distance such
as

1
vol(X)

∫
X

‖F(x)− F̂(x)‖
‖F(x)‖+ ‖F̂(x)‖

dx ∈ [0, 1],

would suffice to quantify the difference between F̂ and F
over X . However, decoupling vector-field magnitude and
alignment information makes the analysis more informative,
as we will see in Section V.

B. Use of Prior Information

In addition to experimental data, depending on the physical
or biological interpretation of the model, a priori belief on
the model parameters may be available. Parameter signs
may be fixed based on supposed reaction kinetics (a typical
requirement for power-law models [3]) and/or elasticities [8],
i.e. the sensitivity of reaction rates to parameter variations
(most relevant to lin-log models [2]),

(−1)s`p` ≥ 0, (9)

where p` denotes the generic `th parameter and s` ∈ {0, 1}.
In addition, in power-law models, typical values for the
exponents α and β are suggested in the literature, inspired by
kinetic reaction orders of biochemical system theory. Here
kinetic orders are mostly within the range of [−1, 3] [5], but
exceptions are possible (see e.g. [12]). Similar constraints
can be considered for lin-log model parameters (though e.g.
in [6] only sign constraints are considered). Boundaries on
parameter values are captured by constraints of the form

p` ∈ [p
`
, p`]. (10)

These constraints are linear, hence tractable, but focus on
the parameter properties and not on the dynamics that may
result from them. We propose that constraint on the maximal
reaction rates may provide a more explicit information about
what the system dynamics should look like. For a given
reaction rate vh, consider constraints of the form

vh(x,u,ph)
v∗h

∈ [rh, rh], ∀(x,u) ∈ S, (11)

where S = [s1, s1] × . . . × [snx+nu
, snx+nu

] is a hyper-
rectangular region. In particular, one may choose S such
that (x∗,u∗) ∈ S and 1 ∈ [rh, rh], so that rh and rh
express maximal allowable reaction rate deviations from the
reference flux v∗ over S. We have the following result, where
we drop h from the notation for simplicity.

Proposition 1: For both lin-log and power-law models,
constraints (11) are equivalent to the finite set of linear
constraints on p given by

r ≤ v(x,u,p)
v∗

≤ r ∀(x,u) ∈ V (S), (12)

where V (S) is the (2nx+nu -dimensional) vertex set of S.



Proof: For lin-log models, for every fixed x and u,
constraint (12) is already linear in the parameters. For power-
law models, note that v/v∗ is always nonnegative. Hence we
may assume r ≥ 0 without loss of generality, and, thanks to
monotonicity of the logarithm function, (12) is equivalent to

ln r ≤ ln
v(x,u,p)

v∗
≤ ln r ∀(x,u) ∈ V (S), (13)

which is again linear in the parameters. The fact that (11)
implies (12) is obvious. The reverse implication follows from
the monotonicity of (3) and (4) in each of the entries of x
and u.
Therefore, all constraints in this section can be easily inte-
grated into the optimization problems (7) and (8) in the form
of a finite set of linear constraints. Analogous results can be
established for a variety of modelling formalisms (e.g. all
pseudo-linear models).

V. MODEL INFERENCE USING PRIOR INFORMATION: A
NUMERICAL STUDY

We perform a simulated study of the estimation of
approximate models. We consider 10 datasets of steady-
state measurements. Each dataset comprises 100 steady-
state values xk and vk computed by solving the original
system of Section III-A from the initial condition x∗ for 100
corresponding input perturbations u, the entries of which
are drawn at random according to independent uniform
distributions within ±10% of their nominal values u∗. For
every dataset, we estimate different lin-log and power-law
models by solving unconstrained least squares problems (7)
and (8) as well as linearly constrained versions of them based
on various choices of the constraints (9)-(12). Namely, we
consider lin-log models inferred without constraints (LL) and
with sign constrains (LLS), as well as power-law models
inferred without constrains (PL), with sign-constraints (PLS),
with sign and parameter constraints (PLSP ), as well as with
sign and reaction-rate constraints (PLSR). Sign constrains
are chosen in accordance with the choice of [9], reflecting
the positive or negative effect of metabolites in the various
reaction rates of the original model. For the constraints on
the exponents of power-law models, inspired by [19], [18],
we set [p

`
, p`] = [−2, 5] for all parameters. Finally, loose

rate constraints were placed over the region S given by
(x∗, u∗)± 10% (all possible variations of internal and exter-
nal metabolites up to 10% of their reference values). Writing
the constraints in the form (13), for h = 1, . . . ,m, we took
ln rh = −∞ (no lowerbound) and ln rh = 1.5 · ln(vh/v∗h),
where vh is the hth-reaction maximal rate value of the real
(simulated) system over S.

For each type of model (LL, LLS , PL, PLS , PLSP and
PLSR), from the 10 different estimation results (one per
dataset) we compute mean and standard deviations of the
approximation indices L(X) and Θ(X), where X is the hy-
perrectangle within ±10% of x∗. In practice these indices are
computed by sampling X on a uniform grid with coordinates
xi = {x∗i ±2%, x∗i ±6%, x∗i ±10%}, i = 1, . . . , nx. These
statistics are reported in Table I. In the same table, we also

Fig. 4. Dynamic response to input S = 2 (other inputs unchanged) of the
original system (black) and of the models PLS , PLSP and PLSR inferred
from one steady-state dataset (colors in the legend; fitting residuals are
4.76E − 004, 0.003 and 0.0026, in the same order).

report analogous statistics on the normalized residuals of fit
K−1

∑
k ‖
(
vk − v̂(xk,uk,p)

)
/v∗‖, where rate predictions

v̂ depend on the model inferred, and the normalized Mean
Steady-State Error (MSSE) of the corresponding models,
defined as L−1

∑
l ‖(xl − x̂l)/xl‖, where xl and x̂l are the

steady-state response of the true system and the estimated
model, respectively, to the lth of L = 50 input perturbations
u drawn uniformly from [0.5, 5]× [0.05, 1.5]× [0.1, 0.3]. An
example of the dynamic response to input perturbations of
the models obtained from one of the 10 datasets is reported
in Fig. 4.

The first observation concerning lin-log models is that
using sign constraints generally improves the approximation
obtained in all respects, although the improvement is limited
and both models (LL and LLS) provide rather accurate
approximations of the vector field of the original system
over the region considered. Of course, imposing constraints
on the parameter signs can only worsen the fit of the
data. On the other hand, the use of appropriate constraints
returns a model that is biologically consistent, in the sense
that parameter signs agree by construction with the system
features. Interestingly, the constrained model also improves
the approximation of the steady-state system response to
input perturbations, as can be observed in the last column
of the table.

Let us now turn to power-law models, whose structure
appeared to be less suited for the case study under con-
sideration. The steady-state performance (MSSE) of PLS is
marginally better than that of PL, and both compare well
with LL and LLS in this respect. Yet, the error in vector-
field strength L(X) is huge for both PL and PLS . Further
inspection of the results reveals that this is due to large values



TABLE I
STATISTICS OF THE MODELS ESTIMATED USING STEADY-STATE DATA FROM 10% PERTURBATION OF u∗ . TABLE ENTRIES REPORT MEAN±STANDARD

DEVIATION OF THE QUANTITIES INDICATED.

Model Residual L(X) Θ(X) MSSE
LL 7.43E-5±6.21E-6 0.0083±3.52E-3 0.9996±2.40E-4 0.0294±0.0009

LLS 4.98E-4±3.25E-5 0.0053±2.54E-3 0.9998±5.17E-5 0.027±0.0011
PL 1.05E-4±1.46E-5 1.53E+04±1.09E+4 0.7224±8.13E-4 0.0328±0.0014

PLS 4.94E-4±3.24E-5 6.35E+04±1.53E+3 0.7249±6.18E-4 0.0296±.0013
PLSP 3.12E-3±1.52E-4 0.3190±4.13E-4 0.4697±3.14E-3 0.1036±.0018
PLSR 2.71E-3±1.32E-4 0.2491±2.59E-4 0.8812±1.59E-3 0.0392±.0013

estimated for certain parameters in optimizing the data fit.
This makes the reaction rate values and hence the vector-
field diverge fast (with high exponents) when moving away
from (x∗,u∗). The excessively fast (and similar) dynamics
of PL and PLS are apparent from the example of Fig. 4. The
alignment Θ(X) is similar for PL and PLS and worse than
LL and LLS .

Imposing boundaries on individual parameter values is a
potential remedy. Indeed, in PLSP , the vector-field strength
error L(X) is improved overall. However, the alignment
index Θ(X) gets worse. From the simulated example of
Fig. 4, dynamics now appear too slow and in qualitative
disagreement with the original system. The steady-state
performance captured by the MSSE is also unsatisfactory.
Clearly, a different choice of parameter boundaries could
improve the situation. In particular, the largest fitting residual
observed for PLSP suggests that the problem is overcon-
strained. However, it is a priori unclear what should drive
this choice. In fact, despite the kinetic order interpretation of
the power-law exponent, the original system also depends on
conservation laws that spoil this interpretation. In addition,
phenomenological laws whose underlying reactions are not
known in detail may be better captured by parameters that
share little with biochemical kinetics, which makes the
interpretation of model parameters and associated boundaries
rather difficult.

Among power-law models, best approximation perfor-
mance overall is obtained with PLSR. Despite a data fitting
error residual much larger than PL and PLS and only slightly
smaller than PLSP , imposing rate constraints led to the
smallest error L(X) and the largest alignment values Θ(X),
although the MSSE is slighly worse than for PL and PLS .
Relative to PLSP , index L(X) is similar, but the alignment
Θ(X) is much improved. For one of the 10 datasets, a
more detailed comparison of the vector field properties of
the two approximate models is given in Fig. 5, in the form
of histograms of l(x) and θ(x) over X . Alignment θ(x) of
PLSR is clearly better concentrated near 1. Index l(x) is
concentrated on the positive semi-axis for both models, i.e.
vector-field magnitude is smaller than for the original system,
but that of PLSR is generally closer to 0. This suggests
overall slow dynamics for both, but slower dynamics for
PLSP , which is in substatial agreement with the example
simulation of Fig. 4. Of course, different choices of reaction
rate constraints may either improve or worsen performance.

Fig. 5. Histograms of l(x) (left) and θ(x) (right) over X for PLSP (above)
and PLSR (below).

Similar to individual parameter constraints, the choice is
not trivial. Still, it is intriguing to see how performance
improves from PLSP to PLSR without much change in
data fitting residuals, which suggests that the tightness of
the constraints is in fact similar, but their shape in the
parameter space is significantly different. Moreover, from a
conceptual viewpoint, it should be noted that, contrary to
individual parameter constraints, rate constraints are placed
on expected properties of the system in dynamical conditions.
The specific choice of model class only transfers these
constraints to the parameters of the model in accordance with
its structure.

As a final note, to test robustness of the models to
perturbed conditions, we reported in Table II the existence
of a valid (numerical) solution for different dynamic models
inferred from one dataset subject to perturbations of inputs
or of the system equilibrium. Invalid solutions (indicated
with “-”) are returned if the system would move to negative
metabolite concentrations or the numerical solver is unable
to provide a solution due e.g. to stiffness. From the table we
observe that, contrary to common belief, power-law models
are generally not well defined from a dynamic viewpoint
for small concentrations, unless appropriate constraints are
imposed at the model inference stage. A similar observation
applies for the response of the models to large inputs. On



TABLE II
ROBUSTNESS OF DIFFERENT POWER-LAW MODELS INFERRED FROM ONE DATASET TO PERTURBED STATES (COLUMNS 2-8) OR INPUTS (COLUMNS

9-12). IN EACH COLUMN, SIMULATION IS PERFORMED IN REFERENCE CONDITIONS EXCEPT FOR THE INDICATED PERTURBATION. SUCCESSFUL

SIMULATIONS ARE INDICATED WITH OK.

Different values of initial condition x(0) Different values of input S
Model x∗/105 x∗/104 x∗/103 x∗/102 x∗/10 0.2x∗ 1.3x∗ 10 11 15 20

LL - - - OK OK OK OK OK OK OK OK
LLS - - - OK OK OK OK OK OK OK OK
PL - - - - OK OK OK OK OK OK -

PLS - - - - - OK OK OK - - -
PLSP OK OK OK OK OK OK OK OK OK OK OK
PLSR OK OK OK OK OK OK OK OK OK OK OK

the other hand, lin-log models are invalid for concentrations
limiting to zero, since reaction rates diverge by definition.

VI. CONCLUSIONS

In this paper we have addressed the problem of modelling
metabolic dynamics from steady-state data. We showed that
data fitting per se does not generally guarantee accurate
dynamic performance. We have proposed metrics for a quan-
titative analysis of the dynamic model approximation, and
discussed optimization constraints as a means to compensate
for the limited informativity of the data and the discrepancy
between the model structure of choice and the real system
dynamics. Based on a simulated study on a simple yet
informative system, we showed that the use of suitable
constraints on the reaction rates driving the system dynamics
allows one to improve the dynamical behavior of the models
inferred from steady-state data. Although we focused on
approximate kinetic models, several aspects of the work
can be extended and generalized to various other model
classes. In particular, we noted that robustness of the model
away from the reference state is challenged by reaction
rates involving powers of metabolite concentrations, which
appear in many common model classes. For all these models,
the risk of overfitting steady-state data by selecting large
exponents, resulting in unsuitable dynamical behavior, can be
avoided by applying the constraints discussed in this paper. In
many cases, this will still result in tractable (linear, convex)
optimization problems. On the other hand, the tools for
quantifying the accuracy of dynamical model approximations
apply equally well to any ODE model. Finally, generalization
of reaction-rate constraints to other system properties, such
as rates of change of metabolite concentrations, are plausible
and deserve further investigation.
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