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A GENERALIZED RATIONAL APPROXIMATION OF1
EXPONENTIAL INTEGRATION (REXI) FOR MASSIVELY2

PARALLEL TIME INTEGRATION3

MARTIN SCHREIBER∗ AND JED BROWN†4

5
Abstract. Solving partial differential equations (PDEs) is one of the most traditional tasks in6

scientific computing. In this work, we consider numerical solutions of initial value problems (IVPs)7
problems partly or entirely given by linear PDEs and how to compute solutions with a method8
we refer to as rational approximation of exponential integration (REXI). REXI replaces a typically9
sequential timestepping method with a sum of rational terms, leading to the possibility to parallelize10
over this sum. Hence, this method can potentially exploit additional degrees of parallelization for11
scaling problems limited in their spatial scalability to large-scale supercomputers.12

The main contribution of this work lies in developing the “unified REXI” in which we show13
algebraic equivalence to other methods developed up to five decades ago. Such methods cover, e.g.,14
diagonalization of the Butcher table for implicit Runge-Kutta methods, Cauchy-contour integration-15
based methods, and direct approximations. To our best knowledge, this is the first time of such a16
comparison and deep investigation of all these methods.17

Finally, we will show the applicability of REXI to the nonlinear shallow-water equations on the18
rotating sphere, including HPC results. While previous REXI studies have focused on exposing more19
parallelism to enable faster time to solution, we also consider efficiency at prescribed accuracy and20
find that diagonalized Gauss Runge-Kutta methods (formulated as REXI) are compelling highly21
efficient methods.22

Key words. Exponential integrators, rational approximation, parallel-in-time, Cauchy contour,23
Butcher table, diagonalization24

AMS subject classifications.25

1. Introduction. Time integration of IVPs is one of the most traditional tasks in26
scientific computing, having seen two centuries of research. The IVPs we are interested27
in are given entirely or partly by linear autonomous PDEs, which are ubiquitous in28
applications ranging from daily weather forecasting [11] to full waveform inversion29
[43]. Integration of such systems is sequential in time using conventional methods such30
as explicit and diagonally implicit Runge-Kutta [29, 21]: Without special structure31
[20], the state at each stage is necessary to compute the next stage, either explicitly32
or implicitly. The time step size is typically limited by stability and/or accuracy33
requirements and the method is purely sequential in the time dimension.34

With the desire to solve PDEs with ever-higher resolutions, the demands on high-35
performance computers (HPC) have increased. The steady and ongoing increase in36
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2 M. SCHREIBER AND J. BROWN

HPC performance is provided almost exclusively by increased parallelism; increasing37
resolution in space (spatial scalability) can be solved in the same amount of time per38
time step, but the wallclock time to simulate for a fixed physical duration increases due39
to the increasing number of time steps to satisfy the Courant-Friedrichs-Lewy (CFL)40
constraint [9] for transport phenomena. Consequently, refinement to increase accuracy41
on a transient physical problem is always a scaling challenge, and many applications42
are unable to increase spatial resolution without sacrificing external timelines such as43
IPCC assessment reports [6] or design/manufacturing timelines. Parallelism in the44
time dimension is seen as an opportunity to utilize greater parallelism to meet strin-45
gent simulation timelines. The Rational Approximation of Exponential Integration46
(REXI) family of methods, which we briefly explain next, are a promising candidate47
for hyperbolic PDEs. Consider a linear autonomous PDE given by ∂U(t)

∂t = LU(t)48
with U(t) the current state and L a linear differential operator. Discretizing state49
variable and operator in space leads to50

(1.1) ∂U(t)

∂t
= LU(t)51

with L the discrete linear operator and U(t) the discrete state variables at time t.52
Solving such IVPs have been intensively studied over the last decades with various53
approaches, and one of the direct methods is the application of an exponential inte-54
gration55

U(t+∆t) = exp(∆tL)U(t)(1.2)56

with the solution U(t) at time t. We want to emphasize that no time discretization has57
been introduced and that the only approximations are related to space. The REXI58
method exploits the feature that exp(∆tL) only needs to be approximated within a59
spectrum related to time step size ∆t and the spectrum of L. In the present work,60
we can express a variety of different time integration methods by what we refer to as61
the “unified REXI” formulation given by62

U(t+∆t) ≈ γU(t) +
N∑

n=1

βn(∆tL− αn)
−1U(t)︸ ︷︷ ︸

Parallelization

(1.3)63

with the time step size given by ∆t, and (typically) complex valued REXI coefficients64
αn, βn and real-valued γ is a new generalization that we will use in the following65
sections. The remainder of this work investigates different ways to infer these REXI66
coefficients and their relation to a class of Runge-Kutta methods. Based on this, we67
will study their numerical properties in the linear and nonlinear context.68

2. Related Work.69

2.1. Exponential integration. Exponential integration methods are formu-70
lated for nonlinear systems factored as71

(2.1) ∂U(t)

∂t
= LU(t) +N(U(t)),72

where the linear part L is intended to capture the “fast” dynamics and N is the73
remaining nonlinear part. An exact ansatz for advancing this split equation over a74
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A GENERALIZED REXI FOR MASSIVELY PARALLEL TIME INTEGRATION 3

finite time interval is given by75

(2.2) U(t+∆t) = exp(∆tL)U(t) +

∫ ∆t

0

exp((∆t− τ)L)N(U(t+ τ))dτ.76

In this form, the linear parts are integrated precisely by an exponential function,77
hence overcoming potential stiffness challenges caused by the linear parts. Due to78
this advantageous property, the interest in these exponential integrators has steadily79
increased over the last decades (see, e.g., [25, 19]) where various approaches have been80
taken to approximate the integral of the nonlinearities. One of the most commonly81
known approximations of the integral is, e.g., given by (see [10])82

(2.3) U(t+∆t) = ϕ0(∆tL)U(t) + ∆tϕ1(∆tL)N(U(t))83

where we used the notations ϕ0(Z) = eZ and ϕ1(Z) =
eZ−I
Z . We skip further examples84

for discretized exponential integrator formulations and only like to point out the ϕ85
functions to be omnipresent in higher-order exponential integration methods, which86
is generally given, e.g., by87

ϕi+1(Z) = (ϕi(Z)− ϕi(0))Z
−1 for i ≥ 0.(2.4)88

An investigation of all different varieties of discretizations of exponential integra-89
tors incorporating the nonlinearities is beyond the scope of this work, and we continue90
on the linear parts. These linear parts can be either given by full linear PDEs or by91
time integrating only a part of linear PDEs where the underlying requirement of time92
integration results in problems of the form U(t+∆t) = ϕ0(∆tL)U(t) = exp(∆tL)U(t).93
In contrast to state-of-the-art time integration methods, which are used in operational94
codes, exponential integrators for linear operators avoid any time-discretization er-95
rors. However, the computational complexity can be tremendous and triggered the96
development of various ways to tackle this challenge [25]. We will briefly summarize97
the ones recently researched, namely based on Krylov subspaces and REXI.98

The exponential can be approximated using Krylov subspace solvers (see [26,99
39, 40, 8]) where we see polynomial approximations (e.g., based on Chebyshev) as100
a subclass of them. The advantage of such methods is their simplicity – assuming101
the Krylov solver framework given – since only vector multiplications with the linear102
operator are required. However, the potential drawbacks of Krylov subspace solvers103
are their inherent property of sequential iterations over the Krylov subspace, hence104
not providing ways to exploit additional degrees of parallelization. An alternative is105
to use the REXI method, which will be discussed in the next section in further detail.106

2.2. REXI. The particular way to evaluate the ϕ functions in the present work107
is strongly related to Padé approximations, which can be used as a first instance to108
approximate the ϕ functions. This approximation is most naturally related to how109
all Runge-Kutta formulations, e.g., based on the Butcher table, can be formulated for110
linear autonomous operators. However, higher-order polynomials in the denominator111
also make the development of solvers for such Padé approximations more challenging,112
and a partial fraction decomposition can be used. This well-known decomposition113
transforms a higher-order Padé approximation into a sum of lower-order terms, which114
can eventually be used to develop solvers parallelized over all terms. Although not115
being explained in the context of Padé approximations, REXI methods using the116
partial fraction decomposed form have been developed in different contexts. They117
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4 M. SCHREIBER AND J. BROWN

can be interpreted as a Padé approximation, which is why they are mentioned in this118
context.119

In what follows, we will provide an overview of different methods, which can all120
be phrased in REXI form. One of the earliest REXI formulations for hyperbolic PDE121
time integrators is related to the Laplace transformation (cf. [23, 7]). Here, the PDE is122
transformed with the Laplace operator, where the backward transform is conducted123
with a Cauchy Contour integral. This transformation can be again related to an124
exponential integration scheme, namely to the Cauchy Contour method mentioned125
below, see also [41]. More recently, time integration based on Laplace transformations126
with a circle-based Cauchy contour integration have been more intensively studied127
in [28] with ODEs, in particular filtering properties. However, it needed a more128
extensive (community) effort to develop other, e.g., higher-order methods around129
them, as has been extensively the case for exponential integration methods. This lack130
of advancements with the REXI Laplace transform is also why we only concentrate131
on exponential integration-based formulations. We want to point out that the same132
approaches could also be taken from the Laplace transform perspective.133

Another way to infer REXI coefficients originates from the REXI method based134
on Gaussian basis functions originally developed in [18], which only targets purely135
oscillatory problems (hence L has only imaginary or zero eigenvalues). This method136
also showed excellent properties regarding the wallclock-time vs. error for the linear137
shallow-water equations on the plane (see [33]) and on the rotating sphere [32, 34].138

Although initially developed for analytical reasons, the Cauchy contour integra-139
tion method can indeed be used for REXI time integration. As pointed out above, one140
of the first times this has been used as a REXI-like method was with the Laplace trans-141
formations. However, exponential formulations (see Eq. 2.2) provide a more direct142
and substantial established way to integrate in time. Here, the property of ϕi being143
an analytical function plays a fundamental role in the Cauchy contour integration144
method as well as the exponentially fast converging trapezoidal rule to approximate145
the contour [41]. This method has already been used in different works: The ap-146
proximation of ϕi(x) evaluations on scalar values has been used in various works to147
overcome singularities of ϕi>0 singularities at the origin, see, e.g., [5]. It has been148
used mainly for parabolic problems [35], also pointing out the potential of paralleliza-149
tion for the first time, as well as using a Carathéodory-Fejér method [31]. Regarding150
real applications, it was applied to nonlinear shallow-water equations on the rotating151
sphere [34], providing improved wallclock time-to-solution by using an enlarged and152
shifted contour to avoid numerical cancellation errors.153

2.3. Parallel-in-time. Overcoming the wallclock time limitations of simula-154
tions, which cannot be accomplished by any further increase of parallelization in155
the spatial dimension, is the main focus of the parallel-in-time algorithms. Here, two156
different types of approaches exist: (a) minimally-invasive methods that take existing157
time integration methods and incorporate them into an iterative-in-time correction158
scheme (see, e.g., Parareal [22] and PFASST [24]); and (b) invasive methods that159
replace an existing time stepping with one that works entirely differently. Very often,160
one likes to use a combination of these approaches to enhance the convergence speed161
of the correction scheme in time. REXI is an invasive parallel-in-time algorithm (see162
[33]) since it requires efficient complex-valued solvers for each REXI term.163

3. Unified REXI formulation. We start directly with the REXI formulation164
which will provide a standard fundament for the different variants to infer REXI165
coefficients. Given a discrete linear operator L, we can use an eigendecomposition166
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L = QΛQ−1 with the eigenvectors stored in the columns of Q and the eigenvalues167
placed correspondingly on the diagonal of Λ.168

(3.1) ∂U(t)

∂t
= LU(t) = QΛQ−1U(t)169

where Q and Λ are the matrices with the eigenvectors and eigenvalues on the diagonal,170
respectively. In terms of the characteristic variable u = Q−1U and due to diagonal-171
only Λ, we get independent equations of the form172

∂ui(t)

∂t
= λiui(t)173

with λi the individual Eigenvalues on the diagonal of Λ. In characteristic variables,174
the unified REXI formulation (1.3) becomes175

(3.2) ui(t+∆t) ≈ γui(t) +

N∑
n=1

βn(∆tλi − Iαn)
−1ui(t).176

Since each component ui is decoupled, we can freely drop the subscript. For the177
purpose of time integration, the linear operator L is completely described by its178
eigenvalues λ, where imaginary components =(λ) represent oscillation and negative179
real values <(λ) < 0 describe a diffusive/damping behavior. Note that substituting180
λ = 1, t = 0,∆t = x, u(0) = 1 in (3.2) yields exp(x) = γ +

∑
n βn(x − αn)

−1, which181
provides intuition as a sum of rational functions.182

3.1. Exploiting symmetry of coefficients. We note that it is possible to183
reduce the workload by a factor of two for real-valued operators L when the poles184
α consist of complex conjugate pairs (see, e.g., [23, 18]). This optimization does not185
change the relative performance of the methods we consider here, so for simplicity,186
we do not apply it.187

3.2. REXI-derived higher-order ϕ forms. Particular higher-order exponen-
tial time integrators such as (2.3) require evaluations of higher-order ϕi|i>0. REXI
coefficients for these functions are so far computed with methods tailored to them, see
[18, 32]. We briefly present an new alternative way to compute them which is easily
applicable. Given REXI coefficients for

ϕi(x) ≈ γ +
∑
n

βn(x− αn)
−1

we can compute higher-order REXI approximations with188

ϕi+1(x) =
ϕi(x)− ϕi(0)

x
=
γ +

∑
n

βn

x−αn
− ϕi(0)

x
189

=
∑
n

(
βn

αn(x− αn)

)
+

1

x

∑
n

(
−βn
αn

)
+ γ − ϕi(0)︸ ︷︷ ︸

=0

 =
∑
n

βn

αn

x− αn
.190

The cancellation of the terms is a consequence of the stationary modes which require191 ∑
n

(
− βn

αn

)
+ γ = ϕi(0). Note that this leads to different coefficients compared to192

tailored computations.193
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6 M. SCHREIBER AND J. BROWN

3.3. Linear solvers for REXI terms. Efficient solvers are required for each194
REXI term. Over the last decades, this efficiency aspect turned out to be a very195
challenging task. E.g., in the context of shallow-water equations, this results in the196
original Helmholtz problem (rather than a backward Euler time step) where it is197
known that no off-the-shelf solvers such as GMRES and multigrid methods work in198
a highly-scalable way (see, e.g., [12]). This is ongoing research, and in the present199
work, we are using solvers developed in spherical harmonics formulations, hence a200
solver tailored particularly to one PDE problem.201

4. REXI methods. These sections cover various ways to infer REXI coefficients,202
which represent, from our point of view, the most interesting cases. The goal is not203
to show all methods in great detail but their fundamental properties.204

Although we present methods in characteristic form (3.2), the proposed methods205
also hold in system form (1.3). In the following, we will use the error206

(4.1) e(z) =

∣∣∣∣∣γ +
∑
n

βn(z − αn)
−1 − exp(z)

∣∣∣∣∣207

to compute the deviation from ϕ0(z) = exp(z) with z = λ∆t denoting the point on208
the complex plane to evaluate. Since approximating diffusive problems is relatively209
straightforward, we focus on purely oscillatory problems with λ ∈ iR. The REXI210
methods we consider have complex-conjugate poles α, thus e(z) = e(z̄) and so we211
only plot errors for =[z] ≥ 0.212

4.1. B-REXI: Butcher/Bickart. A Butcher table [2] provides a canonical rep-213
resentation of s-stage Runge-Kutta methods [29, 21] in terms of a matrix A ∈ Rs×s214
and completion vector b ∈ Rs, with c = A1 determining the abscissa (which we will215
see are related to REXI poles and 1 is a column vector of ones). The coefficients are216
selected to achieve the desired order of accuracy and stability properties as well as217
solution procedure, such as explicit, diagonally implicit, and fully implicit.218

For fully nonlinear and non-autonomous ODEs ∂u
∂t = f(t, u), a Runge-Kutta219

method in Butcher form requires solving a system of stage equations220

(4.2) ys = un +∆t

S∑
j=1

Asjf(t+ cj∆t, yj), i = 1, ..., S221

and evaluating the completion formula un+1 = un +∆t
∑S

j=1 bjf(t+ cj∆t, yj). Here,222

∆t is the time step size, and y = {yj}Sj=1 is the vector of stage solutions. For223
linear autonomous equations, we can choose characteristic variables, in which case224
f(t, u) = λu, and the stage equations (4.2) reduce to y = 1u+∆tλAy and225

(4.3) un+1 =
[
1 + ∆tλbT (I −∆tλA)−11

]︸ ︷︷ ︸
R(∆tλ)

un,226

where we have identified the stability function R(z) ≈ exp(z).227

4.1.1. Derivation. We now show that unified REXI is algebraically equivalent228
to Runge-Kutta methods with a diagonal Butcher matrix A, starting with a decom-229
position inspired by the solution method developed independently by [3, 1]. Given an230
eigendecomposition A = EDE−1 (which exists for the collocation methods we will231
consider [16]), we can rewrite (4.3) as232

(4.4) un+1 =
[
1 + ∆tλbTE(I −∆tλD)−1E−11

]
un.233
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Fig. 4.1. Error studies for the B-REXI method with (a) Gauss-Legendre and (b) Chebyshev
quadrature points for the error given in Eq. (4.1). Each color refers to the same number of stages,
marked to B-REXI or RK form. The non-diagonalized version provides significantly better results
compared to the diagonalized version. In particular, results with B-REXI using 32 or more stages
suffer from significant defects in the solution.

With W = diag(E−11)−1, we may transform to234

(4.5) un+1 =
[
1 + ∆tλ bTEW−1︸ ︷︷ ︸

b̃T

(I −∆tλD)−1WE−11︸ ︷︷ ︸
1

]
un,235

which is a diagonal Runge-Kutta method with A replaced by D and the original236
completion vector b replaced by b̃. Rewriting this to a REXI form leads to237

un+1 = un +∆tb̃
T
(
− (∆tD)

−1
)(

I + (∆tλD − I)
−1
)

1un

=
(
1− b̃

T
D−11

)
︸ ︷︷ ︸

γ

un +
(
−b̃

T
D−2

)
︸ ︷︷ ︸

βT

∆tλ− D−1︸︷︷︸
diag(α)

−1

1un.
(4.6)238

Finally, we can write this in the unified REXI formulation (1.3) with239

γ = 1− b̃
T
D−11 βT = −b̃

T
D−2 α = diag

(
D−1

)
.(4.7)240241

We have derived a transformation from implicit RK method with nonzero eigenval-242
ues to REXI form with the same stability function. Given a REXI method, one243
can construct an equivalent diagonal RK method (with complex coefficients) via244

D = diag(α)−1 and b̃
T

= −βTD2. Note that a conventional Butcher table A, bT245
is not uniquely determined by this procedure. We remark that standard techniques246
for analyzing Runge-Kutta methods can readily be applied to REXI methods. This247
includes barriers such as Theorem 4.3 of [20], which establishes that diagonal (parallel)248
RK methods can be no more than second order accurate for nonlinear problems.249

4.1.2. Error studies. We choose the Gauss-Legendre and Chebyshev quadra-250
ture points for the error studies, with results given in Figure 4.1. We can observe251
that increasing the number of stages in the non-diagonalized version (using a dense252
Butcher table) always improves accuracy per stage. In contrast, B-REXI accuracy253
degrades when too many stages are used, becoming apparent beyond 8 stages. This254
effect is related to ill-conditioning that can be interpreted via the condition number255
of the eigenbasis E that effects diagonalization (4.5) or via the 1-norm of the com-256
pletion vector b̃, as shown in Figure 4.2. Note that completion vectors must sum257
to 1 so ‖b̃‖1 = 1 is optimal (and indeed holds for the original completion vector b);258
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Fig. 4.2. Condition number of the eigenbasis E for the B-REXI method on Gauss-Legendre
collocation points (left) and 1-norm of completion vector b̃ for the diagonalized method (right). The
rounding errors incurred by the exponential growth precludes use of this approach for many stages.

a large 1-norm indicates the existence of large positive and negative entries, leading259
to cancellation errors. Despite this downside, the numerical experiments of §6 will260
show that these B-REXI (diagonalized Gauss Runge-Kutta) methods with lower stage261
counts are remarkably efficient compared to the other (better-conditioned) families.262

4.1.3. Relation to Crank-Nicolson. Since this will be relevant for the results263
section, we would like to show the relation between the B-REXI approximation with264
a single pole using the Gauss-Legendre quadrature using just a simple pole (centered265
at the interval). This will lead to the terms γ = −1, α = 2 and β = −4 which266

yields the REXI approximation exp(x) ≈ −1+ −4
x−2 =

1+
1
2x

1− 1
2x

with the equation on the267

right hand side matching the Crank-Nicolson formulation. This REXI approximation268
with a single term resembles the Crank-Nicolson formulation with a midpoint rule269
(forward Euler on nominator and backward Euler on denominator for x = ∆tL and a270
half-time step size). This will explain that later numerical results with B-REXI match271
the Crank-Nicolson method. Using more REXI poles will result in even higher-order272
approximations.273

4.2. T-REXI: Terry’s Rational Approximation of the Exponential In-274
tegrator. The approach which we will refer to as T-REXI was introduced in [18].275
Several steps are required to gain the α and β coefficients. Since these steps account276
for the computational workload and the properties, we briefly describe the derivation,277
including a discussion on the advantages and limitations of this method.278

4.2.1. Derivation. The first step consists of an approximation of a Gaussian279
basis function ψc(x) as follows:280

(4.8) ψh(x) = (4π)−
1
2 e−x2/(4h2) ≈ Re

(
W∑

k=−W

ωk

ixh + (µ+ ik)

)
281

Using W = 11, hence L = 2W + 1 = 23 terms in total, is sufficient for an accurate282
approximation up to numerical double precision (see [18]). The advantage of this283
representation is an efficient representation of the Gaussian basis function in Fourier284
space. The proxy with the Gaussian basis function allows for computing the coeffi-285
cients νk for an approximation of an oscillatory function within an approximate range286
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Fig. 4.3. Error studies for the T-REXI method for different M and h values. M relates to the
number of Gaussian functions via 2M+1 to approximate an oscillation with N = 2(2M+L) number
of REXI terms. Left image: We can observe a very high error for a low number of Gaussian basis
bumps, which cannot be improved by changing h. Right image: Using significantly more Gaussian
functions leads to significant improvements. In particular, we observe that optimal values for h
influence the quality of the approximation. An optimum can be observed for h ≈ 0.8.

x ∈ [−Mh;Mh] in Fourier space, yielding287

(4.9) exp(ix) ≈
M∑

k=−M

νkψh(x+ kh).288

Both steps are then combined, resulting in the approximation289

Re (exp(ix)) ≈
M+W∑

n=−M−W

Re
(
βRe
n (ix+ αn)

−1
)

(4.10)290

where we only showed the Re one. We combine Re and Im to the form291

exp(ix) ≈
M+W∑

n=−M−W

βn(ix− αn)
−1(4.11)292

eventually leading to the REXI formulation with γ = 0, but x related directly to the293
imaginary value on the complex plane. So far, we only targeted the ϕ0 function, and294
we like to point out that this method can also be used to approximate other ϕi terms295
(see [18]) or directly with the REXI coefficients (see §3.2). We want to emphasize296
that this approximation was derived only for purely oscillatory functions and, hence,297
does not include approximations with non-zero real eigenvalues components.298

4.2.2. Error studies. We investigate the errors of the T-REXI method in Fig-299
ure 4.3. On the left image, we can observe that we need a minimum number of300
Gaussian basis functions to approximate the oscillations. The right image shows ex-301
ceptionally accurate results for h ≈ 0.8 in the range x ∈ [0; 10] and a rather large302
region of accuracy of about e(x = 128) ≤ 10−11. Other figures (not included) show303
that increasing M leads to a linear increase of the size of the region of high accuracy304
(see [18]) with an optimum value of h ≈ 0.8. For the remainder of this work, we will305
use h ≈ 1.0 as a compromise between accuracy and total workload.306

4.3. CI-REXI: Cauchy Contour Integral method. Cauchy Contour Inte-307
gral (CI) methods offer an alternative way to infer the REXI coefficients (see e.g.308
[42, 4, 34]). We start with the general CI equation given by309

g(x) =
1

2πi

∮
Γ

g(z)

z − x
dz(4.12)310
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where g(x) is one of the analytic ϕi functions (2.4), Γ the contour enclosing the311
eigenvalue λ for ODEs and all eigenvalues on the diagonal of Λ for PDEs.312

4.3.1. REXI Derivation. Regarding the contour, we can use different ap-313
proaches. In what follows, we used parametrized contours Γ = {σ(w)|w ∈ [0; 1]}314
with the contour function σ(w) : R → C. Using integration by substitution and the315
contour function, we obtain316

g(x) =
1

2πi

∮ 1

0

g(σ(w))

σ(w)− x
σ′(w)dw =

∮ 1

0

i(2π)−1g(σ(w))σ′(w)

x− σ(w)
dw.(4.13)317

Using the trapezoidal rule, which is exponentially fast converging on periodic bound-318
aries (see [41]) with N trapezoidal points in total, we obtain319

g(x) ≈ 1

N

N∑
n=1

i(2π)−1g(σ(wn))σ
′(wn)

x− σ(wn)
with wn =

n

N
.(4.14)320

Again, we can infer a unified REXI formulation (1.3) by setting321

(4.15) αn = σ(wn) βn =
ig(σ(wn))σ

′(wn)

N2π
γ = 0.322

An ellipse contour is given by σ(w) = Rx cos(iw2π) + iRy sin(iw2π) − µ with µ323
related to the center of the ellipse. This leads to the coefficients324

αn = Rx cos(iw2π) + iRy sin(iw2π)− µ(4.16)325

βn =
i

N
exp(σ(w)) (−Rx sin(iw2π) + iRy cos(iw2π))(4.17)326

A study of all kinds of contour shapes (rectangle, bean, polygonal shapes, etc.) is327
beyond the scope of this work. In the next section, we will mainly focus on the circle328
to show interesting characterizations and use the ellipse for numerical studies to show329
its superiority to another REXI method. In the following, we will refer to the special330
case of a circle as CI-REXI and to the ellipse case as CI-EL-REXI.331

4.3.2. Characterization and numerical issues. Next, we characterize the332
REXI terms, referred to as the β characterization, with an overview in Figure 4.4.333
We remind the reader that REXI approximates functions with a linear combination334
of rational basis functions. Depending on the placement of these functions (related335
to αn) and the weighting of each basis (related to βn), we have three different cases:336

a) Obsolete REXI terms: Contours Re(σ(x)) → −∞ relating to areas of the337
contour in the distant negative real axis on the complex plane have exponentially338

fast decaying β coefficients, hence limσ→−∞ βn = limσ→−∞
i exp(Re(σ(wn)))σ

′(wn)
N2π = 0.339

Once a particular βn coefficient undershoots a threshold εβ , the corresponding REXI340
term can be removed if βn < εβ and εβ = εβ/N . The last equation incorporates that341
a higher numerical resolution results in smaller values of the β weights.342

b) Regular REXI terms: This characterization refers to those REXI terms343
that can be incorporated in the approximation in a useful way.344

c) Cancellation-prone REXI terms: These terms are related to the contour345
Re(σ(x)) → +∞. Approximating the exp function in the far distance to the right346
of the origin leads to exponentially increasing the β values. An oscillatory function347
is also parallel to the imaginary axis, which is approximated. Both effects lead to348
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(a) obsolete
REXI terms

(c) cancellation
instability

(b) regular
REXI terms

(a) obsolete
REXI terms

(c) cancellation
instability

(b) regular
REXI

Fig. 4.4. Complex plane for the real (left image) and imaginary (right image) value of exp(x).
We highlight the different areas related to the different β characterizations.

30 20 10 0 10 20
Re( t)

20

15

10

5

0

5

10

15

20

Im
(

t)

Circle (centered)
Circle (shifted)
Rectangle

30 20 10 0 10 20
Re( t)

20

15

10

5

0

5

10

15

20

Im
(

t)

Elipse
Bean

Fig. 4.5. Selection of contours used with the CI-REXI method.

very large positive and negative numbers, resulting in severe cancellation errors in349
this region. Consequently, this region should be avoided.350

Examples of different contours are provided in Figure 4.5. Each contour targets a351
particular problem. The circle can be used for the approximation of a small spectral352
radius λ∆t < 10. Once requiring a larger approximation along the imaginary axis, the353
radius cannot be enlarged without sacrificing accuracy due to cancellation errors in354
βn, see (c) above. This can be avoided by enlarging the radius and choosing the value355
µ, hence shifting the circle, to exclude a contour across areas with Re(x) > 10, which356
leads to the shifted circle. Other contours are, e.g., given by the ellipse or rectangle357
targeting the approximation of a spectrum on or close to the imaginary axis and358
the bean contour targeting an approximation of diffusive and oscillatory problems.359
Studies about these contours are beyond the scope of this work and we will focus on360
the (shifted) circle and ellipse throughout the remainder of this paper.361

4.3.3. Error studies. We conduct error studies using the shifted circle CI-REXI362
method. The first study is based on a circle centered at the origin, with studies for363
different radii. The second is for a circle which is shifted to overcome problems related364
to the cancellation effects (see (c) above).365

Results are given in Figure 4.6 with plots based on a fixed number of N = 256366

This manuscript is for review purposes only.



12 M. SCHREIBER AND J. BROWN

10 3 10 2 10 1 100 101 102

i t

10 15

10 12

10 9

10 6

10 3

100

Ab
so

lu
te

 e
rro

r f
or

 u
(

t)

Centered circle CI-REXI method, N=256

radius = 5.0
radius = 10.0
radius = 25.0
radius = 50.0
radius = 75.0
radius = 100.0

10 3 10 2 10 1 100 101 102

i t

10 15

10 12

10 9

10 6

10 3

100

Ab
so

lu
te

 e
rro

r f
or

 u
(

t)

Shifted circle CI-REXI method, N=256
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Fig. 4.6. Error studies for the centered circle (left) and shifted circle (right) CI-REXI method.
The centered circle suffers from cancellation effects for large radii, whereas the shifted circle limits
these effects. In particular, for a larger imaginary spectrum to be approximated, adding more REXI
poles leads to improved accuracy, which is not the case for the centered circle CI-REXI method.
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Fig. 4.7. Error studies for the shifted circle with N = 128 REXI poles (left) and N = 2048
REXI poles (right) with different εβ pruning values. We can observe significant reductions in the
number of required REXI poles.

REXI poles. We can observe that the errors significantly increase for the centered367
circle once the radius exceeds a certain threshold. In particular, errors for a larger368
radius – including a larger spectrum on the imaginary axis – are outside the plotting369
range. The results for using a higher number of REXI poles do not significantly370
improve the results. Using a shifted and enlarged circle, we can gain improved results371
that overcome cancellation errors.372

So far, we only investigated the error itself but neglected the total workload.373
Pruning β with εβ (exploiting characterization (a)), we can reduce some workload374
significantly as depicted in Figure 4.7 for larger radii. For a moderate number of REXI375
poles N = 128 (left image), we observe a pruning close to the accuracy of REXI itself,376
hardly impacting the results. In contrast, larger radii already suffer from inaccuracies377
of the used quadrature, with errors outside the plotting range. For a larger number of378
REXI poles N = 2048 (right image), we observe very robust pruning, hardly affecting379
the accuracy of the REXI approximation quality but leading to a significant reduction380
of the workload.381

5. Stability, normalization & filtering. So far, we have only studied errors382
in approximating the ϕ0 function with REXI methods. However, once we use REXI383
methods for time integrating differential equations, additional properties such as sta-384
bility and convergence are assumed to be relevant. We will investigate these properties385
in this section for the ODE du(t)

dt = λu(t).386
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Fig. 5.1. Stability plots. For B-REXI (left): we observe an excellent stability behavior known
for collocation methods. T-REXI (right): We observe instabilities at the imaginary axis for the
boundaries of the approximation range.
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Fig. 5.2. Stability plots for CI-REXI. The left image depicts the discrete contour points chosen
so that one α pole lies on the imaginary axis. This leads to instabilities. The right image depicts a
half-shifted variant of it.

5.1. Stability. The stability plots are generated based on the stability function387
R(λ), which is defined by the execution of a single-time step u(t+∆t) = R(∆tλ)u(t).388
We will plot the amplification factor |R(λ)| of the solution u(t) over a time step389
∆t = 1.390

B-REXI (left image in Figure 5.1): The stability reflects the A-stability of these391
methods on the entire left half plane. In particular, stability is given for the entire392
imaginary axis, a known property of collocation methods.393

T-REXI (right image in Figure 5.1): We can observe that T-REXI provides394
excellent stability for purely imaginary values. However, we can observe instabilities395
on the imaginary axis once we reach the boundaries of the approximation range. This396
can be avoided by an additional T-REXI filter, which could be applied to obtain397
stability also outside the approximation range (see [18]).398

CI-REXI: Finally, we look at the CI-REXI method based on Cauchy contour399
integral methods in Figure 5.2. The left image shows an unstable region along the400
imaginary axis. This is caused by an α pole directly placed on the imaginary axis.401
We can avoid this by choosing the support points of the trapezoidal rule differently.402
The right image shows a solution to this by shifting them by a half interval, effectively403
avoiding this instability, and CI-REXI becomes unconditionally stable for oscillatory404
systems. To summarize, if using the CI-REXI method, one should avoid placing poles405
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Fig. 5.3. Contour lines for stability plots for CI-REXI with half-shifted intervals. We can
observe an excellent stability region over this entire range.

near the eigenvalues of the linear operator.406
A contour plot comparing CI methods with an increasing number of poles and407

approximation range is provided in Figure 5.3. We adopted the contour of the circle408
to pass through the points ±10i, ±20i, and ±40i on the imaginary axis for increasing409
the number of poles while keeping the contour never exceeding 10 on the real axis.410

5.2. Normalization. This section concerns particular problems for stationary411
or nearby modes requiring special treatment with the T-REXI method. So far, we412
only assessed errors for a single time step, and this section will investigate the accuracy413
and conservation properties of stationary modes concerning REXI methods. We will414
use Dahlquist’s equation (5) with λ = 10−3i, which is time-integrated until t = 100415
using different REXI methods. The particular choice of this low frequency is related416
to almost stationary modes of PDEs. Such modes play an important role, e.g., for417
geostrophic balance in atmospheric simulations, and not preserving them might lead418
to spurious/parasitic modes.419

An investigation of the results at the absolute ODE errors at t = 100 is given in420
Figure 5.4. The left column shows REXI methods as they have been computed with421
the methods from before. We can observe that the CI-REXI method (top left image)422
has REXI coefficients preserving the stationary modes. However, the T-REXI suffers423
from significant defects in it. A normalization can be used to overcome this problem424
where stationary modes require

∑
n

βn

x−αn
= s = 1 and we can ensure this by simply425

rescaling βn so that βnew
n = βn

s .426
The results for this are given in the right column, where we observe relatively427

small improvements for the CI-REXI method (right top image). However, for the T-428
REXI method, the errors significantly drop from 10−8 to about 10−13 once applying429
this normalization. We also do not see any accuracy degradation for very large time430
step sizes. Hence, this normalization can be used without impacting the accuracy of431
other choices of λ, and we will use it throughout the remainder of this work.432

We close with two side comments: First, studies for purely stationary modes433
(λ = 0, not shown here) showed that the errors are increasing for smaller time step434
sizes, but only due to round-off errors. Overall, these results still lie within the range435
of numerical precision; hence, we skipped them here. Second, we skipped the B-REXI436
method since it is not prone to this problem for a number of REXI terms usable as437
solvers.438
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(a) CI-REXI, without normalization (b) CI-REXI, with normalization
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(c) T-REXI, without normalization (d) T-REXI, with normalization
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Fig. 5.4. Error studies for different REXI methods of time step size ∆t vs. absolute error at
u(t = 100). The left column shows errors without normalization, and the right column shows errors
with normalization for near-stationary modes. As we can observe in the first row, the normalization
for near-stationary modes with the CI-REXI method does not lead to any significant improvements.
In contrast, significant improvements can be observed for the T-REXI method. See the text for a
detailed explanation of the results.

5.3. Filtering. This brief section points out the filtering capabilities of the dif-439
ferent REXI methods. We define a filter to apply a reduction of the amplitude of440
ϕi(x) for a particular set of eigenvalues. It is, in particular, desirable to filter out441
(setting them close to zero) the so-called “fast modes” for x starting at a threshold442
and to have a smooth transition of the change in amplitude towards filtering out443
modes. Since diffusive problems already have a reduction of amplitude given natu-444
rally by their mathematical properties, we will again solely focus on purely oscillatory445
problems, with results also applicable to a mix of oscillatory/diffusive problems.446

Using the B-REXI method, we can observe that the stability contour follows ex-447
actly the imaginary axis. Hence, there is no filtering at all. For the T-REXI method,448
we skip a discussion of filtering due to the inherent instability at the boundaries of449
the approximation range and point out to an additional filter proposed in [18]. The450
CI-REXI method has a natural filtering. This is due to the property that points451
outside the contour are rapidly approaching 0 as a property of the Cauchy contour452
integral.453

6. Comparison of REXI methods. This section aims to provide guidance454
about which REXI method is best, and we will explore this in different ways. A455
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(a) B-REXI (b) CI-REXI, β = 10−9 pruned
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Fig. 6.1. Error studies for different REXI methods of time step size ∆t vs. absolute error at
u(t = 100). B-REXI (left top) is suitable only for smaller timestep sizes. CI-REXI can be tuned
to allow also very large time step sizes. T-REXI requires many poles for small time step sizes and
allows also very large time step sizes. CI-EL-REXI allows also very large time step sizes and in
addition requires the least number of poles for similar accuracy.

full exploration of all parameter combinations is obviously not possible. Hence, we456
focused on the ones that were most rational to us based on far more experiments than457
shown here. We first continue with concrete examples using a linear oscillatory ODE458
based on the Dahlquist equation followed by a PDE with the nonlinear shallow-water459
equations on the rotating sphere to gain insight into numerical properties once we460
apply this to more realistic test cases.461

Based on the eigendecomposition, we classify linear operators as oscillatory, dif-462
fusive, or both. A purely oscillatory system [10] requires imaginary-only eigenvalues463
(iλ ∈ R) whereas a diffusive behavior is based on negative real eigenvalues (λ ∈ R and464
λ < 0). Since oscillatory/hyperbolic systems belong to the most challenging problems465
for REXI methods, we will solely focus on them.466

6.1. ODE. We investigate the ODE systems again with Dahlquist’s equation467
(5) using λ = 1 and the simulation results at t = 100. We use u(0) = (1 + i)/

√
2468

as an initial condition. We compare various REXI methods in Figure 6.1. The total469
numbers of REXI coefficients are given by N .470

The B-REXI method (left upper image) performs extremely well for small step471
sizes where only a few poles are required. For larger time step sizes of ∆t ≈ 10, using472
16 poles is sufficient to gain single precision accuracy.473

The CI-REXI method (right top image) is tuned with a contour never exceeding474
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a real value of 10 and to include the points on the imaginary axis given by Im(λmax).475
The CI-REXI method clearly outperforms the B-REXI method for medium-sized time476
step sizes and also allows taking very large time step sizes.477

The T-REXI method (left bottom image) requires a significant number of REXI478
poles if only small time step sizes should be taken. This improves once larger step479
sizes are taken since the initial overheads of the large number of poles (due to the480
rational approximation of the Gaussian) have less relative impact on the number of481
REXI coefficients.482

In addition, we also investigated the CI-EL-REXI (right bottom image) method,483
which is a natural choice for purely oscillatory problems. We chose the semi-major484
axis of the ellipse along the real axis in an empirical way and never exceeding 10 to485
avoid numerical issues. This method outperforms both CI-REXI and T-REXI almost486
everywhere regarding accuracy and number of terms required to solve it.487

6.2. PDE example. In this final section, we will investigate different REXI488
methods with the shallow-water equations (SWE) on the rotating sphere. We decided489
not to investigate many different PDEs, but to go into depth of exponential integration490
for a single one which is of purely hyperbolic nature. We chose the SWE since they491
are frequently used to assess the quality and performance of discretizations in time492
and space concerning horizontal aspects of the full Euler equations solving the fluid493
dynamics equations related to the atmosphere. In velocity form, the nonlinear SWE494
are given by495

∂

∂t

(
Φ
~V

)
=

(
−Φ∇ · ~V
−∇Φ

)
︸ ︷︷ ︸
Lg : linear gravity

+

(
0

−f~k × ~V

)
︸ ︷︷ ︸
Lc: linear Coriolis

+

(
−∇ ·

(
Φ′~V

)
−~V · ∇~V

)
︸ ︷︷ ︸

N : nonlinear term

(6.1)496

with the horizontal velocity ~V on the longitude/latitude field, geopotential Φ = g · h497
with height h, average geopotential Φ = g · h with average height h, a linearization498
around a state h = 105m, Coriolis effect f = 2Ω sin(φ) with latitude φ and angular499
rate of rotation Ω. We like to emphasize that no (hyper)viscosity is used in this PDE500
to avoid a simplification of the problem due to diffusive effects.501

We use this PDE due to its particularly interesting features: The linear gravity502
term Lg is the stiffest one and can be solved with exponential integrators either503
analytically or with REXI. We want to point out that a comparison of some methods504
has already been under investigation in former work [34] but solely with the CI-505
REXI method and the geopotential field, which has also been identified to be the506
best Strang-split method. Anyhow, this study also lacked comparisons with other507
variables, particularly other REXI methods, which will lead to new revelations, as508
presented in the following sections. Since including the T-REXI method would not509
provide any beneficial insight, since the CI-REXI method is computationally much510
cheaper and provides additional benefits, we skip this method in the following studies.511

6.2.1. Spatial discretization. We solve these equations using the SWEET soft-512
ware1 which utilizes spherical harmonics (SH) to solve these equations. Such a global513
spectral basis leads to a substantial reduction of spatial errors (besides a lack of non-514
linear interactions at the limit of resolution), hence allowing us to put the focus on515
time integration methods. We like to refer to [32, 15] for a detailed description of the516
spherical harmonics. In particular, we work with the vorticity-divergence formulation517

1https://sweet.gitlabpages.inria.fr/sweet-www/
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Fig. 6.2. Vorticity field of barotropic instability benchmark after 8 days of inviscid shallow-water
equations. We see the development of various large and small-scale vortices.

in spectral space to avoid spurious modes if one would convert the velocity to spectral518
space. The standard 2

3 rule [27] is used for anti-aliasing to evaluate bi-non-linearities.519

6.2.2. Time stepping solvers. We can find highly efficient solvers in spherical520
harmonics space for direct exponential integration (without numerical approxima-521
tions), REXI, and implicit Euler time integrators.522

Regarding the direct exponential integration, we can straightforwardly find a
direct solution using the vorticity divergence form, see also [38]. Due to orthogonality,
each mode can be separately written as[

∂tΦ
′

∂tδ

]
=

[
−Φ

−∇2

] [
Φ′

δ

]
=

[
G

D

] [
Φ′

δ

]
with the famous identity ∇2 = −n(n + 1) for this harmonic. Using D = −∇2 and
G = −Φ for convenience, we find the eigenvectors Q and eigenvalues diag(Λ)

Q =

[
−
√

G
D +

√
G
D

1 1

]
Q−1 =

 1
2

√
D
G

1
2

− 1
2

√
D
G

1
2

 Λ =

[
−
√
DG √

DG

]
.

We can then use U(t + ∆t) = Q exp(∆tΛ)Q−1. From an algebraic perspective, this523
method matches the method in [17], which uses a rather cumbersome derivation using524
Laplace transforms, whereas our derivation is more elegant and short. This method525
is also used for investigating errors526

For the exponential integration of the full linear terms L = Lg + Lc, this would527
relate to the Hough modes [44] and no direct exponential solution has been derived528
yet. Hence, it requires evaluations of the form (∆tL − α)−1 with complex-valued α.529
The first time this was solved for REXI using spherical harmonics was based on a530
method requiring transformations to grid space [32]. The present work is based on531
an implicit time stepper [37] of the form (I −∆tL)−1 which has been transformed to532
solve a REXI term by simply using a complex-valued time step size. We also used it533
for the implicit time integration of L as it has been originally suggested.534

6.2.3. Benchmark. Our benchmark is based on the barotropic instability test535
case (see [14]). This benchmark is initialized with a geostropically balanced initial536
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Short notation Description
ERK(X, o = N) Explicit Runge-Kutta with order N

IRK(X) Backward Euler using 2nd order Crank-Nicolson
SS(X,Y ) 2nd order Strang-splitting as explained in the text with F1 = X

and F2 = Y
EXP (X) Direct exponential integration on X
REXI(X) A particular REXI method on X

ETDRK(X,Y ) 2nd order ETDRK method with X being exponentially inte-
grated and Y treated as the nonlinearity

X + Y Time tendencies of terms X and Y are added
Table 6.1

Overview of time integration methods. Note that they can be composed together.

condition, which is perturbed by a small Gaussian bump (see reference for detailed537
initial conditions). We time integrate this system for 8 days with results in Figure 6.2.538

6.2.4. Time integration. Regarding the particular Runge-Kutta (RK) based539
time integrators, we used 2nd order midpoint, 3rd order Heun, and classical 4th order540
RK. The reference solution to compute the errors is based on the 4th order RK with541
a time step size of ∆t = 5.542

Besides the methods already introduced, our investigation also includes the 2nd543
order Strang splitting (SS) method [36]. With SS, a PDE given by two terms d

dtU =544
F1(U)+F2(U) can be integrated with 2nd order accuracy if a 2nd order accurate time545

integrator R∆t
Fi

is provided for time step size ∆t by U(t+∆t) = R
1
2∆t

F1
◦R∆t

F2
◦R

1
2∆t

F1
.546

We use a function-like notation to refer to the particular time integration methods.547
An overview of this is given in Table 6.1 where we use X and Y as representatives for548
either term in the PDE such as Lg, Lc, and N or to refer to another time integrator.549
In the latter case, e.g., ERK, EXP , REXI, and IRK can both be used in the550
Strang-Splitting SS as arguments.551

6.2.5. Hardware, parallelization & batch configuration. All results have552
been computed on the Thin Nodes of SUPERMUC-NG. Each node is equipped with553
two Intel SkylakeXeon Platinum 8174, resulting in two NUMA domains. For the554
spatial parallelization, we use solely OpenMP on one NUMA domain, resulting in a555
spatial scaling of up to 24 cores. Scalability for REXI is then based on MPI first556
by utilizing the 2nd NUMA domain, then other compute nodes. We gratefully ac-557
knowledge the usage of the SHTNS library [30] which is based on FFTW [13]. We558
precomputed transformation plans and reused them for all studies to ensure the uti-559
lization of the same ones over all studies. Each batch job is set to timeout after 1560
hour, which follows the idea that the simulations should be finished within a specific561
time frame.562

6.2.6. Performance comparison for splitting Lg and Lc + N . We start563
with a comparison of standard methods in Figure 6.3 which we will use as a baseline564
for further comparisons with REXI-based methods. Plots are given for the three565
prognostic variables, which we define here as the variables required as input to one566
time step, since results differ for all of them.567

First, the higher-order 3rd- and 4th-order RK method can outperform other lower-568
order methods for smaller time step sizes depending on the variable under study. This569
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Fig. 6.3. Studies without REXI methods (but using direct exponentiation) on all prognostic
variables with error vs. time step size for the barotropic instability benchmark. We also include 2nd,
3rd, and 4th order Runge-Kutta based methods with gray lines.

is a known phenomenon for higher-order time integration methods, and we wanted570
to include it to also see its max. stable time step size. We are primarily interested in571
very large time step sizes while still having a moderately small error.572

The best method concerning the geopotential and the divergence variable is the573
Strang-split SS(ERK(Lc+N), EXP (Lg)), which we account for by the more accurate574
treatment with the exponential treatment of both variables. Since the vorticity field is575
not treated exponentially (time tendency for this in Lg is null), there’s also no benefit576
visible in the comparison of the vorticity field.577

The ETDRK method itself – although assumed to be an excellent off-the-shelf578
method – does not provide the overall best results compared to the rather straight-579
forward Strang splitting. We can observe it to be the 2nd best for the geopotential580
and even lower ranked for the other variables. We account for that by the way a 2nd581
order accurate Strang-splitting is performed. This can be interpreted as a subcycling582
of time steps by executing two half-time steps for one of the terms (the time step size583
limiting one).584

Next, we will continue with REXI studies by comparing them with the best585
Strang-split exponential and implicit methods from the previous results in Figure 6.4.586
Overall, we can observe a 2nd order convergence even if using only a single pole for587
the B-REXI methods.588

Matching results for SS(REXI,ERK) B-REXI N=1 and SS(IRK,ERK) are ob-589
served which is explained in §4.1.3: This particular B-REXI method resembles exactly590
the Crank-Nicolson method but uses one complex-valued pole to solve the system of591
equations.592
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Fig. 6.4. Studies with REXI methods on all prognostic variables with error vs. time step size
for the barotropic instability benchmark.

The other B-REXI methods outperform all alternatives except for the direct ex-593
ponential integration EXP. We see one particularly interesting and highly important594
effect: The B-REXI method does not provide any further advantages using more than595
N = 2 poles. Even using N = 4 poles, the results are not further improved. A par-596
ticularly important point is the comparison of the CI-REXI method with B-REXI,597
where absolutely no benefits are visible for N = 128 poles using CI-REXI compared598
to N = 2 poles using B-REXI. This clearly indicates that significant computational599
savings of a factor of 64 can be accomplished in this case compared to the former600
work.601

We close this section by HPC studies in Figure 6.5. For sake of better overview, we602
only plotted the most promising candidates (ETDRK is worse than B-REXI methods,603
the explicit RK order 3 and 4 methods are better for larger wallclock times (smaller604
time steps), but unstable otherwise).605

We start by comparing the performance of the direct exponential method EXP606
with the REXI method, where we would expect that the direct method is faster, which607
is not the case. We account for that by the direct method to be computationally more608
intensive (square root, exponential, etc., see §6.2.2) in order to solve for this term,609
whereas the B-REXI methods only require to evaluate two or 4 rational approxima-610
tions. For the CI-REXI method, which requires N = 128 terms this is again different611
due to the higher MPI overheads resulting in a lower performance than the others.612

Although the Strang-splitting method with the implicit term is computationally613
quite efficient to evaluate, its overall wallclock time performance is not optimal.614

6.2.7. Performance comparison for splitting into L and N . Next, we in-615
vestigate the performance of REXI methods using a splitting into the linear term616
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Fig. 6.5. Studies including REXI methods with wallclock time vs. time step size for the
barotropic instability benchmark.

L = Lg + Lc and the nonlinear term N . This leads to the situation that no direct617
computation of exp(∆tL) is possible, as previously explained. Plots are given in Fig-618
ure 6.6 where some data points of ETDRK are missing due to the 1h time out of the619
job (see discussion before).620

For the geopotential Φ′, we can observe significant improvements in terms of621
accuracy. In particular, we can take very large time step sizes and still observe a con-622
vergence, whereas the 2nd order IRK-like methods already stagnate. With respect to623
the ETDRK scheme, its performance is worse compared to the best (straightforward)624
Strang-split methods.625

For the vorticity η we can observe that the ETDRK method does not lead to626
any improvement. The best methods are the Strang-split IRK-based ones and some627
REXI-based methods. Hence, we do not see any improvement in the accuracy of the628
vorticity field by using exponential integration methods. This is kind of surprising629
at first glimpse since we expected a better treatment of the vorticity due to the630
exponential integration of the Coriolis effect. However, the errors in the nonlinear631
parts dominate the overall errors. Hence, this does not provide any better results.632

The divergence δ study shows REXI methods to be the best ones. Again, the633
accuracy cannot be improved by using more than N = 2 poles. Everything beyond634
that would be an additional computational burden. The ETDRK methods again show635
a poorer performance than the more straightforward approach.636

Finally, we investigate the wallclock time vs. errors with results given in Figure 6.7.637
We can observe that fully explicit ERK methods actually provide excellent results due638
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Fig. 6.6. Studies using non-REXI methods (using direct exponentiation) on all prognostic
variables with error vs. time step size for the barotropic instability benchmark. (ETDRK data points
are missing due to 1h timeouts of the job.)

to their computationally efficient way. In particular, the classical 4th-order accurate639
ERK method provides excellent results across all prognostic variables.640

A closer look at the geopotential Φ′ errors shows that the B-REXI-based methods641
with N=2 poles are to be preferred compared to all other methods. Again, the ETDRK642
method shows no real benefits.643

Investigating the vorticity η leads to a different interpretation: Now, the implicit644
Strang-split method provides the best results which can be easily explained by the645
situation that the exponential treatment of the Lc term did not lead to any beneficial646
results already in the error vs. time step size plots and additional computational time647
is required here. Finally, ETDRK are literally the worst in here, not paying off at all.648

The errors on the divergence δ show similar results compared to the geopotential,649
which is why we skip a detailed discussion here.650

6.2.8. Summary of PDE results. The CI-REXI method with N = 128 poles651
is not beneficial at all compared to B-REXI with N = 2 poles. Using only N = 2 poles652
with the B-REXI method already provides the best results, and no improvement can653
be gained by adding more poles. This is actually quite surprising, with expectations of654
exponential integration methods to always provide significantly better results. How-655
ever, using such a higher-order approximation seems to provide sufficient accuracy so656
that the errors from the splitting approach dominate the overall errors.657

We would like to emphasize that all the statements are specific to the SWE on658
the rotating sphere PDE and should not be generalized.659
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Fig. 6.7. Studies using non-REXI methods (using direct exponentiation) on all prognostic
variables with error vs. time step size for the barotropic instability benchmark. (ETDRK data points
are missing due to 1h timeouts of the job.)

7. Summary and Conclusions. Exponential integration methods are consid-660
ered to be a way to integrate with high efficiency. As part of that, ϕ functions need661
to be solved, which turn out to be computationally rather challenging.662

This paper investigated different ways to approximate ϕ functions with rational663
approximations of exponential integration (REXI). The coefficients of REXI meth-664
ods can be derived in many ways and we introduced a generalized REXI approach,665
finally allowing to express many different methods in this way. We showed this666
for the Butcher/Bickard-based REXI, Cauchy Contour integration based REXI and667
T(erry)-REXI method. All methods have been introduced in a way making its ca-668
pabilities and limitations easily graspable. With respect to physical properties, the669
T-REXI method requires special treatment for (quasi-)stationary modes and became670
obsolete with CI-REXI. In addition, we derived an elegant way to compute higher-671
order ϕ functions based on REXI coefficients for lower-order ϕ.672

An in-depth investigation of the approximation quality of each REXI method has673
been conducted including an explanation of numerical issues for all of the methods.674
Next, we put it into the context of time integration methods. We first used linear675
ODEs where we studies and discussed properties of stability, convergence and also676
the filtering capabilities. Second, we performed in-depth studies using the nonlinear677
shallow-water equations on the rotating sphere. Surprisingly, the best REXI method678
turned out B-REXI with only N = 2 poles, leading to a significant reduction of679
computational effort compared to former REXI methods in this context usingN = 128680
poles. Consequently, regarding demands on computational resources, B-REXI showed681
a reduction of a factor of 64 compared to previous work. This also means that a682
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higher-order implicit Runge-Kutta method is competitive to traditional exponential683
integration methods for this PDE.684
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