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Abstract

We consider a family of Markov processes with generator of the form γL1 + L0, in
which L1 generates a so-called dominant process The dominant process is assumed to
converge at large times towards a random point in a given subset of the state space called
the effective state space. Using the usual characterization through martingale problems,
we give general conditions under which homogenization holds true: the original process
converges, when γ is large and for both the Meyer-Zheng pseudo-path topology and
finite-dimensional time marginals, towards an identified effective Markov process on the
effective space. Few simple model examples for diffusions are studied.
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Introduction

A formalism for large noise homogenization. Let E be a Polish state space,
and let Eeff ⊂ E be a closed subset, hereafter called the effective state space. This paper

considers on E a family of (càdlàg) Markov process denoted (Xγ
t )t≥0 ≡

(
X

(γ,1)
t

)

t≥0

with (formal) infinitesimal Markov generator of the form

γL1 + L0, (1)

in which L1,L0 are two (formal) infinitesimal Markov generators, and γ > 0 is a positive
parameter that is meant to go to infinity (γ → +∞).

In this setting, the following main structural assumption lay the basis to what is
here called large noise homogenization. For each initial condition x ∈ E, the pro-
cess generated by L1 (called here after the dominant process/generator) and denoted(
X

(1,0)
t (x)

)

t≥0
, is assumed to converge in probability for large time towards a random

point in Eeff :
{

limt→+∞X
(1,0)
t (x) = X

(1,0)
∞ (x) ∈ Eeff in probability,

P(x, . )
def
= Law(X(1,0)

∞ (x)).
(2)

One also want to define Eeff as the smallest effective space satisfying the above, which
suggests the following associated additional assumption

P(x, . ) = δx, ∀x ∈ Eeff . (3)

It also implies by definition of P that L1Pϕ = 0 for any appropriately regular bounded
test function ϕ : Eeff → R on the effective state space. One can then define the operator

Leffϕ
def
= L0Pϕ = (γL1 + L0)Pϕ, (4)
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which is formally a Markov generator on Eeff as a limit when s → 0 of a pure jump
Markov generator on Eeff given by

Leff = lim
s→0

(
esL0P − Id

)
/s,

where we have used the ’minimality’ property (3) of Eeff . The process

t 7→ Pϕ (Xγ
t )−

∫ t

0

L0Pϕ(Xγ
s ) ds (5)

is a martingale for the natural filtration generated by Xγ for a large class of regular
bounded ϕ. Since by (2) the dominant generator L1 tends to confine the process Xγ

near Eeff when γ is large, one may then expect in that asymptotics that: i) Xγ behave
approximately as a Markov process taking values in Eeff and, ii) by (5), it becomes
a solution to the martingale problem in Eeff associated with Leff . Making this last
statement rigorous and identifying the effective process is precisely what we call here
the martingale problem approach to strong noise homogenization. This will be carried
out in the present work in a quite general setting using (as already proposed in previous
works mentioned below) the pseudo-path topology studied in the seminal work [16] of
Meyer and Zheng. This should be contrasted with e.g. [17], a classical reference on the
martingale problem approach in a classical homogenization setting, which is using more
classically the Skorokhod (’uniform’) topology.

Note that, in strong noise problems, if the initial process is, say, a diffusion, then
the effective process is typically of jump type, so that convergence with respect to the
stronger Skorokhod topology (instead of the pseudo-path topology) cannot be true.

A class of examples. The main examples studied in this work (Section 3) will be
of the following form: E will be a closed subset of a manifold (say Rd) with a piece-wise
smooth boundary; and Eeff will be a sub-manifold of this boundary (in this paper either
a finite subset of the boundary, or the full boundary). The dominant process will be a
diffusion which eventually almost surely hits the boundary of E at Eeff (here with an
infinite hitting time); and the perturbation process will be deterministic flow with drift
pointing inward at the boundary of E. Note that in the context of potential theory,
if the dominant process is a (singularly at Eeff) time-changed Brownian motion and
Eeff = ∂E is the boundary of a smooth domain E, then the kernel P(x, . ) is exactly
the so-called harmonic measure of E with pole at x. When L0 is an inward vector
field, the Markovian effective generator (4) is also known as a quite standard general
version of the so-called Dirichlet-to-Neumann operator. The latter has been extensively
studied in the inverse problem literature (see e.g. the seminal work [21]) for reasons of
independent interest. The Dirichlet-to-Neumann effective operator is, in fact, a non-
diffusive Markov operator on Eeff of Levy type, as will be demonstrated in the examples
of Section 3. More comments on that topic will be given in the end of this introduction.

Previous work. Motivated by quantum continuous measurements (see [4, 12, 1,
23]), or filtering theory (see [5]), strong noise homogenization has recently been rigor-
ously studied in the special case where Eeff is a finite set. In [2], the authors show strong
noise homogenization for a certain class of diffusion processes having a generator of the

3



form1 (1). In order to prove their theorem, the authors develop a finite-dimensional
homogenization theorem [2, Theorem 3.1] for bounded operators and, due to the specific
form of the diffusion processes considered (linear drift and quadratic mobility), are able
to prove the convergence by developing a perturbative argument. In [11], the author
adapts the proof of [2, Theorem 3.1] for some (unbounded) generators of diffusion oper-
ators living in a simplex K ⊂ Rn whose vertices define Eeff , together with a martingale
dominant process. This ensures that the kernel of L(1) is a finite-dimensional subspace
of affine functions of Rd which simplifies the analysis.

The above works consider the so-called (Meyer-Zheng) pseudo-path topology (see [16]
and Section A) on trajectories, as well as the associated Meyer-Zheng ”tightness” crite-
ria, in order to handle strong noise homogenization.

The use of the Meyer-Zheng criteria in a homogenization context is however neither
new nor limited to the recent consideration of strong noise problems. It has been quite
consistently used more than a decade ago to handle other intricate cases; for instance
for periodic problems (see [18]), or for backward stochastic differential equations (see
[19]).

New results. By considering the classical martingale problem approach, this paper
generalizes the previously mentioned body of work. The basic idea consists in remarking
that the pseudo-path topology and the associated Meyer-Zheng criteria are well-suited
to martingale problems, which is a standard tool for weak (in law) convergence results
in classical homogenization theory. Note that in classical references (as [17]), martingale
problems and limits of processes are handled with the Skorokhod topology (see [9] for
a general reference on convergence of processes and martingale problems using this
topology).

In the present work, the homogenization scheme consists in proving the following
steps.

First, i) relative compactness of trajectory distributions is, by definition of the
pseudo-path topology, a usually easy consequence of Prokhorov theorem. One can
then consider extracted converging sequences.

Second, ii) one needs to check that the limiting pseudo-path takes its values in Eeff .
This step may be quite technical, and we propose a relatively natural setting that enables
to carry out Step ii) by first proving an intermediate property: the dominant process
converges towards Eeff for large times uniformly with respect to initial conditions in
compacts (see Proposition 1.4).

Third, iii) càdlàg martingales constructed from the full process (1) with specific
test functions of the form Pϕ are expected to have by (4) a mean variation uniformly
bounded in γ: this is the so-called Meyer-Zheng criteria. This criteria (a key result
of [16]) typically implies that the considered martingales do converge to càdlàg limiting
martingales. The limit of the extracted sequence of processes in step i) is then expected
to satisfy the martingale problem associated with Leff .

Finally, iv) one simply needs to assume that the latter effective martingale problem
is well-posed (uniqueness in law of Markov processes solution of it). We thus eventually
obtain convergence in distribution of the considered process towards the effective process

1More precisely, in [2] a very slightly more general situation is considered with the possible additional
presence of generators at intermediate time scales (in terms of γ).
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in the pseudo-path topology. Extension of the convergence to finite-dimensional time-
marginals are also obtained.

In order to make the above four steps i), ii), iii) and iv) rigorous, two assumptions are
key. The first assumption (later on denoted Assumption 2) is related to the continuity
of the dominant process hitting distribution P(x, . ) with respect to the initial condition
x. This assumption is key in proving the large time convergence of the dominant process
uniformly with respect to initial conditions, and, subsequently Step ii). It is inherited
from [11] in which it is argued that it is somehow unavoidable using a counter-example
where the limit process is not Feller. The second important assumption is of course the
fact that the effective generator Leff is well-defined, continuous near Eeff and defines
a well-posedness martingale problem. Well-posedness of martingale problems may not
be so easy to obtain, but it is a topic on its own (well covered at least in Rd) in the
literature. When the effective dynamics can be described by a stochastic differential
equation which is itself well-posed in the strong sense (Lipschitz coefficients), quite
generic results exist (see e.g. the reference [15]).

A simple example of a new limit theorem. As an example of the novelty
of the obtained results, one may consult the example of Section 3.2. In the latter, one
considers an already studied one dimensional toy model for strong noise homogenization
which consists of a dominant time-changed Brownian motion in [−1, 1] perturbed by a
drift. Previous works have shown the convergence towards a jump process in Eeff =
{+1,−1}. The novelty consist in enriching the process with its quadratic variation,
leading to a process defined on E = [−1, 1] × R+. This enrichment may be thought
of as a way to keep track of the ”fast time scale” of the dominant process. We prove
convergence of the enriched process to a limiting effective process in {−1,+1} × R+.
The latter is the sum of two generators.

The first is a jump generator hoping between +1 and −1 with a random psoitive
jump in R+ (whose distribution is proportional to an explicit finite measure denoted
ν).

The second is a Levy generator in R+ of subordinator type with explicit Levy mea-
sure proportional to:

µ(dh)
def
=

(
π2

16

+∞∑

k=−∞
k2e−hπ2k2

8

)
dh.

The jumps of this subordinator is a mixture exponentially distributed jumps of size 8
π2k2

with k ∈ Z. The latter can be interpreted as the ”sizes” (in terms of a re-scaled time)
of the ”spikes” of the original process inside the interval ]− 1,+1[ in between a hoping
event from ±1 to ∓1. This phenomenology of ”spikes” in strong noise homogenization
has already been pointed out and discussed, for instance in [2].

Link with the boundary process associated with reflected diffusions.
Finally, we want to suggest some potentially interesting connections between strong
noise homogenization and reflected diffusions defined as solutions of the Skorokhod
reflection problem (see e.g. [20] for a general reference on the topic). The context is the
following: the dominant process is now a diffusion with generator L̃1 which hits Eeff at
a finite (as opposed to typically infinite) time. L̃1 = a × L1 can typically be obtained
from one another using a time-change scalar field a > 0 singular near Eeff . In addition
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Eeff = ∂E is assumed to be the smooth boundary of regular domain E of, say, Rn,
and the perturbation generator L0 = F i

(0)∂i is a vector field which is inward-pointing at
the boundary ∂E. We have already mentioned above that in this context the effective
process generator (4) is the so-called Dirichlet-To-Neumann (Markov) operator defined
on smooth functions of Eeff , which has been studied in the inverse problem literature
for linear elliptic partial differential equations (see e.g. the seminal work [21]). It is
quite interesting to remark that in [13], the author gives a probabilistic (and completely
different) interpretation of Leff using reflected diffusions.

Let us briefly describe the idea. Consider the diffusion constrained in E by the
reflection at the boundary ∂E of E generated by the inward vector field F(0). The
latter (see [20]), denoted here (Xt)t≥0, is classically defined as the solution of the so-
called Skorokhod problem, which is obtained by adding a term to a stochastic differential
equation satisfied by the non-reflected diffusion. This additional term must of the form
F(0)(Xt) dLt where Lt is a non-decreasing adapted process that is constant outside the
boundary (it must satisfies dLt = 1Xt∈∂E dLt); Lt is a kind of local time that has to be
determined as an output of the Skorokhod problem. The boundary process is then the
Markov process X∂E

l = Xτl obtained by indexing the initial process with the local time
τl = inf(t : Lt = l). If P(x, . ) denotes the hitting distribution at the boundary of E
of the underlying non-reflected diffusion L1, it can be shown using a simple application
of Itô formula to P(ϕ) for ϕ smooth (see [13] for the special case of Brownian motion
and normal reflection) that the boundary process (Xτl)l≥0 is precisely a solution of the
martingale problem associated with Leff = L0P . The latter can thus be interpreted as
the associated infinitesimal generator.

Developing the connections between strong noise homogenization and boundary pro-
cesses lies outside the scope of this paper and his left as an open problem of interest.
We simply want to mention that reflected diffusions may also be obtained as a limit of
diffusions of the form (1) using time-changes of the dominant and/or the perturbation
process. It is thus not completely surprising to obtain the same ’trace’ at the boundary.

Organization. This work is divided as follows. In Section 1, we rigorously introduce
notation, then state the different assumptions, and finally state the main strong noise
homogenization theorems. In Section 2, the main theorems are proved. Finally in
Section 3, explicit examples are described and are treated in full details.

1 Setting, assumptions and main theorem

1.1 Notation

• (X
(γ1,γ0)
t )t≥0 the Markov process with generator γ1L1 + γ0L0.

• Short-hand notation: Xγ def
= X(γ,1).

• µγ
0
def
= Law(Xγ

0 ) an initial distribution.

• t 7→ Xt(x) in order to stress that the initial condition is given by X0(x) = x;

• Ex the expectation over the distribution (Xt(x))t≥0, when x ∈ E;

• Eµ the expectation over the distribution (Xt)t≥0, where Law(X0) = µ.
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• L0(e−t dt, E): equivalence class of measurable trajectories R+ → E that are
Lebesgue almost everywhere equal, and endowed with the Polish pseudo-path
topology.

• Pr(E): space of probabilities on E.

1.2 Setting and Assumptions

Let E denote a Polish state space. For each non-negative γ1, γ0 ≥ 0, we assume that
we can measurably associate to any initial condition x ∈ E a càdlàg Markov process
denoted

t 7→ X
(γ1,γ0)
t (x),

whose (formal) infinitesimal generator is of the form

L(γ1,γ0) def
= γ1L1 + γ0L0.

In the above, L1 (resp. L0) are the generator associated with the so-called dominant
X(1,0) (resp. perturbation X(0,1)) process.

In what follows, we denote by

µγ
0 = Law(Xγ

0 ) ∈ Pr(E)

the initial condition of the considered process. Throughout this paper we will assume
that µγ

0 converges to a limit µ0 in Pr(E).
The main structural assumption underlying the present work is the following: for

any x ∈ E, the dominant process X(1,0)
t (x) is assumed to converge for large times t (at

least in probability, although the almost sure convergence is typical) towards a random
variable taking values in a closed subset Eeff ⊂ E.

Assumption 1 (Main assumption). For each x ∈ E, there is a random variable taking

values in Eeff denoted X
(1,0)
∞ (x) ∈ Eeff such that, in probability,

lim
t→+∞

X
(1,0)
t (x) = X(1,0)

∞ (x) ∈ Eeff .

Moreover, Eeff is minimal in the sense that if x ∈ Eeff , then X∞(x) = x.

The limiting distribution thus defines a measurable probability kernel denoted

P(x, . )
def
= Law(X(1,0)

∞ (x)) ∈ Pr(Eeff).

As explained in the introduction, the main goal of this work is to study the limit
effective distribution of the process X(γ,1) when γ → +∞, and to show that the latter
is a Markov process on Eeff with infinitesimal generator given by

Leff [ϕ]
def
= L0 [P [ϕ]] .

Remark 1.1 (On invariances by time changes). First, note that the distribution of

t 7→ X
(kγ,kγ0)
t/k is independent of k > 0. Second, the effective generator Leff depends on

the dominant generator only through the probability kernel P. As a consequence, the
effective process is formally invariant by a time-change of the dominant process, which
amounts to multiply L1 by a strictly positive function.
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Our first technical assumption amounts to assume that P is continuous.

Assumption 2 (Continuity of P). The map x 7→ P(x, . ) is continuous on E for the
usual metric topology of convergence in distribution.

In particular, since for all x0 ∈ Eeff , P(x0, . ) = δx0 , , we obviously have limx→x0 P(x, . ) =
δx0 for all x0 ∈ Eeff .

The next assumption is a natural compact containment condition required in order to
obtain the tightness of the considered sequence of processes. This compact containment
condition is not a necessary condition for tightness; it might be relaxed in specific cases.

Assumption 3 (Compact containment). Let γ0 ∈ {0, 1} be given. For any horizon
time T , any ε > 0 and any compact K ⊂ E, there exists a compact set Kε,T ⊂ E such
that:

sup
x∈K,γ>0

Px

[
∃t ∈ [0, T ], X

(γ,γ0)
t ∈ Kc

ε,T

]
≤ ε. (6)

Using a time scaling argument, it is possible to show the following direct consequence
on the dominant process.

Lemma 1.2. Assumption 3 implies that for any ε > 0 and any compact K ⊂ E, there
exists a compact set Kε,T ⊂ E such that:

sup
x∈K

Px

[
∃t ∈ R+, X

(1,0)
t ∈ Kc

ε

]
≤ ε. (7)

Proof. Let T = 1 be fixed. By a time rescaling argument and routine monotone con-
vergence, it holds

sup
γ>0

Px

[
∃t ∈ [0, 1], X

(γ,0)
t ∈ Kc

ε

]
=

sup
γ>0

Px

[
∃t ∈ [0, γ], X

(1,0)
t ∈ Kc

ε

]
= Px

[
∃t ∈ R+, X

(1,0)
t ∈ Kc

ε

]
.

Then Assumption 3 yields the result.

Note also that for a converging sequence of initial distributions µγ
0 →γ→+∞ µ0 in

Pr(E) (which form a tight family), the above assumption implies the existence of a
compact Kε,T such that

sup
γ>0

Pµγ
0

[
∃t ∈ [0, T ], X

(γ,γ0)
t ∈ Kc

ε,T

]
≤ ε. (8)

We next present two additional assumptions that will be used to prove a (techni-
cal) result given in Proposition 1.4 below that proves that the large time convergence
of the dominant process towards Eeff is uniform with respect to initial conditions in
a given compact set. The first one requires that the dominant process can be repre-
sented as stochastic flow (e.g. as a strong solution of a Stochastic Differential equation
parametrized by the initial condition) with some continuity with respect to the initial
condition.

Assumption 4 (Continuous stochastic flow). The family of dominant processes indexed
by their initial conditions can be constructed as a measurable map

(ω, t, x) 7→ X
(1,0)
t (x)(ω) ∈ E,

8



from Ω × [0,+∞[×E to E and such that, for each t ∈ [0,+∞[, x 7→ X
(1,0)
t (x) is

continuous in probability.

The second one is a necessary (see Remark 1.5 below for a counter-example) technical
condition.

Assumption 5 (Randomness of the hitting point). The hitting point of the dominant

process, X
(1,0)
∞ (x), is deterministic if and only if x ∈ Eeff . In the latter case (x ∈ Eeff),

we recall that X
(1,0)
∞ (x) = x.

We can then obtain the following technical result (Proposition 1.4) that gives suf-
ficient conditions implying uniform convergence in time on compacts of the dominant
process.

Remark 1.3 (On the role of the above assumptions). Contrary to other assumptions,
Assumption 4 and 5 are only used for the proof of Proposition 1.4. In the same way,
Proposition 1.4 is only required once in Step 2 (that states that the limit effective process
lies in Eeff) of the proof of the main homogenization theorem.

Proposition 1.4 (The large time convergence of the dominant process is uniform). As-
sume that the dominant process satisfies Assumption 1-2-3-4-5 (Nota Bene: for the dom-
inant process Assumption 3 amounts to (7)). Then there exists a continuous bounded
non-negative function f with f > 0 on E \ Eeff and f = 0 on Eeff such that for any
compact K ⊂ E:

lim
t→+∞

sup
x∈K

E

[
f(X

(1,0)
t (x))

]
= 0.

The proof is this result is quite technical and is left at the end of Section 2.

Remark 1.5 (Assumption 5 is necessary). The only unusual requirement of Proposi-
tion 1.4 is Assumption 5. It is however unavoidable. Indeed, consider the deterministic
process on the unit circle of generator sin2( θ2 ) · ∂θ, with θ ∈ [0, 2π[. The process evolves
counter-clockwise, and from any starting point different from θ = 0 one eventually con-
verges to θ = 0 in infinite time. However, the hitting time of some θ1 6= 0 starting with
initial condition θ0 becomes infinite when θ0 → 0+: if we start just above 0, we reach
θ1 > 0 only after a very large time. As a consequence, the process cannot be arbitrarily
close to 0 at a large given time uniformly in the starting point; and the conclusion of
Proposition 1.4 cannot hold true.

The next continuity assumption is more benign, and ensures that the addition of a
small perturbation process results in a small change of distribution.

Assumption 6 (Continuous perturbation). Let ϕ be any continuous bounded function.
One has the continuity property: for all t ≥ 0 and all K ⊂ E compact,

lim
γ→+∞

sup
x∈K

∣∣∣E(ϕ(X(1,1/γ)
t (x))) − E(ϕ(X

(1,0)
t (x)))

∣∣∣ = 0

We can finally consider assumptions related to the limit process and its generator.
The first assumption is a technical requirement that ensures that a limiting effective
generator indeed exists, with appropriate continuity properties.
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Assumption 7 (Existence of an effective generator). There exists an operator Leff

acting on a vector space of measurable test functions of Eeff denoted Deff , and such
that:

i) Deff is a subset of continuous and bounded functions, contains constants, and
contains a countable subset (ϕi)i∈I that separates points of Eeff .

ii) To any ϕ ∈ Deff , one can associate a bounded measurable function L(0)Pϕ such
that for any γ > 0 and initial condition x ∈ E,

t 7→ Pϕ(X(γ,1)
t (x)) −

∫ t

0

L(0)Pϕ(X(γ,1)
s (x)) ds

is a martingale for the natural filtration of X(γ,1)(x) (Nota Bene: (γL1 +L0)P = L0P,
formally).

iii) For all ϕ ∈ Deff , L0Pϕ is continuous in E at points of Eeff . Explicitly: for any
ϕ ∈ Deff and any x0 ∈ Eeff , it holds Leff [ϕ] (x0) = limx→x0 L0P [ϕ] (x).

Remark 1.6. Point ii) in Assumption 7 amounts to computes the predictable plus mar-

tingale decomposition (Doob-Meyer decomposition) of t 7→ Pϕ(X(γ,1)
t ) using Itô formula

or an appropriate variant, and to identify the predictable variant of L(0)Pϕ(X(γ,1)
t ) dt.

Typically, Pϕ will belong to a ’natural’ domain of the operator L(0) (e.g. differentiable
if L(0) is a first order differential operator on a manifold). Note that defining L(0)Pϕ
outside of E \ Eeff or even pointwise might not always be straightforward, and we may
take the limit considered in Assumption 7 point iii) as the new definition of L(0)Pϕ on
Eeff .

Finally, the following final assumption is necessary to identify the distribution of
the effective Markov process on Eeff , using the classical characterization of Markov
processes by martingale problems (see e.g. [9]).

Assumption 8 (Well-posedness of the effective martingale problem). Let µ0 = limγ→+∞ µγ
0

be given in Pr(E). The martingale problem (Leff ,Deff) for càdlàg processes with initial
condition µ0P is well-posed.

Finally, note that it may be possible that in some cases, slightly different types of
assumptions may be used:

Remark 1.7 (On the weakening of assumptions). It might happen that in some cases
another method enables to obtain the uniform convergence result of Proposition 1.4 (case
i)), or, even more directly, another method enables to obtain Step 2 of the proof of the
main homogenization theorem that states that the effective process must lie in Eeff (case
ii)). We do not consider such examples in the present work, but several assumptions
may then be weakened, and our proof can be revisited with less constraints.

• If case i) (or ii)) happens, Assumption 1 can be weakened to convergence in distri-
bution only. Assumption 2 can also be weakened to cases where P is only continu-
ous at points of Eeff . The proof is similar but one has to restrict in Theorem 1.11
to initial conditions µγ

0 that are either constant (independent of γ) or that have a
limit when γ → +∞ whose support lies in Eeff .

• If case i) (or ii)) happens, Assumption 4 and Assumption 5 are non-longer re-
quired.
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• If case ii) happens, Assumption 6 is also no longer necessary. In case ii) the only
remaining key points are the compact containment and the continuity of Pϕ and
L0Pϕ at points of Eeff .

1.3 The case of diffusions with Lipschitz coefficients

Let us now discuss more specific cases. In Section 3, we will present few examples that
all belong to the following setting, and check that the assumptions are indeed verified.

Assume E ⊂ Rn is a closed domain with (piecewise) smooth boundary ∂E, and
Eeff ⊂ E is a smooth sub-manifold of E. In the examples of Section 3, Eeff is moreover
a submanifold of ∂E.

The process X(γ1,γ0)(x) is assumed to be a diffusion defined as the strong solution
of a Stochastic Differential Equation (SDE) of the general form:

dX
(γ1,γ0)
t =

√
γ1σ1(X

(γ1,γ0)
t ) dWt + γ1b1(X

(γ1,γ0)
t ) dt+ γ0b0(X

(γ1,γ0)
t ) dt.

with Lipschitz coefficients (σ1, b1, b0); L0 = b0 · ∇ is thus a Lipschitz vector field.
In that context, few (quite benign) assumptions can already be checked. Let us

consider the diffusion process on the (slightly) extended state space E × [0, 1] defined
by:

t 7→ (X
(1,Et)
t , Et)

in which Et = E0 = e is constant over time. The latter is also a strong solution of
the SDE defined on E × [0, 1] with Lipschitz coefficients, since the coefficient (x, e) 7→
(e × b0(x), 0) is obviously Lipschitz. We know (see [22, Theorem 13.1]) that a strong
solution of a SDE with Lipschitz coefficients can be represented by a stochastic map
(x, e, t) 7→ X

(1,e)
t (x) which is almost surely continuous. This implies both Assumption 4

and Assumption 6 (by a routine dominated convergence argument and the Heine-Cantor
theorem).

Note that it is necessary at this stage to check that solutions of the considered SDE
indeed remain in E for all time. Here is an example of a simple argument that enables
to check it.

Lemma 1.8. Let dXt = b(Xt) dt + σ(Xt) dWt be a strong solution of a SDE with
Lipschitz coefficients on Rn. Assume that there is a smooth function ξ : Rn → R such

that E = {x : ξ(x) ≤ 0} and verifying on Rn \E: i) Lξ
def
= b · ∇ξ + 1

2
σσT : ∇2ξ ≤ 0, as

well as ii) ∇ξσ = 0. Then Xt, starting from E remains in E for all time, that is E is
an absorbing set.

Proof. Consider the semi-martingale Zt
def
= ξ+(Xt). By construction, the latter is pre-

dictable, so its local time at 0 vanishes, and the Itô-Tanaka formula implies

dZt = 1Zt>0Lξ(Xt) dt ≤ 0.

As a consequence, if x ∈ E then Zt = 0 for all times, that is to say Xt ∈ E for all
times.

In order to check that the dominant process do converge to a random point of
Eeff (perhaps in infinite time, Assumption 1), and then to check Assumption 2-5 on
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the kernel P = Law(X(1,0)(x)), one may consider a well-chosen time-change of the
dominant process, again solution to a strong SDE, but which almost surely hits Eeff at
finite time. This typically happens for instance when σ1σT

1 is strictly positive in E̊ and
vanishes only on Eeff .

In that context, one will also usually consider compactly supported smooth functions
Deff = C∞

c (Eeff), which has a separable point separating subset given in a local chart
by polynomials with rational coefficients (point i) of Assumption 7.

In order to prove ii) in Assumption 7; it is then sufficient to check that x 7→ Pϕ(x) is,
say, twice differentiable so that one can apply Itô formula. One way to prove the regular-
ity of Pϕ is to use the regularity and uniqueness of solutions of the (e.g. (hypo)elliptic
or parabolic) Partial Differential Equation L1ψ = 0 with smooth Dirichlet boundary
condition ψ = ϕ at Eeff (we recall that Pϕ is a solution L1Pϕ = 0 in an appropriate
sense).

The (Doob-Meyer) finite variation part of t 7→ Pϕ(X(γ,1)
t ) is eventually given by

L(0)Pϕ(X(γ,1)
t ) dt, L(0)Pϕ being continuous on E. The value of L(0)Pϕ on Eeff then

defines the effective generator Leff [ϕ], which is typically a Levy-type jump process.
Finally, at least when the effective dynamics can be described as a strong solution

of a stochastic differential equation with Lipschitz coefficients and driven by, say, a
Levy homogeneous process, some quite generic results can give the well-posedness of
the martingale problem (see e.g. the reference [15]).

1.4 Main homogenization theorem

In order to state the main theorem, we first define the pseudo-path topology on path
space used in strong noise homogenization problems.

Definition 1.9 (Pseudo-paths). Let E denotes a Polish space. To each measurable
path x : R+ → E, one can associate a probability on E × R+ defined by:

δxt
( dx)e−t dt ∈ Pr(E × R+). (9)

The subset of probability distributions in Pr(E × R+) of the form (9) is called the
pseudo-paths space. It is closed for the usual (Polish) topology of Pr(E × R+) given
by convergence in distribution. The pull-back on the equivalence classes of measurable
paths equal Lebesgue almost everywhere will be called the pseudo-path topology. The
associated space will be denoted L0(e−t dt, E).

Remark 1.10 (Basic properties). The fact that the space of pseudo-paths is closed
for convergence in distribution and other main results related to this topology are sum-
marized in Section A. In particular, let us recall that pseudo-paths topology inher-
its the usual sequential characterization of convergence in distribution: a sequence of
paths converges for the pseudo-paths topology if and only if limn

∫
ϕ(xnt , t)e

−t dt =∫
ϕ(x∞t , t)e

−t dt for all continuous and bounded ϕ. This convergence is in fact equiv-
alent to the stronger convergence “in probability” (also called “in measure”) defined by
limn

∫∞
0 min(1, d(xnt , xt))e

−t dt where d metrizes E. For that reason, the pseudo path
space is denoted L0(e−t dt, E).

We can now state our main theorem:

Theorem 1.11 (Strong noise homogenization). Consider L(1) and L(0) two Markov
generators, and (µγ

0 )γ>0 a family of initial distributions with support in E converging
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in distribution towards µ0 a distribution on E. Let Assumptions 1-2-3-4-5-6-7-8 be
fulfilled. Then a càdlàg process X(γ,1) on E solution of the martingale problem of
generator Lγ = γL(1) + L(0) with initial condition µγ

0 converges in distribution when
γ → +∞ for the (Meyer-Zheng) pseudo-path topology to the unique càdlàg Markov
process X∞ on Eeff solution of the martingale problem of generator Leff and initial
condition µ0P.

The convergence in law of Xγ towards X∞ for the pseudo-path topology implies by
general considerations of the pseudo-path topology the convergence in law of (Xt1 , . . . , Xtk) ∈
Ek for Lebesgue almost all time sequences (t1, . . . , tk) in Rk

+. We can in fact prove that
the convergence is actually true for all time sequences: finite-dimensional distributions
do converge.

Corollary 1.12 (Convergence of finite-dimensional distributions). Consider the same
notations as in Theorem 1.11. Under the same assumptions, and for all (t1, . . . , tk) ∈
Rk

+, k ≥ 1, the random sequence (X
(γ,1)
t1 , . . . , X

(γ,1)
tk ) converges in law to (X∞

t1 , . . . , X
∞
tk ).

2 Proof of the main theorems

In order to prove Theorem 1.11, we will proceed in four steps. First, using a tightness
argument, we will extract a sub-sequence of the considered class of processes which is
converging for the pseudo-path topology. We denote the extracted limit X∞, and we un-
derline that X∞ is really a pseudo-path, that is the random distribution δXt

( dx)e−t dt.
Next, we will prove that X∞ takes its values in Eeff , which amounts to say that almost
surely X∞

t ∈ Eeff for Lebesgue almost all t > 0. Then, using the so-called Meyer-
Zheng criteria (see Section A), we will prove that X∞ can be identified with a càdlàg
process, in the sense that the distribution of X∞ is the push-forward on pseudo-path
space of the distribution of a càdlàg random process. Eventually, we will prove that
X∞ is a solution of a martingale problem on Eeff (which have a unique solution by
assumption). We conclude that X(γ,1) converges in law to X∞ for the pseudo-path
topology. We stress that the third step really is unavoidable: limits with respect to
the pseudo-path topology, without the Meyer-Zheng criteria, may be too degenerate to
inherit the martingale property.

In the penultimate section we will prove that we have furthermore convergence of all
finite-dimensional distributions, and in the last section, we will prove Proposition 1.4.

2.1 Step 1: Tightness and extraction

We start by proving that the considered family of processes is tight when considering
the pseudo-path topology. To do so, one starts with the following almost trivial remark:

Lemma 2.1. Let (Kn)n≥0 denotes any given increasing sequence of compact subsets of
E. The set of pseudo-paths defined by:

K(K)
def
=
⋂

n≥0

{
x :

∫ n

0

1xt∈Kc
n
e−t dt = 0

}

is relatively compact for the pseudo-path topology.
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Proof. Let us consider K(K) as a subset of the space Pr(E × R+), that is we identify
x ∈ K(K) with probability δxt

( dx)e−t dt. Let ε > 0 be given, arbitrarily small. Let nε

be such that e−nε ≤ ε. One has by construction of K(K) that for any x ∈ K(K)

∫

E

∫ ∞

0

1(x,t)∈(Knε×[0,nε])
cδxt

( dx)e−t dt ≤ e−nε ≤ ε.

By Prokhorov theorem, K(K) is thus relatively compact.

We can now proceed and prove that under Assumption 3, the considered process is
tight under the pseudo-path topology.

Lemma 2.2. Under Assumption 3, the family
(
X(γ,1)

)
γ>0

is tight under the pseudo-

path topology.

Proof. Let ε > 0 be given, arbitrarily small. By Lemma 2.1, it sufficient in order to
conclude to prove that there exists a increasing sequence Kε,n ⊂ E of compact sets such
that

P

[
X(γ,1) ∈ Kc

(Kε)

]
≤ ε.

For this purpose, using Assumption 3, we choose Kε,n such that we have P(∃t ∈
[0, n], X

(γ,1)
t ∈ Kc

ε,n) ≤ ε2−n.
Then by construction:

P

[
X(γ,1) ∈ Kc

(Kε)

]
≤
∑

n

P

[
∃t ∈ [0, n], X

(γ,1)
t ∈ Kc

ε,n

]
≤ ε.

As a consequence, any increasing sequence converging to infinity has an increasing
sub-sequence denoted (γp)p≥0 such that X(γp,1), when embedded as a pseudo-path in
Pr(E × R+), converges when p goes to infinity in distribution towards a distribution
in Pr(E × R+). Since we know that the set of pseudo-paths is closed, the limit is a
pseudo-path and can be represented as a random process denoted X∞. However, X∞

may not have a càdlàg representative at this stage (this will be taken care of in Step 3
below).

2.2 Step 2: The limit process lies in Eeff

The goal of this step is to prove that the considered limit process takes its values in
Eeff in the sense that:

E

[∫ +∞

0

1X∞
t ∈Eeff

e−t dt

]
= 1.

We now use Proposition 1.4 to prove that the full process approaches Eeff when γ
approaches infinity:

Lemma 2.3. Let f denotes a continuous non-negative function on E vanishing on Eeff

and strictly positive on E \Eeff characterizing the uniform convergence of the dominant

process towards Eeff in Proposition 1.4. Let µγ
0 denotes the initial condition of X

(γ,1)
t .

Under Assumptions 3 and 6, we have for all t > 0 convergence towards Eeff for large γ:

Eµγ
0
(f(X

(γ,1)
t )) −→

γ→+∞
0.
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Proof. First notice that

Eµγ
0
(f(X

(γ,1)
t )) = 〈µγ

0 , e
t(γL(1)+L(0))f〉

= 〈µγ
0 , e

tγ(L(1)+
1
γ
L(0))f〉

= Eµγ
0
(f(X

(1, 1
γ
)

γ×t )),

which amounts to an elementary time change.
Therefore, for any 0 < δ < γ × t and any compact subset K of E we have:

∣∣∣∣Eµγ
0

(
f

(
X

(1, 1
γ
)

γ×t

))∣∣∣∣

≤
∣∣∣∣Eµγ

0

(
f

(
X

(1, 1
γ
)

γ×t

))
− Eµγ

0

(
f
(
X

(1,0)
γ×t

))∣∣∣∣+
∣∣∣Eµγ

0

(
f
(
X

(1,0)
γ×t

))∣∣∣

=

∣∣∣∣∣Eµγ
0

[
E
X

(1, 1
γ

)

γ×t−δ

(
f

(
X

(1, 1
γ
)

δ

))
− E

X
(1,0)
γ×t−δ

(
f
(
X

(1,0)
δ

))]∣∣∣∣∣

+
∣∣∣Eµγ

0

(
f
(
X

(1,0)
γ×t

))∣∣∣

6

∣∣∣∣∣Eµγ
0

[
E
X

(1, 1
γ

)

γ×t−δ

(
f

(
X

(1, 1
γ
)

δ

))
− E

X
(1, 1

γ
)

γ×t−δ

(
f
(
X

(1,0)
δ

))]∣∣∣∣∣

+

∣∣∣∣∣Eµγ
0

[
E
X

(1, 1
γ

)

γ×t−δ

(
f
(
X

(1,0)
δ

))
− E

X
(1,0)
γ×t−δ

(
f
(
X

(1,0)
δ

))]∣∣∣∣∣

+
∣∣∣Eµγ

0

(
f
(
X

(1,0)
γ×t

))∣∣∣

≤ sup
x∈K

∣∣∣∣E(f(X
(1, 1

γ
)

δ (x))) − E(f(X
(1,0)
δ (x)))

∣∣∣∣ + 2 ‖f‖∞ Pµγ
0

[
X

(γ,1)
t−δ/γ ∈ Kc

]

+ 2× sup
x∈K

E

[
f(X

(1,0)
δ (x))

]
+ ‖f‖∞ Pµγ

0

[
X

(γ,1)
t−δ/γ ∈ Kc

]

+ ‖f‖∞ Pµγ
0

[
X

(γ,0)
t−δ/γ ∈ Kc

]
+ sup

x∈K

∣∣∣E
(
f
(
X

(1,0)
γ×t (x)

))∣∣∣+ ‖f‖∞ µγ
0 (K

c) (10)

Let ε > 0 be given, arbitrarily small. Using Assumption 3 (compact containment),
one can choose K = Kε such that, uniformly in δ, γ:

max
(
Pµγ

0

[
X

(γ,1)
t−δ/γ ∈ Kc

ε

]
,Pµγ

0

[
X

(γ,0)
t−δ/γ ∈ Kc

ε

]
, µγ

0(K
c
ε)
)
≤ ε

10‖f‖∞
.

Using Proposition 1.4 (uniform time convergence of the dominant process), we consider
now δε ≡ δε,Kε

big enough such that

sup
x∈Kε

E

[
f(X

(1,0)
δε

(x))
]
≤ ε

10

Now using Assumption 6 (uniformly continuous perturbation), we now consider γε ≡
γε,Kε

> 0 such that for all γ > γε:

sup
x∈Kε

∣∣∣E(f(X(1,1/γ)
δε

(x))) − E(f(X
(1,0)
δε

(x)))
∣∣∣ ≤ ε

5
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Taking δ = δε inequality (10) thus implies for all γ > max
(
δε
t , γε

)
:

∣∣∣Eµγ
0

(
f
(
X

(γ,1)
t

))∣∣∣ ≤ ε.

We have proved in Step 1 that there exists (γn)n an increasing sequence of positive

numbers approaching infinity such that we have X(γn,1) L−→ X∞ for the pseudo-path
topology. By characterization of the pseudo-path convergence, it implies that

E

∫ +∞

0

f
(
X

(γn,1)
t

)
e−t dt −→

n→+∞
E

∫ +∞

0

f(X∞
t )e−t dt.

By dominated convergence and Lemma 2.3 above, the term on the left converges to 0.
But f−1({0}) = Eeff and f ≥ 0, so eventuallyX∞ ∈ Eeff almost surely as a pseudo-path
(that is for Lebesgue almost all t).

2.3 Step 3: The limit is càdlàg

We will prove that the distribution of X∞ has a càdlàg representative taking values
in Eeff . To do so, we will use the so-called Meyer-Zheng criteria. The latter ensures
that a sequence of real valued random processes that i) converge in distribution for the
pseudo-path topology, and ii) has uniformly bounded mean variations (see below for a
definition), has a pseudo-path limit which possesses a càdlàg representative.

Definition 2.4 (Mean variation). Let T > 0 denotes an horizon time, and (Zt)t≥0 a
càdlàg real valued random process with Zt ∈ L1(P) for all t. The mean variation of Z
over [0, T ] is given by

VT (Z)
def
= sup

0=t0≤t1...≤tK≤T

K∑

k=0

E
∣∣E
[
Ztk+1

− Ztk | σ (Zt, t ≤ tk)
]∣∣ ,

= sup
|H|≤1

E

(∫ T

0

Ht dZt

)
,

where in the above the supremum is taken over predictable processes (with respect to the
natural filtration of Z) taking value in [−1, 1].

We recall in Section A several general facts underlying the Meyer-Zheng approach
to limit theorems for processes. In particular, processes with bounded mean variations
are quasi-martingales, and their bounded mean variation is precisely equal to the to-
tal variation of their predictable finite-variation part (in the sense of the Doob-Meyer
decomposition).

Step 3 (the limit process X∞ has a – unique – càdlàg representative) will be a direct
consequence of Lemma 2.6. We start with a technical remark that will be used in the
proof of Lemma 2.6.

Lemma 2.5. Let F denotes a Polish space, and let Ψ : F → RI , with I countable, be
an injective bounded continuous function. Consider the weaker topology on F induced
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by the pull-back by Ψ of the product (Polish) topology of RI , for instance as defined by
the distance

d̃(x, y) =
∑

i∈I

2−ni |Ψi(x) −Ψi(y)| , (11)

where i 7→ ni ∈ N is injective. Denote by F̃ the completion of F with respect to the latter
distance. Then i) Ψ defines a homeomorphism on F̃ for the weaker topology defined by

d̃, and ii) all Borel sets of F defined by the strong original topology (defined by d) are

also Borel in F̃ for the weaker new topology (defined by d̃).

Proof. Point i) is trivial: d̃ is a metric because the family (Ψi)i∈I is separating. Then
F̃ is simply identified with Ψ(F ) by the isometry defined by d̃.

Point ii) is more subtle. A standard result in descriptive set theory ([14, Theo-
rem 15.1]) states that on Polish spaces, injective Borel maps are in fact Borel isomor-
phisms, in the sense that they map Borel sets to Borel sets. We know that Ψ : (F, d) →
RI is continuous, it is thus Borel and so is its inverse Ψ−1 defined on Polish Ψ(F ). Let
B ⊂ F be Borel for the strong topology Φ(B) is Borel in Ψ(F ), and B ⊂ F is eventually
Borel in Polish (F̃ , d̃).

Lemma 2.6. Let Xn be a sequence of càdlàg processes on E converging in distribution
to a pseudo-path X∞ for the pseudo-path topology, and let Eeff ⊂ E. We assume the
following:

1. The sequence Xn satisfies the compact containment condition (8) (the index n
playing the role of γ).

2. The limit pseudo-path X∞ almost surely has support in Eeff .

3. There exists a countable family of bounded continuous map Ψi : E → R, i ∈ I
such that for all T ≥ 0 and all i ∈ I:

sup
n
VT (Law(Ψi(X

n)) < +∞.

In other words the (quasi-martingale) càdlàg processes Ψi(X
n) have a uniformly

(w.r.t. n) bounded mean variation on finite time intervals (Meyer–Zheng criteria).

4. The family (Ψi)i∈I , separates the points of Eeff .

Then the distribution of X∞ is given by the distribution of a càdlàg process taking its
values in Eeff .

Proof. First remark that Point 2 in the lemma’s assumption means that any process
representative of X∞ is such that e−t dt⊗P( dω)-almost everywhere we have X∞

t (ω) ∈
Eeff . Equivalently, X∞ as a random pseudo-path almost surely belongs to the pseudo-
path subspace L0(e−t dt, Eeff) ⊂ L0(e−t dt, E).

On the other hand, by continuity, the distribution of the bounded random pseudo-
path Ψi(X

n) ∈ R converges when n → +∞ towards the distribution of the random
pseudo-path Ψi(X

∞). For each i ∈ I, Point 3 in the assumption is exactly the uni-
form mean variation condition of Meyer-Zheng theory (see Theorem A.6 in Section A),
which ensures that the distribution of the pseudo-path Ψi(X

∞) is in fact supported by
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D(R+,R) (the space of càdlàg paths on R). This implies that the following canonical
càdlàg representative of Ψi(X

∞)

Zi
t = lim

h→0

1

h

∫ t+h

t

Ψi(X
∞
s ) ds

does exist almost surely, and is by construction a real-valued càdlàg process. The set
of elements (ω, t) ∈ Ω × R+ such that Ψi(X

∞
t (ω)) = Zi

t(ω) has e−t dt ⊗ P-measure 1,
and since I is countable, the intersection for i ∈ I is again of e−t dt⊗ P-measure 1.

Using Point 4 (Ψ is injective on Eeff) and Lemma 2.5, one can then consider the
extension of the inverse Ψ−1 : Ψ(Eeff) → Ẽeff which defines an isometry when one
considers e.g. the distance (11) associated with the product Polish topology of RI .

With respect to this weaker topology, the process t 7→ X̃∞ def
= Ψ−1(Zt) ∈ Ẽeff is almost

surely càdlàg. By Lemma 2.5 point ii), Borel sets of Eeff for weaker topology are also
Borel for the initial stronger topology, so that if ϕ is a continuous bounded function
for the strong topology, the integral

∫ +∞
0

ϕ(X̃∞
t , t)e−t dt is well defined and it holds by

construction that
∫ +∞

0

ϕ(X̃∞
t , t)e−t dt =

∫ +∞

0

ϕ(X∞
t , t)e−t dt.

X̃∞ is thus a measurable representative of the random pseudo-path X∞.
It remains, in order to conclude the proof, to show that X̃∞ takes its values in Eeff

and is càdlàg for the stronger original topology of E. In order to do so, we are to use a
compactness argument (Point 1) and show that X̃∞ has, almost surely, left and right
accumulation points in the original stronger topology of E. This is not guaranteed in
general without the compact containment condition because the weaker topology of Ẽeff

may allow values in Ẽeff \ Eeff .
More precisely, we now claim that with the compact containment condition (Point 1),

for any T > 0, the set
{
X̃∞

t (ω), t ∈ [0, T ]
}

is P( dω)-almost surely a subset of E that is

relatively compact for the stronger original topology. If this claim is true, P( dω)-almost
surely, for any (left or right) converging sequence tm → t∞, there is a sub-sequence (we
do not change notation for the sub-sequence) such that X̃∞

tm(ω) converges in E and in

fact in Eeff since the set is closed. But t 7→ X̃∞
t (ω) is càdlàg for the weaker topology of

Ẽeff , so the limit is unique and given by X̃∞
t±∞

(ω). Hence X̃∞ is càdlàg in Eeff and the
proof of the whole lemma is complete.

It remains to prove the claim above. We consider the original topology on Eeff .
We first remark that by the portmanteau theorem, the map on pseudo-paths x 7→∫ T

0 1xt∈Kce−t dt is lower semi-continuous for K closed, so that
{
x :
∫ T

0 1xt∈Kce−t dt
}

is open and applying the portmanteau theorem again albeit in pseudo-path space yields

P

[∫ T

0

1X∞
t ∈Kce−t dt > 0

]
≤ lim inf

n
P

[∫ T

0

1Xn
t ∈Kce−t dt > 0

]
.

The compact containment condition implies that the right-hand side in the above is
smaller than any ε for a well chosen K ≡ Kε. Using a routine Borel-Cantelli argument
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obtained by considering the events constructed for K2−p , p ∈ N, one gets that:

P

[
∃p ≥ 0 :

∫ T

0

1X∞
t ∈Kc

2−p
e−t dt = 0

]
= 1.

Since X∞ is a pseudo-path of Eeff , we can here replace K2−p by K2−p ∩Eeff that is still
a compact since Eeff closed. The above statement holds for X∞ taking value in pseudo-
paths space, so that one can replace X∞ with X̃∞. In the weaker topology of Ẽeff ,
the compact K2−k ∩ Eeff ⊂ Ẽeff is again compact. Since X̃∞ is càdlàg, it implies that
P( dω)-almost surely X̃∞

t (ω) ∈ KP (ω) for t ∈ [0, T ] and a random integer P (ω). This

precisely means that the set
{
X̃∞

t (ω), t ∈ [0, T ]
}

is relatively compact for the strong

original topology of Eeff . Our claim is proved, and so is the lemma.

Let ϕi denotes a countable family in Deff that separates points. We now consider

Xn = X(γn,1), Ψi = Pϕi,

and try to apply Lemma 2.6. We have already proved in Step 2 the second condition
while the first one is Assumption 3 and the fourth one is part i) of Assumption 7. For
the third one, we write:

VT (Ψi(X
n)) = sup

|H|≤1

∫ T

0

E (Ht dΨi(X
n
t )) ,

where the supremum is taken over predictable processes (with respect to the natural
filtration of Xn) taking value in [−1, 1]. Since the martingale term disappear:

VT (Ψi(X
n)) = sup

|H|≤1

∫ T

0

E(Ht L(γn,1)Pϕi(X
n
t ))dt

= sup
|H|≤1

∫ T

0

E(Ht L0Pϕi(X
n
t ))dt

=

∫ T

0

E(
∣∣L(0)Pϕi(X

n
t )
∣∣)dt

≤ T
∥∥L(0)Pϕi

∥∥
∞ ,

that is finite using part ii) of Assumption 7. This yields the uniform mean variation
condition. We stress that the above estimate is the key ingredient of the strong homog-
enization theorem.

Lemma 2.6 gives us therefore that X∞ is almost surely càdlàg with trajectories in
Eeff .

2.4 Step 4: The limit is the unique solution of a martingale
problem

We can now prove that X∞ is solution of a specific martingale problem. We already
know by Assumption 7 that for all γ > 0 and ϕ ∈ Deff , Xγ = X(γ,1) is solution of:

Mγ : t 7→ Pϕ(Xγ
t )−

∫ t

0

L0Pϕ(Xγ
s )ds is a σ(Xγ

s , s ≤ t)-martingale.
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We would like to let γ goes to infinity in this problem, and get that:

M∞ : t 7→ Pϕ(X∞
t )−

∫ t

0

L0Pϕ(X∞
s )ds is a σ(X∞

s , s ≤ t)-martingale.

To prove this, we will first prove using a general result on convergence in distribution
for the pseudo-paths topology that Lebesgue almost all finite-dimensional distributions
of Mγk converges to those of M∞. In particular this will enable to identify the distri-
bution of X∞

0 . We will then invoke a routine lemma characterizing càdlàg martingales
(Theorem A.7) in order to check that M∞ is indeed a martingale. The martingale
problem uniqueness in Assumption 8 enables to identify the distribution of X∞ and
then to conclude.

Using the general Lemma A.3 for converging distributions for the pseudo-path topol-
ogy, we know that there exists a subset with full Lebesgue measure J ⊂ R+ and a
sub-sequence γk → +∞ such that for each t1, . . . , tp the joint variable

(Xγp , Xγk

t1 , . . . , X
γk

tp )
Law−−−−−→

p→+∞
(X∞, X∞

t1 , . . . , X
∞
tp )

converges in distribution in L0(e−t dt, E)×Ep. Since by Assumption 7 point iii), L0Pϕ
is bounded and continuous in E at each point of Eeff , the map

x 7→
∫ t

0

L0Pϕ(xs) ds

is bounded and continuous at points of L0(e−tdt, Eeff) for the pseudo-path topology.
In the same way, Assumption 2 ensures that the map x 7→ Pϕ(x) is bounded and
continuous. Combining the above results, we get that Lebesgue almost all (for times
taken in J) finite-dimensional distributions of Mγp do converges to those of M∞.

We now claim that this proves that:

Law(X∞
0+) = Pµ0.

First recall that the trajectories of X∞ are almost surely in Eeff , and we have al-
most surely that Pϕ(X∞) = ϕ(X∞). On the other hand by construction E [Mγ

t ] =
E(Pϕ(Xγ

0 )) = µγ
0Pϕ for each t, so that passing to the limit for t ∈ J

E [M∞
t ] = µ0Pϕ

by Assumption 2, and since M∞
0+ = ϕ(X∞

0+) the claim is proved.
We now turn to the martingale property. Using the convergence of finite-dimensional

distributions on J , one gets: for all 0 ≤ t1 < ... < tp < t in J , for all ϕ1, ..., ϕp continuous
bounded, and for all p:

E[(Mγ
t −Mγ

tp)ϕp(X
γ
tp)...ϕ1(X

γ
t1)] =

��

0

��

E[(M∞
t −M∞

tp )ϕp(X
∞
tp )...ϕ1(X

∞
t1 )] = 0.

Since the processes M∞
·∧T is a càdlàg process, we have M∞ is a martingale for the

filtration of X∞ by Theorem A.7.
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Finally, recalling again that Pϕ(X∞) = ϕ(X∞) (trajectories of X∞ are almost
surely in Eeff), we have that:

t 7→ ϕ(X∞
t )−

∫ t

0

L0Pϕ(X∞
s ) is a σ(X∞

s , s ≤ t)-martingale.

Assumption 8 ensures eventually that the distribution of X∞ is the unique càdlàg
solution of the above martingale problem.

Routinely combining this identification of the limit with the tightness of (Xγ)γ>0

in pseudo-path space obtained in Step 1, we find that Xγ indeed converges in law for
the pseudo-path topology to X∞, the unique (in law) process on Eeff of generator Leff :
the Theorem 1.11 is proved.

2.5 Proof of Corollary 1.12

In order to prove the convergence of the finite-dimensional laws for all times, we first
need to prove that we have convergence of the semi-group for all times starting from a
moving initial condition.

Proposition 2.7. We assume as before that Xγ starts from the initial condition µγ
0

that converges in law in distribution towards µ0. Then for all t > 0 we have that Xγ
t

converges in law towards X∞
t of initial condition µ0P.

Proof. As in the proof of Step 4 above, since Xγ converges in law to X∞ for the Meyer–
Zheng topology, there exists an extraction (γk) and J ⊂ R+ of full Lebesgue measure
such that the finite-dimensional distributions of (Xγk

t )t∈I converge to those of (X∞
t )t∈J.

Let t > 0 be given, there exists tn elements of J converging to t from the right. For
f a continuous bounded function on E, we now consider the following decomposition:

|Eµ
γk
0
(f(Xγk

t )− Eµ0P(f(X
∞
t ))| ≤ |Eµ

γk
0
(f(Xγk

t )− Pf(Xγk

t ))|
+ |Eµ

γk
0
(Pf(Xγk

t )− Pf(Xγk

tn ))|
+ |Eµ

γk
0
(Pf(Xγk

tn ))− Eµ0P(Pf(X∞
tn ))|

+ |Eµ0P(f(X
∞
tn ))− Eµ0P(f(X

∞
t ))|

We remind that for almost all ω, we have:

f(X∞
tn (ω)) −→

n→+∞
f(X∞

t (ω))

by continuity of f and right continuity of s 7→ X∞
s (ω). Since all is trivially bounded,

we have by dominated convergence:

Eµ0P(f(X
∞
tn )) −→

n→+∞
Eµ0P(f(X

∞
t )).

Using this last result and point ii) of Assumption 7, we now consider n such that
|Eµ0P(f(X

∞
tn ))−Eµ0P(f(X

∞
t ))| 6 ε and (tn − t) sup

E
|L(0)Pf | ≤ ε. We fix n until the

end of the proof.
We have thus bounded by ε the last term for all k, to conclude we only have to prove

that the other terms are inferior to ε for k big enough.
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Since tn ∈ I we have Xγk

tn

L−→
k→+∞

X∞
tn and we bound the third term by ε for k big

enough.
We have for all η > 0 that d(Eeff , X

γk

t ) 6 η with high probability for k big enough.
But (f − Pf)|Eeff

= 0, and Assumption 2 gives us that f − Pf is continuous at points
of Eeff with limit 0, so taking η small enough and using the compact containment
hypothesis, we get that |f(Xγk

t ) − Pf(Xγk

t )| is small with a high probability for k big
enough. We can therefore bound the first term of by ε by taking k big enough.

We now only have to bound the second term to conclude. Using Dynkin’s formula
(since LγPf = L(0)Pf) we have:

|Eµ
γk
0
(Pf(Xγk

t )− Pf(Xγk

tn ))| ≤
∣∣∣∣
∫ tn

t

Eµ
γk
0

(
L(0)Pf(Xγ

s )
)∣∣∣∣

≤ (tn − t) sup
E

|L(0)Pf |

≤ ε.

Since any extraction of Xγ still converges to X∞ for the Meyer–Zheng topology, we
can make for every extraction a second one for which we have the convergence of the
one dimensional distributions: we therefore have convergence in law of Xγ

t to X∞
t for

all t > 0.

We will now invoke a technical Lemma that we will combine with the Markov prop-
erty to prove the convergence of the finite dimensional distributions.

Lemma 2.8. We assume as before that Xγ starts from the initial condition µγ
0 that

converges in law towards a distribution denoted µ0. We furthermore assume here that
the support of µ0 is included in Eeff , so that µ0P = µ0. Then, when γ goes to +∞, the
couple (Xγ

0 , X
γ
t ) converges in distribution towards the couple (X∞

0 , X∞
t ).

Proof. We want to prove that for all t > 0 and f0, f continuous bounded strictly positive
functions on E, we have that:

Eµγ
0
(f0(X

γ
0 )f(X

γ
t )) −→

γ→+∞
Eµ(f0(X

∞
0 )f(X∞

t ))

We have that:

Eµγ
0
(f0(X

γ
0 )f(X

γ
t )) =

∫

E

f0(z)Ez(f(X
γ
t ))µ

γ
0 (dz)

= µγ
0(f0)

∫

E

Ez(f(X
γ
t ))νγ(dz),

where νγ(dz) = 1
µγ
0 (f0)

f0(z)µ
γ
0(dz) is a probability measure on E. Since µγ

0 (f0) is

uniformly minorated by a constant strictly superior to 0 and converges to µ0(f0), we have
that νγ converges in distribution towards ν(dz) = 1

µ(f0)
f0(z)µ0(dz) that is a probability

distribution on Eeff (so νP = ν). Using Proposition 2.7, we have:

Eµγ
0
(f0(X

γ
0 )f(X

γ
t )) = µγ

0 (f0)Eνγ (f(X
γ
t )) −→

γ→+∞
µ0(f0)Eν(f(X

∞
t ))

= Eµ0 (f0(X
∞
0 )f(X∞

t ))
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We now have all the tools needed to conclude.

Proof. (Corollary 1.12)
We consider 0 < t1 < · · · < tn and ε ∈]0, t1[, denoting P γ

t the semigroup associated
with Xγ

t and P∞
t the semigroup associated with X∞

t , we notice that for all f1, . . . , fn
bounded strictly positives functions on E we have:

Eµγ
0
(f1(X

γ
t1) · · · fn(X

γ
tn)) = P γ

h1
(ργ , f1(·)P γ

h2
(·, f2(·)P γ

h3
(·, . . . P γ

hn
(·, fn(·)) . . . ))),

where hi = ti − ti−1 − ε with the convention t0 = 0, and ργ is the law of Xγ
ε starting

from µγ
0 . Proposition 2.7 gives us that ργ converges in distribution towards ρ, the law

of X∞
ε starting from µ0P whose support is included in Eeff .

To conclude we will prove by induction on n that:

dz 7→ P γ
h1
(ργ , f1(·)P γ

h2
(·, f2(·)P γ

h3
(·, . . . fn−1(·)P γ

hn
(·, dz) . . . )))

converges in distribution to:

dz 7→ P∞
h1
(ρ, f1(·)P∞

h2
(·, f2(·)P∞

h3
(·, . . . fn−1(·)P∞

hn
(·, dz) . . . ))),

both being positive finite non trivial measures since all the functions involved are posi-
tive bounded. Furthermore, the second measure is of support included in Eeff .

Proposition 2.7 proves the convergence of the semigroup which is the result for n = 1.
We now take n ≥ 2 and we assume that the result is proved at rank n− 1. We write:

νγ(dz) = P γ
h1
(ργ , f1(·)P γ

h2
(·, f2(·)P γ

h3
(·, . . . fn−2(·)P γ

hn−1
(·, dz) . . . )))

and:
ν(dz) = P∞

h1
(ρ, f1(·)P∞

h2
(·, f2(·)P∞

h3
(·, . . . fn−2(·)P∞

hn−1
(·, dz) . . . )))

By induction hypothesis, νγ converges to ν is distribution (so especially νγ(E) converges
to ν(E)). Writing νγ = 1

νγ (E)νγ and ν = 1
ν(E)ν we have that νγ is a probability measure

converging to ν. Hence, Lemma 2.8 gives us that for all continuous bounded function
f we have:

P γ
h1
(ργ , f1(·)P γ

h2
(·, f2(·)P γ

h3
(·, . . . fn−1(·)P γ

hn
(·, f) . . . )))

= νγ(E)Eνγ (fn−1(X
γ
0 )f(X

γ
hn

))

−→
γ→+∞

ν(E)Eν (fn−1(X
∞
0 )f(X∞

hn
))

= P∞
h1
(ρ, f1(·)P∞

h2
(·, f2(·)P∞

h3
(·, . . . fn−1(·)P∞

hn
(·, f) . . . ))).

Since this is true for all bounded functions f , this proves the result at rank n.
Hence, we take f = fn and we get that:

Eµγ
0
(f1(X

γ
t1) · · · fn(X

γ
tn)) −→

γ→+∞
Eµ0P(f1(X

∞
t1 ) · · · fn(X∞

tn ))
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2.6 Proof of Proposition 1.4

We propose in this section a proof of Proposition 1.4 (rewritten as Lemma 2.9 below)
which states that the large time convergence of the dominant process towards Eeff is
uniform with respect to starting points taken on compacts.

Let us reformulate Proposition 1.4 by making assumptions explicit:

Lemma 2.9. Let E be Polish, Eeff a closed subset of E and assume that (x, t, ω) 7→
Xt(x)(ω) ∈ E be a measurable map defined for (t, x) ∈ R+ × E and ω in a filtered
probability space. Assume that t 7→ Xt(x) is for all x ∈ E a càdlàg Markov process for
the considered filtration. We assume moreover that:

• For all t ≥ 0, x 7→ Xt(x) is continuous in probability (Feller-type continuity).

• For all x ∈ E, the process (Xt(x))t>0 converges in probability towards X∞(x) ∈
Eeff .

• x 7→ P(x, ·) = Law(X∞(x)) is continuous for the topology of convergence in law.

• We have P(x, ·) = δz for z ∈ Eeff if and only if x = z ∈ Eeff

• We have the compact containment (7): for K compact and ε > 0 given, there
exists a compact Kε such that:

sup
x∈K

P [∃t > 0, Xt(x) ∈ Kc
ε ] ≤ ε.

Then there exists a continuous bounded non-negative function f on E with f > 0 on
E \ Eeff and f = 0 on Eeff such that we have for all K ⊂ E compact:

lim
t→+∞

sup
x∈K

E [f(Xt(x))] = 0. (12)

To prove the Lemma, we start with a definition of an object we will use in the
proof. We say for ε > 0 that Eeff admits a measurable ε-projector in E if there exists
a measurable function pε : E → Eeff such that for all z ∈ E we have d(z, Eeff) + ε >

d(z, p(z)). We have the following result on the existence of ε-projector.

Lemma 2.10 (Existence of an ε-projector). Let (E, d) be a Polish space, F a closed
subset of E and ε > 0. Then F admits a (measurable) ε-projector.

Proof. Let
g : y 7→ d(y, F ) = inf

z∈Eeff

d(y, z).

The function g is continuous and therefore measurable. We now consider the multifunc-
tion ψ on E defined by:

ψ : y 7→ B(y, g(y) + ε).

Then for U an open ball of center x and of radius α, we have that

{y ∈ E, ψ(y) ∩ U 6= ∅} = {y ∈ E, d(y, x) < α+ g(y) + ε}
= {y ∈ E, d(y, x)− g(y) < α+ ε}

Since y 7→ d(y, x)− g(y) is measurable, we have that this set is in B(E). Using that
all open set of E are countable union of balls, we have that the result stays true for all U
open set of E. Eventually, Kuratowski–Ryll-Nardzewski measurable selection theorem
gives us that ψ admits a measurable selection, that is by definition an ε-projector
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To prove Lemma 2.9 we will need to use the following general lemma, which proves,
using the continuity with respect to x of Xt(x) in probability and of X∞(x) in law, the
continuity of X∞(x) in probability, up to some compact containment.

Lemma 2.11. Assume E is Polish. Let (x, t, ω) 7→ Xt(x)(ω) ∈ E be a measurable
map defined for (t, x) ∈ R+ × E and ω in a filtered probability space. Assume that
t 7→ Xt(x) is for all x ∈ E a càdlàg Markov process for the considered filtration. We
assume moreover that:

• For all t ≥ 0, x 7→ Xt(x) is continuous in probability.

• For all x ∈ E, the process (Xt(x))t>0 converges in probability towards X∞(x) ∈
Eeff whose distribution is given by P(x, . ).

• x 7→ P(x, ·) = Law(X∞(x)) is continuous for the metric topology of convergence
in law.

Then for all K+ ⊂ E and K ⊂ K+ compact sets, all x ∈ K and all ε, h > 0, there
exists η = ηK,K+,x,ε,h > 0 such that for all x′ ∈ B(x, η) ∩K , we have:

P ( d(X∞(x), X∞(x′)) > h) ≤ ε

16
+ 2P

(
∃t ≥ 0, Xt(x

′) /∈ K+
)
.

Proof. The proof of Lemma 2.11 is decomposed in several steps.

Two uniform continuity estimates. First, by assumption, the function x 7→
P(x, ·) = Law(X∞(x)) is continuous for the metric topology of convergence in law. Since
K+ is compact, Heine’s theorem applies and gives us that it is uniformly continuous on
K+. Remark also that for z ∈ Eeff one has P(z, ·) = δz. As a direct consequence, for
all α, h > 0, there exists aα,h > 0 such that for all z ∈ Eeff ∩K+ and x ∈ K+ :

d(x, z) ≤ aα,h implies P(d(X∞(x), z) ≤ h

2
)) ≥ 1− α (13)

Second, let t ≥ 0 be any given time, and let us consider the continuity with respect
to the initial conditions. By assumption, the map x 7→ Xt(x) is continuous for the
metric topology of convergence in probability of random variables. Since K is compact,
Heine’s theorem applies again and yields uniform continuity, which can be expressed as
follows. For all a, α > 0, there exists ηt,a,α > 0 such that:

d(x, x′) ≤ ηt,a,α implies P

(
d(Xt(x), Xt(x

′)) 6
a

2

)
≥ 1− α (14)

A first estimate. Let α, a > 0 and x ∈ K be given. Considering pa/4 an a/4-
projector whose existence in given by Lemma 2.10, we claim that there exists T = Tx,a,α
and η = ηx,a,α > 0 such that for any x′ ∈ B(x, η) ∩K, we have:

P(d(XT (x
′), pa/4(XT (x))) ≤ a) ≥ 1− 2α. (15)

Indeed, we first have by assumption that (Xt(x))t≥0 converges in probability to
X∞(x), therefore there exists T = Tx,a,α > 0 such that

P(d(XT (x), Eeff) ≤ a/4) ≥ P(d(XT (x), X∞(x)) ≤ a/4) ≥ 1− α. (16)
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Next, we can consider the lower bound

P
(
d(XT (x

′), pa/4(XT (x))) ≤ a
)

≥ P

(
d(XT (x

′), XT (x)) ≤
a

2
, XT (x) ∈ B(pa/4(XT (x)),

a

2
)
)

≥ P

(
d(XT (x

′), XT (x)) ≤
a

2
, XT (x) ∈ B(Eeff ,

a

4
)
)
,

and using first (16) and then (14) with η = ηT,a,α we obtain the claim (15).

Main estimate. The key of the proof consists in the following claim. Let K ⊂
K+ ⊂ E compact subsets, α ∈ [0, 1], h > 0, and x ∈ K be given. Consider the event
Bx′ = {Xt(x

′) ∈ K+, ∀t ≥ 0}. We claim that there exists η > 0 and T ≥ 0 such that
for any x′ ∈ B(x, η) ⊂ K, we have:

P(X∞(x′) ∈ B(pa/4(XT (x)),
h

2
)) ≥ 1− 5α− P(Bc

x′).

This estimates will subsequently quite easily yield the proof of the whole lemma.
The key to prove the claim consists in the following conditioning:

P(X∞(x′) ∈ B(pa/4(XT (x)),
h

2
))

≥ P(X∞(x′) ∈ B(pa/4(XT (x)),
h

2
)
∣∣XT (x

′) ∈ B(pa/4(XT (x)), a) ∩K+ )
︸ ︷︷ ︸

ii)

× P(XT (x
′) ∈ B(pa/4(XT (x)), a) ∩K+)

︸ ︷︷ ︸
i)

Using our first estimate (15), there exist a T > 0 and a η > 0 such that for all x′ ∈
B(x, η) ∩K the term i) can be lower bounded as follows:

i) = P(XT (x
′) ∈ B(pa/4(XT (x)), a) ∩K+)

≥ 1− P(XT (x
′) /∈ B(pa/4(XT (x)), a)) − P(Bc

x′)

≥ 1− 2α− P(Bc
x′)).

Then, since t 7→ (Xt(x), Xt(x
′)) is homogeneous in time and satisfies the Markov prop-

erty, the uniform estimate (13) (recall that x′ ∈ K ⊂ K+) directly implies that ii) can
be lower bounded by

ii) = P

(
X∞(x′) ∈ B(pa/4(Xt(x)),

h

2
)
∣∣Xt(x

′) ∈ B(pa/4(Xt(x)), a) ∩K+

)

≥ 1− α (17)

for any deterministic t ≥ 0 and in particular for t = T .
Finally we obtain that i) × ii) ≥ (1− α)× (1− 2α− P(Bc

x′)) ≥ 1− 5α− P(Bc
x′).
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Final remark. Eventually, one can apply two times the previous claim and get for
all x′ ∈ B(x, η)

P(d(X∞(x′), X∞(x)) ≤ h)

≥ P(X∞(x′) ∈ B(pa/4(XT (x)),
h

2
) & X∞(x) ∈ B(pa/4(XT (x)),

h

2
))

≥ 1− P(X∞(x′) /∈ B(pa/4(XT (x)),
h

2
)) − P(X∞(x) /∈ B(pa/4(XT (x)),

h

2
))

≥ 1− 10α− 2P(Bc
x′).

We then choose α small enough so that 10α 6 ε
16 , and we have proved the lemma.

Before carrying out the proof of the theorem, we end with a usual technical lemma
that will be useful in the proof. We recall as a preamble that the distance function to
any closed set C is 1-Lipschitz since:

inf
y∈C

d(x′, y)− inf
y∈C

d(x, y) ≤ sup
y∈C

(d(x′, y)− d(x, y)) ≤ sup
y∈Eeff

d(x, x′) = d(x, x′).

Lemma 2.12. Let (E, d) be a separable metric space. There exists a countable family
of 1-Lipschitz, bounded by 1 functions that is convergence determining.

Proof. Since E is metric separable, it is second countable and there exists a countable
family B of closed sets that contains a decreasing sequence whose intersection is any
given closed set. Let us consider the following countable family of bounded and Lipschitz
functions

fn,C(x) = 1−min (nd(x,C), 1) , C ∈ B, n ∈ N \ {0}.
Let C be a given closed set and Cp ց C a decreasing sequence converging to C ∈ B.

One has then infp,n fn,Cp
(x) = 1C(x). Let (µq)q denotes a sequence of probabilities, and

µ another probability such that lim supq µq(fn,Cp
) = µ(fn,Cp

) for any n, p. Obviously,
by monotone convergence

lim sup
q

µq(C) = lim sup
q

inf
p,n

µq(fn,Cp
) ≤ inf

p,n
lim sup

q
µq(fn,Cp

) = µ(C).

This implies by portmanteau lemma that limq µq = µ in distribution.
Taking gn,Cp

= fn,Cp
/n that is 1-Lipschitz and bounded by 1, we have that lim supq µq(fn,Cp

) =
µ(fn,Cp

) if and only if lim supq µq(gn,Cp
) = µ(gn,Cp

), so the family (gn,Cp
)n>1,C∈B ver-

ifies the claim.

Proof of Lemma 2.9. We consider a compact K of E and ε. By compact containment
(Assumption 3), there exists a compact Kε such that denoting

Bx = {Xt(x) ∈ Kε, ∀t > 0}

we have supx∈K P(Bc
x) 6

ε
8 .
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We take (fn)n>1 a family of convergence determining functions on E that are
bounded by 1 and 1-Lipchitz for the distance min(1, d(x, y)) (Lemma 2.12). For x, y ∈ E
the following (harmonic) semi-distance:

dhar(x, y) =
∑

n≥1

|Pfn(x)− Pfn(y)|2−n.

Since (fn)n is separating; we note that dhar(x, y) = 0 if and only if P(x, ·) = P(y, ·)).
Moreover the continuity assumption on P implies that dhar is topologically weaker than
d.

To prove Lemma 2.9, we consider the harmonic distance function to Eeff defined by

f : x ∈ E 7→ inf
y∈Eeff

dhar(x, y) ∈ R+.

We claim that f is null on Eeff , strictly positive on E \ Eeff) and 1-Lipschitz for dhar

(hence continuous for d). We will subsequently prove (12) for this function. First, we
have trivially that f|Eeff

= 0, and that f is 1-Lipschitz as a distance function. Let us now
prove that we have f|E\Eeff

> 0. Let x ∈ E\Eeff be given. We assume that f(x) = 0 and
we prove that x ∈ Eeff . If f(x) = 0, we can find by definition of f a sequence yn ∈ Eeff

such that dhar(yn, x) −→
n→+∞

0, so 〈δyn
, fp〉 = fp(yn) −→

n→+∞
Pfp(x) = 〈P(x, ·), fp〉 for all

p > 1. Since the fp are convergence determining, we thus have that δyn
converges weakly

towards P(x, ·), but a converging sequence of Dirac distributions of support included
in a closed set can only converge towards another Dirac measure of support included in
the same closed set, so eventually there exists y ∈ Eeff such that P(x, ·) = δy = P(y, ·).
By Assumption 5, we have therefore x = y ∈ Eeff .

We can develop the main argument, using the first key fact that for all n ≥ 1 and
x ∈ E, the process t 7→ Pfn(Xt(x)) is a martingale for the underlying filtration, so that
the absolute value:

t 7→ |Pfn(Xt(x)) − Pfn(Xt(x
′))|

is a sub-martingale whose expectation is thus increasing with time. Note also that
Pfn(X∞(x′)) = fn(X∞(x′)) almost surely since X∞(x′) ∈ Eeff . The second key fact
is the conclusion of Lemma 2.11, which is to be used for K = K, K+ = Kε, x = x,
h = ε

8 , a well-chosen ηx ≡ ηK,Kε,x,ε and all x′ ∈ B(x, ηx) ∩K.
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We then proceeds to estimate E(f(Xt(x
′)) as follows:

|E(f(Xt(x
′))|

6 |E(f(Xt(x
′))

= |E((f(Xt(x
′))− f(X∞(x′))) |

≤ E(dhar(X∞(x′), Xt(x
′)))

≤
∑

n≥1

2−n
E (|Pfn(Xt(x)) − Pfn(Xt(x

′))|)

+ 2−n
E (|Pfn(Xt(x)) − Pfn(X∞(x))|)
+ 2−n

E (|Pfn(X∞(x)) − Pfn(X∞(x′))|)
≤
∑

n≥1

2−n
E (|Pfn(Xt(x)) − Pfn(X∞(x))|)

+ 2−n
E (|Pfn(X∞(x)) − Pfn(X∞(x′))|)× 2

≤
∑

n≥1

2−n
E (|Pfn(Xt(x)) − Pfn(X∞(x))|)

+ 2−n
E (|fn(X∞(x))− fn(X∞(x′))|)× 2

≤
∑

n≥1

2−n
E (|Pfn(Xt(x)) − Pfn(X∞(x))|)

+ 2−n
E (d (X∞(x), X∞(x′)) ∧ 1)× 2

≤
∑

n≥1

2−n
E (|Pfn(Xt(x)) − Pfn(X∞(x))|)

+ 2−n(
ε

8
+ P(d(X∞(x), X∞(x′)) >

ε

8
))× 2

≤
∑

n≥1

2−n
E (|Pfn(Xt(x)) − Pfn(X∞(x))|)

+ 2−n(
3ε

16
+ 2P(Bc

x))) × 2

≤
∑

n≥1

2−n
E (|Pfn(Xt(x)) − Pfn(X∞(x))|)

+
7ε

8

Using that the fn are bounded by 1, the first term above converges to 0 when t ap-
proaches infinity, and is thus inferior to ε

8 for all t > Tx for some Tx.
By covering K by a finite number of balls (we can because K is compact) of centers

xi radius ηxi
for i = 1 . . . I, we find that for all t ≥ maxi Txi

it holds

sup
x′∈K

E [f(Xt(x
′))] 6 ε.

Since this is true for all ε > 0, we have eventually:

lim
t→+∞

sup
x∈K

E [f(Xt(x))] = 0.
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3 Examples

We will now use Theorem 1.11 and Corollary 1.12 on concrete examples to get homo-
geneization results. Once the framework is settled, we only have to check the common
hypothesis of both Theorem 1.11 and Corollary 1.12 to have the convergence in law
respectively in the sense of the Meyer–Zheng topology and in the sense of the finite-
dimensional distributions.

3.1 Diffusion in a simplex (see [11])

Consider E a closed simplex in Rn, that is the non-degenerate intersection of n+1 affine
half-spaces Ei, i = 1 . . . n + 1. Eeff is defined to be the n + 1 vertices of E: we have
therefore that E is compact and Eeff is a finite set. We take Deff = Cc(Eeff) which is
here the set of all real functions on Eeff . We assume in this example that the dominant
process is a martingale and that the subdominant process is general, we write:

dXγ
t =

√
γσ (Xγ

t ) dWt + σ0 (X
γ
t ) dBt + b (Xγ

t ) dt,

where we assume that σ, σ0 : O → Mn(R) and b : O → Rn are Lipschitz continuous in
E (for the Euclidean distance). Thus we have:

L(0) = 〈b,∇x〉+
1

2
〈σ0σ†

0∇x,∇x〉 and L(1) =
1

2
〈σσ†∇x,∇x〉

In order to obtain an appropriate behaviour of the above process at the boundary
∂E, it is necessary to add several assumptions:

(i) For all x ∈ ∂E, σ(x) and σ0(x) have their images in the tangent space of ∂Ei for
each i with x ∈ ∂Ei. In particular σ(x) = 0 if x ∈ Eeff .

(ii) For all x ∈ ∂E, b(x) vanishes or points to the interior of E.

(iii) σ(x) = 0 if and only if x ∈ Eeff .

The above special assumptions ensure in particular that the process stays in E
almost surely for any γ > 0 and t ≥ 0 (see [11]).

Lemma 3.1. Assume that in addition to Lipschitz continuity, σ, σ0 and b satisfy i)
and ii) above. Then Xγ

t belongs to E for all time t.

As a consequence, according to Section 1.3, we therefore have Assumption 4 and
Assumption 6.

It has also been proved in [11], Remark 6, that for all x ∈ E:

P(x, ·) =
∑

z∈Eeff

Hz(x)δz ,

where x 7→ Hz(x) is the only affine function on E that is: i) equal to Hz(z) = 1 at
x = z, and ii) Hz(z

′) = 0 for any z′ ∈ Eeff \ {z}. In short, the proof works as follows:
since the dominant process is a bounded martingale, its quadratic variation is almost
surely finite so that the dominant process converges almost surely to a point where σ is
null; by iii) above the latter is a point of Eeff . X(1,0)

t converges in probability towards
Eeff when t → +∞. Since Hz is affine, it holds that L(1)P = 0 and P is continuous
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at Eeff with limit the identity; a standard application of Itô formula implies then that
indeed limt→+∞ Law(X

(1,0)
t (x)) = P(x, . ) and Assumption 1 is checked. Furthermore,

the expression of P gives us Assumption 5.
We will next prove again the main result of [11], that is:

Theorem 3.2. The process X(γ,1) converges in law (for the pseudo-paths topology as
well as for finite dimensional time marginals) when γ approaches infinity towards a
continuous-time Markov chain X∞ on Eeff of transition matrix Leff = (b(x) · ∇xHz(x))x,z∈Eeff

.

We just have to check the four other hypothesis.
The assumption 3 is trivially verified since E is a compact.
The Assumption 2 and Assumption 7 are easily proved using the fact that P is

affine: Pϕ being smooth on E for all ϕ ∈ Deff , point ii) is a direct consequence of Itô’s
formula applied on Pϕ(X(γ,1)). Indeed, for all ϕ ∈ Deff , we have:

d(Pϕ(X(γ,1)
t ) = (γL(1) + L(0))(Pϕ)(X(γ,1)

t )dt+∇x(Pϕ)(Xγ
t ) · σ0(X(γ,1)

t )dBt

+
√
γ∇x(Pϕ)(Xγ

t ) · σ(X(γ,1)
t )dWt,

integrating this inequality and using that L(1)Pϕ = 0, we get eventually:

Pϕ(X(γ,1)
t (x)) −

∫ t

0

L(0)Pϕ(X(γ,1)
s (x))ds

= Pϕ(x) +
∫ t

0

∇x(Pϕ)(X(γ,1)
t (x)) · σ0(X(γ,1)

t (x))dBs

+

∫ t

0

√
γ∇x(Pϕ)(X(γ,1)

t (x)) · σ(X(γ,1)
t )dWs,

with the second term clearly being a martingale for the natural filtration of X(γ,1)
t (x).

For point iii), using the explicit expression of PL(0) and the continuity of b and
∇xHz, we have for z0 ∈ Eeff that:

lim
x→z0

L(0)P [ϕ] (x) = lim
x→z0

∑

z∈Eeff

ϕ(z)b(x) · ∇xHz(x) =
∑

z∈Eeff

ϕ(z)b(z0) · ∇xHz(z0).

Identifying ϕ with the vector (ϕ(z))z∈Eeff
we have eventually that Leffϕ = (b(x) · ∇xHz(x))x,z∈Eeff

ϕ,
which is trivially bounded measurable.

Since b(x0) · ∇xHz(x0) ≤ 0 and b(x0) · ∇xHz(x0) ≥ 0 for z 6= x0, using furthermore
that

∑
z∈Eeff

b(z) · ∇xHz(x0) = 0, we have that Leff is the generator of a continuous-

time Markov process on Eeff . The martingale problem is therefore well-posed and
Assumption 8 is checked.

3.2 Diffusion in a strip

Define E = [−1, 1]×R and Eeff its border {−1, 1}×R. We take Deff = C∞
c ({−1, 1} × R)

as space of test functions. In this subsection we will study the process Xγ = X(γ,1) =
(Y γ , Zγ) defined by:

{
dY γ

t =
√
γσ(Y γ

t , Z
γ
t ) dWt + b(Y γ

t , Z
γ
t )dt

dZγ
t = γσ(Y γ

t , Z
γ
t )

2 dt = d[Y γ ]t.
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where b : [−1, 1]×R → R is a Lipschitz bounded function such that b(1, z) ≤ 0 and
b(−1, z) ≥ 0 and σ : [−1, 1] × R → R is Lipschitz bounded function with σ−1({0}) =
{±1} × R. Note that when the value of b does not depend of z-coordinate, the above
process is the simplex example of Section 3.1 for n = 1 (the variable Y ) with the
addition of its quadratic variation (the variable Z). Adding the quadratic variation
is of special interest to keep track of the ”intrinsic diffusive time” of the dominant
process through the homogenization procedure. Since our process is strong solution
with Lipschitz coefficients and Y remains in [−1, 1] for all time, according to Section 1.3,
we have Assumption 4 and Assumption 6.

The main homogenization theorem is then following.

Theorem 3.3. The process X(γ,1) in [−1, 1]×R+ converges in law (pseudo-path topol-
ogy and finite-dimensional) when γ approaches infinity towards a Levy-type process of
generator:

Leff(ϕ)(y, z) =|b|(y, z)
∫

R+

ϕ(y, z + h)− ϕ(y, z) dµ(h)

+ |b|(y, z)
∫

R+

ϕ(−y, z + h)− ϕ(y, z) dν(h)

in which ν is a finite positive measure of total mass ν(R+) = 1/2, and µ positive Levy
measure of a subordinator (

∫
R+

min(1, t)µ( dt) < +∞). The latter are given by the

explicit expansion

µ(dt) =

(
π2

16

+∞∑

k=−∞
k2e−tπ2k2

8

)
dt and ν(dt) =

(
−π2

16

+∞∑

k=−∞
(−1)kk2e−tπ2k2

8

)
dt.

We have to check the six remaining hypothesis.
On the one hand we have that (Y

(1,0)
t )t is a bounded martingale that converges al-

most surely to Y (1,0)
∞ ∈ {±1}. On the other hand, since Y (1,0)

t =
∫ t

0 σ(Y
(1,0)
t , Z

(1,0)
t )dWs,

we have using Itô isometry and |Yt| ≤ 1 that:

∫ t

0

E(y,z)

(
σ(Y

(1,0)
t , Z

(1,0)
t )2

)
ds = E(y,z)

((∫ t

0

σ(Y
(1,0)
t , Z

(1,0)
t )dWs

)2
)

≤ 1.

The left hand side above is exactly the expectancy of Z(1,0)
t − z and since (Z

(1,0)
t )t is

increasing, we may take the limit in the last inequality to find that E(Z
(1,0)
∞ ) ≤ z + 1.

This implies in particular that Z(1,0)
∞ < +∞ almost surely. Finally, (Y

(1,0)
t , Z(1,0))t

converges almost surely when t → +∞ towards a random variable (Y
(1,0)
∞ , Z

(1,0)
∞ ) and

Assumption 1 is verified.
Next, we recall that:

Y γ
t =

√
γ

∫ t

0

σ(Y γ
t , Z

γ
t )dWs +

∫ t

0

b(Y γ
s , Z

γ
s )ds+ y

=
√
γMt +Bt,
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in which Y γ
t is bounded in absolute value by 1 and Bt by t × ‖b‖∞ + 1; hence Itô’s

isometry gives us for all t ≥ 0 and γ > 0:

sup
(y,z)

E(y,z)

(
γ

∫ t

0

σ(Y γ
t , Z

γ
t )

2ds

)
≤ (1 + t× ‖b‖∞ + 1)2.

The term inside the expectancy above is exactly Zγ
t − z, so using Markov’s inequality,

we have that for all ε > 0, there exists Mε,t > 0 such that:

sup
(y,z)

P(y,z) (|Zγ
t − z| > Mε,t) ≤ ε.

Taking Kε,T = [−1, 1]× [−z0, z0 +Mε,T ] for z0 > 0 and using that Zγ
t is increasing

in time for γ fixed, we have that:

sup
y∈[−1,1],−z0≤z≤z0

P(y,z)

(
∃t ∈ [0, T ], (Y γ

t , Z
γ
t ) ∈ Kc

ε,T

)
≤ ε.

The proof works in particular for b = 0 (when we only consider the dominant process).
The compact containment condition in Assumption 3 is thus checked.

To prove the remaining assumptions, Assumption 2, Assumption 5, Assumption 7
and Assumption 8, we first need to have an explicit expression of P and its derivative
with respect to y.

We start with a time change: the process of generator L(1)/σ
2 is of the form:

{
dỸt = dWt

dZ̃t = dt.

and we have (ỸSt
, Z̃St

) = (Yt, Zt) where
∫ t

0
σ−2(Ys, Zs)ds = St. On the one hand if

we write τ := τ−1,1(W ) the first hitting time of 1 or −1 by the Brownian motion W

starting at y, we have that Ỹτ ∈ {±1} and Ỹt ∈]− 1, 1[ for all t < τ . Since Yt ∈]− 1, 1[
for all t ≥ 0 and Y∞ = {±1}, we can write S∞ = τ and obtain Y∞ = Ỹτ = Wτ and
thus Z∞ = Z̃τ = τ . Eventually we have for any ϕ : Eeff → R:

P(ϕ)(y, z) = E(y,z)(ϕ(Y∞, Z∞)) = Ey[ϕ(Wτ , z + τ)]

As a consequence,

Pϕ(y, z) =
∫ +∞

0

Py(τ ∈ dt;Wτ = 1)ϕ(1, z + t)dt

+

∫ +∞

0

Py(τ ∈ dt;Wτ = −1)ϕ(−1, z + t)dt,

where Py(τ ∈ dt;Wτ = ±1) is a transparent notation for the probability distribution
of (τ,Wτ ). This explicit expression of P and a dominated convergence argument gives
us easily that if ϕ ∈ Cb(Eeff), Pϕ is continuous on E with limit ϕ at Eeff and hence
point Assumption 2. The explicit expression of P furthermore gives us immediately
Assumption 5. Standard regularity results on parabolic PDE (see [10, Ch. 7]) gives us
that (y, z) 7→ Pϕ(y, z) is in C∞(E). For the sake of completeness, we give in appendix
an elementary proof of the fact that Pϕ is infinitely differentiable on E using an explicit
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expression of Py(τ ∈ dt;Wτ = 1). We can thus use Itô’s formula on to get Assumption 7
point ii).

We denote µ, ν the two measures defined for t > 0 by:






µ(dt) = − lim
y→1

∂

∂y
Py(τ ∈ dt;Wτ = 1)dt

ν(dt) = − lim
y→1

∂

∂y
Py(τ ∈ dt;Wτ = −1)dt

and for t 6 0 by µ(dt) = ν(dt) = 0. We prove in Appendix B that these two measures
are positive, and are in fact Levy measures of subordinators. We are looking for an
explicit expression of Leffϕ(1, z) using µ and ν, but we cannot directly take the limit
under the integral when y approaches 1 in ∂yPϕ since

∫
ϕ(t, z)µ( dt) could be infinite.

We thus need to substract to ϕ(y′, z′) the constant ϕ(1, z) and obtain

lim
y→1

L(0)P ϕ(y, z) = lim
y→1

b(y, z)∂yP (ϕ− ϕ(1, z)) (y, z)

We prove in appendix using a standard dominated convergence argument that we
can take the following limit under the integral, b being continuous by assumption:

lim
y→1

L(0)P ϕ(y, z) = −b(1, z)
∫ +∞

0

(ϕ(1, z + t)− ϕ(1, z))µ(dt)

− b(1, z)

∫ +∞

0

(ϕ(−1, z + t)− ϕ(1, z))ν(dt) (18)

where the last two integrals are well-defined and uniformly bounded in z since we have
ϕ ∈ C∞

c ({−1, 1} × R) and 1 ∧ |x| integrable for µ and ν is finite.

Remark 3.4. We remind that b(1, z) ≤ 0 (the process stays in E) and therefore that
−b(1, z) ≥ 0.

Doing exactly the same calculus as above, but taking y → −1 instead of y → 1, we
find:

lim
y→−1

L(0)P ϕ(y, z) = b(−1, z)

∫ +∞

0

(ϕ(1, z + t)− ϕ(−1, z))ν(dt)

+ b(−1, z)

∫ +∞

0

(ϕ(−1, z + t)− ϕ(−1, z))µ(dt) (19)

Combining (18) and (19) and using that µ(1 ∧ |x|), ν(1) < +∞ we get that (±1, z) 7→
Leff ϕ(±1, z) is a bounded measurable function on Eeff and we have therefore that As-
sumption 7 iii) is checked. Furthermore Leff is a Levy generator constructed using
homogeneous subordinators on R+: the martingale problem is well-posed and Assump-
tion 8 is checked. A slightly general reference that enables to obtain martingale well-
posedness of Levy generators is Theorem 3.1 of [15].
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3.3 Diffusion in an Euclidean ball

We define E = B
n ⊂ Rn the closed unit ball of Rn and Eeff = Sn−1 = ∂Bn its border,

the unit sphere. We take Deff = C∞
c

(
Sn−1

)
with is the set of all continuous functions

on Eeff as space of test functions. We consider a purely diffusive dominant process on
the closed unit ball B

n
of Rn and a repulsive drift on the sphere for the subdominant

one, we write:
dXγ

t =
√
γσ(Xγ

t )dWt + b(Xγ
t )dt,

where σ : B
n → R+ is Lipschitz and vanishes exactly on ∂B

n
= Sn−1, while b : B

n → Rn

is Lipschitz and points towards the interior of the ball at points of Sn−1 (x · b(x) ≤ 0).
Our process is thus a strong solution to a SDE with Lipschitz coefficients. Moreover,
by extending σ and b on Rn to Lipschitz functions with σ(x) = 0 and x · b(x) ≤ 0 for x
outside the closed ball, we readily obtain:

γσ(x)∆x(|x|2 − 1) + b(x) · ∇x(|x|2 − 1) ≤ 0, x /∈ B
n

According to Section 1.3, the process remains in E for all time and we already have
Assumption 4 and Assumption 6.

We will denote by

br(x)
def
= 〈b(x), x|x| 〉 ∈ R,

and
bθ(x)

def
= b(x)− br(x)

x

|x| ∈ R
n,

the polar decomposition of b. We also denote by

Tϕ(x)
def
=(∇x − x

|x| 〈
x

|x| ,∇x〉)ϕ(x) ∈ TxS
n−1,

the (tangent-valued) gradient of a smooth map on the unit sphere ϕ : Sn−1 → R

evaluated in x ∈ Sn−1.

Theorem 3.5. The process X(γ,1) with values in B
n

converges in law (with respect to
the pseudo-path topology and finite-dimensional marginals) when γ approaches infinity
towards a Levy-type jump process of generator:

Leff(ϕ)(x) =bθ(x) · Tϕ(x)

− 2br(x)

∫

Sn−1

(ϕ(y)− ϕ(x) − 〈Tϕ(x), y − x〉) dµx(y).

where dµx(y)) =
1

‖x−y‖ndσ
n−1(y) is a Levy measure on the sphere with standard metric-

induced measure σn−1.

We just have to check the six other hypothesis.
Since the dominant process in a bounded martingale it converges almost surely

to a point X(1,0)
∞ by Doob’s first martingale convergence theorem. By computing its

quadratic variation, which must be finite by Itô isometry, the limit σ(X(1,0)
∞ ) is null

and therefore lies in Eeff . X
(1,0)
t converges when t → +∞ towards X(1,0)

∞ ∈ Eeff and
Assumption 1 is checked.
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Assumption 3 is trivially verified since B
n

is a compact.
In an Euclidean ball, we do have an explicit expression (see [7, Ch.II Sec. 1]) of the

harmonic measure:

P(x, ·) =
{

1−‖x‖2

‖x−y‖ndσ
n−1(y) if x ∈ Bn

δx if x ∈ Sn−1
,

where σn−1 is the Haar probability measure on Sn−1. This expression immediately gives
us Assumption 5. Since x 7→ P(x, ·) is continuous for the weak convergence topology
on B

n
(we let the proof in appendix), x 7→ Pϕ(x) is continuous on B

n
at points of Sn−1

and we also get Assumption 2.
Elliptic regularity immediately gives us hat if ϕ is smooth on the unit sphere, then

x 7→ Pϕ(x) is also smooth (see [10, Ch. 6], Nota Bene: this also proves again Assump-
tion 2). We may thus use Itô’s formula to get Assumption 7 point ii).

We now consider the non-radial derivatives, and the explicit expression of Pϕ gives
us immediately:

DθPϕ(x) =
∫

Sn−1

1− ‖x‖2
‖x− y‖nTϕ(y)dσ

n−1(y).

Since Tϕ is in C∞(Sn−1), it is Lipschitz and the continuity of the projector gives us
that for all a ∈ Sn−1 we have:

lim
z→a

DθPϕ(z) = Tϕ(a). (20)

A computation we leave in Appendix C gives us that:

lim
z→a

∂

∂r
Pϕ(z) = −2

∫

Sn−1

1

‖a− y‖n (ϕ(y)− ϕ(a)− 〈Tϕ(a), y − a〉) dσn−1(y), (21)

where we notice that, writing µ(dσn−1(y)) = 1
‖a−y‖n dσ

n−1(y), we have:

∫

Sn−1

(1 ∧ ‖a− y‖2)dµ(y) < +∞ (22)

Thus, combining (20) and (21) and, we have that:

lim
z→a

L(0)Pϕ(z) = −2br(a)

∫

Sn−1

(ϕ(y)− ϕ(a) − 〈Tϕ(a), y − a〉) dµ(y)

+ bθ(a) · Tϕ(a).

Combining the facts that b and all derivatives of ϕ are bounded and (22), we have
that Leffϕ is measurable bounded on Sn−1 and we have point iii) of Assumption 7.
Furthermore, the explicit expression of Leff gives us that it is the generator of a homo-
geneous (rotation invariant) Levy process on Sn−1: the martingale problem is therefore
well-posed and Assumption 8 is checked. It is nonetheless not so easy to find general
references that enables to obtain martingale well-posedness of Levy generators on man-
ifold. This can be done here easily with Theorem 3.1 of [15], by remarking that on
the sphere, a Levy jump from x to y, denoted y − x = γ(x, u), can be represented by
projecting a random direction in Rn onto the tangent space at TxSn−1 in order to obtain
the random direction of the jump γ(x, u). This obviously yields a Lipschitz dependence
in x 7→ γ(x, u) and the standard Lipschitz assumption in Theorem 3.1 is satisfied.
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Appendices

Appendix A The pseudo-paths topology and the Meyer-

Zheng criteria

All results presented in this section can be found in the seminal work of Meyer and
Zheng [16], up to minor presentation variations.

A.1 The pseudo-path topology

LetE be a Polish space. Two measurable paths t 7→ xt ∈ E and t 7→ yt ∈ E belong to the
same equivalence class, called a pseudo-path, if the set {t : xt = yt} is of full Lebesgue
measure (similarly as functions in Lp). Let us denote by L0(e−t dt, E) the set of all
pseudo-paths. The pseudo-path topology is the Polish topology on L0(e−t dt, E) induced
by the closed (see IV.43 [6] for a proof) injection of L0(e−t dt, E) in Pr(E × [0,+∞[)
endowed with the usual topology of convergence in law. This injection is naturally
defined by mapping a pseudo-path x to the probability measure of the form

δxt
( dx)e−t dt. (23)

In probabilistic terms, xn converges to x for the pseudo-path topology if and only if
the pair (xnT , T ) converges in distribution towards (xT , T ), where T is exponentially
distributed.

By a simple continuity argument, the push-forward (23) from paths to pseudo-paths
is injective on the set D(R+, E) of càdlàg paths, so that there also exists a natural
injection D(R+, E) ⊂ L0(e−t dt, E). It is important to keep in mind that the set of
pseudo-paths with a càdlàg representative is a Borel subset (it is in fact Gδ) but it is
not closed in the space of pseudo-paths. As a consequence if a sequence of càdlàg paths
converges for the pseudo-paths topology, the limit may or may not be càdlàg.

There is another natural way to define a Polish topology on the space of pseudo-paths
L0(e−t dt, E) by considering convergence in measure (equivalent here to convergence in
probability). This topology can be defined with a probabilistic perspective as follows.
A sequence of pseudo-paths xn converges in probability (or in measure) towards x if
and only if xnT converges in probability towards xT were T is exponentially distributed.
Convergence in probability on L0(e−t dt, E) is then a Polish topology that can classically
by metrized using the L1-type Ky Fan complete metric (see [8, Section 9.2])

∫ ∞

0

min(d(xt, yt), 1)e
−t dt = 0 (24)

where d is complete and metrizing E. The following lemma is a slight generalization of
Lemma 1 in [16] which is proved for real valued processes. It shows that the above two
Polish topologies on pseudo-paths are topologically equivalent (although not metrically).

Lemma A.1. Let E denote a Polish space. On pseudo-paths space L0(e−t dt, E), the
Polish topology of convergence in probability induced by (24) is equivalent to the Polish
topology of convergence in distribution induced by (23).
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Proof. Let us prove that convergence in probability implies convergence as distributions
on R+ × E. Let T be an exponentially distributed random variable. By definition, if
xnT converges in probability towards xT so is the pair (xNT , T ) towards (xT , T ). This
implies convergence in distribution in Pr(E × [0,+∞[).

Conversely, let us prove that convergence xn → x as distributions on R+×E implies
convergence in probability. The following argument is a minor adaptation of the proof
of Lemma 1 of [16] which treats the case E = R.

Classically, we can (homeomorphically) embed E in the unit ball of a separable
Hilbert space. For instance, E can be embed in the Hilbert cube φ : E → [0, 1]N by
considering the countable family of bounded continuous test functions φk(x) = d(x, xk)
where (xk)k∈N is a dense subset of E, and d ≤ 1 is a bounded distance metrizing E;
indeed, a sequence converges in E towards a given limit in E if and only if its images by
φk converges for each k ≥ 0. As a consequence, the weighted ℓ2w Hilbert space defined
by the norm

d̃(x, y)2
def
= ‖φ(x) − φ(y)‖2ℓ2w

def
=
∑

k≥0

2−k−1 |φk(x) − φk(y)|2

also metrizes the Polish space E although d̃ may not be complete.
We can next consider the Hilbert space L2(e−t dt, ℓ2w) of measurable paths on R+

taking values in the separable Hilbert ℓ2w. By a routine finite dimensional approximation
argument (one can consider increasing finite-dimensional sub-spaces ℓd ⊂ ℓ2w with ld րd

ℓ2w), the space of bounded continuous functions from R+ to ℓ2w is dense in L2(e−t dt, ℓ2w).
As a consequence, a converging sequence of pseudo-paths xn → x (as distributions of
Pr(E × [0,+∞[)) also converges weakly (by definition, and since xn and x lie in the
unit ball of ℓ2w) in L2(e−t dt, ℓ2w), as can be seen by considering the convergence of
the scalar product

∫∞
0 〈φ(xnt ), ϕ(t)〉e−t dt for any continuous and bounded path ϕ with

values in ℓ2w. In the same way, convergence as pseudo-paths implies that the Hilbert
norm in L2(e−t dt, ℓ2w) of xn converges to the one of x. Hence, xn converges strongly
to x in L2(e−t dt, ℓ2w). Since the latter two lie in the unit ball, strong convergence in
L2(e−t dt, ℓ2w) is equivalent to convergence in probability in ℓ2w or equivalently in E since
convergence in probability does not depend on the metric.

Now, one can considers random pseudo-paths defined as classes of equivalence of
measurable maps X : (Ω,P) → L0(e−t dt, E) identified with almost sure equality. It is
thus possible consider the set of random pseudo-paths as the space L0(P, L0(e−t dt, E)).
The following lemma is somehow trivial, but nonetheless clarifying.

Lemma A.2. The metric

E

∫ ∞

0

min(d(Xt, Yt), 1)e
−t dt

is an isometry between L0(P, L0(e−t dt, E)) and L0(P ⊗ e−t dt, E), when we metrize
L0(e−t dt, E) with (24). In particular, any random pseudo-path can be represented by a
R+ × Ω-measurable process (t, ω) 7→ X(t, ω).

Proof. Since E is separable, there exists C ⊂ E a countable dense subset of E. Random
variables taking values in C are dense for convergence in probability. The isometry is
trivial for such random variables by considering all maps (t, ω) 7→ X(t, ω) ∈ C which
are automatically measurable.
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A.2 Convergence of finite-dimensional distributions

Convergence in pseudo-path space of càdlàg processes does not imply convergence of
finite dimensional distribution (as is already the case for the Skorokhod topology).
However, up to extraction, one can obtain convergence of finite dimensional distributions
for all times in a set of full Lebesgue measure. This was proved as Theorem 5 in [16]
for general real values processes. We sketch the proof again in the specific càdlàg case
but for Polish-valued processes.

Lemma A.3. Let E be Polish and let Xn be a sequence of càdlàg processes converging
in distribution, for the pseudo-path topology, towards a càdlàg X∞ process. Then there
exists a sub-sequence and a subset J ⊂ R+ of full Lebesgue measure for which all finite-
dimensional distributions converge.

Proof. By the Skorokhod representation theorem in Polish spaces, one can assume that
X̃n converges towards X̃∞ almost surely, where X̃n has the same pseudo-path dis-
tribution as Xn, for each n ∈ J1,+∞K. Since by assumption P(X̃n ∈ D(R+, E) ⊂
L0(e−t dt, E)) = 1, we can canonically consider X̃n as a càdlàg process using its unique
càdlàg representative. We thus subsequently drop the ˜ notation.

By Lemma A.1, almost sure convergence in pseudo-paths space implies almost sure
convergence in probability. Taking the expectation and using dominated convergence
one gets ∫ ∞

0

E [min(d(Xn
t , X

∞
t ), 1)] e−t dt −−−−→

n→∞
0,

that is convergence in probability but with respect to the product measure e−t dt ⊗ P.
As a consequence there exists a sub-sequence (we do not change notation to denote this
sub-sequence) and a set J×Ω of full e−t dt⊗P measure on which Xn converges towards
X∞. This implies convergence of finite dimensional distributions for all times in J .

A.3 Compact sub-spaces

Compact subsets of the pseudo-paths space can be easily characterized using a direct
application of the Prokhorov theorem.

Lemma A.4. A subset K of pseudo-paths is compact if and only if for any ε > 0, there
exists tε > 0 and Kε ⊂ E compact such that

inf
x∈K

∫ tε

0

1d(xt,Kε)≤ε e
−t dt ≥ 1− ε;

in particular, if for all T > 0, all the pseudo-paths of K are taking on [0, T ] their values
in a compact KT ⊂ E, then the pseudo-paths space K is compact.

A.4 The Meyer-Zheng criterion

We now turn to the case where E = R. The idea is to consider the concept of mean
variation on pseudo-path distributions. A càdlàg random process with finite mean
variations characterizes (integrable) càdlàg quasi-martingales.
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Definition A.5 (Mean variation). Let T > 0 denotes an horizon time, and (Xt)t≥0 a
càdlàg real valued random process with Zt ∈ L1 for all t. The mean variation of Z over
[0, T ] with respect to its own natural filtration is given by

VT (Z)
def
= sup

0=t0≤t1...≤tK≤T

K∑

k=0

E
∣∣E
[
Ztk+1

− Ztk | σ (Zt, t ≤ tk)
]∣∣ ,

= sup
|H|≤1

E

(∫ T

0

Ht dZt

)
,

where in the above the supremum is taken over predictable processes (with respect to the
natural filtration of Z) taking value in [−1, 1].

As noted in Remark 1 p. 362 of [16] the mean variations is increasing with the
considered filtration, so that proving a uniform bound for a larger filtration immediately
yields the same bound for the natural filtration of the considered process.

The main theorem of Meyer-Zheng (Theorem 4) can be presented as follows.

Theorem A.6 (Meyer-Zheng cirteria). Let (πn)n≥1 denotes a sequence of distributions
of real valued càdlàg processes. Assume that this sequence is converging for the pseudo-
path topology towards a distribution in pseudo-path space π. If for all T > 0 the mean
variation is uniformly bounded lim supn VT (πn) < +∞, then the pseudo-path limit is
càdlàg, that is π∞ fully charges D(R+,R) ⊂ L0(e−t dt,R), and it has bounded mean
variation: VT (π) ≤ lim supn VT (πn) < +∞ for all T .

Proof. This is a direct adaptation of Theorem 4 in [16].
Let T > 0 by given and consider the distribution (πT

n )n≥1 and πT of pseudo-paths
stopped at T (equal to their value at T for all t ≥ T ). The sequence (πT

n )n≥1 again
converges towards πT . Using the proof of Theorem 4 in [16] after the preliminary
extraction step (which is superfluous here), we get that πT has support in D. Using
Remark 2 after the proof, we also obtain that VT (π) ≤ lim supn VT (πn) < +∞.

Finally, one can naively remark that a pseudo-path x has a càdlàg representative if
and only if the stopped pseudo-path xT has a càdlàg representative for all integer T :

x ∈ D(R+, E) ⊂ L0(e−t dt, E) ⇔ xT ∈ D(R+, E) ⊂ L0(e−t dt, E), ∀T ∈ N,

by identifying the unique càdlàg representative on each interval [T, T + 1]. By σ-
additivity, it follows that π fully charges D.

A.5 Characterization of càdlàg martingales

We will also use in this article the following characterization of the martingale property
on càdlàg processes:

Theorem A.7. A bounded càdlàg process M is a martingale for the filtration of (Ft)t≥0

if and only if:
E[(Mt −Mtk)ϕk(Xtk)...ϕ1(Xt1)] = 0

for all t1 < ... < tk < t in a dense subset, ϕ1, ..., ϕk continuous and bounded and for all
k.
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It is then possible to use this property to prove that the limit of a sequence of
martingales is again a martingale. Typically, the considered sequence of martingales
is constructed from a sequence of càdlàg Markov processes that converge to a càdlàg
process for the pseudo-path topology; and the convergence of almost all finite dimensional
distributions is sufficient to a martingale (closure property). This will be carried out in
Step 3 of Section 2 while proving the main theorem.

Appendix B Calculus associated with the diffusion in

a strip

B.1 Regularity of Pϕ

Pϕ is given by the following explicit expressions of Py(τ ∈ dt;Wτ = 1) and Py(τ ∈
dt;Wτ = 1) based on theta functions ([3, Section 3.0.6 and Section 11, App. 2, p.641]):

Py(τ ∈ dt;Wτ = 1) =

+∞∑

k=−∞

4k + 1− y√
2πt3/2

e−(4k+1−y)2/(2t), (25)

and:

Py(τ ∈ dt;Wτ = −1) =

+∞∑

k=−∞

4k + 1 + y√
2πt3/2

e−(4k+1+y)2/(2t). (26)

For the sake of simplicity, we will mainly consider (25), the computations with (26)
being identical by symmetry. We claim that if ϕ ∈ C∞

c (R), then y 7→
∫∞
0 ϕ(t)Py(τ ∈

dt;Wτ = 1) is smooth on [−1, 1]. The terms in (25) for k 6= 0 are easy to handle by
routine dominated convergence. For k = 0, we remark that a difficulty arises for y = 1,
but that the associated term is of the form g(1 − y) where g is the following smooth
function:

Lemma B.1. Let ϕ be smooth with compact support. The function on R+ defined by

g(u)
def
=

∫ ∞

0

e−u2/tu t−
3
2ϕ(t) dt

is smooth on R+.

Proof. By a change of scale u2/t = 1/t′:

g(u) =

∫ ∞

0

e−1/t′u(u2t′)−
3
2ϕ(u2 t′)u2 dt′

=

∫ ∞

0

e−1/t′u1−3+2t′−
3
2ϕ(u2 t′) dt′

=

∫ ∞

0

e−1/t′t′−
3
2ϕ(u2 t′) dt′.

Using that the support of ϕ is compact, we have that the function is continuous on R+
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and continuously differentiable on R∗
+. We have after a change of scale u2/s = 1/t′:

g′(u) =

∫ ∞

0

e−1/t′t′−
3
2ϕ′(u2 t′)2t′u dt′

= 2

∫ ∞

0

e−u2/s

(
u2

s

) 1
2

ϕ′(s)u
1

u2
ds

= 2

∫ ∞

0

e−u2/ss−
1
2ϕ′(s) ds

−→
u→0+

2

∫ +∞

0

s−
1
2ϕ′(s) ds.

We have hence that g is continuously differentiable on R+. Deriving a second time we
find:

g′′(u) = 2

∫ +∞

0

e−
u2

s

(
−2u

s

)
s−

1
2ϕ′(s)ds

= −4

∫ +∞

0

e−
u2

s u s−
3
2ϕ′(s)ds

The form of this function is exactly the one of g up to multiply by factor −4 and
replace ϕ by ϕ′. Since we prove that g is continuously differentiable on R, we have by
an immediate induction that g is in fact infinitely differentiable on R+.

We therefore have that y 7→ P(y, z) is smooth on [−1, 1] for all z ∈ R. Since Pϕ is
trivially smooth in z by regularity of ϕ, we have that (y, z) 7→ Pϕ(y, z) is smooth on
E = [−1, 1]× R.

B.2 The measures µ (resp. ν) are positive Levy of a subordina-
tor (resp. positive finite)

In this section we will study µ and ν and then prove that we can take the limit under
the integral when y approaches ±1 in ∂yPϕ(y, z). In order to do that, we will first give
a simple expression of ∂yPϕ(y, z):
Lemma B.2. For all y ∈]− 1, 1[ we have:

∂yPy(τ ∈ dt,Wτ = 1) = −π
2

16

+∞∑

k=−∞
cos

(
kπ

1− y

2

)
k2e−tπ2k2

8 , (27)

and:

∂yPy(τ ∈ dt,Wτ = −1) =
π2

16

+∞∑

k=−∞
cos

(
kπ

1 + y

2

)
k2e−tπ2k2

8 . (28)
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Proof. We start with the first formula. Deriving (25) under y once we obtain:

∂

∂y
Py(τ ∈ dt,Wτ = 1)

=

+∞∑

k=−∞
− 1√

2πt
3
2

e−
(4k+1−y)2

2t +
4k + 1− y√

2πt
3
2

e−
(4k+1−y)2

2t × 2(4k + 1− y)

2t

=
1√
2πt

3
2

+∞∑

k=−∞
e−

(4k+1−y)2

2t

(
−1 +

(4k + 1− y)2

t

)
(29)

Writing f : t 7→ e−πa(t+ 1−y
4 )2 and Ff : t 7→

∫

R

e−2iπtuf(u)du, Poisson summation

formula gives us:
+∞∑

k=−∞
f(k) =

+∞∑

k=−∞
Ff(k)

But, for g : t 7→ e−πat2 , we have (τ− 1−y
4
) ∗ g = f and Fg(t) = a−

1
2 e−

π
a
t2 , thus:

Ff(k) = F((τ− 1−y
4
) ∗ g)(k)

= eikπ
1−y
2 Fg(k)

= eikπ
1−y
2 a−

1
2 e−

π
a
k2

Eventually, we have:

+∞∑

k=−∞
e−πa(k+ 1−y

4 )2 =
+∞∑

k=−∞
eikπ

1−y
2 a−

1
2 e−

π
a
k2

=
1

2

+∞∑

k=−∞
2 cos

(
kπ

1− y

2

)
a−

1
2 e−

π
a
k2

=

+∞∑

k=−∞
cos

(
kπ

1− y

2

)
a−

1
2 e−

π
a
k2

If we differentiate this equation under a we get:

+∞∑

k=−∞
−π
(
k +

1− y

4

)2

e−πa(k+ 1−y
4 )2

= −1

2
a−

3
2

+ inf′ ”ty∑

k=−∞
cos

(
kπ

1− y

2

)
e−

π
a
k2

+ a−
1
2

+∞∑

k=−∞
cos

(
kπ

1− y

2

)
e−

π
a
k2 πk2

a2

Taking a = 16
2πt , and we have respectively:

+∞∑

k=−∞
e−

(4k+1−y)2

2t =

+∞∑

k=−∞
cos

(
kπ

1− y

2

) √
2πt

4
e−tπ2k2

8 , (30)
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and:

+∞∑

k=−∞
−π
(
k +

1− y

4

)2

e−
(4k+1−y)2

2t

= −1

2

√
2πt

3

64

+∞∑

k=−∞
cos

(
kπ

1− y

2

)
e−tπ2k2

8

+

√
2πt

4

+∞∑

k=−∞
cos

(
kπ

1− y

2

)
e−tπ2k2

8
π3t2k2

64
(31)

We now multiply (30) by − 1√
2πt

3
2

and (31) by − 1√
2πt

3
2
× 16

πt to get:

1√
2πt

3
2

+∞∑

k=−∞
e−

(4k+1−y)2

2t

(
−1 +

(4k + 1− y)2

t

)

= − 1

4t

+∞∑

k=−∞
cos

(
kπ

1− y

2

)
e−tπ2k2

8 +
1

4t

+∞∑

k=−∞
cos

(
kπ

1− y

2

)
e−tπ2k2

8

− π2

16

+∞∑

k=−∞
cos

(
kπ

1− y

2

)
k2e−tπ2k2

8

= −π
2

16

+∞∑

k=−∞
cos

(
kπ

1− y

2

)
k2e−tπ2k2

8

Combining this with (29), we get exactly (27). The proof of the second formula follows
exactly the same steps, except we consider τ− 1+y

4
instead of τ− 1−y

4
.

Let us take the limit in (27) when y approaches 1:

lim
y→1

∂

∂y
Py(τ ∈ dt,Wτ = 1) = −π

2

16

+∞∑

k=−∞
k2e−tπ2k2

8 (32)

and define µ(dt)
def
=

(
π2

16

+∞∑

k=−∞
k2e−tπ2k2

8

)
dt if t > 0, while µ(dt) = 0 if t ≤ 0. This

coincides with the definition of µ given in the text and we have that µ is trivially a
positive measure.

44



Let us show that µ is the Levy measure of a subordinator. We have that µ ≥ 0 and:
∫ +∞

0

min(1, t)µ(dt)

=

∫ 1

0

t

(
π2

16

+∞∑

k=−∞
k2e−tπ2k2

8

)
dt+

∫ +∞

1

(
π2

16

+∞∑

k=−∞
k2e−tπ2k2

8

)
dt

=
π2

16

+∞∑

k=−∞
k2
∫ 1

0

te−tπ2k2

8 dt+
π2

16

+∞∑

k=−∞
k2
∫ +∞

1

e−tπ2k2

8 dt

=
π2

16

+∞∑

k=−∞
k2

([
− 8

π2k2
te−tπ2k2

8

]1

0

+
8

π2k2

∫ 1

0

e−tπ2k2

8 dt

)

+
π2

16

+∞∑

k=−∞
k2
[
− 8

π2k2
e−tπ2k2

8

]+∞

1

=
π2

16

+∞∑

k=−∞
k2

(
− 8

π2k2
e−

π2k2

8 +

(
8

π2k2

)2

(1 − e−
π2k2

8 )

)

+
π2

16

+∞∑

k=−∞
k2

8

π2k2
e−

π2k2

8

< +∞ (33)

Let us now take the limit in (28) when y approaches 1:

lim
y→1

∂

∂y
Py(τ ∈ dt,Wτ = 1) = −π

2

16

+∞∑

k=−∞
(−1)kk2e−tπ2k2

8 , (34)

and define ν(dt)
def
=

(
−π

2

16

+∞∑

k=−∞
(−1)kk2e−tπ2k2

8

)
dt if t > 0, while ν(dt) = 0 if t 6 0.

This coincides with the definition of ν given in the text and we will now prove that this
measure is positive and finite of mass

∫ ∞

−∞
ν( dt) = 1/2.

To show that
+∞∑

k=−∞
(−1)kk2e−tπ2k2

8 ≤ 0 for all t > 0, we will consider two cases.

We first assume that t ≥ 1. Then the sequence
(
k2e−tπ2k2

8

)

k≥1
is decreasing since

the function x 7→ x2e−tπ2x2

8 has a negative derivative for x2 ≥ 8
tπ2 and thus for x ≥ 1

in our situation. Hence for t ≥ 1 we have:

+∞∑

k=−∞
(−1)kk2e−tπ2k2

8 = 2

+∞∑

k=1

(−1)kk2e−tπ2k2

8 ≤ 0

by the criteria of convergence of alternate series.
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We now write:

+∞∑

k=−∞
(−1)kk2e−tπ2k2

8 = − 8

π2

∂

∂t

[
+∞∑

k=−∞
(−1)ke−tπ2k2

8

]

= − 8

π2

∂

∂t

[
+∞∑

k=−∞
e−iπk−t π2k2

8

]
. (35)

We will next prove, in order to conclude on the positivity of ν, that t 7→
+∞∑

k=−∞
e−iπk−t π2k2

8

is increasing for t ∈]0, 1[. Writing h : x 7→ e−tπ2x2

8 , we have that:

F(e−iπxh)(ξ) = (τ− 1
2
) ∗ F(h)(ξ) =

√
8

πt
e−

8(ξ+1
2
)2

t

Thus, the Poisson summation formula gives:

F (t)
def
=

+∞∑

k=−∞
e−iπk−t π2k2

8 =

+∞∑

k=−∞
e−iπkh(k) (36)

=

+∞∑

k=−∞
F(e−iπxh)(k) (37)

=

√
8

πt

+∞∑

k=−∞
e−

8(k+1
2
)2

t (38)

We consider for any k ∈ Z, the function fk : t 7→ t−
1
2 e−

8(k+ 1
2
)2

t , we have that f ′
k : t 7→

e−
8(k+ 1

2
)2

t t−
3
2

[
− 1

2 +
8(k+ 1

2 )
2

t

]
. Thus, f ′

k(t) ≥ 0 if and only if − 1
2 +

8(k+ 1
2 )

2

t ≥ 0, that is

to say t ≤ 16(k+ 1
2 )

2, but this inequality is true for every k if we have that t ≤ 4. Since
we assume that t ∈]0, 1[, we have that F is increasing for t ∈]0, 1[.

Hence one obtains finally, for all t > 0, −π2

16

+∞∑

k=−∞
(−1)kk2e−tπ2k2

8 ≥ 0, and thus

ν ≥ 0.
To compute the total mass of ν, consider (35) to get

∫ +∞

0

ν(dt) =
1

2
(F (+∞)− F (0)),

and remark that F (+∞) = 1, while by (38) F (0) = 0.

Remark B.3. We also have that µ(dt) = lim
y→−1

∂yPy(τ ∈ dt,Wτ = −1)dt and ν(dt) =

lim
y→1

∂yPy(τ ∈ dt,Wτ = 1)dt.

We proved the wanted properties on µ and ν, however we still have to show that we
can take the limit under the integral in the explicit expression of ∂yP(ϕ−ϕ(1, z))(y, z) to
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get (18). The key idea is to remark that, since | cos(kπ 1−y
2 )| ≤ 1 and | cos(kπ 1+y

2 )| ≤ 1,
equations (27) and (28) give us that for all y ∈]− 1, 1[ and t > 0:

max (|∂yPy(τ ∈ dt,Wτ = 1)| , |∂yPy(τ ∈ dt,Wτ = −1)|) ≤ π2

16

∞∑

k=−∞
k2e−tπ2k2

8 .

Indeed, we proved in (33) that this quantity is integrable on R+ against min(1, t), and
ϕ(±1, z + ·) − ϕ(±1, z) is bounded by a constant time min(1, t), so by the dominated
convergence theorem we can take the limit when y approaches ±1 to get what we want.

Appendix C Calculus associated with the diffusion in

the Euclidean ball

Elliptic regularity immediately gives us hat if ϕ is smooth on the unit sphere, then
x 7→ Pϕ(x) is also smooth (see [10, Ch. 6]). For the sake of completeness we nonetheless
give explicit calculations that are the most relevant to our context.

C.1 Continuity of the projector

Let us consider xk ∈ B
n

that converges to x. The explicit formula for P implies that
P(xk, ·) →k P(x, ·) if either x ∈ Bn or if xk ∈ Sn−1 for all k, we can thus assume
without lost of generality that xk ∈ B

n
and x ∈ Sn−1. Then we have for all α > 0 and

n such that ‖x− xk‖ ≤ α
2 :

∫

Sn−1\B(x,α)

1− ‖xk‖2
‖xk − y‖n dσ

n−1(y) ≤ (1− ‖xk‖2)× sup
y∈Sn−1\B(x,α)

‖xk − y‖−n

≤ (1− ‖xk‖2)
(
2

α

)n

−→
k→+∞

0 (39)

Then, for any ϕ that is 1−Lipschitz on the ball, we have for all α > 0 that
∣∣∣∣
∫

Sn−1

ϕ(y)
1− ‖xk‖2
‖xk − y‖ndσ

n−1(y)− ϕ(x)

∣∣∣∣

=

∣∣∣∣
∫

Sn−1

(ϕ(y)− ϕ(x))
1− ‖xk‖2
‖xk − y‖ndσ

n−1(y)

∣∣∣∣

6

∣∣∣∣∣

∫

Sn−1\B(x,α)

‖y − x‖ 1− ‖xk‖2
‖xk − y‖ndσ

n−1(y)

∣∣∣∣∣

+

∣∣∣∣∣

∫

B(x,α)

‖y − x‖ 1− ‖xk‖2
‖xk − y‖n dσ

n−1(y)

∣∣∣∣∣

6

∣∣∣∣∣

∫

Sn−1\B(x,α)

2× 1− ‖xk‖2
‖xk − y‖n dσ

n−1(y)

∣∣∣∣∣+
∣∣∣∣∣

∫

B(x,α)

α
1− ‖xk‖2
‖xk − y‖ndσ

n−1(y)

∣∣∣∣∣ .

The second term is inferior to α and using (39), we know that the first term converges
to 0. Since this is true for any ϕ that is 1-Lipschitz, which are convergence determining,
we have eventually that P(xk, . ) →k P(x, . ) in distribution.
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C.2 Explicit expression of the radial derivative

For all ϕ ∈ Cc(Sn−1) and a ∈ Sn−1, we write fa : λ ∈]0, 1[−→ Pϕ(λa). We have therefore
for all z ∈ Bn\{0}, writing z = λa with a ∈ Sn−1 and λ = ‖z‖ that ∂

∂rPϕ(z) = ∂
∂λfa(λ).

Let us compute this quantity:

∂

∂λ
fa(λ)

=
∂

∂λ
(fa − ϕ(a))(λ)

=
∂

∂λ

∫

Sn−1

1− λ2

‖λa− y‖n (ϕ(y)− ϕ(a)) dσn−1(y)

=
∂

∂λ

∫

Sn−1

1− λ2

‖λa− y‖n (ϕ(y)− ϕ(a)− 〈Tϕ(a), y − a〉) dσn−1(y)

+
∂

∂λ

∫

Sn−1

1− λ2

‖λa− y‖n 〈Tϕ(a), y − a〉dσn−1(y) (40)

We notice for y ∈ Sn−1 that 2〈a, y〉a− y ∈ Sn−1, that ‖λa− y‖ = ‖λa− (2〈a, y〉a− y)‖
and, using Tϕ(a) ⊥ a, that 〈Tϕ(a), λa − y〉 = −〈Tϕ(a), λa − (2〈a, y〉a − y)〉 (all these
properties are trivial by symmetry). We conclude that the second term in (40) is the
derivative of 0 and is hence null. Therefore:

∂

∂λ
fa(λ)

=
∂

∂λ

∫

Sn−1

1− λ2

‖λa− y‖n (ϕ(y)− ϕ(a)− 〈Tϕ(a), y − a〉) dσn−1(y)

=

∫

Sn−1

−2λ‖λa− y‖n − (1− λ2)n 〈λa−y,a〉
‖λa−y‖ ‖λa− y‖n−1

‖λa− y‖2n
× (ϕ(y)− ϕ(a) − 〈Tϕ(a), y − a〉) dσn−1(y)

=

∫

Sn−1

−2λ− (1 − λ2)n 〈λa−y,a〉
‖λa−y‖ ‖λa− y‖−1

‖λa− y‖n
× (ϕ(y)− ϕ(a) − 〈Tϕ(a), y − a〉) dσn−1(y)

Therefore, for z ∈ Bn, we have:

∂

∂r
Pϕ(z) =

∫

Sn−1

−2‖z‖ − (1− ‖z‖2)n 〈z−y,a〉
‖z−y‖ ‖z − y‖−1

‖z − y‖n

×
(
ϕ(y)− ϕ(

z

‖z‖)− 〈Tϕ( z

‖z‖), y −
z

‖z‖〉
)
dσn−1(y).

Taking the limit when z approaches a (so in particular ‖z‖ approaches 1) we find that:
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lim
z→a

∂

∂r
Pϕ(z)

= −2 lim
z→a

‖z‖
∫

Sn−1

1

‖z − y‖n
(
ϕ(y)− ϕ(

z

‖z‖)− 〈Tϕ( z

‖z‖), y −
z

‖z‖〉
)
dσn−1(y)

− lim
z→a

(1− ‖z‖2)
∫

Sn−1

n 〈z−y,a〉
‖z−y‖ ‖z − y‖−1

‖z − y‖n

×
(
ϕ(y)− ϕ(

z

‖z‖)− 〈Tϕ( z

‖z‖), y −
z

‖z‖〉
)
dσn−1(y). (41)

For the first term in (41), we observe that the integrand converges simply to what we
are looking for when z approaches a. We now denote Rz for z ∈ B\{0} the only rotation
sending z

‖z‖ on a. Then, using that the measure σ is invariant by rotations and that
rotations are isometries, we have that:

∫

Sn−1

1

‖z − y‖n
(
ϕ(y)− ϕ(

z

‖z‖)− 〈Tϕ( z

‖z‖), y −
z

‖z‖〉
)
dσn−1(y)

=

∫

Sn−1

1

‖Rz(z)− y‖n
(
ϕ(R−1

z (y))− ϕ(
z

‖z‖)

−〈Tϕ( z

‖z‖), R
−1
z (y)− z

‖z‖〉
)
dσn−1(y) (42)

Since ϕ in in C2(S), there exists M > 0 such that:
∣∣∣∣
(
ϕ(R−1

z (y))− ϕ(
z

‖z‖)− 〈Tϕ( z

‖z‖), R
−1
z (y)− z

‖z‖〉
)∣∣∣∣ ≤M‖y − a‖2.

FurthermoreRz(z) = ‖z‖a, so eventually the integrand in (42) is dominated by 2nM‖y−
a‖−(n−2) that is integrable on the sphere, and we can use the dominated convergence
theorem to conclude.

Let us now prove that the second term in (41) is equal to 0. We notice that | 〈z−y,a〉
‖z−y‖ | ≤

1 and that ϕ(y)−ϕ( z
‖z‖ )−〈Tϕ( z

‖z‖ ), y− z
‖z‖ 〉 is dominated by 4M‖z−y‖2, so eventually

the term inside the integral is dominated by 4nM‖z−y‖−(n−1). Using a polar change of
coordinates, we get that the integral on the sphere is hence dominated by 4nM | ln(‖z−
z

‖z‖‖)| = 4nM | ln(1− ‖z‖)|, but

(1− ‖z‖2)| ln(1− ‖z‖)| −→
z→a

0,

so we have (21).
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