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THREE-TERM ASYMPTOTIC FORMULA FOR LARGE
EIGENVALUES OF THE TWO-PHOTON QUANTUM RABI MODEL

ANNE BOUTET DE MONVEL1 AND LECH ZIELINSKI2

Abstract. We prove that the spectrum of the two-photon quantum Rabi Hamilton-
ian consists of two eigenvalue sequences (E+

m)∞m=0, (E
−
m)∞m=0 satisfying a three-term

asymptotic formula with the remainder estimate O(m−1 lnm) when m tends to
infinity. By analogy to the one-photon quantum Rabi model, the leading three terms
of this asymptotic formula, describe a generalized rotating-wave approximation for
large eigenvalues of the two-photon quantum Rabi model.

Keywords: unbounded self-adjoint operators, discrete spectrum, asymptotic distribution of
eigenvalues, quantum Rabi model

Mathematics Subject Classification: 47A75, 81Q10, 47B25, 47B36.

1. General presentation of the paper

1.1. Introduction. The simplest interaction between a two-level atom and a classical
light field is described by the semi-classical Rabi model [22], [23]. The quantum Rabi
model (QRM) couples a two-level system (TLS) with a quantized single-mode radiation
and is considered as a particularly important model in quantum electrodynamics: we
refer to [8] concerning the historical aspects of the QRM and to [21] for a list of recent
research works and experimental realizations of the QRM.

The simplest QRM is defined by the one-photon Hamiltonian H
(1)
Rabi given in Definition

1.2(c). The operator H
(1)
Rabi is a self-adjoint operator depending on two real parameters:

g (the coupling constant) and ∆ (the energy separation in the TLS). Its spectrum
is discrete and the fundamental question is how to find a good approximation of the
corresponding eigenvalues.

The first step in this direction, is the rotating-wave approximation (RWA) introduced
in the famous paper of Jaynes and Cummings [20]. However, the RWA is a correct
approximation only when g is close to 0 and ∆ close to 1 for H

(1)
Rabi given in Definition

1.2(c). The most popular idea of going beyond the limitations of RWA, bears the name
of the generalized rotating-wave approximation (GRWA) after Irish [18]. The same idea
was considered before by Feranchuk, Komarov, Ulyanenkov [13], under the name of
the zeroth order approximation of the operator method (see [14]). According to the
GRWA, the spectrum of H(1)

Rabi is composed of two eigenvalue sequences: (E+
m)∞m=0 and

(E−
m)∞m=0, satisfying E±

m ≈ E±
m,GRWA and the formula (25) in [13] claims that

E±
m,GRWA ≈ m− g2 ± rm as m → ∞
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holds with

rm :=
∆

2

cos
(
4g

√
m− π

4

)√
2πg

√
m

. (1.1)

In [3]-[4] we proved that if rm is given by (1.1) and ε > 0, then one has

E±
m = m− g2 ± rm +O(m− 1

2+ε) as m → ∞ (1.2)

and
E±

m,GRWA = m− g2 ± rm +O(m− 1
2 ) as m → ∞ (1.3)

Thus (1.2)-(1.3) allow one to estimate the quality of GRWA for large eigenvalues of the
one-photon QRM. In this paper we will prove a similar result for the two-photon QRM
defined by the Hamiltonian H

(2)
Rabi given in Definition 1.2(d).

We remark that the two-photon QRM was used in [15] to describe a two-level atom
interacting with squeezed light and we refer to [9] for the overview of works concerning
the two-photon quantum Rabi model (see also [21]). In what follows, we always assume
that the coupling constant satisfies the condition 0 < g < 1/2. This hypothesis implies
that H

(2)
Rabi is self adjoint and has a discrete spectrum. In [6] we proved that the

spectrum of H(2)
Rabi is composed of two eigenvalue sequences: (E+

m)∞m=0 and (E−
m)∞m=0,

satisfying

E±
m =

(
m+

1

2

)√
1− 4g2 − 1

2
+O(m−1/3) as m → ∞ (1.4)

In this paper we will prove the three-term asymptotic formula

E±
m =

(
m+

1

2

)√
1− 4g2 − 1

2
± rm +O(m−1 lnm) as m → ∞ (1.5)

where rm is given by (1.20). By analogy to (1.2)-(1.3), the expression(
m+

1

2

)√
1− 4g2 − 1

2
± rm

can be viewed as a GRWA for large eigenvalues of the two-photon QRM.

1.2. Quantum Rabi Model.

Notation 1.1. (a) In what follows, Z is the set of integers and N := {n ∈ Z : n ≥ 0}.

(b) We denote by ℓ2(N) the complex Hilbert space of square-summable sequences
x : N → C equipped with the scalar product

⟨x, y⟩ℓ2(N) =
∞∑

m=0

x(m)y(m) (1.6)

and the norm ||x||ℓ2(N) := ⟨x, x⟩1/2ℓ2(N). For s > 0 we denote

ℓ2,s(N) := {x ∈ ℓ2(N) :
∞∑

m=0

(1 +m2)s |x(m)|2 < ∞} (1.7)

(c) The canonical basis of ℓ2(N) is denoted {en}n∈N (i.e. en(m) = δn,m for n, m ∈ N).

(d) The annihilation and creation operators, â and â†, are the linear maps ℓ2,1/2(N) →
ℓ2(N) satisfying

â† en =
√
n+ 1 en+1 for n ∈ N (1.8)

â e0 = 0 and â en =
√
n en−1 for n ∈ N \ {0}. (1.9)
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(e) Using (1, 0) ∈ C2 and (0, 1) ∈ C2 as the canonical basis of the Euclidean space C2,
we denote by σx, σz, I2, the linear operators in C2 defined by the matrices

σx :=

(
0 1
1 0

)
, σz :=

(
1 0
0 −1

)
, I2 :=

(
1 0
0 1

)
(1.10)

Definition 1.2. (a) The two-level system (TLS) Hamiltonian is the linear map in C2

defined by the matrix

HTLS =
1

2

(
∆ 0
0 −∆

)
=

1

2
∆σz (1.11)

where ∆ is a real parameter.

(b) The Hamiltonian of the single-mode radiation is the linear map Hrad : ℓ2,1(N) →
ℓ2(N) defined by the formula

Hraden = â†â en = nen for n ∈ N. (1.12)

(c) The one-photon quantum Rabi Hamiltonian is defined as the linear map H
(1)
Rabi :

C2 ⊗ ℓ2,1(N) → C2 ⊗ ℓ2(N) given by

H
(1)
Rabi = I2 ⊗Hrad +HTLS ⊗ Iℓ2(N) + gσx ⊗

(
â+ â†

)
, (1.13)

where g > 0 is the coupling constant.

(d) The two-photon quantum Rabi Hamiltonian is defined as the linear map H
(2)
Rabi :

C2 ⊗ ℓ2,1(N) → C2 ⊗ ℓ2(N) given by

H
(2)
Rabi = I2 ⊗Hrad +HTLS ⊗ Iℓ2(N) + gσx ⊗

(
â2 + (â†)2

)
, (1.14)

where g > 0 is the coupling constant.

1.3. Main result. In what follows, we assume 0 < g < 1/2 and introduce

β :=
√
1− 4g2, (1.15)

α := arctan

(√
1− 2g

1 + 2g

)
. (1.16)

Let H
(2)
0,Rabi denote the operator given by (1.14) with ∆ = 0, i.e.

H
(2)
0,Rabi = I2 ⊗Hrad + gσx ⊗

(
â2 + (â†)2

)
. (1.17)

If 0 < g < 1/2, then the spectrum of H(2)
0,Rabi is explicitly known (see [11], [12]): it is

composed of the sequence of eigenvalues

E0
m = mβ + (β − 1)/2, m = 0, 1, 2, . . . (1.18)

and each eigenvalue E0
m is of multiplicity 2. Thus 0 < g < 1/2 ensures the fact that

H
(2)
0,Rabi is self-adjoint and has compact resolvent. Since H

(2)
Rabi−H

(2)
0,Rabi is bounded, the

operator H
(2)
Rabi is self-adjoint and has compact resolvent if 0 < g < 1/2. The explicit

values of eigenvalues of H(2)
Rabi are not known when ∆ ̸= 0, but we can describe their

asymptotic behaviour. Our main result is the following
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Theorem 1.3. Assume that 0 < g < 1/2. Then one can find {v+m}m∈N ∪ {v−m}m∈N, an
orthonormal basis of C2 ⊗ ℓ2(N), such that

H
(2)
Rabiv

±
m = E±

mv±m, m = 0, 1, 2, . . .

and the eigenvalue sequences (E+
m)m∈N, (E−

m)m∈N, satisfy the large m estimates

E±
m = mβ + (β − 1)/2± rm +O(m−1 lnm) (1.19)

with rm given by the formula

rm =


∆

2

√
β

πgm
cos((2m+ 1)α) if m is even

∆

2

√
β

πgm
sin((2m+ 1)α) if m is odd,

(1.20)

where β is given by (1.15) and α is given by (1.16).

Remarks. (a) One has E±
m −E0

m = O(m−1/2) in spite of the fact that H(2)
Rabi −H

(2)
0,Rabi

is not compact. A similar fact was established in [30] for the one-photon Rabi model.

(b) Following [25], one can prove that the spectrum of H(2)
Rabi is not discrete if g ≥ 1

2 .

1.4. Overview of earlier results. The distribution of large eigenvalues of the QRM
has been a subject of many numerical investigations. Concerning the earliest physical
considerations, we refer to Schmutz [26]. It is well known (see e.g [28]) that the one-
photon quantum Rabi Hamiltonian can be expressed as a direct sum of two Jacobi
operators, i.e. operators defined by infinite tridiagonal matrices. Similarly, the two-
photon quantum Rabi Hamiltonian can be expressed as a direct sum of four Jacobi
operators (see [6]). A mathematical study of large eigenvalues of Jacobi matrices was
initiated by J. Janas and S. Naboko in the paper [19], which contains fundamental ideas
of the method of approximate diagonalizations.

The question of the behaviour of large eigenvalues of H(1)
Rabi, was first posed by E. A.

Tur [28]-[29] and it was considered by A. Boutet de Monvel, S. Naboko and L. O. Silva
in [1]-[2]. Due to the difficulty of the problem, the authors give a solution for a simpler
class of operators ("modified Jaynes-Cummings models"). The two-term asymptotic
formula for large eigenvalues of the one-photon quantum Rabi model, was proved by E.
A. (Tur) Yanovich in [30] (see also [29]). The three-term asymptotic formula (1.2) was
proved in [3]-[4]. We remark that the formula (1.2) allows one to recover the values of
parameters g and ∆ from the spectrum (see [5]). The two-term asymptotic formula
(1.4) for large eigenvalues of the two-photon quantum Rabi model, was proved in [6].
The result of Theorem 1.3 and the main ideas of its proof were described in [7]. The
same result was also described in [17].

1.5. Organization of the paper. Our approach is based on an analysis of operators
acting in ℓ2(Z). These operators are introduced in Section 2.1 and the corresponding
three-term asymptotic formula is given in Theorem 2.3. In Theorem 2.3(a) we consider
the operators J̃0

γ , which are special case of operators considered by Edward [10]. In
Section 2.2 we describe explicit expressions of their eigenvalues and eigenvectors by
means of the discrete Fourier transform. In Theorem 2.3(b) we consider the operators
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J̃δ
γ , which are viewed as perturbations of J̃0

γ . In Section 3 we show that the assertion
of Theorem 2.3(b) follows from a GRWA result given in Proposition 3.1. The proof
of Proposition 3.1 begins in Section 4 and is completed in Section 5. In Section 6 we
show how to deduce Theorem 1.3 from Theorem 2.3(b). More precisely, we follow the
following scheme:
- we prove Proposition 3.1, using Lemma 4.3 and Kato-Temple estimate (Theorem 5.2)
- we prove Theorem 2.3, using Lemma 2.6, Proposition 3.1 and an asymptotic formula
from [6]
- we prove Theorem 1.3, using Theorem 2.3, Lemma 6.2 and Lemma 6.3.

2. An auxiliary problem in ℓ2(Z)

2.1. Behaviour of large eigenvalues for auxiliary operators J̃δ
γ .

Notation 2.1. (a) We denote by B(V) the algebra of bounded operators on the Banach
space V and || · ||B(V) is the corresponding operator norm.
(b) We denote by ℓ2(Z) the complex Hilbert space of square-summable sequences
x : Z → C equipped with the scalar product

⟨x, y⟩ℓ2(Z) =
∑
k∈Z

x(k)y(k) (2.1)

and the norm ||x||ℓ2(Z) := ⟨x, x⟩1/2ℓ2(Z). For s > 0 we denote

ℓ2,s(Z) := {x ∈ ℓ2(Z) : ||x||ℓ2,s(Z) < ∞}

where

||x||ℓ2,s(Z) :=
( ∑

k∈Z
(1 + k2)s |x(k)|2

)1/2

(2.2)

(c) The canonical basis of ℓ2(Z) is denoted {ẽj}j∈Z (i.e. ẽj(k) = δj,k for j, k ∈ Z) and
ℓ2fin(Z) denotes the set of finite linear combinations of vectors belonging to {ẽj}j∈Z.

(d) If (d̃j)j∈Z is real valued, then D̃ := diag(d̃j)j∈Z is the self-adjoint operator in ℓ2(Z)
satisfying

D̃ ẽj = d̃j ẽj for every j ∈ Z.
We denote

Λ := diag(j)j∈Z. (2.3)

(e) We denote by S the shift defined in ℓ2(Z) by the formula (Sx)(j) = x(j − 1).

Definition 2.2. In what follows, γ, δ and g are fixed real numbers.
(a) We define J̃0

γ as the linear map ℓ2,1(Z) → ℓ2(Z) given by

J̃0
γ := Λ + g

(
S
(
Λ + γ

)
+

(
Λ + γ

)
S−1

)
= Λ+ g

(
S(Λ + γ

)
+ h.c.

)
(2.4)

(b) We define J̃δ
γ as the linear map ℓ2,1(Z) → ℓ2(Z) given by the formula

J̃δ
γ := J̃0

γ +Dδ, (2.5)

where
Dδ := diag(δ(−1)j)j∈Z. (2.6)
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Using the above definition, we find that the action of J̃δ
γ can be represented by the

following tridiagonal, Z× Z matrix

. . .
−2 + δ g(−2 + γ) 0 0 0

g(−2 + γ) −1− δ g(−1 + γ) 0 0
0 g(−1 + γ) δ gγ 0
0 0 gγ 1− δ g(1 + γ)
0 0 0 g(1 + γ) 2 + δ

. . .


whose diagonal entries {d̃δ(j)}j∈Z are given by

d̃δ(j) := j + δ(−1)j , (2.7)

off-diagonal entries {b̃γ(j)}j∈Z are given by

b̃γ(j) := g(j + γ) (2.8)

and J̃δ
γ ẽj = d̃δ(j)ẽj + b̃γ(j)ẽj+1 + b̃γ(j − 1)ẽj−1 for every j ∈ Z.

Theorem 2.3. Let J̃0
γ be given by (2.4) and J̃δ

γ by (2.5)-(2.6). If 0 < g < 1/2 then
(a) the spectrum of J̃0

γ is composed of a non-decreasing sequence of eigenvalues {dγ,j}j∈Z
of the form

dγ,j := βj +
(
γ − 1

2

)
(β − 1), (2.9)

where β is given by (1.15).
(b) the spectrum of J̃δ

γ is composed of a non-decreasing sequence of eigenvalues {λj(J̃
δ
γ )}j∈Z

which can be labeled so that

λj(J̃
δ
γ) = dγ,j + rδγ(j) +O(j−1 ln j) as j → ∞ (2.10)

where dγ,j is given by (2.9),

rδγ(j) = δ
( β

2πgj

)1/2
cos

(
4αj + θ̂γ

)
, (2.11)

β is given by (1.15), α by (1.16) and

θ̂γ =
(
γ − 1

2

)
(4α− π) +

π

4
. (2.12)

Proof. (a) This result was proved in [10]. We describe a simplified proof in Section 2.2.
(b) See Section 3.2. □

2.2. Diagonalization of J̃0
γ . In what follows, T := R/2πZ is identified with ]−π, π] and

L2(T) denotes the Hilbert space of Lebesgue square integrable functions ]− π, π] → C
equipped with the scalar product

⟨f, g⟩L2(T) :=

∫ π

−π

f(θ) g(θ)
dθ

2π
(2.13)

and the norm ||f ||L2(T) = ⟨f, f⟩1/2L2(T). We let FT denote the isometric isomorphism
L2(T) → ℓ2(Z) given by

(FTf)(j) =

∫ π

−π

f(θ) e−ijθ dθ

2π
(2.14)
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and consider the operator

L0
γ := F−1

T J̃0
γFT = −i

d

dθ
+ g

(
eiθ

(
− i

d

dθ
+ γ

)
+ h.c.

)
Similarly as in [10] and [6], we observe that the assumption 0 < g < 1/2 ensures the
fact that L0

γ is the first order linear elliptic differential operator,

L0
γ =

1

2

( (
1 + 2g cos(θ)

)(
− i

d

dθ

)
+ h.c.

)
+ (2γ − 1)g cos(θ)

and we introduce

Φ(θ) :=

∫ θ

0

β dθ′

1 + 2g cos(θ′)
. (2.15)

An easy calculation allows one to express the right-hand side of (2.15),

Φ(θ) = 2 arctan

(√
1− 2g

1 + 2g
tan

(θ
2

))
if − π < θ < π. (2.16)

Moreover Φ(π) = π and Φ is odd, i.e. Φ(−θ) = −Φ(θ). Using the change of variable
η = Φ(θ), we can define the unitary operator acting in L2(T) according to the formula

(UΦf)(θ) = Φ′(θ)1/2f(Φ(θ)) (2.17)

and the direct computation (see [6]) gives

U−1
Φ L0

γ UΦ = β

(
−i

d

dη
+ qγ(η)

)
(2.18)

with
qγ(η) := β−1(2γ − 1)g cos(Φ−1(η)). (2.19)

In the following, qγ is given by (2.19) and

q̃γ(η) :=

∫ η

0

qγ(η
′) dη′. (2.20)

We claim that
q̃γ(Φ(θ)) =

(
γ − 1

2

)
(θ − β−1Φ(θ)). (2.21)

Indeed,
d

dθ

(
q̃γ(Φ(θ))

)
= qγ(Φ(θ))Φ

′(θ) =
(2γ − 1)g cos(θ)

β

β

1 + 2g cos(θ)
=

=
2γ − 1

2

(
1− 1

1 + 2g cos(θ)

)
=

(
γ − 1

2

)
(1− β−1Φ′(θ))

implies q̃γ(Φ(θ)) = (γ − 1
2 )(θ − β−1Φ(θ)) + C0 and C0 = 0 holds due to Φ(0) = 0 and

q̃γ(Φ(0)) = q̃γ(0) = 0.
Using Φ(±π) = ±π in (2.21), we compute

⟨qγ⟩ :=
q̃γ(π)− q̃γ(−π)

2π
=

(
γ − 1

2

)
(1− β−1) (2.22)

and remark that η → ⟨qγ⟩η − q̃γ(η) is a smooth 2π-periodic function. Then we define
(fqγ ,j)j∈Z to be the orthonormal basis in L2(T) given by

fqγ ,j(η) = eijη ei(⟨qγ⟩η−q̃γ(η)) (2.23)
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and (see [7], [10]), for every j ∈ Z, we get

β

(
−i

d

dη
+ qγ

)
fqγ ,j = dγ,jfqγ ,j , (2.24)

where dγ,j = β(j + ⟨qγ⟩) = βj + (γ − 1/2)(β − 1) is given (2.9). Combining (2.24) with
(2.18), we obtain

Corollary 2.4. Let {f 0
γ,j}j∈Z be the orthonormal basis of L2(T) given by

f 0
γ,j(θ) := (UΦfqγ ,j)(θ) = Φ′(θ)1/2eijΦ(θ) ei(⟨qγ⟩Φ(θ)−q̃γ(Φ(θ))). (2.25)

Then
L0
γf

0
γ,j = dγ,jf

0
γ,j (2.26)

holds with dγ,j given (2.9).

It is clear that the assertion of Theorem 2.3(a) follows from Corollary 2.4. Indeed,
using (2.26) and J̃0

γ = FTL
0
γF−1

T , we get

J̃0
γu

0
γ,j = dγ,ju

0
γ,j with u0

γ,j := FTf
0
γ,j . (2.27)

2.3. An auxiliary estimate.

Notation 2.5. (a) For f ∈ L2(T) we write Tπf := f ◦ τπ with τπ : T → T given by

τπ(θ + 2πZ) := θ + π + 2πZ (2.28)

(b) For j, n ∈ Z, we denote

V δ
γ (j, n) := δ⟨f 0

γ,j , Tπf
0
γ,n⟩L2(T), (2.29)

where f 0
γ,j is given by (2.25).

Lemma 2.6. Let ĉ > 0 be small enough. Then there exists Ĉ > 0 such that

sup
{k∈Z: |k|≤ĉ|n|}

|V δ
γ (n+ k, n)| ≤ Ĉ|n|−1/2 (2.30)

holds for every n ∈ Z \ {0}.

Proof. Let us assume that n ̸= 0. By definition (2.25), f 0
γ,n = einΦpγ holds with

pγ(θ) := ei⟨qγ⟩Φ(θ)−iq̃γ(Φ(θ))β1/2(1 + 2g cos θ)−1/2 (2.31)

and we can express

V δ
γ (n+ k, n) = δ

∫ π

−π

einΨn,k(θ) pγ(θ) (Tπpγ)(θ)
dθ

2π
(2.32)

with
Ψn,k = Φ− TπΦ+

k

n
Φ. (2.33)

Denote Ψ := Φ− TπΦ. Then

Ψ′(θ) =
β

1 + 2g cos θ
− β

1− 2g cos θ
= 0 ⇔ cos θ = 0, (2.34)

i.e. Ψ has two critical points: −π
2 and π

2 . Since

Ψ′′(θ) =

(
2gβ

(1 + 2g cos θ)2
+

2gβ

(1− 2g cos θ)2

)
sin θ, (2.35)
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we obtain Ψ′′(±π
2 ) = ±4gβ ̸= 0 and choosing c0 > 0 small enough we can ensure

|Ψ′′(θ)| ≥ c0 for θ ∈ Ic0 := [−π
2 − c0,−π

2 + c0] ∪ [π2 − c0,
π
2 + c0].

However Ψn,k = Ψ+ k
nΦ and denoting C0 = sup |Φ′′| we can estimate

|Ψ′′
n,k(θ)| ≥ |Ψ′′(θ)| − C0

∣∣∣∣kn
∣∣∣∣

and ∣∣∣∣kn
∣∣∣∣ ≤ c0

2C0
=⇒ |Ψ′′

n,k(θ)| ≥
c0
2

for θ ∈ Ic0 . (2.36)

Due to van der Corput Lemma (see Lemma 7.1(b)), there exists C > 0 such that∣∣∣∣∣
∫
Ic0

einΦn,k(θ) pγ(θ) (Tπpγ)(θ)
dθ

2π

∣∣∣∣∣ ≤ C|n|−1/2. (2.37)

Moreover
c1 := inf{|Ψ′(θ)| : θ ∈ [−π, π] \ Ic0} > 0

and denoting C1 = sup |Φ′| we can estimate

|Ψ′
n,k(θ)| ≥ |Ψ′(θ)| − C1

∣∣∣∣kn
∣∣∣∣ ,

hence ∣∣∣∣kn
∣∣∣∣ ≤ c1

2C1
=⇒ |Ψ′

n,k(θ)| ≥
c1
2

for θ ∈ [−π, π] \ Ic0 . (2.38)

Due to the non-stationary phase estimate (see Lemma 7.1(a)), there exists a constant
C ′ > 0 such that∣∣∣∣∣

∫
[−π,π]\Ic0

einΦn,k(θ) pγ(θ) (Tπpγ)(θ)
dθ

2π

∣∣∣∣∣ ≤ C ′|n|−1. (2.39)

Combining (2.37), (2.39) and (2.32), we complete the proof. □

3. The GRWA approch

3.1. Statement of the result. The idea of GRWA consists in using the diagonal
entries of a perturbation as the first correction for eigenvalues of a perturbed diagonal
matrix (see [18] and [14]). Our proof of Theorem 2.3 is based on the following variant
of the GRWA :

Proposition 3.1. Let us fix β0 ∈ R, β > 0, Ĉ > 0 and ĉ > 0. Let J : ℓ2,1(Z) → ℓ2(Z)
be given by the formula

J = βΛ + β0 + V, (3.1)
where Λ = diag(j)j∈Z and V is a bounded self-adjoint operator in ℓ2(Z) satisfying

sup
{k∈Z: |k|≤ĉ|n|}

|⟨ẽn+k, V ẽk⟩ℓ2(Z)| ≤ Ĉ|n|−1/2 (3.2)

for every n ∈ Z \ {0}. Assume that the spectrum of J is composed of a non-decreasing
sequence of eigenvalues {λj(J)}j∈Z such that

λj(J) = jβ + β0 + o(1) as j → ∞. (3.3)

Then one has

λj(J) = jβ + β0 + ⟨ẽj , V ẽj⟩ℓ2(Z) +O(j−1 ln j) as j → ∞ (3.4)
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Proof. See Section 5. □

3.2. Proof of Theorem 2.3(b). In what follows, we describe how to deduce the
assertion of Theorem 2.3(b) from Proposition 3.1. We begin by introducing Ũγ , the
unitary operator in ℓ2(Z) satisfying Ũγ ẽj = u0

γ,j , where {ẽj}j∈Z is the canonical basis
of ℓ2(Z) and {u0

γ,j}j∈Z is the basis introduced in (2.27). We claim that the hypotheses
of Proposition 3.1 are satisfied if

J = Ũ−1
γ J̃δ

γ Ũγ , (3.5)

where Jδ
γ is as in Definition 2.2. Indeed, if β is given by (1.15) and

β0 =
(
γ − 1

2

)
(β − 1), (3.6)

then Ũ−1
γ J̃δ

γ Ũγ = βΛ + β0 + V δ
γ holds with

V δ
γ := Ũ−1

γ Dδ Ũγ , (3.7)

where Dδ = diag(δ(−1)j)j∈Z (see (2.6)). Therefore

⟨ẽj , V δ
γ ẽk⟩ℓ2(Z) = ⟨u0

j,γ , Dδ u
0
j,γ⟩ℓ2(Z) = ⟨f0

j,γ ,F−1
T Dδ FTf

0
j,γ⟩L2(T), (3.8)

where we used u0
j,γ = FTf

0
j,γ and the isometry FT. Since F−1

T DδFT = δTπ holds with
Tπ as in Notation 2.5, (3.8) gives

⟨ẽj , V δ
γ ẽk⟩ℓ2(Z) = V δ

γ (j, k) (3.9)

with V δ
γ (·, ·) expressed by (2.29) and due to Lemma 2.6, the estimate (3.2) holds if

V = V δ
γ is given by (3.7). Moreover, the result of [6, Proposition 5.1] ensures the fact

that the spectrum of J̃δ
γ is composed of the non-decreasing sequence of eigenvalues

{λj(J̃
δ
γ)}j∈Z, which can be labeled so that one has the estimate

λj(J̃
δ
γ) = jβ + β0 +O(j−1/3) as j → ∞, (3.10)

i.e. (3.3) holds if J is given by (3.5). Thus all the hypotheses of Proposition 3.1 hold and
choosing {λj(J̃

δ
γ )}j∈Z to be the sequence of eigenvalues of J̃δ

γ such that λj(J̃
δ
γ ) = λj(J)

for every j ∈ Z, we obtain

λj(J̃
δ
γ) = jβ + β0 + ⟨ẽj , V δ

γ ẽj⟩ℓ2(Z) +O(j−1 ln j) when j → ∞ (3.11)

due to (3.4). The assertion of Theorem 2.3(b) follows from (3.11) and

⟨ẽj , V δ
γ ẽj⟩ℓ2(Z) = rδγ(j) +O(j−1) when j → ∞. (3.12)

where rδγ is given by (2.11)-(2.12). The proof of (3.12) is given in Section 3.3.

3.3. Proof of (3.12). Due to (2.32),

V δ
γ (n, n) = δ

∫ π

−π

einΨ(θ)hγ(θ)
dθ

2π
, (3.13)

where Ψ := Φ−TπΦ and hγ(θ) = pγ(θ) (Tπpγ)(θ) with pγ given by (2.31). Since ±π
2 are

non-degenerated critical points of Ψ (see (2.34), (2.35))), the stationary phase formula
gives

V δ
γ (n, n) = δ

∑
ν=±1

hγ(νπ/2)e
inΨ(νπ/2)+iνπ/4√

2πn|Ψ′′(νπ/2)|
+O(n−1). (3.14)
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Since Φ is odd, we get

Ψ(±π/2) = Φ(±π/2)− Φ(∓π/2) = 2Φ(±π/2) = ±2Φ(π/2) = ±4α (3.15)

where (2.16) was used to write Φ(π/2) = 2α with α given by (1.16). By definition
(2.31), one has pγ(π/2) =

√
β eiθ̃γ with

θ̃γ := ⟨qγ⟩Φ(π/2)− q̃γ(Φ(π/2)) (3.16)

and q̃γ ◦ Φ is odd, hence pγ(−π/2) =
√
β e−iθ̃γ and hγ(π/2) = βe2iθ̃γ . Moreover, one

has hγ(−π/2) = hγ(π/2), hence

hγ(±π/2) = βe±2iθ̃γ (3.17)

and we get two conjugated terms corresponding to ν = ±1 in (3.14). Therefore, using
(3.17), (3.15) and |Ψ′′(±π/2)| = 4gβ in (3.14), we get

V δ
γ (n, n) = δ

2Re
(
βe2iθ̃γ ei4nα+iπ/4

)
√
2πn · 4gβ

+O(n−1)

= δ

√
β cos(4nα+ 2θ̃γ + π/4)√

2πng
+O(n−1).

To complete the proof of (3.12), it remains to check that θ̂γ := 2θ̃γ + π/4 is given by
(2.12). However, (2.22) gives

⟨qγ⟩Φ(π/2) =
(
γ − 1

2

)(
Φ(π/2)− β−1Φ(π/2)

)
, (3.18)

(2.21) gives

−q̃γ(Φ(π/2)) =
(
γ − 1

2

)(
β−1Φ(π/2)− π/2

)
, (3.19)

and summing up (3.18), (3.19), we find that (3.16) gives

θ̃γ =
(
γ − 1

2

)
(Φ(π/2)− π/2) =

(
γ − 1

2

)
(2α− π/2) (3.20)

and θ̂γ = 2θ̃γ + π
4 = (γ − 1

2 )(4α− π) + π
4 as claimed in (2.12).

4. Auxiliary operators Qn

4.1. Definition of Qn. Our aim is to introduce a sequence of auxiliary self-adjoint
operators {Qn}n∈N∗ which will be used in Section 5 to estimate λn(J) thanks to an
analysis of the operator

J ′
n := e−iQnJeiQn . (4.1)

Definition 4.1. Let V be a self-adjoint bounded operator in ℓ2(Z) and denote

V (j, k) := (V ẽk)(j) = ⟨ẽj , V ẽk⟩ℓ2(Z) for (j, k) ∈ Z2.

For n ∈ N∗ define (Qn(j, k))(j,k)∈Z2 by

Qn(j, k) =


i
V (j, n)

β(j − n)
when j ̸= n and k = n

i
V (n, k)

β(n− k)
when j = n and k ̸= n

0 otherwise

(4.2)
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Then
Qn(j, k) ̸= 0 ⇒

(
either (j ̸= n and k = n) or (j = n and k ̸= n)

)
(4.3)

and the relation

(Qnẽk)(j) = ⟨ẽj , Qnẽk⟩ℓ2(Z) = Qn(j, k) for (j, k) ∈ Z2

defines in ℓ2(Z) a self-adjoint Hilbert-Schmidt operator Qn due to∑
(j,k)∈Z2

|Qn(j, k)|2 ≤ 2

β2

∑
j∈Z

|V (j, n)|2 =
2

β2
||V ẽn||2ℓ2(Z) ≤

2

β2
||V ||2B(ℓ2(Z))

Notation 4.2. If n ∈ Z then Π̂n ∈ B(ℓ2(Z)) (respectively Π̃n ∈ B(ℓ2(Z))) denotes the
orthogonal projection on Cẽn (respectively on (Cẽn)⊥), i.e.

Π̂nx := ⟨ẽn, x⟩ℓ2(Z)ẽn = x(n)ẽn and Π̃n := I − Π̂n.

4.2. Properties of Qn. We observe that (4.3) implies

Π̂nQnΠ̂n = 0 = Π̃nQnΠ̃n (4.4)

and
Qn = Π̃nQnΠ̂n + Π̂nQnΠ̃n. (4.5)

More properties of Qn are given in

Lemma 4.3. Assume that V satisfies the assumption of Proposition 3.1, i.e. V is a
bounded self-adjoint operator in ℓ2(Z) satisfying

|j − n| ≤ ĉ|n| ⇒ |V (j, n)| ≤ Ĉ|n|−1/2, (4.6)

where Ĉ, ĉ > 0 are independent of n. Let Qn ∈ B(ℓ2(Z)) be as in Definition 4.1. Then
(a) one has large n estimate

||Qn||B(ℓ2(Z)) = O(n−1/2) (4.7)

(b) ℓ2,1(Z) is an invariant subspace of Qn and for every x ∈ ℓ2,1(Z),
iβ[Qn,Λ]x = iβ(QnΛ− ΛQn)x = Vnx (4.8)

holds with
Vn := Π̃nV Π̂n + Π̂nV Π̃n. (4.9)

(c) ℓ2,1(Z) is an invariant subspace of eitQn and t → eitQnx is of class C∞(R; ℓ2,1(Z))
if x ∈ ℓ2,1(Z).

Proof. (a) By definition of Qn,

||Qnẽn||2ℓ2(Z) =
∑

j∈Z\{n}

|Qn(j, n)|2 =
∑

j∈Z\{n}

|V (j, n)|2

β2(j − n)2
≤ β−2(Mn +M′

n)

holds with

Mn :=
∑

{j∈Z: 0<|j−n|≤ĉn}

|V (j, n)|2

(j − n)2
≤

∑
m∈Z\{0}

Ĉ2n−1

m2
= C1n

−1

due to (4.6) and

M′
n :=

∑
{j∈Z: |j−n|>ĉn}

|V (j, n)|2

(j − n)2
≤

∑
j∈Z

|V (j, n)|2

ĉ2n2
=

||V ẽn||2ℓ2(Z)
ĉ2n2

≤ C2n
−2.
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This shows that ||QnΠ̂n||B(ℓ2(Z)) = O(n−1/2). Moreover, due to (4.5),

||QnΠ̃n||B(ℓ2(Z)) = ||Π̂nQnΠ̃n||B(ℓ2(Z)) ≤ ||Π̂nQn||B(ℓ2(Z)) = ||QnΠ̂n||B(ℓ2(Z))

is O(n−1/2), which completes the proof of (4.7).
(b) Let Vn be given by (4.9). Then one has

Vn(j, k) := (Vnẽk)(j) = ⟨ẽj , Vnẽk⟩ℓ2(Z) =


V (j, n) when j ̸= n and k = n

V (n, k) when j = n and k ̸= n

0 otherwise

(4.10)

and combining (4.10) with (4.2) we obtain

iβ(j − k)Qn(j, k) = −Vn(j, k) for every j, k ∈ Z. (4.11)

However, (4.11) implies

iβ(j + 1
2 )(Qnẽk)(j) = iβ

(
Qn(k + 1

2 )ẽk
)
(j)− (Vnẽk)(j) (4.12)

and ensures Qnẽk ∈ ℓ2,1(Z). Moreover, (4.12) ensures the equality

iβ(Λ + 1
2 )Qnx = iβQn(Λ + 1

2 )x− Vnx (4.13)

for x ∈ ℓ2fin(Z). If y ∈ ℓ2fin(Z), then using (4.13) with x = (Λ + 1
2 )

−1y, we obtain

iβ(Λ + 1
2 )Qn(Λ + 1

2 )
−1y = iβQ′

ny (4.14)

with Q′
n ∈ B(ℓ2(Z)) given by

Q′
n := Qn − (iβ)−1Vn(Λ + 1

2 )
−1. (4.15)

Due to (4.14), for every y ∈ ℓ2fin(Z) one has

iβQn(Λ + 1
2 )

−1y = iβ(Λ + 1
2 )

−1Q′
ny (4.16)

and by continuity, (4.16) holds for every y ∈ ℓ2(Z). Consider now x ∈ ℓ2,1(Z) and take
y = (Λ + 1

2 )x in (4.16). This gives

iβQnx = iβ(Λ + 1
2 )

−1Q′
n(Λ + 1

2 )x ∈ ℓ2,1(Z) (4.17)

and
iβ(Λ + 1

2 )Qnx = iβQ′
n(Λ + 1

2 )x = iβQn(Λ + 1
2 )x− Vnx, (4.18)

implying (4.8) for every x ∈ ℓ2,1(Z).
(c) We first observe that (4.16) holds for every y ∈ ℓ2(Z) and implies (4.14) for every
y ∈ ℓ2(Z). Since (4.14) implies (Q′

n)
my = (Λ + 1

2 )(Qn)
m(Λ + 1

2 )
−1y for every m ∈ N

and y ∈ ℓ2(Z), we have

eitQn(Λ + 1
2 )

−1y = lim
N→∞

N∑
m=0

(it)m

m!
(Qn)

m(Λ + 1
2 )

−1y =

= lim
N→∞

N∑
m=0

(it)m

m!
(Λ + 1

2 )
−1(Q′

n)
my = (Λ + 1

2 )
−1eitQ

′
ny ∈ ℓ2,1(Z)

if y ∈ ℓ2(Z) and setting x = (Λ + 1
2 )

−1y, we find that t → (Λ + 1
2 )e

itQnx = eitQ
′
ny is

C∞(R; ℓ2(Z)) for every x ∈ ℓ2,1(Z). □
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5. Proof of Proposition 3.1

5.1. Taylor’s expansion formula. We will investigate J ′
n = e−iQnJeiQn , using a

special version of the Taylor’s expansion formula. Assume that B and Q ∈ B(ℓ2(Z))
and denote

FtQ(B) := e−itQ B eitQ for t ∈ R, (5.1)

ad1iQ(B) := [B, iQ] = i(BQ−QB)

and
adm+1

iQ (B) := [admiQ(B), iQ] for m ∈ N∗.

Then
dm

dtm
FtQ(B) = e−itQ admiQ(B) eitQ = FtQ(ad

m
iQ(B)) (5.2)

and the Taylor formula gives

FtQ(B) = B +

N−1∑
m=1

tm

m!
admiQ(B) +Rt,N

Q (B) (5.3)

with

Rt,N
Q (B) :=

tN

(N − 1)!

∫ 1

0

FstQ(ad
N
iQ(B)) (1− s)N−1 ds. (5.4)

We can also consider the case when B is an unbounded symmetric operator in ℓ2(Z),
defined on a dense domain D(B). Suppose that D(B) is an invariant subspace for Q
and eitQ for every t ∈ R. If t → BeitQx is C1(R, ℓ2(Z)) for every x ∈ D(B), then

d

dt
⟨eitQx,BeitQy⟩ℓ2(Z) = ⟨BeitQx, iQeitQy⟩ℓ2(Z) + ⟨iQeitQx,BeitQy⟩ℓ2(Z)

holds for every x, y ∈ D(B). If the form (x, y) → ⟨Bx, iQy⟩ℓ2(Z)+ ⟨iQx,By⟩ℓ2(Z) can be
extended from D(B)×D(B) to a bounded form on ℓ2(Z)× ℓ2(Z), then we can introduce
[B, iQ] ∈ B(ℓ2(Z)) defined by this form and we can write

d

dt
FtQ(B) = e−itQ [B, iQ] eitQ = FtQ([B, iQ]),

hence (5.3)-(5.4) still hold for every N ∈ N∗.

5.2. Step 1 of the proof of Proposition 3.1.

Notation 5.1. If Ln, L′
n are linear maps defined on a dense subspace of the Banach

space V and Ln−L′
n can be extended to a bounded operator on V , then ||Ln−L′

n||B(V)

denotes the norm of this extension and the notation Ln = L′
n + O(ηn) means that

choosing n0 ∈ N and C > 0 large enough, we ensure ||Ln − L′
n||B(V) ≤ Cηn for all

n ≥ n0. If xn, x′
n ∈ V , then we write xn = yn +O(ηn) if and only if we can find C > 0,

n0 ∈ N, such that ||xn − x′
n||V ≤ Cηn holds for all n ≥ n0.

In what follows, V satisfies the hypotheses of Proposition 3.1 and without any loss
of generality we assume β0 = 0, i.e. J = βΛ + V . We consider

J ′
n = e−iQn(βΛ + V )eiQn (5.5)

and claim the large n estimate

J ′
n = βΛ + V − Vn + [V − 1

2Vn, iQn] +O(n−1), (5.6)
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where Vn = Π̃nV Π̂n + Π̂nV Π̃n is given by (4.9).
We first use (5.3)-(5.4) with N = 2 and write

e−iQnV eiQn = V + [V, iQn] +R1,2
Qn

(V ), (5.7)

||R1,2
Qn

(V )||B(ℓ2(Z)) ≤ ||ad2iQn
(V )||B(ℓ2(Z)) ≤ C||Qn||2B(ℓ2(Z)). (5.8)

We also use (5.3)-(5.4) with N = 3 and write

e−iQnβΛeiQn = βΛ + [βΛ, iQn] +
1
2 [[βΛ, iQn], iQn] +R1,3

Qn
(βΛ), (5.9)

||R1,3
Qn

(βΛ)||B(ℓ2(Z)) ≤ ||ad3iQn
(βΛ)||B(ℓ2(Z)). (5.10)

Using [βΛ, iQn] = −Vn (see Lemma 4.3b) in (5.9)-(5.10), we obtain

e−iQnβΛeiQn = βΛ− Vn − [ 12Vn, iQn] +R1,3
Qn

(βΛ), (5.11)

||R1,3
Qn

(βΛ)||B(ℓ2(Z)) ≤ ||ad2iQn
(Vn)||B(ℓ2(Z)) ≤ C||Qn||2B(ℓ2(Z)) (5.12)

and summing up (5.11), (5.7), we obtain

e−iQnJeiQn = βΛ + V − Vn + [V − 1
2Vn, iQn] +R1,2

Qn
(V ) +R1,3

Qn
(βΛ), (5.13)

||R1,2
Qn

(V ) +R1,3
Qn

(βΛ)||B(ℓ2(Z)) ≤ C||Qn||2B(ℓ2(Z)). (5.14)

To complete the proof, we observe that ||Qn||2B(ℓ2(Z)) = O(n−1) follows from (4.7).

5.3. Step 2 of the proof of Proposition 3.1. We denote

Wn := [V − 1
2Vn, iQn] (5.15)

and we claim that the following estimate

Wn(n, n) := (Wnẽn)(n) = ⟨ẽn,Wnẽn⟩ℓ2(Z) = O(n−1 lnn) (5.16)

holds when n → ∞.
Indeed, Wn = [V ′

n, iQn] holds with V ′
n := V − 1

2Vn and

|V ′
n(j, k)| ≤ 2|V (j, k)| for all j, k ∈ Z, (5.17)

hence we can estimate

|(V ′
nQn)(n, n)| ≤

∑
j∈Z

2|V (n, j)Qn(j, n)| ≤

≤
∑

j∈Z\{n}

2|V (j, n)|2

β|j − n|
≤ 2β−1(Mn +M′

n)

with

Mn :=
∑

{j∈Z: 0<|j−n|≤ĉn}

|V (j, n)|2

|j − n|
≤

∑
{m∈Z: 0<|m|≤ĉn}

Ĉ2n−1

|m|
≤ C1n

−1 lnn

due to (4.6) and

M′
n :=

∑
{j∈Z: |j−n|>ĉn}

|V (j, n)|2

|j − n|
≤

∑
j∈Z

|V (j, n)|2

ĉn
=

||V ẽn||2ℓ2(Z)
ĉn

≤ C2n
−1.
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5.4. Step 3 of the proof of Proposition 3.1. Let J ′
n be as above and denote

d′n := βn+ V (n, n). (5.18)

We claim that the following estimates

⟨ẽn, J ′
nẽn⟩ℓ2(Z) = d′n +O(n−1 lnn) (5.19)

(J ′
n − ⟨ẽn, J ′

nẽn⟩ℓ2(Z))ẽn = O(n−1/2) (5.20)

hold when n → ∞.
Indeed, writing

βΛ + V − Vn = βΛ + V − Π̃nV Π̂n − Π̂nV Π̃n

= βΛ + Π̂nV Π̂n + Π̃nV Π̃n = βΛ + V (n, n)Π̂n + Π̃nV Π̃n

in (5.6), we find

J ′
nẽn =

(
βΛ + V (n, n)Π̂n + Π̃nV Π̃n +Wn

)
ẽn +O(n−1), (5.21)

where Wn = [V − 1
2Vn, iQn] is given by (5.15). However (5.21) implies

J ′
nẽn = d′nẽn +Wnẽn +O(n−1), (5.22)

hence
⟨ẽn, J ′

nẽn⟩ℓ2(Z) = d′n + ⟨ẽn,Wnẽn⟩ℓ2(Z) +O(n−1) (5.23)
and (5.19) follows from (5.16).

In order to prove (5.20), we observe that (5.19) implies

(J ′
n − ⟨ẽn, J ′

nẽn⟩ℓ2(Z))ẽn = (J ′
n − d′n)ẽn +O(n−1 lnn) (5.24)

and (5.22) ensures
(J ′

n − d′n)ẽn = Wnẽn +O(n−1). (5.25)
Thus (5.20) follows from (5.24), (5.25) and

||Wn||B(ℓ2(Z)) ≤ C||Qn||B(ℓ2(Z)) = O(n−1/2).

5.5. End of the proof of Proposition 3.1. In what follows, σ(L) denotes the
spectrum of the operator L. We assume that the hypotheses of Proposition 3.1 hold
and β0 = 0. Then (3.3) ensures λn(J) = βn+ o(1) as n → ∞ and

σ(J) ∩ [β(n− 1
2 ), β(n+ 1

2 )] = {λn(J)} for n ≥ n0 (5.26)

if n0 ∈ N is chosen large enough. Let {λj(J
′
n)}j∈Z be the sequence of eigenvalues of J ′

n

labeled so that λj(J
′
n) = λj(J) for every j ∈ Z. Then (5.26) gives

σ(J ′
n) ∩ [β(n− 1

2 ), β(n+ 1
2 )] = {λn(J

′
n)} for n ≥ n0 (5.27)

and we will use L = J̃ ′
n, x = en, d′ = β(n− 1

2 ) and d′′ = β(n+ 1
2 ) with n ≥ n0 in

Theorem 5.2. (Kato-Temple) Assume that the operator L is self-adjoint in the
Hilbert space H and has exactly one eigenvalue λ in the interval [d′, d′′]. If x is an
element of the domain of L such that η := ⟨x, Lx⟩H belongs to ]d′, d′′[, then

η − ∥(L− η)x∥2

η − d′
≤ λ ≤ η +

∥(L− η)x∥2

d′′ − η
. (5.28)

Proof. See [16]. □
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We claim that the assumptions of Theorem 5.2 are satisfied for n ≥ n0 if n0 is chosen
large enough. Indeed, (5.27) holds and

η := ⟨ẽn, J ′
nẽn⟩ℓ2(Z) ∈ [β(n− 1

4 ), β(n+ 1
4 )] for n ≥ n0 (5.29)

holds due to (5.19) and V (n, n) = O(n−1/2) as n → ∞. Since (5.29) implies the
inequality min{d′′ − η, η − d′} ≥ 1

4β, the estimate (5.28) gives

|λn(J
′
n)− ⟨ẽn, J ′

nẽn⟩ℓ2(Z)| ≤ 4β−1||(J ′
nẽn − ⟨ẽn, J ′

nẽn⟩ℓ2(Z))ẽn||2 = O(n−1), (5.30)

where the last estimate is due to (5.20). The estimate (5.30) implies

λn(J
′
n) = ⟨ẽn, J ′

nẽn⟩ℓ2(Z) +O(n−1) (5.31)

and using (5.19) in the right hand side of (5.31), we obtain

λn(J) = λn(J
′
n) = d′n +O(n−1 lnn),

completing the proof of Proposition 3.1.

6. Proof of Theorem 1.3

6.1. Step 1 of the proof of Theorem 1.3. As before 0 < g < 1
2 and {em}m∈N is the

canonical basis of ℓ2(N).

Definition 6.1. For ν = ±1, µ = 0, 1, we define Ĵν,µ as the linear map Ĵν,µ : ℓ2,1(N) →
ℓ2(N) given by{

Ĵν,µem = d̂ν,µ(m)em + b̂µ(m)em+1 + b̂µ(m− 1)em−1 for m ∈ N∗,

Ĵν,µe0 = d̂ν,µ(0)e0 + b̂µ(0)e1
(6.1)

where {
d̂ν,µ(m) := 2m+ µ+ (−1)mν∆/2

b̂µ(m) := g
√

(2m+ 1 + µ)(2m+ 2 + µ).
(6.2)

Lemma 6.2. The operator H
(2)
Rabi is similar to the direct sum

Ĵ1,0 ⊕ Ĵ−1,0 ⊕ Ĵ1,1 ⊕ Ĵ−1,1 (6.3)

Proof. See Section 2.2 in [6]. □

6.2. Step 2 of the proof of Theorem 1.3. Let J̃δ
γ , d̃δ, b̃γ be as in Definition 2.2. If

d̂ν,µ and b̂µ are given by (6.2), then it is easy to check the following relations{
d̂±1,0(m) = 2d̃±∆/4(m)

b̂0(m) = 2b̃3/4(m) +O(m−1) when m → ∞
(6.4)

{
d̂±1,1(m) = 2d̃±∆/4(m) + 1

b̂1(m) = 2b̃5/4(m) +O(m−1) when m → ∞
(6.5)

The above properties allow us to prove
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Lemma 6.3. Let 0 < g < 1
2 and let {λn(Ĵν,µ)}n∈N denote the non-decreasing sequence

of eigenvalues of Ĵν,µ. If {λj(J̃
δ
γ)}j∈Z is the sequence of eigenvalues of J̃δ

γ satisfying
(2.10), then one has

λn(Ĵ±1,0) = 2λn(J̃
±∆/4
3/4 ) +O(n−1) as n → ∞ (6.6)

and
λn(Ĵ±1,1) = 2λn(J̃

±∆/4
5/4 ) + 1 +O(n−1) as n → ∞. (6.7)

Proof. We identify ℓ2(N) with {x ∈ ℓ2(Z) : x(k) = 0 for k ∈ Z \ N}. Let Π≥0 be the
orthogonal projection ℓ2(Z) → ℓ2(N) and let Ĵδ

γ := Π≥0J̃
δ
γ |ℓ2(N). Identifying ẽm with

em when m ∈ N, we get{
Ĵδ
γem = d̂δ(m)em + b̂γ(m)em+1 + b̂γ(m− 1)em−1 for m ∈ N∗,

Ĵδ
γe0 = d̂δ(0)e0 + b̂γ(0)e1

(6.8)

We observe that (6.4)-(6.5) imply

2Ĵ
±∆/4
3/4 − Ĵ±1,0 ∈ B(ℓ2(N), ℓ2,1(N)), (6.9)

2Ĵ
±∆/4
5/4 + 1− Ĵ±1,1 ∈ B(ℓ2(N), ℓ2,1(N)) (6.10)

and using the result of Rozenblum [24, Theorem 1.1] as indicated in the proof of (3.6)
in [6, Section 3.2], we find that (6.9)-(6.10) ensure

2λn(Ĵ
±∆/4
3/4 ) = λn(2Ĵ

±∆/4
3/4 ) = λn(Ĵ±1,0) +O(n−1) as n → ∞, (6.11)

2λn(Ĵ
±∆/4
5/4 ) + 1 = λn(2Ĵ

±∆/4
5/4 + 1) = λn(Ĵ±1,1) +O(n−1) as n → ∞, (6.12)

where {λn(Ĵ
δ
γ)}n∈N is the non-decreasing sequence of eigenvalues of Ĵδ

γ .
Let {λj(J̃

δ
γ )}j∈Z be the sequence of eigenvalues of J̃δ

γ satisfying (2.10). We complete
the proof, combining (6.11)-(6.12) and the estimate

λn(Ĵ
δ
γ)− λn(J̃

δ
γ) = O(n−N ) as n → ∞, (6.13)

which holds for every N ≥ 1. The estimate (6.13) is proved in Section 6.1 of [6]. □

6.3. End of the proof of Theorem 1.3. Using the asymptotic estimates (2.10) in
the right hand side of (6.6) and (6.7), we obtain

λn(Ĵ±1,0) = 2
(
nβ +

1

4
(β − 1) + r

±∆/4
3/4 (n)

)
+O(n−1 lnn), (6.14)

λn(Ĵ±1,1) = 2
(
nβ +

3

4
(β − 1) + r

±∆/4
5/4 (n)

)
+ 1 +O(n−1 lnn). (6.15)

Due to (2.12),

θ̂3/4 =
1

4
(4α− π) +

π

4
= α,

θ̂5/4 =
3

4
(4α− π) +

π

4
= 3α− π

2
and (6.15)-(6.15) give

λn(Ĵ±1,0) = 2nβ +
1

2
(β − 1)± ∆

2

( β

2πgn

)1/2
cos

(
(4n+ 1)α

)
+O(n−1 lnn),

λn(Ĵ±1,1) = (2n+ 1)β +
1

2
(β − 1)± ∆

2

( β

2πgn

)1/2
sin

(
(4n+ 3)α

)
+O(n−1 lnn)
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Due to Lemma 6.2, σ(H(2)
Rabi) = σ(Ĵ1,0)∪ σ(Ĵ−1,0)∪ σ(Ĵ1,1)∪ σ(Ĵ−1,1) and we complete

the proof, taking {
E±

2n = λn(Ĵ±1,0)

E±
2n+1 = λn(Ĵ±1,1)

(6.16)

for n ∈ N.

7. Appendix: estimates of oscillatory integrals

Lemma 7.1. Let us fix real numbers θ0, θ1 and c0 > 0. Assume that {Ψτ}τ∈T is a
family of functions [θ0, θ1] → R, bounded in C2([θ0, θ1]), i.e. supθ0≤θ≤θ1 |Ψ

(k)
τ (θ)| < ∞

for k = 0, 1, 2. For λ ∈ R and h ∈ C2([θ0, θ1]) we denote

Mτ (λ) :=

∫ θ1

θ0

eiλΨτ (θ)h(θ) dθ. (7.1)

(a) If |Ψ′
τ (θ)| ≥ c0 > 0 holds for every θ ∈ [θ0, θ1] and τ ∈ T , then there is a constant

C such that the estimate
|Mτ (λ)| ≤ C|λ|−1 (7.2)

holds for all τ ∈ T and λ ∈ R \ {0}.
(b) If |Ψ′′

τ (θ)| ≥ c0 > 0 holds for every θ ∈ [θ0, θ1] and τ ∈ T , then there is a constant
C such that the estimate

|Mτ (λ)| ≤ C|λ|−1/2 (7.3)
holds for all τ ∈ T and λ ∈ R \ {0}.

Proof. (a) The non-stationary phase estimate (7.2) follows by using the standard
integration by parts.
(b) The estimate (7.3) follows from van der Corput Lemma (see [27, Section VIII.1.2,
p. 354]). □
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