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Abstract

The geometric median, an instrumental compo-
nent of the secure machine learning toolbox, is
known to be effective when robustly aggregat-
ing models (or gradients), gathered from poten-
tially malicious (or strategic) users. What is less
known is the extent to which the geometric me-
dian incentivizes dishonest behaviors. This paper
addresses this fundamental question by quantify-
ing its strategyproofness. While we observe that
the geometric median is not even approximately
strategyproof, we prove that it is asymptotically
α-strategyproof : when the number of users is
large enough, a user that misbehaves can gain at
most a multiplicative factor α, which we com-
pute as a function of the distribution followed by
the users. We then generalize our results to the
case where users actually care more about spe-
cific dimensions, determining how this impacts
α. We also show how the skewed geometric me-
dians can be used to improve strategyproofness.

1 INTRODUCTION

There has recently been a growing interest in collaborative
machine learning to efficiently utilize the ever-increasing
amount of data and computational resources (McMahan
et al., 2017; Kairouz et al., 2021; Abadi et al., 2015). Col-
laborative learning gathers information from multiple users
(e.g., gradient vectors (Zinkevich et al., 2010), local model
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parameters (Dinh et al., 2020; Farhadkhani et al., 2022b) or
users’ preferences (Noothigattu et al., 2018; Allouah et al.,
2022)) and typically summarizes it in a single vector. While
averaging is the most widely used method for aggregating
multiple vectors into a single vector (Polyak and Juditsky,
1992), it suffers from severe security flaws: averaging can
be arbitrarily manipulated by a single strategic user (Blan-
chard et al., 2017).

The geometric median is a promising “robust” alternative
to averaging. It has been widely used in collaborative learn-
ing as it is a provably good approximation of the aver-
age (Minsker, 2015) and it is robust to a minority of ma-
licious users (Lopuhaa and Rousseeuw, 1989). A large
body of research known as “Byzantine learning” (Blan-
chard et al., 2017; Chen et al., 2017; El-Mhamdi et al.,
2018; Rajput et al., 2019; Alistarh et al., 2018) uses the ge-
ometric median to ensure safe learning despite the presence
of participants with arbitrarily malicious behavior (Farhad-
khani et al., 2022a; Karimireddy et al., 2022; Acharya et al.,
2022; Wu et al., 2020; So et al., 2021; Gu and Yang, 2021;
Pillutla et al., 2022; Farhadkhani et al., 2022b). Interest-
ingly, the geometric median also satisfies the fairness prin-
ciple “one voter, one vote with a unit force” (see Section
2.2), making it ethically appealing.

In this paper, we study the extent to which the geometric
median incentivizes strategic manipulations1. Ideally, we
would like the geometric median to be strategyproof (Gib-
bard, 1973; Satterthwaite, 1975; Brandt et al., 2016), i.e.,
we want it to be in each voter’s best interest to report their
true preferred vector. Put differently, honesty would ide-
ally be a dominant strategy (Chung and Ely, 2007). This
is very different from Byzantine learning, which only fo-
cuses on the resilience of the training, usually assuming a
majority of honest users. Conversely, we consider the more
realistic case where every user wants to bias the algorithm
towards their specific target states. Such considerations are
critical for high-stake life-endangering applications such
as content moderation and recommendation (Yue, 2019;

1Hence, we often use the term “voter” instead of “user”.
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Whitten-Woodring et al., 2020), in which different peo-
ple have diverging preferences over what should be re-
moved (Ribeiro et al., 2020; Bhat and Klein, 2020), accom-
panied with a warning message Mena (2020), and be pro-
moted at scale (Michelman, 2020). Clearly, activists, com-
panies and politicians all want to bias algorithms to pro-
mote certain views, products or ideologies (Hoang, 2020).
These entities should thus be expected to behave untruth-
fully, if they can easily game the algorithms with fabricated
behaviors.

Now, assuming that each user wants to minimize the dis-
tance between the computed geometric median and their
target vector, it is actually known that the geometric median
fails to be strategyproof (Kim and Roush, 1984) (see Figure
1). However, raw strategyproofness is a binary worst-case
analysis. In practice, optimizing strategic reporting may
be costly (e.g., information gathering and computational
costs, and the risk of being exposed), and hence may not
be profitable if the potential gain is small. This prompts
us to quantify the strategyproofness of the geometric me-
dian: how much can a strategic voter gain by misreporting
their preferred vector (Lubin and Parkes, 2012; Wang et al.,
2015; Han et al., 2015)?

Contributions. Our first contribution is to show that the
geometric median fails to guarantee approximate strate-
gyproofness. More precisely, for any α, we show that there
exists a configuration where a strategic voter can gain a fac-
tor α by behaving strategically rather than truthfully.

Our main contribution is to then study the more specific
case where voters’ reported vectors come independently
from an underlying distribution. We prove that, in the
limit where the number of voters is large enough, and
with high probability, the geometric median is indeed α-
strategyproof. This goes through introducing and formaliz-
ing the notion of asymptotic strategyproofness with respect
to the distribution of reported vectors. We show how to
compute the bound α as a function of this distribution.

Our two first contributions apply to the case where a voter
wants to minimize the Euclidean distance between the ge-
ometric median and their target vector. Essentially, this
amounts to saying that the voters’ preferences are isotropic,
i.e., all dimensions have the same importance for the voters.
However, in practical applications, a voter may care a lot
more about certain dimensions than others, Our third con-
tribution is a generalization to this setting, proving that, in
a rigorous sense, the geometric median becomes less strat-
egyproof if some dimensions are both more polarized and
more important than others.

As a fourth important contribution, we show how strate-
gyproofness can be improved by introducing and analyzing
the skewed geometric median. Intuitively, this corresponds
to skewing the feature space using a linear transformation

Σ, computing the geometric median in the skewed space,
and de-skewing the computed geometric median by apply-
ing Σ−1. In essence, the skewed geometric median can
be used to weaken pulls along polarized dimensions, and
strengthen pulls along others. This helps limit the incen-
tives to exaggerate preferences along more polarized di-
mensions, by intuitively giving voters more voting power
along orthogonal dimensions “at the same cost”.

Background. Classically called the Fermat-Weber solu-
tion (Brimberg, 2017), the geometric median solves a ver-
sion of the widely studied (optimal) facility location prob-
lem (Hansen et al., 1985; Walsh, 2020; Lu et al., 2009;
Feigenbaum and Sethuraman, 2015; Tang et al., 2020; Es-
coffier et al., 2011; Sui and Boutilier, 2015; Kyropoulou
et al., 2019; Fotakis and Tzamos, 2013), as it minimizes
the sum of distances of the agents to the chosen location.
In one dimension, the geometric median coincides with the
median, which was shown (Moulin, 1980) to be (group)
strategyproof. But in higher dimensions, the geometric me-
dian is known to be not strategyproof (Kim and Roush,
1984). To the best of our knowledge, however, our pa-
per is the first to analyze the geometric median in high di-
mension, with weakened forms of strategyproofness like
(asymptotic) α-strategyproofness. As far as we know, we
are also the first to investigate skewed geometric medians
and skewed preferences.

Roadmap. The rest of the paper is organized as fol-
lows. Section 2 formally defines different notions of strat-
egyproofness and the geometric median aggregation rule.
Section 3 proves that this rule is not α-strategyproof, whilst
Section 4 proves that it is asymptotically α-strategyproof.
In Section 5, we generalize our result to non-isotropic vot-
ers’ preferences and to the skewed geometric median. Sec-
tion 7 discusses related work, and Section 8 concludes.
Due to space limitations, most of the proofs and some aux-
iliary results are provided in the appendices.

2 MODEL

We consider 1 + V voters. Each voter v ∈ [V ] ≜
{1, . . . , V } reports a (potentially fabricated) vector θv ∈
Rd. We denote by θ⃗ ≜ (θ1, . . . , θV ) the family of other
voters’ reported vectors. We then, without loss of general-
ity2, analyze the incentives of voter 0. We assume that voter
0 has a preferred target vector t ∈ Rd, but they report a po-
tentially different, strategically crafted, vector s ∈ Rd. A
voting algorithm VOTE then aggregates all voters’ vectors
into a common decision vector VOTE(s, θ⃗) ∈ Rd, which
voter 0 would prefer to be close to their target vector t.

2Because all the votes that we consider are permutation invari-
ant (Proposition 5 in Appendix A).
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2.1 The Many Faces of Strategyproofness

We define the strategic gain as the best multiplicative gain
that voter 0 can obtain by misreporting their preference, i.e.
by reporting s instead of t. Strategyproofness bounds the
maximal strategic gain.

Definition 1 (α-strategyproofness). VOTE is α-
strategyproof if, for any others’ vectors θ⃗ ∈ Rd×V ,
any target vector t ∈ Rd and any strategic vote s ∈ Rd,
the strategic gain is at most 1 + α, i.e.

∀θ⃗, t, s,
∥∥∥VOTE(t, θ⃗)− t

∥∥∥
2
≤ (1+α)

∥∥∥VOTE(s, θ⃗)− t
∥∥∥
2
.

Smaller values of α yield stronger guarantees. If α = 0,
then we simply say that VOTE is strategyproof.

The opposite of strategyproofness is an arbitrarily manipu-
lable vote, which we define as follows.

Definition 2 (Arbitrarily manipulable). VOTE is arbitrar-
ily manipulable by a single voter if, for any others’ vec-
tors θ⃗ ∈ Rd×V and any target vector t ∈ Rd, there exists
s ∈ Rd such that VOTE(s, θ⃗) = t.

It is possible for a vector aggregation rule to be neither
α-strategyproof nor arbitrarily manipulable. In fact, we
show that this is the case for the geometric median. This
remark calls for more subtle definitions of strategyproof-
ness. In particular, it may be unreasonable to demand α-
strategyproofness for all other voters’ inputs θ⃗ ∈ Rd×V

(this is known as dominant strategy incentive compatibil-
ity). In practice, other voters are usually expected to re-
port some vectors more often than others. This motivates
us to consider an alternative high-probability definition of
α-strategyproofness3 taking into account the distribution
of vectors. We thus introduce and study asymptotic α-
strategyproofness. To define this notion, we first assume
that other voters’ vectors are drawn4 independently from
some distribution θ̃ over Rd. Asymptotic strategyproofness
then corresponds to strategyproofness in the limit where V
is large enough.

Definition 3 (Asymptotic α-strategyproofness). VOTE is
asymptotically α-strategyproof if, for any ε, δ > 0, there
exists V0 ≥ 1 such that, as long as there are V ≥ V0

other voters whose reported vectors are drawn indepen-
dently from distribution θ̃, then with probability at least
1 − δ, for any target vector t ∈ Rd, and any strategic vote
s ∈ Rd, the strategic gain is bounded by 1 + α+ ε, i.e.,

Pθ⃗∼(θ̃)V [∀t, s : E(α+ ε, t, s)] ≥ 1− δ,

3Our definition does not coincide with Bayesian incentive
compatibility, which aims to bound one’s expected strategic gain.

4This setting is similar to “Worst-case IID susceptibility” pro-
posed by Lubin and Parkes (2012). But, we consider high prob-
ability bounds on the gain which is different from the expected
regret defined by Lubin and Parkes (2012).

where E(α+ ε, t, s) is the event{∥∥∥VOTE(t, θ⃗)− t
∥∥∥ ≤ (1 + α+ ε)

∥∥∥VOTE(s, θ⃗)− t
∥∥∥} .

If α = 0, we say that VOTE is asymptotically strategyproof.

Note that this definition implicitly depends on the distribu-
tion θ̃ of voters’ inputs. In fact, we prove that the geometric
median is asymptotically α-strategyproof, for a value of α
that we derive from the distribution θ̃.

Finally, we also study the more general case of non-
isotropic preferences. To model this, we replace the Eu-
clidean norm by the S-Mahalanobis norm, for some pos-
itive definite matrix S ≻ 0, which is given by ∥x∥S ≜
∥Sx∥2. Intuitively, the eigenvectors with larger eigenvalues
of S represent the directions that matter more to the voter.
Now, if voter 0 has an S-skewed preference, then they aim
to minimize the S-Mahalanobis norm between the result of
VOTE(s, θ⃗) and the target vector t. This leads us to define
strategyproofness for skewed preferences as follows.
Definition 4. VOTE is α-strategyproof for an S-skewed
preference if, for any others’ vectors θ⃗ ∈ Rd×V , any target
vector t ∈ Rd and any strategic vote s ∈ Rd, The maximal
strategic S-skewed gain is at most 1 + α, i.e.

∀t, s,
∥∥∥VOTE(t, θ⃗)− t

∥∥∥
S
≤ (1 + α)

∥∥∥VOTE(s, θ⃗)− t
∥∥∥
S
.

This notion can then be straightforwardly adapted to define
asymptotic α-strategyproofness.

2.2 The Geometric Median

In this paper, we study the strategyproofness property of
a particular VOTE, i.e., the geometric median. It can be
defined for 1 + V voters using the average of distances be-
tween a vector z and the reported vectors:

L(s, θ⃗, z) ≜ 1

1 + V

∥z − s∥2 +
∑
v∈[V ]

∥z − θv∥2

 .

We can now precisely define the geometric median.
Definition 5. A geometric median GM operator is a func-
tion Rd×(1+V ) → Rd that outputs a minimizer of this aver-
age of distances, i.e., for any inputs s ∈ Rd and θ⃗ ∈ Rd×V ,
we must have GM(s, θ⃗) ∈ argminz∈Rd L(s, θ⃗, z).

In dimension d ≥ 2, the uniqueness of GM(s, θ⃗) can be
guaranteed when all vectors do not lie on a 1-dimensional
line (Proposition 4 in Appendix A.2). Interestingly, the ge-
ometric median can be regarded as the result of a dynamic
process, where, each voter pulls a point z towards their pre-
ferred vector with a unitary force. The geometric median
is the equilibrium point, when all forces acting on z cancel
out. It thus verifies the fairness principle “one voter, one
vote with a unit force”. Formal discussion is provided in
Appendix A.1.
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Figure 1: A simple example where the geometric median
fails to be strategyproof. This example is easy to analyze
in the limit where θ2 is infinitely far on the right, in which
case its pull is always towards the right. Since the unit
pulls of all voters must cancel out, there must be a third of
a turn between any two unit pull. This shows why, as the
strategic voter reports s rather than their target vector t, the
geometric median moves up the dotted line, closer to t.

3 MANIPULABILITY AND
STRATEGYPROOFNESS

While the average is arbitrarily manipulable by a single
voter (Blanchard et al., 2017), the geometric median is ro-
bust even to a collusion of a strict minority of voters. How-
ever, we prove that the geometric median is not (even ap-
proximately) strategyproof in the general case.

3.1 The Geometric Median is Not Arbitrarily
Manipulable

As opposed to the average, a strategic voter cannot arbi-
trarily manipulate the geometric median. This property
is sometimes known as Byzantine resilience in distributed
computing, or as statistical breakdown in robust statistics.
Here, we state it in the terminology of computational so-
cial choice, and we consider a slightly more general setting
than individual manipulation. Namely, we consider group
manipulation, by allowing a set of voters to collude. Even
then, strategic voters can at most have a bounded impact.
The proof of this result which is adapted from Lopuhaa and
Rousseeuw (1989) is given in Appendix B.1.

Proposition 1 (Lopuhaa and Rousseeuw (1989)). The ge-
ometric median is not arbitrarily manipulable by any mi-
nority of colluding voters.

This result shows that a minority of strategic voters whose
target vectors differ a lot from a large majority of other vot-
ers’ reported vectors do not have full control over the output
of the geometric median.

3.2 The Geometric Median is Not α-Strategyproof

The (geometric) median is slightly ill-behaved in dimen-
sion 1, when 1+ V is even. Typically, if V = 1, s = t = 0
and θ1 = 1, then any point between 0 and 1 is a geometric
median (according to our definition). A common solution

for this case is to take the middle point of the interval of the
middle vectors. However, this solution now fails to be strat-
egyproof. Indeed, voter 0 could now obtain GM(s, θ1) = t
by reporting s = −1. To retrieve strategyproofness in this
setting, Moulin (1980) essentially proposed to add one (or
any odd number of) fictitious voters. But, in higher dimen-
sions, even when it is perfectly well-defined, the geometric
median fails to guarantee strategyproofness. Figure 1 pro-
vides a simple proof of this, where voter 0 can gain by a
factor of nearly 2

√
3/3 ≈ 1.15. Below, we prove a stronger

result.

Theorem 1. Even under dim θ⃗ ≥ 2, there is no value of α
for which the geometric median is α-strategyproof.

This more precise result has important implications: if a
voter knows they gain a lot by strategic misreporting, then
they will more likely invest in, e.g., business intelligence,
to optimize their (mis)reporting. Their reported preferences
will then more likely diverge from their honest preferences.
We sketch the proof of Theorem 1 below. The full proof is
highly non-trivial and is given in Appendix B.2.

Sketch of proof. We study the achievable set AV , gather-
ing all the possible values of the geometric median that a
strategic voter can achieve by strategically choosing their
reported vector. First we show that this set is the set

AV ≜
{
z ∈ Rd

∣∣∣ ∃h ∈ ∇zL(θ⃗, z), ∥h∥2 ≤ 1/V
}
, (1)

of points z where the loss restricted to other voters v ∈
[V ] has a subgradient of norm at most 1/V (Lemma 8).
The proof of the theorem then corresponds to the exam-
ple of Figure 2, where other voters’ vectors are nearly one-
dimensional. For a large number of voters, we prove, the
achievable set is approximately a very flat ellipsoid defined
by a matrix H that has very different eigenvalues. Then
we show that the target vector t’s pull is heavily skewed
compared to the normal to the ellipsoid. This implies that
voter 0 can obtain a significantly better geometric median
by misreporting their target vector.

Interestingly, on the positive side, the proof of Theorem 1
requires the strategic voter’s target vector to take very pre-
cise locations to gain a lot by lying. Thus, while the geo-
metric median has failure modes where some voters have
strong incentives to misreport their preferences, in prac-
tice, such incentives are unlikely to be strong. On the neg-
ative side, our proof suggests the possibility of a vicious
cycle. Namely, it underlines the fact that a strategic voter’s
optimal strategy is to report a vector that is closer to the
subspaces where other voters’ vectors mostly lie. These
subspaces may be interpreted as the more polarized dimen-
sions. As a result, if all voters behave strategically, we
should expect the reported vectors to be even more flattened
on these subspaces than voters’ true target vectors. But
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Figure 2: Illustration of the example where the geometric
median fails to be α-strategyproof, for any value of α. Vot-
ers v ∈ [4] report vectors that are nearly one dimensional.
In the limit of a large number of voters, the achievable set
for voter 0 is an ellipsoid. But the pull of voter 0’s preferred
vector turns out to be skewed compared to the normal to the
ellipsoid. This means that voter 0 can obtain a significantly
better geometric median by misreporting their preference.

then, if voters react strategically to the other voters’ strate-
gic votes, there are even more incentives to vote according
to the one-dimensional line. In other words, the geomet-
ric median seems to initiate a vicious cycle where strategic
voters are incentivized to escalate strategic behaviours, and
this would lead them to essentially ignore all the dimen-
sions of the vote except the most polarized one.

4 ASYMPTOTIC
STRATEGYPROOFNESS

Our negative result of the previous section encourages us
to weaken the notion of strategyproofness. We do so by
replacing the bound on voters’ strategic gains for all other
voters’ inputs with a bound for most of other inputs. We
assume that each voter v reports a vector θv drawn inde-
pendently from a probability distribution θ̃. We then study
the maximal strategic gain of voter 0, when there are many
other voters whose reported vectors are obtained this way.
Any bound α that holds with high probability as the num-
ber V of voters is sufficiently large guarantees what we call
asymptotic α-strategyproofness (see Definition 3).

Throughout this section, we consider a given fixed distribu-
tion θ̃ of voters’ reported vectors. Our main result relies on
the following mild smoothness assumption about the dis-
tribution θ̃ of other voters’ vectors, which is clearly sat-
isfied by numerous classical probability distributions over
Rd, like the normal distribution (with Θ ≜ Rd).

Assumption 1. There is a convex open set Θ ⊆ Rd, with
d ≥ 5, such that the distribution θ̃ yields a probability den-
sity function p continuously differentiable on Θ, and such
that P [θ ∈ Θ] = 1 and E ∥θ∥2 =

∫
Rd ∥θ∥2 p(θ)dθ < ∞.

To simplify notations, we leave the dependence to the dis-
tribution implicit. For any number V ∈ N of other voters,
we denote by θ⃗V ∈ Rd×V the random tuple of the V vot-

ers’ reported vectors, and we define

L1:V (z) ≜
1

V

∑
v∈[V ]

∥z − θv∥2 , (2)

and g1:V ≜ GM(θ⃗V ) the random average of distances
and the geometric median for the voters v ∈ [V ]. We
denote by L0:V (s, z) and g0:V ≜ GM(s, θ⃗V ) the similar
quantities that also include voter 0’s strategic vote s, and
g†0:V ≜ GM(t, θ⃗V ) the truthful geometric median, which
results from voter 0’s truthful reporting of t.

4.1 Infinite Limit

Consider the limit where V → ∞. The distribution θ̃ de-
fines its own average-of-distance function:

L∞(z) ≜ Eθ∼θ̃ [∥z − θ∥2] . (3)

We say that g∞ is a geometric median of the distribution
θ̃ if it minimizes the loss L∞. Under Assumption 1, the
support of θ̃ is of full dimension d, which guarantees the
uniqueness of the geometric median (Proposition 12 in Ap-
pendix C). We denote by H∞ ≜ ∇2L∞(g∞) the Hessian
at the geometric median. The properties of this matrix will
be central to the strategyproofness of the geometric median.
Remark 1 (on the smoothness assumption). Note that As-
sumption 1 is a mild technical assumption, which intuitively
guarantees that, for a sufficiently large number of voters,
the infinite limit case will be approximately recovered. This
will allow us to invoke some statistics of θ̃ to derive our
strategyproofness bounds. In practice, assuming there are
sufficiently many voters, then θ̃ may be estimated by the
empirical distribution of the reported vectors.

4.2 The Geometric Median is Asymptotically
α-Strategyproof

One of our main results is that the geometric median is
asymptotically α-strategyproof, for some appropriate value
of α that depends on the skewness of the Hessian matrix
H∞. We define the skewness of a positive definite matrix
S by

SKEW(S) ≜ sup
x̸=0

{
∥x∥2 ∥Sx∥2

xTSx
− 1

}
(4)

= sup
∥u∥2=1

{
∥Su∥2
uTSu

− 1

}
.

This quantity bounds the angle between a vector x and
its linear transformation Sx. It is straightforward that
SKEW(βS) = SKEW(S) for all β > 0. Also the iden-
tity matrix has no skewness (SKEW(I) = 0). Intuitively,
the more S distorts the space, typically by having very dif-
ferent eigenvalues, the more skewed it is. In Section 4.4,
we derive upper and lower bounds on SKEW. We can now
present our main theorem.
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Figure 3: Illustration of our proof strategy. For a large
number of voters, the achievable set AV is approximately
an ellipsoid. To derive the strategyproof bounds, we study
the orthogonal projection π0 of the target vector t. Strate-
gyproofness then depends on the angle between t− g† and
t − π0, which we derive from the skewness of the positive
definite matrix that approximately defines the ellipsoid.

Theorem 2. Under Assumption 1, the geometric median is
asymptotically SKEW(H∞)-strategyproof.

Intuitively, the more the distribution of the reported vec-
tors is flattened along some dimensions, which can be in-
terpreted as more polarized dimensions, the worse the strat-
egyproofness bound is. The proof of this theorem is given
in Appendix C.2. In the next section, we provide a brief
proof sketch to help the readers follow our reasoning.

4.3 Proof Techniques and Technical Challenges

The proof of Theorem 2 relies on the following steps:

1. Approximating the Achievable Set with an Ellip-
soid. We first consider the infinite-case assuming a strate-
gic voter with a very small voting power ε where the voting
power of each voter is the magnitude of their pull compared
to the sum of all pulls (see Section 2.2). By analyzing the
Taylor’s approximation of the gradient of the loss function
for other voters, we show that the achievable set for the
strategic voter (defined in (1)) becomes approximately an
ellipsoid as ε → 0. Now, as shown in Figure 3, since the
ellipsoid is convex, the best-possible achievable point for
the strategic voter is the orthogonal projection π0 of the
target vector t on the ellipsoid. By comparing the distance
between t and π0 to the distance between t and the geo-
metric median g† obtained by a truthful reporting of t, we
then obtain what the strategic voter can gain by behaving
strategically, in the infinite-voter case where they have a
very small voting power ε. Intuitively, the more flattened
the ellipsoid, the more the strategic voter can gain; con-
versely, for a quasi-hyperspherical ellipsoid, the strategic
voter cannot gain by misreporting.

2. Deriving a Finite-voter Case from the Infinite One.
To obtain meaningful strategyproofness guarantees, we
consider the finite-voter case with a large (but not infinite)

number of voters. Unfortunately, the finite-voter case is
trickier than the infinite-voter case. To retrieve the strat-
egyproofness bound, we need in addition to bound the di-
vergence between the finite-voter case and the infinite-voter
case. Fortunately, for V large enough, the voting power of
a single strategic voter is small, which allows us to quasi-
reduce the finite-voter case to the infinite-voter case. In
fact, one important challenge of the proof is to leverage
the well-behaved smoothness of the infinite-voter case to
derive bounds for the finite-voter case, where singulari-
ties and approximation bounds make the analysis trick-
ier. Indeed, while the infinite-voter loss function is smooth
enough everywhere (under Assumption 1), the finite-voter
loss function is not differentiable everywhere. At any point
θv , it yields a nontrivial set of subgradients. This compli-
cates the analysis, as we exploit higher order derivatives.

To address this difficulty, we identify different regions
around the infinite-voter geometric median where the
finite-voter loss function is well-behaved enough as shown
in Figure 4. Namely, in high dimensions, assuming a
smooth distribution θ̃, the distances between any two ran-
domly drawn vectors are large. Concentration bounds al-
low us to guarantee that, with high probability, other vot-
ers’ vectors θv are all far away from the infinite geometric
median g∞ (Lemma 14 in the Appendix). This has two
important advantages. First, it guarantees the absence of
singularities in a region around g∞. Second, and more im-
portantly, it allows us to control the variations of higher-
order derivatives in this region (Lemma 16). This turns out
to be sufficient to guarantee that the finite-voter geometric
median is necessarily within this region.

3. Controlling the Largeness of the Third Derivative
Tensor. Another challenge that we encountered was to
guarantee that the achievable set in the finite-voter setting
is convex. This condition is indeed critical to provide an
upper bound on α, since it enables us to determine the
strategic voter’s optimal strategy by studying the orthog-
onal projection of the target vector onto the achievable set.
To prove this condition, we identify a sufficient condition,
which involves the third derivative tensor of the finite-voter
loss function (lemmas 11 and 13). Fortunately, just as we
manage to guarantee that the finite-voter geometric median
is necessarily close enough to the infinite-voter geomet-
ric median (Lemma 15), using similar arguments based on
concentration bounds, we successfully controlled the large-
ness of the third derivative tensor (Lemma 18). Therefore,
for a large number of voters and with high probability,
the achievable set is convex. Additionally, it is approxi-
mately an ellipsoid, which is characterized by the infinite-
voter Hessian matrix H∞. As a result, and since “rounder”
ellipsoids yield better strategyproofness guarantees, when
the number of voters is sufficiently large, the strategic gain
of a strategic voter is upper-bounded by how skewed the
infinite-voter Hessian matrix H∞ is.
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Figure 4: Illustration of the proof strategy for Theorem 2,
which is based on the following claims that hold with high
probability, for 2/d < 2r1 < r3 < r2 < 1/2, and for
V large enough. First, there is no vote in B(g∞, V −r1)
(a ball centered on g∞, and of radius V −r1 ). Thus, L1:V

is infinitely differentiable there. Moreover, the second and
third derivatives of L1:V cannot be too different from the
second and third derivatives of L∞ in B(g∞, V −r3). Plus,
g1:V lies in B(g∞, V −r2), and the set of geometric medians
that voter 0 can obtain by misreporting their preferences is
approximately an ellipsoid centered on g1:V . This ellipsoid
lies completely inside B(g∞, V −r3).

4.4 Bounds on SKEW

As we saw, the asymptotic strategyproofness of the geo-
metric median depends on the skewness of the Hessian ma-
trix H∞, defined in Equation (4). In this section, we derive
upper and lower bounds on the skewness function based
on the ratio of the extreme eigenvalues of the matrix. In-
tuitively, the more different the eigenvalues of S are, the
more skewed S is. We formalize this intuition with upper
and lower bounds, whose proofs are given in Appendix C.3.

Proposition 2. Denote Λ ≜ max SP(S)
min SP(S) the ratio of extreme

eigenvalues of S. Then 1+Λ
2
√
Λ
− 1 ≤ SKEW(S) ≤ Λ− 1. In

dimension 2, the lower-bound inequality is an equality.

5 SKEWNESS GENERALIZATIONS

We generalize our main result in two aspects. First, we
consider skewed preferences where users give different
weights to different dimensions. Second, we study the
skewed geometric median which can be derived by re-
scaling the space before computing the geometric median.

5.1 Skewed Preferences

Our analysis so far rested on the assumption that voters
have single-peaked preferences, which depend on the Eu-
clidean distance between the geometric median and their
preferred vectors. While this makes our analysis simpler,
in practice, this assumption is not easy to justify. In fact,
it seems reasonable to assume that some dimensions have
greater importance for voters than others.

This motivates us to introduce S-skewed preferences, for
a positive definite matrix S. More precisely, we say that
a voter v has an S-skewed preference if they aim to mini-
mize ∥g − θv∥S , where g is the result of the vector vote and
∥z∥S ≜ ∥Sz∥2 is the S-Mahalanobis norm. Intuitively, the
matrix S allows us to highlight which directions of space

matter more to voter v. For instance, if S =

(
Y 0
0 1

)
, with

Y ≫ 1, it means that the voter gives a lot more importance
to the first dimension than to the second dimension.

5.2 The Skewed Geometric Median

Intuitively, to counteract voters’ strategic exaggeration in-
centives, we could make it more costly to express strong
preferences along the more polarized and more important
dimensions. In other words, voters would have a unit force
along less polarized dimensions, and a less-than-unit force
along more polarized dimensions. We capture this intu-
ition by introducing “Σ-skewed geometric median” for a
positive definite matrix Σ ≻ 0.

Skewed Loss. We define the Σ-skewed infinite loss as

LΣ
∞(z, θ̃) ≜ Eθ∼θ̃∥z − θ∥Σ,

using the Σ-Mahalanobis norm (∥z∥Σ ≜ ∥Σz∥2), and we
call Σ-skewed geometric median gΣ∞ its minimum. We also
introduce their finite-voter equivalents, for 1+V voters, by

LΣ
0:V (s, z) ≜

1

1 + V
∥s− z∥Σ +

1

1 + V

∑
v∈[V ]

∥θv − z∥Σ ,

and gΣ0:V = argminz LΣ
0:V (s, z). Intuitively, this is equiv-

alent to mapping the original space to a new space using
the linear transformation Σ, and computing the geometric
median in this new space (Lemma 23 in Appendix D).

Remark 2. Interestingly, we also show that this skewed
geometric median can be interpreted as modifying the way
we measure the norm of voters’ forces in the original space,
thereby guaranteeing its consistency with the fairness prin-
ciple “one voter, one vote with a unit force”. The formal
discussion is given in Appendix E.



On the Strategyproofness of the Geometric Median

5.3 Strategyproofness of the Skewed Geometric
Median for Skewed Preferences

For any skewing positive definite matrix Σ, we define
HΣ

∞ ≜ ∇2LΣ
∞(gΣ∞) the Hessian matrix of the skewed loss

at the skewed geometric median. We then have the follow-
ing asymptotic strategyproofness guarantee for an appro-
priately skewing matrix. The sketch of the proof is pro-
vided in Appendix D.

Theorem 3. Under Assumption 1, the Σ-skewed ge-
ometric median is asymptotically SKEW(S−1HΣ

∞S−1)-
strategyproof for a voter with S-skewed preferences. In
particular, if HΣ

∞ = S1/2, then the Σ-skewed geometric
median is asymptotically strategyproof for this voter.

Interpretation. Let us provide additional insights into
what the theorem says. Intuitively, the theorem asserts
that the strategyproofness of the normal geometric median
(Σ = I) depends on how much an individual cares about
polarized dimensions. More precisely, the more the voter
cares about polarized dimensions, the less strategyproof the
geometric median is.

Indeed, suppose that the first dimension is both highly po-
larized and very important to voter 0. The fact that it is po-
larized would typically correspond to a Hessian matrix of

the form H∞ =

(
1 0
0 X2

)
, with X ≫ 1 (see the proof of

Theorem 1). The fact that voter 0 cares a lot about the first
dimension would typically correspond to a skewed prefer-

ence matrix S =

(
Y 0
0 1

)
, with Y ≫ 1. We then have

S−1H∞S−1 =

(
Y −2 0
0 X2

)
. By Proposition 2, we then

have SKEW(S−1H∞S−1) = X2+Y −2

2
√
X2Y −2

− 1 = Θ(XY ),
which is very large for X,Y ≫ 1. In particular, this makes
the normal geometric median unsuitable for voting prob-
lems where some dimensions are much more polarized and
regarded as important by most voters. Now, interestingly, if
we find a skewing matrix Σ that weakens the voters’ pulls
in the first dimensions, making the Hessian matrix approx-

imately HΣ
∞ ≈

(
1 0
0 1

Y 2

)
, then the resulting geometric

median becomes asymptotically strategyproof.

Remarks on the Skewed Hessian Matrix. In general,
gΣ∞ ̸= g∞ (Proposition 8 in Appendix A). This makes iden-
tifying a skewing matrix Σ such that HΣ

∞ = S1/2 challeng-
ing. In particular, it is hard to determine how such a matrix
relates to the statistics of θ̃. We note however the follow-
ing connection between the Hessian matrix ∇2LΣ

∞(z) of
the Σ-skewed loss and the Hessian matrix ∇2L∞(z) of the
Euclidean loss. The proof is given in Appendix D.2.

Proposition 3. For any z ∈ Rd, we have ∇2LΣ
∞(z) =

Σ(∇2L∞)(Σz,Σθ̃)Σ.

Note that in particular, if g
(H−1/2

∞ )
∞ = g∞ and if

∇2L∞(H
−1/2
∞ z,H

−1/2
∞ θ̃) = H∞, then the H

−1/2
∞ -

skewed geometric median is asymptotically strategyproof.
This will be the case if the support of θ̃ − g∞ lies in the
union of the eigenspaces of Σ, as this implies that, when
θ is drawn from θ̃, the vectors Σθ − Σg∞ and θ − g∞ are
colinear and point in the same direction with probability 1.
But, in general, these assumptions do not hold. This makes
the computation of the appropriate skewing challenging.
We thus leave open the problem of proving the existence
and uniqueness (up to overall homothety) of such a matrix,
as well as the design of algorithms to compute it.

6 NUMERICAL EXPERIMENT

Strategyproofness is commonly studied purely theoreti-
cally, as empirical strategyproofness evaluation is hard to
perform in a meaningful and fair way. Indeed, it requires
identifying optimal attacks against a system, which often
amounts to solving an intractable optimization problem. In
particular, if such an empirical evaluation fails to find an ef-
fective attack, it is unclear if this is because no such attack
exists, or because no such attack has been found. Nev-
ertheless, here we provide a simple experiment to evaluate
the effect of the (skewness of the) underlying distribution
on the strategic gain α when using the geometric median to
aggregate voters’ vectors. First, we sample 500000 vectors
from a 2 dimensional Gaussian distribution θ̃ with mean 0

and covariance matrix of
(
c 0
0 1

c

)
for a parameter c. Note

that as shown in Proposition 2, c is closely related to the
skewness of distribution θ̃. We assume the strategic voters
have a 1% voting power, i.e., we simulate 5000 strategic
voters all with the same target vector t. Then, to find a vul-
nerable target vector, we use a heuristic idea similar to that
of Figure 2. Essentially, in each dimension, we find the ex-
treme achievable geometric median for the strategic voters.
The target vector t is then the combination of these extreme
values of both dimensions. Finally, We approximately find
the maximum strategic gain by performing a grid search of
the best reported vector s in a neighborhood of t. Figure 5
shows the dependence of the strategic gain α on parame-
ter c and validates the intuition that the more skewed the
space, the less strategyproof geometric median is. This ex-
periment demonstrates that the skewness of the underlying
distribution is a crucial factor to consider when assessing
the strategyproofness of geometric median.

7 RELATED WORK

Strategyproofness in one dimension has been exten-
sively studied (Moulin, 1980; Procaccia and Tennen-
holtz, 2013; Feigenbaum and Sethuraman, 2015). It was
shown (Moulin, 1980) that a generalized form of the me-
dian is group strategyproof, and that the randomized Con-
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Figure 5: Dependence of the maximum strategic gain α on
parameter c, where c is the square root of condition number
of the underlying distribution’s covariance matrix.

dorcet voting system is also group strategyproof for single-
peaked preferences (Hoang, 2017). The one-dimension
median was also leveraged for mechanism design without
payment (Procaccia and Tennenholtz, 2013).

However, generalizing the median to higher dimensions is
not straightforward (Lopuhaa and Rousseeuw, 1989). A
common generalization known as the coordinate-wise me-
dian, was shown to be strategyproof, but not group strat-
egyproof (Sui and Boutilier, 2015). The extent to which
the generalized coordinate-wise median and the quantile
mechanism are α-(group)-strategyproof have been stud-
ied by Sui and Boutilier (2015), though their definition
slightly diverges from ours (their error is additive, not mul-
tiplicative). Remarkably, it was shown by Kim and Roush
(1984) that, in dimension 2, the only strategyproof, anony-
mous and continuous voting system is the (generalized)
coordinate-wise median.

Without restricting the dimension, but assuming the vec-
tors to be taken from compact subsets of Euclidean spaces,
strategyproof voting systems were characterized assuming
all voters have generalized single-peaked preferences (Bar-
berà et al., 1998). This approach built upon Border and Jor-
dan (1983) which characterized strategyproof voting sys-
tems for Cartesian product ranges. In both cases, the set
of strategyproof voting systems was defined as the class of
generalized (coordinate-wise) median voter schemes which
were shown in the case of Barberà et al. (1998) to also sat-
isfy the intersection property introduced by5 Barberà et al.
(1997).

Overall, the coordinate-wise median has more desirable
strategyproofness than the geometric median (Farhadkhani
et al., 2021). It is also important to notice that, as op-
posed to the coordinate-wise median, the geometric me-
dian guarantees that the output vector belongs to the con-
vex hull of voters’ vectors (Proposition 9). This makes the
coordinate-wise median unsuitable for problems where the

5This property roughly guarantees a certain level of coordina-
tion between the decisions taken on each coordinate.

space of relevant vectors is the convex hull of the input
vectors. This holds, for instance, for the budget alloca-
tion problem, whose decision vector z must typically sat-
isfy z ≥ 0 and

∑
z[i] = 1. In dimension 3, if three voters

have preferences (1, 0, 0), (0, 1, 0) and (0, 0, 1), then the
coordinate-wise median would output (0, 0, 0) which may
be undesirable. On the other hand, the geometric median
would output (1/3, 1/3, 1/3), which seems more desirable.
Similarly, the coordinate-wise median is unfit to aggregate
covariant matrices, which must be symmetric and semi-
definite positive.

Another line of work focused on bounding the approxima-
tion ratio, which is the extent to which social cost is lost
by using alternative aggregation rules like coordinate-wise
median (Goel and Hann-Caruthers, 2020; Lu et al., 2009;
Walsh, 2020). Several papers also consider other variations
of this problem, e.g., choosing k facility locations instead
of one (Escoffier et al., 2011), assigning different weights
to different nodes (Zhang and Li, 2014), and assuming that
the nodes lie on a network represented by a graph (Alon
et al., 2010). Others have addressed the computational
complexity of the geometric median (Cohen et al., 2016).
Another work (Brady and Chambers, 1995) shows that for
three agents the geometric median is the only rule that sat-
isfies anonymity, neutrality, and Maskin-Monotonicity.

8 CONCLUSION

We analyzed different flavors of strategyproofness for the
geometric median, an instrumental component of the se-
cure machine learning toolbox. First, we showed that,
in general, there can be no guarantee of approximate-
strategyproofness, by exhibiting worst-case situations.
However, we proved that, assuming that voters’ vectors fol-
low some distribution θ̃, asymptotic α-strategyproofness
can be ensured. We then generalized our results to the
case where some dimensions may matter more to the vot-
ers than other dimensions. In this setting, we proved that
the geometric median becomes less strategyproof, when
some dimensions are more polarized and more important
than others. Finally, we showed how the skewed geometric
median can improve asymptotic strategyproofness, by pro-
viding more voting rights along more consensual dimen-
sions. Overall, our analysis helps better identify the set-
tings where the geometric median can indeed be a suitable
solution to high dimensional voting.
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R., Qi, H., Ramage, D., Raskar, R., Raykova, M., Song,
D., Song, W., Stich, S. U., Sun, Z., Suresh, A. T., Tramèr,
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Appendix

Organization

The appendices are organized as follows:

• Appendix A proves some useful preliminary results about the geometric median that are needed in this paper.

• Appendix B includes the proofs of the results presented in Section 3 (in particular, the proof of Theorem 1).

• Appendix C includes some proofs and deferred results from Section 4 (in particular, the proof of Theorem 2).

• Appendix D includes some proofs and deferred results from Section 5 (in particular, the proof of Theorem 3).

• Appendix E discusses the notion of alternative unit forces and proves auxiliary results on the equivalence between ℓp
penality and ℓq-unit force vote for 1

p +
1
q = 1 and the equivalence between Σ-skewed geometric median, and Σ−1-unit

forces.

A GEOMETRIC MEDIAN: PRELIMINARIES

In this section, we characterize a few properties of the geometric median, many of which are useful for our subsequent
proofs. For the sake of exposition, we consider in this section a geometric median restricted to the voters v ∈ [V ], in which
case, the loss function would be

L(θ⃗, z) ≜ 1

V

∑
v∈[V ]

∥z − θv∥2 . (5)

The generalization to 1 + V voters is straightforward.

A.1 Unit Forces

We first show that the geometric median verifies the fairness principle “one voter, one vote with a unit force”. Consider a
system in which each voter v pulls the output of voting z towards their location θv with a unit force. Voter v’s force is then
given by the unit vector uz−θv in the direction of z − θv . Any equilibrium of this process must then be a point z where all
the forces cancel out, i.e., we must essentially have

∑
v∈V uz−θv = 0. Lemma 2 shows that this condition is equivalent to

the computation of a geometric median. But first, let us characterize the gradient of the ℓ2-norm.

Lemma 1. The gradient of the Euclidean norm is a unit vector. More precisely, for all z ∈ Rd, we have ∇∥z∥2 = uz ,
where uz ≜ z/ ∥z∥2 if z ̸= 0, and otherwise u0 ≜ B(0, 1) is the unit ball centered at the origin.

In the latter case, the ℓ2 norm thus actually has a large set of subgradients.

Proof. Assume z ̸= 0. We have ∇∥z∥22 = 2z. As a result, ∇∥z∥2 = ∇
√
∥z∥22 = ∇∥z∥22 /2

√
∥z∥22 = z/ ∥z∥2 = uz .

Now consider the case z = 0. Then note that for all x ∈ Rd, we have ∥x∥2 − ∥z∥2 = xTux ≥ xTh for any vector
h of Euclidean norm at most 1. This proves that ∇z=0 ∥z∥2 ⊃ B(0, 1). On the other hand, if ∥h∥2 > 1, then we have
∥εuh∥2 = ε < ε ∥h∥2 = (εuh)

Th. Thus h cannot be a subgradient, and thus ∇z=0 ∥z∥2 = B(0, 1) = u0.

As an immediate corollary, the following condition characterizes the geometric medians.

Lemma 2. The sum of voters’ unit pulls cancel out on g ≜ GM(θ⃗), i.e., 0 ∈
∑

v∈[V ] ug−θv .

Proof. By Lemma 1, ∇z ∥z − θv∥2 = uz−θv . Therefore, V∇zL(θ⃗, z) =
∑

v∈[V ] uz−θv . The optimality condition of g

then implies 0 ∈ ∇zL(θ⃗, g) and hence 0 ∈
∑

v∈[V ] ug−θv .

Before moving on, we make one last observation about the second derivative of the Euclidean norm, which is very useful
for the rest of the paper.
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Lemma 3. Suppose z ̸= 0. Then ∇2 ∥z∥2 = 1
∥z∥2

(
I − uzu

T
z

)
is a positive semi-definite matrix. The vector z is an

eigenvector of the matrix associated with eigenvalue 0, while the hyperplane orthogonal to z is the (d − 1)-dimensional
eigenspace of ∇2 ∥z∥2 associated with eigenvalue 1/ ∥z∥2.

Notation: We denote by z[i], the i-th coordinate of vector z.

Proof. For clarity, let us denote ℓ2(z) ≜ ∥z∥2. By Lemma 1, we know that ∇ℓ2(z) = uz = z/ℓ2(z). We then have

∂2
ijℓ2(z) =

1

ℓ2(z)2
(ℓ2(z)∂jz[i]− z[i]∂jℓ2(z)) =

1

ℓ2(z)

(
δji −

z[i]

ℓ2(z)

z[j]

ℓ2(z)

)
, (6)

where δji = 1 if i = j, and 0 if i ̸= j. Combining all coordinates then yields

∇2ℓ2(z) =
1

∥z∥2

(
I − z

∥z∥2
zT

∥z∥2

)
=

1

∥z∥2

(
I − uzu

T
z

)
. (7)

It is then clear that ∇2ℓ2(z)z = 1
∥z∥2

(
z − uzu

T
z z
)
= 0. Meanwhile, if x ⊥ z, then uT

z x = 0, which then results in
∇2ℓ2(z)x = x/ ∥z∥2. This proves the lemma.

Intuitively, the lemma says that the pull of z on 0 does not change if we slightly move z along the direction z. However,
this pull is indeed changed if we move z in a direction orthogonal to z. Moreover, the further away z is from 0, the weaker
is this change in direction.

A.2 Existence and Uniqueness

In dimension one, the definition of the geometric median coincides with the definition of the median. As a result, the
geometric median may not be uniquely defined. Fortunately, in higher dimensions, the uniqueness can be guaranteed,
under reasonable assumptions. We first prove a few useful lemmas about the strict convexity of convex and piecewise
strictly convex functions.

Lemma 4. If f is convex on [0, 1], and strictly convex on (0, 1), then it is strictly convex on [0, 1].

Proof. Consider x, y ∈ [0, 1], with x < y, λ ∈ (0, 1) and µ ≜ 1 − λ. Denote z = λx + µy. It is straightforward
to verify that z ∈ (0, 1). Define x′ ≜ x+z

2 and y′ ≜ z+y
2 . Clearly, we have x′, y′ ∈ (0, 1). Moreover, λx′ + µy′ =

1
2 (λx + µy) + 1

2 (λ + µ)z = z. By strict convexity of f in (0, 1), we then have f(z) < λf(x′) + µf(y′). Moreover,
by convexity of f in [0, 1], we also have f(x′) ≤ 1

2f(x) +
1
2f(z) and f(y′) ≤ 1

2f(y) +
1
2f(z). Combining the three

inequalities yields f(z) < 1
2 (λf(x) + µf(y)) + 1

2f(z), from which we derive f(z) < λf(x) + µf(y). This allows to
conclude.

Lemma 5. If f : [0, 1] → R is convex, and if there is w ∈ (0, 1) such that f is strictly convex on (0, w) and strictly convex
on (w, 1). Then, for any x < w < y, we have f(w) < y−w

y−x f(x) +
w−x
y−x f(y).

Proof. Define x′ ≜ x+w
2 and y′ ≜ w+y

2 . Since f is strictly convex on (0, w), by Lemma 4, we know that it is strictly
convex on [0, w]. As a result, we have f(x′) < 1

2f(x) +
1
2f(w). Similarly, we show that f(y′) < 1

2f(y) +
1
2f(w). Note

now that y−w
y−x x

′ + w−x
y−x y

′ = 1
2
(y−w)x+(w−x)y

y−x + w
2 = w. Using the convexity of f over [0, 1], we then have f(w) ≤

y−w
y−x f(x

′) + w−x
y−x f(y

′) < y−w
y−x

(
1
2f(x) +

1
2f(w)

)
+ w−x

y−x

(
1
2f(y) +

1
2f(w)

)
= 1

2

(
y−w
y−x f(x) +

w−x
y−x f(y)

)
+ 1

2f(w).
Rearranging the terms yields the lemma.

Lemma 6. If f : [0, 1] → R is convex, and if there is w ∈ [0, 1] such that f is strictly convex on (0, w) and strictly convex
on (w, 1), then f is strictly convex on [0, 1].

Proof. Consider x, z, y ∈ [0, 1], with x < z < y. We denote λ ≜ z−x
y−x ∈ (0, 1) and µ ≜ 1−λ. We then have z = λx+µy.

If x ≥ w or y ≤ w, then by Lemma 4, we know that f(z) < λf(x)+µf(y). Moreover, Lemma 5 yields the same equation
for the case x < z = w < y.
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Now assume x < z < w < y. By Lemma 5, we have f(w) < y−w
y−x f(x) +

w−x
y−x f(y). We also know that z = w−z

w−xx +

z−x
w−xw. By strict convexity, we thus have f(z) < w−z

w−xf(x) +
z−x
w−xf(w) <

w−z
w−xf(x) +

z−x
w−x

(
y−w
y−x f(x) +

w−x
y−x f(y)

)
=

λf(x) + µf(y).

The last case x < w < z < y is dealt with similarly.

Lemma 7. Assume that f : [0, 1] → R is convex, and that there is a finite number of points w0 ≜ 0 < w1 < . . . <
wK−1 < wK ≜ 1 such that f is strictly convex on (wk−1, wk) for k ∈ [K]. Then f is strictly convex on [0, 1].

Proof. We prove this result by induction on K. For K = 1, we simply invoke Lemma 4. Now assume that it holds for
K − 1, and let us use this to derive it for K. By induction, we know that f is strictly convex on (0, wK−1) (we can use the
induction hypothesis more rigorously by defining g(x) ≜ f(xwK−1)). Yet, by assumption, f is also known to be convex
on (wK−1, 1). Lemma 5 thus applies, and implies the strict convexity of f on [0, 1].

In what follows, we define the dimension of the tuple θ⃗ of preferred vectors as the dimension of the affine space spanned
by these vectors, i.e., dim θ⃗ ≜ dim {θv − θw | v, w ∈ [V ]}. We then have the following result.

Proposition 4. z 7→ L(θ⃗, z) is infinitely differentiable for all z /∈ {θv | v ∈ [V ]}. Moreover, if dim θ⃗ ≥ 2, then for all such
z, the Hessian matrix of the sum of distances is positive definite, i.e., ∇2

zL(θ⃗, z) ≻ 0. In particular, L is then strictly convex
on Rd, and has a unique minimum.

Proof. Define ℓ2(z) ≜ ∥z∥2 =
√
zT z =

√∑
i∈[d] z

2
i . This function is clearly infinitely differentiable for all points z ̸= 0.

Since L(θ⃗, z) = 1
V

∑
ℓ2(z − θv), it is also infinitely differentiable for z /∈ {θv | v ∈ [V ]}.

Moreover, by using triangle inequality and absolute homogeneity, we know that, for any λ ∈ [0, 1] and any θv ∈ Rd, we
have

ℓ2 ((λz + (1− λ)z′)− θv) = ℓ2 (λ(z − θv) + (1− λ)(z′ − θv)) (8)
≤ ℓ2(λ(z − θv)) + ℓ2((1− λ)(z′ − θv)) = λℓ2(z − θv) + (1− λ)ℓ2(z

′ − θv), (9)

which proves the convexity of z 7→ ℓ2(z−θv). Since the sum of convex functions is convex, we also know that z 7→ L(θ⃗, z)
is convex too.

Now, we know that dim(z, θ⃗) ≥ dim(θ⃗) ≥ 2. Therefore, there exists v, w ∈ [V ] such that a ≜ z − θv and b ≜ z − θw are
not colinear. This implies that −1 < uT

a ub < 1. By Lemma 3, we then have

∇2
zL(θ⃗, z) ⪰

1

V ∥a∥2

(
I − uau

T
a

)
+

1

V ∥b∥2

(
I − ubu

T
b

)
(10)

⪰ 1

V max {∥a∥2 , ∥b∥2}
(
2I − uau

T
a − ubu

T
b

)
(11)

⪰ 1

V max {∥a∥2 , ∥b∥2}

(
2I − 1

2
(ua + ub)(ua + ub)

T − 1

2
(ua − ub)(ua − ub)

T

)
(12)

=
2

V max {∥a∥2 , ∥b∥2}

(
I − 1 + uT

a ub

2

(ua + ub)(ua + ub)
T

∥ua + ub∥22
− 1− uT

a ub

2

(ua − ub)(ua − ub)
T

∥ua − ub∥22

)
, (13)

where we used ∥ua + ub∥22 = 2 + 2uT
a ub and ∥ua − ub∥22 = 2 − 2uT

a ub. This last matrix turns out to have eigenvalues

equal to 1−uT
a ub

V max{∥a∥2,∥b∥2}
in the direction ua + ub, 1+uT

a ub

V max{∥a∥2,∥b∥2}
in the direction ua − ub, and 1

V max{∥a∥2,∥b∥2}
in

directions orthogonal to a and b. Since −1 < uT
a ub < 1, all such quantities are strictly positive. Thus all eigenvalues of

∇2
zL(θ⃗, z) are strictly positive. This implies that along any segment (x, y) that contains no θv , then z 7→ L(θ⃗, z) is strictly

convex. Given that z 7→ L(θ⃗, z) is convex everywhere, and that there is only a finite number of points θv , Lemma 7 applies,
and proves the strict convexity of z 7→ L(θ⃗, z) everywhere and along all directions. Uniqueness follows immediately from
this.

To prove the existence of the geometric median, we observe that L(z) ≥ L(0), for z large enough. More precisely, denote
∆ ≜ max {∥θv∥2 | v ∈ [V ]}. Then L(0) ≤ ∆. Yet if ∥z∥2 ≥ 3∆, then ∥z − θv∥2 ≥ ∥z∥2 − ∥θv∥2 ≥ 3∆ − ∆ = 2∆,
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which implies L(z) ≥ 2∆. Thus infz∈Rd L(z) = infz∈B(0,∆) L(z), where B(0,∆) is a ball centered on 0, and of radius
∆. By continuity of L and compactness of B(0,∆), we know that this infimum is reached by some point in B(0,∆).

A.3 Symmetries

We contrast here the symmetry properties of the average, the geometric median and the coordinate-wise median.

Proposition 5. Assuming uniqueness, the ordering of voters does not impact the average, the geometric median and the
coordinate-wise median of their votes. This is known as the anonymity property.

Proof. All three operators can be regarded as minimizing an anonymous function, namely, the sum of square distances,
the sum of distances and the sum of ℓ1 distances (see Section E). All such functions are clearly invariant under re-ordering
of voters’ labels.

Proposition 6. Assuming uniqueness, the average, the geometric median and the coordinate-wise median are invariant
under translation and homothety. The average and the geometric median are also invariant under any orthogonal trans-
formation, but, in general, the coordinate-wise median is not.

Proof. The average and the geometric median can both be regarded as minimizing a function that only depends on Eu-
clidean distances. Since any Euclidean isometry M is distance-preserving, if AVG and GM are the average and the geo-
metric median of θ⃗, and if τ ∈ Rd and λ > 0, it is clear that λMAVG(θ⃗) + τ and λMGM(θ⃗) + τ is the average and the
geometric median of the family λMθ⃗ + τ .

In Section E, we show that the coordinate-wise median CW(.) minimizes a function that depends on ℓ1 distances. By the
same argument as above, this guarantees that the coordinate-wise median of λθ⃗ + τ is λCW(θ⃗) + τ . Now consider the
vectors θ1 ≜ (0, 0), θ2 ≜ (1, 2) and θ3 ≜ (2, 1). The coordinate-wise median of these vectors is CW(θ⃗) = (1, 1). Now

consider the rotation R =
√
2
2

(
1 −1
1 1

)
of these vectors around (0, 0) by an anti-clockwise eighth of a turn. We then

obtain the vectors Rθ1 ≜ (0, 0), Rθ2 ≜
√
2
2 (−1, 3) and Rθ3 ≜

√
2
2 (1, 3). Thus the coordinate-wise median of Rθ⃗ is

CW(Rθ⃗) =
√
2
2 (0, 3). However, RCW(θ⃗) =

√
2
2 (0, 2). Thus CW(Rθ⃗) ̸= RCW(θ⃗).

Proposition 7. Assuming uniqueness, if z is a center of symmetry of θ⃗, then it is the average, the geometric median and
the coordinate-wise median.

Proof. We can pair all vectors of θ⃗ different from z by their symmetry with respect to z. For any vote, the pull of each pair
on z cancels out. Thus the sum of pulls vanishes.

Proposition 8. The average is invariant under any invertible linear transformation, but, even assuming uniqueness, in
general, the geometric median and the coordinate-wise median are not.

This proposition might appear to be a weakness of the geometric median. Note that Section 5.2 actually leverages this to
define the skewed geometric median and improve strategyproofness.

Proof. The average is linear. Thus, for any matrix M ∈ Rd×d, we have AVG(Mθ⃗) = MAVG(θ⃗). Moreover, the case of
the coordinate-wise median follows from Proposition 6.

To see that the geometric median is not invariant under invertible linear transformation, consider θ1 ≜ (1, 0), θ2 ≜
(cos(τ/3), sin(τ/3)) = (−1/2,

√
3/2) and θ3 ≜ (cos(2τ/3), sin(2τ/3)) = (−1/2,−

√
3/2), where τ ≈ 6.28 corre-

sponds to a full turn angle. Then GM(θ⃗) = 0, since the sum of pulls at 0 cancel out. Now let us stretch space in

the y-axis, using the matrix M =

(
1 0

0 2/
√
3

)
. Clearly 0 is invariant under this stretch, as M0 = 0. Moreover,

we have Mθ1 = (1, 0), Mθ2 = (−1/2, 1) and Mθ3 = (−1/2,−1). The unit-force pull on 0 by voter 2 is then
Mθ2/ ∥Mθ2∥2 = 2/

√
5(−1/2, 1), while that of voter 3 is Mθ3/ ∥Mθ3∥2 = 2/

√
5(−1/2,−1). Finally, voter 1 still

pulls with a unit force towards the right. The sum of forces along the horizontal axis is then equal to 1− 2/
√
5 > 0. Thus

despite being invariant, 0 is no longer the geometric median.

The case of the coordinate-wise median follows from Proposition 6.
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Proposition 9. The average and the geometric median of a tuple of vectors belong to the convex hull of the vectors. In
general, the coordinate-wise median does not.

Proof. Consider z not in the convex hull. Then there must exist a separating hyperplane, with a normal vector h, which
goes from the convex hull to z. But then all vectors pull z in the direction of −h. The projection of the sum of forces on h
thus cannot be nil, which shows that z cannot be an equilibrium.

Now, to show that the coordinate-wise median may not lie within the convex hull of voters’ vote, consider θ1 = (1, 0, 0),
θ2 = (0, 1, 0) and θ3 = (0, 0, 1). Then the coordinate-wise median is (0, 0, 0). This clearly does not belong to the convex
hull of θ⃗.

Proposition 10. The geometric median is continuous on all points of θ⃗, if dim θ⃗ ≥ 2.

Proof. Consider θ⃗ ∈ Rd×V with dim θ⃗ ≥ 2. By Proposition 4, there is a unique geometric median g ≜ GM(θ⃗).

To prove the continuity of GM, let us consider a sequence of families θ⃗(n) such that θ⃗(n) → θ⃗, and let us prove that this
family eventually has a unique geometric median g(n), which converges to g as n → ∞.

First note that the set of families x⃗ ∈ Rd×V for which dim x⃗ ≤ 1 is isomorphic to the set of matrices of Rd×V of rank at
most 1. It is well-known that this set is closed for all norms in Rd×V (this can be verified by considering the determinants
of all 2 × 2 submatrices, which are all continuous functions). Thus the set of families x⃗ such that dim x⃗ ≥ 2 is open.
In particular, there is a ball centered on θ⃗ whose points x⃗ all satisfy dim x⃗ ≥ 2. Since, for n ≥ N0 large enough, θ⃗(n)

must belong to this ball, it must eventually satisfy dim θ⃗(n) ≥ 2. This guarantees the uniqueness of g(n) ≜ GM(θ⃗(n)) for
n ≥ N0.

Now consider any convergent subsequence g(nk) → g∗. Since the geometric median minimizes the loss L, for any nk ∈ N,
we know that L(g(nk), θ⃗(nk)) ≤ L(g, θ⃗(nk)). Taking the limit then yields L(g∗, θ⃗) ≤ L(g, θ⃗). Since g is the geometric
median of θ⃗, we thus actually have L(g∗, θ⃗) = L(g, θ⃗). But Proposition 4 guarantees the uniqueness of the geometric
median. Therefore, we actually have g∗ = g. Put differently, any convergent subsequence of g(n) converges to g.

Now by contradiction, assume g(n) does not converge to g. Thus, for any ε > 0, there is an infinite subsequence g(ni) of
g(n) lies outside the open ball B(g, ε). But since the geometric median belongs to the convex hull of the vectors (Proposition
9), for n ≥ N0, g(ni) is clearly also bounded. Thus, by the Bolzano-Weierstrass theorem, the subsequence g(ni) must have
at least one converging subsequence, whose limit g† lies outside the open ball B(g, ε). But this contradicts the fact that
every convergent subsequence of g(n) converges to g. Therefore, g(n) must converge to g. This proves that the geometric
median is continuous with respect to θ⃗.

A.4 Approximation of the Average

One interesting feature of the geometric median and of the coordinate-wise median is that they are provably a good approx-
imation of the average. Note that the uniqueness of the geometric median or of the coordinate-wise median is not needed
for the following well-known proposition.

Proposition 11 (Minsker (2015)). Denote by Σ(θ⃗) the covariance matrix of θ⃗ defined by

Σij(θ⃗) ≜
1

V

∑
v∈[V ]

(θv[i]− AVG(θ⃗)[i])(θv[j]− AVG(θ⃗)[j]). (14)

Then
∥∥∥AVG(θ⃗)− GM(θ⃗)

∥∥∥
2
≤
√

TR
(
Σ(θ⃗)

)
and

∥∥∥AVG(θ⃗)− CW(θ⃗)
∥∥∥
2
≤
√

TR
(
Σ(θ⃗)

)
.

Proof. We start with the geometric median. Recall that GM(θ⃗) minimizes z 7→ Ev [∥θv − z∥2], where v is drawn uniformly
randomly from [V ]. It thus does better to minimize this term than AVG(θ⃗). We then have∥∥∥AVG(θ⃗)− GM(θ⃗)

∥∥∥
2
=
∥∥∥Ev [θv]− GM(θ⃗)

∥∥∥
2
≤ Ev

[∥∥∥θv − GM(θ⃗)
∥∥∥
2

]
(15)

≤ Ev

[∥∥∥θv − AVG(θ⃗)
∥∥∥
2

]
≤

√
Ev

[∥∥∥θv − AVG(θ⃗)
∥∥∥2
2

]
=

√
TR
(
Σ(θ⃗)

)
, (16)
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Figure 6: Resilience of the geometric median against coordinated attacks by a minority of strategic voters S, who pull on
z in the opposite direction from a strict majority of truthful voters T , whose vectors are all in the ball centered on gT and
of radius ∆.

where we also used Jensen’s inequality twice for the function x 7→ ∥x∥2 and t 7→ t2.

We now address the case of the coordinate-wise median. On dimension i, using similar arguments as in the proof
above, this square of the discrepancy can be upper-bounded by the variance of θ along dimension i. In other words,

we have
∣∣∣AVG(θ⃗)[i]− CW(θ⃗)[i]

∣∣∣ ≤ √
Σii(θ⃗). Squaring this inequality, and summing over all coordinates then yields∥∥∥AVG(θ⃗)− CW(θ⃗)

∥∥∥2
2
≤
∑

Σii(θ⃗) = TR
(
Σ(θ⃗)

)
. Taking the square root yields the second inequality of the proposi-

tion.

B PROOFS OF SECTION 3

B.1 Proof of Proposition 1

Proof. Let us denote [V ] = T ∪ S a decomposition of the voters into two disjoint subsets of truthful and strategic voters.
We assume a strict majority of truthful voters, i.e., |T | > |S|. Denote gT ≜ GM(θ⃗T ) the geometric median of truthful
voters’ preferred vectors, and ∆ ≜ max {∥θt − gT ∥2 | t ∈ T} the maximum distance between a truthful voters’ preferred
vector and the geometric median gT .

Now consider any point z /∈ B(gT ,∆). The sum of forces on z by truthful voters has a norm equal to∥∥∥∥∥∑
t∈T

uθt−z

∥∥∥∥∥
2

≥

(∑
t∈T

uθt−z

)T

ugT−z =
∑
t∈T

uT
θt−zugT−z (17)

≥ |T | cosα = |T |
√
1− sin2 α = |T |

√
1− ∆2

∥z − gT ∥22
, (18)

where α is defined in Figure 6 as the angle between gT − z and a tangent to B(gT ) that goes through z. But then the sum
of all forces at z must be at least∥∥∥∥∥∑

t∈T

uθt−z +
∑
v∈S

us−z

∥∥∥∥∥
2

≥

∥∥∥∥∥∑
t∈T

uθt−z

∥∥∥∥∥
2

−

∥∥∥∥∥∑
v∈S

us−z

∥∥∥∥∥
2

(19)

≥ |T |
√
1− ∆2

∥z∥22
−
∑
v∈S

∥us−z∥2 = |T |
√
1− ∆2

∥z − gT ∥22
− |S| > 0, (20)

as long as we have ∥z − gT ∥2 > |T |∆√
|T |2−|S|2

. A value of z that satisfies this strict inequality can thus not be a geometric

median. Put differently, no matter what strategic voters do, we have

GM(θ⃗T , s) ∈ B

GM(θ⃗T ),

(
1− |S|2

|T |2

)−1/2

max
t∈T

∥∥∥θt − GM(θ⃗T )
∥∥∥
2

 . (21)

This concludes the proof.
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B.2 Proof of Theorem 1

To obtain Theorem 1, we make use of a technical lemma that characterizes the achievable set for the the strategic voter.
Consider the set AV ≜

{
z ∈ Rd

∣∣∣∃h ∈ ∇zL(θ⃗, z), ∥h∥2 ≤ 1/V
}

, of points z where the loss restricted to other voters
v ∈ [V ] has a subgradient of norm at most 1/V . We now observe that, by behaving strategically, voter 0 can choose any
value for the geometric median within AV .

Lemma 8. For any s ∈ Rd, GM(s, θ⃗) ∈ AV . Moreover, for dim θ⃗ ≥ 2 and s ∈ AV , we have GM(s, θ⃗) = s.

Proof. Define ℓ2(z) ≜ ∥z∥2. Now note that (1 + V )∇zL
(
s, θ⃗, z

)
= ∇zℓ2(z − s) + V∇zL(θ⃗, z). In other words, for

any subgradient h0:V ∈ ∇L
(
s, θ⃗, z

)
, there exists h0 ∈ ∇ℓ2(z − s) and h1:V ∈ ∇L

(
θ⃗, z
)

such that (1 + V )h0:V =

h0 + V h1:V . Note that any subgradient of ℓ2 has at most a unit ℓ2-norm (Lemma 1). Thus, ∥h0∥2 ≤ 1.

Now, assume z /∈ AV . Then for any h1:V ∈ ∇L
(
θ⃗, z
)

, we must have ∥h1:V ∥2 > 1/V . As a result,

(1 + V ) ∥h0:V ∥2 ≥ ∥V h1:V + h0∥2 ≥ V ∥h1:V ∥2 − 1 > 0. (22)

Thus, 0 /∈ ∇L
(
s, θ⃗, z

)
, which means that z cannot be a geometric median. For any s ∈ Rd, we thus necessarily have

GM(s, θ⃗) ∈ AV .

Now assume that s ∈ AV . Then there must exist h1:V ∈ ∇L
(
θ⃗, s
)

such that V ∥h1:V ∥2 ≤ 1. Thus h0 ≜ −V h1:V ∈
∇ℓ2(z − s), for z = s, since the set of subgradients of ℓ2 at 0 is the unit closed ball. We then have h0 + V h1:V =

0 ∈ ∇L
(
s, θ⃗, s

)
. Thus s minimizes L

(
s, θ⃗, ·

)
. The uniqueness of the geometric median for dim(s, θ⃗) ≥ dim θ⃗ ≥ 2

(Proposition 4) then implies that GM(s, θ⃗) = s.

We now provide the detailed proof of Theorem 1 by formalizing the example of Figure 2.

Proof of Theorem 1. Define θ1 = (−X,−1), θ2 = (−X, 1), θ3 = (X,−1) and θ4 = (X, 1), with X ≥ 8. We define the
sum of distance restricted to these four inputs as

L0(z) ≜
1

4

4∑
v=1

∥θv − z∥2 . (23)

Since 0 is a center of symmetry of the four inputs, it is the geometric median. Moreover, it can then be shown that the
Hessian matrix at this optimum is

H ≜ ∇2
zL0(0) =

1

4
(1 +X2)−3/2

(
1 0
0 X2

)
. (24)

Note that the ratio between the largest and smallest eigenvalues of this Hessian matrix H is X2, which can take arbitrarily
large values. This observation turns out to be at the core of our proof. The eigenvalues also yield bounds on the norm of a
vector to which H was applied. Using the inequality X ≥ 1,

1

32X3
∥z∥2 ≤ ∥Hz∥2 ≤ 1

4X
∥z∥2 ≤ ∥z∥2 . (25)

In the vicinity of 0, since ∇zL0(0) = 0 and since L0 is infinitely differentiable in 0, we then have

∇zL0(z) = Hz + ε(z), (26)

where ∥ε(z)∥2 = O(∥z∥22) when z → 0. In fact, for X ≥ 1, we know that there exists A such that, for all z ∈ B(0, 1),
where B(0, 1) is the unit Euclidean ball centered on 0, we have ∥ε(z)∥2 ≤ A ∥z∥22. We also define

λ ≜ inf
z∈B(0,1)

min SP(∇2
zL0(z)) and µ ≜ sup

z∈B(0,1)

max SP(∇2
zL0(z)) (27)
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the minimal and maximal eigenvalues of the Hessian matrix of L0 over the ball B(0, 1). By continuity (Lemma 20) and
strong convexity, we know that µ ≥ λ > 0. We then have λI ⪯ ∇2

zL0(z) ⪯ µI over B(0, 1). From this, it follows that

λ ∥z∥2 ≤ ∥∇zL0(z)∥2 ≤ µ ∥z∥2 , (28)

for all z ∈ B(0, 1). Now, since ∇2
zL0(z) ⪰ 0 for all z ∈ Rd, from this we also deduce that ∥∇zL0(z)∥2 ≥ λ if z /∈ B(0, 1).

Now consider V honest voters such that V/4 ∈ N and θ4k+j = θj , for j ∈ [4] and k ∈ [V/4 − 1]. We denote by θ⃗V this
vector family. For any voter 0’s strategic vote s, we then have

(1 + V )L(s, θ⃗V , z) = ∥s− z∥2 + V L0(z). (29)

Note that we then have
(1 + V )∇zL(s, θ⃗V , z) = uz−s + V∇L0(z), (30)

where ux ≜ x
∥x∥2

is the unit vector in the same direction as x. For all z /∈ B(0, 1), we then have∥∥∥∇zL(s, θ⃗V , z)
∥∥∥
2
≥

V ∥∇L0(z)∥2 − ∥uz−s∥2
1 + V

≥ V λ− 1

1 + V
> 0, (31)

for V > 1/λ. Thus, for V > 1/λ, we know that, for any s, we have GM(s, θ⃗V ) ∈ B(0, 1), where the inequality
∥ε(z)∥2 ≤ A ∥z∥22 holds.

Since L0 is strictly convex, there exists a unique αV > 0 such that
∥∥∇zL0(αV (X

3, 1))
∥∥
2
= 1/V . Denote gV ≜

αV (X
3, 1). Now define

t = t(V ) ≜ gV +
1√
V
∇zL0(gV ). (32)

The force of t on gV is then the unit force with direction t − gV = 1√
V
∇zL0(gV ). Since ∥∇zL0(gV )∥2 = 1/V , this

unit vector must be V∇zL0(gV ). Plugging this into the gradient of L (Equation (30)) shows that ∇zL(t, θ⃗V , gV ) = 0.
Therefore, Lemma 2 and the uniqueness of the geometric median (Proposition 4) allow us to conclude that gV is the
geometric median of the true preferred vectors, i.e., gV = GM(t, θ⃗V ). Also, we have∥∥∥t− GM(t, θ⃗V )

∥∥∥
2
=

1√
V

∥∇zL0(gV )∥2 = V −3/2. (33)

Since gV is a geometric median of t and θ⃗V , we know that, for V > 1/λ, we have gV ∈ B(0, 1). As a result, we have
λ ∥gV ∥2 ≤ 1/V = ∥∇zL0(gV )∥2 ≤ µ ∥gV ∥2, and thus

1/µV ≤ ∥gV ∥2 ≤ 1/λV. (34)

Now, suppose that, instead of reporting t, voter 0 reports s, which is approximately the orthogonal projection of t on the
ellipsoid {z | ∥Hz∥2 ≤ 1/V }. More precisely, voter 0’s strategic vote is defined as

s = s(V ) ≜ t− 2√
V

gTV HHHgV

∥HHgV ∥22
HHgV (35)

= gV +
1√
V
∇zL0(gV )−

2√
V

gTV HHHgV

∥HHgV ∥22
HHgV . (36)

Given the inequalities ∥Hz∥2 ≤ ∥z∥2 (Equation (25)) and ∥gV ∥2 ≤ 1/λV , the norm of s can be upper-bounded by

∥s∥2 ≤ ∥gV ∥2 +
1√
V

∥∇zL0(gV )∥2 +
2√
V

∥HgV ∥2 ∥HHgV ∥2
∥HHgV ∥2

≤ 1 + (2 + λ)V −1/2

λV
. (37)

Assuming V ≥ 1 + 3/λ then implies ∥s∥2 ≤ (3 + λ)/λV ≤ 1 and ∥s∥2 = O(1/V ). As a result, ∥ε(s)∥2 ≤ A ∥s∥22 =
O(1/V 2). Thus

∥∇zL0(s)∥22 = ∥Hs+ ε(s)∥22 (38)

≤ ∥Hs∥22 + 2 ∥s∥2 ∥ε(s)∥2 + ∥ε(s)∥22 (39)

≤ ∥Hs∥22 +O(1/V 3), (40)
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where the hidden constant in O(1/V 3) depends on λ and A. Moreover, given that ∥gV ∥2 = O(1/V ) (Equation (34)) and
∇zL0(gV ) = HgV + ε(gV ), by Equation (36), we have

∥Hs∥22 = ∥HgV ∥22 +
2√
V
(HgV )

TH

(
HgV + ε(gV )− 2

gTV HHHgV

∥HHgV ∥22
HHgV

)
+O(1/V 3) (41)

= ∥∇zL0(gV )− ε(gV )∥22 +
2√
V
gTV HHHgV − 4√

V
gTV HHHgV +O(1/V 3) (42)

≤ ∥∇zL0(gV )∥22 −
2√
V
gTV HHHgV +O(1/V 3) (43)

≤ 1

V 2
− 2√

V
gTV HHHgV +O(1/V 3). (44)

The hidden constants in O(1/V 3) depend on λ, A, H and X . Since H has strictly positive eigenvalues and does not
depend on V , we know that gTV HHHgV = Θ(∥gV ∥22) = Θ(1/V 2). In particular, for V large enough 2√

V
gTV HHHgV =

Θ(1/V 2.5) takes larger values than O(1/V 3). We then have ∥∇zL0(s)∥2 < 1/V , which means that s lies inside the
achievable set AV . Therefore, Lemma 8 implies that for V large enough, by reporting s instead of t, voter 0 can move the
geometric median from gV to s, i.e., we have GM(s, θ⃗V ) = s. But then, the distance between voter 0’s preferred vector t
and the manipulated geometric median is given by

∥∥∥GM(s, θ⃗V )− t
∥∥∥
2
=

∥∥∥∥∥ 2√
V

gTV HHHgV

∥HHgV ∥22
HHgV

∥∥∥∥∥
2

=
2√
V

(HgV )
T (HHgV )

∥HHgV ∥2
. (45)

Now recall that gV = αV (X
3, 1). Moreover, αV

∥∥H(X3, 1)
∥∥
2
= ∥HgV ∥2 = ∥∇zL0(gV )− ε(gV )∥2 = 1/V +O(1/V 2).

Since H(X3, 1) = 1
4 (1 + X2)−3/2(X3, X2) = 1

4X
2(1 + X2)−3/2(X, 1), we have

∥∥H(X3, 1)
∥∥
2
= 1

4X
2(1 + X2)−1.

Thus, αV = 4X−2(1+X2)/V +O(1/V 2). As a result, we have HHgV = 1
16αV X

3(1+X2)−3(1, X). The norm of this
vector is then ∥HHgV ∥2 = 1

16αV X
3(1 +X2)−5/2. Moreover, its scalar product with HgV yields (HgV )

T (HHgV ) =
1
32α

2
V X

6(1 +X2)−9/2. We thus have

∥∥∥GM(s, θ⃗V )− t
∥∥∥
2
=

αV√
V

X6(1 +X2)−9/2

X3(1 +X2)−5/2
(46)

=
4X

(1 +X2)V 3/2
+O(V −5/2) (47)

=
4X

1 +X2

∥∥∥t− GM(t, θ⃗V )
∥∥∥
2
+O(V −5/2). (48)

In particular, for V large enough, we can then guarantee that∥∥∥t− GM(t, θ⃗V )
∥∥∥
2
>

1 +X2

8X

∥∥∥GM(s, θ⃗V )− t
∥∥∥
2

(49)

=

(
1 +

X2 − 8X + 1

8X

)∥∥∥GM(s, θ⃗V )− t
∥∥∥
2
. (50)

This proves that the geometric median fails to be X2−8X+1
8X -strategyproof. But our proof holds for any value of X , and

X2−8X+1
8X → ∞ as X → ∞. Thus, there is no value of α such that the geometric median is α-strategyproof.

C PROOFS AND DIFFERENT RESULTS FROM SECTION 4

In this section we provide a formal proof for the main result of our paper which is Theorem 2. We start by proving a few
useful facts about the infinite geometric median g∞ defined on the distribution of the reported vectors.

C.1 Preliminary Results for the Infinite Limit Case

Lemma 9. Under Assumption 1, with probability 1, we have dim θ⃗V = min {V − 1, d}.
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Proof. We prove this by induction over V . For V = 1, the lemma is obvious.

Assume now that the lemma holds for V ≤ d. Then dim θ⃗V = V − 1 with probability 1. The affine space generated by θ⃗V
is thus a hyperplane, whose Lebesgue measure is zero. Assumption 1 then implies that the probability of drawing a point
on this hyperplane is zero. In other words, with probability 1, θV+1 does not belong to the hyperplane, which implies that
dim θ⃗V+1 = dim θ⃗V + 1 = (V + 1)− 1 ≤ d, which proves the induction.

Now assume that the lemma holds for V ≥ d + 1. Then dim θ⃗V = d with probability 1. We then have dim θ⃗V+1 ≥
dim θ⃗V = d. Since this dimension cannot be strictly larger than d, we must then have dim θ⃗V+1 = d. This concludes the
proof.

Combing Lemma 9 with Proposition 4 guarantees the uniqueness of the geometric median for V ≥ 3 under Assumption 1.

Lemma 10. If d ≥ k + 1, then x 7→ ∥x∥−k
2 is integrable in B(0, 1), and

∫
B(0,ε)

∥x∥−k
2 dx = O(ε) as ε → 0.

Proof. Consider the hyperspherical coordinates (r, φ1, . . . , φd−1), where xj = r
(∏j−1

i=1 cosφi

)
sinφj . We then have

dx = rd−1dr
(∏d−1

i=1 cosd−i−1 φidφi

)
. The integral becomes∫

B(0,1)

∥x∥−k
2 = C(d)

∫ 1

0

r−krd−1dr = C(d)

∫ 1

0

rd−1−kdr, (51)

where C(d) is obtained by integrating appropriately all the angles of the hyperspherical coordinates, which are clearly
integrable. But

∫ 1

0
rd−1−kdr is also integrable when d − 1 − k ≥ 0. We conclude by noting that we then have∫ ε

0
rd−1−kdr ∝ εd−k = O(ε) for d− k ≥ 1.

Proposition 12. Under Assumption 1, L∞ is five-times continuously differentiable with a strictly positive definite Hessian
matrix on Θ. As a corollary, the geometric median g∞ is unique and lies in Θ.

Proof. Let z ∈ Θ and δ > 0 such that B(z, δ) ⊂ Θ. By Leibniz’s integral rule, we obtain

∇L∞(z) =

∫
Θ

∇z ∥z − θ∥2 p(θ)dθ =

∫
Θ

uz−θp(θ)dθ. (52)

To deal with the singularity at θ = z, we first isolate the integral in the ball B(z, ε), for some 0 < ε ≤ δ. On this compact
set, p is continuous and thus upper-bounded. We can then apply the previous lemma for k = 0 to show that this singularity
is negligible as ε → 0. Moreover, Leibniz’s integral rule does apply, since uz−θp(θ) can be upper-bounded by p(θ) outside
of B(z, δ), which is integrable by Assumption 1. This shows that L∞ is continuously differentiable. To prove that it is
twice-differentiable, we note that Leibniz’s integral rule applies again. Indeed, we have

∇2L∞(z) =

∫
Θ

∇2
z ∥z − θ∥2 p(θ)dθ =

∫
Θ

I − uz−θu
T
z−θ

∥z − θ∥2
p(θ)dθ, (53)

But note that each coordinate of the matrix I−uz−θu
T
z−θ

∥z−θ∥2
is at most 1

∥z−θ∥2
. By virtue of the previous lemma, for d ≥ 2,

this is integrable in z. Moreover, by isolating the integration in the ball B(z, ε), we show that the impact of the integration
in this ball is negligible as ε → 0. Finally, the rest of the integration is integrable, as 1

∥z−θ∥2
p(θ) can be upper-bounded by

1
δp(θ) outside of B(z, δ), which is integrable by Assumption 1.

The cases of the third, fourth, and fifth derivatives are handled similarly, with now the bounds
∣∣∣∂3

ijk ∥z − θ∥2
∣∣∣ ≤

6/ ∥z − θ∥22,
∣∣∣∂4

ijkl ∥z − θ∥2
∣∣∣ ≤ 36/ ∥z − θ∥32 and

∣∣∣∂5
ijklm ∥z − θ∥2

∣∣∣ ≤ 300/ ∥z − θ∥42, and using d ≥ 5.

To prove the strict convexity, consider a point z ∈ Θ such that p(z) > 0. By continuity of p, for any two orthogonal unit
vectors u1 and ud and η > 0 small enough, we must have p(z+ ηu1) > 0 and p(z+ ηud) > 0. For any ε > 0, there must
then be a strictly positive probability to draw a point in B(z, ε), a point in B(z + ηu1, ε), and a point in B(z + ηud, ε).
Moreover, for ε much smaller than η, then the three points thereby drawn cannot be colinear. We then obtain a situation
akin to the proof of Proposition 4. By the same argument, this suffices to prove that the Hessian matrix must be positive
definite. Therefore, L∞ is strictly convex.
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It follows straightforwardly from this that the geometric median is unique. Its existence can be derived by considering a
ball B(0, A) of probability at least 1/2 according to θ̃. If ∥z∥2 ≥ A+ 2E ∥θ∥2, then

L∞(z) ≥ 1

2
(A+ 2E ∥θ∥2 −A) ≥ E ∥θ∥2 = L∞(0). (54)

Thus L∞ must reach a minimum in B(0, A+2E ∥θ∥2). Finally, we conclude that the geometric median must belong to Θ,
by re-using the argument of Proposition 9.

C.2 Proof Steps for Theorem 2

In this section, we provide the full proof of Theorem 2 that consists of the following steps. First, in Section C.2.1, we
find the sufficient conditions under which for a given function F the set {z : ∥∇F (z)∥2 ≤ 1} is convex. We then use
this result to find sufficient conditions for the geometric median to become α-strategyproof in Section C.2.2. Then in
Section C.2.3 we show that these conditions are satisfied with high probability when the number of voters is large enough.
Next, Section C.2.4 proves that the SKEW function is continuous which is necessary for the proof of our theorem. Finally,
Section C.2.5 combines these steps (lemmas 13, 14, 15,18, and 16) to prove Theorem 2 .

C.2.1 Higher Derivatives and Unit-norm Gradients

Note that our analysis involves the third derivative tensor to guarantee the convexity of the achievable set (defined in (1)).
Therefore, here we provide a discussion about higher-order derivatives. We consider here a three-times continuously
differentiable convex function F , and we study the set of points z such that ∥∇F (z)∥2 ≤ 1. In particular, we provide
a sufficient condition for the convexity of this set, based on the study of the first three derivatives of F . This convexity
guarantee then allows us to derive a sufficient condition on L1:V to guarantee α-strategyproofness.

To obtain such guarantee, let us recall a few facts about higher derivatives. In general, the n-th derivative of a function
F : Rd → R at a point z is a (symmetric) tensor ∇nF (z) : Rd ⊗ . . .⊗ Rd︸ ︷︷ ︸

n times

→ R, which inputs n vectors and outputs a

scalar. This tensor ∇nF (z) is linear in each of its n input vectors. More precisely, its value for input [x1 ⊗ . . .⊗ xn] is

∇nF (z)[x1 ⊗ . . .⊗ xn] =
∑
i1∈[d]

. . .
∑

in∈[d]

(x1[i1]x2[i2] . . . xn−1[in−1]xn[in]) ∂
n
i1...inF (z), (55)

where ∂n
i1...in

F (z) is the n-th partial derivative of F with respect to the coordinates i1, i2, . . . , in (by the symmetry of
derivation, the order in which F is derived along the different coordinates does not matter).

For n = 1, we see that ∇F (z) is simply a linear form Rd → R. By Euclidean duality, ∇F (z) can thus be regarded as a
vector, called the gradient, such that ∇F (z)[x] = xT∇F (z). Note that if F is assumed to be convex, but not differentiable,
∇F (z) represents its set of subgradients at point z, i.e., h ∈ ∇F (z) if and only if F (z + δ) ≥ F (z) + hT δ for all δ ∈ Rd.
From this definition, it follows straightforwardly that z minimizes F if and only if 0 ∈ ∇F (z).

For n = 2, ∇2F (z) is now a bilinear form Rd ⊗ Rd → R. By isomorphism between (symmetric) bilinear forms and
(symmetric) matrices, ∇2F (z) can equivalently be regarded as a (symmetric) matrix, called the Hessian matrix, such that
∇2F (z)[x⊗ y] = xT

(
∇2F (z)

)
y.

A bilinear form B : Rd ⊗ Rd → R is said to be positive semi-definite (respectively, positive definite), if B[x ⊗ x] ≥ 0
for all x ∈ Rd (respectively, B[x ⊗ x] > 0 for all x ̸= 0). If so, we write B ⪰ 0 (respectively, B ≻ 0). Moreover,
given any x ∈ Rd, the function y 7→ B[x ⊗ y] becomes a linear form, which we denote B[x]. When the context is clear,
B[x] can equivalently be regarded as a vector. Finally, given two bilinear form A,B : Rd ⊗ Rd → R, we can define their
composition A · B : Rd ⊗ Rd → R by A · B[x⊗ y] ≜ A[x⊗ B[y]] = xTABy, where, in the last equation, A and B are
regarded as matrices.

We also need to analyze the third derivative of F , which can thus be regarded as a 3-linear form ∇3F (z) : Rd⊗Rd⊗Rd →
R. Note as well that, for any 3-linear form W and any fixed first input w ∈ Rd, the function (x⊗ y) 7→ W [w ⊗ x⊗ y] is
now a bilinear (symmetric) form Rd⊗Rd → R. This (symmetric) bilinear form will be written W [w] or W ·w, which can
thus equivalently be regarded as a (symmetric) matrix. Similarly, W [x⊗ y] can be regarded as a linear form Rd → R, or,
by Euclidean duality, as a vector in Rd.

Finally, we can state the following lemma, which provides a sufficient condition for the convexity of the sets of z ∈ Rd

with a unit-norm F -gradient.
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Figure 7: Illustration of what can be gained for target vector t ≜ g†0:V + γ∇L1:V (g
†
0:V ). The orthogonal projection π0

of t on the tangent hyperplane of the achievable set going through g†0:V yields a lower bound on what can be achieved by
voter 0 through their strategic vote s. This lower bound depends on the angle between ∇L1:V (g

†
0:V ) and the normal to the

hyperplane ∇2L1:V (g
†
0:V ) · ∇L1:V (g

†
0:V ).

Lemma 11. Assume that C ⊂ Rd is convex and that ∇2F (z) · ∇2F (z) + ∇3F (z) · ∇F (z) ⪰ 0 for all z ∈ C. Then
z 7→ ∥∇F (z)∥22 is convex on C.

Proof. Fix i ∈ [d]. By Taylor approximation of ∂iF around z, for δ → 0, we have

∂iF (z + δ) = ∂iF (z) +
∑
j∈[d]

δj∂
2
ijF (z) +

1

2

∑
j,k∈[d]

δjδk∂
3
ijkF (z) + o(∥δ∥22). (56)

This equation can equivalently be written:

∇F (z + δ) = ∇F (z) +∇2F (z)[δ] +
1

2
∇3F (z)[δ ⊗ δ] + o(δ2). (57)

Plugging this into the computation of the square norm of the gradient yields:

∥∇F (z + δ)∥22 =

∥∥∥∥∇F (z) +∇2F (z)[δ] +
1

2
∇3F (z)[δ ⊗ δ] + o(δ2)

∥∥∥∥2
2

(58)

= ∥∇F (z)∥22 + 2∇2F (z) [∇F (z)⊗ δ] +
∥∥∇2F (z)[δ]

∥∥2
2
+∇3F (z) [∇F (z)⊗ δ ⊗ δ] + o(∥δ∥22) (59)

= ∥∇F (z)∥22 + 2∇2F (z) [∇F (z)⊗ δ] +
(
∇2F (z) · ∇2F (z) +∇3F (z) · ∇F (z)

)
[δ ⊗ δ] + o(∥δ∥22). (60)

Therefore, matrix 2
(
∇2F (z) · ∇2F (z) +∇3F (z) · ∇F (z)

)
is the Hessian matrix of z 7→ ∥∇F (z)∥22 = ∇F (z)T∇F (z).

Yet a twice differentiable function with a positive semi-definite Hessian matrix is convex.

Lemma 12. Assume that F is convex, and that there exists z∗ ∈ Rd and β > 0 such that, for any unit vector u, there exists
a subgradient h ∈ ∇F (z∗ + βu) such that uTh > 1. Then the set A ≜

{
z ∈ Rd

∣∣∃h ∈ ∇F (z), ∥h∥2 ≤ 1
}

of points
where ∇F has a subgradient of at most a unit norm is included in the ball B(z∗, β).

Proof. Let z /∈ B(z∗, β). Then there must exist γ ≥ β and a unit vector u such that z − z∗ = γu. Denote zu ≜ z∗ + βu.
We then have z−zu = (γ−β)u. Moreover, we know that there exists hzu ∈ ∇F (zu) such that uThzu > 1. By convexity
of F , for any hz ∈ ∇F (z), we then have

(z − zu)
T (

hz − hzu

)
= (γ − β)uT

(
hz − hzu

)
≥ 0. (61)

From this, it follows that ∥hz∥2 ≥ uThz ≥ uThzu > 1. Thus z /∈ A.

C.2.2 Sufficient Conditions for α-Strategyproofness

Recall from (1) that the achievable set AV consists of the points z such that there exists a subgradient h ∈ ∇zL1:V (z)
such that ∥h∥2 ≤ 1/V . Below, we identify a sufficient condition on AV to guarantee α-strategyproofness. Note that
as explained in the previous section, this analysis involves the third derivative tensor to guarantee the convexity of the
achievable set, so that the proof ideas illustrated in Figure 7 are applicable.
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Lemma 13. Assume that dim θ⃗V ≥ 2 and that the following conditions hold for some β > 0:

• Smoothness: L1:V is three-times continuously differentiable on B(g1:V , 2β).

• Contains AV : For all unit vectors u, uT∇L1:V (g1:V + βu) > 1/V .

• Convex AV : ∀z ∈ B(g1:V , β), ∇2L1:V (z) · ∇2L1:V (z) +∇3L1:V (z) · ∇L1:V (z) ⪰ 0.

• Bounded skewness: ∀z ∈ B(g1:V , β), SKEW(∇2L1:V (z)) ≤ α.

Then the geometric median is α-strategyproof for voter 0.

Proof. Given Lemma 8, we know that, for t ∈ AV , we have
∥∥∥GM(t, θ⃗V )− t

∥∥∥
2
= 0, which guarantees α-strategyproofness

for such voters.

Now assume t /∈ AV , and recall that we defined g†0:V ≜ GM(t, θ⃗V ) as the truthful geometric median. By Lemma 8, we
know that g†0:V ∈ AV . Thus t ̸= g†0:V . Moreover, applying Lemma 12 to F ≜ V L1:V guarantees that AV ⊂ B(g1:V , β).
The first condition shows that L1:V is 3-times differentiable in a neighborhood of g†0:V . Plus, given the third condition, by
Lemma 11, we know that AV is a convex set.

Now, by definition, g†0:V must minimize the loss L0:V (t, ·), i.e., we must have

0 = ∇L0:V (t, g
†
0:V ) = ug†

0:V −t + V∇L1:V (g
†
0:V ). (62)

Equivalently, we have ut−g†
0:V

= V∇L1:V (g
†
0:V ). This means that

∥∥∥∇L1:V (g
†
0:V )

∥∥∥
2
= 1/V , and that there must exist

γ > 0 such that t = g†0:V + γ∇L1:V (g
†
0:V ).

For δ ∈ Rd small enough, Taylor approximation then yields∥∥∥∇F (g†0:V + δ)
∥∥∥2
2
=
∥∥∥∇F (g†0:V ) +∇2F (g†0:V )[δ] + o(∥δ∥2)

∥∥∥2
2

(63)

=
∥∥∥∇F (g†0:V )

∥∥∥2
2
+ 2∇2F (g†0:V )

[
∇F (g†0:V )⊗ δ

]
+ o(∥δ∥2) (64)

= 1 + 2hT δ + o(∥δ∥2), (65)

where h ≜ ∇2F (g†0:V ) · ∇F (g†0:V ).

Since z 7→ ∥∇F (z)∥22 is convex on B(g1:V , β), we know that, in this ball, 2h is thus a subgradient of z 7→ ∥∇F (z)∥22
at g†0:V . Thus, in fact, for all δ ∈ B(g1:V − g0:V , β), we have

∥∥∥∇F (g†0:V + δ)
∥∥∥2
2
≥ 1 + 2hT δ. Now assume that

g†0:V + δ ∈ AV . Then we must have 2hT δ ≤
∥∥∥∇F (g†0:V + δ)

∥∥∥2
2
− 1 ≤ 0. In other words, we must have AV ⊂ H, where

H ≜
{
z ∈ Rd

∣∣∣hT z ≤ hT g†0:V

}
is the half space of the hyperplane that goes through the truthful geometric median g†0:V ,

and whose normal direction is h.

Using Lemma 8 and the inclusion AV ⊂ H then yields

inf
s∈Rd

∥∥∥GM(s, θ⃗V )− t
∥∥∥
2
= inf

z∈AV

∥z − t∥2 ≥ inf
z∈H

∥z − t∥2 . (66)

Yet the minimal distance between a point t and a half space H is reached by the orthogonal projection π0 of t onto H, as
depicted in Figure 7. We then have

∥t− π0∥2 =
(
γ∇L1:V (g

†
0:V )

)T h

∥h∥2
=

γ∇2L1:V (g
†
0:V )

[
∇L1:V (g

†
0:V )⊗∇L1:V (g

†
0:V )

]
∥∥∥∇2L1:V (g

†
0:V ) · ∇L1:V (g

†
0:V )

∥∥∥
2

(67)

≥
γ
∥∥∥∇L1:V (g

†
0:V )

∥∥∥
2

1 + SKEW(∇2L1:V (g
†
0:V ))

≥

∥∥∥γ∇L1:V (g
†
0:V )

∥∥∥
2

1 + α
, (68)
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using our fourth assumption. Yet note that
∥∥∥g†0:V − t

∥∥∥
2
=
∥∥∥γ∇L1:V (g

†
0:V )

∥∥∥
2
. We thus obtain

∥∥∥g†0:V − t
∥∥∥
2
≤ (1 +

α) ∥t− π0∥2 ≤ (1 + α) infs∈Rd

∥∥∥GM(s, θ⃗V )− t
∥∥∥
2
, which is the lemma.

C.2.3 Finite-voter Guarantees

We show here that for a large enough number of voters and with high probability, finite-voter approximations are well-
behaved and, in some critical regards, approximate correctly the infinite case. The global idea of the proof is illustrated
in Figure 4. In particular, we aim to show that, when V is large, the achievable set AV is approximately an ellipsoid
within a region where L1:V is infinitely differentiable. In particular, we show that, with arbitrarily high probability under
the drawing of other voters’ vectors, for V large enough, the conditions of Lemma 13 are satisfied for β ≜ Θ(V −1) and
α ≜ SKEW(H∞) + ε.

An Infinitely-differentiable Region. Now, in order to apply Lemma 13, we need to identify a region near g∞ where,
with high probability, the loss function L1:V is infinitely differentiable. To do this, we rely on the observation that, in high
dimensions, random points are very distant from one another. More precisely, the probability of randomly drawing a point
ε-close to the geometric median g∞ is approximately proportional to εd, which is exponentially small in d. This allows us
to prove that, with high probability, none of the first V voters will be V −r1 -close to the geometric median, where r1 > 1/d
is a positive constant.

Lemma 14. Under Assumption 1, for any δ1 > 0, and r1 > 1/d, there exists V1(δ1) ∈ N such that, for V ≥ V1(δ1), with
probability at least 1− δ1, we have ∥θv − g∞∥2 ≥ V −r1 for all voters v ∈ [V ]. In particular, in such a case, L1:V is then
infinitely differentiable in B(g∞, V −r1).

Proof. Denote p∞ ≜ 1 + p(g∞) the probability density at g∞. Since p is continuous, we know that there exists ε0 > 0
such that p(z) ≤ p∞ for all z ∈ B(g∞, ε0). Thus, for any 0 < ε ≤ ε0, we know that P [θ ∈ B(g∞, ε)] ≤ volumed(ε)p∞,
where volumed(ε) is the volume of Euclidean d-dimensional ball with radius ε. Yet this volume is known to be upper-
bounded by 8π2εd/15 (Smith and Vamanamurthy, 1989). Thus for V ≥ ε

−1/r1
0 (and thus V −r1 ≤ ε0), we have

P [θ ∈ B(g∞, V −r1)] ≤ 8π2

15 p∞V −r1d. Now note that

P
[
∀v ∈ [V ], θv /∈ B(g∞, V −r1)

]
= 1− P

[
∃v ∈ [V ], θv ∈ B(g∞, V −r1)

]
(69)

≥ 1−
∑
v∈V

P
[
θv ∈ B(g∞, V −r1)

]
≥ 1− 8π2

15
p∞V 1−r1d. (70)

Now recall that r1 > 1
d . We thus have 8π2

15 p∞V 1−r1d → 0 as V → ∞. But now taking V ≥ V1(δ1) ≜

max
{
ε
−1/r1
0 , (8π2p∞/15δ1)

1/(r1d−1)
}

, we see that, with probability at least 1 − δ1, no voter v ∈ [V ] is V −r1 -close

to g∞. Given the absence of singularity in B(g∞, V −r1) in such a case, L1:V is infinitely differentiable in this region.

Approximation of the Infinite Geometric Median. The following lemma shows that as V grows, g1:V gets closer to
g∞ with high probability.

Lemma 15. Under Assumption 1, for any δ2 > 0, and 0 < r2 < 1/2, there exists V2(δ2) ∈ N such that, for all V ≥ V2(δ2),
with probability at least 1− δ2, we have ∥g1:V − g∞∥2 ≤ V −r2 .

Proof. Since ∇L∞(g∞) = 0 and L∞ is three times differentiable, using Taylor’s theorem around g∞, for any z ∈ B(0, 1),
we have ∇L∞(g∞ + z) = H∞z +O(∥z∥22). In particular, there exist a constant A such that for any z ∈ B(0, 1), we have
∥∇L∞(g∞ + z)−H∞z∥2 ≤ A ∥z∥22.

Now consider an orthonormal eigenvector basis u1, . . . ,ud of H∞, with respective eigenvalues λ1, . . . , λd. Note that since
H∞ is symmetric, we know that such a basis exists. We then define

λmin ≜ inf
z∈B(g∞,1)

minSp(∇2L∞(z)), (71)

the minimum eigenvalue of the Hessian matrix ∇2L∞(z) over the closed ball B(g∞, 1). Note that using the same argument
as Proposition 12, we can say ∇2L∞(z) is continuous and positive definite for all z ∈ B(g∞, 1), therefore, λmin is strictly
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positive. Now for any i ∈ [d], j ∈ {−1, 1}, and 0 < ε < 1, we know that

∥∇L∞(g∞ + jεui)− λijεui∥2 = ∥∇L∞(g∞ + jεui)−H∞jεui∥2 ≤ A ∥jεui∥22 = Aε2. (72)

Now define η ≜ min
{

1−2r2
4r2

, 1
}

. Since 0 < r2 < 1/2, we clearly have η > 0. Moreover, for ε < 1, since 2 ≥ 1 + η,

we have ε2 ≤ ε1+η . Therefore, ∥∇L∞(g∞ + jεui)−H∞jεui∥2 ≤ Aε1+η . For any voter v ∈ [V ], we then define the
random unit vector

Xijv ≜
θv − g∞ − jεui

∥θv − g∞ − jεui∥2
. (73)

Note that, since θ̃ is absolutely continuous with respect to the Lebesgue measure (Assumption 1), all vectors Xijv’s are
well-defined with probability 1. By the definition of L1:V and L∞, we then have

∇L1:V (g∞ + jεui) =
1

V

V∑
v=1

Xijv and ∇L∞(g∞ + jεui) = Eθv [Xijv]. (74)

Thus, for all k ∈ [d], ∇L1:V (g∞ + jεui)[k] is just the average of V i.i.d. random variables within the range [−1, 1],
and whose expectation is equal to ∇L∞(g∞ + jεui)[k]. Therefore, by Chernoff bound, defining the event Eijk(t) ≜
{|∇L1:V (g∞ + jεui)[k]−∇L∞(g∞ + jεui)[k]| ≤ t} for every t > 0, we obtain P [Eijk(t)] ≥ 1 − 2 exp (−t2V/2).
Defining eij = ∇L1:V (g∞ + jεui)− λijεui, under event Eijk

(
Aε1+η

)
, by triangle inequality, we obtain

|eij [k]| ≤ |∇L1:V (g∞ + jεui)[k]−∇L∞(g∞ + jεui)[k]|+ |∇L∞(g∞ + jεui)[k]− λijεui[k]| (75)

≤ Aε1+η + ∥∇L∞(g∞ + jεui)− λijεui∥2 ≤ 2Aε1+η. (76)

Denoting E∗ the event where such inequalities hold for all i, k ∈ [d] and j ∈ {−1, 1}, and using union bound, we have

P [E∗] ≥ P

 ⋂
i∈[d]

⋂
j∈{−1,1}

⋂
k∈[d]

Eijk
(
Aε2

) = P

¬ ⋃
i∈[d]

⋃
j∈{−1,1}

⋃
k∈[d]

¬Eijk
(
Aε2

) (77)

≥ 1−
∑
i∈[d]

∑
j∈{−1,1}

∑
k∈[d]

P
[
¬Eijk

(
Aε1+η

)]
≥ 1− 4d2 exp

(
−A2ε2+2ηV/2

)
. (78)

Now note that by Proposition 4, we know that L1:V is convex. Therefore, for any i ∈ [d] and j ∈ {−1, 1}, using the fact
that g1:V minimizes L1:V , we have

(g1:V − g∞ − jεui)
T∇L1:V (g∞ + jεui) = (g1:V − g∞ − jεui)

T (λijεui + eij) ≤ 0. (79)

Rearranging the terms and noting that λi > 0 then yields

(g1:V − g∞)T
(
jui +

eij
ελi

)
≤ (jεui)

T (jui +
eij
ελi

) = ε+
j

λi
uT
i eij = ε+

j

λi
eij [i]. (80)

Now define ε0 ≜ (λmin/4dA)
1/η . Under E∗, for ε ≤ ε0, this then implies ∥eij∥∞ ≤ 2Aε1+η ≤ 2Aεεη0 = ελmin

2d ≤ ελi

2d ,
For every i ∈ [d] and j ∈ {−1, 1}, we then have

(g1:V − g∞)T
(
jui +

eij
ελi

)
≤ ε+

1

λi
∥eij∥∞ ≤ ε

(
1 +

1

2d

)
≤ 3ε

2
. (81)

Now denote C ≜ ∥g1:V − g∞∥∞. Thus, there exist i ∈ [d] and j ∈ {−1, 1} such that (g1:V − g∞)[i] = jC. We then
obtain the lower bound

(g1:V − g∞)T
(
jui +

eij
ελi

)
= C +

(g1:V − g∞)T eij
ελi

≥ C −
∥g1:V − g∞∥2 ∥eij∥2

ελi
(82)

≥ C −
d ∥g1:V − g∞∥∞ ∥eij∥∞

ελi
≥ C − C

2
=

∥g1:V − g∞∥∞
2

, (83)

where we used ∥x∥2 =
√∑

x[k]2 ≤
√
d ∥x∥2∞ =

√
d ∥x∥∞ and the fact that ∥eij∥∞ ≤ ελi

2d . Combining Equations (81)

and (83) then yields, under E∗, the bound ∥g1:V − g∞∥2 ≤
√
d ∥g1:V − g∞∥∞ ≤ 3ε

√
d.
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Now note that if V ≥ (3
√
dε0)

−1/r2 , then we have εV ≜ V −r2/3
√
d ≤ ε0. Thus, under E∗ defined with εV , the previous

argument applies, which implies ∥g1:V − g∞∥2 ≤ V −r2 , as required by the lemma.

Now take V ≥ V2(δ2) ≜ max

{(
2(9d)1+η

A2 ln 4d2

δ2

) 1
1−2r2−2ηr2

, (3
√
dε0)

−1/r2

}
. By definition of η, we have η ≤ 1−2r2

4r2
.

As a result, using also the assumption r2 < 1/2, we then have 1 − 2r2 − 2ηr2 ≥ 1−2r2
2 > 0. It then follows that

V 1−2r2−2η ≥ 2(9d)1+η

A2 ln 4d2

δ2
. We then have

P [E∗] ≥ 1− 4d2 exp
(
−A2ε2+2η

V V/2
)
= 1− 4d2 exp

(
−A2V 1−2r2−2ηr2

2(9d)1+η

)
≥ 1− δ2, (84)

which is what was needed for the lemma.

Approximation of the Infinite Hessian Matrix. To apply Lemma 13, we need to control the values of the Hessian
matrix of L1:V . In this section, we show that, similar to the finite-voter geometric median g1:V , which is now known to
be close to the infinite geometric median g∞, the Hessian matrix is close to the infinite Hessian matrix H∞ at the infinite
geometric median g∞.
Lemma 16. Under Assumption 1, for 0 < 2r1 < r3, for any ε3, δ3 > 0, there exists V3(ε3, δ3) ∈ N such that, for all
V ≥ V3(ε3, δ3), with probability at least 1 − δ3, there is no vote in the ball B(g∞, V −r1) and, for all z ∈ B(g∞, V −r3),
we have

∥∥∇2L1:V (z)−H∞
∥∥
∞ ≤ ε3.

Before proving Lemma 16, we first start with an observation about unit vectors.
Lemma 17. For any 0 < r1 < r3, if ∥z∥2 ≥ V −r1 and ∥ρ∥2 ≤ V −r3 , then for any i ∈ [d], we have

|uz[i]− uz+ρ[i]| = O(V r1−r3) (85)

Proof. We have the inequalities

|uz[i]− uz+ρ[i]| =
∣∣∣∣ z[i]∥z∥2

− (z + ρ)[i]

∥z + ρ∥2

∣∣∣∣ = ∣∣∣∣∥z + ρ∥2 z[i]− ∥z∥2 (z + ρ)[i]

∥z∥2 ∥z + ρ∥2

∣∣∣∣ (86)

≤
∣∣∣∣ (∥z + ρ∥2 − ∥z∥2) |z[i]| − ∥z∥2 ρ[i]

∥z∥2 (∥z∥2 − ∥ρ∥2)

∣∣∣∣ (87)

≤
∣∣∣∣∥z + ρ∥2 − ∥z∥2

∥z∥2 − ∥ρ∥2

∣∣∣∣+ ∣∣∣∣ ρ[i]

∥z∥2 − ∥ρ∥2

∣∣∣∣ (88)

≤
2 ∥ρ∥2

∥z∥2 − ∥ρ∥2
, (89)

where we used the fact that ∥z + ρ∥2 − ∥z∥2 ≤ ∥ρ∥2. We then have

|uz[i]− uz+ρ[i]| ≤
2V −r3

V −r1 − V −r3
≤ 2V r1−r3

1− V r1−r3
= O(V r1−r3), (90)

which is the lemma.

We now move on to the proof of Lemma 16.

Proof of Lemma 16. Applying Lemma 14 shows that for V ≥ V1(δ3/2), under an event Eno−voter that holds with proba-
bility at least 1− δ3/2, the ball B(g∞, V −r1) contains no voters’ preferred vectors.

For any voter v ∈ [V ], and any i, j ∈ [d], we define

aijv ≜ ∇2ℓ2(g∞ − θv)[i, j] =
(I − ug∞−θvu

T
g∞−θv

)[i, j]

∥g∞ − θv∥2
. (91)

Since θ̃ is absolutely continuous with respect to the Lebesgue measure, we know that aijv is well-defined with probability
1. We then have

∇2L1:V (g∞)[i, j] =
1

V

V∑
i=1

aijv and H∞[i, j] = ∇2L∞(g∞)[i, j] = Eθv [aijv]. (92)
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Moreover, we can upper-bound the variance of aijv by

Var[aijv] ≤ Eθv [a
2
ijv] =

∫
Θ

(
(I − ug∞−θu

T
g∞−θ)[i, j]

∥g∞ − θ∥2

)2

p(θ)dθ ≤
∫
Θ

1

∥g∞ − θ∥22
p(θ)dθ. (93)

By Lemma 10, we know that this integral is bounded, thus, we have Var[aijv] < ∞. We then define the maximal variance
σ2 ≜ maxi,j Var[aijv] of the elements of the Hessian matrix. Since the voters’ preferred vectors are assumed to be i.i.d,
we then obtain

Var
[
∇2L1:V (g∞)[i, j]

]
=

1

V 2

V∑
v=1

Var[aijv] ≤
σ2

V
. (94)

Now applying Chebyshev’s inequality on ∇2L1:V (g∞)[i, j] yields

P
[∣∣∇2L1:V (g∞)[i, j]−H∞[i, j]

∣∣ ≥ ε3/2
]
≤

4Var
[
∇2L1:V (g∞)[i, j]

]
ε23

≤ 4σ2

V ε23
. (95)

Using a union bound, we then obtain

P
[
∃i, j ∈ [d],

∣∣∇2L1:V (g∞)[i, j]−H∞[i, j]
∣∣ ≥ ε3/2

]
≤ 4d2σ2

V ε23
. (96)

Therefore, taking V ≥ 8d2σ2

δ3ε23
, the event EHessian ≜

{
∀i, j ∈ [d],

∣∣∇2L1:V (g∞)[i, j]−H∞[i, j]
∣∣ ≤ ε3/2

}
occurs with

probability at least 1−δ3/2. Taking a union bound shows that, for V ≥ max
{
V1(δ3/2),

8d2σ2

δ3ε23

}
, the event E ≜ Eno−vote∩

EHessian occurs with probability at least 1− δ3.

We now bound the difference between finite-voter Hessian matrices at g∞ and at a close point z, by

V
∣∣∇2L1:V (z)[i, j]−∇2L1:V (g∞)[i, j]

∣∣ =
∣∣∣∣∣∣
∑
v∈[V ]

(I − uz−θvu
T
z−θv

)[i, j]

∥z − θv∥2
−

(I − ug∞−θvu
T
g∞−θv

)[i, j]

∥g∞ − θv∥2

∣∣∣∣∣∣ (97)

≤
∑
v∈[V ]

∣∣∣∣∣ (I − uz−θvu
T
z−θv

)[i, j]

∥z − θv∥2
−

(I − ug∞−θvu
T
g∞−θv

)[i, j]

∥g∞ − θv∥2

∣∣∣∣∣ (98)

≤
∑
v∈[V ]

∣∣∣∣I[i, j](∥g∞ − θv∥2 − ∥z − θv∥2)
∥z − θv∥2 ∥g∞ − θv∥2

∣∣∣∣+ ∣∣∣∣uz−θv [i]uz−θv [j]

∥g∞ − θv∥2
− ug∞−θv [i]ug∞−θv [j]

∥z − θv∥2

∣∣∣∣ . (99)

Note that, under E , for all voters v ∈ [V ], we have ∥g∞ − θv∥2 ≥ V −r1 . Now assume z ∈ B(g∞, V −r3), Lemma 17 then
applies with ρ ≜ ∥z − g∞∥2 ≤ V −r3 , yielding |ug∞−θv [i]− uz−θv [i]| = O(V r1−r3) ≤ 1 for all i ∈ [d]. Also, we have
|u[i]| ≤ ∥u∥2 = 1 for all unit vectors. Under E , we then have∣∣∣∣uz−θv [i]uz−θv [j]

∥g∞ − θv∥2
− ug∞−θv [i]ug∞−θv [j]

∥z − θv∥2

∣∣∣∣ ≤ ∣∣∣∣uz−θv [i]uz−θv [j]

∥g∞ − θv∥2
− uz−θv [i]ug∞−θv [j]

∥g∞ − θv∥2

∣∣∣∣
+

∣∣∣∣uz−θv [i]ug∞−θv [j]

∥g∞ − θv∥2
− uz−θv [i]uz−θv [j]

∥g∞ − θv∥2

∣∣∣∣+ ∣∣∣∣uz−θv [i]uz−θv [j]

∥g∞ − θv∥2
− ug∞−θv [i]ug∞−θv [j]

∥z − θv∥2

∣∣∣∣ (100)

≤ O(V 2r1−r3) +
2 |∥g∞ − θv∥2 − ∥z − θv∥2|

∥g∞ − θv∥2 ∥z − θv∥2
≤ O(V 2r1−r3) +

2V −r3

V −r1(V −r1 − V −r3)
= O(V 2r1−r3), (101)

where, in the last line, we used the triangle inequality, which implies |∥g∞ − θv∥2 − ∥z − θv∥2| ≤ ∥g∞ − z∥2 ≤ V −r3

and ∥z − θv∥2 ≥ ∥g∞ − θv∥2 − ∥g∞ − z∥2 ≥ V −r1 − V −r3 . Therefore, under E , we have∣∣∇2L1:V (z)[i, j]−∇2L1:V (g∞)[i, j]
∣∣ ≤ 1

V

∑
v∈[V ]

O(V 2r1−r3) = O(V 2r1−r3). (102)

We now use the fact that 2r1 < r3, which implies V 2r1−r3 → 0. Thus, for any ε3 > 0, there exists a V ′
3(ε3) such that, for

V ≥ V ′
3(ε3), we have ∣∣∇2L1:V (z)[i, j]−∇2L1:V (g∞)[i, j]

∣∣ ≤ ε3/2. (103)

Choosing V ≥ V3(ε3, δ3) ≜ max
{
V1(δ3/2),

8d2σ2

δ3ε23
, V ′

3(ε3)
}

, and combining the above guarantee with the guarantee
about event E proved earlier, yields the result.
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Third-derivative Approximation. Finally, to apply Lemma 13, we also need to control the third-derivative of L1:V

near the geometric median g1:V . In fact, for our purposes, it will be sufficient to bound its norm by a possibly increasing
function in V , as long as this function grows slower than V .

Definition 6. We denote ∇3L(z)[i, j, k], the third derivative of L(z) with respect to z[i], z[j], and z[k], and
∥∥∇3L(z)

∥∥
∞ =

maxi,j,k
∣∣∇3L(z)[i, j, k]

∣∣.
Lemma 18. Under Assumption 1, for r1, r3 > 0, there exists K ∈ R such that, for any δ4 > 0, there exists V4(δ4) ∈ N
such that, for all V ≥ V4(δ4), with probability at least 1 − δ4, no other voter’s vector lies in the ball B(g∞, V −r1) and,
for all z ∈ B(g∞, V −r3), we have

∥∥∇3L1:V (z)
∥∥
∞ = K(1 + V 3r1−r3).

Proof. We use the same proof strategy as the previous Lemma. First note that using Lemma 10 for d ≥ 5, the variance of
each element of the third derivative of L1:V is bounded, i.e.,

∀(i, j, k) ∈ [d]3,Var
[
∇3L1:V (g∞)[i, j, k]

]
= O

(∫
Θ

1

∥g∞ − θ∥42
p(θ)dθ

)
≜ σ2 < ∞. (104)

Similarly to the previous proof, we define the events

E∇3(t) ≜
{
∀i, j, k ∈ [d],

∣∣∇3L1:V (g∞)[i, j, k]−∇3L∞(g∞)[i, j, k]
∣∣ ≤ t

}
, (105)

Eno−vote ≜
{
∀v ∈ [V ], θv /∈ B(g∞, V −r3)

}
and E ≜ E∇3(V r) ∩ Eno−vote, (106)

where r ≜ max {0, 3r1 − r3} ≥ 0. Using Chebyshev’s bound and union bound, we know that, P [E∇3(t)] ≥ 1 −
d3σ2/V t2, where the O hides a constant derived from the upper bound on the variance of ∇3L1:V (g∞)[i, j, k], and
which depends only on θ̃. Therefore, we have P [E∇3(V r)] ≥ 1 − d3σ2V −(1+2r). Now, assuming V ≥ V4(δ4) ≜

max
{(

2d3σ2/δ
) 1

1+2r , V1(δ4/2)
}

, we know that the event E occurs with probability at least 1− δ4.

Now, we bound the deviation of ∇3L1:V (z) from ∇3L1:V (g∞) for any z ∈ B(g∞, V −r3). It can be shown that
∇3ℓ2(z)[i, j, k] =

f(z)[i,j,k]]

∥z∥2
2

, where

f(z)[i, j, k] ≜


3uz[i]

3 − 3uz[i], if i = j = k

3uz[j]
2uz[i]− uz[i], if i ̸= j = k

3uz[i]uz[j]uz[k], if i ̸= j ̸= k

. (107)

Since |u[i]| ≤ 1 for all unit vectors u and all coordinates i ∈ [d], we see that |f(g∞ − θv)[i, j, k]| ≤ 6. Moreover, using
Lemma 17, for any i, j, k ∈ [d], we have

|f(z)[i, j, k]]− f(g∞)[i, j, k]| = O(V r1−r3). (108)

Recall also that, like in the previous proof, under event E , for all voters v ∈ [V ], we have ∥g∞ − θv∥2 ≥ V −r1 ,
∥z − θv∥2 ≥ V −r1 − V −r3 = Ω(V −r1) and |∥g∞ − θv∥2 − ∥z − θv∥2| ≤ ∥g∞ − z∥2 ≤ V −r3 (using the triangle
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inequality). We then have

∣∣∇3L1:V (z)[i, j, k]−∇3L1:V (g∞)[i, j, k]
∣∣ =

∣∣∣∣∣∣
∑
v∈[V ]

f(z − θv)[i, j, k]

∥z − θv∥22
−
∑
v∈[V ]

f(g∞ − θv)[i, j, k]

∥g∞ − θv∥22

∣∣∣∣∣∣ (109)

≤ 1

V

∑
v∈[V ]

∣∣∣∣∣f(z − θv)[i, j, k]

∥z − θv∥22
− f(g∞ − θv)[i, j, k]

∥z − θv∥22

∣∣∣∣∣+
∣∣∣∣∣f(g∞ − θv)[i, j, k]

∥z − θv∥22
− f(g∞ − θv)[i, j, k]

∥g∞ − θv∥22

∣∣∣∣∣ (110)

≤ 1

V

∑
v∈[V ]

O(V r1−r3)

∥z − θv∥22
+ 6

∣∣∣∥z − θv∥22 − ∥g∞ − θv∥22
∣∣∣

∥z − θv∥22 ∥g∞ − θv∥22
(111)

≤ O(V r1−r3)

Ω (V −r1)
2 +

6

V

∑
v∈[V ]

|∥z − θv∥2 − ∥g∞ − θv∥2|
∥z − θv∥2 + ∥g∞ − θv∥2
∥z − θv∥22 ∥g∞ − θv∥22

(112)

≤ O(V 3r1−r3) +
6

V

∑
v∈[V ]

V −r3

(
1

∥z − θv∥2 ∥g∞ − θv∥22
+

1

∥z − θv∥22 ∥g∞ − θv∥2

)
(113)

≤ O(V 3r1−r3) +
12V −r3

Ω (V −r1)
3 ≤ O(V 3r1−r3). (114)

Combining this with the guarantee of event E then yields∣∣∇3L1:V (z)[i, j, k]
∣∣ ≤ ∣∣∇3L∞(g∞)[i, j, k]

∣∣+ ∣∣∇3L∞(g∞)[i, j, k]−∇3L1:V (g∞)[i, j, k]
∣∣

+
∣∣∇3L1:V (g∞)[i, j, k]−∇3L1:V (z)[i, j, k]

∣∣ (115)

≤ O(1) +O(V r) +O(V 3r1−r3) = O(1) +O(V 3r1−r3), (116)

using the definition of r. Given that P [E ] ≥ 1− δ4, taking a bound K that can replace the O yields the lemma.

C.2.4 Skewness is Continuous

The last piece that is required for the proof of Theorem 2 is the fact that the function SKEW is continuous. To get there, we
first prove a couple of lemmas about symmetric matrices.

Definition 7. We denote SYMd the set of symmetric d× d real matrices. We denote X[i, j] the element of the i-th row and
j-th column of the matrix X , and ∥X∥∞ ≜ maxi,j |X[i, j]|.
Lemma 19. For any symmetric matrices H,S ∈ SYMd, |min SP(H)−min SP(S)| ≤ d ∥H − S∥∞.

Proof. Consider a unit vector u. We have

uTHu − uTSu = uT (H − S)u =
∑

i,j∈[d]

(H[i, j]− S[i, j])u[i]u[j] (117)

≤
∑

i,j∈[d]

|H[i, j]− S[i, j]| |u[i]| |u[j]| ≤ ∥H − S∥∞

∑
i∈[d]

|u[i]|

∑
j∈[d]

|u[j]|

 (118)

= ∥H − S∥∞ ∥u∥21 ≤ d ∥H − S∥∞ ∥u∥22 = d ∥H − S∥∞ , (119)

where we used the well-known inequality ∥x∥21 ≤ d ∥x∥22 (which follows from the convexity of t 7→ t2). Now consider
umin a unit eigenvector of the eigenvalue min SP(S) of the symmetric matrix S. Then min SP(H) ≤ uT

minHumin ≤
uT
minSumin + d ∥H − S∥∞ = min SP(S) + d ∥H − S∥∞. Inverting the role of H and S then yields the lemma.

Lemma 20. The minimal eigenvalue is a continuous function of a symmetric matrix.

Proof. This is an immediate corollary of the previous lemma. As S → H , we clearly have min SP(S) → min SP(H).

Lemma 21. SKEW is continuous.
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Proof. Consider H,S ≻ 0 two positive definite symmetric matrices. We have

|SKEW(H)− SKEW(S)| =

∣∣∣∣∣ sup
∥u∥2=1

{
∥Hu∥2
uTHu

− 1

}
− sup

∥u∥2=1

{
∥Su∥2
uTSu

− 1

}∣∣∣∣∣ (120)

≤ sup
∥u∥2=1

{∣∣∣∣∥Hu∥2
uTHu

−
∥Su∥2
uTSu

∣∣∣∣} (121)

= sup
∥u∥2=1

{∣∣∣∣∥Hu∥2 (uTSu)− ∥Su∥2 (uTHu)

(uTHu)(uTSu)

∣∣∣∣} (122)

≤ sup
∥u∥2=1

{∣∣∣∣∣∥Hu∥2
(
uTSu − uTHu

)
(uTHu)(uTSu)

∣∣∣∣∣+
∣∣∣∣∥Hu∥2 − ∥Su∥2

uTSu

∣∣∣∣
}

(123)

≤ sup
∥u∥2=1

{
(SKEW(H) + 1)

∣∣∣∣∣
(
uTSu − uTHu

)
uTSu

∣∣∣∣∣+
∣∣∣∣∥Hu∥2 − ∥Su∥2

uTSu

∣∣∣∣
}
. (124)

Now, for any unit vector u, we have∣∣uTSu − uTHu
∣∣ ≤ ∑

i,j∈[d]

|u[i]| |u[j]| |S[i, j]−H[i, j]| ≤ ∥S −H∥∞
∑

i,j∈[d]

|u[i]| |u[j]| (125)

= ∥S −H∥∞ ∥u∥21 = d ∥S −H∥∞ ∥u∥22 = d ∥S −H∥∞ , (126)

using the inequality ∥x∥21 ≤ d ∥x∥22. Moreover, by triangle inequality, we also have

|∥Hu∥2 − ∥Su∥2| ≤ ∥Hu − Su∥2 ≤

√√√√√∑
i∈[d]

∑
j∈d

|H[i, j]− S[i, j]| |u[j]|

2

(127)

≤

√√√√√∑
i∈[d]

∑
j∈d

∥H − S∥∞ |u[j]|

2

≤ ∥H − S∥∞
√
d ∥u∥21 (128)

≤ ∥H − S∥∞
√
d2 ∥u∥22 ≤ d ∥H − S∥∞ ∥u∥2 . (129)

Finally, note that uTSu ≥ min SP(S). Combining it all then yields

|SKEW(H)− SKEW(S)| ≤ 2 + SKEW(H)

min SP(S)
d ∥H − S∥∞ . (130)

By continuity of the minimal eigenvalue (Lemma 20), we know that min SP(S) → min SP(H) as S → H . This allows us
to conclude that |SKEW(H)− SKEW(S)| → 0 as S → H , which proves the continuity of the SKEW function.

C.2.5 Proof of Theorem 2

Finally, we can prove Theorem 2.

Proof of Theorem 2. Let ε, δ > 0. Choose r1, r2, r3 such that6 2/d < 2r1 < r3 < r2 < 1/2, and set δ1 ≜ δ2 ≜ δ3 ≜ δ4 ≜
δ/4. Define also λmin ≜ min SP(∇2L∞(g∞)) and ε3 ≜ min {λmin/2, ε5}, where ε5 will be defined later on, based on
the continuity of SKEW at H∞.

Now consider V sufficiently large to satisfy the requirements of lemmas 14, 15, 16, and 18. Denoting EV the event that
contains the intersection of the guarantees of these lemmas, by union bound, we then know that P [EV ] ≥ 1−δ. We will now
show that, for V large enough, under EV , the geometric median restricted to the first 1 + V voters is (SKEW(H∞) + ε)-
strategyproof for voter 0. To do so, it suffices to prove that, under EV , the assumptions of Lemma 13 are satisfied, for
β ≜ 2/λminV .

6clearly for d ≥ 5 such r1, r2, r3 exist
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First, let us show that for V large enough, under EV , the ball B(g1:V , 2β) contains no preferred vector from the first V
voters. To prove this, let z ∈ B(g1:V , β). By triangle inequality, we have ∥z − g∞∥2 ≤ ∥z − g1:V ∥2 + ∥g1:V − g∞∥2 ≤
2β + V −r2 = O(V −1 + V −r2) = o(V −r1), since r1 < r2 < 1. Thus, for V large enough, we have z ∈ B(g∞, V −r1).
But by Lemma 14, under EV , this ball contains none of the preferred vectors from the first V voters. As a corollary, L1:V

is then infinitely differentiable in B(g1:V , 2β). The first condition of Lemma 13 thus holds.

We now move on to the second condition. Note that, under event EV , by virtue of Lemma 16, for all z ∈
B(g1:V , β) ⊂ B(g1:V , 2β) ⊂ B(g∞, V −r1), we have

∥∥∇2L1:V (z)−H∞
∥∥
∞ ≤ ε3 = λmin/2. Lemma 19 then yields

min SP(∇2L1:V (z)) ≥ min SP(H∞) −
∥∥∇2L1:V (z)−H∞

∥∥
∞ ≥ λmin − λmin/2 = λmin/2. By Taylor’s theorem, we

then know that, for any unit vector u, there exists z ∈ [g1:V , g1:V + βu] such that

uT∇L1:V (g1:V + βu) = uT
(
∇L1:V (g1:V ) +∇2L1:V (z)[βu]

)
= β∇2L1:V (z)[u ⊗ u] (131)

≥ βmin SP(∇2L1:V (z)) ≥
2

λminV
λmin = 2/V > 1/V, (132)

where we used the fact that ∇L1:V (g1:V ) = 0. Thus the second condition of Lemma 13 holds too.

We now move on to the third condition. We have already shown that, under EV and for all z ∈ B(g1:V , β), we have
min SP(∇2L1:V (z)) ≥ λmin/2. From this, it follows that, for all z ∈ B(g1:V , β), we have min SP(∇2L1:V (z) ·
∇2L1:V (z)) ≥ λ2

min/4. But now note that, for any coordinates i, j ∈ [d], we have

∣∣∇3L1:V (z) · ∇L1:V (z)[i, j]
∣∣ =

∣∣∣∣∣∣
∑
k∈[d]

∇3L1:V (z)[i, j, k]∇L1:V (z)[k]

∣∣∣∣∣∣ (133)

≤
∑
k∈[d]

∣∣∇3L1:V (z)[i, j, k]
∣∣ |∇L1:V (z)[k]| ≤ d

∥∥∇3L1:V (z)
∥∥
∞ ∥∇L1:V (z)∥∞ (134)

≤ Kd(1 + V 3r1−r3)β = O(V −1 + V 3r1−r3−1). (135)

But since 2r1 < r3 < 1/2, we have 3r1 − r3 − 1 = r1 − 1 < −1/2 < 0. Thus the bound above actually goes to zero, as
V → ∞. In particular, for V large enough, we must have

∥∥∇3L1:V (z) · ∇L1:V (z)
∥∥
∞ ≤ λ2

min/8. As a result, by Lemma
19, for all z ∈ B(g1:V , β) and under EV , we then have

min SP
(
∇2L1:V (z) · ∇2L1:V (z) +∇3L1:V (z) · ∇L1:V (z)

)
(136)

≥ min SP(∇2L1:V (z) · ∇2L1:V (z))−
∥∥∇3L1:V (z) · ∇L1:V (z)

∥∥
∞ (137)

≥ λ2
min

4
− λ2

min

8
≥ λ2

min

8
. (138)

Therefore ∇2L1:V (z) · ∇2L1:V (z) +∇3L1:V (z) · ∇L1:V (z) ≻ 0, which is the third condition of Lemma 13.

Finally, the fourth and final condition of Lemma 13 holds by continuity of the function SKEW (Lemma 21). More precisely,
since H∞ ≻ 0, we know that SKEW is continuous in H∞. Thus, there exists ε5 > 0 such that, if A is a symmetric matrix
with ∥H∞ −A∥∞ ≤ ε5, then A ≻ 0 and SKEW(A) ≤ SKEW(H∞) + ε. Yet, by definition of ε3 and Lemma 16, we know
that all hessian matrices ∇2L1:V (z) for z ∈ B(g1:V , β) satisfy the above property. Therefore, we know that for all such z,
we have SKEW(∇2L1:V (z)) ≤ SKEW(H∞) + ε, which is the fourth condition of Lemma 13 with α ≜ SKEW(H∞) + ε.

Lemma 13 thus applies. It guarantees that, for V large enough, under the event EV which occurs with probability at least
1− δ, the geometric median is (SKEW(H∞) + ε)-strategyproof for voter 0. This corresponds to saying that the geometric
median is asymptotically SKEW(H∞)-strategyproof.

C.3 Upper and Lower Bounds for Skewness (Proof of Proposition 2)

Proof. We first prove the upper-bound. Consider an orthonormal eigenvector basis of S of vectors u1, . . . ,ud, with
respective eigenvalues λ1, . . . , λd. We now focus on a unit vector x in the form x =

∑
βiui with

∑
β2
i = 1. Note

that
∑

β2
i λi and

∑
β2
i λ

2
i can then be viewed as weighted averages of λi’s and of their squares. As a result, we have∑

β2
i λi ≥ λmin and

∑
β2
i λ

2
i ≤ λ2

max. As a result, we have

∥Sx∥22
(xTSx)2

=

∑
β2
i λ

2
i

(
∑

β2
i λi)

2 ≤ λ2
max

λ2
min

. (139)
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Taking the square root and subtracting one proves the upper-bound. We now move on to proving the lower-bound. Denote
λ1 and λd the two extreme eigenvalues of S, and u1 and ud their orthogonal unit eigenvectors. Define x = u1√

λ1
+

√
βud√
λd

.

We then have Sx =
√
λ1u1 +

√
βλdud, ∥x∥22 = λ−1

1 + βλ−1
d , xTSx = 1 + β, and ∥Sx∥22 = λ1 + βλd. Combining this

yields a ratio

R(β) ≜
∥x∥22 ∥Sx∥

2
2

(xTSx)2
=

(λ−1
1 + βλ−1

d )(λ1 + βλd)

(1 + β)2
=

β2 + Lβ + 1

β2 + 2β + 1
= 1 +

L− 2

2 + β + β−1
, (140)

where L ≜ λ−1
1 λd + λ1λ

−1
d ≥ 2. Note that, similarly, we have β + β−1 ≥ 2. This implies R(β) ≤ 1 + L−2

4 , with
equality for β = 1. The skewness is then greater than

√
R(1) − 1. In two dimensions, the skewness is, in fact, equal to√

R(1)− 1 since x represents essentially all possible vectors in this case. Multiplying the numerator and denominator of
R(1) by λ1λd then yields the proposition.

D PROOFS AND DIFFERENT RESULTS FROM SECTION 5

D.1 Sketch of Proof for Theorem 3

Proof. We provide a sketch of proof, which is based on Figure 8. By Taylor series and given concentration bounds, for V
large enough and z → gΣ∞, the gradient of the skewed loss for 1 + V voters is then approximately given by

(1 + V )∇LΣ
0:V (s, θ⃗, z) ≈

ΣΣ(z − s)

∥z − s∥Σ
+ V HΣ

∞(z − gΣ∞) + o(
∥∥z − gΣ∞

∥∥
2
) (141)

= ΣuΣz−Σs + V HΣ
∞(z − gΣ∞) + o(

∥∥z − gΣ∞
∥∥
2
). (142)

This quantity must cancel out for z = gΣ0:V . Thus we must have Σ−1HΣ
∞(gΣ0:V − gΣ∞) ≈ 1

V uΣs−ΣgΣ
0:V

,

which implies
∥∥Σ−1HΣ

∞(gΣ0:V − gΣ∞)
∥∥2
2

= 1/V 2. The achievable set AΣ
V is thus approximately the ellipsoid{

gΣ∞ + z
∣∣ zTHΣ

∞Σ−2HΣ
∞z ≤ 1/V 2

}
. In particular, for V large enough, AΣ

V is convex.

Meanwhile, denote gΣ,†
0:V the skewed geometric median when the strategic voter truthfully reports their preferred vector t.

By Equation (142), we must have ΣΣ(t− gΣ,†
0:V ) ∝ HΣ

∞(gΣ,†
0:V − gΣ∞), which implies t− gΣ,†

0:V ∝ Σ−2HΣ
∞(gΣ,†

0:V − gΣ∞).

Now let us skew the space by matrix S, i.e., we map each point z in the original space to a point x ≜ Sz in the S-skewed
space. Interestingly, since ∥z − θv∥S = ∥x− Sθv∥2, a voter with S-skewed preferences in the original space now simply
wants to minimize the Euclidean distance in the S-skewed space. Now, note that since S is a linear transformation and
since AΣ

V is convex, so is SAΣ
V . This allows us to re-use the orthogonal projection argument. Namely, denoting π0 the

orthogonal projection of St onto the tangent hyperplane to SAΣ
V , we have

inf
s∈Rd

∥∥∥t− GMΣ(s, θ⃗1:V )
∥∥∥
S
= inf

s∈Rd

∥∥∥St− SGMΣ(s, θ⃗1:V )
∥∥∥
2

(143)

= inf
x∈SAΣ

V

∥St− x∥2 ≥ ∥St− π0∥2 . (144)

To compute π0, note that, for a large number of voters and with high probability, the achievable set SAΣ
V in the S-

skewed space is approximately the set of points SgΣ∞ + Sz such that zTHΣ
∞Σ−2HΣ

∞z ≤ 1/V 2. Equivalently, this cor-
responds to the set of points SgΣ∞ + x with x ≜ Sz (and thus z = S−1x) such that (S−1x)THΣ

∞Σ−2HΣ
∞(S−1x) =

xT (S−1HΣ
∞Σ−2HΣ

∞S−1)x ≤ 1/V 2. This is still an ellipsoid. The normal to the surface of SAΣ
V at x0 = SgΣ,†

0:V − SgΣ∞
is then given by S−1HΣ

∞Σ−2HΣ
∞S−1x0 = S−1HΣ

∞Σ−2HΣ
∞(gΣ,†

0:V − gΣ∞).

Meanwhile, since t − gΣ,†
0:V ∝ Σ−2HΣ

∞(gΣ,†
0:V − gΣ∞), we know that there exists γ > 0 such that St − SgΣ,†

0:V =

γSΣ−2HΣ
∞(gΣ,†

0:V − gΣ∞). Then
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Figure 8: Proof techniques to determine the asymptotic strategyproofness of the Σ-skewed geometric median for S-skewed
preferences. We skew space using S, so that in the skewed space, voter 0 wants to minimize the Euclidean distance between
their preferred vector and the skewed geometric median. Strategyproofness then depends on the angle between the blue
and orange vectors in the skewed space, as depicted in the figure.

∥∥∥t− GM(t, θ⃗1:V )
∥∥∥
S∥∥∥t− GM(s, θ⃗1:V )
∥∥∥
S

≤

∥∥∥St− SgΣ,†
0:V

∥∥∥
2

∥St− π0∥2
(145)

≤
γ
∥∥∥SΣ−2HΣ

∞(gΣ,†
0:V − gΣ∞)

∥∥∥
2

(γSΣ−2HΣ
∞(gΣ,†

0:V − gΣ∞))T
S−1HΣ

∞Σ−2HΣ
∞(gΣ,†

0:V −gΣ
∞)

∥S−1HΣ
∞Σ−2HΣ

∞(gΣ,†
0:V −gΣ

∞)∥
2

(146)

=

∥∥∥SΣ−2HΣ
∞(gΣ,†

0:V − gΣ∞)
∥∥∥
2

∥∥∥S−1HΣ
∞Σ−2HΣ

∞(gΣ,†
0:V − gΣ∞)

∥∥∥
2

(SΣ−2HΣ
∞(gΣ,†

0:V − gΣ∞))T (S−1HΣ
∞Σ−2HΣ

∞(gΣ,†
0:V − gΣ∞))

(147)

=
∥y0∥2

∥∥S−1HΣ
∞S−1y0

∥∥
2

yT0 S
−1HΣ

∞S−1y0
≤ 1 + SKEW(S−1HΣ

∞S−1), (148)
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by defining y0 ≜ SΣ−2HΣ
∞(gΣ,†

0:V − gΣ∞). This concludes the sketch of the proof. A more rigorous proof would need to
follow the footsteps of our main proof (Theorem 2).

D.2 Proof of Proposition 3

Proof. Let i, j ∈ [d]. Note that ∂j ((ΣΣz)[i]) = ∂j (
∑

k(ΣΣ)[i, k]z[k]) = (ΣΣ)[i, j]. As a result, using Lemma 24, we
have

∂ij ∥z∥Σ =
∂j((ΣΣz)[i]) ∥z∥Σ − (ΣΣz)[i]∂j ∥z∥Σ

∥z∥2Σ
(149)

=
(ΣΣ)[i, j]

∥z∥Σ
− (ΣΣz)[i](ΣΣz)[j]

∥z∥3Σ
(150)

=

(
ΣΣ

∥z∥Σ

)
[i, j]−

(
ΣΣzzTΣΣ

∥z∥3Σ

)
[i, j] (151)

=

(
Σ

(
1

∥Σz∥2

(
I −

(
Σz

∥Σz∥2

)(
Σz

∥Σz∥2

)T
))

Σ

)
[i, j]. (152)

Combining all coordinates, replacing z by z − θv , and averaging over all voters then yields the lemma.

D.3 The computation of Σ-skewed Geometric Median

Intuitively, the computation of the Σ-skewed geometric median corresponds to skewing the space using the linear trans-
formation Σ, computing the geometric median in the skewed space, and de-skewing the computed geometric median by
applying Σ−1. The following two lemmas formalize this intuition.

Lemma 22. LΣ
∞(z, θ̃) = L∞(Σz,Σθ̃) and LΣ

0:V (s, θ⃗, z) = L0:V (Σs,Σθ⃗,Σz).

Proof. This is straightforward, by expanding the definition of the terms.

Lemma 23. gΣ∞(θ̃) = Σ−1g∞(Σθ̃) and gΣ0:V (s, θ⃗) = Σ−1g0:V (Σs,Σθ⃗).

Proof. By definition of g∞(Σθ̃), we know that it minimizes y 7→ L∞(y,Σθ̃). It is then clear that Σ−1g∞(Σθ̃) minimizes
z 7→ L∞(Σz,Σθ̃). The case of gΣ0:V is similar.

D.4 No Shoe Fits Them All

In practice, we may expect different voters to assign a different importance to different dimensions. Unfortunately, this
leads to the following impossibility theorem for asymptotic strategyproofness of any skewed geometric median.

Corollary 1. Suppose voters v, w have Sv and Sw-skewed preferences, where the matrices Sv and Sw are not proportional.
Then no skewed geometric median is asymptotically strategyproof for both.

Proof. Asymptotic strategyproofness for Sv requires using a Σ-skewed geometric median such that
SKEW(S−1

v HΣ
∞S−1

v ) = 0. By Proposition 2, this means that all eigenvalues of S−1
v HΣ

∞S−1
v must be equal, which

implies that S−1
v HΣ

∞S−1
v ∝ I . But then, we must have HΣ

∞ ∝ S2
v . As a result, we then have S−1

w HΣ
∞S−1

w ∝ S−1
w S2

vS
−1
w .

But, given our assumption about these matrices, this cannot be proportional to the identity. Proposition 2 then implies that
SKEW(S−1

w HΣ
∞S−1

w ) > 0, which means that the Σ-skewed geometric median is not asymptotically strategyproof for voter
w.

We leave however open the problem of determining what shoe “most fits them all”. In other words, assuming a set S of
skewing matrices, each of which may represent how different voters’ preferences may be skewed, which Σ(S)-skewed
geometric median guarantees asymptotic α-strategyproofness for all voters, with the smallest possible value of α? And
what is this optimal uniform asymptotic strategyproofness guarantee α(S) that can be obtained?
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E ALTERNATIVE UNIT FORCES

In this section we show that the fairness principle “one voter, one vote with a unit force” can be generalized to other vector
votes when we use the right norm to measure the norm of voters’ forces. First we consider the skewed geometric median,
and then we analyze the minimizer of ℓp distances.

E.1 Skewed Geometric Median

Interestingly, we can also interpret the skewed geometric median as an operator that yields unit forces to the different
voters, albeit the norm of the forces is not measured by the Euclidean norm. To understand how forces are measured, let
us better characterize the derivative of the skewed norm.

Lemma 24. For all z ∈ Rd − {0}, we have ∇z ∥z∥Σ = ΣΣz/ ∥z∥Σ.

Proof. Note that ∥z∥2Σ = ∥Σz∥22 =
∑

i(Σz)[i]
2 =

∑
i

(∑
j Σ[i, j]x[j]

)2
. We then have

∂i ∥z∥2Σ =
∑
j

2Σ[j, i](Σz)[j] = 2
∑
j

∑
k

Σ[j, i]Σ[j, k]z[k] (153)

= 2
∑
k

∑
j

Σ[i, j]Σ[j, k]

 z[k] = 2
∑
k

(ΣΣ) [i, k]z[k] = 2(ΣΣz)[i]. (154)

From this, it follows that

∂i ∥z∥Σ = ∂i

√
∥z∥2Σ =

∂i ∥z∥2Σ
2
√

∥z∥2Σ
=

(ΣΣz)[i]

∥z∥Σ
. (155)

Combining all coordinates yields the lemma.

It is noteworthy that, using a Σ-skewed loss, the gradient ∇z ∥z∥Σ is no longer colinear with z. In fact, it is not even
colinear with Σz, which is the image of z as we apply the linear transformation Σ to the entire space. Similarly, this pull is
no longer of Euclidean unit force. Nevertheless, it remains a unit force, as long as we measure its force with the appropriate
norm.

Lemma 25. For all z, θv ∈ Rd, we have ∥∇z ∥z − θv∥Σ∥Σ−1 = 1. Put differently, using the Σ-skewed loss, voters have
Σ−1-unit forces.

Proof. Applying Lemma 24 yields

∥∇z ∥z − θv∥Σ∥Σ−1 =

∥∥∥∥ΣΣz∥z∥Σ

∥∥∥∥
Σ−1

=

∥∥Σ−1ΣΣz
∥∥
2

∥z∥Σ
=

∥Σz∥2
∥z∥Σ

= 1, (156)

which is the lemma.

E.2 ℓp Norm

Interestingly, we prove below that considering other penalties measured by ℓp distances is equivalent to assigning ℓq-
unit forces to the voters. In particular, the coordinate-wise median can be interpreted as minimizing the ℓ1 distances or,
equivalently, assigning votes of ℓ∞ unit force. In particular, the coordinate-wise median, which is known to be strate-
gyproof, indeed implements the principle “one voter, one unit-force vote”. In other words, this principle can guarantee
strategyproofness; this requires a mere change of norm.

Proposition 13. Assume 1
p + 1

q = 1, with p, q ∈ [1,∞]. Then considering an ℓp penalty is equivalent to considering that
each voter has an ℓq-unit force vote. More precisely, any subgradient of the ℓp penalty has at most a unit norm in ℓq .
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Proof. Assume x ̸= 0 and 1 < p, q < ∞. Then we have

∣∣∣∂j ∥x∥p∣∣∣q =

∣∣∣∣∣∣∣∂j
∑

j∈[d]

|x[j]|p
1/p

∣∣∣∣∣∣∣
q

=

∣∣∣∣∣∣∣
1

p

∑
j∈[d]

|x[j]|p
(1/p)−1 (

p |x[j]|p−1
sign(x[j])

)∣∣∣∣∣∣∣
q

(157)

= ∥x∥q(1−p)
p |x[j]|q(p−1)

=
|x[j]|p

∥x∥pp
, (158)

using the equality q(p− 1) = p derived from 1
p + 1

q = 1. Adding up all such quantities for j ∈ [d] yields

∥∥∥∇∥x∥p
∥∥∥
q
=

∑
j∈[d]

|x[j]|p

∥x∥pp

1/q

=

 1

∥x∥pp

∑
j∈[d]

|x[j]|p
1/q

(159)

=

(
1

∥x∥pp
∥x∥pp

)1/q

= 1. (160)

Thus the gradient of the ℓp norm is unitary in ℓq norm, when x ̸= 0. Note then that a subgradient g at 0 must satisfy
gTx ≤ ∥x∥p for all x ∈ Rd. This corresponds to saying that the operator norm of x 7→ gTx must be at most one with
respect to the norm ℓp. Yet it is well-known that this operator norm is the ℓq norm of g.

In the case p = 1, then each coordinate is treated independently. On each coordinate, the derivative is then between −1
and 1 (and can equal [−1, 1] if x[j] = 0). This means that the gradients are of norm at most 1.

The last case left to analyze is when p = ∞. Denote Jmax(x) ≜ {j ∈ [d] |x[j] = ∥x∥∞}. When |Jmax(x)| = 1, denoting
j the only element of Jmax(x) and uj the j-th vector of the canonical basis, then the gradient of the ℓ∞ is clearly uj , which
is unitary in ℓ1 norm. Moreover, note that if k /∈ Jmax(x), then we clearly have ∂k ∥x∥∞ = 0.

Now, denote g ∈ ∇∥x∥∞, let y ∈ Rd, and assume for simplicity that x ≥ 0. We know that

∥x+ εy∥∞ ≥ ∥x∥∞ + εgT y. (161)

For ε > 0 small enough, we then have

∥x∥∞ + ε max
j∈Jmax(x)

y[j] ≥ ∥x∥∞ + ε
∑

j∈Jmax(x)

g[j]y[j], (162)

from which it follows that ∑
j∈Jmax(x)

g[j]y[j] ≤ max
j∈Jmax(x)

y[j]. (163)

Considering y[j] = −1 for j ∈ Jmax(x) and y[k] = 0 for all k ̸= j then implies −g[j] ≤ 0, which yields
g[j] ≥ 0. Generalizing it for all j’s implies that g ≥ 0. Now, considering y[j] = 1 for all j ∈ Jmax(x) then yields∑

j∈Jmax(x) g[j] = ∥g∥1 ≤ 1, which concludes the proof for x ≥ 0. The general case can be derived by considering axial
symmetries.


