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ABSTRACT

Functional MRI (fMRI) is an invaluable tool for neuroscience, but
it necessitates a trade-off between spatial and temporal resolution to
maintain a reasonable temporal signal-to-noise ratio (tSNR). Non-
Cartesian acquisition schemes are more efficient sampling strategies
as compared to Cartesian ones and were proposed as a way to push
the limits of spatiotemporal resolution further. 3D-SPARKLING
is a novel non-Cartesian scheme recently evaluated for fMRI ap-
plications. However, 3D-SPARKLING is highly sensitive to B0

field imperfections. Such imperfections are detrimental to fMRI
applications, especially at ultra-high magnetic fields. In this work,
we collect measurements of the static and dynamic B0 field pertur-
bations concurrently with 3D-SPARKLING fMRI data acquisition
and retrospectively correct these perturbations during image recon-
struction. The advantages of this image reconstruction strategy are
assessed on the statistical sensitivity to the BOLD contrast during a
retinotopic mapping fMRI experiment. Importantly, a gain of 44%
(resp., 159%) additionally activated voxels was quantified when
adopting this brain activity-enhanced image reconstruction tech-
nique at a type-I statistical control level of 0.001 without multiple
comparisons correction (resp., 0.05 with false discovery rate correc-
tion). Additionally, significantly improved retinotopic maps were
retrieved on the cortical surface.

Index Terms— fMRI, non-Cartesian, Compressed Sensing,
ultra-high field MRI, non-Fourier imaging, 7T.

1. INTRODUCTION

Functional MRI is today one of the most widespread neuroimaging
techniques thanks to its non-invasiveness and high spatial resolu-
tion compared to other modalities such as electroencephalography
(EEG) or magnetoencephalography (MEG). In contrast, fMRI data
has a low temporal resolution on average (around 1s) as the data
acquisition, performed in k-space, is relatively slow at least in the
Cartesian imaging setting, where the Nyquist criterion must be met.
Accelerated Cartesian acquisition schemes such as 2D-SMS EPI [1]
or 3D-EPI [2], which sample the k-space using readouts that span
parallel planes, combined with parallel imaging [3,4], enable under-
sampling without aliasing artifacts in the image domain by exploit-
ing the data redundancy from the multiple receiver channels during
volume-wise inverse Fourier transform reconstruction [5, 6]. Non-
Cartesian fMRI methods such as spiral readouts [7] or TURBINE [8]
have been popularized in recent years due to their ability to sample
the k-space more efficiently. 3D-SPARKLING [9] is a new encod-
ing scheme that was assessed for fMRI and proved to be competitive
with state-of-the-art 3D-EPI to detect evoked brain activity during a
visual task [10]. A comparison with 2D-SMS EPI would be more
complicated as 2D and 3D acquisitions generate different contrasts.

As an accelerated and massively under-sampled non-Cartesian
acquisition method, 3D-SPARKLING requires a nonlinear Com-
pressed Sensing (CS) image reconstruction method involving a non-
uniform Fourier operator and sparsity-promoting priors. Proximal
gradient methods such as the Fast Iterative Shrinkage-Tresholding
Algorithm (FISTA) [11] or the Promixal Optimized Gradient
Method (POGM) [12] can be used to solve the associated opti-
mization problem. Furthermore, unlike Cartesian methods where
∆B0 inhomogeneities result mainly in geometric distortions and can
be corrected by means of preprocessing steps such as the TOPUP ap-
proach [13], the impact of B0 imperfections (static inhomogeneities
in space and temporal fluctuations over time) is more complex in 3D-
SPARKLING acquisitions and result in a superposition of blurring,
signal loss and geometric distortions. To correct for both static and
dynamic imperfections, the model of the collected signal in k-space
during each sampling trajectory must be extended from the classic
(non-uniform) Fourier transform to a pseudo-Fourier operator.

In this work, we retrospectively perform static and up-to-the-
first-order dynamic B0 perturbations correction on resting-state and
task-based fMRI data collected during a retinotopic mapping ex-
periment. This correction is achieved by means first of collecting
additional external measurements of the field fluctuations using a
field Camera [14, 15](Skope Clip-on camera) and second through
the definition of a non-Fourier forward operator that encodes an ex-
tended signal model taking B0 field imperfections [16] into account.
A study has been conducted over three different healthy volunteers,
and the impact of B0 imperfections corrections is assessed for image
quality, tSNR, and sensitivity to the BOLD contrast.

2. THEORY

2.1. Extended signal model

3D-SPARKLING is a segmented k-space encoding scheme, mean-
ing that the k-space data is collected over Nshot consecutive read-
outs (also called shots) separated by different excitation RF pulses.
All readouts have the same duration denoted Tobs, and each one of
them samples the center of the k-space at the echo time denoted TE.
Furthermore, in the case of parallel imaging (multiple receive coils),
all coils collect simultaneously their own data in the k-space do-
main convolved with their own sensitivity profile. During the s-th
readout, the NMR signal µs

ℓ(t) collected by the ℓ-th coil for each
t ∈ [TE − Tobs

2
, TE + Tobs

2
] can be modeled by the idealized sig-

nal model in Eq. (1):

µs
ℓ(t) =

∫
FOV

x̄ℓ(r)e
−2ıπks(t)·r dr , (1)

where x̄ℓ(r) = ζℓ(r)x(r), x(r) and ζℓ(r) respectively encode the
image and sensitivity map associated with the ℓ-th coil at the spatial



position r. Note that ks(t) (in m−1) is the prescribed (theoretical) k-
space position at time t (in s) relative to the s-th readout. Therefore,
a non-uniform Fourier transform binds µs

ℓ(t) to x̄ℓ(r).
Eq. (1) supposes a homogeneous B0 and accurate application of the
prescribed trajectories (k=[ks]1≤s≤Nshot

) by the MR system. Un-
fortunately, in the case of highly under-sampled 3D-SPARKLING,
strong degradation in the image quality occurs due to B0 imperfec-
tions arising from the patient (susceptibility changes at the tissue-air
interfaces, physiological noise) and the system (eddy currents, tem-
perature drifts, system instabilities) [17–19]. One way to overcome
this issue is to take such imperfections in the signal model into ac-
count during MR image reconstruction: Eq. (1) then becomes

µs
ℓ(t)= e−2iπt∆B

dyn
0,s

∫
FOV

x̄ℓ(r)e
−2ıπ[∆Bstat

0 (r)t+k̃s(t)·r] dr
(2)

where ∆Bstat
0 (r) (in Hz) denotes the static inhomogeneities of the B0

field in space and ∆Bdyn
0,s (in Hz) and k̃s = ks+δks (in m−1) denote

respectively its zeroth order dynamic fluctuation and the measured
trajectory (deviated from the prescribed one due to first order fluctu-
ation δks). ∆Bdyn

0,s is slowly varying and considered constant during
a shot. In Eq. (2), the term ∆Bstat

0 (r)t depends on the image do-
main making the integral dependent both on the image and k-space
domains which is not compatible with the usual Fourier transform
model.

2.2. Linear approximation of the non-Fourier model

According to Eq. (2), the discretized adjoint operator can be written
as follows:

x̄ℓ(rn) =
∑
t

e2ıπt∆B
dyn
0,sµs

ℓ(t)e
2ıπ[∆Bstat

0 (r)t+k̃s(t)·r] (3)

The mixed term e2ıπ∆Bstat
0 (rm)t =

∑
P bm,pcp,n is split in a P -rank

linear decomposition using a SVD (as implemented in [20] follow-
ing the methods in [16, 21]) and we then recover a linear combina-
tion of P (non-uniform) Fourier transforms as follows:

x̄ℓ(rn)=

P∑
p=1

cp,n

Tobs∑
tm=0

bm,p e
2ıπt∆B

dyn
0,sµs

ℓ(tm)︸ ︷︷ ︸
µ̃s
ℓ
(tm)

e2ıπk̃s(tm)·rn . (4)

The higher the number of interpolators P in the sum, the more accu-
rate the approximation, however, at the expense of additional com-
puting time.

Since the term related to ∆Bdyn
0,s is outside of the integral in

Eq. (2), the zeroth order dynamic fluctuations can be corrected by

simply demodulating each µs
ℓ(t) by the corresponding e2iπt∆B

dyn
0,s

to obtain µ̃s
ℓ(t). As Eq. (4) holds for all frequencies k̃s(tm) and

locations rn across all the Nshot readouts, we can summarize the
perturbed acquisition in Eq. (4), as a linear combination of adjoint
non-uniform Fourier transforms FΩ̃, yielding a coil-specific image
x̄ℓ from the measured frequencies at locations Ω̃ and associated cor-
rected values (µ̃ℓ):

x̄ℓ =

P∑
p=1

cp ⊙F∗
Ω̃
(bp ⊙ µ̃ℓ) = F̃

∗
P,Ω̃(µ̃ℓ), (5)

where ⊙ denotes the element-wise product.

2.3. Sparse reconstruction

In this work, we perform a CS-based reconstruction, where each
volume is reconstructed independently from the others using L-
channel k-space data. Therefore, for each complex-valued volume
(xj ∈ CN , j = 1, .., Nt), we consider the complex-valued k-space
data ỹj,ℓ = [µ̃1

ℓ , . . . , µ̃
Nshot
ℓ ] + nj,ℓ, associated with the set of

sampled frequencies points Ω̃j = Ω̃ = [k̃1, . . . , k̃Nshot ] relative
to the j-th volume. Future work will address time or scan-varying
under-sampling patterns Ω̃j . Here nj,ℓ is an additive zero-mean
white Gaussian noise with variance σ2

ℓ and ỹj,ℓ ∈ CM . N and M
are, respectively, the number of voxels in each volume and that of
the k-space measurements collected by each coil. Then the recon-
struction problem consists in minimizing the following objective
function

x̂j =

argmin
x∈CN

1

2

L∑
ℓ=1

σ−2
ℓ

∥∥∥F̃P,Ω̃Sℓxj − ỹj,ℓ

∥∥∥2

2
+ λg(Ψ(xj))

(6)

where Sℓ denotes the sensitivity profile of the ℓ-th coil and F̃P,Ω̃

the linearized over P interpolators off-resonance corrected Fourier
operator. Ψ is the sparsifying basis (e.g. a tight frame), g is typ-
ically chosen as the l1-norm, and λ is a regularization parameter.
Although more advanced low-rank + sparse regularization could be
envisaged easily (see [22] for instance), this requires correcting the
number of degrees of freedom during subsequent statistical analysis.
Due to this, every volume x̂j for j = 1, . . . , Nt, is reconstructed
independently by solving Eq. (6). Practically, in our experiments,
the sparsifying basis (Ψ) we used was the sym8 wavelet basis and
the other parameters were set to L = 32, P = 30, λ = 10−8.

3. MATERIALS AND METHODS

3.1. Multi-modal data acquisition

Functional MRI data was collected at 7T (7T Magnetom investi-
gational MRI, Siemens Healthineers, Erlangen, Germany) using a
1Tx-32Rx head coil (Nova Medical, Willmington, CO, USA) from
3 healthy volunteers during resting-state and a retinotopic mapping
experiment 1 at a spatial resolution of 1mm3, a temporal resolu-
tion (TRvol) of 2.4s, TRshot/TE = 50/20ms and a 3D field-
of-view (FOV) of (192,192,128) mm3. Concurrently and for each
acquired MR volume, 16 NMR probes (a field camera) were used
to monitor and record the zeroth order field fluctuations ∆Bdyn

0 =
[∆Bdyn

0,1, . . . ,∆Bdyn
0,Nshot

] and measure the trajectories played by the

MR system k̃ = [k̃1, . . . , k̃Nshot ]. Additionally, an external ∆Bstat
0

map as well as external sensitivity maps were acquired using a three-
echo 3D gradient recalled echo (3D GRE) sequence.

3.2. Functional MRI data reconstruction and preprocessing

The fMRI volumes were reconstructed by solving the minimization
problem in Eq. (6) using 15 iterations of the POGM algorithm for
each volume. This method is implemented in the pysap-mri [23]
plugin2 of the pySAP package [24].
Motion correction and co-registration of the functional and the T1-
weighted anatomical MR images were applied using SPM123. The

1https://github.com/hbp-brain-charting/public_
protocols

2https://github.com/CEA_COSMIC/pysap-mri
3https://www.fil.ion.ucl.ac.uk/spm/doc/biblio/

https://github.com/hbp-brain-charting/public_protocols
https://github.com/hbp-brain-charting/public_protocols
https://github.com/CEA_COSMIC/pysap-mri
https://www.fil.ion.ucl.ac.uk/spm/doc/biblio/


Fig. 1. Comparison of the (A) mean images and (B) tSNR maps yielded by the resting-state fMRI scans sequence collected in the three
volunteers (one raw per subject) reconstructed with (A, right col.) and without (A, left col.) correcting off-resonance artifacts due to B0 inho-
mogeneities. Fully corrected means that static and up-to-the-first-order dynamic terms were taken into account during image reconstruction
as in Eq. (6). The orange and green arrows depict examples of recovered signal and better-reconstructed details, respectively. The improved
image quality and tSNR maps are systematic across the three volunteers.

segmentation of the T1-weighted MRI scan into the cortical surface
meshes was performed using FreeSurfer 7 .

3.3. Statistical analysis of the task-based fMRI data

Retinotopic mapping fMRI data was analyzed for each participant
separately, using a first-level general linear model (GLM) where two
paradigm-related regressors (parametric, continuous and sinusoidal)
were used to capture the BOLD fluctuations elicited by the stimulus
presentation. The design matrix also encompasses 6 motion regres-
sors, a polynomial drift and a baseline. A Fisher test over the task-
related regressors was used to estimate the global effect of interest
after thresholding the F-statistic maps over the entire brain for two
different strategies:
(i) p < 0.001 without correcting for multiple comparisons

(ii) p < 0.05 with false discovery rate (FDR) control.
The thresholded F-statistic maps were further used to delineate re-
gions of interest (ROIs) in which the retinotopic mapping was com-
puted. The statistical analysis was implemented using Nilearn
[25].

4. RESULTS

4.1. Improved image quality and increased tSNR

Fig. 1-(A) compares, subject-wise, the mean images derived from
the resting-state sequence of fMRI volumes reconstructed with and
without correcting artifacts due to static and dynamic B0 perturba-

Table 1. Gain in % of median tSNR in corrected images relative to
the native tSNR (uncorrected images) computed over the brain mask
for the three different volunteers. The highest gains (in bold font) are
retrieved when static and up-to-the-first-order field terms are jointly
corrected.

Gain in % of median tSNR
Terms corrected V#1 V#2 V#3 Average
∆Bstat

0 +5 +6 +4 +5
∆Bdyn

0 +20 +11 +22 +18
∆Bdyn

0 & δk +26 +13 +23 +21
∆Bstat

0 & ∆Bdyn
0 +28 +18 +29 +25

∆Bstat
0 & ∆Bdyn

0 & δk +34 +20 +29 +28

tions. We note that the image quality is systematically improved with
the proposed correction across the three volunteers. Indeed, per-
forming B0 perturbations correction improves the overall T ∗

2 con-
trast. Additionally, the lost signal is recovered, and anatomical de-
tails are sharper as depicted, respectively, with orange and green ar-
rows. Fig. 1-(B) shows the boost in tSNR associated with B0 pertur-
bations correction, notably in the anterior and posterior cortex and,
along the edges of the brain suggesting that subtle head movement-
induced field fluctuations related to breathing were compensated.

Tab. 1 reports the relative gain in % of median tSNR computed
over the brain mask when correcting the different field terms during
image reconstruction. Although the increase is systematic across
volunteers (V#1-3), the relative gain for V#2 is lower than in other



volunteers when dynamic fluctuations are corrected. This is likely
because this volunteer has less intense breathing therefore, the na-
tive fMRI data is less affected by signal fluctuations. Otherwise, the
relative gain reaches a plateau around 30% of gain at maximum.

4.2. Increased sensitivity to the BOLD effect and enhanced
retinotopic maps

Tab. 2 summarizes the systematic boost in the number of activated
voxels and maximum z-score values when static and up-to-the-first-
order dynamic B0 fluctuations imperfections were corrected. The
number of activated voxels extracted using the thresholding alterna-
tive (i) (resp, (ii)) is, on average, 43.3% ± 17.2% (resp, 159,3% ±
38.6%) larger. The reported figures are consistent between the first
and third participants. V#2, however, reveals fewer activated voxels,
especially after FDR correction. This is likely due to larger (strong)
head movement amplitudes.

Table 2. Increase in the number of activated voxels detected and
the maximum z-score values extracted from task-based fMRI scans
with/out correcting B0 imperfections. The highest values (in bold
font) are obtained when static and up-to-the-first-order B0 terms -
Full Correction- are used. V#2 reveals the lowest statistical signifi-
cance.

Volunteer p < 0.001 p < 0.05 Z-score (max)
uncorrected FDR corrected

#1 6456 9506 3253 7722 8.02 9.95
#2 4367 7405 1059 2204 6.75 7.59
#3 8529 10 823 2503 7745 10.83 12.08

Average 6450 9244 2271 5890 8.54 9.87

Additionally, Fig. 2 shows an example (V#1) of the projection of
the retinotopic maps on the cortical surface. We notice clearly that
the two visual hemifields project onto the contra-lateral hemispheres
in the occipital cortex, a well-known mirroring feature of the pri-
mary visual cortex. However, a larger spatial extent of the retinotopic
maps is associated with B0 field imperfections correction. Further-
more, the zoomed-in region of interest (ROI) in the left hemisphere
illustrates a sharp gain in sensitivity along the cortical surface, sug-
gesting that the activated voxels recovered when performing B0 per-
turbations correction are highly relevant.

5. DISCUSSION AND CONCLUSION

The systematic gain in tSNR on average associated with B0 imper-
fections correction we observed is generally consistent with previous
studies even though the reported figures vary [26, 27]. Such differ-
ences arise from the experimental conditions (2D vs 3D acquisition
sequence, 3T vs 7T B0 magnetic field, number of scans, volunteer’s
movement, etc.). The increase in sensitivity associated with B0 field
imperfections correction we observed, notably at a more conserva-
tive statistical threshold is likely due to the gain in tSNR. Further-
more, the recovery of lost signal plays a major role in retrieving ac-
tivated voxels. The enhanced image quality is also expected to yield
better spatial specificity as blurring is extremely reduced.
In this work, we consider that the static and dynamic field terms
evolve independently from each other since such an approximation
is easy to implement and remains accurate enough. Nevertheless, it
does not reflect the physics of the experiment faithfully. In fact, a
truthful model would consider static and dynamic B0 imperfections

Fig. 2. The projection of the retinotopic maps collected in V#1 and
associated with data reconstructed without and with static and up-
to-the-first order field terms correction on the cortical surface. These
maps were computed for an activation mask corresponding to a p-
value of 0.001 and without correcting for multiple comparisons cor-
rection (i.e. alternative (i)).

as evolving jointly: A ∆B0 map could be estimated for each volume
in this case analogously to what is proposed in [28,29]. Such a solu-
tion should also account for strong head movements to be complete.
Furthermore, we performed typical sequential volume-wise recon-
structions where the consecutive blocks of k-space data are consid-
ered independent from one another. Despite being easy to imple-
ment and efficient, such a strategy neglects the temporal structure of
the fMRI scans. Global strategies that consider the entire scan data
to leverage the temporal structure of the fMRI signal during recon-
struction have also been proposed and can be further combined with
B0 perturbations correction: Typically, low/fixed rank plus sparse
or subspace-constrained reconstructions [22] can be carried out in
the same framework, which could also improve the current temporal
resolution.
In this work, we demonstrated a systematic and significant benefit
in image quality, tSNR, and statistical sensitivity of brain activity
detection and localization when correcting static and dynamic B0

inhomogeneities. We can further improve the image reconstruction
process by considering a global 4D ∆B0 map or more advanced
priors and even soon deep learning self-supervised strategies, which
are still not available for 3D fMRI data at this time.

6. COMPLIANCE WITH ETHICAL STANDARDS

The experimental protocol was approved by the national ethics com-
mittee under the protocol identifier CPP 100048 issued by the na-
tional Comité de Protection des Personnes (CPP Sud Méditerranée 4
number 180913, IDRCB:2018-A011761-53). All participants gave
their written informed consent.



7. REFERENCES

[1] S Moeller, E Yacoub, C. A Olman, E Auerbach, and J. H. N
Strupp, “Multiband multislice GE-EPI at 7 Tesla, with 16-fold
acceleration using partial parallel imaging with application to
high spatial and temporal whole-brain fMRI,” Magn. Reson.
Med., vol. 63, no. 5, pp. 1144–1153, 2010.

[2] B. A Poser, P. J Koopmans, T Witzel, L. L Wald, and M Barth,
“Three dimensional echo-planar imaging at 7 Tesla,” NeuroIm-
age, vol. 51, no. 1, pp. 261–6, 2010.

[3] Klaas P Pruessmann, “Encoding and Reconstruction in Parallel
MRI,” NMR Biomed., vol. 19, no. 3, pp. 288–99, 2006.

[4] A . Deshmane, V. Gulani, M. A. Griswold, and N. Seiberlich,
“Parallel MR Imaging,” J. of Magn. Reson. Imag., vol. 36, no.
1, pp. 55–72, 2012.

[5] K P Pruessmann, M Weiger, M B Scheidegger, and P Boesiger,
“SENSE: Sensitivity encoding for fast MRI,” Magn. Reson.
Med., vol. 42, pp. 952–962, 1999.

[6] M A Griswold, P M Jakob, R M Heidemann, M Nittka, V Jel-
lus, J Wang, B Kiefer, and A Haase, “Generalized Autocali-
brating Partially Parallel Acquisitions (GRAPPA),” Magn. Re-
son. Med., vol. 47, pp. 1202–1210, 2002.

[7] L Kasper, M Engel, J Heinzle, M Mueller-Schrader, N N
Graedel, J Reber, T Schmid, C Barmet, B J Wilm, K E Stephan,
and K P Pruessmann, “Advances in spiral fMRI: A high-
resolution study with single-shot acquisition,” NeuroImage,
vol. 246, pp. 118738, 2022.

[8] N N Graedel, K L Miller, and M Chiew, “Ultrahigh Resolu-
tion fMRI at 7T Using Radial-Cartesian TURBINE Sampling,”
Magn. Reson. Med., vol. 88, no. 5, pp. 2058–2073, 2022.

[9] G R Chaithya, P Weiss, A Massire, A Vignaud, and P Ciu-
ciu, “Optimizing full 3D SPARKLING trajectories for high-
resolution Magnetic Resonance imaging,” IEEE Trans. on
Med. Imag., vol. 41, no. 8, pp. 2105–2117, Aug. 2022.

[10] Z Amor, G R Chaithya, G Daval-Frérot, B Thirion, F Maucon-
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