
HAL Id: hal-04363393
https://hal.science/hal-04363393v2

Submitted on 20 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A general martingale approach to large noise
homogenization

Dimitri Faure, Mathias Rousset

To cite this version:
Dimitri Faure, Mathias Rousset. A general martingale approach to large noise homogenization. Elec-
tronic Journal of Probability, 2024, 29, pp.1-49. �10.1214/24-EJP1177�. �hal-04363393v2�

https://hal.science/hal-04363393v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


E l e c t r o
n i

c

J
o
u
r n

a l
o
f

P
r
o b a b i l i t y

Electron. J. Probab. - (-), article no. -, 1–49.
ISSN: 1083-6489 https://doi.org/-

A general martingale approach to large noise

homogenization

Dimitri Faure* Mathias Rousset†

Abstract

We consider Markov processes with generators of the general form γL1+L0, in which
L1 is associated to a so-called dominant process. The dominant process is assumed to
converge for large times towards a random point in a given subset of the state space
called the effective state space. Using the usual characterization through martingale
problems, we give general conditions under which the following homogenization the-
orem holds true: the original process converges in law, when γ is large and for both
the (Meyer-Zheng) pseudo-path topology and finite-dimensional time marginals, to-
wards an identified effective Markov process defined on the effective state space.
Few simple model examples for diffusions are studied.
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1 Introduction

A formalism for strong noise homogenization. Let E be a Polish state space, and
let Eeff ⊂ E be a closed subset, hereafter called the effective state space. This paper

considers on E a family of (càdlàg) Markov processes denoted (Xγ
t )t>0 :=

(
X

(γ,1)
t

)

t>0

with (formal) infinitesimal Markov generator of the form1

γL1 + L0, (1.1)

in which L1,L0 are two (formal) infinitesimal Markov generators, and γ > 0 is a positive
parameter that is meant to go to infinity (γ → +∞). This process will be called here the
initial process.

In this setting, the following main structural assumption lay the basis to what is
here called large noise homogenization. For each initial condition x ∈ E, the process

generated by L1 (called here after the dominant process) and denoted
(
X

(1,0)
t (x)

)

t>0
,

is assumed to converge in probability for large time towards a random point in Eeff :

lim
t→+∞

X
(1,0)
t (x) = X(1,0)

∞ (x) ∈ Eeff in probability, (1.2)

whose distribution will be denoted:

P(x, · ) := Law(X(1,0)
∞ (x)).

1One can equivalently consider the small perturbation problem L1 +
1

γ
L0 on large time scales of order γ.
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One also wants to define Eeff as the smallest effective space satisfying (1.2), which
suggests the following associated additional assumption:

P(x, · ) = δx, ∀x ∈ Eeff . (1.3)

The property (1.2) also implies by definition of P and by the Markov property that
L1Pϕ = 0 on E for any continuous bounded test function ϕ : Eeff → R defined on the
effective state space. One can then define the operator

Leffϕ := L0Pϕ = (γL1 + L0)Pϕ, (1.4)

which is (formally) a Markov generator on Eeff as the formal limit when s → 0 of pure
jump Markov generators on Eeff :

Leff = lim
s→0+

(
esL0P − Id

)
/s = lim

s→0+

(
esL0P − P

)
/s;

in which we have used the ’minimality’ property (1.3) of Eeff which states that P = Id

as operators on functions of Eeff . By (1.4), the process

t 7→ Pϕ (Xγ
t )−

∫ t

0

L0Pϕ(Xγ
s )ds (1.5)

is expected to be a martingale for the natural filtration generated by Xγ and for all ϕ
in a class of sufficiently regular bounded test functions. Since by (1.2) the dominant
generator L1 tends to confine the process Xγ near Eeff when γ is large, one may then
expect the following two facts:

i) Xγ behaves when γ is large approximately as a Markov process taking values in
Eeff and called hereafter the effective process,

ii) this effective process is a solution to the martingale problem in Eeff associated
with Leff (by (1.5) and the fact that Pϕ = ϕ on Eeff).

Making the previous two statements completely rigorous and identifying the effective
process as the unique solution of a martingale problem is precisely what we call here
the martingale problem approach to strong noise homogenization. This will be carried
out in the present work in a quite general setting using (as already proposed in previous
works mentioned below) the pseudo-path topology studied in the seminal work [18] of
Meyer and Zheng. This should be contrasted with e.g. [20], a classical reference on the
martingale problem approach in a classical homogenization setting, which is using the
Skorokhod (’uniform’) topology.

Note that, in strong noise problems, even if the initial process is a diffusion, the ef-
fective process obtained as a limit may be of jump type. As a consequence, convergence
with respect to the stronger Skorokhod topology (instead of the pseudo-path topology)
cannot be true.

A class of examples for diffusions (see Section 2.3 and Section 4). The main
examples studied in this work (Section 4) will be of the following form: E will be a
closed subset of a manifold (say Rd), Eeff will be a smooth sub-manifold of E included
in the boundary ∂E of E, and t 7→ Xγ,1

t will be a diffusion. The dominant process will
be a diffusion which eventually almost surely hits Eeff (albeit in our examples for an
infinite hitting time); and the perturbation process will be a deterministic flow with a
non-vanishing drift at Eeff (pointing inward at the boundary ∂E when Eeff ⊂ ∂E).

Note that in the context of potential theory, if the dominant process is a (singularly
at Eeff) time-changed Brownian motion and Eeff = ∂E is the boundary of a smooth
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domain E (see Section 4.3), then the kernel P(x, · ) is exactly the so-called harmonic
measure of E with pole at x. When L0 is an inward vector field, the Markovian effec-
tive generator (1.4) is also known as a quite standard general version of the so-called
Dirichlet-to-Neumann operator. The latter has been extensively studied in the inverse
problem literature (see e.g. the seminal work [25]) for reasons of independent interest.
The Dirichlet-to-Neumann effective operator is, in fact, a non-diffusive Markov operator
on Eeff of Levy type, as will be demonstrated in the examples of Section 4, especially the
example of Section 4.3. More comments on that topic will be given in the last paragraph
of this introduction.

Previous work. Motivated by quantum continuous measurements (see [7, 14, 1, 19,
26]), or filtering theory (see [4]), strong noise homogenization has recently been rigor-
ously studied in the special case where Eeff is a finite set.

In [2], the authors show strong noise homogenization for a certain class of diffu-
sion processes having a generator of the form2 (1.1). In order to prove their theorem,
the authors develop a finite-dimensional homogenization theorem [2, Theorem 3.1] for
bounded operators and, due to the specific form of the diffusion processes considered
(linear drift and quadratic mobility), are able to prove convergence by developing a
perturbative argument.

In [3], the homogenization result is refined by incorporating a decoration with an
interval-valued process describing the limit of the "spikes" of the initial process.

In [13], the author adapts the proof of [2, Theorem 3.1] for diffusion processes living
in a simplex K ⊂ Rn whose vertices define Eeff , and with a dominant process of martin-
gale type. This ensures that the kernel of L1 is the finite-dimensional subspace of affine
functions of Rd which simplifies the analysis.

More comments comparing our result with [13] and [3] will be given below, in the
next two paragraphs of this introduction.

All the above works consider the so-called (Meyer-Zheng) pseudo-path topology
(see [18] and Section A) on trajectories, as well as the associated Meyer-Zheng "tight-
ness" criterion, in order to handle strong noise homogenization. The use of the Meyer-
Zheng criterion in a homogenization context is however neither new nor limited to
the recent consideration of strong noise problems. It has been quite consistently used
more than a decade ago to handle other intricate cases, for instance periodic problems
(see [21]), or backward stochastic differential equations (see [22]).

New results. By considering the classical martingale problem approach, this paper
generalizes the previously mentioned body of work. The basic idea consists in remark-
ing that the pseudo-path topology and the associated Meyer-Zheng criterion are well-
suited to martingale problems, which is a standard tool for weak convergence (i.e. con-
vergence in law) results in classical homogenization of stochastic dynamics. Note that
in classical references (such as [20]), limits of processes are handled with the Sko-
rokhod topology, which is not possible here (see [11] for a general reference on conver-
gence of processes and martingale problems studied under the Skorokhod topology).

In the present work, the main homogenization theorem is obtained by making the
following four steps rigorous.

First, i) relative compactness of trajectory distributions is, by definition of the pseudo-
path topology, a direct consequence of Prokhorov theorem with an appropriate con-
tainment condition in a compact set. One can then consider extracted converging se-
quences.

2More precisely, in [2] a very slightly more general situation is considered with the possible additional
presence of a generator at an intermediate time scale (in terms of γ).
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Second, ii) one needs to check that the limiting pseudo-path takes its values in Eeff .
This step may be quite technical, and we propose a relatively natural setting that en-
ables to carry it out by first proving an intermediate property: the dominant process
converges towards Eeff for large times uniformly with respect to the initial condition
taken in a compact set (see Proposition 2.4).

Third, iii) càdlàg processes (in fact quasi-martingales) constructed from the full pro-
cess (1.1) with appropriate test functions of the form Pϕ are expected to have by (1.4) a
mean variation uniformly bounded in γ: this is the so-called Meyer-Zheng criterion. This
criterion (a key result of [18]) ensures that the large γ limit in the pseudo-path topol-
ogy of such processes inherits the càdlàg regularity and the quasi-martingale property.
We stress that without the Meyer-Zheng criterion, such limits may be too degenerate
to handle the martingale property. With this guarantee, it is then possible to show
that the extracted sequence of processes in Step i) does satisfy the martingale problem
associated with Leff .

Finally, iv) one simply needs to assume that the obtained effective martingale prob-
lem is well-posed (there is a unique càdlàg process distribution solution of it). This ends
the proof of convergence in distribution of the considered process towards the effective
process in the pseudo-path topology. Extension of the convergence to finite-dimensional
time-marginals are also obtained.

In order to make the above four steps i), ii), iii) and iv) rigorous, the following two
assumptions will be especially important. The first one (later on denoted Assumption 2)
is the continuity of the dominant process hitting distribution P(x, . ) with respect to the
initial condition x. This assumption is key in proving the large time convergence of the
dominant process uniformly with respect to the initial condition, which is instrumental
in Step ii). It is inherited from [13] in which it is argued that it is somehow unavoidable
using a pathological counter-example ([13, Section 4]). The second important assump-
tion is of course the fact that the effective generator Leff is well-defined, continuous
near Eeff , and defines a well-posed martingale problem. Well-posedness of martingale
problems may not be so easy to obtain, but it is a topic on its own (well covered at least
in Rd) in the literature. When the effective process can be described by a stochastic
differential equation which is itself well-posed in the strong sense (e.g. with Lipschitz
coefficients), quite generic results exist (see e.g. the reference [17]).

Let us finally detail the difference between our approach and the one adopted in
[13]. In the latter, the homogenization problem is specific (see details in Section 4.1):
the dominant process is a martingale and the space of harmonic functions (the kernel
of L1) can be identified with the space of affine functions on Rn. The main idea of
[13] is then to couple the initial process with an approximate process whose generator
preserves affine functions and can be homogenized directly for any given finite γ. How-
ever, this strategy only works for this specific case. In contrast, the approach based
on characterization by martingale problems developed in the present paper is indepen-
dent of the specific properties of the harmonic functions, and allows us to prove general
homogenization results.

A simple example of a new limit theorem associated with the phenomenology

of "spikes". As an example of new result obtained in this paper, one may consult
the example of Section 4.2. There, one considers an already studied one dimensional
toy model for strong noise homogenization which consists of a dominant time-changed
Brownian motion in [−1, 1] perturbed by a drift. Previous works (see [2, 13]) have
shown the convergence towards a jump process in Eeff = {+1,−1}. The novelty consists
in enriching the process with its quadratic variation, leading to a process defined on
E = [−1, 1] × R+. This enrichment may be thought of as a way to keep track of the
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"size" of the trajectories as measured by quadratic variation. We prove convergence of
the enriched process to a limiting effective process in {−1,+1} ×R+. The latter is the
sum of two generators.

The first is a jump generator creating simultaneously a switching between +1 and−1

for the first variable and a positive jump in R+ for the second variable (the associated
intensity and distribution are proportional to a given explicit finite measure denoted ν
in Section 4.2).

The second is a Levy generator in R+ of subordinator type for the second variable
(the first variable in {−1,+1} stays constant). The associated Levy measure is propor-
tional to:

µ(dh) :=

(
π2

16

+∞∑

k=−∞
k2e−hπ2k2

8

)
dh.

Note that the jumps of this subordinator is a mixture of exponentially distributed jumps
of size 8

π2k2 with k ∈ Z.

The jumps of the effective process of this example can be interpreted as the "sizes"
(measured with quadratic variation) of the different "spikes" of the original process in-
side the interval ] − 1,+1[. This phenomenology of "spikes" and its physical relevance
has already been pointed out and discussed in [26] in the context of continuous measure-
ments of a quantum system. Mathematical analysis has then followed for instance in [2]
and [3]. Our approach of the above toy example is somehow complementary to the one
of [3]. In the latter reference, the authors directly analyse the limit of the "spikes" as
an interval-valued process decorating the effective jump process, while we incorporate
the "size" of the "spikes" (measured with quadratic variation) as an additional variable
of the effective, homogenized process.

Link with the boundary process associated with reflected diffusions. Finally,
we want to suggest some potentially interesting connections between strong noise ho-
mogenization and reflected diffusions defined as solutions of the Skorokhod reflection
problem (see e.g. [23] for a general reference on the topic). The context is the following:
consider a regular diffusion with generator L̃1 which hits Eeff at a finite (as opposed to
typically infinite) time. The latter and the dominant process considered in the present
work can usually be obtained from one another using a time-change scalar field a > 0

diverging near Eeff : L̃1 = a × L1. In addition Eeff = ∂E is assumed to be the smooth
boundary of regular domain E of, say, Rn, and the perturbation generator L0 = F i

(0)∂i
is a vector field which is inward-pointing at the boundary ∂E. We have already men-
tioned above that in this context the effective process generator (1.4) is the so-called
Dirichlet-To-Neumann (Markov) operator defined on smooth functions of Eeff , which
has been studied in the inverse problem literature for linear elliptic partial differential
equations (see e.g. the seminal work [25]). It is quite interesting to remark that in [15],
the author gives a probabilistic (and completely different) interpretation of Leff using
reflected diffusions.

Let us briefly describe the idea. Consider the diffusion constrained in E by the
reflection at the boundary ∂E of E generated by the inward vector field F(0). The latter
(see [23]), denoted here (Xt)t>0, is classically defined as the solution of the so-called
Skorokhod problem, which is obtained by adding a term to the stochastic differential
equation satisfied by the non-reflected diffusion. This additional term is of the form
F(0)(Xt)dLt where Lt is a non-decreasing adapted continuous process that is constant
outside the boundary and must satisfies dLt = 1Xt∈∂EdLt. The process Lt is a kind
of ’local time’ that has to be determined as an output of the Skorokhod problem. The
boundary process is then the Markov process l 7→ X∂E

l = Xτl obtained by indexing
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the initial process with this ’local time’ using the right continuous inverse defined by
the stopping time τl := inf(t : Lt > l). If P(x, · ) denotes the hitting distribution at
the boundary of E of the underlying non-reflected diffusion L1, it can be shown using a
simple application of Itô formula to P(ϕ) for ϕ smooth (see [15] for the special case of
Brownian motion and normal reflection) that the boundary process (Xτl)l>0 is precisely
a solution of the martingale problem associated with Leff = L0P . The latter can thus be
interpreted as the associated infinitesimal generator.

Developing the connections between strong noise homogenization and boundary pro-
cesses lies outside the scope of this paper and is left as an open problem of interest. We
simply want to mention that reflected diffusions may also be obtained as a limit of dif-
fusions of the form (1.1) using time-changes of the dominant and/or the perturbation
process. It is thus not completely surprising to obtain the same ’trace’ at the boundary.

Note also that in dimension one, this connection has been used in depth in the proof
of the spike-enhanced strong noise homogenization result obtained in [3]. In the latter
reference, the effective two-points jump process is decorated with the limit of the graph
of the spikes of the initial process. In spirit, the proof relies on a coupling argument
with a (reflected) time-changed Brownian motion. The change in time indeed becomes
in the limit the inverse of a local time at the boundary of the considered interval. The
spikes are analyzed using Itô’s excursion theory.

Organization. This work is divided as follows. In Section 2, we rigorously introduce
notation, then state the different assumptions, and finally state the main strong noise
homogenization theorems. In Section 3, the main theorems are proved. Finally in
Section 4, explicit examples are described and are studied in detail.

2 Setting, assumptions and main theorems

2.1 Notation

• E main Polish state space with metric d.

• (X
(γ1,γ0)
t )t>0: a Markov process with generator γ1L1 + γ0L0 defined on E.

• Xγ := X(γ,1): a shorthand notation.

• µγ
0 := Law(Xγ

0 ): a given family of initial distributions in E indexed by γ.

• t 7→ Xt(x) : a Markov process with explicitly mentioned initial condition X0(x) = x.

• Ex : the expectation when considering a Markov process (Xt(x))t>0 with initial
condition x ∈ E.

• Eµ: the expectation when considering a Markov process (Xt)t>0 with initial distri-
bution Law(X0) = µ.

• L0(e−tdt, E): the equivalence class of measurable trajectories R+ → E that are
Lebesgue almost everywhere equal. It is endowed with the (Polish) pseudo-path
topology.

• Pr(E): the space of probability distributions on E.

• B(x, r): a closed ball of center x and radius r

• x · y = 〈x, y〉: the two notations may be used for scalar product in Euclidean space.
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2.2 Setting and assumptions

Let E denote a Polish state space. For each non-negative γ1, γ0 > 0, we assume that
we can measurably associate to any initial condition x ∈ E a càdlàg Markov process
denoted

t 7→ X
(γ1,γ0)
t (x),

whose (formal) infinitesimal generator is of the form

γ1L1 + γ0L0.

In the above, L1 (resp. L0) is the generator associated with the so-called dominant
X(1,0) (resp. perturbation X(0,1)) process.

In what follows, we denote by

µγ
0 = Law(Xγ

0 )

the initial probability distribution of the considered process. Throughout this paper we
will assume that µγ

0 converges when γ is large to a limit µ0 in Pr(E).

The main structural assumption underlying the present work is the following: for
any initial condition x ∈ E, the dominant process X

(1,0)
t (x) converges for large times t

towards a random variable X
(1,0)
∞ (x) taking values in a closed subset Eeff ⊂ E (at least

in probability, although the almost sure convergence is typical). More precisely:

Assumption 1 (Main assumption). For each x ∈ E, there is a random variable denoted
X

(1,0)
∞ (x) ∈ Eeff taking values in a closed subset Eeff ⊂ E such that, in probability,

lim
t→+∞

X
(1,0)
t (x) = X(1,0)

∞ (x) ∈ Eeff .

Moreover, Eeff is minimal in the sense that if x ∈ Eeff , then X
(1,0)
∞ (x) = x.

The limiting distribution thus defines a measurable probability kernel denoted

P(x, · ) := Law(X(1,0)
∞ (x)) ∈ Pr(Eeff).

As explained in the introduction, the main goal of this work is to study the limit
distribution of the process X(γ,1) when γ → +∞, and to show that the latter is a Markov
process on Eeff with infinitesimal generator given by

Leff [ϕ] := L0 [P [ϕ]] .

Remark 2.1 (On invariances by time-changes). First remark: by definition, the process
t 7→ X

(kγ,kγ0)
t/k has a generator independent of k so that its distribution can be assumed

to be independent of k > 0. Second remark: the effective generator Leff depends on
the dominant generator only through the probability kernel P . As a consequence, the
modified strong noise problem associated with γρL1 + L0 where ρ : E →]0,+∞[ is a
function bounded away from 0 will lead to the same effective process (indeed the action
of the field ρ > 0 of the dominant generator can be interpreted as a time-change of the
dominant process, which results by definition in a kernel P independent of ρ).

Our first technical assumption amounts to assume that P is continuous:

Assumption 2 (Continuity of P). The map x ∈ E 7→ P(x, · ) ∈ Pr(Eeff) is continuous,
Pr(Eeff) being endowed with the usual Polish topology of convergence in distribution.
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In particular, since by assumption, for all x0 ∈ Eeff , P(x0, · ) = δx0 , , we obviously
have limx→x0 P(x, · ) = δx0 for all x0 ∈ Eeff .

The next assumption defines a natural notion of containment in a compact set. The
latter is sufficient in order to obtain the tightness of the considered sequence of pro-
cesses. This condition is not a necessary condition for tightness; it might be relaxed in
specific cases. Although it only has to be checked for γ0 ∈ {0, 1}, it is typically true for
any γ0 ∈ R.

Assumption 3 (Containment in a compact set). Let γ0 ∈ {0, 1} be given. For any
horizon time T , any ε > 0 and any compact K ⊂ E, there exists a compact set Kε,T ⊂ E

such that:
sup

x∈K, γ>0
Px

[
∃t ∈ [0, T ], X

(γ,γ0)
t ∈ Kc

ε,T

]
6 ε. (2.1)

Using a time scaling argument, it is possible to show the following direct conse-
quence on the dominant process.

Lemma 2.2. Assumption 3 implies that for any ε > 0 and any compact K ⊂ E, there
exists a compact set Kε ⊂ E such that:

sup
x∈K

Px

[
∃t ∈ R+, X

(1,0)
t ∈ Kc

ε

]
6 ε. (2.2)

Proof. Let T = 1 be fixed. By a time rescaling argument and routine monotone conver-
gence, it holds

sup
γ>0

Px

[
∃t ∈ [0, 1], X

(γ,0)
t ∈ Kc

ε

]

= sup
γ>0

Px

[
∃t ∈ [0, γ], X

(1,0)
t ∈ Kc

ε

]
= Px

[
∃t ∈ R+, X

(1,0)
t ∈ Kc

ε

]
.

Assumption 3 then yields the result.

Note also that since we consider a converging sequence of initial probability distribu-
tions µγ

0 →γ→+∞ µ0 (a tight family of distributions), Assumption 3 implies by definition
of tightness the existence of a compact Kε,T (using slightly abusively the same notation
as in (2.1)) such that

sup
γ>0

Pµγ
0

[
∃t ∈ [0, T ], X

(γ,γ0)
t ∈ Kc

ε,T

]
6 ε. (2.3)

The next two assumptions (Assumptions 4 and 5) will be used as sufficient conditions
in order to obtain a (technical) result given in Proposition 2.4 below, which states that
the large time convergence of the dominant process towardsEeff is uniformwith respect
to its initial condition when taken in a given compact set.

The first assumption requires that the dominant process can be represented as a
stochastic flow continuous with respect to the considered initial condition. By a stochas-
tic flow representation, we mean that there exists a measurable map

(x, t, ω) 7→ X
(1,0)
t (x)[ω]

defined on E×R+×Ωwhere (Ω,F ,P) denotes the underlying probability space and such
that t 7→ X

(1,0)
t (x) is distributed according to the dominant process with initial condition

X
(1,0)
0 (x) = x. This happens typically if the dominant process is a strong solution of a

Stochastic Differential Equation parametrized by the initial condition.

Assumption 4 (Continuous stochastic flow). The dominant process can be represented
by a stochastic flow such that, for each t > 0, x 7→ X

(1,0)
t (x) is continuous in probability.
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The second assumption is a technical condition necessary in order to obtain the
uniform convergence of Proposition 2.4(see Remark 2.5 below for a counter-example).

Assumption 5 (Randomness of the hitting point). The hitting point of the dominant
process, X(1,0)

∞ (x), is deterministic if and only if x ∈ Eeff . In the latter case (x ∈ Eeff),

we recall that X(1,0)
∞ (x) = x.

Remark 2.3 (On the role of the last two assumptions). Contrary to other assumptions,
Assumption 4 and 5 are only used for the proof of Proposition 2.4 below. In the same
way, Proposition 2.4 is only required once in Step 2 (that states that the limit effective
process lies in Eeff) of the proof of the main homogenization theorem.

Proposition 2.4 (The large time convergence of the dominant process is uniform). As-
sume that the dominant process satisfies Assumption 1-2-3-4-5 (Nota Bene: for the dom-
inant process Assumption 3 amounts to (2.2)). Then there exists a continuous bounded
non-negative function f with f > 0 on E \ Eeff and f = 0 on Eeff such that for any
compact K ⊂ E:

lim
t→+∞

sup
x∈K

E

[
f(X

(1,0)
t (x))

]
= 0.

The proof is this result is quite technical and is postponed to the end of Section 3.

Remark 2.5 (Assumption 5 is necessary). The only unusual requirement of Proposi-
tion 2.4 is Assumption 5. It is however unavoidable. Indeed, consider the deterministic
process on the unit circle given by the vector field sin2( θ2 ) · ∂θ, where θ ∈]0, 2π[. The pro-
cess evolves counter-clockwise (increasing θ), and eventually converges to θ = 2π = 0

in infinite time. However, the hitting time of some θ1 6= 0 starting with initial condi-
tion θ0 becomes infinite when θ0 → 0+: if we start at θ0 just above 0, we reach θ1 > 0

only after an arbitrarily large time. As a consequence, the process cannot be arbitrarily
close to 0 at a large given time uniformly in the starting point; and the conclusion of
Proposition 2.4 cannot hold true.

The next assumption is a usually benign continuity assumption which ensures that
the addition of a small perturbation process results in a small change of the process
distribution.

Assumption 6 (Continuous perturbation). Let ϕ be any continuous bounded function.
One has the continuity property: for all t > 0 and all K ⊂ E compact,

lim
γ→+∞

sup
x∈K

∣∣∣E(ϕ(X(1,1/γ)
t (x))) − E(ϕ(X

(1,0)
t (x)))

∣∣∣ = 0

We can finally state important assumptions on the limit process, its generator, and
the associated martingale problem (Assumption 7 and 8 below). Assumption 7 is a
technical requirement that ensures that an effective generator indeed exists, with ap-
propriate continuity properties.

Assumption 7 (Existence of an effective generator). There exists an operator Leff act-
ing on a vector space of measurable test functions of Eeff denoted Deff , and such that:

i) Deff is a subset of continuous and bounded functions, contains constants, and
contains a countable subset (ϕi)i∈I that separates points of Eeff .

ii) To any ϕ ∈ Deff , one can associate a bounded measurable function L0Pϕ : E → R

such that for any γ > 0 and any initial condition x ∈ E,

t 7→ Pϕ(X(γ,1)
t (x)) −

∫ t

0

L0Pϕ(X(γ,1)
s (x))ds

is a martingale for the natural filtration of X(γ,1)(x) (Nota Bene: one has formally (γL1+

L0)P = L0P).
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iii) For all ϕ ∈ Deff , L0Pϕ is continuous in E at points of Eeff . Explicitly: for any
ϕ ∈ Deff and any x0 ∈ Eeff , it holds Leff [ϕ] (x0) = limx→x0 L0P [ϕ] (x).

Remark 2.6. Point ii) in Assumption 7 is a rigorous way to express that Pϕ belongs to
the domain of the generator γL1 + L0 of the initial process. In order to check it, one
may compute the predictable plus martingale decomposition (the so-called Doob-Meyer
decomposition) of t 7→ Pϕ(X(γ,1)

t ) using e.g. Itô formula or an appropriate variant. Then

one needs to identify the predictable part to the quantity
∫ t

0
L0Pϕ(X(γ,1)

s )ds. Typically,
Pϕ will belong to a ’natural’ domain of the operator L0 (e.g. differentiable if L0 is a first
order differential operator on a manifold). Note that defining L0Pϕ outside of E \ Eeff

or even in a pointwise sense might not always be straightforward, and one may take the
limit considered in Assumption 7 point iii) as a definition of L0Pϕ on Eeff .

Finally, the following final assumption enables to identify the distribution of the ef-
fective Markov process on Eeff , using the classical characterization of Markov processes
by martingale problems (see e.g. [11]). We recall that the distribution of a càdlàg ran-
dom process (Xt)t>0 is said to be a solution of the martingale problem associated with
the generator (with its domain) (L,D) if for all test function ϕ ∈ D, the process

t 7→ ϕ(Xt)−
∫ t

0

Lϕ(Xs)ds

is a martingale for the natural filtration of the process (σ(Xs, s 6 t))t>0. The domain
is chosen such that ϕ and Lϕ are measurable and s 7→ Lϕ(Xs) is time integrable; in
the present case under Assumption 7, ϕ will be bounded and continuous and Lϕ will
be bounded. The martingale problem is said to be well-posed if there exists a unique
process distribution solution to the martingale problem. The latter then satisfies the
Markov property, and the pair (L,D) can be interpreted as the infinitesimal generator
of the process.

Assumption 8 (Well-posedness of the effective martingale problem). Let µ0 = limγ→+∞ µγ
0

be given in Pr(E). The martingale problem (Leff ,Deff) for càdlàg processes with initial
condition µ0P ∈ Pr(Eeff) is well-posed.

Finally, note that it may be possible that in some cases, slightly different types of
assumptions may be used:

Remark 2.7 (On the weakening of assumptions). It may happen that in some specific
cases another method enables to obtain the uniform convergence result of Proposi-
tion 2.4 (a situation we call case i) in this remark). Even more directly, it may happen
in some specific cases that another method enables to prove Step 2 in the proof of the
main homogenization theorem. Step 2 mainly states that the effective process must lie
in Eeff (a situation we call we call case ii) in this remark). We do not consider such
examples in the present work, but several assumptions may then be weakened, and our
proof can then be revisited with less constraints.

• If case i) (or ii)) happens, Assumption 1 can be weakened to convergence in distri-
bution only. Assumption 2 can also be weakened to cases where P is only contin-
uous at points of Eeff . The proof is similar but one has to restrict in Theorem 2.10
to initial conditions µγ

0 that are either constant (independent of γ) or that have a
limit when γ → +∞ whose support lies in Eeff .

• If case i) (or ii)) happens, Assumption 4 and Assumption 5 are no longer required.

• If case ii) happens, Assumption 6 is also no longer necessary. The only three
remaining important points to be checked are: first the containment in compact
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sets (Assumption 3), second the continuity of both Pϕ and L0Pϕ at points of Eeff ,
and third the well-posedness of the effective martingale problem.

2.3 The case of diffusions with Lipschitz coefficients

Let us now discuss the assumptions of the previous section for a specific class of
processes. In Section 4, we will present three specific examples that all belong to this
class. All assumptions will be verified in detail for those examples; the goal of the
present section being devoted to informal comments aimed at making the assumptions
more transparent.

The process t 7→ X
(γ1,γ0)
t (x) is assumed to be a diffusion defined on a closed domain

E ⊂ Rn as the strong solution of a standard Stochastic Differential Equation (SDE) of
the general form:

dX
(γ1,γ0)
t =

√
γ1σ1(X

(γ1,γ0)
t )dW

(1)
t + γ1b1(X

(γ1,γ0)
t )dt

+
√
γ0σ0(X

(γ1,γ0)
t )dW

(0)
t + γ0b0(X

(γ1,γ0)
t )dt,

in which t 7→ (W
(0)
t ,W

(1)
t ) are two Rm-valued independent standard Brownian motions

for some m > 1 and (σ1, b1, σ0, b0) are bounded, globally Lipschitz (for the usual Eu-
clidean metric) coefficients defined at least on E. Note that it is necessary at this stage
to check that solutions of the considered SDE indeed remain in E for all time. In or-
der to fix ideas, we give in Lemma B.1 (in appendix) an example of a simple general
argument that enables to check this fact. We also refer to Section 4 for examples.

The first thing to check is that the dominant process almost surely converges in large
time to a random point X

(1,0)
∞ (x) of a closed subset Eeff ⊂ E (the effective space) which

is typically a smooth sub-manifold. One also needs to check that this random point is
precisely x if x lies in the effective space Eeff (Assumption 1). This is typically associated
with the fact that the coefficients (σ1, b1) defining the dominant process both vanish on
Eeff and only on Eeff . To the see this, it may be useful to perform an appropriate random
time change (singular at Eeff) so that the time-changed dominant process almost surely
hits Eeff in finite time for any initial condition.

Generally, the definition of the (possibly time-changed) dominant process gives eas-
ily that X

(1,0)
∞ (x) is not deterministic unless the initial condition x lies in Eeff (Assump-

tion 5). Regarding the continuity of the distribution of X
(1,0)
∞ (x) with respect to the ini-

tial condition x (Assumption 2), it may rather be checked with Assumption 7 discussed
below.

The containment in a compact set with high probability (Assumption 3) may be
proven by resorting to a standard Lyapounov function estimate which must be uniform
with respect to γ1. It is automatically satisfied if E is compact, although we stress our
setting is not restricted to this case (see the second example in Section 4).

Next, Assumption 4 and Assumption 6 are direct consequences of the fact that
X(γ1,γ0) is a strong solution of a SDE with Lipshitz coefficients (see Lemma B.2 in ap-
pendix).

We can now focus on Assumption 7. The associated space of test functions is usu-
ally the space of compactly supported smooth functions Deff = C∞

c (Eeff), which has a
countable (point) separating subset given in a local chart by polynomials with rational
coefficients (point i) of Assumption 7). In order to prove ii) in Assumption 7 (and as
a matter of fact to moreover check Assumption 2), it is then sufficient to check that
x 7→ Pϕ(x) is, say, twice differentiable so that one can apply Itô formula. In some cases,
one way to prove the regularity of Pϕ is to resort to Partial Differential Equations (PDE)
regularity theory and identify Pϕ as the unique solution on E of the (e.g. (hypo)elliptic)
Partial Differential Equation a × L1ψ = 0 with smooth Dirichlet boundary conditions
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ψ = ϕ at Eeff and a well-chosen time-change scalar field a : E \ Eeff →]0,+∞[ singular
near Eeff (we recall that Pϕ is a solution to L1Pϕ = 0 in an appropriate sense). More
direct methods may be possible (See Section 4). The (Doob-Meyer) finite variation part
of t 7→ Pϕ(X(γ,1)

t ) is eventually given by
∫ t

0L0Pϕ(X(γ,1)
s )ds. The regularity of Pϕ fur-

thermore gives us that L0Pϕ is continuous on E (point iii) of Assumption 7). The value
of L0Pϕ on Eeff then defines the effective generator Leff [ϕ]. In the present context,
Pϕ is the solution of a (hypo)elliptic Dirichlet problem, and L0Pϕ may be interpreted
as a "generalized Dirichlet-to-Neumann" operator. In the case where σ0 vanishes on
Eeff so that L0 is a first order differential operator, L0Pϕ is typically the generator of a
Levy-type jump process.

Finally, one needs to prove the well-posedness of the martingale problem associ-
ated with L0P on Eeff . If one can describe the effective generator as associated with
a strong solution of a stochastic differential equation with Lipschitz coefficients and
driven by, say, a Levy homogeneous process, some quite generic results can give the
well-posedness of the martingale problem (see e.g. the reference [17]).

2.4 Main homogenization theorem

In order to state the main theorem, we first define the pseudo-path topology on path
space used in strong noise homogenization problems.

Definition 2.8 (Pseudo-paths). Let E denotes a Polish space. To each measurable path
x : R+ → E, one can associate a probability on E ×R+ defined by:

δxt
(dx)e−tdt ∈ Pr(E ×R+). (2.4)

The subset of probability distributions in Pr(E × R+) of the form (2.4) is called the
pseudo-paths space. It is closed for the usual (Polish) topology of Pr(E ×R+) given by
convergence in distribution. The pull-back on the equivalence classes of measurable
paths equal Lebesgue almost everywhere will be called the pseudo-path topology. The
associated space will be denoted L0(e−tdt, E).

Remark 2.9 (Basic properties). The fact that the space of pseudo-paths is closed for
convergence in distribution and other main results related to this topology are sum-
marized in Section A. In particular, let us recall that pseudo-paths topology inher-
its the usual sequential characterization of convergence in distribution: a sequence
of paths (xn)n converges for the pseudo-paths topology to a path x∞ if and only if
limn

∫
ϕ(xnt , t)e

−tdt =
∫
ϕ(x∞t , t)e

−tdt for all continuous and bounded ϕ. This conver-
gence is in fact equivalent to the (a priori) stronger convergence "in probability" (also
called "in measure") defined by limn

∫∞
0 min(1, d(xnt , x

∞
t ))e−tdt where d metrizes E. For

that reason, the pseudo path space is denoted L0(e−tdt, E).

We can now state our main theorem:

Theorem 2.10 (Strong noise homogenization). Consider L1 and L0 two Markov gener-
ators, and (µγ

0 )γ>0 a family of initial distributions with support in E converging in distri-
bution towards µ0 a distribution on E. Let Assumptions 1-2-3-4-5-6-7-8 be fulfilled. Then
a càdlàg process X(γ,1) on E solution of the martingale problem of generator γL1 + L0

with initial condition µγ
0 converges in distribution when γ → +∞ for the (Meyer-Zheng)

pseudo-path topology to the unique càdlàg Markov process X∞ on Eeff solution of the
martingale problem of generator Leff and initial condition µ0P .

The convergence in law of Xγ towards X∞ for the pseudo-path topology implies by
general considerations of the pseudo-path topology the convergence in law of (Xγ

t1 , . . . , X
γ
tk
) ∈

Ek for Lebesgue almost all time sequences (t1, . . . , tk) in Rk
+. We can in fact prove that

the convergence is actually true for all time sequences: finite-dimensional distributions
do converge.
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Corollary 2.11 (Convergence of finite-dimensional distributions). Consider the same no-
tations as in Theorem 2.10. Under the same assumptions, and for all (t1, . . . , tk) ∈ Rk

+,

k > 1, the random sequence (X
(γ,1)
t1 , . . . , X

(γ,1)
tk ) converges in law to (X∞

t1 , . . . , X
∞
tk ).

3 Proof of the main theorems

In order to prove Theorem 2.10, we will proceed in four steps. First, using a tight-
ness argument, we will extract a sub-sequence (Xγn)n≥1 of the considered family of
initial processes which is converging in distribution for the pseudo-path topology. We
denote the extracted limit X∞, and we underline that X∞ is really defined as a pseudo-
path, that is as the random probability distribution δX∞

t
(dx)e−tdt. Next, we will prove

that X∞ takes its values in Eeff , which amounts to say that almost surely, X∞
t ∈ Eeff

for Lebesgue almost all t > 0. Then, using the so-called Meyer-Zheng criterion (see
Section A), we will prove that X∞ can be identified with a càdlàg process, in the sense
that the distribution of X∞ is the push-forward in pseudo-path space of the distribution
of a càdlàg random process. Eventually, we will prove that X∞ is a solution of a martin-
gale problem on Eeff (which have a unique solution by assumption). We conclude that
X(γ,1) converges in law to X∞ for the pseudo-path topology when γ goes to infinity. We
stress that the third step is unavoidable: limits with respect to the pseudo-path topology,
without the Meyer-Zheng criterion, may be too degenerate to handle the convergence
of the martingale part and obtain that the extracted limit indeed satisfies the expected
martingale problem.

In the penultimate section we will prove that we have furthermore convergence of
all finite-dimensional distributions.

In the last section, we will prove that under our assumptions the large time conver-
gence of the dominant process is uniform with respect to initial conditions taken in a
compact set, as stated in Proposition 2.4; a result used in Step 2.

3.1 Step 1: Tightness and extraction

We start by proving that, under Assumption 3, the considered family of processes is
tight when considering the pseudo-path topology.

Lemma 3.1. Under Assumption 3, the family
(
X(γ,1)

)
γ>0

with converging initial distri-
bution is tight under the pseudo-path topology.

Proof. We start by proving the following claim: let (Kn)n>0 denotes any given increas-
ing sequence of compact subsets of E, then the set of pseudo-paths defined by:

K :=
⋂

n>0

{
x :

∫ n

0

1xt∈Kc
n
e−tdt = 0

}
, (3.1)

that is the set of pseudo-paths that remains in Kn on the time interval [0, n] for all n,
is relatively compact for the pseudo-path topology. In order to prove this claim, let us
consider K as a subset of the space Pr(E × R+), that is we identify x ∈ K with the
probability δxt

(dy)e−tdt. Let ε > 0 be given, arbitrarily small. Let nε be such that
e−nε 6 ε. One has, by construction of K, that for any x ∈ K

∫

E

∫ ∞

0

1(y,t)∈(Knε×[0,nε])
cδxt

(dy)e−tdt 6 e−nε 6 ε.

By Prokhorov theorem, K is thus relatively compact, and the initial claim is proved.
We can now proceed and prove that under Assumption 3, the considered family of

processes is tight under the pseudo-path topology.

EJP - (-), paper -.
Page 14/49

https://www.imstat.org/ejp

https://doi.org/-
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Martingale approach to large noise homogenization

Let ε > 0 be given, arbitrarily small. By the claim proved above, it is sufficient in
order to conclude, to construct a n-increasing sequence Kε,n ⊂ E of compact sets such
that

sup
γ

P

[
X(γ,1) ∈ Kc

ε

]
6 ε,

where the relatively compact set Kε is defined using the sequence (Kε,n)n>1 and (3.1).
For this purpose, using Assumption 3 with variant (2.3), we choose Kε,n such that we

have P(∃t ∈ [0, n], X
(γ,1)
t ∈ Kc

ε,n) 6 ε2−n uniformly in γ.
Then by construction:

P

[
X(γ,1) ∈ Kc

ε

]
6
∑

n

P

[
∃t ∈ [0, n], X

(γ,1)
t ∈ Kc

ε,n

]
6 ε.

As a consequence, any increasing sequence converging to infinity has an increasing
sub-sequence denoted (γn)n>0 such that X(γn,1), when embedded as a pseudo-path in
Pr(E ×R+), converges when n goes to infinity in distribution towards a limit. Since we
know that the set of pseudo-paths is closed, this limit is the distribution of a pseudo-
path and can be represented as a random process denoted X∞. However, X∞ may not
have a càdlàg representative at this stage (this will be taken care of in Step 3 below).

3.2 Step 2: The limit process lies in the effective space

The goal of this step is to prove that the considered limit process takes its values in
Eeff in the sense that:

E

[∫ +∞

0

1X∞
t ∈Eeff

e−tdt

]
= 1.

We use Proposition 2.4 to prove that the full process approaches Eeff when γ ap-
proaches infinity:

Lemma 3.2. Let f denotes the bounded continuous non-negative function on E vanish-
ing on Eeff and strictly positive on E\Eeff characterizing the uniform convergence of the
dominant process towards Eeff in Proposition 2.4. Let µγ

0 denotes the initial condition

of X(γ,1)
t . Under Assumptions 3 and 6, we have for all t > 0 convergence towards Eeff

for large γ:
Eµγ

0
(f(X

(γ,1)
t )) −→

γ→+∞
0.

Proof. First notice that

Eµγ
0
(f(X

(γ,1)
t )) = 〈µγ

0 , e
t(γL1+L0)f〉

= 〈µγ
0 , e

γt(L1+
1
γ
L0)f〉

= Eµγ
0
(f(X

(1, 1
γ
)

γt )),

which amounts to an elementary time change.
Therefore, for any 0 < δ < γt we have:

∣∣∣∣Eµγ
0

(
f

(
X

(1, 1
γ
)

γt

))∣∣∣∣

6

∣∣∣∣Eµγ
0

(
f

(
X

(1, 1
γ
)

γt

))
− Eµγ

0

(
f
(
X

(1,0)
γt

))∣∣∣∣
︸ ︷︷ ︸

=

∣

∣

∣

∣

∣

∣

E
µ
γ
0



E

X
(1, 1

γ
)

γt−δ

(

f

(

X
(1, 1

γ
)

δ

))

−E
X

(1,0)
γt−δ

(

f
(

X
(1,0)
δ

))





∣

∣

∣

∣

∣

∣

+
∣∣∣Eµγ

0

(
f
(
X

(1,0)
γt

))∣∣∣
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As a consequence, for any compact subset K of E

∣∣∣∣Eµγ
0

(
f

(
X

(1, 1
γ
)

γt

))∣∣∣∣

6

∣∣∣∣∣Eµγ
0

[
E

X
(1, 1

γ
)

γt−δ

(
f

(
X

(1, 1
γ
)

δ

))
− E

X
(1, 1

γ
)

γt−δ

(
f
(
X

(1,0)
δ

))]∣∣∣∣∣

+

∣∣∣∣∣Eµγ
0

[
E

X
(1, 1

γ
)

γt−δ

(
f
(
X

(1,0)
δ

))
− E

X
(1,0)
γt−δ

(
f
(
X

(1,0)
δ

))]∣∣∣∣∣

+
∣∣∣Eµγ

0

(
f
(
X

(1,0)
γt

))∣∣∣

6 sup
x∈K

∣∣∣∣E(f(X
(1, 1

γ
)

δ (x))) − E(f(X
(1,0)
δ (x)))

∣∣∣∣ + 2 ‖f‖∞ Pµγ
0

[
X

(γ,1)
t−δ/γ ∈ Kc

]

+ 2× sup
x∈K

E

[
f(X

(1,0)
δ (x))

]
+ ‖f‖∞ Pµγ

0

[
X

(γ,1)
t−δ/γ ∈ Kc

]
+ ‖f‖∞ Pµγ

0

[
X

(γ,0)
t−δ/γ ∈ Kc

]

+ sup
x∈K

∣∣∣E
(
f
(
X

(1,0)
γt (x)

))∣∣∣+ ‖f‖∞ µγ
0 (K

c) (3.2)

Let ε > 0 be given, arbitrarily small. Using Assumption 3 (compact containment),
one can choose K = Kε such that, uniformly in δ, γ:

max
(
Pµγ

0

[
X

(γ,1)
t−δ/γ ∈ Kc

ε

]
,Pµγ

0

[
X

(γ,0)
t−δ/γ ∈ Kc

ε

]
, µγ

0 (K
c
ε)
)
6

ε

10‖f‖∞
.

Using Proposition 2.4 (uniform time convergence of the dominant process), we consider
now δε = δε,Kε

large enough such that

sup
x∈Kε

E

[
f(X

(1,0)
δε

(x))
]
6

ε

10

Now using Assumption 6 (uniformly continuous perturbation), we now consider γε :=

γε,Kε
> 0 such that for all γ > γε:

sup
x∈Kε

∣∣∣E(f(X(1,1/γ)
δε

(x))) − E(f(X
(1,0)
δε

(x)))
∣∣∣ 6

ε

5

Taking δ = δε in inequality (3.2) thus implies for all γ > max
(
δε
t , γε

)
:

∣∣∣Eµγ
0

(
f
(
X

(γ,1)
t

))∣∣∣ 6 ε.

We have proved in Step 1 that there exists (γn)n an increasing sequence of positive

numbers approaching infinity such that we have X(γn,1) L−→ X∞ for the pseudo-path
topology. By characterization of the pseudo-path convergence, it implies that

E

∫ +∞

0

f
(
X

(γn,1)
t

)
e−tdt −→

n→+∞
E

∫ +∞

0

f(X∞
t )e−tdt.

By dominated convergence and Lemma 3.2 above, the term on the left converges to 0.
But f−1({0}) = Eeff and f > 0, so eventually X∞ ∈ Eeff almost surely as a pseudo-path
(that is for Lebesgue almost all t).
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3.3 Step 3: The limit is càdlàg

We will now prove that the distribution of X∞ has a càdlàg representative taking
values in Eeff . To do so, we will use the so-called Meyer-Zheng criterion. The latter
ensures that a sequence of real valued càdlàg random processes that i) converges in
distribution for the pseudo-path topology, and ii) has a uniformly bounded mean vari-
ation (see below for a definition), has a pseudo-path limit which possesses a càdlàg
representative.

Definition 3.3 (Mean variation). Let T > 0 denotes an horizon time, and (Zt)t>0 a
càdlàg real valued random process with Zt ∈ L1(P) for all t. The mean variation of Z
over [0, T ] is given by

VT (Z) := sup
0=t06t1...6tK6T

K∑

k=0

E
∣∣E
[
Ztk+1

− Ztk | σ (Zt, t 6 tk)
]∣∣ ,

= sup
|H|61

E

(∫ T

0

Ht dZt

)
,

where in the above the supremum is taken over predictable processes (with respect to
the natural filtration of Z) taking value in [−1, 1].

We recall in Section A several general facts underlying the Meyer-Zheng approach
to limit theorems for processes. In particular, processes with bounded mean variations
are quasi-martingales, and their bounded mean variation is precisely equal to the total
variation of their predictable finite-variation part (defined in the sense of the Doob-
Meyer decomposition of quasi-martingales).

Step 3 (the limit process X∞ has a – unique – càdlàg representative) will be a direct
consequence of Lemma 3.5 below. We start with a technical remark that will ensure
generic measurability of some random objects used in the proof of Lemma 3.5.

Lemma 3.4. Let I be a countable set andRI be endowed with the usual product (Polish)
topology. Let F denotes a Polish space, and let Ψ : F → RI , be an injective bounded
continuous function. Consider the weaker topology on F induced by the pull-back by Ψ,
for instance as defined by the distance

d̃(x, y) =
∑

i∈I

2−ni |Ψi(x) −Ψi(y)| , (3.3)

where i 7→ ni ∈ N is injective. Denote by F̃ the completion of F with respect to the latter
distance. Then i) Ψ defines a homeomorphism on F̃ for the weaker topology defined by
d̃, and ii) all Borel sets of F defined by the strong original topology (defined by d) are
also Borel in F for the weaker new topology (defined by d̃).

Proof. Point i) is trivial: d̃ is a metric because the family (Ψi)i∈I is separating. Then F̃
is simply identified with Ψ(F ) by the isometry defined by d̃.

Point ii) seems obvious but is more subtle. A standard result in descriptive set
theory ([16, Theorem 15.1]) states that on Polish spaces, injective Borel maps are in
fact Borel isomorphisms, in the sense that they map Borel sets to Borel sets. We know
that Ψ : (F, d) → RI is injective and continuous, it is thus Borel and so is its inverse Ψ−1

defined on Polish Ψ(F ). Let B ⊂ F be Borel for the strong topology Φ(B) is thus Borel
in Ψ(F ); by isometry B ⊂ F is eventually Borel for the topology induced by d̃.

Lemma 3.5. Let Xn be a sequence of càdlàg processes on E converging in distribution
to a pseudo-path X∞ for the pseudo-path topology, and let Eeff ⊂ E. We assume the
following:
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1. The sequence Xn satisfies the compact containment condition (2.3) (the index n
playing the role of γ).

2. The limit pseudo-path X∞ almost surely has support in Eeff .

3. There exists a countable family of bounded continuous map Ψi : E → R, i ∈ I such
that for all T > 0 and all i ∈ I:

sup
n
VT (Ψi(X

n)) < +∞.

In other words the (quasi-martingale) càdlàg processes Ψi(X
n) have a uniformly

(w.r.t. n) bounded mean variation on finite time intervals (Meyer–Zheng criterion).

4. The family (Ψi)i∈I separates the points of Eeff , that is Ψ : Eeff → RI is injective.

Then the distribution of X∞ is given by the distribution of a càdlàg process taking its
values in Eeff .

Proof. For each i ∈ I, by continuity of Ψi, the distribution of the bounded random
pseudo-path Ψi(X

n) ∈ R converges when n → +∞ towards the distribution of the ran-
dom pseudo-path Ψi(X

∞). Point 3 in the assumption is then exactly the uniform mean
variation condition of Meyer-Zheng theory (see Theorem A.6 in Section A), which en-
sures that the distribution of the pseudo-path Ψi(X

∞) is in fact supported by D(R+,R)

(the space of càdlàg paths on R). This implies existence of a unique càdlàg representa-
tive of Ψi(X

∞), given and denoted (to avoid confusion) by

Zi
t := lim

h→0+

1

h

∫ t+h

t

Ψi(X
∞
s )ds.

Note that if one considers a measurable process (t, ω) 7→ X∞
t (ω) ∈ Eeff taking values in

Eeff and representing X∞ (see Lemma A.2 for existence of such representative), then
the set of elements (ω, t) ∈ Ω×R+ such that Ψi(X

∞
t (ω)) = Zi

t(ω) has e
−tdt⊗P-measure

1, and since I is countable, the intersection for i ∈ I is again of e−tdt⊗ P-measure 1.
Using Point 4 (Ψ is injective on Eeff) and Lemma 3.4, one can then consider the

extension of the inverse Ψ−1 : Ψ(Eeff) → Ẽeff which defines an isometry when one
considers e.g. the distance (3.3) associated with the product Polish topology of RI .
With respect to this weaker topology, the process

t 7→ X̃∞
t := Ψ−1(Zt) ∈ Ẽeff ⊃ Eeff

is almost surely càdlàg.
Of course, X̃∞ is a representative of the random pseudo-path X∞ when considered

as a pseudo-path taking values in Eeff (they are equal on a set of full e−tdt⊗P measure).
In order to check this point rigorously while being careful with measurability, it is useful
to note that by Lemma 3.4 point ii), Borel sets of Eeff for the initial stronger topology
are also Borel for the induced weaker topology, so that if ϕ is a bounded function on
Eeff Borel measurable for the strong topology, the integral

∫ +∞
0

ϕ(X̃t, t)e
−tdt is well-

defined simply by the fact the process X̃t ∈ Ẽeff lies in Eeff ⊂ Ẽeff almost surely and for
Lebesgue almost all t. This happens in the present case by construction so that one can
write

∫ +∞
0

ϕ(X̃∞
t , t)e−tdt =

∫ +∞
0

ϕ(X∞
t , t)e−tdt, which rigorously justifies X̃∞ = X∞ as

pseudo-paths on Eeff endowed with the initial strong topology.
It remains, in order to conclude the proof, to show that X̃∞ is càdlàg for the stronger

original topology of E. Note that in the simpler case where Eeff is compact, the two
topologies are equivalent Eeff = Ẽeff , and the proof is complete. In order to finish the
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proof when E is not compact, we are to use a compactness argument (Point 1) and show
that X̃∞ has, almost surely, left and right accumulation points in the original stronger
topology of E. This is not guaranteed in general without the compact containment
condition because the weaker topology of Ẽeff may allow values in Ẽeff \ Eeff .

More precisely, we now claim that with the compact containment condition (Point 1),

for any T > 0, the set
{
X̃∞

t (ω), t ∈ [0, T ]
}
is P(dω)-almost surely a subset of E that is

relatively compact for the stronger original topology. If this claim is true, P(dω)-almost
surely, for any (left or right) converging sequence tm → t∞, there is a sub-sequence
(we do not change notation for the sub-sequence) such that X̃∞

tm(ω) converges for the

stronger topology in E and lies in fact in Eeff since the set is closed. But t 7→ X̃∞
t (ω)

is càdlàg for the weaker topology of Ẽeff , so the limit is unique and given by X̃∞
t±∞

(ω).

Hence X̃∞ is càdlàg in Eeff (for the original strong topology) and the proof of the whole
lemma is complete.

It remains to prove the claim above. We consider the original topology on Eeff . We
first remark that (by portmanteau lemma) the map on pseudo-paths x 7→

∫ T

0
1xt∈Kce−tdt

is lower semi-continuous for K closed, so that
{
x :
∫ T

0 1xt∈Kce−tdt > 0
}
is open and

applying the portmanteau lemma in pseudo-path space now yields

P

[∫ T

0

1X∞
t ∈Kce−tdt > 0

]
6 lim inf

n
P

[∫ T

0

1Xn
t ∈Kce−tdt > 0

]
.

The compact containment condition implies that the right-hand side in the above is
smaller than any ε for a well chosen K = Kε. Using a routine Borel-Cantelli argument
obtained by considering the events constructed for K2−p , p ∈ N, one gets that:

P

[
∃p > 0 :

∫ T

0

1X∞
t ∈Kc

2−p
e−tdt = 0

]
= 1.

Since X∞ is a pseudo-path of Eeff , we can here replace K2−p by K2−p ∩ Eeff that is
still a compact since Eeff closed. The above statement holds for X∞ taking value in
pseudo-paths space, so that one can replace X∞ with X̃∞. In the weaker topology of
Ẽeff , the compact K2−k ∩ Eeff ⊂ Ẽeff is again compact. Since X̃∞ is càdlàg, it implies
that P(dω)-almost surely for a random integer P (ω), we have X̃∞

t (ω) ∈ KP (ω) for all

t ∈ [0, T ]. This precisely means that the set
{
X̃∞

t (ω), t ∈ [0, T ]
}
is relatively compact for

the strong original topology of Eeff . Our claim is proved, and so is the lemma.

Let us now apply Lemma 3.5 to our setting in order to prove Step 3.
Let ϕi denotes a countable family in Deff that separates points. We now consider

Xn = X(γn,1), Ψi = Pϕi,

We have already proved in Step 2 the second condition of Lemma 3.5 while the first one
is Assumption 3 and the fourth one is part i) of Assumption 7. For the third one (the
most important), we write:

VT (Ψi(X
n)) = sup

|H|61

∫ T

0

E (Ht dΨi(X
n
t )) ,

where the supremum is taken over predictable processes (with respect to the natural
filtration of Xn) taking value in [−1, 1]. Since the martingale term disappears by aver-
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aging:

VT (Ψi(X
n)) = sup

|H|61

∫ T

0

E(Ht (γnL1 + L0)Pϕi(X
n
t ))dt

= sup
|H|61

∫ T

0

E(Ht L0Pϕi(X
n
t ))dt

=

∫ T

0

E(|L0Pϕi(X
n
t )|)dt

6 T ‖L0Pϕi‖∞ ,

this final quantity being finite by part ii) of Assumption 7. This yields the uniform mean
variation condition. We stress that the above estimate is the key technical ingredient of
the strong homogenization theorem.

Lemma 3.5 gives us therefore that X∞ is almost surely càdlàg with trajectories in
Eeff .

3.4 Step 4: The limit is the unique solution of a martingale problem

We can now prove that X∞ is solution of a specific martingale problem. We already
know by Assumption 7 that for all γ > 0 and ϕ ∈ Deff , Xγ := X(γ,1) is solution of:

Mγ : t 7→ Pϕ(Xγ
t )−

∫ t

0

L0Pϕ(Xγ
s )ds is a σ(Xγ

s , s 6 t)-martingale.

We would like to let γ goes to infinity in this problem, and get that:

M∞ : t 7→ Pϕ(X∞
t )−

∫ t

0

L0Pϕ(X∞
s )ds is a σ(X∞

s , s 6 t)-martingale.

To prove this, we will first prove using a general result (Lemma A.3) that Lebesgue al-
most all finite-dimensional distributions of Mγk converge to those of M∞. In particular
this will enable to identify the distribution of the effective initial condition X∞

0 . We
will then invoke a routine lemma characterizing càdlàg martingales (Theorem A.7) in
order to check that M∞ is indeed a martingale. The martingale problem uniqueness in
Assumption 8 enables to identify the distribution of X∞ and then to conclude.

Using the general Lemma A.3 for converging processes distributions with respect to
the pseudo-path topology towards a càdlàg supported limit , we know that there exists
a subset with full Lebesgue measure J ⊂ R+ and a sub-sequence γn → +∞ such that
for each t1, . . . , tp the joint variable

(Xγn , Xγn

t1 , . . . , X
γn

tp )
Law−−−−−→

n→+∞
(X∞, X∞

t1 , . . . , X
∞
tp )

converges in distribution in L0(e−tdt, E) × Ep. Since by Assumption 7 point iii), L0Pϕ
is bounded and continuous in E at each point of Eeff , the map

x 7→
∫ t

0

L0Pϕ(xs)ds

is bounded and continuous at points of L0(e−tdt, Eeff) for the pseudo-path topology. In
the same way, Assumption 2 ensures that the map x 7→ Pϕ(x) is bounded and continu-
ous. Combining the above results, we get that Lebesgue almost all (for times taken in
J) finite-dimensional distributions of Mγp do converge to those of M∞.

We now claim that this proves that:

Law(X∞
0+) = µ0P .
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First recall that the trajectories of X∞ are almost surely in Eeff , and we have al-
most surely that Pϕ(X∞) = ϕ(X∞). On the other hand by construction E [Mγ

t ] =

E(Pϕ(Xγ
0 )) = µγ

0Pϕ for each t, so that passing to the limit for t ∈ J

E [M∞
t ] = µ0Pϕ

by Assumption 2, and since M∞
0+ = ϕ(X∞

0+) the claim is proved.
We now turn to the martingale property. Using the convergence of finite-dimensional

distributions on J , one gets: for all 0 6 t1 < ... < tp < t in J , for all ϕ1, ..., ϕp continuous
bounded, and for all p:

E[(Mγ
t −Mγ

tp)ϕp(X
γ
tp)...ϕ1(X

γ
t1)]

γ→+∞
��

= 0

γ→+∞
��

E[(M∞
t −M∞

tp )ϕp(X
∞
tp )...ϕ1(X

∞
t1 )] = 0.

Since the process M∞ is a càdlàg process, we have M∞ is a martingale for the
filtration of X∞ by Theorem A.7.

Finally, recalling again that Pϕ(X∞) = ϕ(X∞) (trajectories of X∞ are almost surely
in Eeff), we have that:

t 7→ ϕ(X∞
t )−

∫ t

0

L0Pϕ(X∞
s ) is a σ(X∞

s , s 6 t)-martingale.

Assumption 8 ensures eventually that the distribution of X∞ is the unique càdlàg solu-
tion of the above martingale problem.

Routinely combining this identification of the limit with the tightness of (Xγ)γ>0 in
pseudo-path space obtained in Step 1, we find that Xγ indeed converges in law for the
pseudo-path topology to X∞, the unique (in law) process on Eeff of generator Leff : the
Theorem 2.10 is proved.

3.5 Proof of Corollary 2.11

In order to prove the convergence of any finite-dimensional marginal distribution of
the process, we first need to prove the convergence of a single time marginal distribu-
tion starting from a given moving initial condition.

Proposition 3.6. We assume as before that Xγ starts from the initial condition µγ
0 that

converges in law towards µ0. Then for all t > 0, under the assumptions of Theorem 2.10,
we have that Xγ

t converges in law towards X∞
t of initial condition µ0P .

Proof. Let t > 0 be given. The compact containment condition of Assumption 3 implies
that the family of distributions (Xγ

t )γ is tight, and we can thus consider a first extraction
converging in distribution towards a limit denoted Yt. By Lemma 3.2, we know that this
limit lies in the effective state space Yt ∈ Eeff almost surely.

Next, as in the proof of Step 4 above, sinceXγ converges in law to càdlàgX∞ for the
pseudo-path topology, there exists a second extraction (γn) and J ⊂ R+ of full Lebesgue
measure such that the finite-dimensional distributions of (Xγn

s )s∈J converge to those of
(X∞

s )s∈J.
Consider a sequence (tk)k of elements of J converging to t from the right. For

f ∈ Deff (by assumption a separating class of bounded test functions), we can now
consider the following decomposition (we recall that f = Pf on Eeff):

|Eµγn
0
(Pf(Xγn

t ))− Eµ0P(f(X
∞
t ))|

6 |Eµγn
0
(Pf(Xγn

t )− Pf(Xγn

tk ))| + |Eµγn
0
(Pf(Xγn

tk ))− Eµ0P(Pf(X∞
tk ))|

+ |Eµ0P(f(X
∞
tk ))− Eµ0P(f(X

∞
t ))|. (3.4)

EJP - (-), paper -.
Page 21/49

https://www.imstat.org/ejp

https://doi.org/-
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Martingale approach to large noise homogenization

First note that since Pf is continuous (Assumption 2) and bounded the left hand side
converges for n large towards |E(f(Yt))− Eµ0P(f(X

∞
t ))|.

We also remind that almost surely

f(X∞
tk ) −→

k→+∞
f(X∞

t )

by continuity of f and right continuity of s 7→ X∞
s . Since f is bounded, we have by

dominated convergence:

Eµ0P(f(X
∞
tk
)) −→

k→+∞
Eµ0P(f(X

∞
t )).

Using this last result and point ii) of Assumption 7, we now consider k such that
|Eµ0P(f(X

∞
tk )) − Eµ0P(f(X

∞
t ))| 6 ε and (tk − t) sup

E
|L0Pf | 6 ε . The third term of

the right hand side of (3.4) is lower than ε uniformly in n. We fix k := kε until the end of
the proof. It remains (before concluding) to prove that the two other terms are inferior
to ε for any n large enough.

Since tk ∈ J we have Xγn

tk

L−→
n→+∞

X∞
tk and we bound the second term by ε for n large

enough.
For the first term, using Dynkin’s formula (since (γL1 + L0)Pf = L0Pf ) we have:

|Eµγn
0
(Pf(Xγn

t )− Pf(Xγn

tk
))| 6

∣∣∣∣
∫ tk

t

Eµγn
0

(L0Pf(Xγ
s ))

∣∣∣∣

6 (tk − t) sup
E

|L0Pf |

6 ε.

Since the bound is true for any ε > 0, we take ε → 0 to get that Yt equals X∞
t in

distribution since Deff is assumed separating. To summarize, let t > 0 be given and
consider any extraction of the family (Xγ)γ . We have just proven that for each t > 0

we can construct a second extraction (in two steps) for which we have the convergence
of the distribution of Xγ

t towards the one of X∞
t . This is a characteristic property of

sequential convergence like convergence in distribution.

We will now invoke a technical Lemma that we will combine with the Markov prop-
erty to prove the convergence of the finite dimensional distributions.

Lemma 3.7. We assume as before that Xγ starts from the initial condition µγ
0 that

converges in law towards a distribution denoted µ0. We furthermore assume here that
the support of µ0 is included in Eeff , so that µ0P = µ0. Then, when γ goes to +∞, the
couple (Xγ

0 , X
γ
t ) converges in distribution towards the couple (X∞

0 , X∞
t ).

Proof. We want to prove that for all t > 0 and f0, f continuous bounded strictly positive
functions on E, it holds:

Eµγ
0
(f0(X

γ
0 )f(X

γ
t )) −→

γ→+∞
Eµ0(f0(X

∞
0 )f(X∞

t ))

We have that:

Eµγ
0
(f0(X

γ
0 )f(X

γ
t )) =

∫

E

f0(z)Ez(f(X
γ
t ))µ

γ
0 (dz)

= µγ
0(f0)

∫

E

Ez(f(X
γ
t ))νγ(dz),
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where νγ(dz) = 1
µγ
0 (f0)

f0(z)µ
γ
0(dz) is a probability measure on E. Since µγ

0 (f0) is uni-

formly lower bounded by a constant strictly superior to 0 and converges to µ0(f0), we
have that νγ converges in distribution towards ν(dz) = 1

µ0(f0)
f0(z)µ0(dz), a probability

distribution on Eeff (so νP = ν). Using Proposition 3.6:

Eµγ
0
(f0(X

γ
0 )f(X

γ
t )) = µγ

0 (f0)Eνγ (f(X
γ
t )) −→

γ→+∞
µ0(f0)Eν(f(X

∞
t )) = Eµ0(f0(X

∞
0 )f(X∞

t )).

We now have all the tools needed to conclude.

Proof. (Corollary 2.11)
We consider 0 < t1 < · · · < tk and ε ∈]0, t1[, denoting P γ

t the semi-group associated
with Xγ

t and P∞
t the semi-group associated with X∞

t , we notice that for all f1, . . . , fk
bounded strictly positives functions on E we have:

Eµγ
0
(f1(X

γ
t1) · · · fk(X

γ
tk
)) = ργP

γ
h1
(f1P

γ
h2
(f2P

γ
h3
(. . . fk−1P

γ
hk
(fk). . .))),

where hi = ti − ti−1 for i > 2 and h1 = t1 − ε, and ργ is the law of Xγ
ε starting from

µγ
0 . Proposition 3.6 gives us that ργ converges in distribution towards ρ, the law of X∞

ε

starting from µ0P whose support is included in Eeff .
To conclude, we will prove by induction on k that for any continuous bounded f

νγ(f) = ργP
γ
h1
(f1P

γ
h2
(f2P

γ
h3
(. . . fk−2P

γ
hk−1

(f))))

converges when γ → +∞ to:

ν∞(f) = ρP∞
h1
(f1P

∞
h2
(f2P

∞
h3
(. . . fk−2P

∞
hk−1

(f))))

both being positive finite non trivial measures since all the functions fhi
involved are

positive and bounded. Furthermore, the second measure is of support included in Eeff .
Proposition 3.6 proves the convergence of the semi-group which is the result for

k = 1. We now take k > 2, we assume that the result is proved at rank k−1, and use the
notation νγ and ν∞ for distributions at rank k−1. By induction hypothesis, νγ converges
to ν∞ in distribution (so especially νγ(E) converges to ν∞(E)). Writing νγ := 1

νγ(E)νγ

and ν∞ := 1
ν∞(E)ν∞ we have that νγ is a probability measure converging to ν∞. Hence,

Lemma 3.7 gives us that for any continuous bounded function f we have:

ργP
γ
h1
(f1P

γ
h2
(f2P

γ
h3
(. . . fk−1P

γ
hk
(f). . .))) = νγ(E)Eνγ (fk−1(X

γ
0 )f(X

γ
hk
))

−→
γ→+∞

ν(E)Eν (fk−1(X
∞
0 )f(X∞

hk
)) = ρP∞

h1
(f1P

∞
h2
(f2P

∞
h3
(. . . fk−1P

∞
hk
(f). . .))).

Since this is true for all continuous bounded functions f , this proves the result at rank
k; we take f = fk and we get that:

Eµγ
0
(f1(X

γ
t1) · · · fk(X

γ
tk)) −→

γ→+∞
Eµ0P(f1(X

∞
t1 ) · · · fk(X∞

tk )).

3.6 Proof of Proposition 2.4

We propose in this section a proof of Proposition 2.4 (rewritten as Lemma 3.8 below),
which states that the large time convergence of the dominant process towards Eeff is
uniform with respect to starting points taken in compact sets.

Let us reformulate Proposition 2.4 by making assumptions explicit:
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Lemma 3.8. Let E be Polish, Eeff be a closed subset of E, and assume that (x, t, ω) 7→
Xt(x)(ω) ∈ E is a measurable map defined for (t, x) ∈ R+ ×E and for ω in a probability
space. A reference filtration of the considered probability space being given, assume
that for all x ∈ E, t 7→ Xt(x) is adapted, càdlàg, Markovian and time homogeneous, with
initial condition X0(x) = x. We assume moreover that:

1. For all t > 0, x 7→ Xt(x) is continuous in probability (Feller-type continuity).

2. For all x ∈ E, the process (Xt(x))t>0 converges in probability towards X∞(x) ∈
Eeff .

3. x 7→ P(x, ·) = Law(X∞(x)) is continuous for the topology of convergence in law.

4. We have P(x, ·) = δz for some z ∈ Eeff if and only if x ∈ Eeff ; in which case z = x.

5. The compact containment condition (2.2) is verified: for any K ⊂ E compact and
any ε > 0, there exists another compact Kε ⊂ E such that:

sup
x∈K

P [∃t > 0, Xt(x) ∈ Kc
ε ] 6 ε.

Then there exists a continuous bounded non-negative function f on E with f > 0 on
E \ Eeff and f = 0 on Eeff such that for all K ⊂ E compact:

lim
t→+∞

sup
x∈K

E [f(Xt(x))] = 0. (3.5)

Let us first recall the existence of measurable projections, which will be useful in
the proof of Lemma 3.8. We have the following classical result:

Lemma 3.9 (Existence of a measurable projector). Let (E, d) denotes a Polish space, K
a compact subset of E. K admits a measurable projector: there exists a measurable
function p : E → K such that for all z ∈ E, d(z,K) = d(z, p(z)).

Proof. We consider the set-valued map ψ on E defined by (B(x, r) denotes a closed ball
of center x and radius r):

ψ(y) := y∈ E 7→ B(y, d(y,K)) ∩K ∈ Co(E) \ {∅},

where Co(E) denotes the compact sets of E. We underscore that by construction ψ(y)
is always non-empty since K is compact.

For any open set O ⊂ E we claim that

A[O] := {y ∈ E, ψ(y) ∩O 6= ∅}

is measurable. If this claim is true, the Kuratowski–Ryll-Nardzewski measurable selec-
tion theorem (see Theorem 6.9.3 in [5]) gives us a measurable selection of the set-valued
map y 7→ ψ(y) ⊂ E, which is by construction a projector, and the proof is complete. To
prove the claim, we decompose O as a countable union of closed sets

O =
⋃

n>1

Cn, Cn := {x ∈ O | d(x,Oc) > 1/n}

and write A[O] =
⋃

n>1 A[Cn]. One can then check that since K ∩ Cn is compact:

B(y, d(y,K)) ∩K ∩Cn 6= ∅ ⇔ d(y,K ∩ Cn) 6 d(y,K).

The above condition is continuous with respect to the y variable, so that A[Cn] is closed.
The claim is proved.
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To prove Lemma 3.8 we will also need to use the following general lemma. It proves,
using first the continuity with respect to x of Xt(x) (in probability), and second the
continuity of X∞(x) (in law), the uniform continuity of x 7→ X∞(x) in probability, up to
some compact containment.

Lemma 3.10. Let all the assumptions (5. excepted) stated in Lemma 3.8 hold true.
Then for all K+ ⊂ E and K ⊂ K+ compact sets, all x ∈ K, and all ε, h > 0, there exists
η := ηK,K+,x,ε,h > 0 such that for all x′ ∈ B(x, η) ∩K , we have:

P (d(X∞(x), X∞(x′)) > h) 6
ε

16
+ P

(
∃t > 0, Xt(x

′) /∈ K+
)
+ 3P

(
∃t > 0, Xt(x) /∈ K+

)
.

Proof. Before starting the proof we remark that the result is straightforward if K+ ∩
Eeff = ∅. We will hence assume from now on that

K+ ∩ Eeff 6= ∅.

The proof of Lemma 3.10 is then decomposed in several steps.

Two uniform continuity estimates. First, by assumption, the function x 7→ P(x, ·) =
Law(X∞(x)) is continuous for the metric topology of convergence in law. Since K+ is
compact, Heine’s theorem applies and yields uniform continuity. Remark also that for
z ∈ Eeff one has P(z, ·) = δz. As a direct consequence, for all α, h > 0, there exists
aα,h > 0 such that for all z ∈ Eeff ∩K+ and x ∈ K+ :

d(x, z) 6 aα,h implies P

(
d(X∞(x), z) 6

h

2

)
> 1− α. (3.6)

Second, let t > 0 be any given time, and let us consider the continuity with respect
to the initial conditions. By assumption, the map x 7→ Xt(x) is continuous for the
metric topology of convergence in probability of random variables. Since K is compact,
Heine’s theorem applies again and yields uniform continuity, which can be expressed
as follows: for all a, α > 0, there exists ηt,a,α > 0 such that for all x, x′ ∈ K we have

d(x, x′) 6 ηt,a,α implies P

(
d(Xt(x), Xt(x

′)) 6
a

2

)
> 1− α (3.7)

A first estimate. Let α, a > 0 and x ∈ K be given. Let peff denote a projector on
Eeff ∩K+ satisfying for all x ∈ E

peff(x) ∈ Eeff ∩K+, d(x, peff(x)) = d(x,Eeff ∩K+),

whose existence is given by Lemma 3.9, we claim that there exists T := Tx,a,α and
η := ηx,a,α > 0 such that for any x′ ∈ B(x, η) ∩K, we have:

P(d(XT (x
′), peff(XT (x))) 6 a) > 1− 2α− P(∃t > Xt(x) /∈ K+). (3.8)

Indeed, one has first

P

(
d(XT (x), Eeff ∩K+) 6

a

2

)
> P

(
d(XT (x), X∞(x)) 6

a

2
, X∞(x) ∈ K+

)
,

and since by assumption (Xt(x))t>0 converges in probability for large time to X∞(x),
using that K+ is closed, there exists T := Tx,a,α > 0 such that

P(d(XT (x), Eeff ∩K+) 6
a

2
) > 1− α− P(∃t > Xt(x) /∈ K+). (3.9)
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Next, we can consider the lower bound

P (d(XT (x
′), peff(XT (x))) 6 a)

> P

(
d(XT (x

′), XT (x)) 6
a

2
, d(XT (x), peff(XT (x))) 6

a

2

)

> 1− P

(
d(XT (x

′), XT (x)) >
a

2

)
− P

(
d(XT (x), Eeff ∩K+) >

a

2

)
,

and using first (3.9) for a well-chosen T := Tx,a,α and then (3.7) for a well chosen
ηT,a,α := ηx,a,α we obtain the claim (3.8).

Main estimate. The key of the proof consists in the following claim. LetK ⊂ K+ ⊂ E

compact subsets, α ∈ [0, 1], h > 0, and x ∈ K be given. Denote the event

Bx′ :=
{
Xt(x

′) ∈ K+, ∀t > 0
}
.

We claim that there exists η > 0 and T > 0 such that for any x′ ∈ B(x, η) ⊂ K, we have:

P

(
d(X∞(x′), peff(XT (x))) 6

h

2

)
> 1− 5α− P(Bc

x′)− P(Bc
x).

This estimate will subsequently quite easily yield the proof of the whole lemma.

In order to prove the claim, we consider the following conditioning:

P

(
d(X∞(x′), peff(XT (x))) ≤

h

2

)

= P(d(X∞(x′), peff(XT (x))) 6
h

2

∣∣XT (x
′) ∈ B(peff(XT (x)), a) ∩K+ )

︸ ︷︷ ︸
ii)

× P(XT (x
′) ∈ B(peff(XT (x)), a) ∩K+)︸ ︷︷ ︸

i)

.

Using our first estimate (3.8), there exists T := Tx,a,α > 0 and η := ηx,a,α > 0 such that
for all x′ ∈ B(x, η) ∩K the term i) can be lower bounded as follows:

i) = P(XT (x
′) ∈ B(peff(XT (x)), a) ∩K+)

> 1− P(XT (x
′) /∈ B(peff(XT (x)), a)) − P(Bc

x′)

> 1− 2α− P(Bc
x)− P(Bc

x′).

Then, since t 7→ (Xt(x), Xt(x
′)) is homogeneous in time and satisfies the Markov prop-

erty, the uniform estimate (3.6) (applied after conditioning with respect to the point
z = peff(Xt(x)) ∈ Eeff ∩K+ and the initial condition Xt(x

′) ∈ K+) directly implies for a
well chosen a := aα,h that ii) can be lower bounded by

ii) = P

(
d(X∞(x′), peff(Xt(x))) 6

h

2
| Xt(x

′) ∈ B(peff(Xt(x)), a) ∩K+

)

> 1− α (3.10)

for any deterministic t > 0 and in particular for t = Tx,a,α.

Finally we obtain that i)× ii) > (1−α)× (1− 2α−P(Bc
x′)−P(Bc

x)) > 1− 5α−P(Bc
x′)−

P(Bc
x) and the claim is proven.
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Final remark. Eventually, K, x ∈ K, K+, and h, α > 0 being given as before, one can
choose an appropriate T and then apply two times the main estimate in order to get for
all x′ ∈ B(x, η):

P(d(X∞(x′), X∞(x)) 6 h)

> P

(
d(X∞(x′), peff(XT (x))) 6

h

2
, d(X∞(x), peff(XT (x))) 6

h

2

)

> 1− P

(
d(X∞(x′), peff(XT (x))) >

h

2

)
− P

(
d(X∞(x), peff(XT (x))) >

h

2

)

> 1− 10α− 3P(Bc
x)− P(Bc

x′).

We then choose α small enough so that 10α 6
ε
16 , and we have proved the lemma.

Before carrying out the proof of Lemma 3.8, we end with a classical technical lemma
that will be useful in the proof. We recall as a preamble that the distance function to
any closed set C is 1-Lipschitz since:

inf
y∈C

d(x′, y)− inf
y∈C

d(x, y) 6 sup
y∈C

(d(x′, y)− d(x, y)) 6 d(x, x′).

Lemma 3.11. Let (E, d) be a separable metric space. There exists a countable family
of 1-Lipschitz, bounded by 1 functions that is convergence determining.

Proof. Since E is metric separable, it is second countable and there exists a countable
generating family B of closed sets; meaning that for any closed set C, B contains a
decreasing sequence whose intersection is C. Let us consider the following countable
family of bounded and Lipschitz functions

fn,C(x) = 1−min (nd(x,C), 1) , C ∈ B, n ∈ N \ {0}.
Let C be a given closed set and Cp ց C a decreasing sequence converging to C ∈ B.

One has then infp,n fn,Cp
(x) = 1C(x). Let (µq)q denotes a sequence of probabilities,

and µ another probability such that limqµq(fn,Cp
) = µ(fn,Cp

) for any n, p. Obviously, by
monotone convergence

lim sup
q

µq(C) = lim sup
q

inf
p,n

µq(fn,Cp
) 6 inf

p,n
lim sup

q
µq(fn,Cp

) = µ(C).

This implies by portmanteau lemma that limq µq = µ in distribution and the family
(fn,C)n≥1,C∈B is convergence determining.

Taking gn,Cp
= fn,Cp

/n that is 1-Lipschitz and bounded by 1, we have the equiva-
lence limq µq(fn,Cp

) = µ(fn,Cp
) if and only if limq µq(gn,Cp

) = µ(gn,Cp
), so the family

(gn,Cp
)n>1,C∈B is also convergence determining.

Proof of Lemma 3.8. We consider a given compact K of E and a given ε > 0. By the
compact containment assumption (Assumption 3), there exists a compact Kε such that
denoting

Bx = {Xt(x) ∈ Kε, ∀t > 0}
we have supx∈K P(Bc

x) 6
ε
16 .

We take (fn)n>1 a family of convergence determining functions onE that are bounded
by 1 and 1-Lipchitz for the distance min(1, d) (Lemma 3.11). We consider for x, y ∈ E

the following (harmonic) semi-distance:

dhar(x, y) =
∑

n>1

|Pfn(x)− Pfn(y)|2−n.
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Since (fn)n is separating, we note that dhar(x, y) = 0 if and only if P(x, ·) = P(y, ·).
Moreover the continuity assumption on P implies that dhar is topologically weaker than
d.

To prove Lemma 3.8, we consider the harmonic distance function to Eeff defined by

f : x ∈ E 7→ inf
y∈Eeff

dhar(x, y) ∈ R+.

We claim that f is null on Eeff , strictly positive on E \Eeff and 1-Lipschitz for dhar (hence
continuous for d). We will subsequently prove (3.5) for this function, completing the
proof of Lemma 3.8. First, we have trivially that f|Eeff

= 0, and that f is 1-Lipschitz
as a distance function. Let us now prove that we have f|E\Eeff

> 0. Let x ∈ E \ Eeff

be given. We assume that f(x) = 0 and we prove that x ∈ Eeff . If f(x) = 0, we can
find by definition of f a sequence yn ∈ Eeff such that dhar(yn, x) −→

n→+∞
0, so 〈δyn

, fp〉 =
fp(yn) = Pfp(yn) −→

n→+∞
Pfp(x) = 〈P(x, ·), fp〉 for all p > 1. Since the fp are convergence

determining, we thus have that δyn
converges weakly towards P(x, ·), but a converging

sequence of Dirac distributions of support included in a closed set can only converge
towards another Dirac measure of support included in the same closed set, so eventually
there exists y ∈ Eeff such that P(x, ·) = δy = P(y, ·). By assumption, P(x, ·) = δy implies
x = y ∈ Eeff . We have thus proved that f|E\Eeff

> 0. We stress that this latest argument
is formally important and is the main use of Assumption 5 in this paper.

We can now develop the main argument, using the first key fact that for all n > 1

and x ∈ E, the process t 7→ Pfn(Xt(x)) is a martingale for the underlying filtration, so
that the absolute value:

t 7→ |Pfn(Xt(x)) − Pfn(Xt(x
′))|

is a sub-martingale whose expectation is thus increasing with time. Note also that
Pfn(X∞(x′)) = fn(X∞(x′)) almost surely since X∞(x′) ∈ Eeff . The second key fact is
the conclusion of Lemma 3.10, which is to be used for K = K, K+ = Kε, x = x, h = ε

8 ,
a well-chosen ηx,ε := ηK,Kε,x,ε and all x′ ∈ B(x, ηx,ε) ∩K.

We then proceeds to estimate E(f(Xt(x
′)) as follows:

E(f(Xt(x
′)) = |E (f(Xt(x

′))− f(X∞(x′)))|
6 E(dhar(Xt(x

′), X∞(x′)))

6
∑

n>1

2−n
E (|Pfn(Xt(x

′))− Pfn(Xt(x))|)

+ 2−n
E (|Pfn(Xt(x)) − Pfn(X∞(x))|)

+ 2−n
E (|Pfn(X∞(x))− Pfn(X∞(x′))|) .

Applying the sub-martingale property on the first term of the r.h.s., it yields

E(f(Xt(x
′))) 6

∑

n>1

2−n
E (|Pfn(Xt(x)) − Pfn(X∞(x))|)

+ 2−n
E
(
|Pfn(X∞(x)) − Pfn(X∞(x′))|︸ ︷︷ ︸

|fn(X∞(x))−fn(X∞(x′))|

)
× 2

6
∑

n>1

2−n
E (|Pfn(Xt(x)) − Pfn(X∞(x))|)

+ 2−n
E (d (X∞(x), X∞(x′)) ∧ 1)× 2

where in the last line we have used the Lipschitz bound on the functions fn. Next, using
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first Lemma 3.10 and then the property of Bx defined in the beginning of this proof :

E(f(Xt(x
′)) 6

∑

n>1

2−n
E (|Pfn(Xt(x))− Pfn(X∞(x))|)

+ 2−n(
ε

8
+ P(d(X∞(x), X∞(x′)) >

ε

8
))× 2

6
∑

n>1

2−n
E (|Pfn(Xt(x))− Pfn(X∞(x))|)

+ 2−n(
3ε

16
+ 3P(Bc

x) + P(Bc
x′)) × 2

6
∑

n>1

2−n
E (|Pfn(Xt(x))− Pfn(X∞(x))|)

+
7ε

8

Using that the fn are bounded by 1, the first term above converges to 0 when t ap-
proaches infinity, and is thus inferior to ε

8 for all t > Tx,ε for some Tx,ε.
By covering K by a finite number of balls (we can because K is compact) of centers

xi radius ηxi,ε for i = 1 . . . Iε, we thus find that for all t > maxi Txi,ε it holds

sup
x′∈K

E [f(Xt(x
′))] 6 ε.

Since this is true for all ε > 0, we have eventually:

lim
t→+∞

sup
x∈K

E [f(Xt(x))] = 0.

4 Examples

We will now use Theorem 2.10 and Corollary 2.11 on concrete examples to get ho-
mogenization results. Once the framework is settled, we only have to check the com-
mon hypothesis of both Theorem 2.10 and Corollary 2.11 to have the convergence in
law respectively in the sense of the Meyer–Zheng topology and in the sense of the
finite-dimensional distributions. Since we will study SDEs with bounded, Lipschitz coef-
ficients, Lemma B.2 already gives us Assumptions 4 and Assumption 6.

4.1 Diffusion in a simplex

This example is directly taken from [13].
Consider E a closed simplex in Rn, that is the non-degenerate intersection of n + 1

affine half-spaces Ei, i = 1 . . . n + 1. The effective state space Eeff is defined to be the
n + 1 vertices of E: we have therefore that E is compact and Eeff is a finite set. We
take Deff = Cc(Eeff) which is here the set of all real functions on Eeff . We assume in this
example that the dominant process is a martingale and that the subdominant process
is general, we write:

dXγ
t =

√
γσ (Xγ

t ) dWt + σ0 (X
γ
t ) dBt + b (Xγ

t ) dt,

where we assume that σ, σ0 : E → Mn(R) and b : E → Rn are Lipschitz continuous (for
the Euclidean distance). Thus we have:

L0 = 〈b,∇〉+ 1

2
〈σ0σ†

0∇,∇〉 and L1 =
1

2
〈σσ†∇,∇〉

In order to obtain an appropriate behaviour of the above process at the boundary
∂E, it is necessary to add several assumptions:
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(i) For all x ∈ ∂E, σ(x) and σ0(x) have their images in the tangent space of ∂Ei for
each i with x ∈ ∂Ei. In particular σ(x) = σ0(x) = 0 if x ∈ Eeff .

(ii) For all x ∈ ∂E, b(x) vanishes or points to the interior of E.

(iii) σ(x) = 0 if and only if x ∈ Eeff .

The above special assumptions ensure in particular that the process stays in E al-
most surely for any γ > 0 and t > 0 (see [13]).

Lemma 4.1. Assume that in addition to Lipschitz continuity, σ, σ0 and b satisfy i) and
ii) above. Then Xγ

t belongs to E for all time t.

We will next prove again the main result of [13], that is:

Theorem 4.2. The process X(γ,1) converges in law (for the pseudo-paths topology and
for finite dimensional time marginals) when γ approaches infinity towards a continuous-
time Markov chainX∞ on Eeff of transition matrix Leff = (b(x) · ∇xHz(x))x,z∈Eeff

, where
x 7→ Hz(x) is the only affine function on E such that: i) Hz(z) = 1, and ii) Hz(z

′) = 0 for
any z′ ∈ Eeff \ {z}.

We just have to check the six remaining hypothesis.

Since the dominant process is a bounded martingale, its quadratic variation is almost
surely finite so that the dominant process converges almost surely to a point where σ
is null; by iii) above the latter is a point of Eeff . X

(1,0)
t converges in probability towards

Eeff when t→ +∞, and we have X
(1,0)
∞ (x) = x if x ∈ Eeff : Assumption 1 is checked.

The assumption 3 is trivially verified since E is a compact.

Let us now give an explicit expression of P to prove the remaining hypothesis. It has
been proved in [13], Remark 6, that for all x ∈ E:

P(x, ·) =
∑

z∈Eeff

Hz(x)δz ,

In short, the proof works as follows: X
(1,0)
∞ (x) ∈ Eeff and X(1,0) is a martingale, hence

taking the expected value ofX
(1,0)
∞ (x) we have that x is a convex combination of the n+1

points of Eeff weighted by the P(X∞(x) = z), and it implies P(X∞(x) = z) = Hz(x).

The explicit expression of P immediately gives us Assumption 5.

The Assumption 2 and Assumption 7 are easily proved using the fact that P is affine:
Pϕ being smooth on E for all ϕ ∈ Deff , point ii) is a direct consequence of Itô’s formula
applied on Pϕ(X(γ,1)). Indeed, for all ϕ ∈ Deff , we have:

d(Pϕ(X(γ,1)
t ) = (γL1 + L0)(Pϕ)(X(γ,1)

t )dt+∇(Pϕ)(Xγ
t ) · σ0(X(γ,1)

t )dBt

+
√
γ∇(Pϕ)(Xγ

t ) · σ(X(γ,1)
t )dWt,

integrating this inequality and using that L1Pϕ = 0, we get eventually:

Pϕ(X(γ,1)
t (x)) −

∫ t

0

L0Pϕ(X(γ,1)
s (x))ds

= Pϕ(x) +
∫ t

0

∇(Pϕ)(X(γ,1)
t (x)) · σ0(X(γ,1)

t (x))dBs

+

∫ t

0

√
γ∇(Pϕ)(X(γ,1)

t (x)) · σ(X(γ,1)
t )dWs,

with the second term clearly being a martingale for the natural filtration of X
(γ,1)
t (x).
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For point iii), using the explicit expression of L0P and the continuity of b and ∇Hz,
we have for z0 ∈ Eeff that:

lim
x→z0

L0P [ϕ] (x) = lim
x→z0

∑

z∈Eeff

ϕ(z)b(x) · ∇Hz(x) =
∑

z∈Eeff

ϕ(z)b(z0) · ∇Hz(z0).

Identifying ϕ with the vector (ϕ(z))z∈Eeff
we have that Leffϕ = (b(x) · ∇xHz(x))x,z∈Eeff

ϕ,
which is trivially bounded measurable.

Since b(x0) · ∇Hx0(x0) 6 0 and b(x0) · ∇H(x0) > 0 for z 6= x0, using furthermore that∑
z∈Eeff

b(z) · ∇Hz(x0) = 0, we can check that Leff is indeed the generator of a continuous-

time Markov process on Eeff . The martingale problem is therefore well-posed and As-
sumption 8 is satisfied.

4.2 Diffusion in a strip

Define E = [−1, 1]×R andEeff its border {−1, 1}×R. We takeDeff = C∞
c ({−1, 1} ×R)

as space of test functions. In this subsection we will study the process Xγ = X(γ,1) =

(Y γ , Zγ) defined by:
{

dY γ
t =

√
γσ(Y γ

t , Z
γ
t ) dWt + b(Y γ

t , Z
γ
t )dt

dZγ
t = γσ(Y γ

t , Z
γ
t )

2 dt = d[Y γ ]t.

where b : [−1, 1] × R → R is a Lipschitz bounded function such that b(1, z) 6 0 and
b(−1, z) > 0 and σ : [−1, 1] × R → R is a Lipschitz bounded function with σ−1({0}) =

{±1} × R. Note that when the values of b and σ do not depend of z-coordinate, the
above process is the simplex example of Section 4.1 for n = 1 (the variable Y ) with
the addition of its quadratic variation (the variable Z). Adding the quadratic variation
is of special interest to keep track of the "size" of the process trajectory through the
homogenization procedure.

By setting b(y, z) := b( y
|y| , z) and σ(y, z) := 0 when y ∈ R \ [−1, 1], we can extend b

and σ to Lipschitz bounded coefficients on R2. Defining E = {(y, z) : ξ(y, z) 6 0} with
the level function ξ(y, z) = y2−1, one can check that the assumptions of Lemma B.1 are
satisfied so that strong solutions of the SDE above indeed remain in E for all times.

The main homogenization theorem is then the following.

Theorem 4.3. The process X(γ,1) in [−1, 1]× R+ converges in law (pseudo-path topol-
ogy and finite-dimensional) when γ approaches infinity towards a Levy-type process of
generator:

Leff(ϕ)(y, z) =|b|(y, z)
∫

R+

[ϕ(y, z + h)− ϕ(y, z)]dµ(h)

+ |b|(y, z)
∫

R+

[ϕ(−y, z + h)− ϕ(y, z)]dν(h)

in which ν is a finite positive measure of total mass ν(R+) = 1/2, and µ a positive Levy
measure of a subordinator (

∫
R+

min(1, t)µ(dt) < +∞). The latter are given by:






µ(dt) := − lim
y→1

∂

∂y
Py(τ ∈ dt;Wτ = 1) =

π2

16

+∞∑

k=−∞
k2e−tπ2k2

8 dt

ν(dt) := − lim
y→1

∂

∂y
Py(τ ∈ dt;Wτ = −1) = −π

2

16

+∞∑

k=−∞
(−1)kk2e−tπ2k2

8 dt,
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in which (Wt)t≥0 denotes a standard Brownian motion and τ its hitting time of ±1.

We have to check the six remaining hypothesis.
On the one hand we have that (Y

(1,0)
t )t is a bounded martingale that converges

almost surely to Y
(1,0)
∞ ∈ {±1}. On the other hand, since Y

(1,0)
t =

∫ t

0 σ(Y
(1,0)
t , Z

(1,0)
t )dWs,

we have using Itô isometry and |Yt| 6 1 that:

∫ t

0

E(y,z)

(
σ(Y

(1,0)
t , Z

(1,0)
t )2

)
ds = E(y,z)

((∫ t

0

σ(Y
(1,0)
t , Z

(1,0)
t )dWs

)2
)

6 1.

The left hand side above is exactly the expected value of Z
(1,0)
t − z and since (Z

(1,0)
t )t is

increasing, we may take the limit in the last inequality to find that E(Z
(1,0)
∞ ) 6 z+1. This

implies in particular that Z
(1,0)
∞ < +∞ almost surely. Finally, (Y

(1,0)
t , Z

(1,0)
t ) converges

almost surely when t → +∞ towards a random variable (Y
(1,0)
∞ , Z

(1,0)
∞ ) and we have

(Y
(1,0)
∞ , Z

(1,0)
∞ )(y, z) = (y, z) if (y, z) ∈ Eeff : Assumption 1 is verified.

Next, we recall that:

Y γ
t =

√
γ

∫ t

0

σ(Y γ
t , Z

γ
t )dWs +

∫ t

0

b(Y γ
s , Z

γ
s )ds+ y

=
√
γMt +Bt,

in which Y γ
t is bounded in absolute value by 1 and Bt by t×‖b‖∞+1; hence Itô’s isometry

gives us for all t > 0 and γ > 0:

sup
(y,z)

E(y,z)

(
γ

∫ t

0

σ(Y γ
t , Z

γ
t )

2ds

)
6 (1 + t× ‖b‖∞ + 1)2.

The term inside the expectation above is exactly Zγ
t − z, so using Markov’s inequality,

we have that for all ε > 0, there existsMε,t > 0 uniform in γ > 0 such that:

sup
(y,z)

P(y,z) (|Zγ
t − z| > Mε,t) 6 ε.

Taking Kε,T = [−1, 1]× [−z0, z0 +Mε,T ] for z0 > 0 and using that Zγ
t is increasing in

time, we have for any z0:

sup
y∈[−1,1],−z06z6z0

P(y,z)

(
∃t ∈ [0, T ], (Y γ

t , Z
γ
t ) ∈ Kc

ε,T

)
6 ε.

The proof works in particular for b = 0 (when we only consider the dominant process).
The estimate being uniform in γ > 0, the compact containment condition in Assumption
3 is thus checked.

To prove the remaining assumptions, Assumption 2, Assumption 5, Assumption 7
and Assumption 8, we first need to have an explicit expression of P and its derivative
with respect to y.

We start with a time change: the process of generator L1/σ
2 is of the form:

{
dỸt = dWt

dZ̃t = dt.

and we have (ỸSt
, Z̃St

) = (Yt, Zt) where
∫ t

0 σ
−2(Ys, Zs)ds = St. On the one hand if we

write τ := τ−1,1(W ) the first hitting time of 1 or −1 by the Brownian motion W starting
at y, we have that Ỹτ ∈ {±1} and Ỹt ∈]− 1, 1[ for all t < τ . Since Yt ∈]− 1, 1[ for all t > 0
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and Y∞ = {±1}, we can write S∞ = τ and obtain Y∞ = Ỹτ =Wτ and thus Z∞ = Z̃τ = τ .
Eventually we have for any ϕ : Eeff → R:

P(ϕ)(y, z) = E(y,z)(ϕ(Y∞, Z∞)) = Ey[ϕ(Wτ , z + τ)]

As a consequence,

Pϕ(y, z) =
∫ +∞

0

ϕ(1, z + t)Py(τ ∈ dt;Wτ = 1)

+

∫ +∞

0

ϕ(−1, z + t)Py(τ ∈ dt;Wτ = −1),

where Py(τ ∈ dt;Wτ = ±1) is a transparent notation for the probability distribution
of (τ,Wτ ). This explicit expression of P and a dominated convergence argument gives
us easily that if ϕ ∈ Cb(Eeff), Pϕ is continuous on E with limit ϕ at Eeff and hence
Assumption 2 is verified. The explicit expression of P furthermore gives us immediately
Assumption 5. Standard regularity results on parabolic PDE (see [12, Ch. 7]) gives us
that (y, z) 7→ Pϕ(y, z) is in C∞(E) (Nota Bene: this also proves again Assumption 2). For
the sake of completeness, we give in appendix an elementary proof of the fact that Pϕ
is infinitely differentiable on E using an explicit expression of Py(τ ∈ dt;Wτ = 1). We
can thus use Itô’s formula on to get Assumption 7 point ii).

We denote µ, ν the two measures defined for t > 0 by:





µ(dt) = − lim
y→1

∂

∂y
Py(τ ∈ dt;Wτ = 1)

ν(dt) = − lim
y→1

∂

∂y
Py(τ ∈ dt;Wτ = −1)

and for t 6 0 by µ(dt) = ν(dt) = 0. We prove in Appendix C that these two measures are
positive, and are in fact Levy measures of subordinators. We are looking for an explicit
expression of Leffϕ(1, z) using µ and ν, but we cannot directly take the limit under the
integral when y approaches 1 in ∂yPϕ since

∫
ϕ(t, z)µ(dt) could be infinite. We thus

need to substract to ϕ(y′, z′) the constant ϕ(1, z) and obtain

lim
y→1

L0P ϕ(y, z) = lim
y→1

b(y, z)∂yP (ϕ− ϕ(1, z)) (y, z)

We prove in appendix using a standard dominated convergence argument that we
can take the following limit under the integral, b being continuous by assumption:

lim
y→1

L0P ϕ(y, z) = −b(1, z)
∫ +∞

0

(ϕ(1, z + t)− ϕ(1, z))µ(dt)

− b(1, z)

∫ +∞

0

(ϕ(−1, z + t)− ϕ(1, z))ν(dt) (4.1)

where the last two integrals are well-defined and uniformly bounded in z since we have
ϕ ∈ C∞

c ({−1, 1} ×R) and 1 ∧ |x| integrable for µ and ν is finite.

Remark 4.4. We remind that b(1, z) 6 0 (the process stays in E) and therefore that
−b(1, z) > 0.

Doing exactly the same calculus as above, but taking y → −1 instead of y → 1, we
find:

lim
y→−1

L0P ϕ(y, z) = b(−1, z)

∫ +∞

0

(ϕ(1, z + t)− ϕ(−1, z))ν(dt)

+ b(−1, z)

∫ +∞

0

(ϕ(−1, z + t)− ϕ(−1, z))µ(dt) (4.2)
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Combining (4.1) and (4.2) and using that µ(1 ∧ |x|), ν(1) < +∞ we get that (±1, z) 7→
Leff ϕ(±1, z) is a bounded measurable function on Eeff and we have therefore that As-
sumption 7 iii) is checked. Furthermore Leff is a Levy generator constructed using
homogeneous subordinators on R+: the martingale problem is well-posed and Assump-
tion 8 is checked. A slightly general reference that enables to obtain well-posedness of
martingale problems associated with Levy generators is Theorem 3.1 of [17].

4.3 Diffusion in an Euclidean ball

We define E = B
n ⊂ Rn the closed unit ball of Rn and Eeff = Sn−1 = ∂Bn its border,

the unit sphere. We take Deff = C∞
c

(
Sn−1

)
which is the set of all smooth functions on

Eeff as space of test functions. We consider a purely diffusive dominant process on the
closed unit ball B

n
of Rn and a repulsive drift on the sphere for the sub-dominant one:

dXγ
t =

√
γσ(Xγ

t )dWt + b(Xγ
t )dt,

where σ : B
n → R+ is Lipschitz and vanishes exactly on ∂B

n
= Sn−1, while b : B

n → Rn

is Lipschitz and points towards the interior of the ball at points of Sn−1 (x · b(x) 6 0).
Our process is thus a strong solution to a SDE with Lipschitz coefficients. Moreover,
by extending σ and b on Rn to Lipschitz functions with σ(x) = 0 and x · b(x) 6 0 for x
outside the closed ball, we readily obtain:

1

2
γσ(x)2∆x(|x|2 − 1) + b(x) · ∇x(|x|2 − 1) 6 0, x /∈ B

n

According to Lemma B.1, the process remains in E for all time.
We will denote by

br(x) := 〈b(x), x|x| 〉 ∈ R,

and
bθ(x) := b(x)− br(x)

x

|x| ∈ R
n,

the polar decomposition of b. We also denote by

Tϕ(x) := (∇x − x

|x| 〈
x

|x| ,∇x〉)ϕ(x) ∈ TxS
n−1,

the (tangent-valued) gradient of a smooth map on the unit sphere ϕ : Sn−1 → R evalu-
ated at x ∈ Sn−1.

Theorem 4.5. The process X(γ,1) with values in B
n
converges in law (with respect to

the pseudo-path topology and finite-dimensional marginals) when γ approaches infinity
towards a Levy-type jump process of generator:

Leff(ϕ)(x) =bθ(x) · Tϕ(x)

− 2br(x)

∫

Sn−1

(ϕ(y)− ϕ(x) − 〈Tϕ(x), y − x〉) dµx(y).

where dµx(y) = 1
‖x−y‖ndσ

n−1(y) is a Levy measure on the sphere equipped with the

uniform probability measure σn−1.

We just have to check the six other hypothesis.
Since the dominant process in a bounded martingale it converges almost surely

to a point X
(1,0)
∞ by Doob’s first martingale convergence theorem. By computing its

quadratic variation, which must be finite by Itô isometry, the limit σ(X
(1,0)
∞ ) is null and

therefore lies in Eeff . X
(1,0)
t converges when t→ +∞ towardsX

(1,0)
∞ ∈ Eeff andX∞(x) =

x if x ∈ Eeff : Assumption 1 is checked.
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Assumption 3 is trivially verified since B
n
is a compact.

In an Euclidean ball, we do have an explicit expression (see [9, Ch.II Sec. 1]) of the
harmonic measure:

P(x, ·) =
{

1−‖x‖2

‖x−y‖ndσ
n−1(y) if x ∈ Bn

δx if x ∈ Sn−1
,

where σn−1 is the uniform probability measure on Sn−1. This expression immediately
gives us Assumption 5. x 7→ Pϕ(x) is continuous on B

n
(we let the proof in appendix for

points of Sn−1) and we get Assumption 2.
Elliptic regularity immediately gives us that if ϕ is smooth on the unit sphere, then

x 7→ Pϕ(x) is also smooth on the unit ball, see [12, Ch. 6] (Nota bene: this also proves
again Assumption 2). We may thus use Itô’s formula to get Assumption 7 point ii).

We now consider the non-radial derivatives. Let us denote by Dθ the projection on
the orthogonal space of z ∈ Rn of the gradient at the point z. The C1 regularity of Pϕ
on the unit ball yields:

lim
z→a

DθPϕ(z) = TPϕ(a) = Tϕ(a) (4.3)

since ϕ = Pϕ on the unit sphere.
Let us now denote by ∂r the projection on the vector line generated by z ∈ Rn of the

gradient at the point z. A computation detailed in Appendix D gives us that:

lim
z→a

∂

∂r
Pϕ(z) = −2

∫

Sn−1

1

‖a− y‖n (ϕ(y)− ϕ(a)− 〈Tϕ(a), y − a〉) dσn−1(y), (4.4)

where we notice that, writing dµa(y) :=
1

‖a−y‖n dσ
n−1(y), we have:

∫

Sn−1

(1 ∧ ‖a− y‖2)dµa(y) < +∞ (4.5)

Thus, combining (4.3) and (4.4) and, we have that:

lim
z→a

L0Pϕ(z) = −2br(a)

∫

Sn−1

(ϕ(y)− ϕ(a) − 〈Tϕ(a), y − a〉) dµa(y)

+ bθ(a) · Tϕ(a).

Combining the facts that b and all derivatives of ϕ are bounded and (4.5), we have that
Leffϕ is measurable bounded on Sn−1 and we have point iii) of Assumption 7.

In the case where bθ = 0 on the one hand and br(x) is independent of x on the other
hand, the explicit expression of Leff shows that it is the generator of a homogeneous (ro-
tation invariant) Levy process on Sn−1: the martingale problem is therefore well-posed
and Assumption 8 is checked. The well-posedness for general Lipschitz coefficients
bθ, br could then be carried out directly using a drift and a time change that map the
martingale solution to the homogeneous case. It is nonetheless not so easy to find gen-
eral references for this. The well-posedness can rather be obtained in regular cases
like here with Theorem 3.1 of [17]. The latter theorem requires to write the considered
Levy measure, here µx(dy), as the image by a mapping (at least Lipschitz with respect
to x) of the form y = γ(x, u) of a reference infinite measure integrating the variable u
independently of x. This can be done in our case using rotational invariance by simply
setting γ(x, ρ,m) = expx(ρPxm) in which exp is the usual exponential map, Pxm is the
projection on TxSn−1 of a unit vector m ∈ Rn uniformly integrated, and ρ ∈]0, π[ is inte-
grated with a Levy measure. The mappings x 7→ γ(x, ρ,m) = expx(ρPxm), x 7→ br(x) and
x 7→ bθ(x) are Lipschitz with uniform Lipschitz constants so that the various Lipschitz
conditions in Theorem 3.1 of [17] are satisfied.
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Appendices

Appendix A The pseudo-paths topology and the Meyer-Zheng cri-

terion

All results presented in this section can be found in the seminal work of Meyer and
Zheng [18], up to minor presentation variations.

A.1 The pseudo-path topology

Let E be a Polish space. Two measurable paths t 7→ xt ∈ E and t 7→ yt ∈ E belong
to the same equivalence class, called a pseudo-path, if the set {t : xt = yt} is of full
Lebesgue measure (similarly as functions in Lp). Let us denote by L0(e−tdt, E) the set
of all pseudo-paths. The pseudo-path topology is the Polish topology on L0(e−tdt, E)

induced by the closed (see IV.43 [8] for a proof) injection of L0(e−tdt, E) in Pr(E ×
[0,+∞[) endowed with the usual topology of convergence in law. This injection maps
any pseudo-path x to the probability measure of the form

δxt
(dx)e−tdt. (A.1)

In probabilistic terms, xn converges to x for the pseudo-path topology if and only if
the pair (xnT , T ) converges in distribution towards (xT , T ), where T is exponentially
distributed.

By a simple continuity argument, the push-forward (A.1) from paths to pseudo-paths
is injective on the set D(R+, E) of càdlàg paths, so that there exists a natural injection
D(R+, E) ⊂ L0(e−tdt, E). It is important to keep in mind that the set of pseudo-paths
with a càdlàg representative is a Borel subset (it is in fact Gδ) but it is not closed in the
space of pseudo-paths. As a consequence if a sequence of càdlàg paths converges for
the pseudo-paths topology, the limit may or may not be càdlàg.

There is another natural way to define a Polish topology on the space of pseudo-paths
L0(e−tdt, E) by considering convergence in measure (equivalent here to convergence
in probability). This topology can be defined with a probabilistic perspective as follows.
A sequence of pseudo-paths xn converges in probability (or in measure) towards x if
and only if xnT converges in probability towards xT were T is exponentially distributed.
Convergence in probability on L0(e−tdt, E) is then a Polish topology that can classically
by metrized using the L1-type Ky Fan complete metric (see [10, Section 9.2])

∫ ∞

0

min(d(xt, yt), 1)e
−tdt = 0 (A.2)

where d is complete and metrizing E. The following lemma is a slight generalization
of Lemma 1 in [18] which is proved for real valued processes. It shows that the above
two Polish topologies on pseudo-paths are topologically equivalent (although not metri-
cally).

Lemma A.1. Let E denote a Polish space. On pseudo-paths space L0(e−tdt, E), the
Polish topology of convergence in probability induced by (A.2) is equivalent to the Polish
topology of convergence in distribution induced by (A.1).

Proof. Let us prove that convergence in measure for pseudo-paths implies convergence
as distributions on R+ × E. Let T be an exponentially distributed random variable. By
definition of convergence in measure, xnT converges in probability towards xT ; and so
is the pair (xNT , T ) towards (xT , T ). This routinely implies convergence in distribution
in Pr(E × [0,+∞[).
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Conversely, let us prove that convergence xn → x as probability distributions on
R+×E implies convergence in measure. The following argument is a minor adaptation
of the proof of Lemma 1 of [18] which treats the case E = R.

Classically, we can (homeomorphically) embed any Polish space E in the unit ball
of a separable Hilbert space. For instance, E can be embed in the Hilbert cube φ :

E → [0, 1]N by considering the countable family of bounded continuous test functions
φk(x) = d(x, xk) where (xk)k∈N is a dense subset of E, and d 6 1 is a bounded distance
metrizing E; indeed, a sequence converges in E towards a given limit in E if and only if
its images by φk converges for each k > 0. As a consequence, the weighted ℓ2w Hilbert
space defined by the norm

d̃(x, y)2 := ‖φ(x) − φ(y)‖2ℓ2w :=
∑

k>0

2−k−1 |φk(x)− φk(y)|2

also metrizes the Polish space E although d̃ may not be complete.
We can next consider the Hilbert space L2(e−tdt, ℓ2w) of measurable paths on R+

taking values in the separable Hilbert ℓ2w. By a routine finite dimensional approximation
argument (one can consider increasing finite-dimensional sub-spaces ℓd ⊂ ℓ2w with ld րd

ℓ2w), the space of bounded continuous functions from R+ to ℓ2w is dense in L2(e−tdt, ℓ2w).
As a consequence, a converging sequence of pseudo-paths xn → x (as distributions of
Pr(E × [0,+∞[)) also converges weakly (by definition, and since xn and x lie in the
unit ball of ℓ2w) in L

2(e−tdt, ℓ2w), as can be seen by considering the convergence of the
scalar product

∫∞
0 〈φ(xnt ), ϕ(t)〉e−tdt for any continuous and bounded path ϕ with values

in ℓ2w. In the same way, convergence as pseudo-paths implies that the Hilbert norm
in L2(e−tdt, ℓ2w) of x

n converges to the one of x. Hence, xn converges strongly to x in
L2(e−tdt, ℓ2w). Since the latter two lie in the unit ball, strong convergence in L

2(e−tdt, ℓ2w)

is equivalent to convergence in probability in ℓ2w or equivalently in E since convergence
in probability does not depend on the metric.

Now, one can consider random pseudo-paths defined as classes of equivalence of
measurable maps X : (Ω,P) → L0(e−tdt, E) identified with almost sure equality. It is
thus possible consider the set of random pseudo-paths as the space L0(P, L0(e−tdt, E)).
The following lemma is somehow trivial, but nonetheless clarifying.

Lemma A.2. The metric

E

∫ ∞

0

min(d(Xt, Yt), 1)e
−tdt

is an isometry between L0(P, L0(e−tdt, E)) and L0(P⊗e−tdt, E), when wemetrize L0(e−tdt, E)

with (A.2). In particular, any random pseudo-path can be represented by a R+ × Ω-
measurable process (t, ω) 7→ X(t, ω).

Proof. Since E is separable, there exists C ⊂ E a countable dense subset of E. Random
variables taking values in C are dense for convergence in probability. The isometry is
trivial for such random variables by considering all maps (t, ω) 7→ X(t, ω) ∈ C which are
automatically measurable.

A.2 Convergence of finite-dimensional distributions

Convergence in pseudo-path space of càdlàg processes does not imply convergence
of finite dimensional distribution (as is already the case for the Skorokhod topology).
However, up to extraction, one can obtain convergence of finite dimensional distribu-
tions for all times in a set of full Lebesgue measure. This was proved as Theorem 5

in [18] for general real values processes. We sketch the proof again in the specific
càdlàg case but for Polish-valued processes.
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Lemma A.3. Let E be Polish and let Xn be a sequence of càdlàg processes converging
in distribution, for the pseudo-path topology, towards a càdlàg X∞ process. Then there
exists a sub-sequence and a subset J ⊂ R+ of full Lebesgue measure for which all
finite-dimensional distributions converge.

Proof. By the Skorokhod representation theorem in Polish spaces, one can assume that
X̃n converges towards X̃∞ almost surely, where X̃n has the same pseudo-path distribu-
tion as Xn, for each n > 1. Since by assumption P(X̃n ∈ D(R+, E) ⊂ L0(e−tdt, E)) = 1,
we can canonically consider X̃n as a càdlàg process using its unique càdlàg representa-
tive. We thus subsequently drop the ˜ notation.

By Lemma A.1, almost sure convergence in pseudo-paths space implies almost sure
convergence in probability. Taking the expectation and using dominated convergence
one gets ∫ ∞

0

E [min(d(Xn
t , X

∞
t ), 1)] e−tdt −−−−→

n→∞
0,

that is convergence in probability but with respect to the product measure e−tdt⊗P. As
a consequence there exists a sub-sequence (we do not change notation to denote this
sub-sequence) and a set of full e−tdt⊗P measure on which Xn converges towards X∞.
Using Fubini, this means that there is a set J of full Lebesgue measure for which t ∈ J

implies that the probability limnX
n
t = X∞ is one. This implies convergence of finite

dimensional distributions for all times in J .

A.3 Compact sub-spaces

Compact subsets of the pseudo-paths space can be easily characterized using a di-
rect application of the Prokhorov theorem.

Lemma A.4. A subset K of pseudo-paths is relatively compact if and only if for any
ε > 0, there exists tε > 0 and Kε ⊂ E compact such that

inf
x∈K

∫ tε

0

1d(xt,Kε)6ε e
−tdt > 1− ε;

in particular, if for all T > 0, all the pseudo-paths of K are taking on [0, T ] their values
in a compact KT ⊂ E, then the pseudo-paths space K is compact.

A.4 The Meyer-Zheng criterion

We now turn to the case where E = R. The idea is to consider the concept of
mean variation on pseudo-path distributions. A càdlàg random process with finite mean
variations characterizes (integrable) càdlàg quasi-martingales.

Definition A.5 (Mean variation). Let T > 0 denotes an horizon time, and (Xt)t>0 a
càdlàg real valued random process with Zt ∈ L1 for all t. The mean variation of Z over
[0, T ] with respect to its own natural filtration is given by

VT (Z) := sup
0=t06t1...6tK6T

K∑

k=0

E
∣∣E
[
Ztk+1

− Ztk | σ (Zt, t 6 tk)
]∣∣ ,

= sup
|H|61

E

(∫ T

0

Ht dZt

)
,

where in the above the supremum is taken over predictable processes (with respect to
the natural filtration of Z) taking value in [−1, 1].
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As noted in Remark 1 p. 362 of [18] the mean variations is increasing with the con-
sidered filtration, so that proving a uniform bound for a larger filtration immediately
yields the same bound for the natural filtration of the considered process.

The main theorem of Meyer-Zheng (Theorem 4) can be presented as follows.

Theorem A.6 (Meyer-Zheng cirteria). Let (πn)n>1 denotes a sequence of distributions of
real valued càdlàg processes. Assume that this sequence is converging for the pseudo-
path topology towards a distribution in pseudo-path space π. If for all T > 0 the mean
variation is uniformly bounded lim supn VT (πn) < +∞, then the pseudo-path limit is
càdlàg, that is π∞ fully charges D(R+,R) ⊂ L0(e−tdt,R), and it has bounded mean
variation: VT (π) 6 lim supn VT (πn) < +∞ for all T .

Proof. This is a direct adaptation of Theorem 4 in [18].
Let T > 0 by given and consider the distribution (πT

n )n>1 and πT of pseudo-paths
stopped at T (equal to their value at T for all t > T ). The sequence (πT

n )n>1 again
converges towards πT . Using the proof of Theorem 4 in [18] after the preliminary
extraction step (which is superfluous here), we get that πT has support in D. Using
Remark 2 after the proof, we also obtain that VT (π) 6 lim supn VT (πn) < +∞.

Finally, in order to remove T , one can naively remark that a pseudo-path x has a
càdlàg representative if and only if the stopped pseudo-path xT has a càdlàg represen-
tative for all integer T :

x ∈ D(R+, E) ⊂ L0(e−tdt, E) ⇔ xT ∈ D(R+, E) ⊂ L0(e−tdt, E), ∀T ∈ N,

by identifying the unique càdlàg representative on each interval [T, T+1]. By σ-additivity,
it follows that π fully charges D.

A.5 Characterization of càdlàg martingales

We will also use in this article the following characterization of the martingale prop-
erty on càdlàg processes:

Theorem A.7. An integrable càdlàg real valued process M is a martingale for the nat-
ural filtration of a càdlàg process X if and only if the following holds: for all 0 6 t1 6

... 6 tk 6 t in some dense subset of R+, all ϕ1, ..., ϕk continuous bounded test functions,
and all k ≥ 1, one has:

E[(Mt −Mtk)ϕk(Xtk)...ϕ1(Xt1)] = 0.

It is then possible to use this property to prove that the limit of a sequence of mar-
tingales is again a martingale. Typically, the considered sequence of martingales is
constructed from a sequence of càdlàg Markov processes that converge to a càdlàg pro-
cess for the pseudo-path topology; and the convergence of almost all finite dimensional
distributions is sufficient to a martingale (closure property). This will be carried out in
Step 3 of Section 3 while proving the main theorem.

Appendix B Some remarks on diffusions

The next lemma will be used in the examples of Section 4 in order to check that
strong solutions of SDEs do remain in a given closed subset of Rn.

Lemma B.1. Let dXt = b(Xt)dt+σ(Xt)dWt be a strong solution of a SDE with Lipschitz
coefficients on Rn. Assume that there is a smooth function ξ : Rn → R such that
E = {x : ξ(x) 6 0} and verifying on Rn \E: i) Lξ := b ·∇ξ+ 1

2σσ
T : ∇2ξ 6 0, as well as ii)

∇ξσ = 0. Then Xt, starting from E remains in E for all time, that is E is an absorbing
set.
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Proof. Consider the semi-martingale Zt := ξ+(Xt). By construction, the latter is pre-
dictable, so its local time at 0 vanishes, and the Itô-Tanaka formula implies

dZt = 1Zt>0Lξ(Xt)dt 6 0.

As a consequence, if x ∈ E then Zt = 0 for all times, that is to say Xt ∈ E for all
times.

The next lemma will be used in the examples of Section 4 in order to check that
strong solutions of SDEs do satisfy Assumption 4 and Assumption 6.

Lemma B.2. Assume the initial process is solution in Rn of a Stochastic Differential
Equation of the form

dX
(γ1,γ0)
t =
√
γ1σ1(X

(γ1,γ0)
t )dW

(1)
t + γ1b1(X

(γ1,γ0)
t )dt+

√
γ0σ0(X

(γ1,γ0)
t )dW

(0)
t + γ0b0(X

(γ1,γ0)
t )dt,

with bounded, globally Lipschitz coefficients (σ1, b1, σ0, b0). Then Assumption 4 and
Assumption 6 are satisfied.

Proof. For technical reason will here consider a more general SDE than the one con-
sidered above: instead of taking the coefficient in front of σ0 equal to

√
γ0, we add a

parameter γ′0 and we denote Xγ1,γ0,γ
′
0 the process where we replaced

√
γ0 by γ′0. Let us

now consider the diffusion process on the (slightly) extended state space E× [0, 1]×[0, 1]

defined by:
t 7→ (X

(1,Et,Ft)
t , Et, Ft)

in which Et = E0 = e and Ft = F0 = f are constant over time. The latter is also a
strong solution of the SDE defined on E × [0, 1]×[0, 1] with Lipschitz coefficients, since
the coefficient (x, e, f) 7→ (e × b0(x) + f × σ0, 0, 0) is obviously Lipschitz since b0 and
σ0 are bounded. On the other hand, we know (see [24, Theorem 13.1]) that a strong
solution of a SDE with Lipschitz coefficients can be represented by a stochastic flow
(x, e, f , t) 7→ X

(1,e,f)
t (x) which is almost surely continuous. Taking in addition f =

√
e,

this continuity implies both Assumption 4 and Assumption 6 by a routine dominated
convergence argument and the Heine-Cantor theorem.

Appendix C Calculus associated with the diffusion in a strip

Analysis of Pϕ
Pϕ is given by the following explicit expressions of Py(τ ∈ dt;Wτ = 1) and Py(τ ∈

dt;Wτ = 1) based on theta functions (See [6, Part II, Chap. 1, Section 3.0.6 and App.2,
Section 11]):

Py(τ ∈ dt;Wτ = 1) =
+∞∑

k=−∞

4k + 1− y√
2πt3/2

e−(4k+1−y)2/(2t)dt, (C.1)

and:

Py(τ ∈ dt;Wτ = −1) =

+∞∑

k=−∞

4k + 1 + y√
2πt3/2

e−(4k+1+y)2/(2t)dt. (C.2)

We now give a detailed elementary analysis of these functions. Note that it is possi-
ble to double-check it by remarking that Py(τ ∈ dt;Wτ = 1) = 1

4∂yθ(
1−y
4 , iπt/8) where θ

is the standard Jacobi theta function, and by using standard results on the latter.
For the sake of simplicity, we will mainly consider (C.1), the computations with (C.2)

being identical by symmetry. We claim that if ϕ ∈ C∞
c (R), then y 7→

∫∞
0 ϕ(t)Py(τ ∈
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dt;Wτ = 1) is smooth on [−1, 1]. The terms in (C.1) for k 6= 0 are easy to handle by
routine dominated convergence. For k = 0, we remark that a difficulty arises for y = 1,
but that the associated term is of the form g(1 − y) where g is the following smooth
function:

Lemma C.1. Let ϕ be smooth with compact support. The function on R+ defined by

g(u) :=

∫ ∞

0

e−u2/tu t−
3
2ϕ(t)dt

is smooth on R+.

Proof. By a change of scale u2/t = 1/t′:

g(u) =

∫ ∞

0

e−1/t′u(u2t′)−
3
2ϕ(u2 t′)u2dt′

=

∫ ∞

0

e−1/t′u1−3+2t′−
3
2ϕ(u2 t′)dt′

=

∫ ∞

0

e−1/t′t′−
3
2ϕ(u2 t′)dt′.

Using that the support of ϕ is compact, we have that the function is continuous on R+

and continuously differentiable on R∗
+. We have after a change of scale u2/s = 1/t′:

g′(u) =

∫ ∞

0

e−1/t′t′−
3
2ϕ′(u2 t′)2t′udt′

= 2

∫ ∞

0

e−u2/s

(
u2

s

) 1
2

ϕ′(s)u
1

u2
ds

= 2

∫ ∞

0

e−u2/ss−
1
2ϕ′(s)ds

−→
u→0+

2

∫ +∞

0

s−
1
2ϕ′(s)ds.

We have hence that g is continuously differentiable on R+. Deriving a second time we
find:

g′′(u) = 2

∫ +∞

0

e−
u2

s

(
−2u

s

)
s−

1
2ϕ′(s)ds

= −4

∫ +∞

0

e−
u2

s u s−
3
2ϕ′(s)ds

The form of this function is exactly the one of g up to multiply by factor −4 and replace
ϕ by ϕ′. Since we prove that g is continuously differentiable on R, we have by an
immediate induction that g is in fact infinitely differentiable on R+.

We therefore have that y 7→ P(y, z) is smooth on [−1, 1] for all z ∈ R. Since Pϕ
is trivially smooth in z by regularity of ϕ, we have that (y, z) 7→ Pϕ(y, z) is smooth on
E = [−1, 1]×R.

The measures µ (resp. ν) are positive Levy of a subordinator (resp. positive

finite)

In this section we will study µ and ν and then prove that we can take the limit under
the integral when y approaches ±1 in ∂yPϕ(y, z). In order to do that, we will first give
a simple expression of ∂yPϕ(y, z):
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Lemma C.2. For all y ∈]− 1, 1[ we have:

∂yPy(τ ∈ dt,Wτ = 1) = −π
2

16

+∞∑

k=−∞
cos

(
kπ

1− y

2

)
k2e−tπ2k2

8 dt, (C.3)

and:

∂yPy(τ ∈ dt,Wτ = −1) =
π2

16

+∞∑

k=−∞
cos

(
kπ

1 + y

2

)
k2e−tπ2k2

8 dt. (C.4)

Proof. We start with the first formula. Deriving (C.1) under y once we obtain:

∂

∂y
Py(τ ∈ dt,Wτ = 1)

=

+∞∑

k=−∞
− 1√

2πt
3
2

e−
(4k+1−y)2

2t +
4k + 1− y√

2πt
3
2

e−
(4k+1−y)2

2t × 2(4k + 1− y)

2t
dt

=
1√
2πt

3
2

+∞∑

k=−∞
e−

(4k+1−y)2

2t

(
−1 +

(4k + 1− y)2

t

)
dt (C.5)

Writing f : t 7→ e−πa(t+ 1−y
4 )2 and Ff : t 7→

∫

R

e−2iπtuf(u)du, Poisson summation

formula gives us:
+∞∑

k=−∞
f(k) =

+∞∑

k=−∞
Ff(k)

But, for g : t 7→ e−πat2 , we have (τ− 1−y
4
) ∗ g = f and Fg(t) = a−

1
2 e−

π
a
t2 , thus:

Ff(k) = F((τ− 1−y
4
) ∗ g)(k)

= eikπ
1−y
2 Fg(k)

= eikπ
1−y
2 a−

1
2 e−

π
a
k2

Eventually, we have:

+∞∑

k=−∞
e−πa(k+ 1−y

4 )2 =
+∞∑

k=−∞
eikπ

1−y
2 a−

1
2 e−

π
a
k2

=
1

2

+∞∑

k=−∞
2 cos

(
kπ

1− y

2

)
a−

1
2 e−

π
a
k2

=

+∞∑

k=−∞
cos

(
kπ

1− y

2

)
a−

1
2 e−

π
a
k2

If we differentiate this equation under a we get:

+∞∑

k=−∞
−π
(
k +

1− y

4

)2

e−πa(k+ 1−y
4 )2

= −1

2
a−

3
2

+ inf′ ”ty∑

k=−∞
cos

(
kπ

1− y

2

)
e−

π
a
k2

+ a−
1
2

+∞∑

k=−∞
cos

(
kπ

1− y

2

)
e−

π
a
k2 πk2

a2
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Taking a = 16
2πt , and we have respectively:

+∞∑

k=−∞
e−

(4k+1−y)2

2t =
+∞∑

k=−∞
cos

(
kπ

1− y

2

) √
2πt

4
e−tπ2k2

8 , (C.6)

and:

+∞∑

k=−∞
−π
(
k +

1− y

4

)2

e−
(4k+1−y)2

2t

= −1

2

√
2πt

3

64

+∞∑

k=−∞
cos

(
kπ

1− y

2

)
e−tπ2k2

8

+

√
2πt

4

+∞∑

k=−∞
cos

(
kπ

1− y

2

)
e−tπ2k2

8
π3t2k2

64
(C.7)

We now multiply (C.6) by − 1√
2πt

3
2
and (C.7) by − 1√

2πt
3
2
× 16

πt to get:

1√
2πt

3
2

+∞∑

k=−∞
e−

(4k+1−y)2

2t

(
−1 +

(4k + 1− y)2

t

)

= − 1

4t

+∞∑

k=−∞
cos

(
kπ

1− y

2

)
e−tπ2k2

8 +
1

4t

+∞∑

k=−∞
cos

(
kπ

1− y

2

)
e−tπ2k2

8

− π2

16

+∞∑

k=−∞
cos

(
kπ

1 − y

2

)
k2e−tπ2k2

8

= −π
2

16

+∞∑

k=−∞
cos

(
kπ

1− y

2

)
k2e−tπ2k2

8

Combining this with (C.5), we get exactly (C.3). The proof of the second formula follows
exactly the same steps, except we consider τ− 1+y

4
instead of τ− 1−y

4
.

Let us take the limit in (C.3) when y approaches 1:

lim
y→1

∂

∂y
Py(τ ∈ dt,Wτ = 1) = −π

2

16

+∞∑

k=−∞
k2e−tπ2k2

8 dt (C.8)

and define µ(dt) :=

(
π2

16

+∞∑

k=−∞
k2e−tπ2k2

8

)
dt if t > 0, while µ(dt) = 0 if t 6 0. This

coincides with the definition of µ given in the text and we have that µ is trivially a
positive measure.
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Let us show that µ is the Levy measure of a subordinator. We have that µ > 0 and:

∫ +∞

0

min(1, t)µ(dt)

=

∫ 1

0

t

(
π2

16

+∞∑

k=−∞
k2e−tπ2k2

8

)
dt+

∫ +∞

1

(
π2

16

+∞∑

k=−∞
k2e−tπ2k2

8

)
dt

=
π2

16

+∞∑

k=−∞
k2
∫ 1

0

te−tπ2k2

8 dt+
π2

16

+∞∑

k=−∞
k2
∫ +∞

1

e−tπ2k2

8 dt

=
π2

16

+∞∑

k=−∞
k2

([
− 8

π2k2
te−tπ2k2

8

]1

0

+
8

π2k2

∫ 1

0

e−tπ2k2

8 dt

)

+
π2

16

+∞∑

k=−∞
k2
[
− 8

π2k2
e−tπ2k2

8

]+∞

1

=
π2

16

+∞∑

k=−∞
k2

(
− 8

π2k2
e−

π2k2

8 +

(
8

π2k2

)2

(1 − e−
π2k2

8 )

)

+
π2

16

+∞∑

k=−∞
k2

8

π2k2
e−

π2k2

8

< +∞ (C.9)

Let us now take the limit in (C.4) when y approaches 1:

lim
y→1

∂

∂y
Py(τ ∈ dt,Wτ = −1) =

π2

16

+∞∑

k=−∞
(−1)kk2e−tπ2k2

8 dt, (C.10)

and define ν(dt) :=

(
−π2

16

+∞∑

k=−∞
(−1)kk2e−tπ2k2

8

)
dt if t > 0, while ν(dt) = 0 if t 6 0.

This coincides with the definition of ν given in the text and we will now prove that this
measure is positive and finite of mass

∫ ∞

−∞
ν(dt) = 1/2.

To show that
+∞∑

k=−∞
(−1)kk2e−tπ2k2

8 6 0 for all t > 0, we will consider two cases.

We first assume that t > 1. Then the sequence
(
k2e−tπ2k2

8

)

k>1
is decreasing since

the function x 7→ x2e−tπ2x2

8 has a negative derivative for x2 >
8

tπ2 and thus for x > 1 in
our situation. Hence for t > 1 we have:

+∞∑

k=−∞
(−1)kk2e−tπ2k2

8 = 2

+∞∑

k=1

(−1)kk2e−tπ2k2

8 6 0

by the criterion of convergence of alternate series.
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We now write:

+∞∑

k=−∞
(−1)kk2e−tπ2k2

8 = − 8

π2

∂

∂t

[
+∞∑

k=−∞
(−1)ke−tπ2k2

8

]

= − 8

π2

∂

∂t

[
+∞∑

k=−∞
e−iπk−t π2k2

8

]
. (C.11)

We will next prove, in order to conclude on the positivity of ν, that t 7→
+∞∑

k=−∞
e−iπk−t π2k2

8

is increasing for t ∈]0, 1[. Writing h : x 7→ e−tπ2x2

8 , we have that:

F(e−iπxh)(ξ) = (τ− 1
2
) ∗ F(h)(ξ) =

√
8

πt
e−

8(ξ+1
2
)2

t

Thus, the Poisson summation formula gives:

F (t) :=

+∞∑

k=−∞
e−iπk−tπ2k2

8 =

+∞∑

k=−∞
e−iπkh(k) (C.12)

=

+∞∑

k=−∞
F(e−iπxh)(k) (C.13)

=

√
8

πt

+∞∑

k=−∞
e−

8(k+ 1
2
)2

t (C.14)

We consider for any k ∈ Z, the function fk : t 7→ t−
1
2 e−

8(k+1
2
)2

t , we have that f ′
k : t 7→

e−
8(k+ 1

2
)2

t t−
3
2

[
− 1

2 +
8(k+ 1

2 )
2

t

]
. Thus, f ′

k(t) > 0 if and only if − 1
2 +

8(k+ 1
2 )

2

t > 0, that is to

say t 6 16(k + 1
2 )

2, but this inequality is true for every k if we have that t 6 4. Since we
assume that t ∈]0, 1[, we have that F is increasing for t ∈]0, 1[.

Hence one obtains finally, for all t > 0, −π2

16

+∞∑

k=−∞
(−1)kk2e−tπ2k2

8 > 0, and thus ν > 0.

To compute the total mass of ν, consider (C.11) to get
∫ +∞

0

ν(dt) =
1

2
(F (+∞)− F (0)),

and remark that F (+∞) = 1, while by (C.14) F (0) = 0.

Remark C.3. We also have that µ(dt) = lim
y→−1

∂yPy(τ ∈ dt,Wτ = −1) and ν(dt) =

lim
y→−1

∂yPy(τ ∈ dt,Wτ = 1).

We proved the wanted properties on µ and ν, however we still have to show that we
can take the limit under the integral in the explicit expression of ∂yP(ϕ − ϕ(1, z))(y, z)

to get (4.1). The key idea is to remark that, since | cos(kπ 1−y
2 )| 6 1 and | cos(kπ 1+y

2 )| 6 1,
equations (C.3) and (C.4) give us that for all y ∈]− 1, 1[ and t > 0:

max (|∂yPy(τ ∈ dt,Wτ = 1)| , |∂yPy(τ ∈ dt,Wτ = −1)|) 6 π2

16

∞∑

k=−∞
k2e−tπ2k2

8 dt.

Indeed, we proved in (C.9) that this quantity is integrable on R+ against min(1, t), and
ϕ(±1, z + ·) − ϕ(±1, z) is bounded by a constant time min(1, t), so by the dominated
convergence theorem we can take the limit when y approaches ±1 to get what we
want.
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Appendix D Calculus associated with the diffusion in the Euclidean

ball

Elliptic regularity immediately gives us hat if ϕ is smooth on the unit sphere, then
x 7→ Pϕ(x) is also smooth (see [12, Ch. 6]). For the sake of completeness we nonetheless
give explicit calculations that are the most relevant to our context.

Continuity of the projector

Let us consider xk ∈ B
n
that converges to x. The explicit formula for P implies that

P(xk, ·) →k P(x, ·) if either x ∈ Bn or if xk ∈ Sn−1 for all k, we can thus assume without
lost of generality that xk ∈ B

n
and x ∈ Sn−1. Then we have for all α > 0 and n such that

‖x− xk‖ 6
α
2 :

∫

Sn−1\B(x,α)

1− ‖xk‖2
‖xk − y‖n dσ

n−1(y) 6 (1− ‖xk‖2)× sup
y∈Sn−1\B(x,α)

‖xk − y‖−n

6 (1− ‖xk‖2)
(
2

α

)n

−→
k→+∞

0 (D.1)

Then, for any ϕ that is 1−Lipschitz on the ball, we have for all α > 0 that

∣∣∣∣
∫

Sn−1

ϕ(y)
1− ‖xk‖2
‖xk − y‖ndσ

n−1(y)− ϕ(x)

∣∣∣∣

=

∣∣∣∣
∫

Sn−1

(ϕ(y)− ϕ(x))
1− ‖xk‖2
‖xk − y‖ndσ

n−1(y)

∣∣∣∣

6

∣∣∣∣∣

∫

Sn−1\B(x,α)

‖y − x‖ 1− ‖xk‖2
‖xk − y‖ndσ

n−1(y)

∣∣∣∣∣

+

∣∣∣∣∣

∫

B(x,α)

‖y − x‖ 1− ‖xk‖2
‖xk − y‖n dσ

n−1(y)

∣∣∣∣∣

6

∣∣∣∣∣

∫

Sn−1\B(x,α)

2× 1− ‖xk‖2
‖xk − y‖n dσ

n−1(y)

∣∣∣∣∣+
∣∣∣∣∣

∫

B(x,α)

α
1− ‖xk‖2
‖xk − y‖ndσ

n−1(y)

∣∣∣∣∣ .

The second term is inferior to α and using (D.1), we know that the first term converges
to 0. Since this is true for any ϕ that is 1-Lipschitz, which are convergence determining,
we have eventually that P(xk, . ) →k P(x, · ) in distribution.

Explicit expression of the radial derivative

For all ϕ ∈ Cc(Sn−1) and a ∈ Sn−1, we write fa : λ ∈]0, 1[−→ Pϕ(λa). We have
therefore for all z ∈ Bn \ {0}, writing z = λa with a ∈ Sn−1 and λ = ‖z‖ that ∂

∂rPϕ(z) =
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∂
∂λfa(λ). Let us compute this quantity:

∂

∂λ
fa(λ)

=
∂

∂λ
(fa − ϕ(a))(λ)

=
∂

∂λ

∫

Sn−1

1− λ2

‖λa− y‖n (ϕ(y)− ϕ(a)) dσn−1(y)

=
∂

∂λ

∫

Sn−1

1− λ2

‖λa− y‖n (ϕ(y)− ϕ(a)− 〈Tϕ(a), y − a〉) dσn−1(y)

+
∂

∂λ

∫

Sn−1

1− λ2

‖λa− y‖n 〈Tϕ(a), y − a〉dσn−1(y) (D.2)

Let us denote by Ra the orthogonal reflection with unique invariant the axis generated
by a. Ra is an isometry leaving invariant σn−1, Tϕ(a) ⊥ a implies that 〈Tϕ(a), Ray −
a)〉 = −〈Tϕ(a), y − a〉, and ‖λa − Ray‖ = ‖λa − y‖ (all these properties are trivial by
symmetry). We conclude that the second term in (D.2) is the derivative of 0 and is
hence null. Therefore:

∂

∂λ
fa(λ)

=
∂

∂λ

∫

Sn−1

1− λ2

‖λa− y‖n (ϕ(y)− ϕ(a) − 〈Tϕ(a), y − a〉) dσn−1(y)

=

∫

Sn−1

−2λ‖λa− y‖n − (1 − λ2)n 〈λa−y,a〉
‖λa−y‖ ‖λa− y‖n−1

‖λa− y‖2n
× (ϕ(y)− ϕ(a) − 〈Tϕ(a), y − a〉) dσn−1(y)

=

∫

Sn−1

−2λ− (1− λ2)n 〈λa−y,a〉
‖λa−y‖ ‖λa− y‖−1

‖λa− y‖n
× (ϕ(y)− ϕ(a) − 〈Tϕ(a), y − a〉) dσn−1(y)

Therefore, for z ∈ Bn, we have:

∂

∂r
Pϕ(z) =

∫

Sn−1

−2‖z‖ − (1 − ‖z‖2)n 〈z−y,a〉
‖z−y‖ ‖z − y‖−1

‖z − y‖n

×
(
ϕ(y)− ϕ(

z

‖z‖)− 〈Tϕ( z

‖z‖), y −
z

‖z‖〉
)
dσn−1(y).

Taking the limit when z approaches a (so in particular ‖z‖ approaches 1) we find that:

lim
z→a

∂

∂r
Pϕ(z)

= −2 lim
z→a

‖z‖
∫

Sn−1

1

‖z − y‖n
(
ϕ(y)− ϕ(

z

‖z‖)− 〈Tϕ( z

‖z‖), y −
z

‖z‖〉
)
dσn−1(y)

− lim
z→a

(1 − ‖z‖2)
∫

Sn−1

n 〈z−y,a〉
‖z−y‖ ‖z − y‖−1

‖z − y‖n

×
(
ϕ(y)− ϕ(

z

‖z‖)− 〈Tϕ( z

‖z‖), y −
z

‖z‖〉
)
dσn−1(y). (D.3)

For the first term in (D.3), we observe that the integrand converges simply to what we
are looking for when z approaches a. We now denote Rz for z ∈ B\{0} the only rotation
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sending z
‖z‖ on a. Then, using that the measure σ is invariant by rotations and that

rotations are isometries, we have that:

∫

Sn−1

1

‖z − y‖n
(
ϕ(y)− ϕ(

z

‖z‖)− 〈Tϕ( z

‖z‖), y −
z

‖z‖〉
)
dσn−1(y)

=

∫

Sn−1

1

‖Rz(z)− y‖n
(
ϕ(R−1

z (y))− ϕ(
z

‖z‖)− 〈Tϕ( z

‖z‖), R
−1
z (y)− z

‖z‖〉
)
dσn−1(y)

(D.4)

Since ϕ in in C2(S), there existsM > 0 such that:

∣∣∣∣
(
ϕ(R−1

z (y))− ϕ(
z

‖z‖)− 〈Tϕ( z

‖z‖), R
−1
z (y)− z

‖z‖〉
)∣∣∣∣ 6M‖y − a‖2.

FurthermoreRz(z) = ‖z‖a, so eventually the integrand in (D.4) is dominated by 2nM‖y−
a‖−(n−2) that is integrable on the sphere, and we can use the dominated convergence
theorem to conclude.

Let us now prove that the second term in (D.3) is equal to 0. We notice that | 〈z−y,a〉
‖z−y‖ | 6

1 and that ϕ(y)− ϕ( z
‖z‖ )− 〈Tϕ( z

‖z‖ ), y − z
‖z‖ 〉 is dominated by 4M‖z − y‖2, so eventually

the term inside the integral is dominated by 4nM‖z− y‖−(n−1). Using a polar change of
coordinates, we get that the integral on the sphere is hence dominated by 4nM | ln(‖z−
z

‖z‖‖)| = 4nM | ln(1 − ‖z‖)|, but

(1− ‖z‖2)| ln(1− ‖z‖)| −→
z→a

0,

so we have (4.4).
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