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We prove that the spectrum of the two-photon quantum Rabi Hamiltonian consists of two eigenvalue sequences

satisfying a three-term asymptotic formula with the remainder estimate O(m -1 ln m) when m tends to infinity. By analogy to the one-photon quantum Rabi model, the leading three terms of this asymptotic formula, describe a generalized rotating-wave approximation for large eigenvalues of the two-photon quantum Rabi model.

1. General presentation of the paper 1.1. Introduction. The simplest interaction between a two-level atom and a classical light field is described by the semi-classical Rabi model [START_REF] Rabi | On the process of space quantization[END_REF], [START_REF] Rabi | Space quantization in a gyrating magnetic field[END_REF]. The quantum Rabi model (QRM) couples a two-level system (TLS) with a quantized single-mode radiation and is considered as a particularly important model in quantum electrodynamics: we refer to [START_REF] Braak | Semi-classical and quantum Rabi models: in celebration of 80 years[END_REF] concerning the historical aspects of the QRM and to [START_REF] Qiongtao | The quantum Rabi model: solution and dynamics[END_REF] for a list of recent research works and experimental realizations of the QRM.

The simplest QRM is defined by the one-photon Hamiltonian H

Rabi given in Definition 1.2(c). The operator H

Rabi is a self-adjoint operator depending on two real parameters: g (the coupling constant) and ∆ (the energy separation in the TLS). Its spectrum is discrete and the fundamental question is how to find a good approximation of the corresponding eigenvalues.

The first step in this direction, is the rotating-wave approximation (RWA) introduced in the famous paper of Jaynes and Cummings [START_REF] Jaynes | Comparison of quantum and semiclassical radiation theories with application to the beam maser[END_REF]. However, the RWA is a correct approximation only when g is close to 0 and ∆ close to 1 for H [START_REF] Boutet De Monvel | Eigenvalue asymptotics of a modified Jaynes-Cummings model with periodic modulations[END_REF] Rabi given in Definition 1.2(c). The most popular idea of going beyond the limitations of RWA, bears the name of the generalized rotating-wave approximation (GRWA) after Irish [START_REF] Irish | Generalized Rotating-Wave Approximation for Arbitrarily Large Coupling[END_REF]. The same idea was considered before by Feranchuk, Komarov, Ulyanenkov [START_REF] Feranchuk | Two-level system in a one-mode quantum field: numerical solution on the basis of the operator method[END_REF], under the name of the zeroth order approximation of the operator method (see [START_REF] Feranchuk | Non-perturbative Description of Quantum Systems[END_REF]). According to the GRWA, the spectrum of H [START_REF] Boutet De Monvel | Eigenvalue asymptotics of a modified Jaynes-Cummings model with periodic modulations[END_REF] Rabi is composed of two eigenvalue sequences:

(E + m ) ∞ m=0 and (E - m ) ∞ m=0
, satisfying E ± m ≈ E ± m,GRWA and the formula [START_REF] Sahbani | Spectral theory of certain unbounded Jacobi matrices[END_REF] in [START_REF] Feranchuk | Two-level system in a one-mode quantum field: numerical solution on the basis of the operator method[END_REF] claims that In [START_REF] Boutet De Monvel | Asymptotic behaviour of large eigenvalues for Jaynes-Cummings type models[END_REF]- [START_REF]Oscillatory Behavior of Large Eigenvalues in Quantum Rabi Models[END_REF] we proved that if r m is given by (1.1) and ε > 0, then one has

E ± m,GRWA ≈ m -g 2 ±
E ± m = m -g 2 ± r m + O(m -1 2 +ε ) as m → ∞ (1.2) and E ± m,GRWA = m -g 2 ± r m + O(m -1 2 ) as m → ∞ (1.3)
Thus (1.2)-( 1.3) allow one to estimate the quality of GRWA for large eigenvalues of the one-photon QRM. In this paper we will prove a similar result for the two-photon QRM defined by the Hamiltonian H

Rabi given in Definition 1.2(d). We remark that the two-photon QRM was used in [START_REF] Gerry | Two-photon Jaynes-Cummings model interacting with the squeezed vacuum[END_REF] to describe a two-level atom interacting with squeezed light and we refer to [START_REF] Duan | Two-photon Rabi model: analytic solutions and spectral collapse[END_REF] for the overview of works concerning the two-photon quantum Rabi model (see also [START_REF] Qiongtao | The quantum Rabi model: solution and dynamics[END_REF]). In what follows, we always assume that the coupling constant satisfies the condition 0 < g < 1/2. This hypothesis implies that H

(2)

Rabi is self adjoint and has a discrete spectrum. In [START_REF]Asymptotic behavior of large eigenvalues of the two-photon Rabi model[END_REF] we proved that the spectrum of

H (2)
Rabi is composed of two eigenvalue sequences:

(E + m ) ∞ m=0 and (E - m ) ∞ m=0 , satisfying E ± m = m + 1 2 1 -4g 2 - 1 2 + O(m -1/3 ) as m → ∞ (1.4) 
In this paper we will prove the three-term asymptotic formula

E ± m = m + 1 2 1 -4g 2 - 1 2 ± r m + O(m -1 ln m) as m → ∞ (1.5)
where r m is given by (1.20). By analogy to (1.2)-(1.3), the expression

m + 1 2 1 -4g 2 - 1 2 ± r m
can be viewed as a GRWA for large eigenvalues of the two-photon QRM. (b) We denote by ℓ 2 (N) the complex Hilbert space of square-summable sequences x : N → C equipped with the scalar product

⟨x, y⟩ ℓ 2 (N) = ∞ m=0 x(m)y(m) (1.6)
and the norm ||x|| ℓ 2 (N) := ⟨x, x⟩ (1.9) (e) Using (1, 0) ∈ C 2 and (0, 1) ∈ C 2 as the canonical basis of the Euclidean space C 2 , we denote by σ x , σ z , I 2 , the linear operators in C 2 defined by the matrices

1/2 ℓ 2 (N) . For s > 0 we denote ℓ 2,s (N) := {x ∈ ℓ 2 (N) : ∞ m=0 (1 + m 2 ) s |x(m)| 2 < ∞} (1.7) (c) The canonical basis of ℓ 2 (N) is denoted {e n } n∈N (i.
σ x := 0 1 1 0 , σ z := 1 0 0 -1 , I 2 := 1 0 0 1 (1.10) Definition 1.2. (a)
The two-level system (TLS) Hamiltonian is the linear map in C 2 defined by the matrix

H TLS = 1 2 ∆ 0 0 -∆ = 1 2 ∆σ z (1.11)
where ∆ is a real parameter.

(b) The Hamiltonian of the single-mode radiation is the linear map H rad : ℓ 2,1 (N) → ℓ 2 (N) defined by the formula

H rad e n = â † â e n = ne n for n ∈ N.
(1.12)

(c) The one-photon quantum Rabi Hamiltonian is defined as the linear map H

Rabi :

C 2 ⊗ ℓ 2,1 (N) → C 2 ⊗ ℓ 2 (N) given by H (1) Rabi = I 2 ⊗ H rad + H TLS ⊗ I ℓ 2 (N) + gσ x ⊗ â + â † , (1.13) 
where g > 0 is the coupling constant.

(d) The two-photon quantum Rabi Hamiltonian is defined as the linear map H

Rabi :

C 2 ⊗ ℓ 2,1 (N) → C 2 ⊗ ℓ 2 (N) given by H (2) Rabi = I 2 ⊗ H rad + H TLS ⊗ I ℓ 2 (N) + gσ x ⊗ â2 + (â † ) 2 , (1.14)
where g > 0 is the coupling constant.

Main result.

In what follows, we assume 0 < g < 1/2 and introduce

β := 1 -4g 2 , (1.15) 
α := arctan 1 -2g 1 + 2g . (1.16)
Let H

(2) 0,Rabi denote the operator given by (1.14) with ∆ = 0, i.e.

H

(2)

0,Rabi = I 2 ⊗ H rad + gσ x ⊗ â2 + (â † ) 2 .
(1.17)

If 0 < g < 1/2, then the spectrum of H

(2) 0,Rabi is explicitly known (see [START_REF] Emary | Bogoliubov transformations and exact isolated solutions for simple nonadiabatic Hamiltonians[END_REF], [START_REF]Exact isolated solutions for the two-photon Rabi Hamiltonian[END_REF]): it is composed of the sequence of eigenvalues .18) and each eigenvalue E 0 m is of multiplicity 2. Thus 0 < g < 1/2 ensures the fact that H

E 0 m = mβ + (β -1)/2, m = 0, 1, 2, . . . ( 1 
(2) 0,Rabi is self-adjoint and has compact resolvent. Since H

(2) Rabi -H (2) 0,Rabi is bounded, the operator H (2)
Rabi is self-adjoint and has compact resolvent if 0 < g < 1/2. The explicit values of eigenvalues of H

(2)

Rabi are not known when ∆ ̸ = 0, but we can describe their asymptotic behaviour. Our main result is the following Theorem 1.3. Assume that 0 < g < 1/2. Then one can find {v + m } m∈N ∪ {v - m } m∈N , an orthonormal basis of C 2 ⊗ ℓ 2 (N), such that 

H (2) Rabi v ± m = E ± m v ± m , m = 0,
± m = mβ + (β -1)/2 ± r m + O(m -1 ln m) (1.19)
with r m given by the formula

r m =              ∆ 2 β πgm cos((2m + 1)α) if m is even ∆ 2 β πgm sin((2m + 1)α) if m is odd, (1.20) 
where β is given by (1.15) and α is given by (1.16).

Remarks. (a)

One has

E ± m -E 0 m = O(m -1/2
) in spite of the fact that H

Rabi -H

(2) 0,Rabi is not compact. A similar fact was established in [START_REF] Tur | Asymptotics of eigenvalues of an energy operator in a problem of quantum physics[END_REF] for the one-photon Rabi model.

(b) Following [START_REF] Sahbani | Spectral theory of certain unbounded Jacobi matrices[END_REF], one can prove that the spectrum of H

Rabi is not discrete if g ≥ 1 2 .

1.4. Overview of earlier results. The distribution of large eigenvalues of the QRM has been a subject of many numerical investigations. Concerning the earliest physical considerations, we refer to Schmutz [START_REF] Schmutz | Two-level system coupled to a boson mode: the large n limit[END_REF]. It is well known (see e.g [START_REF] Tur | Jaynes-Cummings model: solution without rotating wave approximation[END_REF]) that the onephoton quantum Rabi Hamiltonian can be expressed as a direct sum of two Jacobi operators, i.e. operators defined by infinite tridiagonal matrices. Similarly, the twophoton quantum Rabi Hamiltonian can be expressed as a direct sum of four Jacobi operators (see [START_REF]Asymptotic behavior of large eigenvalues of the two-photon Rabi model[END_REF]). A mathematical study of large eigenvalues of Jacobi matrices was initiated by J. Janas and S. Naboko in the paper [START_REF] Janas | Infinite Jacobi matrices with unbounded entries: asymptotics of eigenvalues and the transformation operator approach[END_REF], which contains fundamental ideas of the method of approximate diagonalizations.

The question of the behaviour of large eigenvalues of H

Rabi , was first posed by E. A. Tur [START_REF] Tur | Jaynes-Cummings model: solution without rotating wave approximation[END_REF]- [START_REF]Jaynes-Cummings model without rotating wave approximation[END_REF] and it was considered by A. Boutet de Monvel, S. Naboko and L. O. Silva in [START_REF] Boutet De Monvel | Eigenvalue asymptotics of a modified Jaynes-Cummings model with periodic modulations[END_REF]- [START_REF]The asymptotic behaviour of eigenvalues of a modified Jaynes-Cummings model[END_REF]. Due to the difficulty of the problem, the authors give a solution for a simpler class of operators ("modified Jaynes-Cummings models"). The two-term asymptotic formula for large eigenvalues of the one-photon quantum Rabi model, was proved by E. A. (Tur) Yanovich in [START_REF] Tur | Asymptotics of eigenvalues of an energy operator in a problem of quantum physics[END_REF] (see also [START_REF]Jaynes-Cummings model without rotating wave approximation[END_REF]). The three-term asymptotic formula (1.2) was proved in [START_REF] Boutet De Monvel | Asymptotic behaviour of large eigenvalues for Jaynes-Cummings type models[END_REF]- [START_REF]Oscillatory Behavior of Large Eigenvalues in Quantum Rabi Models[END_REF]. We remark that the formula (1.2) allows one to recover the values of parameters g and ∆ from the spectrum (see [START_REF] Boutet De Monvel | On the spectrum of the quantum Rabi Models, Analysis as a Tool in Mathematical Physics : In Memory of Boris Pavlov[END_REF]). The two-term asymptotic formula (1.4) for large eigenvalues of the two-photon quantum Rabi model, was proved in [START_REF]Asymptotic behavior of large eigenvalues of the two-photon Rabi model[END_REF]. The result of Theorem 1.3 and the main ideas of its proof were described in [START_REF]Asymptotic formula for large eigenvalues of the two-photon Rabi model[END_REF]. The same result was also described in [START_REF] Ianovich | Eigenvalues asymptotics of unbounded operators[END_REF].

1.5. Organization of the paper. Our approach is based on an analysis of operators acting in ℓ 2 (Z). These operators are introduced in Section 2.1 and the corresponding three-term asymptotic formula is given in Theorem 2.3. In Theorem 2.3(a) we consider the operators J0 γ , which are special case of operators considered by Edward [START_REF] Edward | Spectra of Jacobi matrices, differential equations on the circle, and the su(1, 1) Lie algebra[END_REF]. In Section 2.2 we describe explicit expressions of their eigenvalues and eigenvectors by means of the discrete Fourier transform. In Theorem 2.3(b) we consider the operators Jδ γ , which are viewed as perturbations of J0 γ . In Section 3 we show that the assertion of Theorem 2.3(b) follows from a GRWA result given in Proposition 3.1. The proof of Proposition 3.1 begins in Section 4 and is completed in Section 5. In Section 6 we show how to deduce Theorem 1.3 from Theorem 2.3(b). More precisely, we follow the following scheme: -we prove Proposition 3.1, using Lemma 4.3 and Kato-Temple estimate (Theorem 5.2) -we prove Theorem 2.3, using Lemma 2.6, Proposition 3.1 and an asymptotic formula from [START_REF]Asymptotic behavior of large eigenvalues of the two-photon Rabi model[END_REF] -we prove Theorem 1.3, using Theorem 2.3, Lemma 6.2 and Lemma 6.3.

2. An auxiliary problem in ℓ 2 (Z) (b) We denote by ℓ 2 (Z) the complex Hilbert space of square-summable sequences x : Z → C equipped with the scalar product

⟨x, y⟩ ℓ 2 (Z) = k∈Z x(k)y(k) (2.1)
and the norm ||x|| ℓ 2 (Z) := ⟨x, x⟩

1/2 ℓ 2 (Z) . For s > 0 we denote ℓ 2,s (Z) := {x ∈ ℓ 2 (Z) : ||x|| ℓ 2,s (Z) < ∞} where ||x|| ℓ 2,s (Z) := k∈Z (1 + k 2 ) s |x(k)| 2 1/2 (2.2) (c)
The canonical basis of ℓ 2 (Z) is denoted {ẽ j } j∈Z (i.e. ẽj (k) = δ j,k for j, k ∈ Z) and ℓ 2 fin (Z) denotes the set of finite linear combinations of vectors belonging to {ẽ j } j∈Z . (d) If ( dj ) j∈Z is real valued, then D := diag( dj ) j∈Z is the self-adjoint operator in ℓ 2 (Z) satisfying D ẽj = dj ẽj for every j ∈ Z.

We denote

Λ := diag(j) j∈Z . (2.3) 
(e) We denote by S the shift defined in ℓ 2 (Z) by the formula (Sx)(j) = x(j -1).

Definition 2.2.

In what follows, γ, δ and g are fixed real numbers.

(a) We define J0 γ as the linear map ℓ 2,1 (Z) → ℓ 2 (Z) given by

J0 γ := Λ + g S Λ + γ + Λ + γ S -1 = Λ + g S(Λ + γ + h.c.
(2.4) (b) We define Jδ γ as the linear map ℓ 2,1 (Z) → ℓ 2 (Z) given by the formula

Jδ γ := J0 γ + D δ , (2.5) 
where

D δ := diag(δ(-1) j ) j∈Z . (2.6)
Using the above definition, we find that the action of Jδ γ can be represented by the following tridiagonal,

Z × Z matrix             . . . -2 + δ g(-2 + γ) 0 0 0 g(-2 + γ) -1 -δ g(-1 + γ) 0 0 0 g(-1 + γ) δ gγ 0 0 0 gγ 1 -δ g(1 + γ) 0 0 0 g(1 + γ) 2 + δ . . .            
whose diagonal entries { dδ (j)} j∈Z are given by dδ (j) := j + δ(-1) j , (

off-diagonal entries { bγ (j)} j∈Z are given by bγ (j) := g(j + γ)

(2.8)
and Jδ γ ẽj = dδ (j)ẽ j + bγ (j)ẽ j+1 + bγ (j -1)ẽ j-1 for every j ∈ Z.

Theorem 2.3. Let J0 γ be given by (2.4) and Jδ γ by (2.5)-(2.6). If 0 < g < 1/2 then (a) the spectrum of J0

γ is composed of a non-decreasing sequence of eigenvalues {d γ,j } j∈Z of the form

d γ,j := βj + γ - 1 2 (β -1), (2.9) 
where β is given by (1.15). (b) the spectrum of Jδ γ is composed of a non-decreasing sequence of eigenvalues {λ j ( Jδ γ )} j∈Z which can be labeled so that

λ j ( Jδ γ ) = d γ,j + r δ γ (j) + O(j -1 ln j) as j → ∞ (2.10)
where d γ,j is given by (2.9),

r δ γ (j) = δ β 2πgj 1/2 cos 4αj + θγ , (2.11) 
β is given by (1.15), α by (1.16) and

θγ = γ - 1 2 (4α -π) + π 4 .
(2.12)

Proof. (a) This result was proved in [START_REF] Edward | Spectra of Jacobi matrices, differential equations on the circle, and the su(1, 1) Lie algebra[END_REF]. We describe a simplified proof in Section 2.2.

(b) See Section 3.2. □ 2.2. Diagonalization of J0 γ .
In what follows, T := R/2πZ is identified with ]-π, π] and L 2 (T) denotes the Hilbert space of Lebesgue square integrable functions ] -π, π] → C equipped with the scalar product

⟨f, g⟩ L 2 (T) := π -π f (θ) g(θ) dθ 2π (2.13) and the norm ||f || L 2 (T) = ⟨f, f ⟩ 1/2 L 2 (T) . We let F T denote the isometric isomorphism L 2 (T) → ℓ 2 (Z) given by (F T f )(j) = π -π f (θ) e -ijθ dθ 2π (2.14)
and consider the operator

L 0 γ := F -1 T J0 γ F T = -i d dθ + g e iθ -i d dθ + γ + h.c.
Similarly as in [START_REF] Edward | Spectra of Jacobi matrices, differential equations on the circle, and the su(1, 1) Lie algebra[END_REF] and [START_REF]Asymptotic behavior of large eigenvalues of the two-photon Rabi model[END_REF], we observe that the assumption 0 < g < 1/2 ensures the fact that L 0 γ is the first order linear elliptic differential operator,

L 0 γ = 1 2 1 + 2g cos(θ) -i d dθ + h.c. + (2γ -1)g cos(θ)
and we introduce

Φ(θ) := θ 0 β dθ ′ 1 + 2g cos(θ ′ ) . ( 2 

.15)

An easy calculation allows one to express the right-hand side of (2.15),

Φ(θ) = 2 arctan 1 -2g 1 + 2g tan θ 2 if -π < θ < π. (2.16)
Moreover Φ(π) = π and Φ is odd, i.e. Φ(-θ) = -Φ(θ). Using the change of variable η = Φ(θ), we can define the unitary operator acting in L 2 (T) according to the formula

(U Φ f )(θ) = Φ ′ (θ) 1/2 f (Φ(θ)) (2.17) 
and the direct computation (see [START_REF]Asymptotic behavior of large eigenvalues of the two-photon Rabi model[END_REF]) gives

U -1 Φ L 0 γ U Φ = β -i d dη + q γ (η) (2.18) 
with q γ (η) := β -1 (2γ -1)g cos(Φ -1 (η)).

(2.19)

In the following, q γ is given by (2.19) and

q γ (η) := η 0 q γ (η ′ ) dη ′ . (2.20)
We claim that

qγ (Φ(θ)) = γ - 1 2 (θ -β -1 Φ(θ)). (2.21) 
Indeed,

d dθ qγ (Φ(θ)) = q γ (Φ(θ))Φ ′ (θ) = (2γ -1)g cos(θ) β β 1 + 2g cos(θ) = = 2γ -1 2 1 - 1 1 + 2g cos(θ) = γ - 1 2 (1 -β -1 Φ ′ (θ)) implies qγ (Φ(θ)) = (γ -1 2 )(θ -β -1 Φ(θ)) + C 0 and C 0 = 0 holds due to Φ(0) = 0 and qγ (Φ(0)) = qγ (0) = 0.
Using Φ(±π) = ±π in (2.21), we compute

⟨q γ ⟩ := qγ (π) -qγ (-π) 2π = γ - 1 2 (1 -β -1 ) (2.22)
and remark that η → ⟨q γ ⟩η -qγ (η) is a smooth 2π-periodic function. Then we define (f qγ ,j ) j∈Z to be the orthonormal basis in L 2 (T) given by f qγ ,j (η) = e ijη e i(⟨qγ ⟩η-qγ (η))

(2. [START_REF] Rabi | Space quantization in a gyrating magnetic field[END_REF] and (see [START_REF]Asymptotic formula for large eigenvalues of the two-photon Rabi model[END_REF], [START_REF] Edward | Spectra of Jacobi matrices, differential equations on the circle, and the su(1, 1) Lie algebra[END_REF]), for every j ∈ Z, we get

β -i d dη + q γ f qγ ,j = d γ,j f qγ ,j , (2.24) 
where d γ,j = β(j + ⟨q γ ⟩) = βj + (γ -1/2)(β -1) is given (2.9). Combining (2.24) with (2.18), we obtain Corollary 2.4. Let {f 0 γ,j } j∈Z be the orthonormal basis of L 2 (T) given by f 0 γ,j (θ) := (U Φ f qγ ,j )(θ) = Φ ′ (θ) 1/2 e ijΦ(θ) e i(⟨qγ ⟩Φ(θ)-qγ (Φ(θ))) .

(2.25)

Then L 0 γ f 0 γ,j = d γ,j f 0 γ,j (2.26) 
holds with d γ,j given (2.9).

It is clear that the assertion of Theorem 2.3(a) follows from Corollary 2.4. Indeed, using (2.26) and 

J0 γ = F T L 0 γ F -1 T , we get J0 γ u 0 γ,j = d γ,j u 0 γ,j with u 0 γ,j := F T f 0 γ,j . ( 2 
τ π (θ + 2πZ) := θ + π + 2πZ (2.28) 
(b) For j, n ∈ Z, we denote

V δ γ (j, n) := δ⟨f 0 γ,j , T π f 0 γ,n ⟩ L 2 (T) , (2.29) 
where f 0 γ,j is given by (2.25).

Lemma 2.6. Let ĉ > 0 be small enough. Then there exists Ĉ > 0 such that

sup {k∈Z: |k|≤ĉ|n|} |V δ γ (n + k, n)| ≤ Ĉ|n| -1/2 (2.30)
holds for every n ∈ Z \ {0}.

Proof. Let us assume that n ̸ = 0. By definition (2.25), f 0 γ,n = e inΦ p γ holds with p γ (θ) := e i⟨qγ ⟩Φ(θ)-i qγ (Φ(θ)) β 1/2 (1 + 2g cos θ) -1/2

(2.31) and we can express

V δ γ (n + k, n) = δ π -π e inΨ n,k (θ) p γ (θ) (T π p γ )(θ) dθ 2π (2.32) with Ψ n,k = Φ -T π Φ + k n Φ. (2.33) Denote Ψ := Φ -T π Φ. Then Ψ ′ (θ) = β 1 + 2g cos θ - β 1 -2g cos θ = 0 ⇔ cos θ = 0, (2.34) 
i.e. Ψ has two critical points: -π 2 and π 2 . Since

Ψ ′′ (θ) = 2gβ (1 + 2g cos θ) 2 + 2gβ (1 -2g cos θ) 2 sin θ, (2.35) 
we obtain Ψ ′′ (± π 2 ) = ±4gβ ̸ = 0 and choosing c 0 > 0 small enough we can ensure

|Ψ ′′ (θ)| ≥ c 0 for θ ∈ I c0 := [-π 2 -c 0 , -π 2 + c 0 ] ∪ [ π 2 -c 0 , π 2 + c 0 ]. However Ψ n,k = Ψ + k n Φ and denoting C 0 = sup |Φ ′′ | we can estimate |Ψ ′′ n,k (θ)| ≥ |Ψ ′′ (θ)| -C 0 k n and k n ≤ c 0 2C 0 =⇒ |Ψ ′′ n,k (θ)| ≥ c 0 2 for θ ∈ I c0 .
(2.36)

Due to van der Corput Lemma (see Lemma 7.1(b)), there exists C > 0 such that

Ic 0 e inΦ n,k (θ) p γ (θ) (T π p γ )(θ) dθ 2π ≤ C|n| -1/2 .
(2.37)

Moreover c 1 := inf{|Ψ ′ (θ)| : θ ∈ [-π, π] \ I c0 } > 0 and denoting C 1 = sup |Φ ′ | we can estimate |Ψ ′ n,k (θ)| ≥ |Ψ ′ (θ)| -C 1 k n , hence k n ≤ c 1 2C 1 =⇒ |Ψ ′ n,k (θ)| ≥ c 1 2 for θ ∈ [-π, π] \ I c0 . (2.38) 
Due to the non-stationary phase estimate (see Lemma 7.1(a)), there exists a constant

C ′ > 0 such that [-π,π]\Ic 0 e inΦ n,k (θ) p γ (θ) (T π p γ )(θ) dθ 2π ≤ C ′ |n| -1 .
(2.39) Combining (2.37), (2.39) and (2.32), we complete the proof. □

3. The GRWA approch 3.1. Statement of the result. The idea of GRWA consists in using the diagonal entries of a perturbation as the first correction for eigenvalues of a perturbed diagonal matrix (see [START_REF] Irish | Generalized Rotating-Wave Approximation for Arbitrarily Large Coupling[END_REF] and [START_REF] Feranchuk | Non-perturbative Description of Quantum Systems[END_REF]). Our proof of Theorem 2.3 is based on the following variant of the GRWA :

Proposition 3.1. Let us fix β 0 ∈ R, β > 0, Ĉ > 0 and ĉ > 0. Let J : ℓ 2,1 (Z) → ℓ 2 (Z)
be given by the formula

J = βΛ + β 0 + V, (3.1 
) where Λ = diag(j) j∈Z and V is a bounded self-adjoint operator in ℓ 2 (Z) satisfying

sup {k∈Z: |k|≤ĉ|n|} |⟨ẽ n+k , V ẽk ⟩ ℓ 2 (Z) | ≤ Ĉ|n| -1/2 (3.2)
for every n ∈ Z \ {0}. Assume that the spectrum of J is composed of a non-decreasing sequence of eigenvalues {λ j (J)} j∈Z such that

λ j (J) = jβ + β 0 + o(1) as j → ∞. (3.3)
Then one has

λ j (J) = jβ + β 0 + ⟨ẽ j , V ẽj ⟩ ℓ 2 (Z) + O(j -1 ln j) as j → ∞ (3.4)
Proof. See Section 5. □

Proof of Theorem 2.3(b).

In what follows, we describe how to deduce the assertion of Theorem 2.3(b) from Proposition 3.1. We begin by introducing Ũγ , the unitary operator in ℓ 2 (Z) satisfying Ũγ ẽj = u 0 γ,j , where {ẽ j } j∈Z is the canonical basis of ℓ 2 (Z) and {u 0 γ,j } j∈Z is the basis introduced in (2.27). We claim that the hypotheses of Proposition 3.1 are satisfied if

J = Ũ -1 γ Jδ γ Ũγ , (3.5) 
where J δ γ is as in Definition 2.2. Indeed, if β is given by (1.15) and

β 0 = γ - 1 2 (β -1), (3.6) then Ũ -1 γ Jδ γ Ũγ = βΛ + β 0 + V δ γ holds with V δ γ := Ũ -1 γ D δ Ũγ , (3.7) 
where D δ = diag(δ(-1) j ) j∈Z (see (2.6)). Therefore

⟨ẽ j , V δ γ ẽk ⟩ ℓ 2 (Z) = ⟨u 0 j,γ , D δ u 0 j,γ ⟩ ℓ 2 (Z) = ⟨f 0 j,γ , F -1 T D δ F T f 0 j,γ ⟩ L 2 (T) , (3.8) 
where we used u 0 j,γ = F T f 0 j,γ and the isometry F T . Since F -1 T D δ F T = δT π holds with T π as in Notation 2.5, (3.8) gives

⟨ẽ j , V δ γ ẽk ⟩ ℓ 2 (Z) = V δ γ (j, k) (3.9) 
with V δ γ (•, •) expressed by (2.29) and due to Lemma 2.6, the estimate (3.2) holds if V = V δ γ is given by (3.7). Moreover, the result of [6, Proposition 5.1] ensures the fact that the spectrum of Jδ γ is composed of the non-decreasing sequence of eigenvalues {λ j ( Jδ γ )} j∈Z , which can be labeled so that one has the estimate

λ j ( Jδ γ ) = jβ + β 0 + O(j -1/3 ) as j → ∞, (3.10) 
i.e. (3.3) holds if J is given by (3.5). Thus all the hypotheses of Proposition 3.1 hold and choosing {λ j ( Jδ γ )} j∈Z to be the sequence of eigenvalues of Jδ γ such that λ j ( Jδ γ ) = λ j (J) for every j ∈ Z, we obtain

λ j ( Jδ γ ) = jβ + β 0 + ⟨ẽ j , V δ γ ẽj ⟩ ℓ 2 (Z) + O(j -1 ln j) when j → ∞ (3.11)
due to (3.4). The assertion of Theorem 2.3(b) follows from (3.11) and

⟨ẽ j , V δ γ ẽj ⟩ ℓ 2 (Z) = r δ γ (j) + O(j -1 ) when j → ∞. (3.12)
where r δ γ is given by (2.11)-(2.12). The proof of (3.12) is given in Section 3.3.

3.3.

Proof of (3.12). Due to (2.32),

V δ γ (n, n) = δ π -π e inΨ(θ) h γ (θ) dθ 2π , (3.13) 
where Ψ := Φ -T π Φ and h γ (θ) = p γ (θ) (T π p γ )(θ) with p γ given by (2.31). Since ± π 2 are non-degenerated critical points of Ψ (see (2.34), (2.35))), the stationary phase formula gives

V δ γ (n, n) = δ ν=±1 h γ (νπ/2)e inΨ(νπ/2)+iνπ/4 2πn|Ψ ′′ (νπ/2)| + O(n -1 ). (3.14) 
Since Φ is odd, we get

Ψ(±π/2) = Φ(±π/2) -Φ(∓π/2) = 2Φ(±π/2) = ±2Φ(π/2) = ±4α (3.15) 
where (2.16) was used to write Φ(π/2) = 2α with α given by (1.16). By definition (2.31), one has p γ (π/2) = √ β e i θγ with

θγ := ⟨q γ ⟩Φ(π/2) -qγ (Φ(π/2)) (3.16) 
and qγ

• Φ is odd, hence p γ (-π/2) = √ β e -i θγ and h γ (π/2) = βe 2i θγ . Moreover, one has h γ (-π/2) = h γ (π/2), hence h γ (±π/2) = βe ±2i θγ (3.17)
and we get two conjugated terms corresponding to ν = ±1 in (3.14). Therefore, using (3.17), (3.15) and |Ψ ′′ (±π/2)| = 4gβ in (3.14), we get

V δ γ (n, n) = δ 2Re βe 2i θγ e i4nα+iπ/4 √ 2πn • 4gβ + O(n -1 ) = δ √ β cos(4nα + 2 θγ + π/4) √ 2πng + O(n -1 ).
To complete the proof of (3.12), it remains to check that θγ := 2 θγ + π/4 is given by (2.12). However, (2.22) gives

⟨q γ ⟩Φ(π/2) = γ - 1 2 Φ(π/2) -β -1 Φ(π/2) , (3.18) (2.21) gives 
-q γ (Φ(π/2)) = γ - 1 2 β -1 Φ(π/2) -π/2 , (3.19) 
and summing up (3.18), (3.19), we find that (3.16) gives

θγ = γ - 1 2 (Φ(π/2) -π/2) = γ - 1 2 (2α -π/2) (3.20) 
and θγ = 2 θγ + π 4 = (γ -1 2 )(4α -π) + π 4 as claimed in (2.12).

Auxiliary operators

Q n 4.1. Definition of Q n .
Our aim is to introduce a sequence of auxiliary self-adjoint operators {Q n } n∈N * which will be used in Section 5 to estimate λ n (J) thanks to an analysis of the operator

J ′ n := e -iQn Je iQn . (4.1) 
Definition 4.1. Let V be a self-adjoint bounded operator in ℓ 2 (Z) and denote

V (j, k) := (V ẽk )(j) = ⟨ẽ j , V ẽk ⟩ ℓ 2 (Z) for (j, k) ∈ Z 2 . For n ∈ N * define (Q n (j, k)) (j,k)∈Z 2 by Q n (j, k) =              i V (j, n) β(j -n) when j ̸ = n and k = n i V (n, k) β(n -k) when j = n and k ̸ = n 0 otherwise (4.2) Then Q n (j, k) ̸ = 0 ⇒ either (j ̸ = n and k = n) or (j = n and k ̸ = n) (4.
3) and the relation

(Q n ẽk )(j) = ⟨ẽ j , Q n ẽk ⟩ ℓ 2 (Z) = Q n (j, k) for (j, k) ∈ Z 2 defines in ℓ 2 (Z) a self-adjoint Hilbert-Schmidt operator Q n due to (j,k)∈Z 2 |Q n (j, k)| 2 ≤ 2 β 2 j∈Z |V (j, n)| 2 = 2 β 2 ||V ẽn || 2 ℓ 2 (Z) ≤ 2 β 2 ||V || 2 B(ℓ 2 (Z)) Notation 4.2. If n ∈ Z then Π n ∈ B(ℓ 2 (Z)) (respectively Π n ∈ B(ℓ 2 (Z))
) denotes the orthogonal projection on Cẽ n (respectively on (Cẽ n ) ⊥ ), i.e.

Π n x := ⟨ẽ n , x⟩ ℓ 2 (Z) ẽn = x(n)ẽ n and Π n := I -Π n .

4.2. Properties of Q n . We observe that (4.3) implies

Π n Q n Π n = 0 = Π n Q n Π n (4.4)
and

Q n = Π n Q n Π n + Π n Q n Π n . (4.5) More properties of Q n are given in Lemma 4.3. Assume that V satisfies the assumption of Proposition 3.1, i.e. V is a bounded self-adjoint operator in ℓ 2 (Z) satisfying |j -n| ≤ ĉ|n| ⇒ |V (j, n)| ≤ Ĉ|n| -1/2 , (4.6) 
where Ĉ, ĉ > 0 are independent of n. Let Q n ∈ B(ℓ 2 (Z)) be as in Definition 4.1. Then (a) one has large n estimate

||Q n || B(ℓ 2 (Z)) = O(n -1/2 ) (4.7) (b) ℓ 2,1 (Z) is an invariant subspace of Q n and for every x ∈ ℓ 2,1 (Z), iβ[Q n , Λ]x = iβ(Q n Λ -ΛQ n )x = V n x (4.8)
holds with

V n := Π n V Π n + Π n V Π n . (4.9) 
(c) ℓ 2,1 (Z) is an invariant subspace of e itQn and t → e itQn x is of class

C ∞ (R; ℓ 2,1 (Z)) if x ∈ ℓ 2,1 (Z). Proof. (a) By definition of Q n , ||Q n ẽn || 2 ℓ 2 (Z) = j∈Z\{n} |Q n (j, n)| 2 = j∈Z\{n} |V (j, n)| 2 β 2 (j -n) 2 ≤ β -2 (M n + M ′ n )
holds with

M n := {j∈Z: 0<|j-n|≤ĉn} |V (j, n)| 2 (j -n) 2 ≤ m∈Z\{0} Ĉ2 n -1 m 2 = C 1 n -1
due to (4.6) and and the Taylor formula gives

M ′ n := {j∈Z: |j-n|>ĉn} |V (j, n)| 2 (j -n) 2 ≤ j∈Z |V (j, n)| 2 ĉ2 n 2 = ||V ẽn || 2 ℓ 2 (Z) ĉ2 n 2 ≤ C 2 n -2 .
F tQ (B) = B + N -1 m=1 t m m! ad m iQ (B) + R t,N Q (B) (5.3) with R t,N Q (B) := t N (N -1)! 1 0 F stQ (ad N iQ (B)) (1 -s) N -1 ds. (5.4) 
We can also consider the case when B is an unbounded symmetric operator in ℓ 2 (Z), defined on a dense domain D(B). Suppose that D(B) is an invariant subspace for Q and e itQ for every t ∈ R. 

If t → Be itQ x is C 1 (R,
n = L ′ n + O(η n ) means that choosing n 0 ∈ N and C > 0 large enough, we ensure ||L n -L ′ n || B(V) ≤ Cη n for all n ≥ n 0 . If x n , x ′ n ∈ V, then we write x n = y n + O(η n ) if and only if we can find C > 0, n 0 ∈ N, such that ||x n -x ′ n || V ≤ Cη n holds for all n ≥ n 0 .
In what follows, V satisfies the hypotheses of Proposition 3.1 and without any loss of generality we assume β 0 = 0, i.e. J = βΛ + V . We consider J ′ n = e -iQn (βΛ + V )e iQn (5.5)

and claim the large n estimate

J ′ n = βΛ + V -V n + [V -1 2 V n , iQ n ] + O(n -1 ), (5.6) 
where V n = Π n V Π n + Π n V Π n is given by (4.9). We first use (5.3)-(5.4) with N = 2 and write

e -iQn V e iQn = V + [V, iQ n ] + R 1,2 Qn (V ), (5.7 
)

||R 1,2 Qn (V )|| B(ℓ 2 (Z)) ≤ ||ad 2 iQn (V )|| B(ℓ 2 (Z)) ≤ C||Q n || 2 B(ℓ 2 (Z)) . (5.8) 
We also use (5.3)-(5.4) with N = 3 and write

e -iQn βΛe iQn = βΛ + [βΛ, iQ n ] + 1 2 [[βΛ, iQ n ], iQ n ] + R 1,3 Qn (βΛ), (5.9 
)

||R 1,3 Qn (βΛ)|| B(ℓ 2 (Z)) ≤ ||ad 3 iQn (βΛ)|| B(ℓ 2 (Z)) .
(5.10)

Using [βΛ, iQ n ] = -V n (see Lemma 4.3b) in (5.9)-(5.10), we obtain

e -iQn βΛe iQn = βΛ -V n -[ 1 2 V n , iQ n ] + R 1,3 Qn (βΛ), (5.11 
)

||R 1,3 Qn (βΛ)|| B(ℓ 2 (Z)) ≤ ||ad 2 iQn (V n )|| B(ℓ 2 (Z)) ≤ C||Q n || 2 B(ℓ 2 (Z))
(5.12) and summing up (5.11), (5.7), we obtain

e -iQn Je iQn = βΛ + V -V n + [V -1 2 V n , iQ n ] + R 1,2 Qn (V ) + R 1,3 Qn (βΛ), (5.13 
)

||R 1,2 Qn (V ) + R 1,3 Qn (βΛ)|| B(ℓ 2 (Z)) ≤ C||Q n || 2 B(ℓ 2 (Z)) . (5.14) 
To complete the proof, we observe that

||Q n || 2 B(ℓ 2 (Z)) = O(n -1
) follows from (4.7).

5.3.

Step 2 of the proof of Proposition 3.1. We denote

W n := [V -1 2 V n , iQ n ] (5.15) 
and we claim that the following estimate

W n (n, n) := (W n ẽn )(n) = ⟨ẽ n , W n ẽn ⟩ ℓ 2 (Z) = O(n -1 ln n) (5.16) holds when n → ∞. Indeed, W n = [V ′ n , iQ n ] holds with V ′ n := V -1 2 V n and |V ′ n (j, k)| ≤ 2|V (j, k)| for all j, k ∈ Z, (5.17) 
hence we can estimate

|(V ′ n Q n )(n, n)| ≤ j∈Z 2|V (n, j)Q n (j, n)| ≤ ≤ j∈Z\{n} 2|V (j, n)| 2 β|j -n| ≤ 2β -1 (M n + M ′ n )
with + 1) = λ n ( Ĵ±1,1 ) + O(n -1 ) as n → ∞, (

where {λ n ( Ĵδ γ )} n∈N is the non-decreasing sequence of eigenvalues of Ĵδ γ . Let {λ j ( Jδ γ )} j∈Z be the sequence of eigenvalues of Jδ γ satisfying (2.10). We complete the proof, combining (6.11)-(6.12) and the estimate λ n ( Ĵδ γ ) -λ n ( Jδ γ ) = O(n -N ) as n → ∞, (6.13) which holds for every N ≥ 1. The estimate (6.13) is proved in Section 6.1 of [START_REF]Asymptotic behavior of large eigenvalues of the two-photon Rabi model[END_REF]. □ 
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 344 End of the proof of Theorem 1.3. Using the asymptotic estimates (2.10) in the right hand side of (6.6) and (6.7), we obtainλ n ( Ĵ±1,0 ) = 2 nβ + 1 4 (β -1) + r ±∆/(n) + O(n -1 ln n), + 3)α + O(n -1 ln n)
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This shows that ||Q n Π n || B(ℓ 2 (Z)) = O(n -1/2 ). Moreover, due to (4.5),

is O(n -1/2 ), which completes the proof of (4.7). (b) Let V n be given by (4.9). Then one has

V (j, n) when j ̸ = n and k = n V (n, k) when j = n and k ̸ = n 0 otherwise (4.10) and combining (4.10) with (4.2) we obtain iβ(j -k)Q n (j, k) = -V n (j, k) for every j, k ∈ Z.

(4.11)

However, (4.11) implies

and ensures Q n ẽk ∈ ℓ 2,1 (Z). Moreover, (4.12) ensures the equality

Due to (4.14), for every y ∈ ℓ 2 fin (Z) one has

and by continuity, (4.16) holds for every y ∈ ℓ 2 (Z). Consider now x ∈ ℓ 2,1 (Z) and take y = (Λ + 1 2 )x in (4.16). This gives

and

implying (4.8) for every x ∈ ℓ 2,1 (Z).

(c) We first observe that (4.16) holds for every y ∈ ℓ 2 (Z) and implies (4.14) for every

2 ) -1 y for every m ∈ N and y ∈ ℓ 2 (Z), we have

Step 3 of the proof of Proposition 3.1. Let J ′ n be as above and denote

We claim that the following estimates

where

] is given by (5.15). However (5.21) implies

(5.23) and (5.19) follows from (5.16).

In order to prove (5.20), we observe that (5. [START_REF] Janas | Infinite Jacobi matrices with unbounded entries: asymptotics of eigenvalues and the transformation operator approach[END_REF]) implies

and (5.22) ensures

).

(5.25) Thus (5.20) follows from (5.24), (5.25) and 

and we will use

with n ≥ n 0 in Theorem 5.2. (Kato-Temple) Assume that the operator L is self-adjoint in the Hilbert space H and has exactly one eigenvalue λ in the interval

(5.28)

Proof. See [START_REF] Harrell | Generalizations of Temple's Inequality[END_REF]. □
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We claim that the assumptions of Theorem 5.2 are satisfied for n ≥ n 0 if n 0 is chosen large enough. Indeed, (5.27) holds and

holds due to (5.19) and V (n, n) = O(n -1/2 ) as n → ∞. Since (5.29) implies the inequality min{d ′′ -η, η -d ′ } ≥ 1 4 β, the estimate (5.28) gives

), (5.30) where the last estimate is due to (5.20). The estimate (5.30) implies

and using (5.19) in the right hand side of (5.31), we obtain

Step 1 of the proof of Theorem 1.3. As before 0 < g < 1 2 and {e m } m∈N is the canonical basis of ℓ 2 (N). 

Rabi is similar to the direct sum

Proof. See Section 2.2 in [START_REF]Asymptotic behavior of large eigenvalues of the two-photon Rabi model[END_REF]. □

6.2.

Step 2 of the proof of Theorem 1.3. Let Jδ γ , dδ , bγ be as in Definition 2.2. If dν,µ and bµ are given by (6.2), then it is easy to check the following relations The above properties allow us to prove Due to Lemma 6.2, σ(H

Rabi ) = σ( Ĵ1,0 ) ∪ σ( Ĵ-1,0 ) ∪ σ( Ĵ1,1 ) ∪ σ( Ĵ-1,1 ) and we complete the proof, taking

for n ∈ N.

Appendix: estimates of oscillatory integrals

Lemma 7.1. Let us fix real numbers θ 0 , θ 1 and c □