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Abstract

We will apply Pascal’s hydrostatic pressure law to black holes and also to the Hubble
sphere. Haug has recently demonstrated how hydrostatic pressure in water can be utilized
to determine the Planck length. One can conceptualize the energy in the Hubble sphere as
a type of superfluid, and if this is correct, then Blaise Pascal’s hydrostatic pressure formula
may also be applicable to such a superfluid, even within the Hubble sphere. By employing
the same method on the Hubble sphere and considering it as a Schwarzschild black hole with
the critical Friedmann mass, we can estimate the Planck length based on its hypothetical
hydrostatic pressure.
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1 Background on hydrostatic pressure and the Planck

scale

Blaise Pascal’s law gives us the well known hydrostatic pressure formula (see Granger [1]):

p = ⇢gd (1)

where p is the pressure, ⇢ is the liquid density of an “incompressible” fluid and d is the height
of the liquid column, and g is the gravitational acceleration. As g = GM

r2
, we can rewrite this

as:

p = ⇢
GM

r2
d (2)

Further, Haug [2] has recently shown that the Planck length is given by:

lp =
r

c

s
p�̄

⇢d
(3)
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where �̄ is the reduced Compton [3] wavelength of the gravitational mass. By simply using
manometers to measure the hydrostatic pressure in a water column, Haug [2] has demon-
strated that one can find the Planck length from hydrostatic pressure.

IIn this paper, we will demonstrate that the hydrostatic pressure method can remarkably
be applied to the Hubble sphere when treating it as a gigantic black hole, with all the energy
being a type of perfect gravity fluid. The idea that parts of gravity can be modeled as a
perfect fluid dates back at least to Benjamin’s paper [4] in 1968 and has been discussed in
many subsequent papers. Black hole cosmological models can be traced back to Pathera in
1972 [5] and later to Stucky in 1994 [6]. These models treat the Hubble sphere as a black
hole, as the Schwarzschild radius appears to perfectly align with the Hubble radius.

In the critical Friedmann universe, the critical mass is given by

Mc =
c
2
Rh

2G
(4)

where Rh = c

H0
is the Hubble radius and H0 is the Hubble parameter. However, we can

solve this equation for the Hubble radius, yielding

Rh =
2GMc

c2
(5)

Which is identical to the Schwarzschild radius. This idea of a black hole universe, despite
being in conflict with the ⇤-CDM model, continues to be a topic of ongoing discussion, as
evidenced by recent publications such as [7–10]. However there are many types of black
holes depending on the metric one study, the best known is the Schwarzschild metric, but
we also have for example the Reissner-Nordström [11, 12] metric, the Kerr [13] metric, the
Kerr-Newman [14, 15] metric and Haug-Spavieri [16] metric. We will here concentrate on the
critical Friedmann solution.

2 Hubble sphere Hydrostatic pressure in the criti-

cal Friedmann universe

In the critical Friedmann [17] univers the gravitational acceleration at the Hubble radius
distance must be:

g =
GMc

r
2
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G

c
3

2GH0

r
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cH0

2
⇡ 3.25⇥ 10�10

m/s
2 (6)

The kilogram density in the Hubble sphere is for the critical Friedmann universe given by

⇢M =
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4
3⇡r

3
H

=
Mc

4
3⇡r

3
s

=
3H2

0

8⇡G
(7)

The energy density is given by

⇢E =
Mcc
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The hydrostatic pressure of the Hubble sphere is given by

p = ⇢M
GMc

r
2
H

rH =
3H2

0

8⇡G

cH0

2
rH =

3H2
0c

2

8⇡G

1

2
= ⇢E

1

2
(9)



3

This is exactly half of the energy density in the critical Friedmann universe. Next, the
Planck length should be given by:
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r

c

s
p�̄c

⇢Md
=

rH

c

s
p�̄c

⇢MrH
=

1

H0

vuut
3H2

0 c
2

8⇡G
1
2 �̄c

3H2
0

8⇡GrH

=
1

H0

r
�̄cH0c

2
(10)

where �̄c is the reduced Compton wavelength of the critical Friedmann mass. It is given
by the Compton [3] wavelength formula, but now applied to the critical Friedmann mass:
�̄c =

~
Mcc

. This way to find the reduced Compton wavelength of the mass in the Hubble sphere

requires knowledge of G as the critical Friedamnn mass is given by Mc = c
3

2GH0
. However,

Haug has recently demonstrated that the reduced Compton wavelength of the critical mass
in the Hubble sphere is given by

�̄c =
H

3
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where TCMB is the cosmic microwave background temperature now, approximately 2.725
K, and kb is the Boltzmann constant, and ~ is the Planck constant. This means we can find
the Planck length totally independent of knowledge of G from the cosmic scale. The reason is,
in our view, that gravity is clearly linked to the Planck scale, and we can extract it also from
the Hubble sphere with no knowledge of G. This we have already demonstrated in multiple
papers; what is new here is that we can apply basic fluid mechanics to the Hubble sphere,
and it leads to the conclusion that we get the Planck length.
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We have not derived the Planck length from the pressure formula applied to the Hubble
sphere to get a more accurate predictions of the Planck length than known from before, but
to demonstrate that the Planck length indeed can be extracted from observations from the
Hubble sphere without having to go through G. This implies a direct link between the CMB
temperature, the Hubble constant, and the Planck length. What is remarkable in this paper
is that we have demonstrated that this can also be derived by assuming the energy in the
Hubble sphere is some kind of superfluid and then using standard hydrodynamics to deduce
the Planck length. Figure 1 summarizes our findings.
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Figure 1: The figure illustrates how we can model certain aspects of the Hubble sphere as simply
a sphere filled with super fluid (energy of the Hubble sphere) and how this leads to a hydrostatic
pressure that we can find the Planck length from without knowledge of G.

3 Conclusion

The energy in the Hubble sphere can be modeled as a gravitational superfluid, where standard
fluid mechanics can be applied, including Blaise Pascal’s law and hydrostatic pressure. This,
once again, can be used to extract the Planck length independent of any knowledge of G.
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