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A REMARK ON SELECTION OF SOLUTIONS FOR THE TRANSPORT EQUATION

JULES PITCHO

Abstract. We prove that for bounded, divergence-free vector fields in L1
loc((0, +∞); BVloc(Rd; Rd))

regularisation by convolution of the vector field selects a single solution of the transport equation for any
integrable initial datum. We recall the vector field constructed by Depauw in [10], which lies in the above
class of vector fields. We show that the transport equation along this vector field has at least two bounded
weak solutions for any bounded initial datum.

Keywords: Selection principle, transport equation, non-uniqueness, regularisation.

MSC (2020): 35A02 - 35D30 - 35Q49 -34A12.

1. Introduction

1.1. The Cauchy problem. In this note, we study the initial value problem for the continuity equation
posed on [0,+∞)× Rd, {

∂tρ+ divx(bρ) = 0,
ρ(0, x) = ρ̄(x),

(IVP)

where b = b(t, x) is a given vector field, ρ = ρ(t, x) is an unknown real-valued function, and divx is the
divergence operator on vector fields on Rd. We are interested in weak solutions of (IVP).

Definition 1.1. Consider a bounded vector field b : [0,+∞) × Rd → Rd and an initial datum ρ̄ ∈
L1
loc(Rd). We shall say ρ ∈ L∞loc([0,+∞);L1

loc(Rd)) is a weak solution to (IVP) along b, if for every
φ ∈ C∞c ([0,+∞)× Rd)

ˆ +∞

0

ˆ
Rd

ρ

(
∂φ

∂t
+ b · ∇xφ

)
dxdt = −

ˆ
Rd

ρ̄(x)φ(0, x) dx.

If, additionally ρ ∈ L∞loc([0,+∞);L∞(Rd)), we shall say that it is a bounded weak solution to (IVP) along b.

We are interested in selection of weak solutions of (IVP) when they are non-unique. Let us recall the
classical theory of existence and uniqueness of weak solutions of (IVP).

1.2. The classical theory. Given a bounded vector field b : [0,+∞)× Rd → Rd, it is convenient to work
with its extension by zero to R× Rd, which we denote by b̃ and define as

b̃(t, x) :=
{

b(t, x) if (t, x) ∈ [0,+∞)× Rd,

0 if (t, x) /∈ [0,+∞)× Rd.
(1.1)

When b is locally Lipschitz continuous in x with Lipschitz constants on compact sets, which are time
integrable, the Cauchy-Lipschitz theorem provides unique global solutions on R to the ODE understood in
the sense of distributions {

∂tX(t, s, x) = b̃(t,X(t, s, x)),
X(s, s, x) = x,

(ODE)

1



2 J. PITCHO

for every s ∈ R. These solutions are then bundled into a 2-parameter family of maps X : R× R× Rd → Rd,
which we will call the flow along b, and satisfies the classical stability estimate

|x1−x2| exp
(
−
∣∣∣ˆ t

s

‖∇xb(u)‖L∞
x
du
∣∣∣) ≤ |X(t, s, x1)−X(t, s, x2)| ≤ |x1−x2| exp

(∣∣∣ ˆ t

s

‖∇xb(u)‖L∞
x
du
∣∣∣),

and the group property for every r, s, t ∈ R

X(t, s,X(s, r, ·)) = X(t, r, ·).

In this setting, weak solutions ρ of (IVP) along b are uniquely given by the classical formula

ρ(t, ·)L d = X(t, 0, ·)#ρ̄L
d. (1.2)

Vector fields to which the classical theory applies will be refered to as smooth vector fields. On the
contrary, vector fields to which this theory does not apply will be called non-smooth vector fields.

1.3. Basic definitions. Our purpose is to study of the selection of weak solutions of (IVP) defined by
the classical theory under regularisation of a non-smooth b. A regularisation of b is a sequence (bk)k∈N in
C∞([0,+∞)× Rd; Rd) such that bk → b in L1

loc. This leads to the following definition.

Definition 1.2. Consider a bounded vector field b : [0,+∞)× Rd → Rd and an initial datum ρ̄ ∈ L1
loc(Rd).

We shall say that the Cauchy problem (IVP) is well-posed along a regularisation (bk)k∈N, if the sequence of
unique weak solutions ρk of (IVP) along bk converge uniquely in D′((0,+∞)× Rd) as k → +∞.

Remark 1.3. We can similarly define well-posedness along a regularisation (bh)h∈I , where I is not
necessarily countable. For simplicity, in this paper we restrict our attention to regularisations indexed by
the natural numbers.

For a smooth b, the Cauchy problem is well-posed along any regularisation of b by using (1.2) and the
classical stability of the flow X under smooth perturbation of b. If we approximate a non-smooth b in
a stronger topology than L1

loc, then we can have stronger convergence than in D′((0,+∞)× Rd) for the
solutions along the approximation. This will be a key fact in the proof our main theorem.

For a non-smooth b, weak limits of weak solutions of (IVP) along a regularisation (bk)k∈N are expected
to be non-unique, and depend on the choice of the regularisation. A stronger notion of well-posedness
is therefore when the weak limit coincides for several regularisations of b. This leads to the following
definition.

Definition 1.4. Consider a bounded vector field b : [0,+∞)× Rd → Rd and an initial datum ρ̄ ∈ L1
loc(Rd).

Consider a family R consisting of regularisations of b. We shall say that the Cauchy problem (IVP) is
well-posed along R, if there exists a unique ρ ∈ L∞loc([0,+∞);L1

loc(Rd)) such that for every (bk)k∈N ∈ R,
the unique weak solutions ρk of (IVP) along bk converge to ρ in D′((0,+∞)× Rd) as k → +∞.

In the study of non-linear wave equations with rough initial data, a similar notion of well-posedness is
used (see the reviews [19,20]). In fact, if the initial datum is random and rough, the Cauchy problem can
be well-posed with respect to some regularisation but not with respect to another [18,19].

1.4. Review of relevant results. Let us review the known existence and uniqueness results on weak
solutions of (IVP) when b is non-smooth. The seminal work of Ambrosio [1] following on the work
DiPerna-Lions [11] reads as follows in the context of divergence-free vector fields.

Theorem 1.5. Consider a bounded, divergence-free vector field b : [0,+∞) × Rd → Rd, and an initial
datum ρ̄ ∈ L∞(Rd). Assume that b ∈ L1

loc([0,+∞);BVloc(Rd; Rd)). Then, there exists a unique bounded
weak solution of (IVP).
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The uniqueness part of the above theorem was proved in [1] assuming only that for almost every t ∈ R
the divergence at time t of b is absolutely continuous with respect to L d. The proof is based on a
commutator estimate showing that any bounded weak solution of (IVP) must be renormalised. By a
fine measure-theoretic analysis of Lagrangian representations of solutions of (IVP), the hypothesis on the
divergence has been further relaxed to near incompressibility in the work of Bianchini and Bonicatto [3].

In general, when uniqueness of bounded weak solutions holds for (IVP), then well-posedness in the sense
of Definition 1.2 along any regularisation of b is true, up to some mild assumptions on the regularisations
ensuring that the solutions of (IVP) along the regularised vector fields remain uniformly bounded. More
precisely, the following statement may be deduced from [1] (see also the Appendix for a proof).

Proposition 1.6. Assume the hypothesis of Theorem 1.5 on b. Consider a regularisation (bk)k∈N of b
such that :

(i) |bk| ≤ C for some constant C independant of k;
(ii) Xk(t, 0, ·)#L d ≤ CL d, where the constant C is uniform in k and on compact time intervals.

Then, the Cauchy problem (IVP) is well-posed along the regularisation (bk)k∈N.

It would be interesting to establish how much (ii) can be relaxed, and the connection to convex integration
solutions of (IVP) (see [5, 6, 13–17]) when (ii) fails by too much.

Let us now come to the non-uniqueness results. First Depauw constructed a bounded, divergence-free
vector field bDP : [0,+∞)× R2 → R2 in [10], which is not in L1

loc([0,+∞);BVloc(R2; R2)), and for which
uniqueness of bounded weak solutions to (IVP) fails. By adapting the construction of Depauw, De Lellis
and Giri then showed in [9] the existence of a bounded vector field and an initial datum, for which the
Cauchy problem (IVP) is well-posed along two different regularisations of b (in the sense of Definition 1.2),
but for which the two corresponding solutions do not coincide.

This was then extended by Colombo, Crippa and Sorella in [7], where for every α ∈ [0, 1), they construct
divergence-free vector fields b in Cα([0, 2]× R2), an initial datum ρ̄ for which the Cauchy problem (IVP)
is not well-posed (in the sense of Definition 1.2) along a certain regularisation of b, which is given by
convolution with a standard mollifier. Although not directly related to the present work, we note that for
those same vector fields, they show that the vanishing diffusivity regularisation scheme fails to select a
single solution. In a recent contribution, Huysmans and Titi [12] have moreover constructed a bounded
vector field for which the vanishing diffusivity scheme selects a solution, which is not entropy-admissible in
the sense of Dafermos [8].

1.5. Statement of the theorems. For vector fields for which uniqueness of bounded weak solutions of
(IVP) may fail, we are interested in well-posedness of the Cauchy problem along a whole regularisation
class. We consider the regularisation class obtained by mollification of the vector field with an arbitrary
standard mollifier. We recall that a function θ ∈ C∞c (R× Rd) is called a standard mollifier if θ ≥ 0, andˆ

R

ˆ
Rd

θ(t, x)dxdt = 1.

We write for every k ∈ N
θk(t, x) := kd+1θ(kt, kx).

By a slight abuse of notation, the convolution b ? θk then denotes the restriction to [0,+∞)× Rd of the
convolution b̃ ? θ, where we recall that b̃ defined in (1.1) is the extension by zero to negative times. We
define the convolution regularisation class

Rconv :=
{

(b ? θk)k∈N ; θ ∈ C∞c (R× Rd), θ ≥ 0,
ˆ

Rd+1
θ(t, x)dtdx = 1

}
.

Remark 1.7. For a divergence-free vector field b and a constant initial datum, the Cauchy problem (IVP)
is automatically well-posed along Rconv.



4 J. PITCHO

We have the following well-posedness theorem for this regularisation class.
Theorem 1.8. Consider a bounded, divergence-free vector field b : [0,+∞)×Rd → Rd and an initial datum
ρ̄ ∈ L1(Rd). Assume that b ∈ L1

loc((0,+∞); BVloc(Rd; Rd)). Then, the Cauchy problem (IVP) is well-posed
along the regularisation class Rconv.

It is interesting to note that for non-linear wave equations with random and rough initial data [19,20],
the class of regularisations by convolution also plays an important rôle, although for different reasons than
in this work.

The bounded, divergence-free vector field bDP : [0,+∞) × R2 → R2 constructed by Depauw in [10]
belongs to L1

loc((0,+∞);BVloc(R2; R2)). The following variation on Depauw’s non-uniqueness result shows
that Theorem 1.8 provides a non-trivial selection for bounded initial data.
Theorem 1.9. Consider an initial datum ρ̄ ∈ L∞(Rd). Then, there exists at least two bounded weak
solutions of the Cauchy problem (IVP) along bDP .
Remark 1.10. It would be interesting to establish a characterising property intrinsic to the weak solution
of (IVP) along bDP selected by Theorem 1.8.
1.6. Outline of ideas.

1.6.1. Ideas for Theorem 1.8. The convergence of weak solutions of (IVP) along a regularisation (bk)k∈N

by convolution will be controlled by the convergence of solutions to a family backwards problem along
(bk)k∈N with final datum given by a test function. The convergence of the solutions to the backwards
problem will be established in Lemma 3.1 and shown to be pointwise in time. In order to get uniform
in k control of the Jacobian of the flow along bk, we will crucially use that regularisation by convolution
preserves the divergence-free structure. This will conclude well-posedness of the Cauchy problem (IVP)
along the regularisation class Rconv.

1.6.2. Ideas for Theorem 1.9. The classical construction of the vector field of Depauw bDP gives two
non-unique bounded weak solutions ζ1 and ζ2 of (IVP) along bDP . We will observe that any initial datum
ρ̄ can be weakly approximated by a sequence ρ̄k1 localised on ζ1(2−k−1, ·) and by a sequence ρ̄k2 localised
on ζ2(2−k−1, ·). Correspondingly, we have unique bounded weak solutions ρk1 and ρk2 of (IVP) along bDP
truncated up to time 2−k−1 and with initial datum ρ̄k1 and ρ̄k2 respectively thanks to Theorem 1.5. Weak
limit points of the sequences (ρk1)k∈N and (ρk2)k∈N are then proven to be distinct bounded weak solutions
of (IVP) along bDP with initial datum ρ̄.

1.7. Plan of the paper. In Section 2, we introduce a boundary value problem. We prove that bounded
weak solutions of this boundary value problem have a unique representative in C(R;w∗ − L∞(Rd)). In
Section 3, we prove Theorem 1.8 by using the work on the boundary value problem. In Section 4, we give
the classical construction of the vector field of Depauw [10] and record some properties of it. We then prove
Theorem 1.9. In the Appendix, we prove Proposition 1.6.

Acknowledgements. The author is thankful to his advisor Nikolay Tzvetkov for discussions, which have
in particular inspired Definition 1.2, for his support, and for comments which have improved this manuscript.
The author is thankful to Lucas Huysmans for discussions and for pointing out a mistake. The author is
thankful to Laure Saint-Raymond for discussions.

2. The boundary value problem

2.1. Definitions. For s ∈ R, consider the boundary value problem posed on R× Rd,{
∂tρ+ divx(bρ) = 0,

ρ(s, x) = ρ̄(x).
(BVP)

We will work with bounded weak solutions of (BVP).
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Definition 2.1. Consider a bounded vector field b : R× Rd → Rd, a boundary datum ρ̄ ∈ L∞(Rd), and a
closed interval I ⊂ R. We say that ρ ∈ L∞(I × Rd) is a bounded weak solution on I to (BVP) along b, if
for every φ ∈ C∞c (I × Rd)ˆ +∞

s

ˆ
Rd

ρ

(
∂φ

∂t
+ b · ∇xφ

)
dxdt−

ˆ s

−∞

ˆ
Rd

ρ

(
∂φ

∂t
+ b · ∇xφ

)
dxdt = −

ˆ
Rd

ρ̄(x)φ(s, x) dx.

For bounded weak solutions of the boundary value problem (BVP) on R, we omit to specify the time
interval. We record the following existence theorem for (BVP).

Theorem 2.2. Consider a bounded, divergence-free vector field b : R × Rd → Rd, and an intial datum
ρ̄ ∈ L∞(Rd). Then, there exists a bounded weak solution ρ of (BVP) along b satisfying ‖ρ‖L∞

t,x
≤ ‖ρ̄‖L∞

x
.

Proof. Let θ ∈ C∞c (R×Rd) be a standard mollifier, and let bk = b ? θk be a regularisation of b. Let Xk be
the unique flow of bk. Then, the unique weak solution ρk of (BVP) along bk is given by :

ρk(t, x)L d = Xk(t, s, x)#ρ̄L
d.

Moreover, ‖ρk‖L∞
t,x

= ‖ρ̄‖L∞
x

because Xk(t, s, ·)#L d = L d. Therefore, by the Banach-Alaoglou Theorem,
there is an increasing map ψ : N → N such that ρψ(k) converges weak-star in L∞(R × Rd) to some ρ as
k → +∞, and ‖ρ‖L∞

t.x
≤ ‖ρ̄‖L∞ by weak lower semicontinuity of the norm. Since bk → b strongly in L1

loc,
it follows that ρ is a bounded weak solution of (2.1) along b. �

2.2. Time continuous representative. It is a standard fact that a bounded weak solution of (BVP),
although only in L∞t,x always has a representative in C(R;w∗ − L∞(Rd)), so we can take traces in time.
This is recorded in the following lemma.

Lemma 2.3. Consider a bounded vector field b : R× Rd → Rd, a boundary datum ρ̄ ∈ L∞(Rd), a bounded
weak solution ρ of (BVP) along b, and a compact time interval I ⊂ R with non-empty interior. Then, ρ
admits a unique representative ρ̃ in C(R;w∗ − L∞(Rd)) for which it holds that :

(i) supt∈I ‖ρ̃(t, ·)‖L∞
x

= ‖ρ‖L∞(I;L∞
x );

(ii) for every φ ∈ C1
c (Rd), there exists a real constant Lφ,I > 0 such that for a.e. t ∈ I∣∣∣ d

dt

ˆ
Rd

ρ̃(t, x)φ(x)dx
∣∣∣ ≤ Lφ,I‖b‖L∞(I×Rd), (2.1)

in particular, if ‖b‖L∞(I×Rd) = 0, then ρ̃(t, ·) = ρ̃(s, ·) for every t, s ∈ I.

We shall call the unique representative in C(R;w∗ − L∞(Rd)) of a bounded weak solution ρ of (BVP),
the time continuous representative of ρ.

Proof. STEP 1 (A-priori bounds): Choose a representative of ρ in L∞(R× Rd). As ρ is a bounded weak
solution of (BVP) along b, it holds that in L1

loc(R):
d

dt

ˆ
Rd

ρ(t, x)φ(x)dx =
ˆ

Rd

ρ(t, x)b(t, x) · ∇xφ(x)dx. (2.2)

Let J ⊂ R be a compact time interval. For every φ ∈ C1
c (Rd), there exists a real constant Lφ,J > 0 such

that for a.e. t ∈ J∣∣∣ d
dt

ˆ
Rd

ρ(t, x)φ(x)dx
∣∣∣ ≤ ˆ

Rd

∣∣ρ(t, x)b(t, x) · ∇xφ(x)
∣∣dx,

≤ L d(suppφ)‖∇xφ‖L1
x
‖ρ‖L∞(J;L∞

x )‖b‖L∞(J×Rd) = Lφ,J‖b‖L∞(J×Rd)

(2.3)

Therefore, the function

R 3 t 7→
ˆ

Rd

ρ(t, x)φ(x)dx,
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admits a Lipschitz continuous representative with Lipschitz constant bounded by Lφ,J on J by [4, Theorem
8.2] .

Consider the set Sφ ⊂ R, on which the above function coincides with its Lipschitz continuous repre-
sentative. Note that Sφ depends on which representative of ρ is chosen, and that Sφ has full measure by
[4, Theorem 8.2]. Let N be a countable subset of C1

c (Rd) dense in L1(Rd), which exists by separability.
Define

SN =
⋂
φ∈N

Sφ.

Notice that this set has full measure in R, and is therefore also dense in R. For every φ ∈ N , define the
function fφ : R→ R as the unique continuous extension to R of the function defined for t ∈ SN by

fφ(t) =
ˆ

Rd

ρ(t, x)φ(x)dx. (2.4)

We then have for every φ ∈ N
sup
t∈J
|fφ(t)| ≤ ‖ρ‖L∞(J;L∞

x )‖φ‖L1
x
. (2.5)

STEP 2 (Choosing a representative): We now seek a representative ρ̃ in C(R;w∗ − L∞(Rd)) of ρ. Equip
C(R; R) with the topology of uniform convergence on compact time intervals, and equip N with the topology
induced from L1(Rd). Consider the linear operator

Λ : N 3 φ 7→ fφ ∈ C(R; R). (2.6)

Note that by (2.5), it is a continuous linear operator. By density of N in L1(Rd) and by (2.5), Λ admits a
unique continuous extension Λ̃ to L1(Rd), which satisfies

sup
t∈J

∣∣[Λ̃(φ)](t)
∣∣ ≤ ‖ρ‖L∞(J;L∞

x )‖φ‖L1
x
. (2.7)

Equipping (L1(Rd))∗ with the weak-star topology, we can then identify Λ̃ with a family of linear functionals

Λ̃ : R 3 t 7→ Λt ∈ (L1(Rd))∗,

such that for every t ∈ R
Λ̃t : L1(Rd) 3 φ 7→ [Λ̃(φ)](t) ∈ R.

Thus, by the duality (L1(Rd))∗ ∼= L∞(Rd), for every t ∈ R we have that Λ̃t can be uniquely identified with
an element ρ̃(t, ·) in L∞(Rd). Let us check that ρ̃ is in C(R;w∗ − L∞(Rd)). The weak-star topology on
L∞(Rd) is induced by the family of seminorms defined by pφ(f) = |

´
Rd φ(x)f(x)dx| for every φ ∈ L1(Rd)

and every f ∈ L∞(Rd). For every φ ∈ L1(Rd) and every t1, t2 ∈ R, we then have∣∣∣pφ(ρ̃(t1, ·)− ρ̃(t2, ·)
)∣∣∣ =

∣∣∣ ˆ
Rd

φ(x)ρ̃(t1, x)dx−
ˆ

Rd

φ(x)ρ̃(t2, x)dx
∣∣∣,

=
∣∣∣Λ̃t1(φ)− Λ̃t2(φ)

∣∣∣,
=
∣∣∣[Λ̃(φ)](t1)− [Λ̃(φ)](t2)

∣∣∣,
(2.8)

which can be made arbitrarly small by continuity of Λ̃(φ) and by taking |t1−t2| sufficiently small. Therefore,
ρ̃ ∈ C(R;w∗ − L∞(Rd)), and

Λ̃t(φ) =
ˆ

Rd

ρ̃(t, x)φ(x)dx ∀φ ∈ L1(Rd). (2.9)

Notice also that by construction, Λ̃t is the unique continuous extension of the linear functional

Λt : N 3 φ 7→ fφ(t) ∈ R.
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So, for every t ∈ SN we have

Λ̃t(φ) =
ˆ

Rd

ρ(t, x)φ(x)dx ∀φ ∈ N . (2.10)

Together with (2.14), the above equation implies by density of N in L1(Rd) that for every t ∈ SN it holds
that ρ̃(t, ·) = ρ(t, ·) as bounded functions on Rd. Since SN has full measure in R, we have ρ̃(t, x) = ρ(t, x)
for L d+1-a.e. (t, x) ∈ R× Rd, whence ρ̃ is a bounded weak solution of (IVP) along b. Item (i) then follows
by (2.7) for the time interval I. Item (ii) follows by making a-priori bounds on ρ̃ as in (2.3).

�

2.3. Convergence of time continuous representatives. Solutions of (BVP) along a suitable regularisa-
tion of a bounded, divergence-free b have their time continuous representative converging C(R;w∗−L∞(Rd)).
This is recorded in the following lemma.

Lemma 2.4. Consider a bounded, divergence-free vector field b : R × Rd → Rd, and boundary datum
ρ̄ ∈ L∞(Rd), and a regularisation (bk)k∈N such that divx bk = 0. Assume that the unique bounded weak
solution ρk of (BVP) along bk converges weakly-star in L∞(R× Rd) to some bounded weak solution ρ of
(BVP) along b. Then, the time continuous representative of ρk converges in C(R;w∗ − L∞(Rd)) to the
time continuous representative of ρ.

Proof. Let Xk be the unique flow of bk. Then, the unique weak solution ρk of (BVP) along bk is given by :

ρk(t, x)L d = Xk(t, s, x)#ρ̄L
d,

and by Lemma 2.3, has a unique time continuous representative ρ̃k. Similarly, ρ has a unique time
continuous representative ρ̃.

We will use a subsubsequence arguement to show that (ρ̃k)k∈N has a unique accumulation point.
Accordingly, let ξ : N → N be an increasing map. We will show that there is another increasing map
δ : N→ N such that ρ̃(δ◦ξ)(k) converges in C(R;w∗ −L∞(Rd)) to the time continuous representative of ρ̃ as
k → +∞.

STEP 1 (A-priori bounds): Since b is divergence-free, then bk is also divergence-free, and we have
Xk(t, s, ·)#L d = L d, whence ‖ρk‖L∞

t,x
= ‖ρ̄‖L∞

x
. Therefore, by item (i) of Lemma 2.3 and taking a

covering of R by compact intervals, we get

sup
t∈R
‖ρ̃k(t, ·)‖L∞

x
= ‖ρ̄‖L∞

x
. (2.11)

By the a-priori bound (2.1), for every φ ∈ C1
c (Rd), and every compact time interval I ⊂ R, there exists a

real constant Lφ,I > 0 such that the functions

fkφ : R 3 t 7→
ˆ

Rd

ρk(t, x)φ(x)dx,

are continuous with Lipschitz constant on I bounded by Lφ,I . and satisfy

sup
t∈R,k∈N

|fkφ (t)| ≤ ‖ρ̄‖L∞
x
‖φ‖L1

x
.

STEP 2 (Compactness): Let N ⊂ C1
c (Rd) be a countable, dense subset of L1(Rd). By Ascoli’s Theorem,

for every φ ∈ N , there is an increasing map ψ : N→ N such that f (ψ◦ξ)(k)
φ converges uniformly on compact

time intervals as k → +∞. Therefore, there exists a diagonal increasing map δ : N→ N such that
(C) for every φ ∈ N , the function f (δ◦ξ)(k)

φ converge uniformly on compact time intervals to a continuous
function fφ as k → +∞.
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STEP 3 (Choosing a representative): We reason as in Step 2 of the proof of Lemma 2.3. Equip C(R; R)
with the topology of uniform convergence on compact time intervals, and equip N with the topology
induced from L1(Rd). Consider the continuous linear operator

Λ : N 3 φ 7→ fφ ∈ C(R; R). (2.12)
By density of N in L1(Rd) and by (2.11), Λ admits a unique continuous extension Λ̃ to L1(Rd). Equipping
(L1(Rd))∗ with the weak-star topology, we can then identify Λ̃ with a family of linear functionals

Λ̃ : R 3 t 7→ Λt ∈ (L1(Rd))∗,
such that for every t ∈ R

Λ̃t : L1(Rd) 3 φ 7→ [Λ̃(φ)](t) ∈ R.

Thus, by the duality (L1(Rd))∗ ∼= L∞(Rd), for every t ∈ R we have that Λ̃t can be uniquely identified with
an element ζ(t, ·) in L∞(Rd). Let us check that ζ is in C(R;w∗ − L∞(Rd)). The weak-star topology on
L∞(Rd) is induced by the family of seminorms defined by pφ(f) = |

´
Rd φ(x)f(x)dx| for every φ ∈ L1(Rd)

and every f ∈ L∞(Rd). For every φ ∈ L1(Rd) and every t1, t2 ∈ R, we then have∣∣∣pφ(ζ(t1, ·)− ζ(t2, ·)
)∣∣∣ =

∣∣∣ ˆ
Rd

φ(x)ζ(t1, x)dx−
ˆ

Rd

φ(x)ζ(t2, x)dx
∣∣∣,

=
∣∣∣Λ̃t1(φ)− Λ̃t2(φ)

∣∣∣,
=
∣∣∣[Λ̃(φ)](t1)− [Λ̃(φ)](t2)

∣∣∣,
(2.13)

which can be made arbitrarly small by continuity of Λ̃(φ) and by taking |t1−t2| sufficiently small. Therefore,
ζ ∈ C(R;w∗ − L∞(Rd)), and

Λ̃t(φ) =
ˆ

Rd

ζ(t, x)φ(x)dx ∀φ ∈ L1(Rd). (2.14)

Notice also that by construction, Λ̃t is the unique continuous extension of the linear functional
Λt : N 3 φ 7→ fφ(t) ∈ R.

So, for every t ∈ SN we have
Λ̃t(φ) =

ˆ
Rd

ρ(t, x)φ(x)dx ∀φ ∈ N . (2.15)

STEP 4 (Identification of ζ = ρ̃): Locally uniformly in t ∈ R, we have

lim
k→+∞

ˆ
Rd

ρ̃(δ◦ξ)(k)(t, x)φ(x)dx =
ˆ

Rd

ζ(t, x)φ(x)dx ∀φ ∈ N . (2.16)

Therefore, for any ψ ∈ C1
c (R) and any φ ∈ N , we have

lim
k→+∞

ˆ
R

ˆ
Rd

ρ̃(δ◦ξ)(k)(t, x)φ(x)ψ(t)dxdt =
ˆ

R

ˆ
Rd

ζ(t, x)φ(x)ψ(t)dxdt. (2.17)

Let ε > 0. By density in L1(R× Rd) of the set

D :=
{ N∑
k=1

φk(x)ψk(t) : φk ∈ N , ψk ∈ C1
c (R), N ∈ N

}
,

for any η ∈ L1(R× Rd), there is ν ∈ D such that ‖η − ν‖L1
t,x
< ε. Writeˆ

R

ˆ
Rd

ρ̃(δ◦ξ)(k)(t, x)η(t, x)dxdt =
ˆ

R

ˆ
Rd

ρ̃(δ◦ξ)(k)(t, x)(η(t, x)− ν(t, x))dxdt

+
ˆ

R

ˆ
Rd

ρ̃(δ◦ξ)(k)(t, x)ν(t, x)dxdt.
(2.18)
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Using (2.11) and Hölder inequality, we have∣∣∣ ˆ
R

ˆ
Rd

ρ̃(δ◦ξ)(k)(t, x)(η(t, x)− ν(t, x))dxdt
∣∣∣ ≤ ‖ρ̄‖L∞

x
‖η − ν‖L1

t,x
≤ ε‖ρ̄‖L∞

x
. (2.19)

By (2.17), we have for k sufficiently large that∣∣∣ ˆ
R

ˆ
Rd

ρ̃(δ◦ξ)(k)(t, x)ν(t, x)dxdt−
ˆ

R

ˆ
Rd

ζ(t, x)ν(t, x)dxdt
∣∣∣ < ε, (2.20)

and as ‖ζ‖L∞
t,x
≤ ‖ρ̄‖L∞

x
, we also have that∣∣∣ˆ

R

ˆ
Rd

ζ(t, x)(ν(t, x)− η(t, x))dxdt
∣∣∣ ≤ ε‖ρ̄‖L∞

x
, (2.21)

therefore we have

lim
k→+∞

ˆ
R

ˆ
Rd

ρ̃(δ◦ξ)(k)(t, x)η(t, x)dxdt =
ˆ

R

ˆ
Rd

ζ(t, x)η(t, x)dxdt. (2.22)

So, it holds that ρ(δ◦ξ)(k) converges weakly-star in L∞(R× Rd) to ζ as k → +∞. By the hypothesis of the
lemma, we have ζ = ρ as functions in L∞(R× Rd). By uniqueness of the time continuous representative ρ̃
of ρ, we have ζ = ρ̃ as functions in C(R;w∗ − L∞(Rd)).

STEP 5 (Convergence to ρ̃): We now prove that ρ̃(δ◦ξ)(k) converges to ρ̃ in C(R;w∗ − L∞(Rd)) as
k → +∞. Let φ ∈ L1(Rd), φ̃ ∈ N , and ε > 0 such that ‖φ̃− φ‖L1

x
< ε. Note that,ˆ

Rd

ρ̃(δ◦ξ)(k)(t, x)φ(x)dx =
ˆ

Rd

ρ̃(δ◦ξ)(k)(t, x)
(
φ(x)− φ̃(x)

)
dx+

ˆ
Rd

(
ρ̃(δ◦ξ)(k)(t, x)− ρ̃(t, x)

)
φ̃(x)dx

+
ˆ

Rd

ρ̃(t, x)
(
φ̃(x)− φ(x)

)
dx+

ˆ
Rd

ρ(t, x)φ(x)dx.

(2.23)

The first term is bounded by ε‖ρ̄‖L∞
x

by Hölder inequality and by (2.11). The second term is bounded by
ε for k sufficiently large thanks to (C). The third term is bounded by ε‖ρ̄‖L∞

x
by Hölder inequality and by

(2.11). Therefore, we see that

lim
k→+∞

ˆ
Rd

ρ̃(δ◦ξ)(k)(t, x)φ(x)dx =
ˆ

Rd

ρ̃(t, x)φ(x)dx,

whence, ρ̃(δ◦ξ)(k) converges to ρ̃ in C(R;w∗ − L∞(Rd)) as k → +∞. Since ξ : N → N was an arbitrary
increasing map, by the subsubsequence lemma, it follows that the whole sequence ρ̃k converges in C(R;w∗−
L∞(Rd)) to the time continuous representative of ρ̃ as k → +∞, which proves the thesis. �

2.4. Uniqueness for b ∈ L1
loc(R;BVloc). We will use the following straightforward consequence of Theorem

1.5 for the boundary value problem (BVP).

Theorem 2.5. Consider a bounded, divergence-free vector field b : R × Rd → Rdand a boundary datum
ρ̄ ∈ L∞(Rd). Assume that b ∈ L1

loc(R; BVloc(Rd; Rd)). Then, there exists a unique bounded weak solution of
(BVP) along b. .

Proof. Let ρ be a bounded weak solution of (BVP) whose existence follows from Theorem 2.2. By Lemma
2.3, ρ has a unique time continuous representative ρ̃. Define the vector fields b≤(t, x) = b(s − t, x) and
b≥(t, x) = b(t+ s, x). Then, for t ∈ (0,+∞) ρ≤(t, x) = ρ(s− t, x) and ρ≥(t, x) = ρ(t+ s, x) are bounded
weak solutions of (IVP) along b≤ and b≥ respectively, and they are thus uniquely determined for L d+1-a.e.
(t, x) ∈ (0,+∞)×Rd by Theorem 1.5. Therefore ρ(t, x) is uniquely determined for L d+1-a.e. (t, x) ∈ R×Rd.
This proves the thesis. �
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3. Proof of Theorem 1.8

3.1. Backward uniqueness for b ∈ L1
loc((0,+∞);BVloc). The following crucial lemma uniquely identifies

bounded weak solutions for a boundary datum at a time s > 0.

Lemma 3.1. Consider a bounded, divergence-free vector field b : R × Rd → Rd, a boundary datum
ρ̄ ∈ L∞(Rd), and s > 0. Assume that b ∈ L1

loc((0,+∞); BVloc(Rd; Rd)), and that b(t, ·) ≡ 0 for t < 0.
Then, there exists a unique bounded weak solution ρρ̄,s to the boundary value problem (BVP).

Moreover, for every standard mollifier θ ∈ C∞c (R× Rd), the time continuous representative ρ̃kρ̄,s of the
unique bounded weak solution of (BVP) along b?θk converges in C(R;w∗−L∞(Rd)) to the time continuous
representative of ρρ̄,s.

Proof. Let ρ be a bounded weak solution of (BVP) along b whose existence follows from Theorem 2.2. By
Lemma 2.3, ρ has a unique time continuous representative ρ̃. To prove uniqueness, we will show that ρ̃ is
uniquely determined by bounded weak solutions of (BVP) along a regularised version of b. Let us consider
for any τ > 0 the vector fields

bτ (t, x) :=
{

b(t, x) if t ≥ τ,
0 if t < τ.

STEP 1 (Determining ρ̃(t, ·) for t ∈ (0,+∞)): It follows directly from Definition 2.1 that ρ̃ is a
bounded weak solution on [τ,+∞) of (BVP) along bτ . Also, notice that bτ (t, x) = b(t, x) for L d+1-a.e.
(t, x) ∈ (τ,+∞)× Rd. As bτ satisfies the hypothesis of Theorem 2.5, there exists a unique bounded weak
solution ρφ,τ,s of (1.1) along bτ with time continuous representative ρ̃φ,τ,s. Therefore, for every t ∈ [τ,+∞),
we have for a.e. x ∈ Rd

ρ̃φ,τ,s(t, x) = ρ̃(t, x). (3.1)
As τ > 0 is an arbitrary positive real number, (3.1) uniquely determines ρ̃ in C((0,+∞);w∗ − L∞(Rd)).

STEP 2 (Determining ρ̃(0, ·)): By time continuity of ρ̃, we know that ρ̃(0, ·) = limt↓0 ρ̃(t, ·), where the
limit is taken with respect to the weak-star topology on L∞(Rd). Therefore, ρ̃(0, ·) is uniquely determined.

STEP 3 (Determining ρ̃(t, ·) for t < 0): Since b(t, ·) ≡ 0 for t < 0, by item (ii) of Lemma 2.3, we have
for t < 0 ˆ

Rd

ρ̃(t, x)φ(x)dx =
ˆ

Rd

ρ̃(0, x)φ(x)dx ∀φ ∈ C1
c (Rd). (3.2)

By density of C1
c (Rd) in L1(Rd), it follows that ρ̃(t, ·) = ρ̃(0, ·) as bounded functions. Therefore ρ̃(t, ·) is

uniquely determined for every t ∈ R. By uniqueness of the time continuous representative of a bounded
weak solution, it follows that there exists a unique bounded weak solution ρ of (2.1) along b, which we
shall denote by ρρ̄,s.

STEP 4 (Convergence of regularisations): Let us come to the final part of the statement. Let θ ∈
C∞c (R× Rd) be a standard mollifier. By the classical theory, there exists a unique bounded weak solution
(BVP) along b ? θk we shall denote by ρkρ̄,s and satisfying ‖ρkρ̄,s‖L∞

t,x
= ‖ρ̄‖L∞

x
. Therefore, by the Banach-

Alaouglu theorem, up to extracing a subsequence such that ρkρ̄,s converges to some ρ weakly-star in
L∞(R× Rd). Since bk → b strongly in L1

loc, it follows that ρ is a bounded weak solution of (2.1) along b.
The uniqueness in first part of this lemma implies that ρ = ρρ̄,s. A subsubsequence argument therefore
implies that the whole sequence ρkρ̄,s converges to ρρ̄,s weakly-star in L∞(R × Rd) as k → +∞. By
Lemma 2.4, the time continuous representative ρ̃kρ̄,s converges in C(R;w∗−L∞(Rd)) to the time continuous
representative ρ̃ρ̄,s. This proves the thesis.

�
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3.2. Proof of Theorem 1.8. We can now conclude this section.

Proof of Theorem 1.8 . Extend b by zero for negative times and choose a standard mollifier θ ∈ C∞c (R×Rd).
Fix φ ∈ C∞c ((0,+∞)× Rd), s > 0, and write bk = b ? θk.

STEP 1 (Solutions from the classical theory): By the classical theory, we have
(i) the bounded density ρk : [0,+∞)× Rd → R given by the formula

ρk(t, ·)L d = Xk(t, 0, ·)#ρ̄L
d,

is the time continuous representative of the unique bounded weak solution of (IVP) along bk with
initial datum ρ̄ and satisfies ‖ρk‖L∞

t,x
= ‖ρ̄‖L∞

x
.

(ii) the bounded density ρ̃kφ(s,·),s : R× Rd → R given by the formula

ρ̃kφ(s,·),s(t, ·)L d = Xk(t, s, ·)#φ(s, ·)L d,

is the time continuous representative of the unique bounded weak solution of (BVP) along bk

with boundary datum φ.
We will use a subsubsequence argument to characterise the weak limit points of ρk. Let ξ : N→ N be an
increasing map.

STEP 2 (Compactness): The sequence (ρξ(k))k∈N is uniformly bounded in L∞((0,+∞) × Rd), so by
the Banach-Alaoglou Theorem, there is an increasing map ψ : N→ N such that ρ(ψ◦ξ)(k) converges to ρ
weakly-star in L∞((0,+∞)× Rd) as k → +∞. Moreover, ρ is a bounded weak solution of (IVP) because
bk → b in L1

loc.

STEP 3 (Dual representation of ρk): We thus have for every k ∈ Nˆ
R

ˆ
Rd

ρk(s, x)φ(s, x)dxds =
ˆ

R

ˆ
Rd

φ(s, x)Xk(s, 0, ·)#ρ̄(x)dxds

=
ˆ

R

ˆ
Rd

ρ̄(x)Xk(0, s, ·)#φ(s, x)dxds,

=
ˆ

R

ˆ
Rd

ρ̄(x)ρ̃kφ(s,·),s(0, x)dxds,

(3.3)

where we have performed a change of variable formula in the second equality, and used that the Jacobian
of Xk(s, 0, x) is one because divx bk = 0 for every t ∈ R.

STEP 4 (Passing to the limit): By Lemma 3.1, the time continuous representative ρ̃kφ(s,·),s converges in
C(R;w∗ − L∞(Rd)) to the time continuous representative ρ̃φ(s,·),s of the unique bounded weak solution of
(BVP) along b. We pass into the limit k →∞ along the map ψ ◦ ξ : N→ N in (3.3), and getˆ

R

ˆ
Rd

ρ(s, x)φ(s, x)dxdt =
ˆ

R

ˆ
Rd

ρ̄(x)ρ̃φ(s,·),s(0, x)dxds. (3.4)

STEP 5 (Characterisation of the limit): Since ρ̃φ(s,·),s does not depend on the map ψ ◦ ξ : N→ N, by
the subsubsequence lemma, it follows that the whole sequence converges, i.e.

lim
k→+∞

ˆ
R

ˆ
Rd

ρk(s, x)φ(s, x)dxdt =
ˆ

R

ˆ
Rd

ρ(s, x)φ(s, x)dxdt =
ˆ

R

ˆ
Rd

ρ̄(x)ρ̃φ(s,·),s(0, x)dxds. (3.5)

We thus have characterised ρ in terms of the time continous representative ρ̃φ(s,·),s of the unique bounded
weak solutions for (BVP) along b with s > 0, which does not depend on θ. Since φ ∈ C∞c ((0,+∞)× Rd) is
arbitrary, it follows that ρk converges to ρ in D′((0,+∞)×Rd). Since θ was an arbitrary standard mollifier,
the Cauchy problem (IVP) is well-posed along Rconv, the convolution regularisation class. �
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4. proof of Theorem 1.9

4.1. Construction of the vector field of Depauw vector field bDP . We construct the bounded,
divergence-free vector field bDP : [0,+∞) × R2 → R2 of Depauw from [10], as well as two non-unique
bounded weak solutions ζ1 and ζ2 of (IVP) along bDP with the initial datum ρ̄ = 1/2. We follow closely
the construction of a similar vector field given in [9].

Introduce the following two lattices on R2, namely L1 := Z2 ⊂ R2 and L2 := Z2 + ( 1
2 ,

1
2 ) ⊂ R2. To each

lattice, associate a subdivision of the plane into squares, which have vertices lying in the corresponding
lattices, which we denote by S1 and S2. Then consider the rescaled lattices L1

k := 2−kZ2 and L2
k :=

(2−k−1, 2−k−1) + 2−kZ2 and the corresponding square subdivision of Z2, respectively S1
k and S2

k . Observe
that the centres of the squares S1

k are elements of L2
k and viceversa.

Next, define the following 2-dimensional autonomous vector field:

w(x) =


(0, 4x1)t , if 1/2 > |x1| > |x2|
(−4x2, 0)t , if 1/2 > |x2| > |x1|
(0, 0)t , otherwise.

w is a bounded, divergence-free vector field, whose derivative is a finite matrix-valued Radon measure
given by

Dw(x1, x2) =
(

0 0
4sgn(x1) 0

)
L db{|x2|<|x1|<1/2}+

(
0 −4sgn(x2)
0 0

)
L db{|x1|<|x2|<1/2}

+
(

4x2sgn(x1) −4x2sgn(x2)
4x1sgn(x1) −4x1sgn(x2)

)
H d−1b{x1=x2,0<|x1|,|x2|≤1/2}

Periodise w by defining Λ = {(y1, y2) ∈ Z2 : y1 + y2 is even} and setting

u(x) =
∑
y∈Λ

w(x− y) .

Even though u is non-smooth, it is in BVloc(Rd; Rd). By the theory of regular Lagrangian flows (see
for instance [2]), there exists a unique incompressible almost everywhere defined flow X along u can be
described explicitely.

(R) The map X(t, 0, ·) is Lipschitz on each square S of S2 and X(1/2, 0, ·) is a clockwise rotation of
π/2 radians of the “filled” S, while it is the identity on the “empty ones”. In particular for every
j ≥ 1, X(1/2, 0, ·) maps an element of S1

j rigidly onto another element of S1
j . For j = 1 we can be

more specific. Each S ∈ S2 is formed precisely by 4 squares of S1
1 : in the case of “filled” S the 4

squares are permuted in a 4-cycle clockwise, while in the case of “empty” S the 4 squares are kept
fixed.

Figure 1. Action of the flow of u from t = 0 to t = 1/2. The shaded region denotes the
set {ζ1 = 1}. The figure is from [9].
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Let ζ̄1(x) = bx1c+ bx2c mod 2. It is a chessboard pattern based on the standard lattice Z2 ⊂ R2. Let ζ1

be the unique bounded weak solution of (IVP) along u from Theorem 2.5. Then, we have the following
formula X(t, 0, ·)#ζ̄1(x)L d = ζ1(t, x)L d. Using property (R), we have

ζ1(1/2, x) = 1− ζ̄1(2x). (4.1)
We define bDP : [0,+∞) × Rd → Rd as follows. First of all, set b(t, x) ≡ 0 for t > 1. Then, set
bDP (t, x) = u(x) for 1/2 < t < 1 and bDP (t, x) = u(2kx) for 1/2k+1 < t < 1/2k. In particular, this yields
a bounded weak solution of (BVP) along b̃DP (the extension by zero to negative times from (1.1)) with
boundary datum ζ1(1, x) = ζ̄1(x). Moreover, using recursively the appropriately scaled version of (4.1) we
can check that

ζ1(1/2k, x) = ζ̄1(2kx) for k even, ζ1(1/2k, x) = 1− ζ̄1(2kx) for k odd.

Likewise, ζ2(t, x) = 1 − ζ2(t, x) is a solution of (BVP) along b̃DP with boundary datum ζ2(1, x) =
ζ̄2(x) = 1− ζ̄1(x). Notice also that for i = 1, 2, we have ζi(2−k, ·) converges weakly-star in L∞(Rd) to 1/2,
as k → +∞. Therefore, for i = 1, 2, we have that ζi are both bounded weak solutions of (IVP) along bDP
with initial datum ρ̄ = 1/2.

4.2. Properties of bDP . We summarise the properties of the bounded, divergence-free vector field
bDP : [0,+∞)× Rd → Rd and of the two solutions ζ1 and ζ2 we have constructed:
(a) bDP ∈ L1

loc((0,+∞);BVloc(Rd; Rd));
(b) bDP /∈ L1((0,+∞);BVloc(Rd; Rd));
(c) ζi is a bounded weak solution of (IVP) along bDP with initial datum ζ̄i = 1/2 for i = 1, 2;
(d) ζi ∈ C([0,+∞);w∗ − L∞(Rd)) for i = 1, 2;
(e) for every t ∈ (0,+∞), ζi(t, x) ∈ {0, 1} for L d-a.e. x ∈ Rd, for i = 1, 2;
(f) for every t ∈ [0,+∞), we have ζ1(t, x) = 1− ζ2(t, x) for L d-a.e. x ∈ Rd;
(g) for every k ∈ N and for i = 1, 2, we have 

S

ζi(2−(k+1), x)dx =
 
S

ζi(2−(k+1), x)dx = 1/2 ∀S ∈ S1
k .

4.3. Weak approximation of initial datum. Given a sequence of indicator functions, which is oscillating
infinitely fast, and satisfies a constraint of spatial homogeneity, any initial datum ρ̄ can be weakly
approximated by a sequence localised on these indicator functions. This is recorded in the following lemma.

Lemma 4.1. Consider a sequence (fk)k∈N of functions on Rd such that for every k ∈ N, we have
fk(x) ∈ {0, 1} for a.e. x ∈ Rd, and such that and every S ∈ S1

k , we have 
S

fk+1(y)dy = 1/2. (4.2)

Consider a function ρ̄ ∈ L∞(Rd). Then, there exists a sequence of functions (ρ̄k)k∈N uniformly bounded in
L∞(Rd) such that

ρkfk+1 = ρk, (4.3)
and

ρk ⇀ ρ̄ w∗ − L∞(Rd). (4.4)

Proof. Define

ρ̄k(x) := 2fk+1(x)
∑
S∈S1

k

1S(x)
 
S

ρ̄(y)dy,

and observe that (4.3) is satisfied. Note that

sup
k∈N
‖ρ̄k‖L∞

x
≤ 2‖ρ̄‖L∞

x
,
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and that finite linear combinations of functions in{
1S : S ∈ S1

k , k ∈ N
}
,

are dense in L1(Rd). Therefore, to prove (4.4), it suffices to prove that for every l ∈ N and every S̃ ∈ S1
l ,

we have ˆ
Rd

ρ̄k(x)1S̃(x)dx→
ˆ

Rd

ρ̄(x)1S̃(x)dx, (4.5)

as k → +∞. Let l ∈ N and S̃ ∈ S1
l . Then, for k ≥ l, we haveˆ

Rd

ρ̄k(x)1S̃(x)dx = 2
ˆ
S̃

fk+1(x)
∑
Q∈S1

k

1S(x)
 
S

ρ̄(y)dydx,

= 2kd
∑

S∈S1
k
,S⊂S̃

ˆ
S

fk+1(x)dx
ˆ
S

ρ̄(y)dy,

by (4.2) =
∑

S∈S1
k
,S⊂S̃

ˆ
S

ρ̄(y)dy,

=
ˆ

Rd

ρ̄(y)1S̃(y)dy.

(4.6)

This proves the thesis. �

4.4. Proof of Theorem 1.9. We can now conclude this section.

Proof of Theorem 1.9. If ρ̄ = 0, then ζi(t, x)− 1/2 is a bounded weak solution of (IVP) along bDP with
initial datum ρ̄ = 0 for i = 1, 2. Suppose that ρ̄ 6= 0. Consider the following sequence of bounded,
divergence-free vector fields:

bkDP (t, x) :=
{

bDP (t, x) if t ≥ 2−k,
0 if t < 2−k.

By Section 4.2, for i = 1, 2 the densities ζki given by:

ζki (t, x) :=
{

ζi(t, x) if t ≥ 2−k,
ζi(2−k, x) if t < 2−k,

are both bounded weak solutions of (IVP) along bkDP .

STEP 1 (Apply Lemma 4.1): For i = 1, 2, the sequence (ζi(2−k, ·))k∈N satisfies the hypothesis of Lemma
4.1 by item (g) of Section 4.2. So there exists a sequence (ρ̄ki )k∈N uniformly bounded in L∞x and such that
for a.e. x ∈ Rd

ρ̄ki (x)ζi(2−k−1, x) = ρ̄ki (x),
and also

ρ̄ki ⇀ ρ̄ in w∗ − L∞(Rd).

STEP 2 (Getting weak solutions of (IVP) along bDP ): For i = 1, 2, we apply Theorem 1.5. There thus
exists a unique bounded weak solution of (IVP) along bkDP with initial datum ρ̄ki , which we shall denote by
ρki , and satisfies ‖ρki ‖L∞

t,x
= ‖ρ̄ki ‖L∞

x
. Therefore, by the Banach-Alaoglou Theorem, along an increasing map

ψ : N→ N, we have ρψ(k)
i converge to ρi weakly-star in L∞((0,+∞)× Rd) as k → +∞. Since bkDP → bDP

in L1
loc, it follows that ρi is a bounded weak solution of (IVP) along bDP with initial datum ρ̄.
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STEP 3 (Control on ρi): By Theorem 1.5, for M ∈ R there exists a unique bounded weak solution of
(IVP) along bkDP with initial datum Mζi(2−k, x)− ρ̄ki (x) for i = 1, 2, and by linearity it is

ρk,Mi (t, x) :=
{
Mζi(t, x)− ρki (t, x) if t ≥ 2−k,
Mζi(2−k, x)− ρ̄ki (x) if t < 2−k.

Now, choose
M > sup

k∈N,i=1,2
‖ρ̄ki ‖L∞

x
,

so that ρk,−M ≤ 0 ≤ ρk,M , and notice that we have that ρψ(k),−M
i and ρψ(k),M

i converge weakly-star in
L∞((0,+∞)× Rd) to Mζi − ρi and −Mζi − ρi respectively as k → +∞, whence

−Mζi ≤ ρi ≤Mζi for i = 1, 2. (4.7)

STEP 4 (ρ1 6= ρ2): By Lemma 2.3, we have the time continuous representative ρ̃1 and ρ̃2, of ρ1 and ρ2
respectively. We also know that ρi(0, ·) = ρ̄(·), and since ρ̄ 6= 0, we have for i = 1, 2 that

sup
t<δ
‖ρ̃i(t, ·)‖L∞

x
> 0,

for δ > 0 sufficiently small. Thus, there exists a function φ ∈ L1((0,+∞)× Rd) such that for i = 1, 2, we
have ˆ +∞

0

ˆ
Rd

|ρi(t, x)|φ(t, x)dxdt =
ˆ +∞

0

ˆ
Rd

|ρ̃i(t, x)|φ(t, x)dxdt > 0. (4.8)

Now by (4.7) and since ζi(t, x) = 1supp ζi(t, x), we have
ˆ +∞

0

ˆ
Rd

|ρi(t, x)|φ(t, x)ζi(t, x)dxdt =
ˆ +∞

0

ˆ
Rd

|ρi(t, x)|φ(t, x)dxdt > 0. (4.9)

Since ζ1(t, x) + ζ2(t, x) = 1 for L d+1-a.e. (t, x) ∈ (0,+∞)× Rd, we have for i, j = 1, 2 with i 6= j
ˆ +∞

0

ˆ
Rd

|ρi(t, x)|φ(t, x)ζj(t, x)dxdt = 0. (4.10)

Since φζ1 and φζ2 are in L1((0,+∞)× Rd), by the duality
(
L1((0,+∞)× Rd)

)∗ ∼= L∞((0,+∞)× Rd), we
have that ρ1 and ρ2 are distinct as functions in L∞((0,+∞)× Rd). This proves the thesis. �

5. Appendix

Proof of Proposition 1.6. The unique weak solution ρk of (IVP) is given by

ρk(t, x)L d = Xk(t, 0, x)#ρ̄L
d.

By (ii), for any T > 0 we have
sup
t∈[0,T ]

‖ρk(t, ·)‖L∞
x
≤ C‖ρ̄‖L∞

x
.

Let ξ : N → N be an increasing map. Then, by the Banach-Alaoglou, there exists an increasing map
ψ : N→ N, and ρ ∈ L∞loc([0,+∞);L∞(Rd)) such that ρψ◦ξ(k) converges to ρ in weakly-star in L∞((0, T )×Rd)
for every T > 0. As bk converges strongly to b in L1

loc, ρ is therefore a bounded weak solution of (IVP)
along b. By Theorem 1.5, there exists a unique such bounded weak solution. The subsubsequence lemma
then implies that the whole sequence ρk converges to ρ weakly-star in L∞((0, T )× Rd)) for every T > 0.
This implies that ρk converges to ρ in D′((0,+∞)× Rd). The thesis follows. �
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