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Abstract

The recent surge of interest in computational music creation has been greatly
influenced by the advent of large generative models such as ChatGPT and
Stable Diffusion. These powerful generative AI models have demonstrated re-
markable capabilities, especially in the domain of text and image generation.
Spurred by these developments, the music industry has also begun to explore
the deployment of large models for music creation, such as MusicLM and Mu-
sicGen. However, it’s noteworthy that the performance and capabilities of
these music-focused generative models have not yet reached the same level of
sophistication as their counterparts in text and image generation. The gen-
eration of music presents unique challenges, such as capturing the intricate
temporal structures, orchestrating an emotional progression, painting a sonic
landscape, and managing the sophisticated interplay between various musical
elements. The controllability and interactivity of the current AI-based music
generation systems is unsatisfactory. In light of these considerations, a criti-
cal examination on the evolution of AI-based pop music creation techniques
is both timely and essential, particularly from an industry perspective.

This paper, drawn from the authors’ extensive experience as senior re-
searchers in both industry and academia, provides a comprehensive overview
of AI-based music creation techniques and their practical applications in
real-world music production. It examines multiple aspects including lyrics
generation, melody creation, lyrics-melody matching, arranging, and audio
synthesis. The review offers an insight into the evolution and application of
AI techniques in actual music production, critically evaluating their advan-
tages, limitations. Furthermore, this paper identifies challenges and potential
future directions for the field, with the aspiration of contributing to the de-
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velopment of more intelligent and versatile AI tools that can serve the music
industry more effectively.

Keywords: Algorithmic Composition, Pop Music Creation, Intelligent
Creation

1. Introduction

Algorithmic composition has a history of over half a century, dating back
to the early stochastic composition system ’Atree’ [1]. Since its inception,
relentless efforts have been devoted to developing systems capable of auto-
mated music creation. Traditional approaches [2, 3] relied on expert systems
employing handcrafted grammars and rules to create music of different styles
and structure. However, crafting these rules is a nontrivial task as music the-
ory is inherently complex, with numerous rules that can vary depending on
genres, composers’ styles and music forms. For example, a system for gener-
ating four-part J.S. Bach chorale was developed using 350 handcrafted rules
[2]. Some works [4] extended this by learning from the score corpus of a
specific composer to creates custom grammars and rules.

In recent years, deep learning techniques have ventured into the music
creation field. Different from the rule-based models, deep learning models
can automatically learn the distributions of the training samples, thereby
generating music samples that bear resemblance to the training set. Sym-
bolic music can be represented mainly in two forms: piano roll and the event
sequences. The piano roll represents the symbolic music as images of shape
P × T × I, where P, T, I denote the number of pitches, time steps, and in-
struments, respectively [5]. On the other hand, event sequences represent
symbolic music as note-based or frame-based sequences [6]. While a line of
studies [5, 7, 8] aim to generate piano roll music, [9, 10, 11, 12] construct
event sequence models like RNNs and Transformers to generate sequences
music. Flow Composer [13] is an AI-assisted music composition tool, which
has been iteratively improved over past years. This system has found ex-
tensive use among musicians. With the assistance of the Flow Composer,
artists have even produced a music album: Hello World [14]. The prevailing
GPT4 [15] can generate simple music scores in several formats. MusicLM [16]
and MusicGen [17] are large models which are capable of generating music
audio directly from given text. However, the fine-grained control over the
music generation process is still unsatisfactory, leading to a gap between
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Figure 1: Flowchart of industrial music production, and the various techniques covered in
this survey.

AI-generated compositions and human-crafted music.
A line of works [18, 19, 20] have provided thorough reviews on the deep

learning based music generation techniques, mainly focusing on monophonic
and polyphony symbolic music, accompaniment and counterpoint. They of-
fer in-depth discussions on representations, architectures and challenges in
deep learning based music generation techniques. The term ’music’ in these
reviews refers broadly, including various kinds of pieces like drum beats,
melodies, violin quartets, piano concertos and so on. For foundational knowl-
edge on deep learning based music generation, these surveys are highly rec-
ommended. However to the best of our knowledge, there is no review that
focuses on creating complete pop music from scratch using artificial intelli-
gence techniques, which is both challenging and practical. This process not
only involves symbolic music generation, but also includes text generation,
matching skills, vocal and instrument synthesis, mixing, and more.

Pop music is much different from classical or other kinds of music. It
typically comprises a melody line, lyrics and arrangements, with the melody
line often led by one or more vocals in recorded music. The basic form of a
pop song is the verse-chorus structure, which may be repeated several times.
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Figure 2: Representations for symbolic music. (a) From left to right: piano roll for single
track monophonic music, single track polyphonic music, multi-track polyphonic music.
(b) Uneven frame-based event sequence representation for melody. (c) Even frame-based
event sequence representation for multi-track polyphonic music (quoted from [23]). (d)
Note-based event sequence representation for multi-track polyphonic music.

Verse parts or chorus parts usually have similar lyrics and melodies, while
chorus parts often feature different and ’bigger’ lyrics, melodies, chord pro-
gressions, textures than verse parts. From a production view, several steps
are needed to create complete pop music. First, composers create the lyrics
and melodies; Next, the arranger adds textures to the melodies; Finally, the
vocal and instrumental sounds are recorded or synthesized in a recording
studio, and then the vocal and the instrumental sounds are mixed into au-
dio. Various deep learning techniques have been studied to assist or mimic
human work in all these steps. Increasingly more researchers have tried to
apply deep learning models to monophonic melody composition, multi-track
arrangement creation, lyrics conditioned melody generation, voice synthesis,
instrumental synthesis, etc [21, 22].

In this review, we will review artificial intelligence techniques for each
part of the pop music creation process, including melody creation, lyrics
generation, melody and lyrics matching, arranging, voice and instrumental
synthesis. Fig. 1 presents the flowchart of industrial music production and the
corresponding sections in this paper. This review serves as a guideline for AI-
based pop music creation and summarizes research progresses and challenges,
which will be beneficial for both newcomers and experienced researchers in
this field.
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2. Melody Creation

2.1. Problem Statement

Symbolic music is commonly represented in tow formats: the piano roll
and the event sequence, which are shown in Figure 2. The piano roll rep-
resentation treats the symbolic music as a matrix, analogous to an image,
where each element corresponds to a particular note at a specific time. Con-
sequently, image generation techniques can be applied to the piano roll rep-
resentation. Mathematically, this can be expressed as:

p(M) =
∑
c

p(Im|c)p(c) (1)

where M represents the symbolic music, Im denotes the piano roll. The vari-
able c represents given conditions, which could include elements such as a
melody line, beat structure, chord progression, style notation or other con-
straints. The event sequence representation, on the other hand, serializes
symbolic music into event sequences. There are two primary approaches to
achieve this serialization: the note-based sequences and the frame-based se-
quences. The note-based sequence representation captures the music score
with events that are note-wise, including note on, note off and time shift.
These events are then arranged chronologically, as illustrated in Fig. 2(b).
The frame-based sequence representation quantizes time into equal or un-
equal intervals, using the smallest sub-division, such as a 16th or 32th note.
For each sub-division or tick, the notes that start on that tick are represented
by tokens corresponding to the note names. Fig. 2(c) and (d) show exam-
ples of frame-based sequence representations. For melody generation, we
recommend using the uneven frame-based sequence representation [24], due
to its simplicity, efficiency, and conciseness. This representation is amenable
to various sequence models for generating event sequence-based music. The
joint probability of an event sequence can be expressed as the production of
a series of conditional probabilities:

p(M) =
n∏

i=1

p(mi|m0,...,i−1, c) (2)

where mi represents an element of the sequence, and n is the length of the
sequence.
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Figure 3: Typical pop song forms and the chara-
teristics of each part. (Figure is adapted from:
https://courses.lumenlearning.com/musicappreciation with theory/chapter/binary-
form/).

2.2. Techniques and Models

In practice, the melody typically comprises a motif or a fundamental idea
that spans one or two bars in length. The motif is then elaborated into
phrases, sections and eventually a complete melody piece through various
composition techniques. As per the composition theory, there exist over ten
kinds of techniques such as repetition, transposition, compression, expansion,
and inversion for developing a motif into melody [1].

Melody creation techniques can be broadly categorized based on whether
the creation is conditioned. In the unconditioned case, termed as free com-
position, the melody is generated from scratch. Various models, like the
performance RNN [9], Music Transformers [10, 25, 11], and Music Diffusion
Model [26], are capable of operating in the free composition mode. These
models represent music as a sequence of note-based events, and employ se-
quence models to learn the joint distribution of training sequences.

In most instances, melodies are generated with specific conditions or pri-
ors, such as motifs, tonic and style. We enumerate common conditions and
corresponding models below.

Prime Motifs. Many RNN or transformer based models [9, 10, 25] can be
adept at working in continuation mode, where an initial motif is provided
and the model autoregressively continues the generation process.
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Incomplete Sheet. At times, only portions of the sheet music are available,
and models are tasked with filling in the gaps. CocoNet [5] addresses this
scenario as an image inpainting problem, generating piano rolls through an
iterative erasure and inpainting process. Although designed for Bach-style
chorales, CocoNet can be adapted for melody generation. InpaintNet [24]
combines MeasureVAE with LatentRNN to consider past and future musical
contexts, generating a sequence that connects them. By incorporating a
diffusion model into MusicVAE, the model in [26] generates consecutive music
phrases in parallel, interpolating in latent space to fill in vacancy measures.

Chord Progressions. The models in [11] and [10] can operate in a sequence-
to-sequence mode, where the input to the encoder is a chord sequence and
the decoder’s target is the melody sequence. The work in [27] constructs
a convolutional GAN (generative adversarial network) to generate melody
piano rolls conditioned on chord progressions. Additionally, [28] employs
a two-phase training process involving a transformer-based rhythm decoder
and pitch decoder for chord conditioned melody generation. A Harmony-
Aware Hierarchical Music Transformer (HAT) is introduced in [29], compris-
ing transformers for texture, form and song individually. It tries to learn the
mutual dependency between the textures and chord progressions.

Key Signatures, Instruments, Styles, etc. Key signatures, instruments, and
musical styles, among other aspects, can be integrated into the model as con-
ditioning tokens, which are placed ahead of the note sequences (as depicted in
Fig. 2(c)). During the inference phase, these conditioning tokens are fed into
the model, guiding it to generate the subsequent elements in accordance with
desired attributes. For example, MuseNet[11] employs additional tokens to
specify instruments and styles, thereby allowing users to control the feature
of the generatured music. Another notable model, FIGARO [30], operates
in a self-supervised description-to-sequence mode. Uniquely, FIGARO has
the capacity to create music based on a descriptive conditioning sequence,
encompassing an array of parameters such as time signature, note density,
average pitch, velocity, duration, as well as the instruments and chords to
be used throughout the composition. Futher, the work in [31] introduces a
CMT (Controllable Music Transformer) that encodes both rhythm-related
and note-related attributes. These encoded attributes are subsequently uti-
lized as conditions during the inference phase, granting uses more control
over generated music’s characteristics. This control is especially valuable in
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aligning the generated content with the artistic vision or specific requirements
of a project.

Self-Similarity Matrix. In [32], the self-similarity matrix (SSM) is generated
by a designed GAN and then melodies are generated on the condition of
this SSM. [33] takes the SSM as a constraints in the model design. The
SSM contains the music structure information, so the generated melody is
imposed a given structure.

Lyrics. Some works focus on generating melodies that are conditioned on
lyrics. For instance, the study by Bao et al. [34] introduces a model that
predicts the pitch and duration for each word in the provided lyrics. An-
other interesting approach is proposed by Yu et al. [35], where they employ
a conditional LSTM-GAN for generating melodic phrases based on lyrics
sentences. TeleMelody [36] presents a two-stage lyric-to-melody generation
system. This innovative method employs a template, which serves as an
intermediary between lyrics and melodies. Consequently, two models can
be trained: one to map lyrics to the template, and another to convert the
template into a melody. These models are trained using self-supervision tech-
niques, and interestingly, they do not explicitly rely on paired lyric-melody
data, circumventing the issue of data scarcity.

Template Melody. Another avenue pursued by researchers is generating melodies
based on a template melody. The objective here is to adapt or transfer char-
acteristics of template melodies to craft new compositions. For instance,
MusicVAE [37] has the ability to sample a ’middle point’ between two given
melody segments. effectively creating a new melody conditioned on two tem-
plates. The resulting melody can be seen as a synthesis of the two input
melodies. Dai et al. [38] take a different approach by extracting musical
frameworks from existing songs, which are then used as a foundations for
generating new melodies. These music frameworks encode multi-level mu-
sical structures including sections, phrases, rhythm structures and melodic
contours. By blending multi-level structures from different songs, their ap-
proach facilitates the creation of new music that inherits elements from the
original templates.

Sampling Condition. The conditions discussed above are primarily applied
during the inference stage. However, conditions can also be implemented
during the sampling stage. For example, the samples at each time step could
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Figure 4: Typical phrase structures of melodies. ‘a, b, c’ represent different phrase lengths.
The red lines denote phrase level, and the blue lines represent sub-phrase level. The black
lines denote either the phrase level or the sub-phrase level.

be constrained to align with a specific tonic or metric. Additionally, the
sampling probability of specific tokens can be manipulated based on certain
conditions. [38] introduces a sampling method with dynamic time warpping
control, which is capable of selecting melodies with high contour similarity
to a reference melody.

Incorporating condition into generative models offers a level of user-
control, enabling the user to represent music elements as conditions that
guide the generation of melodies. Moreover, these conditional techniques
can be combined to achieve more sophisticated results. For instance, one can
employ both SSM and tonic conditions during the inference stage, and si-
multaneously utilize sampling conditions. [39] integrates several constraints
with Markov chains, effectively addressing the constraint problem to produce
music.

2.3. Challenges

Global Structure.. The fundamental structure of a pop song typically follows
the AABA form, with various adaptions derived from this base structure.
Fig. 3 illustrates two common pop song structures. The melody in each
section possesses distinct characteristics and must be properly correlated with
other sections. A comprehensive pop song comprises a lengthy note sequence,
usually spanning at least 32 bars. Modeling such extensive sequences with a
well-defined hierarchical structure presents significant challenges.

Some research attempts to leverage SSM to control the global structure
of generated melodies [33]. However, obtaining an effective SSM becomes a
challenge in itself. The approach taken in [32] employs adversarial learning
to generate SSM, while in [33], SSM is derived from existing music.

The framework presented in [38] offers an alternative by harnessing the
multi-level structures found in songs. Nevertheless, analyzing structures at
the section and phrase levels introduces another challenge. The accuracy
of structure extraction is critical, as any inadequacy directly impacts the
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structure of the music generated. Furthermore, the similarities in structures
and contours of generated melodies may point to a lack of creativity.

Local Structure.. Fig. 4 depicts common phrase structures in melodies. In
pop music, phrase structure is highly regularized and concise, even a slight de-
viation in beat can disrupt the phrase structure. Historically, only a handful
of studies have attempted to address the intricate phrase structure in gen-
erated melodies. Recently, developments focus on the nuanced phrase and
rhythm structure. For instance, [40] annotates the phrase-level structures in
the POP909 dataset [41]. Building on this, [29] extracts phrase patterns from
chord progressions to guide melody generation. However, questions remain
regarding controllability and the regularity of phrase structures. Currently
human invention or rules-based systems are required to ensure that the phrase
structure.

Creativity and Duplication.. Since generative models are trained using the
existing data, there is a possibility that the generated samples may replicate
or closely mimic the training data. [42] proposes a method for constraining
the order of Markov chains-based generation in order. While this method
may not be directly applicable to deep learning techniques, it is presented
here for consideration.

3. Lyrics Generation

3.1. Problem Statement

Lyrics play a crucial roles in pop music creation as they convey messages
and emotions. The task of lyrics generation falls under the domain of text
generation, which has a wealth of literature. There are numerous text gen-
eration models based on self-attention architectures such as GPTs [15, 43].
Generally, these models generate text autoregressively, step by step, similar
to the generation of melody sequences.

p(s) =
n∏
i

p(ti|t0,...,i−1, c) (3)

where s = (t0, t1, ..., tn) is a sentence comprised of n tokens.
However, there are some differences between the general text generation

and lyrics generation. Lyrics, akin to poetry, are intended for singing and
exhibit distinct line and paragraph characters. Firstly, lyrics typically adhere
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to a specific rhyme scheme, with each line often ending in a rhyming word.
Below is an example of AABB rhyme scheme (Couplet) from the ‘Cleanup
Song’:

Over here and over there A
Up and down and everywhere A
There’s paper, brushes, paints and glue B
And lots of pictures that we drew B

Numerous rhyme schemes exist, such as ABABCDCD (Alternate rhyme),
ABABBCBC (Ballade), AAABBB (Triplet), AABBA (Lime rick), among
others. Secondly, lyrics have structured paragraph akin to the verse-bridge-
chorus structure in melodies, as seen in Fig. 3. Each paragraph has unique
features and together they form a cohesive storyline. Typically, the verse
sets the stage, the bridge recalls past events, and the chorus expresses emo-
tions [44]. These paragraphs often transition between themes [45].

Lyrics data is relative abundant, and large volumes of lyrics text can
be easily acquired from the internet. The genre of generated lyrics can be
steered by preparing training sets from different genres. Next we will discuss
how to incorporate the two characteristics of lyrics.

3.2. The Speciality of Lyrics Generation

Rhyme Scheme, Number of Lines/Words for Each Line.. When using transformer-
based language models, the generated lyrics may naturally contain rhymes,
albeit unintentional. There is a straightforward way to control the rhyme
of each line in the lyrics: firstly, reverse the words in each line of the data;
secondly, train a language model using the reversed corpus; and thirdly, dur-
ing the generation phase, mask out words that do not conform to the rhyme
scheme. The number of lines can be controlled by halting the language model
at the desired position. Controlling the number of words in each line can be
achieved by inserting the word number control token between lines, plus a
post-processing procedure.

The Paragraph Structure and Storyline.. Various models have been devel-
oped to generate lyrics according to given themes or keywords. Tra-la-Lyrics
2.0 [46] combines the original rhythm lyrics model Tra-la-Lyrics with the po-
etry generation platform PoeTryMe [47], enabling the creation of lyrics within
a semantic domain. Rapformer [48] is a transformer-based denoising auto-
encoder capable of synthesizing a rap verse from the content of any text. [49]
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introduces a hierarchical attention based Seq2Seq model for context-aware
generation of Chinese song lyrics. The Youling [50] is an AI-assist lyrics cre-
ation system designed for collaboration with human lyricists. However, most
existing works generate only a single paragraph of lyrics and do not address
the verse-bridge-chorus structure found in actual pop songs. Capturing long-
term consistency and topic transitions across paragraphs is challenging [51].
Efforts have been made to model the topic transition structures from lyrics
data without supervision [44, 45], but these do not demonstrate performance
on lyrics generation.

4. Melody and Lyrics Matching

4.1. Matching Strategies

As highlighted in the previous section, lyrics are created for songs and are
therefore inherently tied to rhythms or melodies. It is vital for the melody
and lyrics to be coherent in terms of rhythm, phrase structure, paragraph
structure, and even semantic emotions. For instance, the boundaries of words
in lyrics should align with the rests in a melody [52], and stressed syllables
in the lyrics should coincides with the strong beats in the melody [46]. In
this section, we discuss several strategies for matching melody and lyrics.

Simple Matching.. A straightforward approach is to pair a melody with lyrics
by ensuring that the number of notes in melody is equal to the number of
syllables in the lyrics, and then match each note with a syllable. This method
aligns the melody and lyrics in terms of length but does not take into account
other aspects such as rhythm and stress, structures.

Generate Lyrics On the Condition of Melody.. Tra-la-lyrics [53] is an ap-
proach that generates lyrics based on the rhythm of melodies, although
this method relies on hand-crafted strategies rather than deep learning tech-
niques. MC-SeqGAN [54] offers an end-to-end system for generating lyrics
conditioned on a melody, but it only generates a line of lyrics given the
corresponding melody as the input, and does not consider syllable match-
ing. [52] considers the syllable structure and employs a two-channel Seq2Seq
(sequence-to-sequence) model for Chinese lyrics generation. This model uti-
lizes two different Bi-LSTMs to process the structural token sequence and
preceding sentences, while text generation is handled by a forward LSTM.
The goal is to generate lyrics that harmonize with the original melody by
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effectively learning the syllable structure. Additionally, [55] introduces a
dataset of lyrics-melody pairs and suggests a melody conditional RNNLM
(RNN Language Model). This model uses the combination of a context
melody vector and word embedding as input, simultaneously predicting the
words and the syllable counts of those words. Experimental results indi-
cate that this approach is capable of maintaining compatibility between the
boundaries of generated lyrics and melody structures.

Generate Melody for Lyrics.. In Section 2.2, we have discussed various works
that focus on generating melodies based on lyrics. Moreover, iComposer [56]
employs three Seq2Seq models to generate pitches for lyrics, duration for
lyrics, and lyrics for melodies, respectively. It features a user interface and
has made the source code available.

Synchronous Generation of Melody and Lyrics.. AutoNLMC [57] is engi-
neered to simultaneously generate lyrics and the corresponding melodies. It
includes a lyrics prediction module, an encoder and a melody decoder. The
melody decoder is further composed of a duration decoder, pitch decoder, and
a dedicated rest decoder. SongMASS [21] incorporates a cross melody MASS
(masked seq2seq transformer) and a lyrics MASS. This model supports su-
pervised learning for both melody-to-lyrics and lyrics-to-melody mappings,
and also facilitates unsupervised learning of melodies and lyrics separately.

4.2. Challenges

Data Efficiency.. While [55] has managed to collect a dataset of 1,000 Japanese
lyrics-melody pairs, the volume of data remains insufficient for a compre-
hensive study of lyrics-melody matching. [35] constructs a subset contain-
ing 7,998 aligned melodies and English lyrics from the LAKH dataset [58].
Nonetheless, the alignment of melodies and lyrics in this dataset is relatively
coarse, and the syllables in midi files exhibit irregularities. This dataset
requires additional annotations to be effectively utilized for supervised learn-
ing. Consequently, there is a need to explore self-supervised or unsupervised
methods in this domain to enhance data efficiency. The work of [36] repre-
sents a promising direction in reducing dependence on paired data.

Fine-grained Matching between Melody and Lyrics.. The field of melody and
lyrics matching is still in its nascent stage. Much of the existing research
focuses on preliminary alignment, such as ensuring that lyric sentences and
melody phrases are matching in length. However, achieving fine-grained
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matching, which includes alignment in terms of rhythm and paragraph struc-
ture, is significantly more challenging and requires additional effort. Cur-
rently, employing hand-crafted strategies as demonstrated by [46], could fa-
cilitate finer matching between melody and lyrics.

Coherence. Achieving coherence is a vital aspect of matching melodies and
lyrics. This entails ensuring that the melodies and lyrics are harmonious
and create a unified musical experience. While technical alignment such
as rhythm and structure is important, it is also imperative to consider the
emotional and semantic dimensions of the song. This is because the emo-
tional resonance and meaningfulness of the lyrics can significantly impact
the overall musical experience. For example, a somber melody may not be
well-suited to upbeat or cheerful lyrics. Developing models that are sensitive
to the emotional content of both the lyrics and the melody, and can generate
or match content that is thematically and emotionally coherent, is an area
that requires further exploration

Evaluation Metrics.. Evaluating the quality of matched melodies and lyrics is
also challenging. While it is possible to use objective metrics such as rhythm
and structure alignment, evaluating the artistic and emotional coherence is
more subjective and may require human assessment. Developing evaluation
metrics that can effectively measure both the technical alignment and the
artistic quality of matched melodies and lyrics is a critical area for future
research.

5. Arrangement

In practice, a piece of pop music typically comprises multiple tracks in
its arrangement, including elements such as chords, beats, rhythm patterns,
etc. These elements are performed with a variety of instruments, such as
piano, guitar, bass, drums, strings, winds, and others. Arrangement plays a
pivotal role in defining the music’s style and emotion. By utilizing different
accompaniments, a melody can be adapted into various styles and convey a
wide range of emotions. Arrangement involves harnessing the characteristics
of different instruments, allocating different instruments to separate tracks,
and orchestrating their roles to create a harmonious piece of music.
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5.1. Arranging Models

Currently, deep learning-based music arrangement techniques have limi-
tations in handling a large number of tracks. Most existing works typically
deal with up to 6 tracks. In [59], a hierarchical RNN is constructed for multi-
track pop music generation, where the network is structured to mirror the
real-world pop music creation process. The lower layers generate the melody,
while the upper levels produce accompaniments such as drums and chords.
MuseGAN [7] incorporates a set of GANs for multi-track music generation.
In this work, symbolic music is represented as piano-rolls of 5 tracks: bass,
drums, guitar, piano and strings. The model accounts for intra-track struc-
ture, inter-track dependencies and temporal fluidity. Their training dataset
LPD is derived from the LAKH dataset via selecting, merging, and clipping.
The performances on the generation of 4 bars music of 5 tracks are presented.

The Microsoft XiaoIce Band [60] generates melody and arrangement within
a unified framework. Initially, a melody is produced based on a given chord
progression through a Chord-based Rhythm and Melody Cross-Generation
Model (CRMCG). Subsequently, multi-track arrangements are generated by
the Multi-Instrument Co-Arrangement Model (MICA), with an information-
sharing strategy employed to enhance inter-track harmony. The resultant
compositions consist of a melody played on the piano, accompanied by drum,
bass, and violin. Further advancement in XiaoIce Band [61] allow for multi-
style, multi-track arrangement, employing MICA as a generator with two
discriminators for multi-style and harmony discrimination. This facilitates
style control and improves harmony in generated music. Additionally, a gui-
tar track has been introduced.

[62] introduces the POP909 dataset, encompassing multiple versions of
piano arrangements for 909 popular songs curated by professional musicians,
with annotations for tempo, beat, key, and chords. This work also proposes
a baseline Transformer model for polyphonic music generation and piano
arrangement generation. Models in [11, 63, 64] utilize Transformer-based
architectures with note-based event sequence representation for multi-track
music generation.

5.2. Challenges

Despite these advancements, learning-based arrangement generation re-
mains in the early stages of development.
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Complexity of Arrangement. There is a pressing need for further research in
handling a more extensive array of tracks and increasing the complexity of
the arrangement.

Style and Emotion Control.. Additionally, making the generation process
more controllable is an important research direction. A vital aspect of ar-
rangement is the ability to adapt music in distinct styles and emotional
expression. Techniques such as style transfer, where the stylistic elements
of one piece are applied to another, and conditioning arranging models on
style or emotional labels, could be used to enable control over the style and
emotional expression of the arrangement.

6. Audio Synthesis

After obtaining the music score, it can be converted into audio through
synthesis and mixing. The synthesis process from score to audio is also known
as sound rendering. In real practice, a melody is typically sung by a profes-
sional singer, and is then mixed with instrumental sound. The sound ren-
dering and mixing are performed in a recording studio with a DAW (Digital
Audio Workstation). Reaper and Logic Pro are examples of DAW software.
These can be connected with sound libraries, such as KONTAKT, to ren-
der instrument scores into audios. FluidSynth coupled Soundfont2 is also a
popular scheme for instrument rendering. Nonetheless, traditional rendering
schemes tend to be time consuming and lack diversity. For a given score,
different human performers imbue their own expressiveness. Conversely, the
aforementioned rendering scheme consistently produce the same audio if us-
ing the same sound source. Consequently, some researchers have endeavoured
to construct AI performer capable of generating music audio from scores.

6.1. Singing Synthesis

There are numerous public available vocal synthesizers, such as VOCALOID,
Synthesizer V, which operate by splicing phonemes, rather than utilizing deep
learning. Recently, however, there has been an influx of work centered around
deep learning-based vocal synthesis. Most of these works adapt models from
the TTS (text-to-speech) technology. Typically, a front-end model ingests
text or musical scores as input and generates word or note embedding. These
embeddings are then passed to a Seq2Seq module, and the decoder within
this module generates acoustic features. Finally, a vocoder synthesizes the
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sound audio. For example, the method in [65] constructs a singing synthesis
model using the above process. Furthermore, [66] extracts the F0 feature
and builds a duration model to facilitate the decoder’s learning of acoustic
features. [67] employs a denoising diffusion model to augment the acoustic
model’s prediction accuracy.

Training TTS models requires large amount of high quality data, and the
labelling of TTS corpus is intricate and costly. The same challenges apply
to singing synthesis, as singing corpus are rare. To alleviate dependence on
singing corpora, some researchers have investigated voice conversion tech-
niques. For instance, [68] adapts the voice cloning technique from the TTS
to the singing synthesis, enabling the creation of a multi-speaker model us-
ing data from various speakers. This model can be efficiently adapted to
new voices using a small amount of target data. [69] introduces a singing-
from-speech model capable of synthesizing a target speaker’s singing voice
using only their speech samples. [70] expands a single-singer model to sup-
port multiple singers by decoupling the timbre embedding from the system.
Sinsy [71] and LiteSing [72] are examples of data-efficient singing synthesis
models that operate with around 1 hour data.

6.2. Instrument Synthesis

Creating expressive instrument synthesis is challenging due to the con-
sideration variation in timbre among different instruments. Additionally,
instrument synthesis data is scarce. GANSynth [73] is a neural instrument
synthesis model based on GANs. The GAN is used to model log-magnitudes
and instantaneous frequencies, which are subsequently converted to audio
in time domain. A more streamlined WaveRNN model is presented in [74],
which explores a variety of domain-specific conditioning features and archi-
tectures. This model is time-efficient and capable of fine-grained control
over different dimensions. MIDI-DDSP (Differentiable Digital Signal Pro-
cessing) [75] is a hierarchical music audio generative model, which not only
provides realistic neural audio synthesis but also allows for detailed user con-
trol for 13 different kinds of instruments.

6.3. Challenges

Expressiveness and Variability. Adding expressiveness and variability to syn-
thesized audio is an important challenge. Current sound rendering schemes
often result in static and monotonous outputs. AI models can be trained to
mimic the nuances and expressiveness of human performance. Techniques
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such as human performance modeling, where AI algorithms are trained on
performances by human musicians, can be employed. These models can
learn to add natural variations, such as subtle timing deviations, dynamics
changes, and articulations, to make the synthesized audio more expressive
and human-like. Additionally, enabling users to control the level of expres-
siveness through user-defined parameters or real-time performance data (e.g.,
MIDI controllers) could further enhance the applicability and creativity of
audio synthesis systems.

7. Conclusion and Outlook

This paper provides an overview of artificial intelligence techniques em-
ployed in various stages of real-world industrial pop music production. We
have discussed the characteristics of these techniques in detail and she light
on the challenges that researchers and practitioners face. It’s important to
note that we did not include the audio mixing and remixing related tech-
niques in this survey, primarily because deep learning applications in this
sub-field are still relatively scarce.

For future works, establishing robust evaluation methodologies for music
generation techniques is critical. Current approaches often rely on subjective
human evaluation, which is not scalable and can be biased. Objective metrics
that can effectively measure the quality, creativity, and diversity of generated
music would be invaluable in comparing and advancing different techniques.
Furthermore, the availability of more public, standardized music datasets
is essential for the progress of the field. Such datasets can facilitate better
benchmarking and promote reproducibility, which in turn can accelerate the
development of new models and algorithms. Finally, incorporating the ability
to have more control and expressiveness in the music generation process is
an important aspect. This involves developing models that allow for user-
defined parameters such as style, emotion, progression, and more, enabling
creators to have more agency over the music they generate.

In conclusion, artificial intelligent technology holds immense potential for
revolutionizing the way pop music is produced. By continuing to innovate
and address the challenges head-on, the convergence of technology and cre-
ativity can herald a new era for music production.
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[30] D. von Rütte, L. Biggio, Y. Kilcher, T. Hoffman, Figaro: Generat-
ing symbolic music with fine-grained artistic control, arXiv preprint
arXiv:2201.10936 (2022).

[31] S. Di, Z. Jiang, S. Liu, Z. Wang, L. Zhu, Z. He, H. Liu, S. Yan, Video
background music generation with controllable music transformer, in:
29th ACM Multimedia, 2021.

21

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4490102

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



[32] H. Jhamtani, T. Berg-Kirkpatrick, Modeling self-repetition in music gen-
eration using generative adversarial networks, in: Machine Learning for
Music Discovery Workshop, ICML, 2019.

[33] S. Lattner, M. Grachten, G. Widmer, Imposing higher-level structure in
polyphonic music generation using convolutional restricted boltzmann
machines and constraints, Journal of Creative Music Systems 2 (2018)
1–31.

[34] H. Bao, S. Huang, F. Wei, L. Cui, Y. Wu, C. Tan, S. Piao, M. Zhou,
Neural melody composition from lyrics, in: CCF International Confer-
ence on Natural Language Processing and Chinese Computing, Springer,
2019, pp. 499–511.

[35] Y. Yu, A. Srivastava, S. Canales, Conditional lstm-gan for melody gen-
eration from lyrics, ACM TOMM 17 (1) (2021) 1–20.

[36] Z. Ju, P. Lu, X. Tan, R. Wang, C. Zhang, S. Wu, K. Zhang, X.-Y.
Li, T. Qin, T.-Y. Liu, Telemelody: Lyric-to-melody generation with a
template-based two-stage method, ArXiv abs/2109.09617 (2021).

[37] A. Roberts, J. Engel, C. Raffel, C. Hawthorne, D. Eck, A hierarchical
latent vector model for learning long-term structure in music, in: ICML,
2018.

[38] S. Dai, Z. Jin, C. Gomes, R. B. Dannenberg, Controllable deep melody
generation via hierarchical music structure representation, in: ISMIR,
2021.

[39] F. Pachet, P. Roy, B. Carr’e, Assisted music creation with flow machines:
towards new categories of new, ArXiv abs/2006.09232 (2020).

[40] S. Dai, H. Zhang, R. B. Dannenberg, Automatic analysis and influence
of hierarchical structure on melody, rhythm and harmony in popular
music, in: Proc. of the 2020 CSMC+MUME, 2020.

[41] Z. Wang, K. Chen, J. Jiang, Y. Zhang, M. Xu, S. Dai, X. Gu, G. Xia,
Pop909: A pop-song dataset for music arrangement generation, in: Proc.
of 21st ISMIR, 2020.

22

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4490102

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



[42] A. Papadopoulos, P. Roy, F. Pachet, Avoiding plagiarism in markov
sequence generation, in: Proc. of the AAAI, Vol. 28, 2014.

[43] B. Wang, A. Komatsuzaki, GPT-J-6B: A 6 Bil-
lion Parameter Autoregressive Language Model,
https://github.com/kingoflolz/mesh-transformer-jax (May
2021).

[44] K. Watanabe, Y. Matsubayashi, K. Inui, S. Fukayama, T. Nakano,
M. Goto, Modeling storylines in lyrics, IEICE Transactions on Infor-
mation and Systems 101 (4) (2018) 1167–1179.

[45] K. Watanabe, Modeling discourse structure of lyrics, Ph.D. thesis, To-
hoku University (2018).

[46] H. Oliveira, Tra-la-lyrics 2.0: Automatic generation of song lyrics on a
semantic domain, Journal of Artificial General Intelligence 6 (1) (2015)
87–110.

[47] H. Oliveira, T. Mendes, A. Boavida, A. Nakamura, M. Ackerman, Co-
poetryme: interactive poetry generation, Cognitive Systems Research
54 (2019) 199–216.

[48] N. Nikolov, E. Malmi, C. Northcutt, L. Parisi, Rapformer: Conditional
rap lyrics generation with denoising autoencoders, in: Proc. of the 13th
INLG, 2020, pp. 360–373.

[49] H. Fan, J. Wang, B. Zhuang, S. Wang, J. Xiao, A hierarchical attention
based seq2seq model for chinese lyrics generation, in: PRICAI, Springer,
2019, pp. 279–288.

[50] R. Zhang, X. Mao, L. Li, L. Jiang, L. Chen, Z. Hu, Y. Xi, C. Fan,
M. Huang, Youling: an ai-assisted lyrics creation system, in: Proc. of
EMNLP, 2020.

[51] K. Watanabe, M. Goto, Lyrics information processing: Analysis, gen-
eration, and applications, in: Proc. of the 1st NLP4MusA, 2020, pp.
6–12.

[52] X. Lu, J. Wang, B. Zhuang, S. Wang, J. Xiao, A syllable-structured,
contextually-based conditionally generation of chinese lyrics, in: PRI-
CAI, Springer, 2019, pp. 257–265.

23

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4490102

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



[53] H. Oliveira, F. Cardoso, F. Pereira, Tra-la-lyrics: An approach to gen-
erate text based on rhythm, in: Proc. of the 4th. IJWCC, 2007.

[54] Y. Chen, A. Lerch, Melody-conditioned lyrics generation with seqgans,
in: 2020 IEEE International Symposium on Multimedia (ISM), 2020,
pp. 189–196. doi:10.1109/ISM.2020.00040.

[55] K. Watanabe, Y. Matsubayashi, S. Fukayama, M. Goto, K. Inui,
T. Nakano, A melody-conditioned lyrics language model, in: NAACL-
HLT, 2018.

[56] H. Lee, J. Fang, W. Ma, icomposer: An automatic songwriting system
for chinese popular music, in: Proc. of the NAACL (Demonstrations),
2019, pp. 84–88.

[57] G. Madhumani, Y. Yu, F. Harscoët, S. Canales, S. Tang, Automatic
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