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Abstract

Many recent works in simulation-based inference (SBI) rely on deep generative
models to approximate complex, high-dimensional posterior distributions. How-
ever, evaluating whether or not these approximations can be trusted remains a
challenge. Most approaches evaluate the posterior estimator only in expectation
over the observation space. This limits their interpretability and is not sufficient
to identify for which observations the approximation can be trusted or should be
improved. Building upon the well-known classifier two-sample test (C2ST), we
introduce ℓ-C2ST, a new method that allows for a local evaluation of the posterior
estimator at any given observation. It offers theoretically grounded and easy to
interpret – e.g. graphical – diagnostics, and unlike C2ST, does not require access
to samples from the true posterior. In the case of normalizing flow-based posterior
estimators, ℓ-C2ST can be specialized to offer better statistical power, while being
computationally more efficient. On standard SBI benchmarks, ℓ-C2ST provides
comparable results to C2ST and outperforms alternative local approaches such as
coverage tests based on highest predictive density (HPD). We further highlight the
importance of local evaluation and the benefit of interpretability of ℓ-C2ST on a
challenging application from computational neuroscience.

1 Introduction

Expressive simulators are at the core of modern experimental science, enabling the exploration of
rare or challenging-to-measure events in complex systems across various fields such as population
genetics [43], astrophysics [7], cosmology [32], and neuroscience [28, 16, 1, 20]. These simulators
implicitly encode the intractable likelihood function p(x | θ) of the underlying mechanistic model,
where θ represents a set of relevant parameters and x ∼ Simulator(θ) is the corresponding realistic
observation. The main objective is to infer the parameters associated with a given observation using
the simulator’s posterior distribution p(θ | x) [4]. However, classical methods for sampling posterior
distributions, such as MCMC [41] and variational inference [40], rely on the explicit evaluation of
the model-likelihood, which is not possible when working with most modern simulators.

Simulation-based inference (SBI) [4] addresses this problem by estimating the posterior distribution
on simulated data from the joint distribution. This can be done after choosing a prior distribution
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p(θ) over the parameter space and using the identity p(θ, x) = p(x | θ)p(θ). In light of recent
developments in the literature on deep generative models, different families of algorithms have been
proposed to approximate posterior distributions in SBI [4]. Certain works use normalizing flows [37]
to directly learn the posterior density function (neural posterior estimation, NPE [18]) or aim for
the likelihood (neural likelihood estimation, NLE [36]). Other approaches reframe the problem
in terms of a classification task and aim for likelihood ratios (neural ratio estimation, NRE [22]).
However, appropriate validation remains a challenge for all these paradigms, and principled statistical
approaches are still needed before SBI can become a trustworthy technology for experimental science.

This topic has been the goal of many recent studies. For instance, certain proposals aim at improving
the posterior estimation by preventing over-confidence [23] or addressing model misspecification [14]
to ensure conservative [8] and more robust posterior estimators [46, 27]. Another approach is the
development of a SBI benchmark [31] for comparing and validating different algorithms on many
standard tasks. While various validation metrics exist, Lueckmann et al. [31] show that, overall,
classifier two sample tests (C2ST) [30] are currently the most powerful and flexible approach. Based
on standard methods for binary classification, they can scale to high-dimensions as well as handle
non-Euclidean data spaces [26, 34]. Typical use-cases include tests for statistical independence and
the evaluation of sample quality for generative models [30]. Implicitly, C2ST is used in algorithms
such as noise contrastive estimation [19] and generative adversarial networks [17], or to estimate
likelihood-to-evidence ratios [22]. To be applied in SBI settings, however, C2ST requires access to
samples from the true target posterior distribution, which renders it useless in practice. Simulation-
based calibration (SBC) [42] bypasses this issue by only requiring samples from the joint distribution.
Implemented in standard packages of the field (sbi [44], Stan [2]), it has become the go-to validation
method for SBI [31, 23] and has been further studied in recent works [33, 5, 15]. Coverage tests
based on the highest predictive density (HPD) as used in [23, 8], can be seen as a variant of SBC that
are particularly well adapted to multivariate data distribution.

Nevertheless, a big limitation of current SBI diagnostics remains: they only evaluate the quality
of the posterior approximation globally (in expectation) over the observation space and fail to give
any insight of its local behavior. This hinders interpretability and can lead to false conclusions on
the validity of the estimator [48, 29]. There have been attempts to make existing methods local,
such as local-HPD [48] or local-multi-PIT [29], but they depend on many hyper-parameters and
are computationally too expensive to be used in practice. In this work, we present ℓ-C2ST, a new
local validation procedure based on C2ST that can be used to evaluate the quality of SBI posterior
approximations for any given observation, without using any data from the target posterior distribution.
ℓ-C2ST comes with necessary, and sufficient, conditions for the local validity of multivariate posteriors
and is particularly computationally efficient when applied to validate NPE with normalizing flows, as
often done in SBI literature [7, 16, 27, 46, 6, 45, 24]. Furthermore, ℓ-C2ST offers graphical tools for
analysing the inconsistency of posterior approximations, showing in which regions of the observation
space the estimator should be improved and how to act upon, e.g. signs of positive / negative bias,
signs of over / under dispersion, etc.

In what follows, we first introduce the SBI framework and review the basics of C2ST. Then, we
detail the ℓ-C2ST method and prove asymptotic theoretical guarantees. Finally, we report empirical
results on two SBI benchmark examples to analyze the performance of ℓ-C2ST and a non-trivial
neuroscience use-case that showcases the need of a local validation method.

2 Validating posterior approximations with classifiers

Consider a model with parameters θ ∈ Rm and observations x ∈ Rd obtained via a simulator. In
what follows, we will always assume the typical simulation-based inference setting, meaning that the
likelihood function p(x | θ) of the model cannot be easily evaluated. Given a prior distribution p(θ),
it is possible to generate samples from the joint pdf p(θ, x) as per:

Θn ∼ p(θ) ⇒ Xn = Simulator(Θn) ∼ p(x | Θn) ⇒ (Θn, Xn) ∼ p(θ, x) . (1)

Let Ns be a fixed simulation budget and {(Θn, Xn)}Ns

n=1 = Dtrain ∪ Dcal with Dtrain ∩ Dcal = ∅.
The data from Dtrain are used to train an amortized2 approximation q(θ | x) ≈ p(θ | x), e.g. via
NPE [18], and those from Dcal to diagnose its local consistency [48].

2i.e. the approximation q(θ | x) is close to p(θ | x) on average for all values of x ∈ Rd, so we can quickly
generate samples from the posterior for any choice of conditioning observation without redoing any training.
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Definition 1 (Local consistency). A conditional density estimator q is said to be locally consistent at
xo with the true posterior density p if, and only if, the following null hypothesis holds:

H0(xo) : q(θ | xo) = p(θ | xo), ∀θ ∈ Rm . (2)

We can reformulateH0(xo) as a binary classification problem by partitioning the parameter space
into two balanced classes: one for samples from the approximation (C = 0) and one for samples
from the true posterior (C = 1), as in

Θ | (C = 0) ∼ q(θ | xo) vs. Θ | (C = 1) ∼ p(θ | xo) , (3)

for which the optimal Bayes classifier [21] is f⋆
xo
(θ) = argmax

{
1− d⋆xo

(θ), d⋆xo
(θ)

}
with

d⋆xo
(θ) = P(C = 1 | Θ = θ;xo) = 1− P(C = 0 | Θ = θ;xo) =

p(θ|xo)
p(θ|xo)+q(θ|xo)

. (4)

It is a standard result [30, 26] to relate (2) with (3) as per
H0(xo) holds ⇐⇒ d⋆xo

(θ) = P(C = 1 | Θ = θ;xo) =
1
2 ∀θ (5)

When the classes are non-separable, the optimal Bayes classifier will be unable to make a decision
and we can assume that it behaves as a Bernoulli random variable [30].

2.1 Classifier Two-Sample Test (C2ST)

The original version of C2ST [30] uses (5) to define a test statistic forH0(xo) based on the accuracy
of a classifier fxo

trained on a dataset defined as

Θq
n ∼ q(θ | xo)︸ ︷︷ ︸

C=0

and Θp
n ∼ p(θ | xo)︸ ︷︷ ︸

C=1

and D = {(Θq
n, 0)}Nn=1 ∪ {(Θp

n, 1)}Nn=1 . (6)

The classifier accuracy is then empirically estimated over 2Nv samples (Nv samples in each class)
from a held-out validation dataset Dv generated in the same way as D:

t̂Acc(fxo
) =

1

2Nv

2Nv∑
n=1

[
I
(
fxo

(Θq
n) = 0

)
+ I

(
fxo

(Θp
n) = 1

)]
. (7)

Theorem 1 (Local consistency and classification accuracy). If fxo
is Bayes optimal3 and Nv →∞,

then t̂Acc(fxo) = 1/2 is a necessary and sufficient condition for the local consistency of q at xo.

See Appendix A.1 for a proof. The intuition is that, under the null hypothesisH0(xo), it is impossible
for the optimal classifier to distinguish between the two data classes, and its accuracy will remain at
chance-level [30]. In the context of SBI, C2ST has been used to benchmark a variety of different
procedures on toy examples where the true posterior is known and can be sampled [31]. This is why
we call this procedure an oracle C2ST, since it uses information that is not available in practice.

Regression C2ST. Kim et al. [26] argues that the usual C2ST based on the classifier’s accuracy may
lack statistical power because of the “binarization” of the posterior class probabilities. They propose
to instead use probabilistic classifiers (e.g. logistic regression) of the form

fxo(θ) = I
(
dxo(θ) >

1
2

)
where dxo(θ) = P(C = 1 | θ;xo) (8)

and define the test statistics in terms of the predicted class probabilities dxo
instead of the predicted

class labels. The test statistic is then the mean squared distance between the estimated class posterior
probability and one half:

t̂MSE(fxo) =
1

Nv

Nv∑
n=1

(
dxo(Θ

q
n)−

1

2

)2

+
1

Nv

Nv∑
n=1

(
dxo(Θ

p
n)−

1

2

)2

(9)

Theorem 2 (Local consistency and regression). If fxo
is Bayes optimal and Nv → ∞, then

t̂MSE(fxo
) = 0 is a necessary and sufficient condition for the local consistency of q at xo.

See Appendix A.2 for a proof. The numerical illustrations in Kim et al. [26] give empirical evidence
that Regression C2ST has superior statistical power as compared to its accuracy-based counterpart,
particularly for high-dimensional data spaces. Furthermore, it offers tools for interpretation and
visualization: evaluating the predicted class probabilities dxo(θ) for any θ ∈ Rm informs the regions
where the classifier is more (or less) confident about its choice [30, 26].

3i.e. it is the classifier with lowest possible classification error for the dataset D.
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3 ℓ-C2ST: Local Classifier Two-Sample Tests

The oracle C2ST framework is not applicable in practical SBI settings, since it requires access to
samples from the true posterior distribution to (1) train a classifier and (2) evaluate its performance
in discriminating data from q and p. This section presents a new method called local C2ST (ℓ-C2ST)
capable of evaluating the local consistency of a posterior approximation requiring data only from the
joint pdf p(θ, x) which can be easily sampled as per (1).

(1) Train the classifier. We define a modified version of the classification framework (3) with:

(Θ, X) | (C = 0) ∼ q(θ | x)p(x) vs. (Θ, X) | (C = 1) ∼ p(θ, x) . (10)

The optimal Bayes classifier is now f⋆(θ, x) = argmax {1− d⋆(θ, x), d⋆(θ, x)} with

d⋆(θ, x) =
p(θ, x)

p(θ, x) + q(θ | x)p(x)
=

p(θ | x)
p(θ | x) + q(θ | x)

= d⋆x(θ) , (11)

where one can notice the direct relation with the Bayes classifier for (3). Therefore, using data
sampled as in (10), it is possible to train a classifier f(θ, x) and write fxo

(θ) = f(θ, xo) for each xo.
See Algorithm 1 for details on the implementation of this procedure.

(2) Evaluate the classifier. Define a new test statistic that evaluates the MSE-statistic for a classifier
f and its associated predicted probabilities d using data samples from only the class associated to the
posterior approximation (C = 0):

t̂MSE0
(f, xo) =

1

Nv

Nv∑
n=1

(
d(Θq

n, xo)−
1

2

)2

with Θq
n ∼ q(θ | xo) . (12)

Theorem 3 (Local consistency and single class evaluation). If f is Bayes optimal and Nv → ∞,
then t̂MSE0(f, xo) = 0 is a necessary and sufficient condition for the local consistency of q at xo.
Proof. Let d be an estimator of P(C = 1 | Θ, X) and f = I(d > 0.5). Suppose that f = f⋆ is Bayes
optimal and let xo be a fixed observation. We have that

lim
Nv→∞

t̂MSE0(f
⋆, xo) =

∫ (
d⋆xo

(θ)− 1

2

)2

q(θ | xo)dθ .

Because of the squared term in the integral and q being a p.d.f., we have that

lim
Nv→∞

t̂MSE0
(f⋆, xo) = 0 ⇐⇒ d⋆xo

(θ) = P(C = 1 | θ;xo) =
1
2 .

This new statistical test can thus be used to assess the local consistency of posterior approximation
q without using any sample from the true posterior distribution p, but only from the joint pdf.
Furthermore, it is amortized, so a single classifier is trained for (10) that can then be used for any
choice of conditioning observation xo. This is not the case in the usual oracle C2ST framework.

0.0 0.5 1.0 1.5

0.5

1.0
Optimal Bayes (statistics)

t 0

tAcc 0tAcc
(+0.5)

0.0 0.5 1.0 1.52
0.0

0.5

1.0
QDA-C2ST (power)

tMSE tMSE0

2

Figure 1: Results for the C2ST
framework when p = N (0, I2) and
q = N (0, σ2I2). Left panel por-
trays the test statistics for the opti-
mal Bayes classifier and the right
panel shows the test’s empirical
power with QDA. Single-class accu-
racy test (t̂Acc0 ) fails to detect when
p ̸= q but t̂MSE0

behaves correctly.

Figure 1 illustrates the behavior of different test statistics to discriminate samples from two bivariate
Normal distributions whose covariance mismatch is controlled by a single scaling parameter σ. Note
that the optimal Bayes classifier for this setting can be obtained via quadratic discriminant analysis
(QDA) [21]. The results clearly show that even though tMSE0

exploits only half of the dataset (i.e.
samples from class C = 0) it is capable of detecting when p and q are different (σ ̸= 1). The plot also
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includes the results for a one-class test statistic based on accuracy values (t̂Acc0) which, as opposed
to t̂MSE0

, has no guarantees for being a necessary and sufficient condition for local consistency. Not
surprisingly, it fails to reject the null hypothesis for various choices of σ.

The assumptions of Theorem 3 are never met in practice: datasets are finite and one rarely knows
which type of classifier is optimal for a given problem. Therefore, the values of t̂MSE0

in the null
hypothesis (p = q) tend to fluctuate around one-half, and it is essential to determine a threshold for
deciding whether or notH0(xo) should be rejected. In ℓ-C2ST, these threshold values are obtained
via a permutation procedure [13] described in Algorithm 1. This yields NH estimates of the test
statistic under the null hypothesis and can be used to calculate p-values for any given α significance
level as described in Algorithm 2. These estimates can also be used to form graphical summaries
known as PP-plots, which display the empirical CDF of the probability predictions versus the nominal
probability level. These plots show how the predicted class probability d(xo) deviates from its
theoretical value under the null hypothesis (i.e. one half) as well as (1− α) confidence regions; see
Algorithm B.1 available in the appendix for more details and Figure 4 for an example.

Algorithm 1: ℓ-C2ST – training the classifier on data from the joint distribution

Input: posterior estimator q; calibration data Dcal = {Θn, Xn}Ncal
n=1; classifier f ; number of

samples NH from the distribution under the null hypothesis
Output: estimate d of the class probabilities; estimates {d1, . . . , dNH} under the null hypothesis
/* Construct classification training set */
for n = 1, . . . , Ncal do

Θq
n ∼ q(θ | Xn)

W2n = (Θq
n, Xn); C2n = 0 /* Sample from q(θ | x)p(x) */

W2n+1 = (Θn, Xn); C2n+1 = 1 /* Sample from p(θ, x) */

D ← {Wn, Cn}2Ncal
n=1

/* Get estimate d of the class probabilities */
Train the classifier f on D
d← fprobability
/* Estimate d under the null hypothesis via permutation procedure */
for h = 1, . . . NH do

Randomly permute labels Cn in D
Train the classifier f on new D
dh ← fprobability

return d; {d1, . . . , dNH}

Algorithm 2: ℓ-C2ST – evaluating test statistics and p-values for any xo

Input: Observation xo; estimates d and {d1, . . . , dNH} obtained in Algorithm 1
Output: test statistic t̂MSE0

(xo); p-value p̂(xo)
Generate Nv samples Θq

n ∼ q(θ | xo) with predicted probabilities d(Θq
n, xo) and dh(Θ

q
n, xo)

/* Compute test statistics */
t̂MSE0

(xo)← 1
Nv

∑
n

(
d(Θq

n, xo)− 1
2

)2
for h = 1, . . . , NH do

t̂h(xo)← 1
Nv

∑
n

(
dh(Θ

q
n, xo)− 1

2

)2
/* Compute p-value */
p̂(xo)← 1

NH

∑
h I

(
t̂h(xo) > t̂MSE0(xo)

)
return t̂MSE0

(xo), p̂(xo)

3.1 The case of normalizing flows

The ℓ-C2ST framework can be further improved when the posterior approximation q is a conditional
normalizing flow [37], which we denote qϕ. Given a Gaussian base distribution u(z) = N (0, Im)
and a bijective transform Tϕ(·;x) with Jacobian JTϕ

(·;x) we have

qϕ(θ | x) = u(z)|det JTϕ
(z;x)|−1 , θ = Tϕ(z;x) ∈ Rm . (13)
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In other words, normalizing flows (NF) are invertible neural networks that define a map between a
latent space where data follows a Gaussian distribution and the parameter space containing complex
posterior distributions. This allows for both efficient sampling and density evaluation:

Z ∼ N (0, Im) ⇒ Θq = Tϕ(Z;x) ∼ qϕ(θ | x) , (14)

qϕ(θ | x) = u(T−1
ϕ (θ;x))|det JT−1

ϕ
(θ;x)| . (15)

Our main observation is that the inverse transform T−1
ϕ can also be used to characterize the local

consistency of the conditional normalizing flow in its latent space, yielding a much simpler and
computationally less expensive statistical test for posterior local consistency.
Theorem 4 (Local consistency and normalizing flows). Given a posterior approximation qϕ based
on a normalizing flow, its local consistency at xo can be characterized as follows:

p(θ | xo) = qϕ(θ | xo) ⇐⇒ p(T−1
ϕ (θ;xo) | xo) = u(z) , ∀θ ∈ Rm . (16)

Proof. Let Θ ∼ p(θ | xo). Following (14), we have that Θ ∼ qϕ(θ | xo) if, and only if,
Θ = Tϕ(Z;xo) with Z ∼ N (0, Im). Applying the inverse transformation of the flow gives us
T−1
ϕ (Θ;xo) = T−1

ϕ (Tϕ(Z;xo);xo) = Z ∼ N (0, Im), which concludes the proof.

Based on Theorem 4 we propose a modified version of our statistical test named ℓ-C2ST-NF. The
new null hypothesis associated with the consistency of the posterior approximation qϕ at xo is

HNF
0 (xo) : p(T

−1
ϕ (θ;xo) | xo) = N (0, Im) , (17)

which leads to a new binary classification framework

(Z,X) | (C = 0) ∼ N (0, Im)p(x) vs. (Z,X) | (C = 1) ∼ p(T−1
ϕ (θ;x), x) . (18)

Algorithm 3 describes how to sample data from each class and train a classifier to discriminate them.
The classifier is then evaluated on Nv samples Zn ∼ N (0, Im) which are independent of xo.

A remarkable feature of ℓ-C2ST-NF is that calculating the test statistics under the null hypothesis
is considerably faster than for ℓ-C2ST. In fact, for each null trial h = 1, . . . , NH we use the dataset
Dcal only for recovering the samples Xn and then independently sample new data Zn ∼ N (0, Im).
As such, it is possible to pre-train the classifiers without relying on a permutation procedure (cf.
Algorithm 4), and to re-use them to quickly compute the validation diagnostics for any choice of
xo or new posterior estimator qϕ of the given inference task. It is worth mentioning that this is not
possible with the usual ℓ-C2ST, as it depends on q and it would require new simulations for each trial.

Algorithm 3: ℓ-C2ST-NF – training the classifier on the joint distribution

Input: NF posterior estimator qϕ; calibration data Dcal = {Θn, Xn}Ncal
n=1 ; classifier f

Output: estimate d of the class probabilities
/* Construct classification training set */
for n in 1, . . . , Ncal do

Zn ∼ N (0, Im); Zq
n = T−1

ϕ (Θn;Xn) /* inverse NF-transformation */
W2n = (Zn, Xn); C2n = 0
W2n+1 = (Zq

n, Xn); C2n+1 = 1

D ← {Wn, Cn}2Ncal
n=1

/* Get estimate d of the class probabilities */
Train the classifier f on D
d← fprobability
return d

6



Algorithm 4: ℓ-C2ST-NF – precompute the null distribution for any estimator

Input: calibration data Dcal = {Θn, Xn}Ncal
n=1; classifier f ; number of null samples NH

Output: estimates {d1, . . . , dNH} of the class probabilities under the null
for h in 1, . . . NH do

/* Construct classification training set */
Sample Zn ∼ N (0, Im) for n = 1, . . . , 2Ncal

D ← {(Z2n, Xn), 0}Ncal
n=1 ∪ {(Z2n+1, Xn), 1}Ncal

n=1
/* Get estimate d of the class probabilities */
Train the classifier f on D
dh ← fprobability

return {d1, . . . , dNH}

4 Experiments

All experiments were implemented with Python and the sbi package [44] combined with Py-
Torch [38] and nflows [12] for neural posterior estimation 4. Classifiers on the C2ST framework use
the MLPClassifier from scikit-learn [39] with the same parameters as those used in sbibm [31].

4.1 Two benchmark examples for SBI

We illustrate ℓ-C2ST on two examples: Two Moons and SLCP. These models have been widely used
in previous works from SBI literature [18, 36] and are part of the SBI benchmark [31]. They both
represent difficult inference tasks with locally structured multimodal true posteriors in, respectively,
low (θ ∈ R2, x ∈ R2) and high (θ ∈ R5, x ∈ R8) dimensions. See [31] for more details. To
demonstrate the benefits of ℓ-C2ST-NF, all experiments use neural spline flows [11] trained under the
amortized paradigm for neural posterior estimation (NPE) [37]. We use implementations from the
sbibm package [31] to ensure uniform and consistent experimental setups. Samples from the true
posterior distributions for both examples are obtained via MCMC and used to compare ℓ-C2ST(NF)
to the oracle-C2ST framework. We include results for local-HPD implemented using the code
repository of the authors of [48] with default hyper-parameters and applied to HPD.5

First, we evaluate the local consistency of the posterior estimators of each task over ten different
observations xo with varying Ntrain and fixed Ncal = 104. The first column of Figure 2 displays
the MSE statistics for the oracle and ℓ-C2ST frameworks. As expected, we observe a decrease in
the test statistics as Ntrain increases: more training data usually means better approximations. For
Two Moons the statistic of ℓ-C2ST decreases at the same rate as oracle-C2ST, with notably accurate
results for ℓ-C2ST-NF. However, in SLCP both ℓ-C2ST statistics decrease much faster than the oracle.
This is possibly due to the higher dimension of the observation space in the latter case, which impacts
the training-procedure of ℓ-C2ST on the joint distribution.

We proceed with an empirical analysis based on 50 random test runs for each validation method
and computing their rejection-rates to the nominal significance level of α = 0.05. Column 4 in
Figure 2 confirms that the false positive rates (or type I errors) for all tests are controlled at desired
level. Column 2 of Figure 2 portrays the true positive rates (TPR), i.e. rejectingH0(xo) when p ̸= q,
of each test as a function of Ntrain. Both ℓ-C2ST strategies decrease with Ntrain as in Column 1,
with higher TPR for ℓ-C2ST-NF in both tasks. The oracle has maximum TPR and rejects the local
consistency of all posterior estimates across all observations at least 90% of the time. Note that SLCP
is designed to be a difficult model to estimate6, meaning that higher values of TPR are expected
(t̂ ̸→ 0 in Column 1). In Two Moons, the decreasing rejection rate can be seen as normal as it reflects
the convergence of the posterior approximator (t̂→ 0 in Column 1): as Ntrain increases, the task of
differentiating the estimator from the true posterior becomes increasingly difficult.

We fix Ntrain = 103 (which yields inconsistent qϕ in both examples) and investigate in Column 3 of
Figure 2 how many calibration samples are needed to get a maximal TPR in each validation method.

4Code is available at https://github.com/JuliaLinhart/lc2st.
5The average run-times for each validation method are provided in Appendix C.
6SLCP = simple likelihood, complex posterior
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Figure 2: Results on two examples from the SBI benchmark: SLCP and Two Moons. We compare
ℓ-C2ST and ℓ-C2ST-NF (dashed) to the oracle C2ST and local-HPD. Columns 1 and 2 display the
test statistic and empirical power as a function of Ntrain, while Columns 3 and 4 show the empirical
power and type I error for varying Ncal. The ℓ-C2ST(-NF) statistics are comparable to the oracle, as
their decreasing behaviour reflects the convergence of NPE to the true posterior for large training
datasets. We also note that ℓ-C2ST-NF is uniformly better than ℓ-C2ST (i.e. higher power for all
Ntrain and increases faster with Ncal), and both reach maximum statistical power with smaller Ncal

than local-HPD. All Type I errors are controlled at α = 0.05. Experiments were performed over 10
different observations xo (mean and std) and Columns 2-4 used additional 50 random test runs.

SLCP is expected to be an easy classification task, since the posterior estimator is very far from the true
posterior (large values of t̂ in Column 1). We observe similar performance for ℓ-C2ST-NF and ℓ-C2ST,
with slightly faster convergence for the latter. Both methods perform better than local-HPD, that
never reaches maximum TPR. Two Moons represents a harder discrimination task, as qϕ is already
pretty close to the reference posterior (see Column 1). Here, ℓ-C2ST-NF attains maximum power
at Ncal = 2000 and outperforms all other methods. Surprisingly, the regression-based oracle-C2ST
performs comparably to local-HPD, converging to TPR = 1 at Ncal = 5000.

4.2 Jansen-Rit Neural Mass Model (JRNMM)

We increase the complexity of our examples and consider the well known Jansen & Rit neural mass
model (JRNMM) [25]. This is a neuroscience model which takes parameters θ = (C, µ, σ, g) ∈ R4

as input and generates time series x ∈ R1024 with properties similar to brain signals obtained in
neurophysiology. Each parameter has a physiologically meaningful interpretation, but they are not
relevant for the purposes of this section; the interested reader is referred to [3] for more details.

The approximation qϕ of the model’s posterior distribution is a conditioned masked autoregressive
flow (MAF) [35] with 10 layers. We follow the same experimental setting from [3], with a uniform
prior over physiologically-relevant parameter values and a simulated dataset from the joint distribution
including Ntrain = 50 000 training samples for the posterior estimator and Ncal = 10 000 samples to
compute the validation diagnostics. An evaluation set of size Nv0 = 10 000 is used for ℓ-C2ST-NF.

We first investigate the global consistency of our approximation, which informs whether qϕ is
consistent (or not) on average with the model’s true posterior distribution. We use standard tools
for this task such as simulation-based calibration (SBC) [42] and coverage tests based on highest
predictive density (HPD) [48]. The results are shown in the left panel of Figure 3. We observe that
the empirical cdf of the global HPD rank-statistic deviates from the identity function (black dashed
line), indicating that the approximator presents signs of global inconsistency. We also note that the
marginal SBC-ranks are unable to detect any inconsistencies in qϕ.

We use ℓ-C2ST-NF to study the local consistency of qϕ on a set of nine observations x(i)
o defined as7

x(i)
o = JRNMM(θ(i)o ) with θ(i)o = (135, 220, 2000, g(i)o ) and g(i)o ∈ [−20,+20] . (19)

The right panel of Figure 3 shows that the test statistics of ℓ-C2ST-NF vary in a U-shape, attaining
higher values as go deviates from zero and at the borders of the prior. The plot is overlaid with the
95% confidence region, illustrating how much the test statistics deviate from the local null hypothesis.

7Note that the uniform prior for g is defined in [-20, +20] when training qϕ with NPE.
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Figure 3: Results for global and lo-
cal tests on JRNMM. Left: PP-plots
for the marginal SBC and global
HPD rank statistics. Right: Test
statistics for ℓ-C2ST-NF on observa-
tions with varying go. SBC fails to
detect any inconsistency of qϕ, while
HPD only provides a global assess-
ment, unlike ℓ-C2ST which locally
explains the inconsistencies in qϕ.

Figure 4: Graphical diagnostics of
ℓ-C2ST-NF for JRNMM. Top right
panel displays the empirical CDF
of the classifier (blue) overlaid with
the theoretical CDF of the null hy-
pothesis (step function at 0.5) and
95% confidence region of estimated
classifiers under the null displayed
in gray. The pairplot displays his-
tograms of samples from qϕ within
the prior region and dashed lines
indicate values of θo used to gen-
erate the conditioning observation
xo. The predicted probabilities are
mapped on the colors of the bins in
the histogram. Blue-green (resp. or-
ange-red) regions indicate low (resp.
high) predicted probabilities of the
classifier. Yellow regions corre-
spond to chance level, thus qϕ ≈ p.

We demonstrate the interpretability of the results for ℓ-C2ST-NF with a focus on the behavior of qϕ
when conditioned on an observation for which go = 10. The local PP-plot in Figure 4 summarises the
test result: the predicted class probabilities deviate from 0.5, outside of the 95%-CR, thus rejecting the
null hypothesis of local consistency at go = 10. The rest of Figure 4 displays 1D and 2D histograms
of samples Θq ∼ qϕ(θ | xo) within the prior region, obtained by applying the learned Tϕ to samples
Z ∼ N (0, I4). The color of each histogram bin is mapped to the intensity of the corresponding
predicted probability in ℓ-C2ST-NF and informs the regions where the classifier is more (resp. less)
confident about its choice of predicting class 0.8 This relates to regions in the parameter space where
the posterior approximation has too much (resp. not enough mass) w.r.t. to the true posterior: qϕ > p
(resp. qϕ < p). We observe that the ground-truth parameters are often outside of the red regions,
indicating positive bias for µ and σ and negative bias for g in the 1D marginal. It also shows that the
posterior is over-dispersed in all 2D marginals. See Appendix D for results on all observations x(i)

o .

5 Discussion

We have presented ℓ-C2ST, an extension to the C2ST framework tailored for SBI settings which
requires only samples from the joint distribution and is amortized along conditioning observations.
Strikingly, empirical results show that, while ℓ-C2ST does not have access to samples from the true
posterior distribution, it is actually competitive with the oracle-C2ST approach that does. This comes
at the price of training a binary classifier on a potentially large dataset to ensure the correct calibration

8Specifically, we compute the average predicted probability of class 0 for data points Z ∼ N (0, I4)
corresponding to samples Tϕ(Z;xo) ∼ qϕ(θ | xo) within each histogram bin.
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of the predicted probabilities. Should this be not the case, some additional calibration step for the
classifier can be considered [10].

Notably, ℓ-C2ST allows for a local analysis of the consistency of posterior approximations and is more
sensible, precise, and computationally efficient than its concurrent method, local-HPD. Appendix F.4
provides a detailed discussion of these statements, based on results obtained for additional benchmark
examples. When exploiting properties of normalizing flows, ℓ-C2ST can be further improved as
demonstrated by encouraging results on difficult posterior estimation tasks (see Table 2 in Appendix
F). We further analyze the benefits of this -NF version in Appendix F.3. ℓ-C2ST provides necessary,
and sufficient, conditions for posterior consistency, features that are not shared by other standard
methods in the literature (e.g. SBC). When applied to a widely used model from computational
neuroscience, the local diagnostic proposed by ℓ-C2ST offered interesting and useful insights on
the failure modes of the SBI approach (e.g. poor estimates on the border of the prior intervals),
hence demonstrating its potential practical relevance for works leveraging simulators for scientific
discoveries.

6 Limitations and Perspectives

Training a classifier with finite data. The proposed validation method leverages classifiers to
learn global and local data structures and shows great potential in diagnosing conditional density
estimators. However, it’s validity is only theoretically guaranteed by the optimality of the classifier
when Nv →∞. In practice, this can never perfectly be ensured. Figure 6 in Appendix F.2 shows that
depending on the dataset, ℓ-C2ST can be more or less accurate w.r.t. the true C2ST. Therefore, one
should always be concerned about false conclusions due to a far-from-optimal classifier and make
sure that the classifier is “good enough” before using it as a diagnostic tool, e.g. via cross-validation.
Note, however, that the MSE test statistic for ℓ-C2ST is defined by the predicted class probabilities
and not the accuracy of the classifier, thus one should also check how well the classifier is calibrated.

Why Binary Classification? An alternative to binary classification would have been to train a second
posterior estimate in order to assess the consistency of the first one. Indeed, one could ask whether
training a classifier is inherently easier than obtaining a good variational posterior, the response to
which is non-trivial. Nevertheless, we believe that adding diversity into the validation pipeline with
two different ML approaches might be preferable. Furthermore, building our method on the C2ST
framework was mainly motivated by the popularity and robustness of binary classification: it is easy
to understand and has a much richer and stable literature than deep generative models. As such,
we believe that choosing a validation based on a binary classifier has the potential of attracting the
interest of scientists across various fields, rather than solely appealing to the probabilistic machine
learning community.

Possible extensions and improvements. Future work could focus on leveraging additional infor-
mation of q while training the classifier as in [47]. For example, by using more samples from the
posterior estimator q or its explicit likelihood function (which is accessible when q is a normalizing
flow). On a different note, split-sample conformal inference could be used to speed up the p-value
calculations (avoiding the time-consuming permutation step in Algorithm 1).

In summary, our article shows that ℓ-C2ST is theoretically valid and works on several datasets,
sometimes even outperforming local-HPD, which to our knowlegde is the only other existing local
diagnostic. Despite facing some difficulties for certain examples (just like for other methods as
well), an important feature of ℓ-C2ST is that one can directly leverage from improvements in binary
classification to adapt and enhance it for any given dataset and task. This makes ℓ-C2ST a competitive
alternative to other validation approches, with great potential of becoming the go-to validation
diagnostic for SBI practitioners.
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A Proofs

In what follows, we assume that it is sufficient for the null hypothesisH0 to hold on any set C ⊆ Rm

of strictly positive measure, rather than requiring it to hold for all points θ ∈ Rm. In practice,
it generally has no practical implications if the posterior estimator is inconsistent with the true
posterior (q ̸= p) on a set of measure zero, since those sets don’t have any real statistical significance.

For the proofs of Theorems 1 and 2, we will consider a classifier fxo
defined for a fixed observation

xo ∈ Rd on Sxo = {θ ∈ Rm, q(θ | xo) + p(θ | xo) > 0}.

A.1 Proof of Theorem 1

Theorem 1 (Local consistency and classification accuracy). If fxo
is Bayes optimal and Nv →∞,

then t̂Acc(fxo
) = 1/2 is a necessary and sufficient condition for the local consistency of q at xo.

Proof. As Sxo
contains all data points Θq

n ∼ q(θ | xo) (Cn = 0) and Θp
n ∼ p(θ | xo) (Cn = 1), the

empirical accuracy t̂Acc(fxo) over the validation set Dv = {(Θn, Cn)}2Nv
n=1 is well defined (7) and

t̂Acc(fxo
) −→
Nv→∞

Acc(fxo
) = P(fxo

(Θ) = C) =
1

2
(P(fxo

(Θq) = 0) + P(fxo
(Θp) = 1)) .

Let’s show that if fxo is Bayes optimal, thenH0(xo) holds ⇐⇒ Acc(fxo) =
1
2 .

(⇒): SupposeH0(xo) holds. The optimality of fxo
implies that fxo

(Θq) and fxo
(Θp) are Bernoulli

random variables B( 12 ) (see interpretation of equation (5)), and so Acc(fxo
) = 1

2

(
1
2 + 1

2

)
= 1

2 .

(⇐): Let’s proceed by showing the contraposition: ifH0(xo) does not hold, then Acc(fxo
) ̸= 1

2 .

Suppose that H0(xo) does not hold, there exists a set C =
{
θ ∈ Rm, p(θ | xo) ̸= q(θ | xo)

}
of

strictly positive measure (w.r.t. p or q, which ever is non zero on that set). We can decompose C into
the direct sum of A =

{
θ ∈ C, q(θ | xo) < p(θ | xo)

}
and B =

{
θ ∈ C, q(θ | xo) > p(θ | xo)

}
.

EitherA or B is necessarily of strictly positive measure. Let’s sayA (see Lemma 1 for the symmetric
case).

A is exactly the region where Prob(C = 1 | Θ = θ) > 1
2 and thus where fxo(θ) = 1; B is the region

where fxo
(θ) = 0. We therefore get that:

Acc(fxo
) =

1

2

(∫
fxo (θ)=0

q(θ | xo)dθ +

∫
fxo (θ)=1

p(θ | xo)dθ
)

=
1

2

(∫
B
q(θ | xo)dθ +

∫
A
p(θ | xo)dθ

)
=

1

2

(
1 +

∫
A
p(θ | xo)− q(θ | xo)dθ

)
(because

∫
A
q +

∫
B
q = 1)

But ∀θ ∈ A, 0 ≤ q(θ | x) < p(θ | x) (and A is of strictly positive measure), so the integral in the
last equality is strictly positive and we get Acc(fx) >

1
2 , which concludes the proof.

Lemma 1. Let p and q be two probability density functions defined on a space S. If there exists a
set A ⊆ S of strictly positive measure such that ∀θ ∈ A, q(θ) < p(θ), then there exists a set B ⊆ S
of strictly positive measure such that ∀θ′ ∈ B, q(θ′) > p(θ′).

Proof. We know that
∫
S p =

∫
S q = 1 or equivalently, using S = A ∪ B = {q > p} ∪ {q ≤ p},∫

A
q(θ)dθ +

∫
B
q(θ)dθ =

∫
A
p(θ)dθ +

∫
B
p(θ)dθ = 1 .

By grouping the integrals over A on one side and the ones over B on the other, we get:∫
A
q(θ)dθ −

∫
A
p(θ)dθ =

∫
B
p(θ)dθ −

∫
B
q(θ)dθ > 0 .

which is non-negative because A is assumed to be of strictly positive measure and q − p > 0
everywhere in A.
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The integral of p− q over {p = q} is zero, which implies that∫
q<p

(
p(θ)− q(θ)

)
dθ =

∫
B=q≤p

(
p(θ)− q(θ)

)
dθ > 0

meaning that the region {θ ∈ S, p(θ) < q(θ)} is is of strictly positive measure, which concludes the
proof.

A.2 Proof of Theorem 2

Theorem 2 (Local consistency and regression). If fxo
is Bayes optimal and Nv → ∞, then

t̂MSE(fxo
) = 0 is a necessary and sufficient condition for the local consistency of q at xo.

Proof. Let dxo
be an estimator of P(C = 1 | Θ;xo) defined on Sxo

such that fxo
= Idxo>

1
2

. As this
region contains all the data points Θq

n ∼ q(θ | xo) (Cn = 0) and Θp
n ∼ p(θ | xo) (Cn = 1), the

mean squared error t̂MSE(fxo) over the dataset D = {(Θn, Cn)}2Nn=1 is well defined (9) and

t̂MSE(fxo
) −→
Nv→∞

tMSE(fxo
) =

1

2

∫ (
dxo

(θ)− 1

2

)2(
q(θ | xo) + p(θ | xo)

)
dθ .

This integral is zero if, and only if
(
dxo(θ)− 1

2

)2
= 0 for every θ ∈ Sxo (all terms are non-negative

and q(θ | xo) + p(θ | xo) > 0)9, which is equivalent to dxo(θ) =
1
2 for every θ ∈ Sxo . Assuming

fxo = f⋆
xo

is optimal, we have that dxo(θ) = d∗xo
(θ) = P(C = 1 | θ;xo) and we conclude the proof

using the result from equation (5) (and knowing that outside of Sxo , p = q = 0):

tMSE(f
⋆
xo
) = 0 ⇐⇒ d⋆xo

(θ) = P(C = 1 | θ;xo) =
1

2
,∀θ ∈ Sxo

⇐⇒︸ ︷︷ ︸
(5)

H0(xo) holds .

A.3 Proof of Theorem 3

Theorem 3 (Local consistency and single class evaluation). If f is Bayes optimal and Nv →∞, then
t̂MSE0

(f, xo) = 0 is a necessary and sufficient condition for the local consistency of q at xo.

Proof. Let d be an estimator of P(C = 1 | Θ;X) and f = Id> 1
2

the associated classifier, both defined
on S = {w = (θ, x) ∈ Rm × Rd, q(θ, x) + p(θ, x) > 0} . Suppose that f = f⋆ is optimal and let
xo ∈ Rd be a fixed observation. As explained in section 3, we have that

d⋆(θ, xo) = P(C = 1 | θ;xo) = d⋆xo
(θ) and f⋆(θ, xo) = f⋆

xo
(θ), ∀θ ∈ Sxo

.

Consider the support Sq,xo
= {θ ∈ Rm, q(θ | xo) > 0} ⊂ Sxo

containing all data points
Θq

n ∼ q(θ | xo) from our single-class validation set Dv0 = {(Θq
n, 0)}

Nv0
n=1. Therefore our single-class

test statistic t̂MSE0 is well defined (12) and

t̂MSE0
(f⋆, xo) −→

Nv0→∞
tMSE0

(f⋆, xo) =

∫ (
d⋆xo

(θ)− 1

2

)2

q(θ | xo)dθ

With the same arguments as in the proof of Theorem 2 in A.2, we get that

tMSE0
(f⋆, xo) = 0 ⇐⇒ d⋆xo

(θ) = P(C = 1 | θ;xo) =
1

2
, ∀θ ∈ Sq,xo

⇐⇒ H0(xo) holds ,

where the second equivalence is true because Sq,xo = Sxo for p(. | xo) = q(. | xo). Therefore,
tMSE0(f

⋆, xo) = 0 is a necessary and sufficient condition forH0(xo).

N.B. Single-class accuracy (Acc0) does not provide a sufficient condition forH0(xo).

9Note that this integral can also be zero if Sxo is of measure zero. But as mentioned at the beginning of this
appendix, this has generally no practical implications.
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Proof. Following the proof of Theorem 1 in A.1, we have that

H0(xo) holds ⇐⇒ Acc(f⋆
xo
) =

1

2
⇐⇒ P(f⋆

xo
(Θq) = 0) + P(f⋆

xo
(Θp) = 1) = 1 .

This means that Acc0(f
⋆, xo) = P(f⋆

xo
(Θq) = 0) = 1

2 can only be a sufficient condition forH0(xo)
if P(f⋆

xo
(Θq) = 0) = P(f⋆

xo
(Θp) = 1), which is not generally true. In conclusion, evaluating

Acc0(f
⋆, xo) only provides a necessary condition for the local null hypothesis (see (⇒) in A.1).
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B Algorithms

B.1 Generating PP-plots with ℓ-C2ST

Algorithm 5: ℓ-C2ST – local PP-plots for any xo

Input: evaluation data set Dv0; an observation xo; estimate d of the class probabilities; estimates
{d1, . . . , dNH} under the null; grid G of PP-levels in (0,1); significance level α

Output: empirical CDF-values {F̂ (l;xo)}l∈G of predicted class-0 probabilities;
(1− α)-confidence bands {Ll(xo), Ul(xo)}l∈G

Predict class-0 probabilities {d0(v, x0) = 1− d(v, xo)}v∈Dv0
/* d is an estimate of

class 1 */
for l in G do

/* Compute empirical CDFs at l */
F̂ (l;xo)← 1

Nv0

∑
Id0(v,x0)≤l

for h = 1, . . . , NH do
F̂h(l;xo)← 1

Nv0

∑
Id0(v,x0)≤l

/* Compute confidence bands at l */
Ll(xo), Ul(xo)← qα

2
({F̂h(l;xo)}NH

h=1), q1−α
2
({F̂h(l;xo)}NH

h=1) /* quantiles */

return {F̂ (l;xo)}l∈G , Ll(xo), Ul(xo)}l∈G

19



C Run-times for each validation procedure

To complete the benchmark experiments from Section 4.1, we analyze the run-times of each validation
method to compute the test statistic10 for an NPE of the SLCP-task, obtained for different values of
Ntrain. Results are displayed in Table 1 and computed on average over all given observations xo and
for Ncal-values that ensure high test power. We here focus solely on the SLCP-task, as the higher
dimensional observation space allows to illustrate the differences between local methods (trained on
the joint data space, (θ, x) ∈ R5+8) and the oracle (trained on the parameter space only, θ ∈ R5).

As expected, the computation time increases with the sample size Ncal (left vs. right part of Table
1). While the oracle C2ST has close to constant run-time for fixed Ncal, local methods become
faster with increasing Ntrain. We observe that ℓ-C2ST(-NF) has comparable run-times to the oracle
C2ST: the amortization cost is negligible, in particular for difficult tasks involving "good" posterior
estimators (high Ntrain). However, this is not the case for local-HPD, which is the most expensive
method. Indeed, it involves (1) the costly computation of the HPD statistics on the joint and (2) the
training of several (default is nc = 11) classifiers, both of which increase with the sample size and
dimension of the data space.

Ncal = 5 000 Ncal = 10 000

Ntrain 102 103 104 105 102 103 104 105

oracle C2ST 5.47 4.52 5.95 7.56 16.36 18.03 23.3 15.33
ℓ-C2ST 5.92 5.09 1.78 1.81 27.62 34.06 17.9 3.65
ℓ-C2ST-NF 6.98 6.84 6.38 1.72 43.99 25.01 18.56 7.62
local-HPD 282.19 282.85 279.38 282.5 956.91 938.21 682.92 530.45

Table 1: Run-time (in seconds) to compute the test statistic for the SLCP task (mean over observations).
C2ST has close to constant run-time for fixed Ncal. Local methods become faster with increasing
Ntrain and ℓ-C2ST(-NF) stays comparable to the oracle C2ST, even for Ncal = 10 000. While the
amortization cost of ℓ-C2ST is not an issue, local-HPD is always at least 30 times slower.

10Note that in order to compute to compute p-values, we need to compute the test statistic NH times under the
null hypothesis. The number of classifiers we need to train depends on how many we need to compute the test
statistic (NH for ℓ-C2ST vs. NH × nc for local-HPD). In summary, if ℓ-C2ST is more efficient in computing a
single test statistic, it will also be more efficient to compute NH test statistics.
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D Graphical diagnostics (ℓ-C2ST-NF) for the JRNMM posterior estimator

The following figures present additional results for the interpretability of ℓ-C2ST applied to the
JRNMM neural posterior estimator. They complete Figure 4. Results are shown for all given
observations associated to ground-truth gain values go = −20,−15,−10,−5, 0, 5, 10, 15, 20.

In each Figure, the top right panel displays the empirical CDF of the classifier (blue) overlaid with the
theoretical CDF of the null hypothesis (step function at 0.5) and 95% confidence region of estimated
classifiers under the null displayed in gray. The pairplot displays histograms of samples from the
posterior estimator qϕ within the prior region and dashed lines indicate values of θo used to generate
the conditioning observation xo. The predicted probabilities are mapped on the colors of the bins in
the histogram. Blue-green (resp. orange-red) regions indicate low (resp. high) predicted probabilities
of the classifier. Yellow regions correspond to chance level, thus qϕ ≈ p.
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E On the cross-entropy loss for ℓ-C2ST

This section aims at facilitating the understanding of ℓ-C2ST by proving the result of equation (11).

As detailed in section 3, the first step in ℓ-C2ST consists in training a classifier to distinguish between
Ncal data points (Θn, Xn) and (Θq

n, Xn) from the joint distributions p(θ, x) and q(θ, x) respectively.
Here, the same conditioning observations {Xn}Ncal

n=1 are used to construct the data samples for each
class (see Algorithm 1). We show that this does not affect the objective function and convergence of
the classifier.

The theoretical cross-entropy loss function to distinguish between data (Θ, X) from class C = 1 and
class C = 0 is defined by

lCE(d) := −
1

2
E(Θ,X)|C=1 [log (d(Θ, X))]− 1

2
E(Θ,X)|C=0 [log (1− d(Θ, X))] . (20)

Note that the we have equal marginals X | (C = 1) ∼ p(x) = q(x) = X | (C = 0).11 This
allows us to take the expectation over X and approximate (20) via Monte-Carlo for only one set of
conditioning observations {Xn}Ncal

n=1 , and with data points Θn and Θq
n respectively associated to class

C = 1 and C = 0 for a given Xn:

lCE(d) = EX

[
−1

2
EΘ|X,C=1 [log (d(Θ, X))]− 1

2
EΘ|X,C=0 [log (1− d(Θ, X))]

]
≈ − 1

2Ncal

Ncal∑
n=1

log (d(Θn, Xn)) + log (1− d(Θq
n, Xn)) .

(21)

Therefore, we can train a classifier to minimize (20) using data from the joint distributions with same
conditioning observations. The obtained estimate d = argmin{lCE(d)} of the class probabilities
is defined for every (θ, x) ∈ Rm × Rd by d(θ, x) ≈ p(θ,x)

p(θ,x)+q(θ,x) . As p(x) = q(x), we recover the
class probabilities of the optimal Bayes classifier on the conditional data space for any given x ∈ Rd :

d⋆(θ, x) =
p(θ | x)

p(θ | x) + q(θ | xo)
= d⋆x(θ) . (22)

For an example, see works related to neural ratio estimation (NRE) [22, 8]: these algorithms implicitly
use a classifier to distinguish between the joint and marginal distributions p(θ, x) and p(θ)p(x). Like
in our case, both classes are modeled using the same observations Xn obtained via the simulator.

11The joint distributions p(θ, x) and q(θ, x) are both modeled using samples X ∼ p(x | Θ) obtained from
the prior Θ ∼ p(θ), which implies that the marginals p(x) and q(x) are both defined by

∫
p(x | θ)p(θ)dθ.
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F Additional Experiments on several benchmark examples

The results on the two benchmark examples in Figure 2 give first intuitions about the validity and
behaviour of ℓ-C2ST(-NF), our proposal, w.r.t. the oracle C2ST and the alternative local-HPD
methods. In this section, Figure 5 extends Figure 2 with results on additional benchmark examples
and more detailed results on the correlation between the test statistics of ℓ-C2ST(-NF) and the oracle
C2ST for different conditioning observations are shown in Figure 6 and Table 3. We refer the reader
to Table 2 for a description of all benchmark examples (data dimensionality, posterior structure,
challenges) and a summary of the main results comparing local methods.

While investigating the scalability of the algorithms to high dimensional data spaces, these addi-
tional experiments help to further analyze how well ℓ-C2ST(-NF) captures the true C2ST, when it
outperforms local-HPD, and better understand the benefit of the -NF version. These points are further
detailed in the following subsections. The goal is to create a first guideline for when our proposal can
and should be used, while raising awareness of its limitiations (i.e. when it should not be used or at
least be adpated for improved performance).

Dimension Posterior Challenge Better local
(θ, x) structure method

SLCP low 4 symmetrical complex posterior ℓ-C2ST-NF
(5, 8) modes

Two Moons low bi-modal, global and local local-HPD /
(2, 2) crescent shape structure ℓ-C2ST-NF

Gaussian Mixture low 2D Gaussian large vs. small all similar
(2, 2) s.t.d. in GMM

Gaussian Linear medium multivariate dimensionality local-HPD /
Uniform (10, 10) Gaussian scaling ℓ-C2ST

Bernoulli GLM medium unimodal, dimensionality ℓ-C2ST(-NF)
(10, 10) concave scaling

Bernoulli GLM Raw high unimodal, raw observations ℓ-C2ST-NF
(10, 100) concave (no summary stats)

Table 2: Description of benchmark examples and summary of main results for local methods.

F.1 Scalability to high dimensions

First of all, note that in the specific case of SBI, the dimension of the parameter space is typically of
order 100 to 101 and m ≈ 102 is already often considered as high dimensional. The observation space,
however, can be of higher dimension (e.g. d ≈ 103 for time-series), but summary statistics are often
used to reduce the dimension of the observations to the order of d ≈ 101. In Section 4 we analyze
the results obtained for rather low-dimensional benchmark examples (Two-Moons:m = 2, d = 2,
SLCP: m = 5, d = 8). As an extension of Figure 2, Figure 5 includes additional benchmark examples
with low and medium dimensionality: Gaussian Mixture (m = 2, d = 2) Gaussian Linear
Uniform (m = 10, d = 10) and Bernoulli GLM (m = 10, d = 10). Furthermore, the Bernoulli
GLM Raw task allows us to analyze how our method scales to high dimensional observation spaces
only (without parameter-space / task variability): it considers raw observation data with d = 100, as
opposed to sufficient summary statistics in the Bernoulli GLM task.

Column 3 in Figure 5 shows that ℓ-C2ST requires more data to converge to the oracle C2ST (at
maximum power TPR = 1) as the data dimensionality increases: Ncal ≈ 2000 for Two Moons
and SLCP, but Ncal ≈ 5000 for the Bernouilli GLM task. Note that the Gaussian Mixture and
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Figure 5: Results on additional sbibm benchmark examples using the same experimental setup as for
Figure 2 in Section 4 (50 test runs, mean / std over 10 different reference observations).

Gaussian Linear Uniform tasks were not included in this analysis, as here, the difficulty of the
classification task has more impact on statistical power than the data dimensionality 12.

Interestingly, we observe in the Bernoulli GLM Raw task, that ℓ-C2ST-NF scales well to the high-
dimensional observation space (faster convergence to maximum TPR compared to Bernoulli
GLM), while the normal ℓ-C2ST and local-HPD significantly lose in statistical power. It should also
be noted that local-HPD performs significantly worse in medium dimensions (cf. Bernoulli GLM
or even SLCP) than in low dimensions (Gaussian Mixture and Two Moons), though this could be
because of the complex posterior structure.

F.2 Accuracy of ℓ-C2ST(-NF) w.r.t. the true C2ST

Figures 2 and 5 compare our method to the oracle C2ST, but only in terms of statistical power, as the
local analysis is limited to the averaged results over 10 different reference observations xo. We here
provide a more detailed local analysis that examines how the ℓ-C2ST(-NF) test statistics correlate
with those from the oracle C2ST, by plotting them against each other. The results obtained for
the above mentioned 10 reference observations are shown in Figure 6a. To allow for more robust
conclusions, we also show results obtained for a total of 100 different reference observations (cf.
Figure 6b), as well as quantitative results on the statistical significance of the correlation indices in
Table 3.

Overall, the scattered points are not too far from the diagonal, which indicates that there is some
correlation between the test statistics for ℓ-C2ST(-NF) and those from the oracle C2ST. This cor-
relation becomes weaker when Ntrain becomes larger, since the test statistics in these cases tend
to zero and can start to be confused with noise. This observation is consistent with the results in
Table 3, showing the p-values of the Pearson test, a standard tests for the statistical significance of the
correlation indices between the scores.

Another general trend is that the scattered points tend to be below the diagonal, indicating that
ℓ-C2ST(-NF) is less sensible to local inconsistencies than the oracle C2ST. This behaviour was
expected, as ℓ-C2ST is trained on the joint and thus less precise. Interestingly this doesn’t apply to

12Local methods a TPR < 1 at Ntrain = 1000 (see Column 2), which means that the classification task is
harder and requires more data: local methods never reach maximum TPR = 1, and even the oracle C2ST (with
MSE test statistic) needs Ncal = 2000, at least four times more than for the other tasks.
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the Gaussian Mixture task. This could be due to a big variability in the local consistency of q:
while trained on the joint ℓ-C2ST(-NF) could overfit on the "bad" observations, resulting in higher
test statistics for observations where the true C2ST statistic would be small.

Finally, across all benchmark examples we observe results that are consistent with the ones from
Figure 5: higher correlation means higher statistical power.
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(b) 100 observations (generated via sbibm package)

Figure 6: Accuracy / correlation of ℓ-C2ST(-NF) w.r.t. the oracle C2ST. We show scatter plots for all
sbibm examples on (a) 10 and (b) 100 different reference observations. Each point corresponds to
one observation and represents the MSE test statistic obtained for the oracle C2ST (x-axis) vs. our
ℓ-C2ST(-NF) method (y-axis). The diagonal represents the case where ℓ-C2ST(-NF) = C2ST. The
closer points are to the diagonal, the more accurate ℓ-C2ST is w.r.t. C2ST.

Ntrain

102 103 104 105

SLCP 10−4 / 0.12 10−3 / 0.03 0.31 / 0.82 0.21 / 0.40
Two Moons 10−27 / 10−9 10−3 / 0.19 10−16 / 10−11 0.052 / 10−5

Gaussian Mixture 10−8 / 10−12 10−7 / 0.01 0.006 / 0.35 10−14 / 0.006
Gauss. Linear Unif. 10−13 / 10−12 0.07 / 10−9 0.42 / 0.002 0.68 / 0.87
Bernoulli GLM 10−8 / 10−5 10−10 / 10−4 0.67 / 0.18 0.39 / 0.31
Bernoulli GLM Raw 0.03 / 0.37 10−8 / 10−4 10−4 / 0.04 0.92 / 0.06

Table 3: P-values of the Pearson test of non-correlation between the ℓ-C2ST( / -NF) and the
oracle C2ST MSE test statistic. Obtained for 100 observations (as plotted in Figure 6b) using
scipy.stats.pearsonr. Blue values indicate the cases for which the Pearson test rejects the null
hypothesis of non-correlation with 95% confidence (i.e. there is significance evidence for correlation).
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F.3 Benefit of the -NF version

The results of all benchmark experiments indicate that the -NF version of ℓ-C2ST works better when
the (true) posterior distribution of the model is "more complicated" than a Gaussian distribution
(see Table 2 at the beginning of Appendix F). This is for example the case for the Two Moons and
SLCP tasks: the posterior distributions are globally multi-modal and locally structured. We observe
in Column 3 of Figure 2 in the main paper that the -NF version requires less samples (i.e. lower
Ncal) to reach maximum power/TPR. This is also the case for the additional Bernoulli GLM task
(see Column 3 of Figure 5 in Appendix F.1). In contrast, for Gaussian Mixture and Gaussian
Linear Uniform, where the posterior is Gaussian, the normal ℓ-C2ST is as powerful or even better
than its -NF counterpart.

Finally, we refer the reader to the analysis in Section F.1 to point out an interesting observation: for
the Bernoulli GLM, the -NF version scales much better to high dimensional observation spaces than
the normal ℓ-C2ST. Note that this does not allow us to make any general conclusions, but it might be
worth further investigating this result.

F.4 Advantages of ℓ-C2ST w.r.t. local-HPD

First of all, it is important to mention that having uniform HPD-values is not a sufficient condition
for asserting the null hypothesis of consistency (see end of Section 3.3 in [48]). This is a clear
disadvantage compared to our proposal, which provides a necessary and sufficient proxy for inspecting
local posterior consistency.

Furthermore, the HPD methodology summarizes the whole information concerning θ into a single
scalar, while in ℓ-C2ST we handle the θ-vector in its multivariate form. In medium-high θ-dimensions
(m > 2 as in Bernoulli GLM) or for complex posterior distributions (SLCP), such summarized
information might discard too much information and not be enough to satisfactorily assess the
consistency of the posterior estimator. Indeed, the tasks where local-HPD has similar statistical power
to ℓ-C2ST are either in low dimensions (Two Moons) and / or have a Gaussian posterior (Gaussian
Mixture / Gaussian Linear Uniform). See Table 2 for a summary of those results w.r.t. data
dimensionality and posterior structure. For a detailed analysis of the scalability to high dimensional
data spaces see Appendix F.1.

Finally, local-HPD in its naive implementation is much less efficient than ℓ-C2ST (see Appendix C).
Note however that a new "amortized" version of local-HPD has recently been proposed [9] and could
be interesting to look at.
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