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Dedication

To all those who, scientists, literates, artists and musicians,
after going through many and obscure sorrows & difficulties

because of shackles of an (un)civil society,
woefully ever more fragmented,

inhumanly technocratic, viz. blindly/dully bureaucratic,
to all those who, tired of the infamous living conditions,a

resulting from the ineptitude of ignominious charlatans, of chatty politicians,
or just sick of being a gear deprived of a proper motion,

of being a Kafkian rotating wheel—without its own sense & a unique identity—
of a hideously larger mechanism,

have dared to follow Sophocles’ words [2406, 1225-1228,b pp. 149-150]:
μὴ φῦναι τὸν ἅπαντα νι-

κᾷ λόγον· τὸ δ᾿, ἐπεὶ φανῇ,

βῆναι κεῖθεν, ὅθεν περ ἥ-

κει, πολὺ δεύτερον ὡς τάχιστα.
c,d

aP. Calderón de la Barca [476, Jornada primera, Escena VIII, 910, p. 118]: «[ . . . ] que vida
infame no es vida».

bAlternative numbering in this edition (mdccclv): 1220-1223.
c«Not to be born

wins every gain [λόγον]; but once in existence,
go back fleetly from where one came,
it is certainly the best remedy», or, more literally, «the best next [step]».

dEven before Sophocles’s μὴ φῦναι, there is that of Theognis [2474, Ελεγείων Α΄v, 425-428, pp.
46, 48]: «Of all things the best for a earthly men is not to be born / nor to see the rays of the blazing
Sun, / [but] once he is born [it is best] to pass the gates of Hades as quickly as possible / and lie
under a sizable heap of earth (Πάντων μὲν μὴ φῦναι ἐπιχθονίοισιν ἄριστον / μηδ᾿ ἐσιδεῖν αὐγὰς ὀξέος
ἠελίου, / φύντα δ᾿ ὅπως ὤκιστα πύλας Ἀίδαο περῆσαι / καὶ κεῖσθαι πολλὴν γῆν ἐπαμησάμενον)».

In the Roman antiquity, the unfussy & veracious Greek wisdom finds new resonance in M.T.
Cicero [656, Liber I, 48, 114, p. 71]: «[N]on nasci homini longe optimum esse, proximum autem
quam primum mori».





Tribute

To Muscìda ‘Mumù’,
’cos, into the delight of her presence,

the intuitions of these pages
have taken the convenient consistency and form;

no words, no equations,
and yet a deeper delight, already within the laws of nature;

supreme incarnation of every epic of φύσις.
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Précis

This book is divided into two but closely related parts. The first part (Chap-
ters 1-19), mathematically rigorous, offers an insight into variegated topics of
pure mathematics and mathematical physics, where the themes of dimensional
continuum and discreteness intertwine, to disappear and reappear as in a karstic
flow, passing through some crucial problems, such as the concept of point, of
infinity, and that of mathematical and physico-mathematical primitiveness. This
part works a bit like a προπαιδεία, a preparatory road: a comprehension of
mathematics & mathematical physics needfully entails an «active experience
in mathematics itself», unescorted by imbroglios, hocus-pocus, and fuggy quib-
bles. Scilicet: the best way to learn mathematics is to do it, without being
harnessed/cheated by fumesophy (cf. Chapter 23).

The second part (Chapters 20-27, which are all linked to the Intro, plus a
special and short closing Chapter, entitled Ulterius Elementum in Cauda) is
nevertheless tightly tied into the first, and it is more accessible to non-experts in
equational language. It is a rich reflection on the jagged concept of mathematics
(one among very many issues, is the vexata quæstio: is mathematics invented or
discovered? Or both? Or rather, is it a form of art, id est τέχνη, as I believe?),
and on the relationships, more or less paradoxical, between mathematics and
physics, & natural sciences (e.g. what is the much-talked-about “connection”
between mathematics and nature?).

It is only by means of this kind of musing, and by finding an answer to
certain related questions—primarily, the preponderant role of the creative imagi-
nation/inspiration, and the prominence of the personal intuition rooted into the
abyssality of the unconscious, or what is hidden behind words such as “analogy”,
“dream”, “beauty”, “faith”, “figment”, “metaphor”, and “myth”, in mathematics
& in the mathematical structures in physics—that the first part of the book
makes sense, so as to have a more truthful understanding of what one does when
one does mathematics. References to literature, art, and music are not lacking,
with the purpose to reaffirm that the “two cultures” (scientific and humanistic
professions) are intimately knotted, and, at times, the same thing.

Otherwise, in physics and in the physico-mathematical area, there is the
risk of easily falling into the sinkholes of, say, a conglomerate of fashionable
theories, accompanied by balocchi meccanici,a and of getting caught in their,

aCollodian-tasting expression, which stands for “mechanical toys”, or rather, “(quantum) me-
chanical model”, “(quantum) mechanical formalism”, and so on.
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often hysterical, debates on the “images” (φαντάσματα) or “representations” of
nature, which may be phantasmagoric, false and distorted.
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We know too much for one man to know much, we live too variously to live as one.
— J.R. Oppenheimer [1980, p. 44]

[I]t is difficult, but interesting to master ten percent of the information and specific methods in
any field of the [mathematical, physical & natural] sciences, but this is essential in order to begin
independent work, or at least to calmly get oriented. Further, the path from ten to ninety percent
understanding is pure pleasure and genuine creativity. And to go through the next nine percent is
infinitely difficult, and far from everyone’s ability. The last percent is hopeless. It is more reasonable
to switch to a new problem before it is too late, and have the joy of continuous creation.

— Ya.B. Zeldovich based on the R.A. Sunyaev’s memories [2437, p. 238]

A Kaleidoscope-Opus, and the Briar-patch of Mathematics

The name Kaleidoscope, which I have given to a new Optical Instrument, for creating and
exhibiting beautiful forms, is derived from the Greek words καλός, beautiful; εἶδος, a form; and
σκοπέω, to see.

— D. Brewster [412, p. 1]a

[Μ]ὴ εἶναι βασιλικὴν ἀτραπὸν ἐπὶ γεωμετρίαν · There [is] no royal road to geometry.
— Euclid in Proclus commentary on the first Book of Euclid’s Elements [2554, p. 154]

In Mathematicis spinetis via verè Regia . . .
— E. Torricelli [2528, Quadratura Parabolæ, p. 56]

(1) These Notes are a prodigal act of individual freedom; they represent a
personal pleasure in roaming along the lands of thought.b

(2) As a result of the above point, I am constantly looking (σκοπέω) for
immeasurable shapes & forms (εἶδος) of beauty (καλός); it is precisely a kal-eîdo-
skopéō view, under which mathematics is a piece of art (in the original Greek
meaning: τέχνη, tékhnē), and art is a piece of mathematics, and together they
create a multiplicity of symmetrical patterns randomly (see below).

(3) Fortunately, there is no a Royal road in the briar-patchc of mathematics
(in Mathematicis spinetis via verè Regia), to adopt, and negate, a sentence of
Torricelli.d The image of the kaleidoscope leaps out from here.

aThe Brewster’s Treatise on the kaleidoscope bears the Latin motto Nihil tangit quod non
ornat.

b And it could not be otherwise: I totally shun the rules for measuring the research “productivity”
and “citation impact”, aka the dopey dictate of “publish or perish”, through the ravings of bibliometrics
(under the auspices of agencies such as the anvur); see e.g. [19] [1846] [903] [127] [1416, appendice].

In this regard, it is fair to talk of—it is a provocation—«cretinoid idiocy» that strangles the circus
of a large part of science. The latter is an expression of the language of medicine, see e.g. A. Mitchell
[1834, note 20, p. 177] or C. Taruffi [2462].

cIn Italian it sounds better: spinaio, or ginepraio (juniper thicket).
dBut Torricelli also knew it well: Euclid docet.
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Math-art: the Truthfulness of a Lie

We all know that [mathematics] is not truth. [Mathematics] is a lie that makes us realize truth,
at least the truth that is given us to understand.

— Modified sentence of P. Picasso in [200, p. 10]a

Mathematics and art share, through intuition and imagination, the ability
to generate concepts and forms for the understanding of what surrounds us.
They are our main organ, or instrument (ὄργανον) of knowledge, capable of
deciphering the world, and connecting several objects and events simultaneously.
This aspect is deepened without qualms by L. Boi [319, pp. 8, 12]; he writes:

A mathematician uses a conceptual instrument to create mathematical objects essentially in the
same way that an artist, e.g. a painter, uses a brush or a textile fabric to create a piece [of art].
The transforming intuition of space and a certain introspective “vision” of objects, as events imbued
with movement and meaning, constitute a common territory for mathematics and art, where they
discreetly and intensely meet and discover some of their deep affinities.

It can be said that in mathematics, in contrast to the experimental sciences, there is something
profound that unites it to the free artistic creation. Both develop a certain sensitive singularity,
which resides in the ability to generate and organize forms. The meaning of artistic concepts, as well
as that of mathematical concepts, is done and undone, is modified and reconfigured continuously, in
conjunction with the generation and organization of the forms [ . . . ].

[A]rt and mathematics have an authentic hermeneutic function: both are a form of knowledge of
objects and events; both contribute to reveal a part of their intrinsic history, objectifying themselves
in a human culture and symbolic practice [ . . . ]. [B]oth mathematics and art offer a plurality of
points of view of reality, alternative ways of “looking” at the world. The mathematical and artistic
language reveal to us something about the “interiority” of our space which is invisible to our eyes, and
at the same time open us up to a possible horizon on spaces that go beyond our three-dimensional
physical world.

The closeness between mathematics and art (cf. Section 27.1.4) springs from
man’s ability to dream, or from his predisposition to inventiveness, from the
ability to give birth to concepts with an inventŭs (cf. footnote a, p. 400), that
is, with a stratagem, that of mathematics/art, in fact.

Fantasy, or the Ability to Dream

The spacers will create in the spaces and through the spaces the new fantasies of [mathematics].
— Modified sentence of L. Fontana [1018]b

Mathematics, first and foremost, arises from a free creation; it is fantasy, a
manifestation of the dream, as we shall see more thoroughly in Chapters 20 &
21, and Section 27.1.5. There is a passage from C. Casolo [577] that may be
useful to evoke into this matter:

If mathematics has been used to ensure support for a fantasy or a dream, it has happened
that, although perhaps more rarely, the reciprocal function has also been practiced. Instead of
calling the certainty of the rational proposition to underpin the dream and the imaginary, assuring
them a visibility and plausibility, it is the [dream and imaginary] territory that is called to give
citizenship, more precisely asylum, to those rational forms or truths, which would otherwise be taken
into account with greater difficulty.

aThe original Picasso’s sentence is: «We all know that art is not truth. Art is a lie that makes
us realize truth, at least the truth that is given us to understand. The artist must know the manner
whereby to convince others of the truthfulness of his lies. If he only shows in his work that he has
searched, and re-searched, for the way to put over his lies, he would never accomplish anything».
We replaced the word art with the word mathematics, but the sentence is equally valid.

bThe original words of Fontana are: «Gli spaziali creeranno negli spazi e attraverso gli spazi le
nuove fantasie dell’arte», in Invitation to the Exhibit Inauguration, L’ambiente spaziale di Lucio
Fontana, Galleria del Naviglio, sabato 5 febbraio 1949. Again: by exchanging mathematics for art,
the meaning of the slogan is not altered.
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This is because mathematics is something much more than a logical-formal
operation: it is φαντασία,a which is literally an “appearing”, a “(creative) imagi-
nation”, intended as a faculty of the human mind to create images, to represent
appearances, things, or facts, with the creation e.g. of multidimensional spaces,
of algebraic or topological structures, or even of new concepts and symbols to un-
derset the genesis of a new idea. Moreover, semantic—often ambiguous—nuances
occur, and overflow as a sign of freedom of the creative act.

The Bearable Lightness of (Mathematical) Creativity

It is nice to apprehend that the creative temper also hovers over jubilantly
rigorous intellects; to give one example, G. Peano’s name comes out without
delay. Here is his great granddaughter L. Romano collects her memories [1473,
pp. 9-10, e.m.]:

[T]he unrepeatable originality of [G. Peano’s] nature was still in this: that the rigor of the
mind[,]1 was accompanied by another equally rare peculiarity: fantasy.

Poets are men who have not lost the ability to wonder [which belongs] to childhood; well, even
true scientists—creators—enjoy this privilege. In fact, science starts in wonder like art. Albert
Einstein wrote: “The study and in general the pursuit of truth and beauty is a sphere of activity
[Gebiet] in which we are permitted to remain children all our lives”.2

These researchers called Platonically “of truth and beauty” have something that makes them
similar to children: a readiness, actually a passion for playing. Because the creative spirit is light.

Peano possessed this wonderful gift: an affinity with children that led him to understand them.
This is generally denied to the various pedagogues, rhetoricians, sadistic-sentimentalists. He really
knew how to play with a child. He put on larky speed competitions rushing down the stairs of the
building, with a child who lived in the garret above his apartment on the fourth floor.3

Metaphorical Procedure: the Example of the Crystals

Their ideas [of people of Laputa] are perpetually conversant in lines and figures. If they would,
for example, praise the beauty of a woman or any other animal, they describe it by rhombs, circles,
parallelograms, ellipses, and other geometrical terms, or else by words of art drawn from music [ . . . ].
I observed in the King’s kitchen all sorts of mathematical and musical instruments, after the figures
of which they cut up the joints that were served to his Majesty’s table [ . . . ]. They are very bad
reasoners and vehemently given to opposition, unless when they happen to be of the right opinion,
which is seldom their case. Imagination, fancy, and invention, they are wholly strangers to, nor have
any words in their language by which those ideas can be expressed.

— J. Swift [2439, III, p. 165]

(1) The aforesaid themes of inventiveness, fantasy, and dream, which are
denotative of mathematics, will be looked at carefully in Chapters 20 & 21,
24, 25, 27. For now, it is sufficient to condense my stance by asserting that
mathematics is a metaphor of the regularity of nature;b it is an artefact emerging
from the possibilities of human perception.

(2) Let us take the example of the crystals, which are considered to be the
prototypes of symmetry, with their patterns of lattice symmetry; but no crystal
is perfect, and each of them has some imperfection; there are crystal-patterns,
or crystallographic regularities, together with their defects, which we read as

aVerbal noun of φαντάζω, “make visible, or present to the mind”, and φαίνω, “cause to appear”,
“reveal”, “disclose”.

b By metaphor we mean what is recurrently written in Dictionaries: a veiled “similarity”, an
“analogical relationship” between images, a, say, psycholinguistic process through which two different
ideas are associated, so there is a symbolic “transposition” of images, of ideas, from the noun
μεταφορά, which comes, in turn, from the vb. μεταφέρω, “transport”.
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mathematically corresponding to this or that crystallographic group, or crystal
class. There is no mathematics in the crystals: no crystalline solid was formed
because it performs—we pick two sets drawn at random—the abstract group:
V ∼= Z2 × Z2, or D6

∼= Z3 ⋊ Z2.
The first one (V) is the Klein four-group [1492, Kap. I, § 5, Die Vierergruppe]

of order 4; it is a finite non-cyclic abelian group; in the crystallographic area,
it fulfils the centrosymmetric, enantiomorphic, or polar point symmetry, with
prismatic, rhombic-disphenoidal, or rhombic-pyramidal class, respectively; the
family to which it belongs is the monoclinic or orthorhombic system. The other
set (D6) is the dihedral group of order 6; in the crystallographic area, it fulfils
the enantiomorphic or polar point symmetry, with trigonal-trapezohedral or
ditrigonal-pyramidal class, respectively; the family to which it belongs is the
hexagonal/trigonal system.

These groups are only expressions of a model, a pattern, or a reading category,
for which they are our construction, nay, they are an illusion, an artifice of our
mind, adequate for representing the regularities of the crystals.

(3) The cornerstone is that the various symmetries of the universe (cf. Section
22.1.2), videlicet, the regularities of nature, from which mathematics takes its
lifeblood, do not exist because underneath there is a mathematical σκελετός
that supports them; mathematics is solely the “sieve” with which we read some
regularities, or uniformities, of the world around us. If we overturn this concept,
and believe that the bone structure of the universe is mathematical, we fall into
Swift’s satire, when Gulliver meets the loony inhabitants who live on the flying
island of Laputa. This debases the imaginative and fanciful part of mathematics,
which is its vital nervation, and transforms it into a comically arid discipline,
closed in on itself, in a cocoon-like tenet.

(4) The very concept of symmetry,a when it fades into abstract dimensions
via mathematica, is openly a human invention, because it is part of our sensitivity,
it is our manner of understanding some natural rules, with the most repetitive,
periodic, or harmonic motifs. As the crystallographer A.L. Mackay [1723, p. 22]
points out:

We have a Pythagorean strain in our culture which has continually made congenial the idea that
somehow the symmetrical geometrical figures—the Five Platonic Solids in particular—are at the
bottom of things. This attitude was caricatured in Swift’s Gulliver’s Travels, where the philosophers
of Laputa carried about actual solid models of the concepts which they wished to discuss. If we
wish to discuss spatial structure then we have effectively to do the same [ . . . ]. Discourse about
solid structures is impossible without effectively being able to call up pre-fabricated concepts, level
upon level, the simplest being the Platonic solids, as we will. Literary labels, such as the words
“rhombic triacontahedron” or “para di-chloro-benzene” have precise meanings. If we do not know
enough of them, then we cannot even begin to use the hierarchically structured tree of concepts
which is modern science.

Which is not an indication that we are all Laputans or Platonists (cf. Section
20.1.4). Laputanity, as we might call it, is a convenient attitude (as a close relative
of Platonism), under our proto-mathematics, in keeping with a bio-evolutive
and physiological origin (cf. Section 20.1.2.1). So when we use «pre-fabricated
concepts» or «literary labels» in mathematics, we must not forget this pre-
eminent fact.

aThe Gr. συμμετρία (from σύν plus μέτρον) is for “commensurability”, “due proportion”.
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Allegorical Figurations of Reality, Idealizations, and Techniques of
Transcendence Playing: Physics Affairs

I am enough of an artist to draw freely upon my imagination. Imagination is more important
than knowledge. Knowledge is limited. Imagination encircles the world.

— A. Einstein [866, p. 117, e.a.]

The formulation of a problem is often more essential than its solution, which may be merely a
matter of mathematical or experimental skill. To raise new questions, new possibilities, to regard
old problems from a new angle, requires creative imagination and marks real advance in science.

— A. Einstein & L. Infeld [882, p. 95, e.a.]

This imaginative vision and faith in the ultimate success are indispensable. The pure rationalist
has no place [in science] [cf. footnote c on p. 453].

— M. Planck [2112, p. 215, e.a.]

Since physics, at least the one where theoretical knowledge stands out, i.e.
mathematical physics and theoretical physics, relies on a mathematical language
(doing fundamental physics without mathematics is like playing a game of billiards
without cue sticks), what has been argued in the previous Sections, regarding
mathematics, is comparably valid and repeatable also in physics research (cf.
Sections 22.1, 24.1 and 25.1). Along these lines, there are some blunt and
forthright pages from G. Vignale [2574, pp. vii, ix, e.a.]:

Physics [ . . . ] is the military academy of liberal arts [ . . . ]. [I]t is too rich in ideas, too loaded
with philosophical content, too intertwined with the history of culture, to be considered merely a
technical subject. A physics question rarely involves the details of a specific phenomenon—rather it
concerns general patterns, regularities, laws. And the creation of new concepts in physics requires a
power of imagination comparable with, if not superior to, that found in the most abstract arts, for
example poetry [cf. Section 21.7.1] [ . . . ].

I think it is delirium to believe that our theories describe literally the world as it is. The success
of a theory at explaining or predicting the facts in no way proves the objective reality of that theory.
It simply demonstrates the power of our brain to successfully adjust to a reality on which we wish
to prevail [ . . . ].

A good scientific theory is like a symbolic tale, an allegory of reality.a Its characters are
abstractions that may not exist in reality; yet they give us a way of thinking more deeply about
reality. Like a fine work of art, the theory creates its own world [an artificial and fictional world,
cf. pp. 7, 10]: it transforms reality into something else—an illusion perhaps, but an illusion that
has more value than the literal [description] [of a] fact [ . . . ].

The world of a physical theory [ . . . ] is a tangential world, which makes contact with the world
of facts in a limited region, but eventually flies off on an infinite plane, further and further from any
observable reality. On this infinite plane we meet invisible actors ruled by invisible principles.

In the Preface to the It. edition [2575, p. xiii], he adds that
physics [can, indeed must, be exposed] not as an explanation, even if only provisionally, of real

facts, but as an artistic reconstruction of the latter. The idea of a second reality, invisible but more
real than the other, has always fascinated me.

This second, invisible, reality is «somehow more real than reality», because
it is built by some physico-mathematical theory, which removes the chaotic
skein of phenomena, and seeks the essential, a distillate (cf. Section 25.1.2);
the theory itself produces, ipso facto, a «fictional» but «metaphorically exact
world»—although it has nothing to do with the «innermost reality» [2574, pp.
15, 24]. Here, theoretical physics is conceived as the «science of the invisible», a
sort of «modern form of theology» (see below), where “point particles”, “light
rays”, “minimum principles”, “conservation laws”, and “force fields” «strongly

aThe word allegory comes from the Gr. ἀλληγορία, “metaphorical (figurative) language”, a
portmanteau of ἄλλος, “another”, and ἀγορεύω, “speak”, “say”. This ἄλλος (alius), if you like, is the
pintle on which the whole “mechanism” of mathematics & physics is inserted.
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remind us of something real, yet are nowhere to be seen»; so much that each of
which sprouts from an exercise of «abstraction» [2574, p. 3, e.a.]:

Francis Bacon, one of the founders of modern empirical science, wrote that “Nature cannot
be commanded except by being obeyed”. I would add that nature cannot be understood except
by being transcended [ . . . ]. When physicists work on a theory, they are not dealing directly with
nature, but with an abstract model in which they have already decided which aspects of reality
must be absolutely retained, and which ones can be dismissed.a Often, in creating this model, they
make bold and quite implausible assumptions, which can only be validated by the consistency of
the results. But, to take such bold steps one cannot rely on calculation alone: it takes passion,
imagination,b a sense of beauty—all things that we grasp with our whole personality, and definitely
with our heart.

The task of theoretical physics, drawing on the mathematical models (ab-
stractions of geometry, algebra and analysis),c seems to be that of «transcending
the world» [2574, p. 293].d The punctum saliens is that the nature of reality
cannot be defined; it has its own undefinability, or equivocality. «La voce di
Natura è voce Equivoca» (The entry Nature is an Equivocal entry), as declared
by G. Crivelli [707, p. 19].e Hence the need for an act of transcendence.

One transcends the external world of objects/happenings—the ultimate
nature of reality—to fall into the Magic Mathematics, which is a world of
Carrollian fantasy, and discover unanticipated relations. For that, mathematics
is the true act of religio, i.e. of binding (religāre), apropos of the notion of φύσις,
which justifies the previous reference to the «theological» facet of mathematical
modeling. The good G.-C. Rota [2229, p. xviii] comes to our rescue:

Mathematics [along with all its physico-mathematical articles], like theology and all free creations
of the Mind, obeys the inexorable laws of the imaginary.

aCf. endnote 139 and Scholium 25.1.1. This is why [2574, p. 27] «the laws of physics are never
laws about the world as it is, but [ . . . ] under a certain idealization». Different idealizations are
consonant with different laws, different theories, and different ways of understanding of the world.

bCf. e.g. G. Holton [1386, p. 184]: «Of course, the primary tools of the trade, which a scientist
can be taught to use, are indispensable: perseverance, the use of one’s rational faculties while forming
and testing hypotheses, mathematics and instrumentation, judicious modeling, looking skeptically
for flaws or disconfirmations, etc. But in truth, all these are not sufficient to explain the daring and
risky leaps of speculation that are often the crucial ingredient, or even the initial impetus, for a
project. There must be a second, complementary set of forces at work—an art of the imagination».
See also his [1385, chap. 3. Dionysians, Apollonians, and the scientific imagination, pp. 84-110].

cBut let us go back a bit to the notion of metaphor (cf. footnote b, p. xxxi). Be wary: we do not
want to confuse the concept of “mathematical model” with that of “metaphor”, e.g. by identifying
the plurality of mathematical models, which are created for some physical phenomenon, with the
process of metaphorical creation. What we are saying is that one and the same model—one and the
same conceptual representation—can be generated by different metaphors, sometimes conflicting
with each other, into the bargain. On the role of the metaphors in theoretical physics, see e.g. G.
Parisi [2016].

dThe mathematization of physical phenomena is part of the modus operandi of a theoretical
physicist. Nonetheless, an abstractive ability is also strikingly present in the experimental mentality.
For example, M. Faraday [941, p. 353], a great experimentalist, but devoid of mathematical culture,
writes: «For instance, time is growing up daily into importance as an element in the exercise of
force. The earth moves in its orbit in time; the crust of the earth moves in time; light moves in time;
an electro-magnet requires time for its charge by an electric current: to inquire, therefore, whether
power, acting either at sensible or insensible distances, always acts in time, is not to be metaphysical
[ . . . ]. To inquire after the possible time in which gravitating, magnetic, or electric force is exerted,
is no more metaphysical than to mark the times of the hands of a clock in their progress».

eWe can take as an exemplary definition of physics, the one given by Crivelli [707, p. 19] with
his eighteenth-century Italian (which we advisedly leave untranslated): «Fisica si dice quella Scienza,
c’ha per oggetto i Corpi Naturali, e cerca le loro proprietà, così detta dalla voce Greca φύσις, che
significa Natura. La voce di Natura è voce Equivoca. Imperocchè talvolta si prende per la Essenza
delle cose, che contempliamo [ . . . ]. Talvolta si adopera per significare la Causa Universale di tutte
le cose [ . . . ]. Talvolta significa lo stesso Universo, ed i Corpi, de’ quali egli è composto, ed in questo
senso la prende il Fisico, quando dice di essere il Contemplatore della Natura».
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This mirrors what C.S. Peirce [2047, p. 3659, e.a.] had already said in The
Century Dictionary and Cyclopedia (1904):

Mathematics [is] the study of ideal constructions (often applicable to real problems), and
the discovery thereby of relations between the parts of these constructions, before unknown. The
observations [are] upon objects of imagination merely.

An annotation of clarification. Such a parallelism, between physics and
theology, may sound quirky, or like an urticant comparison, as I myself am a
deeply irreverent and caustic man—I highly recommend reading G. Papini’s
libello [2006], a masterpiece of sarcasm, a real laceration (cf. the vb. σαρκάζω),
soaked with exhilarating atheism, against baboonish-Catholic idolatry. But
ultimately, system of “reason” (science) and system of “faith” (religion) are both
human activities, and it is normal that they share some similarities, with their
diversity, for better or worse: cf. Section 20.1.2, point (i) on p. 453 & footnote
c on p. 453, and Section 25.1.3. The so-called attractiones electivæ, a happy
expression from T. Bergman [266], later assimilated by J.W. von Goethe in his
Die Wahlverwandtschaften, do not exist only in chemistry and in novels.

Blind Specialism: Cocoon Syndrome

By and large mathematicians write for the exclusive benefit of other mathematicians in their
own field even when they lapse into “expository” work [ . . . ]. Such “expositions” are more often
than not brilliant displays of virtuosity, designed to show the rest of the community (a half-dozen
individuals) how much more elegantly and simply the author would have proved somebody else’s
results were it not for his more important commitments.

— G.-C. Rota [2232, p. 243]

We said that mathematics and, along with it, any theoretical knowledge of the
physical universe, is fantasy, force of creative imagination; which would suggest
that its horizon of action is very vast. Conversely, if mathematics, together with
its physico-natural apparatus, ends up shutting itself in specialism, it might
bring the risk of self-referentiality, and becomes blind to a broader vision oriented
toward critical thinking.a The sharp-edged judgment of G.-C. Rota’s [2232, p.
243, e.a.]—already anticipated in the above epigraph—is delectably enjoyable:

A specialist in quantum groups will write only for the benefit and approval of other specialists
in quantum groups. A leader in the theory of pseudo-parabolic partial differential equations in
quasi-convex domains will not stoop to being understood by specialists in quasi-parabolic partial
differential equations in pseudo-convex domains.

H. Poincaré [2140, I, chap. II,4 pp. 25-26, 34-35] had already denounced it
much earlier:

Mathematicians attach great importance to the elegance of their methods and results [ . . . ].
Elegance can springs up from unforeseen feelings [sentiment de l’imprévu] caused by the unexpected
combination of objects that we usually do not see associated with each other [ . . . ]; it is fecund, since
it thus reveals to us relationships hitherto unrecognized [ . . . ].

To the extent that the science develops, it becomes more difficult to embrace it in its entirety;
so we try to cut it into pieces, [and] to settle for one of these pieces: in a word, to specialize [à se
spécialiser ]. If we continued with this orientation, it would be a serious obstacle to the advancement
of science [ce serait un obstacle fâcheux aux progrès de la Science]. As I have said, it is by
unexpected concurrences [rapprochements inattendus] between its various parts which makes this
progress possible. Too much specializing would be to refrain from these concurrences.

aCf. C. Bartocci [210, pp. 11-13].
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Confusing a series of mathematical reasonings with a string of isolated
procedures, each closed in its own sector (cocooning syndrome), is like confusing
the art of architecture with the activity of superimposing one brick upon another
without a superior design. In a great theorem, and in its proof, there is an
inventive content, comparable to a burning magma that expands and creates
new rock, corresponding to the unfailing formation of new imaginary worlds.

The disappearance of multidisciplinarity, which links different areas of study
together, is reaffirmed by N. Wiener [2661, pp. 2-3]:

Today there are few scholars who can call themselves mathematicians or physicists or biologists
without restriction. A man may be a topologist or an acoustician or a coleopterist. He will be
filled with the jargon of his field, and will know all its literature and all its ramifications, but, more
frequently than not, he will regard the next subject as something belonging to his colleague three
doors down the corridor, and will consider any interest in it on his own part as an unwarrantable
breach of privacy.

These specialized fields are continually growing and invading new territory [ . . . ]. There are
fields of scientific work [ . . . ] which have been explored from the different sides of pure mathematics,
statistics, electrical engineering, and neurophysiology; in which every single notion receives a separate
name from each group, and in which important work has been triplicated or quadruplicated, while
still other important work is delayed by the unavailability in one field of results that may have
already become classical in the next field.

It is these boundary regions of science which offer the richest opportunities to the qualified
investigator [ . . . ]. If a physiologist who knows no mathematics works together with a mathematician
who knows no physiology, the one will be unable to state his problem in terms that the other
can manipulate, and the second will be unable to put the answers in any form that the first can
understand [ . . . ]. [A] proper exploration of these blank spaces on the map of science could only be
made by a team of scientists, each a specialist in his own field but each possessing a thoroughly
sound and trained acquaintance with the fields of his neighbors [ . . . ]. The mathematician need not
have the skill to conduct a physiological experiment, but he must have the skill to understand one, to
criticize one, and to suggest one. The physiologist need not be able to prove a certain mathematical
theorem, but he must be able to grasp its physiological significance and to tell the mathematician
for what he should look.

Bibliophily, Philological Care, and Lateral Spurs

(1) Being that I am a bibliophile (scilicet: avid reader), just about all
books, articles & papers in the thebibliography are present in my library
(and represent a small part of it). A consideration should be added, that every
bibliophile has the flaw of being, at least in a stage in life, a bibliomane.a

(2) The epigraphs placed hither and thither, under the Chapter and Section
headings, are not for a historical scenario, since these Notes are not concerned
with the history of mathematics and physical theories; but, characterized by
a philological care, they act, so to speak, as lateral spurs for reading what
follows, and for recalling the hidden affinities that lie behind the growth of a
particular idea. There is no interest here in the chronological line; rather, it is
more inspiring to make deliberately anachronistic use of certain thoughts from
the distant or recent past.

(3) It is a secret of Polichinelle: for a good research it is advisable to read
good masters, as N. Abel already explicitly suggested.b

aRegrettably I lack the nobiliary possibility of purchase of B. Boncompagni Ludovisi (1821-
1894), in addition to the adventurous brazenness of G. Libri Carucci dalla Sommaja (1803-1869).
However—having to make the comparison with their prestigious and large private mathematical
libraries (with thousands and thousands of manuscripts, printed volumes, and scientific articles)—in
today’s times there are alternative ways, to recover these deficiencies.

bThe phrase “Read/study the masters, not the pupils”, or something similar, is generally
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Working Method

Catching sight of the things I wish to know with my own enlightenment, rather than relying on
notions [ . . . ] coming from a more or less large clan of which I found myself a member [ . . . ]. It is in
[an] act of “going beyond”, of being something in oneself in short, and not simply the expression of a
law of consensus, of not remaining locked in an imperative pinwheel that others have set—it is in
this solitary act that “creativity” is found.5

— A. Grothendieck [1227, 2.2. L’importance d’être seul, p. 6 otm, e.m.]

我们相信已经找到了沟通情感的媒介，那就是茶.a
— 茶之路 (Chá Zh̄ı Lù) · The Road of Teab

(Mathematics: creativity) I think at the origin of creativity [ . . . ] there is what I call the
ability, or willingness [disponibilità], to dream, to imagine different worlds, different things, to try
to combine them inside one’s own imagination in various ways.

— E. De Giorgic

. . . , what / does anyone want / but to feel a little more free [to dream]?
— Godspeed You! Black Emperor, from one of the two inner lp record sleeves in Lift Your

Skinny Fists Like Antennas to Heaven (Constellation · cst012, 2000)

Con frementi tormente di petali di meli / e di ciliegi con rapide rapide nubi di petali [ . . . ] petali
petali amatamente dissolti [ . . . ] dà che solo in mitezza per te mi pensi / e in reciproco scambio di
sonni amori e sensi [ . . . ] io ti individui per sempre e in te mi assuma.d

— A. Zanzotto [2720, p. 840]

My working method follows four simple guidelines:
· self-denial,6 and claustral seclusion—contrary to Galileian belief—in a

“world on paper”,e as a consequence of bibliophily;
· cups of Chinese tea, engine of odorous emotions easily convertible into

intellectual stimuli;f,7

· experimental music;g,h

attributed to Abel, but there are no reliable sources other than the anecdotal narrative.
a«We believe we have found a medium to communicate emotions, and that is the tea». Then the

sentence goes on like this:「寻找茶的源头，也就是找寻中国人精神的源地」«Finding the source of tea
means finding the source of the Chinese spirit».

bThe sentence above comes from the back cover of the book 茶之路 · The Road of Tea /《生活月
刊》著, published by Guangxi Normal University Press, Guilin, 2019re, edited by 王澍, 朱赢椿, 马可,
金宇澄, 徐冰, 李宗盛, 黄永松, 林怀民, 阮义忠.

cVideo interview to E. De Giorgi, Pisa, July 1996, by M. Emmer, on behalf of the umi (Unione
Matematica Italiana).

d«With quivering blizzards of apple / and cherry petals with rapid rapid cumuli of petals [ . . . ]
lovingly dissolved petals petals [ . . . ] in such a way that only in mildness for you I think of myself /
and in reciprocal exchange of sleeps loves and senses [ . . . ] I identify you forever and I assume myself
in you».

e[1072, p. 106]: «[I] discorsi nostri hanno a essere intorno al mondo sensibile, e non sopra un
mondo di carta» (Our discourses must relate to the sensible world, and not to on a world on paper).

fThere are many phrases about tea; I choose to reveal two lines from G. Ceronetti [603, p. 10]:
«Man drinks Tea because he is distressed by man. / Tea drinks man, the most bitter herb [L’uomo
beve il Tè perché lo angoscia l’uomo. / Il Tè beve l’uomo, l’erba più amara]».

gFrom microtonal modalities, as in G. Scelsi, through the twelve-note technique (as in P. Boulez,
L. Nono, and K. Stockhausen), to I. Xenakis’ avant-garde compositions, representing the peak, to
my ears. Besides that, there is the newer music with symphonic-styled instrumentals: Godspeed
You! Black Emperor, which stand head and shoulders above the rest, and then bands such as Set
Fire To Flames, Silent Whale Becomes A° Dream, The Evpatoria Report, or Sparrows Swarm and
Sing, just so I am clear.

h Listening to (a piece of) music is like being projected into a dreamland (cf. epigraph from
J.J. Sylvester in Section 21.3) where the distinction between ἀκουσματικός (acusmatikós) and
μαθηματικός (mathematikós), between listener (eager to hear) and fond of learning, is canceled,
where the knowledge, be it felt, reasoned, or imagined, is immediately reached in the stirring
transport of the structured succession of sounds. Music is an aesthetic experience, and not a series
of punctual (disconnected) acoustic sensations, for we links—here is the mathematical aspect—the
different sounds in a melody; cf. Section 22.2.1.
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· intimate hideaway amidst the scents, the colors, and the sounds of nature,
and especially in amorous senses with flowering plants;a so, my interest for
botany;b

· bent for (day)dreaming, which is, say, the ubiquitous corolla of the four
previous points. «Life, what is it but a dream?» [538, p. 317].c

Through the Magnifier of Half-sleep

“Mathematizing” may well be a creative activity of man, like [poetic] language or music, of
primary originality, whose historical decisions defy complete objective rationalization.

— H. Weyl [2638, p. 392, e.a.]

[We need] to re-evaluate the most active, most creative (but also, resultantly, the most adven-
turous, imaginative, subjective) aspects of our way of thinking [in mathematics] [ . . . ]. Deplorably, a
false modesty generally forbids [us] to mention the part of the discovery process that takes place
more or less in the sphere of the unconscious, or of the subconscious, to exhibit only the fossilized
demonstration in its skeletal form of stonily deductive and formalistic logic.

— B. de Finetti [998, p. 427, e.a.]

I should like to say that the most profitable moments (intuitions, ideas,
and overall visions) in the elaboration of this book came in the state of half-
sleep, in the morning, preceding the noise, or the dirt, by accumulation of
information, which inevitably increases—entropically—along the phases of full
consciousness (wakefulness). Along this sleep-wakefulness transition, something
notable happens. It is like seeing simultaneously, in a single mental space,
everything I did the day before. With this, the power of the mathematical
invention of Hadamardian memory [1253, chapp. I-III] is experienced, on my
own:d the greatest creativity crops up mostly in the cleansing states of the mind

aOn the power of nature, supremely in the seduction of its inflorescences, I could not refrain
from reminiscing about a few Zanzottian verses of my youth.

bHere are seven books (by publication date) on botany, all embellished with ravishing images,
that every bibliophile should have in the shelf:

· R. Kesseler & M. Harley [1478],
· R. Kesseler & W. Stuppy [1479],
· W. Stuppy & R. Kesseler [2429],
· E. Koinberg [1524],
· Various authors [2557],
· Various authors [2556],
· L. Biss [302].
Why this list? Does that make sense, in a volume of mathematics & physical structures? Yes,

it does: for me, the entire botanical world acts as an inexhaustible treasure of beauty, but also of
usefulness (cf. Margo 21.1.1); it puts us in front of the limits of formal sciences (we are going to see
this in the Outro Chapters): a lesson in humilitas, or better, in humus, as these are plants.

cIn English literature, an almost twin verse is also found e.g. in J. Keats [1471, On Death, p.
357]: «Life is but a dream». But—as everyone knows—there is an illustrious precedent, at the base
of this question-type: Shakespeare [2359, Act IV, Scene I, p. 48], with his peerless verses declaimed
by Prospero: «We are such stuff / As dreams are made on, and our little life / Is rounded with a
sleep».

dJ. Hadamard gives the example of an illumination shooting out from the unconscious in
mathematics, physics and chemistry; but he does not fail to report nearly identical experiences in
other fields, including classical music. He in [1253, p. 16, e.a.] quotes a letter of W.A. Mozart: «[I]n
the night when I cannot sleep, thoughts crowd into my mind as easily as you could wish. Whence
and how do they come? I do not know and I have nothing to do with it. Those which please me, I
keep in my head and hum them [ . . . ]. Once I have my theme, another melody comes, linking itself
to the first one, in accordance with the needs of the composition as a whole: the counterpoint, the
part of each instrument, and all these melodic fragments at last produce the entire work. Then my
soul is on fire with inspiration, if however nothing occurs to distract my attention. The work grows;
I keep expanding it, conceiving it more and more clearly until I have the entire composition finished
in my head though it may be long. Then my mind seizes it as a glance of my eye a beautiful picture
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& brain combination, when such a combination has a renovation of virginity for
the day that is about to begin.

A testimony, in this direction, is offered authoritatively by H. Poincaré [2140,
I, chap. III,8 p. 53], who talks about apparences d’illumination subite, clear
signs of a long travail inconscient antérieur that effloresces dans l’invention
mathématique. Morning thoughts, as well as other thoughts appertaining to
the period of apparently unconscious work, collide with each other and end up
hooking together—so as to resemble Epicurus’ atomes crochus [2140, p. 60]—,
giving life to unlooked-for aggregations, surprising combinations.a

Another account comes from L. Schwartz, when he describes [2332, p. 246]
= [2333, p. 232] the night that inspired the invention of distributions:

I used to have insomnias lasting several hours, and never took sleeping pills. I remained in my
bed, the light off, and without writing anything, I did mathematics. My inventive energy [énergie
inventive] was redoubled, and I advanced rapidly without tiring. I felt entirely free, without any of
the brakes [totalement libre, sans aucun des freins] imposed by daily realities and writing.

A further attestation is left by C. Villani [2586, p. 155]: he speaks of a matuti-
nal illumination, in mathematics, of a petite but ineffable illumination, knocking
on the door of the brain, before its drowning in the technique (l’illumination
sera noyée dans la technique).

The visionary propulsion of the unconscious is manifestly central also in
theoretical physics, see e.g. G. Parisi [2015].

It may be noticed in passing, that there is no lack of similar examples in
literature.b One need only to remember the account of S.T. Coleridge [675, pp.
96-97], who recounts how the poem Kubla Khan, a Vision in a Dream (written
in 1798, but published in 1816) came about.c

or a handsome youth. It does not come to me successively, with its various parts worked out in
detail, as they will be later on, but it is in its entirety that my imagination lets me hear it».

a[2140, pp. 55-56, 62]: «[T]he unconscious ego or, as they say, the subliminal ego, plays a capital
role in mathematical invention [ . . . ]. The subliminal ego is in no way inferior to the conscious ego
[ . . . ]; it is capable of discernment, it has tact, delicacy; it knows how to select, it knows how to
divine [ . . . ]. The rules of calculations are strict and complicated; they demand discipline, attention,
will, and hence consciousness. In the subliminal ego reigns, on the contrary, what I would call liberty
[liberté], if one could give this name to the sheer absence of discipline and to the disorder born of
chance [désordre né du hasard]. [But] only this very disorder permits [the inception of] unexpected
couplings [accouplements inattendus]».

bSynoptic note. I suggest reading the essay by T. McLeish [1801], which is an exhaustive study
of various subject-matters outlined above. It heedfully investigates the close links between the
scientific sphere (mathematics, physics, chemistry, biology) and the humanistic sphere (literature,
art, music), as well as the weight of the unconscious and of the creative imagination in science.

c«[T]he author [ . . . ] [i]n consequence of a slight indisposition, an anodyne had been prescribed,
from the effects of which he fell asleep in his chair [and] continued for about three hours in a profound
sleep, at least of the external senses, during which time he has the most vivid confidence that he
could not have composed less than from two to three hundred lines; if that indeed can be called
composition in which all the images rose up before him as things, with a parallel production of the
correspondent expressions, without any sensation or consciousness of effort. On awaking he appeared
to himself to have a distinct recollection of the whole, and taking his pen, ink, and paper, instantly
and eagerly wrote down the lines that are here preserved. At this moment he was unfortunately
called out by a person on business [ . . . ], and detained by him above an hour, and on his return
to his room, found, to his no small surprise and mortification, that though he still retained some
vague and dim recollection of the general purport of the vision, yet, with the exception of some eight
or ten scattered lines and images, all the rest had passed away like the images of the surface of a
stream into which a stone has been cast».
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Behind the Scenes

(1) This is a LATEX-based book (input source files .tex): the document
structure is a customized book.cls, with pdfLaTeX typeset engine; the LATEX
editor in action is Texifier (formerly named Texpad), paired with Smultron, a
plain text editor.

(2) The font color, for hyperlinks, is codified by hexadecimal values via
xcolor and hyperref packages:

· sample linkcolor (eggplant #800080) for links inside: Conjecture, Corol-
lary, Definition, endnote (numerical order), Equation(s), Example, footnote
(alphabetic order), Lemma, Margo, Proposition, Postulate, Question, Scholium,
Subproposition, Theorem in the text,

· sample citecolor (mallard #008080) for links inside: work mentioned
(bibliographic reference) in the text,

· sample urlcolor (dusky cerulean #004080) for links outside: web re-
source available on the internet.

The colors for unlinked reference marks (with a fixed-pitch font via \texttt
command) are:

· loquat (枇杷) yellow #F7C015,
· pumpkin #FF7518 and cyan-blue #18A2FF,
· vernal green #03E364 and magenta #E30382,
· artichoke violet #8803E3 (referring to the artichoke inflorescence: cy-

naræ scolymi calathus).
(3) Plotting and graphic elements:
· all diagrams: via tikz-cd package;
· geodesics on melon- and egg-shaped surfaces (Figg. 1.1 and 1.2): Sketch, a

vector graphics editor;
· tessellations of the disk model (Figg. 2.1 and 2.2): graphing calculator plus

Sketch;
· tessellation of the upper half-plane (Section 2.7): tikzpicture code;
· hyperboloid surfaces coexistence (Fig. 3.1): code with pst-solides3d

package processed with XeLaTeX;
· Beltrami’s pseudosphere (Fig. 5.1): graphing calculator plus Sketch;
· Klein bottle (Fig. 5.2) and Möbius strip (Fig. 5.3): tikzpicture codes

plus Sketch for both, but the Klein bottle is processed/drawn with LuaLATEX;
· 2-torus with triangulation (Fig. 6.1): Sketch;
· granular spin network/nodal lump of space and its multi-colored hunks, viz.

quanta of space (Figg. 8.1 and 8.2): TikZ code plus Sketch;
· warping deformations under Ricci flow (Figg. 10.1 and 10.2): are the work

of J.H. Rubinstein and R. Sinclair [2247, Fig. 2, p. 290, and Fig. 5, p. 293];
small modifications were made in their drawings with Sketch;

· horocycles (Fig. 12.1): Sketch;
· Lorenz attractor (Fig. 15.1): luacode environment plus Sketch;
· Hilbert curve (Fig. 15.2): PGF and TikZ codes;
· snowflake curve of von Koch (Section 15.2.3): tikzpicture code via

lindenmayer system (L-system) and decorations.fractals;
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· hazy attractors (Figg. 16.1 and 16.2): luacode environment plus Sketch;
· icosa- and dodeca-hedron (Figg. 17.1 and 17.2): codes with pst-solides3d

package elaborated with XeLaTeX;
· rhombus tilings à la Penrose (Figg. 22.1, 22.2, and 22.3): TikZ plus Sketch;
· Helianthus-like phyllotaxis (Figg. 22.4 and 22.5): tikzpicture code plus

Sketch.
(4) Margo stands for annotation in the margins, and is a catchy contraction

importing the singular of marginalia.
(5) The final list of works mentioned and the citation style are manually

compiled with the thebibliography environment via \bibitem command. All
works without \bibitem form are present directly in the foot- and end-notes.

(6) For those interested, here is the list of Chapters in the original writing
order—also to explain the heterogeneity of the writings: Chapter 1, Chapter
2, Chapter 12, Chapter 13, Chapter 14, Chapter 15, Chapter 16, Chapter 3,
Chapter 4, Chapter 5, Chapter 6, Chapters (Outro) from 1⁄8 to 8⁄8 (20, 21, 22,
23, 24, 25, 26, 27), even though they were written at various times, are to be
considered as a single block, Chapter 10, Chapter 17, Chapter 19, Chapter 7,
Chapter 8, Chapter 9, Chapter 11, Chapter 18.

The first two Chapters (1 and 2) are the oldest, and deals with various topics;
they look lectures-like, so they may appear, alas, a little too (pedantically)
academic; they were indispensable to me—when I wrote them—to enter in
medias res, though. It is quite the case to say, with the old adage: excusatio
non petita, accusatio manifesta.

(7) Hereafter is the list of abbreviations.
(i) Emphasis abbreviations:
e.a. emphasis added,
e.m. emphasis modified.
(ii) Language abbreviations:
En. English,
Fr. French,
Ge. German,
Gr. Ancient Greek,
It. Italian,
La. Latin,
Pt. Portuguese,
Ru. Russian,
Zh. Chinese.
Translations of cited passages in epigraph or elsewhere from Fr., Ge., Gr., It.,

La. and Ru. are under my management, unless otherwise indicated. Sometimes
the original text is reproduced in an \endnote (when, for one reason or another,
the text deserves to be read even in the original language); other times, it appears
directly in epigraph, and the En. translation is presented in a \footnote.

(iii) Abbreviations concerning the books and publications:
c corrected,
d digital,
ed edition,
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pr printing,
r revised,
r.c revised and corrected,
r.e revised and enlarged,
r.u revised and updated,
re reprint, reprinted.
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replied to the report of my scientific-literary venture; what brings us together is
our certainty of the creative aspect (in latissimo sensu) in scientific production.
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intellectual life of the whole of western society is increasingly being split into two polar groups.
When I say the intellectual life, I mean to include also a large part of our practical life [ . . . ]. Two
polar groups: at one pole we have the literary intellectuals, who incidentally while no one was
looking took to referring to themselves as ‘intellectuals’ as though there were no others. I remember
G.H. Hardy once remarking to me in mild puzzlement, some time in the 1930’s: ‘Have you noticed
how the word “intellectual” is used nowadays? There seems to be a new definition which certainly
doesn’t include Rutherford or Eddington or Dirac or Adrian or me. It does seem rather odd, don’t y’
know.’ Literary intellectuals at one pole—at the other scientists, and as the most representative, the
physical scientists. Between the two a gulf of mutual incomprehension—sometimes [ . . . ] hostility
and dislike, but most of all lack of understanding. They have a curious distorted image of each
other».

cFortis est, qui liber est: it is, concurrently, a one-to-one tuition and a wish. In a difficult
moment of my life, he pulled my chestnuts out of the fire more than once. I am glad for his active
support.

dCompared to me, she have the ability to be an action person. So, for me, her endorsement is
flattering. Usually a “doer” does not fall prey to the mushy and gelatinous filth hidden in the depths
of his/her own thoughts, and thrives better. On the other hand, those who, like me, live isolated in
the βάθος of thought, risk the inanity of the nightmares of the mind, something similar to śūnyatā
but with the strain of an indissoluble heaviness.

eShe was the Α-Ω behind the unorthodox fillip of this opus, with her starry-eyed affection.
fDeviser of the Tardigrade Superluminal Accelerator (tsa). A touch of color. One of his best

virtues is the aptitude to get and keep things of one type (collecting), and fantasize in whole about
them. This make my day, bro. And all this was combined with the aspect of reception. Every time I
came down from Bologna, you welcomed me warmly. How can I disregard your frank fervour, your
being “divinely inspired” (ἔν-θεος) for my mathematical & physical tales?

gDo you remember the indistinct and overflowing stream of emotions that resulted from that
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Lucia, Marco, Martine,a Miranda.b
(6) Albeit out of context, the next name is that of Daniele, my best youthful

friend. I have not seen him for many years (sadly we kind of lost touch), but
I can confidently state that he is the smartest guy I have ever met. He was
a genius-drenched person. Our Pisan and Livornian face-to-face discussions
(2005-2006) were in two voices (dialogues à double), he and I; and yet, when
something was captured by the attractive force of our confabs, no matter the
topic, there was like a single self-feeding brain projected onto a tubular mirror
curved on itself (incurvatus in se), which, suddenly, turned into a mirrored
bridge towards the world; every time, both of us, we were witnessing a sort of
peerless and unrepeatable meta-understanding. There is still a lot of him in me
(and maybe vice versa too).

(7) I have to pay homage to five other people, who has nothing to do with
mathematics, at least in a direct and overt way, let us think about the old
quadrivium. To do this I need the time machine (memory), and to look back
over the years, when this book was still a long way from conception. Which,
by the way, proves that mental & effective life is a chain whose links are often
stronger than one expects.

· I am starting with Takaakira ‘Taka’ Goto (後藤孝顕). We met on 29
November 2007 at Madonna dell’Albero (Ravenna): he is the first man in whom
I saw intensity (at the highest level) and passion (love) fused into a single process.
The transition from backstage (with the tranquility of an ordinary person) to
frontstage (the eruption of emotions out of the ordinary) was impressive. It is
been a long time, so he will not remember me, but that moment of fusion lives
here, then as now, inside me.

· Then the Τύχη played in doubles: I saw (Bologna, 26 May 2008) a fusion
of this kind revisited in Munaf Rayani. He is a majestic union of flesh, sound,
and rhythm.

· The third person is Efrim M. Menuck. We met on 23 October 2008 by
chance at the Fortezza da Basso, in Florence, between the swarm of people and
the beginning of a kermesse. He does not remember me, for sure: a fleeting
glance, and a few words. But it is also because of his music that I am still here.

· The fourth person is Philip Jamieson, along with other comrades, in partic-
ular, Erin L. Burke-Moran. The pre-show goliardic spirit is quite fresh in my
remembrance, which is opposed to the concert (Turin, 30 November 2010), in a

special day? I refer to 4 July 2006, in Piazza Castello, Ferrara, under the imaginifiche notes of
Glósóli by Sigur Rós. How can we forget that night, from which many views of things—ὄψεις
εἰδωλοποιαί—were born, which became anchored to our delicacy of feeling?

It is amazing how a single day is enough to transform an entire life, just as a random event, say,
an unannounced & slanted event, is enough to completely change the trajectory of a mental age.

And since life is an interleaving of (apparently) disconnected elements, I add another ingredient.
Being united and exalted by a Papinian spirit is no small matter.

aShe had the credit of being bluntly and passionately interested in my writing, despite having a
different background.

b«Life is too short not to dedicate ourselves to what pleases us [ci aggrada] naturally». Thank
you for this sentence that you have addressed to me. I might add, especially when this pleasure
coincides not in doing things, already done by others, in a better way (or to the best of one’s ability),
with the underlying encumbrance of replicating the obvious, but rather in doing those things in
a—completely—unusual way, which is the source of originality.
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constant crescendo for the climactic closing moment.
· The fifth person is Jóhann G. Jóhannsson. I can say that I was lucky

enough to see him in Turin (3 September 2011) before his death: a unique lesson
of delicacy, made up of freedom and hierarchical harmony with his ensemble of
instrumentalists.

(8) A separate story is my gratefulness to Davide Lo Iacono, from Eimog—we
are in the musical field, again. There was a missed evening, on 13 March 2010,
which should have been held in Borgo San Lorenzo, at Villa Pecori Giraldi.
We later spoke via email message, and he sent me, as a gift, a copy of their
new CD-Digipak, Scenario (Subway Productions, 2010), to apologize for the
incident. However, the skipped encounter spawned another, more powerful, event.
Butterfly effect, as the saying goes.

(9) Finally, a sweet smile of complacency is all for Marsili-Alissi Gálakta,
who accompanied the completion of the book with her unexpected arrival (the
most welcome gift), and her sly and awe-inspiring silence.



Glossary
Acronyms and Symbols

G.e. is for Generic element: function, index, map(ping), number, value. The meaning of each
generic type notation arises by referring to specific aspects of the context in which it is used.

The abbreviation [cb] indicates that, for the Greek letters, the cbgreek fonts is used instead of cm-
based Greek math fonts. A typographical difference, which corresponds to a different command, e.g.
\varsigma vs. \newcommand{...}{cb-based varsigma}, is the easiest way to avoid possible confusion.

3 End of definition
5 End of example
L End of margo
□ End of proof (ὅπερ ἔδει δεῖξαι, quod erat demonstrandum)
C End of question
⋄ End of scholium
# Cardinality: e.g. #G is the cardinality of the set G
\ The symbols \ and \ are typeset via \backslash and

\setminus commands, respectively, and appear typograph-
ically the same, but they are characterized by a different
blank area of separation (e.g. A\B vs. A \B). The first,
in that it has a neutral meaning, is universally usable (and
therefore, more often than not, it is preferable); the other
is originally designed to indicate the set difference

∤ Not a divisor of, e.g. a ∤ b means that a does not divide b
⩽ ≤
⩾ ≥
viz
= Videlicet, that is (to say), namely, the same as
ιδ

= Identity expressed by an equivalence relation; the letters ιδ
are derived from the noun ισοδυναμία (equivalence)

aprx
== Approximation with equality sign
atmo
== At most
corr
== Correspondent with/to
refo
== Reformulated in
1:1−−→ One-to-one correspondence (bijection)
∼ Asymptotic equivalence. — Equivalence relation
≈ Approximation
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∼= Congruence; isomorphism (homeomorphism, diffeomor-
phism)

∝ Proportionality
∅ Empty set
∩ Intersection
∪ Union⋃

Big union
⊔ Disjoint union
∈ Set membership
/∈ Negation of set membership
⊂ Subset. More specifically, we talk about an improper, or

broad, subset (e.g. H ⫅ G means H ⊂ G and H = G) and
a proper, or strict, subset (e.g. H ⫋ G means H ⊂ G and
H ̸= G)

⋐ or ⊂⊂ Compactly contained, compact embedding
⊃ Supset. More specifically, we talk about an improper, or

broad, supset (e.g. G ⫆ H means G ⊃ H and G = H) and
a proper, or strict, supset (e.g. G ⫌ H means G ⊃ H and
G ̸= H)

↪→ Embedding. — Immersion. — Inclusion map
→− Negation of →
⊥ Orthogonal(ity)
◦ Composition of functions or relations
⋊ Semidirect product (right normal factor)
⊕ Direct sum
⊗ Tensor product⊗

Big product
∧⃝ Kulkarni–Nomizu product
⌟ Interior product (or contraction)
∨ \vee command: supremum, also called “least upper bound”,

or “join” in lattice and order theory∨
\bigvee command

∧ \wedge command: exterior or wedge product in exterior
algebra, in differential geometry, and vector calculus. —
Infimum, also called “greatest lower bound”, or “meet” in
lattice and order theory∧
\bigwedge command∧2,

∧k \bigwedge command: second exterior power, kth exterior
power∧k

c (·)
viz
= Ωkc (·) Set of all k-forms having compact support

[· , ·] Lie bracket (of vector fields)
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⟨· , ·⟩ Inner product, Hermitian product. — Dot or scalar prod-
uct, a case of the inner product when one considers the
field of real numbers, i.e. Euclidean spaces. — Note: in
physics (quantum mechanics) the Dirac bra-ket notation
[793, p. 417] ⟨·|·⟩ is adopted

{· , ·} Anti-commutator. — Poisson bracket
∥ · ∥ Norm, vd. ∥x∥ and X

viz
= (X, ∥ · ∥)

[: · · · :] Repeat sign, inspired by the musical symbols for the left
and right repeat sign

<· · ·> Term of omission: what is inside these chevrons is omitted
⌊ · · · ⌉ \Biggl ⌊ floor and \Biggr ⌉ ceiling notations are employed

in Chapter 18 improperly, viz. as simple splitters of an
equation, when the latter is too long, and does not fit on a
single line

∀ For all/any/each/every element(s) (universal quantifica-
tion)

¬ Negation (logical complement, via \lnot command; idem
via \neg command)

∄ Negation of existential quantification, and it means “there
does not exist”

♭ Bemolle (flat) map, ♭-map in musical isomorphism
♯ Diesis (sharp) map, ♯-map in musical isomorphism
♮ Bequadro (natural) dimension of CM♮ and CM♮

(∞)

∠ Angle
∡ Vertex angle
∠d Dihedral angle
∠i Interior angle

△ Triangle
h□ Heat operatora, or Laplace–Poisson operator
h□∗ Adjoint of the heat operator h□
□ d’Alembert operator, aka wave or box (and even, occasion-

ally, quabla) operator, or simply d’Alembertian
△ Laplace operator, or Laplacian
△l Lichnerowicz Laplacian

♡

δ-variation of a value, adding the symbol ♡in superscript
(e.g. τ

♡

= δτ)
1 Indicator function: 1 = I
{1, i, j, k} Basis elements of quaternion algebra
(1,3)+

(1,3)+ and (1,3)−

(1,3)− Metric signatures (+,−,−,−) and (−,+,+,+), respec-
tively

a In literature it is denoted by the square/quabla □ symbol (but there is the risk of being
mistaken with the d’Alembertian) or by the Latin letter L supposedly because of Laplace [1583].
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2ℵ0 Cardinality of the continuum CR, or of the set of real
numbers R

ℵ0 Aleph null: lowest/smallest transfinite cardinal number;
Cantor’s number of algebraic numbers; it is also the cardi-
nality of the set of all natural numbers, or cardinality of
ωN (for the ordinal aspect)

ℵ1 Aleph one: first uncountable cardinal number, designating
the cardinality of the set of all countable ordinal numbers,
i.e. of (ωN)1

ℶ0 Beth null: ℶ0 = ℵ0
ℶ1 Beth one: ℶ1 = ℵ1
ℶαk+1 Beth number with an ordinal number (αk): ℶαk+1 = 2ℶαk

α G.e. — Hölder exponent. — Parameter in the Kerr metric:
α = J

m

α Multi-index
αem Fine-structure constant for electromagnetic interactions
αk Ordinal number
αH0 Parameter for Higgs boson, via scattering processes
αT Thermal diffusivity
α

[cb] Rationalized area of a black hole: α = Ah

4π (in black hole
thermodynamics)

β G.e.
β Background, e.g. R β

µν , g βµν , R β

s

γ G.e. — Photon9

γ(α)(β)(λ) Ricci rotation coefficients in the tetrad basis
γα̂β̂λ̂ The same as γ(α)(β)(λ)
γµνξ Ricci rotation coefficients
γµ

viz
= γµd Gamma (Dirac) matrices: γµ = {γ0, γ1, γ2, γ3}, plus γ5 =

iγ0, γ1, γ2, γ3

γµw Gamma matrices in the Weyl representation
γµm Gamma matrices in the Majorana representation
γε(x) Sequence of functions
γc Curve (curved line), path or

geodesic


path,
line,
curve/curvature

(the subscript c stands for curve)
γ̇c Velocity (vector field) of a curve, path or geodesic
γ̈c Acceleration (vector field) of a curve, path or geodesic:

γ̈c
ιδ

= Dtγ̇c
viz
= ∇γ̇c γ̇c
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γnull Null geodesic, ray of light
γs+, γs− Variables in the vibrating string model: 1D wave phe-

nomenon, in accordance with the method of d’Alembert
γ(PTw) Line in ΥPTw

γk
(PTw) Kodaira’s holomorphic line
γ

[cb] Lorentz factor
γ Gaussian measure

γ(3)
µν , γ(4)

µν 3- and 4-metric tensor (field), i.e. 3- and 4-dimensional
metric, respectively

Γµνξ (or other indices) Christoffel symbols (or component of the
Γ connection) of the first kind

[µν, ξ] (or other letters) The same as Γµνξ
Γ ξµν (or other indices) Christoffel symbols (or component of the

Γ connection) of the second kind{
ξ
µν

}
(or other letters) The same as Γ ξµν

Γς Space of sections; e.g. Γς
(∧k T̊ ∗M⊗ E̊

)
is the space of

sections of the bundle
∧k T̊ ∗M⊗ E̊

Γ (P̊ß) Connection on a spinor bundle
Γ⃗fp Faddeev–Popov (gauge) ghost field associated with the

photon
ΓR Group of real numbers (non-Archimedean analysis): ΓR =

{r1, . . . , rn}
Γ(·) Gamma function
Γ Discrete group of isometries of M̃n

κ (see), group of cov-
ering transformations on M̃n

κ. — Discrete group of
(Möbius) Möb-transformations (see). — Fuchsian group:
discrete subgroup of PSL2(R) or conjugate of this group
in PSL2(C)

Γ\U2
C Riemann (or modular) surface, orbit space, see SΓ

Γ\PSL2(R) Orbit projective space
δ G.e. — δ-variation (calculus of variations), change(s) in

the value of a variable
δ a Dirac delta function
δ∠ Angular deficit
δ∠(ŋ) viz

= δ∠ŋ Angular deficit at ŋ
δ∠(ver)

viz
= δ∠ver Angular deficit at ver

δµϱ, δ
µ
ϱ (or other indices) Kronecker delta: δµϱ

ιδ

= δµϱ
δk The same as δµϱ, δµϱ, Kronecker delta
δT Thermal fluctuation
δSeh Variation of Seh

a Via \Diracdelta command.
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δSp Palatini variation of the gravitational action
∆ G.e. — Positive or negative amount; finite change, dis-

placement, or length of path
∆ψ(·) Uncertainty in a measurement of some observable (·), devi-

ation correlated with a measurement of (·)
∆ψ(x̂), ∆ψ(p̂) Uncertainties of x̂ and p̂ of a wave function ψ
∇ Connection (generic notation) on the fiber bundle, e.g.

vector bundle, tangent bundle, see ωh. — Covariant deriva-
tive. — Levi-Civita connection. — Nabla or del: vector
differential operator, e.g. gradient (operator), gradφ = ∇φ

∇2 The same as △ (Laplacian), so △ = ∇2 = ∇ · ∇
∇E̊ Connection on the vector bundle
∇T̊ Connection on the tangent bundle (linear connection); Levi-

Civita connection in explicit notation
∇X⃗ς Covariant derivative of ς in the direction of X⃗
∇× (·) Curl of a vector field, i.e. curl(·)
ϵ G.e.
ϵr Monosemio number in Levi-Civita’s non-Archimedean field

(ϵ, r ∈ R, with r = 0)
ϵ Constant value
ε G.e.
ε

viz
= Leb(U) Lebesgue number for the open covering (U) of a compact

metric space
{ε(α)} Tetrad formalism
{εα̂} The same as {ε(α)}
εµνξ (or other indices) Levi-Civita symbol in three dimensions
ϝ Scalar field, scalar function
ϝ
0
H0 , ϝ+H0 , ϝ−H0 Higgs scalar fields
ϝ

[cb] Vector-valued function, vector function (generic no-
tation); map, vector function of position or vector field:
ϝ = ϝ1σ1 + · · ·+ ϝnσn

ϝX⃗
[cb] Fundamental vector field

ζ G.e. — Single 2-component spinor, see ψ as Dirac 4-spinor
{ζµn}n∈N Non-decreasing sequence of µ-integrable functions
ζ̊ Fiber/vector bundle: ζ̊ = (E̊ , π,M, F̊), ζ̊ = (E̊ , π,M)

ζ̊Cr Complex fiber/vector bundle of rank r
ζ̊Rr Real fiber/vector bundle of rank r
Ζ
µν , Ζµνξϱ [cb] 2-tensor, 4-tensor (generic notation)
η G.e.
η, ηµν , ηµν Metric tensor of Minkowski space(-time); it is a pseudo-

Euclidean metric
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η
(1,3)+

µν , η(1,3)
−

µν Minkowski metric tensor with signatures (+,−,−,−) and
(−,+,+,+), respectively

ηc Dimensionless constant of order unity (in black hole ther-
modynamics)

η+t 1-parameter groups related to the stable horocycle flow
η−t 1-parameter groups related to the unstable horocycle flow
{η+t }t∈R Stable horocycle flow
{η−t }t∈R Unstable horocycle flow

η Function (notation for the Poisson bracket)
Ηo

[cb] Operator (Calabi conjecture)
θ G.e. — Angle (of rotation). — Polar angles (colatitude)
θ∡ Vertex angle
θw Mixing angle, aka Weinberg angle (parameter of the elec-

troweak)
ϑ G.e.
ϑν

(
1
0

)
-tensor valued 1-form; vector-valued 1-form

ϑ1, . . . , ϑn 1-forms, dual coframe of E⃗1, . . . , E⃗n, forming an orthonor-
mal basis of the cotangent space T ∗

pM
ϑΥ g-valued 1-form on Υ
ϑ

viz
= ϑT Dynamical system on Q (that is a group of homeomor-

phisms under composition on Q): ϑ viz
= ϑT = {ϑt}t∈T

(ϑ, φ)
viz
= (ϑT, φT) Non-autonomous dynamical system; random dynamical

system; skew product flow
ϑw Vector: ϑw

viz
= ϑ(w)

ϑh Hölder homeomorphism
Θ(·) Heaviside step function
Θρ Radial function
Θτ Torsion form (of a connection form); vector-valued 2-form
Θ

[cb] Noise intensity, from Θ[όρῠβος], “noise”
ι G.e.
ιX⃗ (or other subscript) The same as ⌟
κ Curvature. — (Constant) sectional curvature, or Gaussian

curvature
κµ µ-integrable function: κµ ∈ L1(T̊ 1SΓ, dµ)
κΩ The same as Ω2

g . — The H-module decomposition for the
κ-curvature is κΩ = κh ⊕ κp

κ(tr) Trace of the extrinsic curvature
κ G.e.
κ Einstein (gravitational) constant: κ = 8πG

c4

λ G.e. — Scalar
λ1 Constant (Poincaré inequality)
λµ µ-integrable function: λµ ∈ L1(T̊ 1SΓ, dµ)
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λl, λ+l , λ−l Lyapunov exponents
λvol (Exponential) growth rate of volume, volume growth rate
λ
ς,τ [cb] Lepton, where ς, τ = 1, . . . , 3 are the generation indices
λ
α
g-m

viz
= λαχiχj

[cb] Gell-Mann matrices, with α = 1, . . . , 8

λ Lebesgue measure
Λ G.e.
Λ = [Λµν ] Matrix of an orthogonal transformation, i.e. general,

proper, orthochronous Lorentz transformation
Λq q-fiber of Λ, i.e. Λq = {x ∈ X | (q, x) ∈ Λ},
Λt t-fiber of Λ, i.e. Λt = {x ∈ X | (t, x) ∈ Λ}
Λ Cosmological constant
Λ Attractor. — Non-autonomous set of a process: Λ ⊂

(TX )µ = T×X . — Non-autonomous set of a skew product
flow: Λ ⊂ (XQ)µ = Q×X

Λ s Singular hyperbolic attractor, or repeller; singular Lorenz-
like hyperbolic attractor

µ G.e.
μ

[cb] Coefficient of friction
µ Measure on a space/set; probability measure. Some ex-

amples: Borel measure, Liouville-like measure, Rieman-
nian measure (induced by the Riemannian structure);
Sinai–Ruelle–Bowen (srb) measure

ν G.e.
ν
(≀)
ς Image of a neutrino νς under cpt symmetry, i.e. transfor-

mations of charge conjugation (c), parity transformation
(p), and time reversal (t)

ν Correlation dimension (measure for the strangeness of at-
tractors; it is analogous to the fractal dimension) according
to Grassberger–Procaccia algorithm: ν = limρ→0

logC(ρ)
log ρ

ξ G.e.

ξ Function (notation for the Poisson bracket)
ο Holomorphic function, map
π G.e. — Irrational and transcendental number: 3.14159 · · · .

— Projection (map)
π

viz
= πT Skew product flow (autonomous semi-dynamical system);

π = (ϑ, φ)

π1 First factor projection, projection onto the first factor
(alternative notation: prj1)

π1(X ) Fundamental group, first homotopy group, or Poincaré
group [2132, § 12] of some topological space X (it is a
topological and homotopy invariant)

π2 Second factor projection, projection onto the second factor
(alternative notation: prj2)



Glossary lv

π Permutation

πφ(F ) ∈ Sn Permutation belonging to the symmetric group
ϖ G.e.

˙
ϖ Continuous function

˙
ϖ : X → R (notation adopted for the

topological pressure)

ϖ Kähler potential (smooth real function)
Π Perimeter, e.g. Π( “C) is the perimeter of “C
Ϙ

[cb] Ornstein–Uhlenbeck process
ρ G.e. — Radius
ρQ Source density (for the quadrupole moment tensor)
ϱ G.e.

ϱ G.e.
ρ Distance: ρ = dist

ρ(x, y) Distance between two points x and y of a metric space
(X , ρ); we can even write ρ(x, y)

viz
= |x− y|X

σ G.e.
σ-, σ σ-algebra (σ-field): sigma-algebra (sigma-field)
σE̊ Section of E̊ . — Local and global frame field for the tangen-

t/vector bundle, σE̊ ∈ E(Υ ) and σE̊ ∈ E(M), respectively,
σE̊ = {σ1, . . . , σn}

σ
[cb]
σ-model, sigma model

σµ
[cb] Pauli (spin) matrices: σµ = {σ0,σ1,σ2,σ3}

σ⃗
[cb] Spin vector having the Pauli matrices as its components:
σ⃗ = (σ1,σ2,σ3)

a

σ
µ, σµ [cb] Sigma (Pauli) matrices: σµ = (1, σ⃗), σµ = (1,−σ⃗)
σ · p⃗ [cb] Longitudinal polarization of a particle
σ Probability measure: σ ∈ M
ς G.e. — Spinor map: ς : SU2(C) ∼= Spin3(R)→ SO3(R)
ς(R)M Real spinor field onM with decomposition into elements(

ς(R)+M
)
+
(
ς(R)−M

)
= ς(R)M

ς
[cb] Section of a fiber/vector/tangent bundle

ς
(
P̊±

ß

)
[cb] Spinor field, or section of P̊ß

ς(T̊ rsM) [cb] Section of T̊ rsM
Σ Set of points
τ G.e. — Time (generic notation). — Proper time (interval)

in Minkowski space(-time) diagram. — Torsion tensor:(
1
2

)
-tensor field or tensor of type (1, 2)

τ ∈ T1
2(M) Torsion tensor of the the connection ∇

τ

♡

τ

♡

= δτ

a In these Notes, vectors, especially when they are written in lower case letters, are usually
written without an arrow above. However, in some cases, it is desirable to use the arrow command
to avoid semantic overlaps, distinguishing between σµ (Pauli matrices) and σ⃗ (Pauli vectors), or e.g.
between p (point) and p⃗ (momentum).
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τ rs Tensor fields (or simply tensor) of type (r, s): τ rs = Τµ1···µr
ν1···νs

τµ Measurable function: τµ ∈ L1( “Ω,µ)
τµ(U) Uσ-measurable function: τµ(U) ∈ L1( “Ω,µ)
τqg Particle’s flight time due to quantum-mechanical fluctua-

tions of space-time

τ G.e.
τ

[cb] Reciprocal of the golden ratio: τ = 1
φ

Τ
[cb]a Tensor

Τ
µν , Τµν Energy-momentum tensor, also called stress-energy tensor,

or stress-energy-momentum tensor
Τ
µν Total energy-momentum tensor: Τµν = Τµνem + Τµνp
Τ
µν
ε Regularized energy-momentum tensor (for any ε > 0)

div
Τ
µν
ε Divergent tensor of Τµνε

Τ
µν
em Energy-momentum tensor of the electromagnetic (em) field
Τ̄
µν
em Renormalized electromagnetic energy-momentum tensor
Τ

gw
µν Energy-momentum tensor of a gravitational wave (gw)
Τ
µν
p Energy-momentum tensor of a particle, where the letter p

is for particle(s)
Τ

m
µν Energy-momentum tensor of matter
Τ
µ1···µr
ν1···νs Components of τsr in relation to a system of coordinates

x1, . . . , xn

Τ
ν1···νr
µ1···µs

Components of Τ in relation to Bv
Τ̃
ν1···νr
µ1···µs

Components of Τ in relation to Bw
Τ̃
ξ1···ξr
ϱ1···ϱs Components of τsr in relation to a system of coordinates

y1, . . . , yn

Τ
r
s

(
r
s

)
-tensor, tensor of type (r, s), with r, s ∈ N0, which is

r-contravariant (contravariant of degree r), i.e. r times
contravariant, and s-covariant (covariant of degree s), i.e.
s times covariant

Τ
−1gµν Metric coupling, i.e. a Riemannian metric, which deter-

mines the coupling constant in the Friedan’s non-linear
σ-model

υ G.e. — Function (generic notation). — In the heat, or
diffusion, equation it represents a function (of temperature);
or even a heat kernel (fundamental solution of the heat
equation). — In the wave equation, it is the unknown
function, that is the dependent variable, indicating the
vertical displacement of the string

ῠ(x) Extremal (function, in this case υ) of a functional (or rather,
of an integral functional)

υ Potential function
a From Greek (ταῦ, by way of a \Tau command) and not Latin alphabet (although the two

T-fonts are indistinguishable).
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υ♡ υ♡

= δ υ

υ
[cb] Baiocchi–Duvaut transformation

Υ Open neighborhood; open (sub)set (same meaning as Ω,
hence Ω ιδ

= Υ )
ΥΛ Neighborhood of Λq
ΥCM Open neighborhood in CM♮

ΥPTw Tubular neighborhood in PTw
(Υ, ϑΥ ) Cartan gauge
(Υ±
µ , φ

±
µ ) Charts (n-charts) arranged in pair

ϕ Angle (of rotation)
φ Application, function, map (or mapping), operator, trans-

formation
φ

viz
= φT Dynamical system, that is a continuous function or mapping

with time set T
φΓ Covering transformation, where Γ is a discrete group of

isometries
φµ Measure preserving transformation, e.g. automorphisms of

the Lebesgue–Rohlin space, transformation (or flow) of a
compact topological space

φм Continuous function with compact support
φ(F ) F -automorphism of Ks, φ(F ) ∈ GalF (K

s)

φm Matter field: space-time function representing matter
φ
(3)
m , φ(4)

m 3- and 4-dimensional matter fields, respectively
φt, {φt}t∈R Geodesic flow
φωt , {φωt }t∈R 1-parameter group of ∗-automorphisms on H (Hilbert

space), modular group, modular flow, thermal time flow
φF
t , φW

t Foliation for a geodesic flow, foliated geodesic flow; geodesic
foliation

φH
t Hamiltonian flow

φ[A] Anosov diffeomorphism
φt[A] Anosov flow
φW
t [A] The same as φW

t but in the Anosov (or hyperbolic) system
φ

[cb] Golden ratio (proportio aurea): φ = 1
2 (1 +

√
5)

Φ Diffeomorphism. — Cr map
Φ

[cb] Golden section
ΦR

[cb] Elliptic function
χ G.e. — Single 2-component spinor, see ψ as Dirac 4-spinor
χE̊ Dual local frame field for the cotangent/vector bundle;

χE̊ = {χ1, . . . , χn}
χ

[cb] Characteristic function (probability theory)
Χ

[cb]a
Χ ⋐ Ω

a From Greek (χῖ, via \Chi command) and not Latin alphabet, although the two X-fonts are
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ψ G.e. — State vector, or wave function of a quantum-
mechanical system

ψ =
(
ψα

ψβ

)
Pauli spinor or 2-component spinor (column vector with
two complex components), 2-component wave function, ψα+
and ψβ−

ψ =
(
ψ1

ψ2

)
Weyl spinor, 2-component object/wave function

ψ =

(
ψ1

ψ2

ψ3

ψ4

)
Dirac 4-spinor, pair of 2-spinors: object of a 4-dimensional
complex vector space, 4-component wave function. This a
column-like spinor, and it is indicate by ψ ∈ C4

ψ =
(
ζα

χ̃α̇

)
Dirac 4-spinor (alternative notation), where the left-handed
spinor is denoted by ζα, whilst the right-handed spinor by
χ̃α̇

ψ ∈ 4Cи Dirac 4-spinor in the form of C4×4 matrix spinor
ψ ∈ C⊗Cℓ1,3(R) Clifford–Dirac algebraic spinor
ψ =

(
ψl

iσ2ψ̄l

)
Majorana spinor, 2-component object/wave function

ψ =
(
ζα

ζ̃α̇

)
Majorana spinor (alternative notation)

ψ Adjoint spinor (field) or Dirac adjoint: ψ = ψ†γ0(
ψ/∂
) (

ψ/∂
)
= ∂µψγ

µ

ψC Charge conjugate of ψ (in the context of spin theory)
ψ̂ Fourier transform of a function ψ (some authors use the

tilde symbol ψ̃); do not confuse the wide hat symbol l̂
with the hat symbol l̂, used e.g. for the operators (l is for
letter)

ψµ Complex-valued measurable function
ψt Diffeomorphism, flow

ψ Orlicz function
Ψ Wave functional, for example in Wheeler–DeWitt and Har-

tle–Hawking equations

Ψ

Vector field of unit length
ω G.e. (see the context). — Angular frequency per unit time,

angular speed
ω, ωR Differential form or k-form; function over a k-dimensional

manifold
ω, ω-state State of an operator system, positive linear functional of

norm 1 (1-form)
ω∇ Connection matrix: ω∇ =

[
ωξν

]
ωνµ Differential 1-form; connection 1-form: ωνµ = Γ νµξω

ξ

ωξν The same as ωνµ

almost identical.
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ωN As a number, it is the first, lowest/smallest transfinite
ordinal number; as a set, it is set of all natural numbers in
the ordinal construction

(ωN)1 As a number, it is the first, lowest/smallest uncountable
ordinal number; as a set, it is the set of all countable ordinal
numbers;

ωR Differential form or k-form (see above)
ωP̊ Connection on a principal G-bundle
ωg Cartan connection, differential form on P̊ (ωg = ωh ⊕ ωp)
ωh Ehresmann connection. — Principal connection equivalent

to the Levi-Civita connection: ωh ∈ Ω1(P̊, h) ιδ= ∇
ωp Solder form
ωG Maurer–Cartan form; left invariant form: ωG ∈ Ω1(G, g)

viz
=

ωl
G ∈ Ω1(G, g), or ωl

G ∈ Ω1(G) ⊗ g; right invariant form:
ωr
G ∈ Ω1(G, g), or ωr

G ∈ Ω1(G)⊗ g

ωR Ricci form: 2-form of type (1, 1)

{ωR} Cohomology class of the Ricci form: {ωR} = 2π C̊1(M)R
ωs Symplectic form (non-degenerate closed differential 2-form):

ωs = dx1q∧dy1p+ · · ·+dxnq ∧dynp . — Kähler form (if dω = 0,
the Hermitian form is symplectic, ω = ωs)

{ωs} (de Rham) cohomology class as a Kähler class: {ωs} ∈
H2

c (M)R ∩H1,1
c (M)C

ωv Magnitude of the vorticity
ω

[cb] Value related to the oscillation (Bessel function)
Ω Open (sub)set
Ω ⊂M4 Domain of integration of dimension 4, region or portion of

Minkowski space-time
Ω ⊂ Rn Subset of a Euclidean space
Ω∇ Curvature 2-form of ωP̊
Ω∇ Curvature matrix: Ω∇ =

[
Ωνµ

]
Ωνµ Curvature form
Ωξ,ϖ,... Subspaces of Rn

Ω2
g Curvature form of the Cartan connection

Ωk(M; E̊) Vector space of all k-forms (on a manifold M with values
in E̊ ιδ= ζ̊); alternative notation: Ek(M)

“Ω a Set in measure space
“ΩE(“ω) “ω-limit set of E
( “Ω,µ) σ-finite measure space
( “Ω,Bσ,µ) Probability space
ΩΛ Dark energy density parameter

a The breve inverted diacritic mark “· here and elsewhere has the sole purpose of indicating that
we are looking at the measurable aspect of quantities and objects, for which “Ω = Ω.
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Ωm Matter density parameter (the subscript m stands for mat-
ter)

ŋ a Hinge, bone, or subsimplix
Ŋµ, {Ŋµ} Partition of unity
в Warping function
в(g) (Gauge) coupling constant
в(g)d

Dimensionful coupling constant (in the Nambu–Jona-
Lasinio model)

в(g)s
Strong/qcd (gauge) coupling constant

Г Homomorphism
г b C∞ function, smooth function
/∂ Partial derivative with Feynman slash notation
∂Hn Boundary {xn = 0} of Hn

∂∞Bn Boundary at infinity of Bn, ∂∞Bn ιδ= Sn−1
∞

∂∞Un Boundary at infinity of Un

∂− “C Reduced boundary (à la De Giorgi) of a Caccioppoli set “C
Д t 1-parameter family of diffeomorphisms
и c Idempotent
л Lebesgue (measurable) function
к d Root
кα Primitive n-th root of unity
Л Lorentz group: Л = Л ↑

+ ∪ Л ↑
− ∪ Л ↓

+ ∪ Л ↓
−, where Л+

(proper L. g.), Л− (improper L. g.), Л ↑ (orthochronous L.
g.), Л ↓ (non-orthochronous, or heterochronous, L. g.), Л ↑

+

(proper orthochronous, or restricted, L. g.), Л ↑
− (improper

orthochronous L. g.), Л ↓
+ (proper non-orthochronous, or

heterochronous, L. g.), Л ↓
− (improper non-orthochronous,

or heterochronous, L. g.) appear
м Möbius transformation: м(z) = αz+β

γz+δ , м ∈ Γ, element in
Γ, that is a discrete group of (hyperbolic) Möbius transfor-
mations

п Polynomial function (on Hilbert space)
(У ) Condition (У ) for (У )-flow [(У )-потоком], better known

as Anosov flow (geodesic flow on a manifold of negative
curvature)

фr Ricci flow
фnor

r Normalized Ricci flow
фunn

r Unnormalized Ricci flow
a The letter ŋ, not to be confused with Greek small letter η (eta), is the cursive of ŋ, engma

letter (or n-hook) and velar nasal speech sound of ng (agma).
b From the Ru. г[ладкая].
c Cursive Russian letter и.
d From the Ru. к[орень].
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фrde Ricci–DeTurck flow
фkr Kähler–Ricci flow
фnor

kr Normalized Kähler–Ricci flow
фunn

kr Unnormalized Kähler–Ricci flow
фs

r Ricci soliton

фL̊−k
C

r Expanding soliton on L̊−k∈Z
C

фcig|R2

r Cigar soliton, or Euclidean Witten’s black hole
чC Complex number corresponding to a probability amplitude

for k ⊂ R4
1,3

чvol
k Number corresponding to the volume spectrum (according

to the law of Weyl) of some space (e.g. manifold, surface)
Ч C Complex number corresponding to a probability amplitude

functional of a path
ш Determinant of the induced metric on the boundary surface

∂Ω

ъ Transformation ъ : α, α̇ 7→ ъ(α), ъ(α̇) on (∂DC × ∂DC)
ιδ

=
(∂B2

C × ∂B2
C)

ь Smooth real function
Ьa, Ьb, . . . (Ьa,Ьb,Ьc,Ьd) ⊂ Ω, all subsets of Ω
э(x) Function almost continuous in Ω relative to a De Giorgi

class, more precisely: э(x) ∈ C
(2)
dg (Ω), and э(x) ∈

Cdg(Ω, ε); in a local Sobolev space: э(x) ∈W 1,p
loc (Ω)

э̆(x) Extremal (function, in this case э) of a functional (or rather
of an integral functional)

ю Function (generic notation)
я Function (generic notation)
Я Subset of [0, 1]
ð Density (for generic definitions); solute density function
Ð Ð =

∥∇υ∥p

∥υ∥p

þ Function, e.g. greater than or equal to zero (þ ⩾ 0)
A Subset A ⊂ (TX )µ = T×X induced by Ǎ
Ǎ Family Ǎ = {At}t∈T of subsets of (X , ρ)
A Atlas
aps Algebra of physical space, see Cℓ3,0(R) and pau(3,0)

aut(DC) Automorphism group of DC (complex-valued disk)
aut(U2

C) Automorphism group of U2
C (complex-valued upper half-

plane)
A5 Alternating group of degree 5, the smallest non-solvable

group, as well as the the smallest non-Abelian simple group
of order 60; it is isomorphic to the isometry group of the
icosahedral group

An Alternating group of degree n
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aµ 4-acceleration vector
adj Adjoint action or adjoint representation
∗-algebra Star-algebra, subform of C∗-algebra
Â Hirzebruch Â-genus, or just Â-genus
A⃗ Vector potential
A(γ) Photon field, electromagnetic field: A(γ)

µ , A(γ)
ν . Cf. vector

potential; it is a vector A-field: AγµAγν
viz
= A⃗γµA⃗

γ
ν

Aφ Function (generic notation)
Ah (Surface) area of the event horizon of a black hole, or just

horizon area
ATor Surface area of Tor
AdSn Anti-de Sitter space, or anti-de Sitter space-time, of dimen-

sion n
AdS/cft Anti-de Sitter/conformal field theory correspondence, Mal-

dacena duality, or gauge/gravity duality
Bn Beltrami–Poincaré (open) ball model
Bn Closed ball model
BnX Closed unit ball of a normed vector space X

viz
= (X, ∥ · ∥)

b(x) Bounded measurable function
B Set of points (by a theorem of De Giorgi)
B(Λ) Attractor’s basin of attraction
Bn Countable basis for the topology of a space
Bv, Bw Bases of V: Bv = {v1, . . . , vn}, Bw = {w1, . . . , wn}, with

the basis vectors v1, . . . , vn and w1, . . . , wn
Bσ Borel σ-algebra, sometimes called Borel σ-field
b Angle of a boost
Bφ Function (generic notation)
Bα−R Bochner–Riesz means of index (or degree) α
C Field of complex numbers
Ĉ Extended complex numbers (or extended complex plane):

Ĉ ιδ

= C ∪ {∞} ∼= CP1 (it is identifiable with the Riemann
sphere)

C2 ∼= H Spin space
2C Algebra of C2×2 matrices: 2C viz

= C(2) viz
= M2(C)

4C Algebra of C4×4 matrices: 4C viz
= C(4) viz

= M4(C)
CM♮ Complex Minkowski space(-time)
CM♮

(∞) Complex compactified Minkowski space(-time)
CP1 Complex projective line: CP1 ∼= Ĉ = C ∪ {∞} (it is identi-

fiable with the Riemann sphere)
CPn Complex projective n-space: CPn viz

= Pn(C) viz
= PnC
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CP4[5] Quintic 3-fold: hypersurface of degree 5 and dimension 3,
with a real 6-dimensionality; to wit, quintic Calabi–Yau
3-fold in a 4-dimensional projective space P4

Cn/Zk>n Metric cone
(Cn\{0})/Zk Quotient of Cn/Zk
Co7 Co7 =

{
x ∈ R8 | x21 + x22 + x23 + x24 < x25 + x26 + x27 + x28

}
:

7-dimensional Simons’ cone in R8

Co2m Co2m =
{
x ∈ R2m | x21 + · · ·+ x2m = x2m+1 + · · ·+ x22m

}
:

cone in R2m

Cη Horocyclic region, open region bounded by a horocycle
tangent to ∂U2

C
C Cartan geometry: C = (P̊, ωg)

C∞ Class (set) of infinitely (or ∞-times continuously) differen-
tiable functions, maps, etc.; smooth atlas, function, functor,
map, structure

C0 Class (set) of all continuous functions, maps, etc.
C1 Class (set) of differentiable functions, maps, etc. whose

derivative is continuous
C2 Class (set) of differentiable functions, maps, etc. whose

first and second derivatives are continuous
Cω Class (set) of (real) analytic functions, maps, etc.
Cr Class (set) of r-times continuously differentiable functions,

maps, etc.
Cc Collection, or rather, (linear) space of all continuous func-

tions of compact support (the subscript c is for compact)
C∞
c Class (set) of all functions with compact supported in

C∞
c -form, creating a vector R-space

C∞
0 Equally to C∞

c , the class (set) C∞
0 concerns all bump

functions (with continuous derivatives of any order and
compactly supported) on a Euclidean space, forming a
vector R-space

C̊1(M) First Chern class (in this case referred toM); more detailed
notation: C̊1(M)R is for first real Chern class

C
(2)
dg (Ω) De Giorgi class (set) of functions э(x) almost continuous

in a subset of a Euclidean space
Cdg(Ω, ε) De Giorgi class (set) of functions э(x) almost continu-

ous in a subset of a Euclidean space, with a positive
number ε: Cdg(Ω, ε) =

{
[Cdg]

±
p (Ω, ε) = [Cdg]

+
p (Ω, ε) ∩

[Cdg]
−
p (Ω, ε)

}
, i.e. C±

dg = C+
dg ∩ C−

dg

Cdg(Ьd, ε) De Giorgi class (note that Ьd ⊂ Ω)
CLα , CLβ Classes of Lαβ

viz
= αβ

CR Continuum, that is, the set of real numbers R
c Characteristic class
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c Constant (generic notation). — Wave speed, constant
concerning the speed of propagation of the wave. — Speed
of light in vacuum

cµνξ Structure constants
ch Hölder constant
cl Lipschitz constant
cs Sobolev constant
ct Tadpole 1-loop Feynman diagram (constant)
card Cardinality
curl Curl of a vector field
“C Caccioppoli set
C(ρ) Correlation integral
CX , KX , WX Partitions of a metric space (X , ρ)
Cj Jordan curve
Ck Snowflake curve of von Koch
Cu Uniform constant
Cat Category in Grothendieck topoi
Cℓ0,1 Cℓ0,1 ∼= C
Cℓ0,3 Cℓ0,3 ∼= H⊕ H
Cℓ0,2 Cℓ0,2 ∼= H
Cℓ1,0 Cℓ1,0 ∼= R⊕ R
Cℓ1,3(R) Space-time algebra, see sta

Cℓ
+[0]
1,3 (R) Even subalgebra of Cℓ1,3(R)

Cℓ3,0(R) Cℓ3,0 = Cℓ
+[0]
3,0 + Cℓ

−[1]
3,0
∼= (Cℓ2,0 ∼= 2R) ⊗ (Cℓ0,1 ∼= C) ∼=

2C, i.e algebra of physical space, denoted by aps, which
corresponds to the Pauli algebra, denoted by pau(3,0)

Cℓ
+[0]
3,0 Even subalgebra of Cℓ3,0

Cℓ
−[1]
3,0 Odd subalgebra of Cℓ3,0

Cℓ3,1(R) Majorana algebra, denoted by maj(3,1): Cℓ3,1(R) ∼= Cℓ1,1⊗
Cℓ2,0

Cℓ4×(C) Cℓ4×(C)
viz
= Cℓ4,1,C⊗(R)

Cℓ4,0 Cℓ4,0 ∼= Cℓ2,0 ⊗ Cℓ0,2 ∼= Cℓ1,3
Cℓ4,1,C⊗(R) Cℓ4,1,C⊗(R)

viz
= Cℓ4×(C), that is Dirac algebra, see dir(4,1):

Cℓ4,1,C⊗(R) ∼= Cℓ1,1 ⊗ Cℓ3,0
C∗-algebra C star-algebra, Banach-type algebra
C Charge conjugation
D Beltrami–Poincaré (open) disk model: D viz

= D2 ιδ= B2, i.e.
real-valued DR

ιδ

= B2
R or complex-valued DC

ιδ

= B2
C disk

DR Real disk model: DR
ιδ

= B2
R

DC Complex disk model: DC
ιδ

= B2
C
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D Closed unit disk: D ιδ

= B2, real-valued DR
ιδ

= B2
R or complex-

valued DC
ιδ

= B2
C closed disk

Dπ Projective disk model, or Beltrami–Klein disk model
D6 Dihedral group of order 6 (D6

∼= Z3 ⋊ Z2)
D(·) Space of test functions
D∗(·) Space of distributions, dual space of D(·)
dir(4,1) Dirac algebra: dir(4,1)

viz
= R4,1

viz
= Cℓ4,1,C⊗(R)

viz
= Cℓ4×(C),

dir(4,1)
∼= 4C, and dir(4,1)

∼= C⊗maj(3,1), or ∼= C⊗ sta

dir
+[0]
(4,1) Even algebra of dir(4,1)

D(·) Linear subspace of H, that is the domain of ·
D(j) Irreducible representation (for spinor representation)
dµ Volume element
dω Dual basis: dω = {dx1|p, . . . ,dxn|p} (differential in local

coordinates of a function ω); dωR
dSn de Sitter space of dimension n
dVg Volume form of g
diag Diagonal matrix
diam Diameter
dim Dimension
det Determinant
det(J ) Jacobian determinant
dist Distance: dist = ρ
div Divergence (vector calculus): e.g. div ϝ = ∇ · ϝ
D Covariant derivative, see ∇. — Differential operator
D2 Second covariant derivative
D2υ Hessian matrix (of second derivatives) of a function υ
Dα Weak α-th partial derivative
Ddas Dirac–Atiyah–Singer operator
Dg Diagonal group related to the geodesic flow
Dm Coefficient of diffusion (mass diffusivity)
Dq G.e. (quantity)
Dtγ̇c The same as γ̈c, with Dtγ̇c

viz
= ∇γ̇c γ̇c

Dtς Covariant derivative of ς along γc
D Dimension
Df Fractal dimension, also known as Hausdorff or Haus-

dorff–Besicovitch dimension
DL Lyapunov dimension, or Kaplan–Yorke dimension
Diff1(M) Set of C1 diffeomorphisms φ on M in the C1 topology
Diffr(M) Set of Cr diffeomorphisms φ on M in the Cr topology
dgnm De Giorgi–Nash–Moser theorem
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En Euclidean n-space; flat space in any number of dimensions,
see R

E Subset E ⊂ “Ω × X , or family E = {E“ω}“ω∈ “Ω of subsets of
X

EΩξ,ϖ,... Subspaces of Rn

E+(v), E−(v) 1-dimensional linear subspaces of TvT̊ 1M, with v ∈ T̊ 1M
E0(x) 1-dimensional subspace of TxM
Es(x), Eu(x) Stable (s) and unstable (u) subspaces of TxM, respectively
E̊ Vector bundle or, more generally, fiber bundle on an open

neighborhood Υ
E̊0 1-dimensional subbundles of T̊ M
E̊s, E̊u Stable (s) and unstable (u) subbundles of T̊ M, respectively
E̊cuΛ Central unstable direction of T̊ΛM
E̊sΛ, E̊uΛ Stable (s) and unstable (u) subbundles of T̊ΛM, respectively
E̊p Fiber over p (or other letter): E̊p

ιδ

= π−1(p)

E(Υ ) Vector space of sections of the tangent/vector bundle on Υ
(local section)

E(M) Vector space of sections of the tangent/vector bundle on
M (global section)

Ek(M) The same as Ωk(M; E̊)
e Euler’s (or Napier’s) number, that is irrational and tran-

scendental number: 2.71828 · · · ; base for exponential func-
tions (see ex) and logarithms

eiθ Phase factor (complex exponential factor); unit complex
number

ex Exponential function: ex viz
= exp {x}; e× · · · × e︸ ︷︷ ︸

x terms
e Edge
ess sup Essential supremum
exn Expansion
exp {x} The same as ex
“E Measurable set, e.g. subset of “Ω. — Borel set. — Subset

of a metric space (X , ρ)
E⃗1, . . . , E⃗n Frame fields (n-tuple of vector fields), that is, orthonormal

basis for the tangent space TpM
Eγ Photon (γ) energy
Eµν Euler–Lagrange operator, that is, tensor density: Eµν viz

=
Eµν(L)

Ek Kinetic energy
Eem Electrostatic self-energy, or electromagnetic energy, of a

charged point-particle
Etot Total energy
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Eu Potential energy
F Set of real or complex numbers, R-field or C-field, etc.
F Foliation (generic notation): F viz

= Ws and/or Wu

Fι Nullity foliation of ι (immersion)
F̊ Fiber of the fiber bundle
F̊h Fiber as h-space
F Filtration: collection of linear subspaces Eν ⊂ Rn, i.e.

F = {Eν | ν = 0, . . . , k}
F, F-functional Perelman’s entropy F-functional, or just F-entropy, but,

more correctly, entropy-energy F-functional, aka steady
soliton entropy functional

fαβγδϵ (Gauge group) structure constants, or structure coefficients,
of the Lie algebra su3 of SU3

f(“ω) Random variable
fev Evaluation isomorphism
f(inv) Involution
F ⊂ Ks Field extension, as a pair of fields, where Ks is an extension

field of F and F is a subfield of Ks

F⃗ Force
Fµν , Fµν Electromagnetic (field) tensor, or Maxwell tensor, also

called (field) strength tensor, which represents the electro-
magnetic field

Fµνε Regular distribution of the electromagnetic tensor
Fµνext External field
Fµνlw Liénard–Wiechert field
Fµνlw(ε) Regularized Liénard–Wiechert field
Fαµν Yang–Mills (field) strength tensor: Fαµν = ∂µA

α
ν − ∂νAαµ +

fαβγAβµA
γ
ν

Fμ Resistance of a rotating surface
Fgr Functor in Grothendieck topoi
Fibn Fibonacci number(s)
fpu+t Fermi–Pasta–Ulam & Tsingou problem
G4(C) Complex 4-space for the lh non-linear graviton (quantum

of gravity)
g Lie algebra of G (the corresponding Lie group); vector

space g together with a map [· , ·] : g× g→ g

g2 Lie algebra of G2

gln(K) Lie algebra of GLn(K)

G, G(x, y) Green’s function
g, gµν (or other indices) Metric tensor (field): e.g. Einstein, Gödel,

Kerr, Lorentzian, Riemannian, Schwarzschild metric (ten-
sor)
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g
viz
= gg Gödel metric (tensor)

g
viz
= gh Hermitian metric (tensor)

g
viz
= gkä Kähler metric (tensor)

g
viz
= gke Kerr metric (tensor)

g
viz
= gl Lorentzian metric tensor (tensor)

g
viz
= gm Minkowski metric (tensor)

g
viz
= gs Schwarzschild metric (tensor)

g̃ Generic transformation involving a metric g. — Metric
of the universal covering (space) M̃n

κ (for completeness,
g̃
ιδ

= π∗g)
g‡ g‡ = gµνg

♡

µν

g

♡

µν g

♡

µν = δgµν
g0 Initial metric
gв Warped product metric
g βµν Flat or curved background metric
gSn−1 Metric related to the (n− 1)-sphere
g1Y Metric on the Minkowski–Lorentz (or hyperboloid) model
g2B Metric on the Beltrami–Poincaré ball model
g3U Metric on the Beltrami–Poincaré half-space model
gt

viz
= g(t) Solution of the Ricci flow

gt
ιδ

=
(
e

t
2 0

0 e−
t
2

)
1-parameter group related to the geodesic flow

gcig Metric of фcig|R2

r (cigar soliton, or Euclidean Witten’s black
hole)

g g=
(
g†

viz
= ḡt

)−1

gℓ Gluon; gℓ is accompanied by superscripts (α), (β), (γ), (δ),
or (ϵ), where αβγδϵ = 1, . . . , 8 (eight types of gluons)

G Lie group, non-empty set (G ≠ ∅), with a binary operation
φ : G×G→ G

G/H Left coset of H in G (space of H in G), i.e. gH = {gh |
h ∈ H}, where G is a group and H is a subgroup of G; left
coset space(s) of G modulo H

G2 Exceptional simple Lie group
Gµν Einstein tensor
Gµν,ξϱ Wheeler–DeWitt metric
Gµν,ξϱ(s3) Discrete version (via tetrahedral-like shape in 3D) of the

Wheeler–DeWitt metric
Gn Gravitational constant, Newtonian constant of gravitation
Gal Galois group
GalQ(K

s) Galois group over Q, referring to a polynomial with rational
coefficients p(x) ∈ Q[x]
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GalQ
(
Q( 3
√
2, к)

)
Galois group for a polynomial with rational coefficients:
GalQ

(
Q( 3
√
2, к)

) viz
= Gal

(
Q( 3
√
2, к)/Q

)
GalF (K

s) Galois group of Ks over F , or Galois group of the Ks-
extension, sometimes also written Gal(Ks/F )

GalF (L
s) Galois group of Ls over F , with an intermediate splitting

field Ls of the extension F ⊂ Ks

G⃗ℓαfp Faddeev–Popov (gauge) ghost fields, with α = 1, . . . 8,
associated with the eight types of gluons

GLn(K) General linear group of degree n over K = R or K = C, set
of all regular n× n real or complex matrices

Hn Hyperbolic n-space
h Hausdorff measure
H Quaternion algebra; field of quaternions
H× Multiplicative group of non-zero quaternions
2H Algebra of H2×2 matrices: 2H

viz
= H(2)

viz
= M2(H)

HC Complex quaternions
HPn Quaternionic projective n-space: HPn viz

= Pn(H)
viz
= PnH

h Lie (sub)algebra of H (the corresponding Lie (sub)group)
holx(ωP̊) Holonomy Lie algebra of Hoℓx(ωP̊)

H Hilbert space
H

ℓ

+1 ℓ

-dimensional representation space, complex Hilbert space
of dimension 2j + 1

H Hamiltonian (function)
Ĥ Hamiltonian (operator) in quantum mechanics
Ĥφm

Matter Hamiltonian operator
hµ Metric entropy or measure-theoretic entropy by Kol-

mogorov–Sinai
hµ(φµ) Entropy of a measure preserving transformation X φµ−−→ X

(Kolmogorov–Sinai metric entropy)
hgeo(g) Geodesic entropy of the Riemannian metric
htop Topological entropy
htop(φµ) Topological entropy of some continuous transformation

X φµ−−→ X of a compact topological or metric space
htop(φt) Topological entropy of some geodesic flow, e.g. on the unit

tangent bundle φt : T̊ 1M→ T̊ 1M
H Boltzmann’s quantity; function of the condition of a system:

entropy of thermodynamics; Boltzmann’s H-theorem
Hµ, Hσ Entropy with reference to probability measures µ, σ
H(CX ) Entropy of a partition CX . Other examples: Hµ(K

X ),
Hσ(W

X )

Hs Shannon entropy
h Planck constant
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ℏ Reduced Planck constant: ℏ = h
2π

hµν Symmetric tensor field of rank 2 (it represents small per-
turbations or deviations from the flatness; gravitational
wave field)

H a Homology group
H < G Proper subgroup of G (H ̸= G)
H ⩽ G Improper subgroup of G (H may or may not equal G)
Hei3 Heisenberg group of 3 × 3 upper triangular matrices of

dimension 3
Hes Hessian (matrix)
Hoℓp(∇) Holonomy group of a connection: Hoℓp(∇)

viz
= Hoℓp(M,∇)

at a point p ∈M, e.g. holonomy group of a vector bundle
connection, with ∇ ιδ

= ∇E̊ , or holonomy group of a linear
connection (or holonomy group of a connection on the
tangent bundle), with ∇ ιδ

= ∇T̊

Hoℓp(g) Holonomy group of a Riemannian manifold or Riemannian
holonomy group: Hoℓp(g)

viz
= Hoℓp(M, g)

ιδ

= Hoℓp(∇) at a
point p ∈M, where ∇ ιδ

= ∇T̊

Hoℓ0p(g) Restricted holonomy group of a Riemannian manifold:
Hoℓ0p(g)

viz
= Hoℓ0p(M, g)

Hoℓx(ωP̊) Holonomy group of a connection on a principal G-bundle
Hoℓ0x(ωP̊) Restricted holonomy group of a connection on a principal

G-bundle
H0 Higgs boson
Hc (de Rham) cohomology group
H2

c (M)R Second (de Rham) cohomology group ofM with coefficients
in R

H0 Hubble constant
I 1 (number). — Identity matrix, function, or operator;

indicator function. — Identity element or neutral element
of a group. — I = 1

Ib Bianchi identities
Ip Palatini identity
ℑ Imaginary part ℑ(z) of a complex number z
ℑ(O) Imaginary part of O, set of (purely) imaginary octonions
isom(Mn

κ) Group of isometries ofMn
κ

isom
+(DC) Group of orientation preserving isometries of the Bel-

trami–Poincaré disk: isom
+(DC)

ιδ

= PSU2(C)
isom

+(U2
C) Group of orientation preserving isometries of the Bel-

trami–Poincaré upper half-plane: isom
+(U2

C)
ιδ

= PSL2(R)

a Via \homologygroup command.
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Ic Icosahedral group (group of isometries of a regular icosahe-
dron)

Ĩc Binary icosahedral group
I[·] Functional, that is, integral functional (mathematical anal-

ysis, calculus of variations)
Id[·] Functional, known as energy functional, or Dirichlet energy
Ido[·] Douglas functional
It[·] Brachistochrone curve functional
i G.e. — Imaginary unit (number)
ig Index of g
idΥ Identity map of Υ
idM Identity map of M
iff If and only if
index Index (Atiyah–Singer index theorem)
I Interval
⌢IHar Harnack inequality
⌢IHar

ly Li–Yau’s Harnack inequality
⌢IHar

lyh Li–Yau–Hamilton’s Harnack Inequality, aka Hamilton’s
Matrix inequality

J Compact set of U2
C

JC| Almost complex structure
j G.e. — Eigenvalue of the total angular momentum
∖ȷ Cutoff function
J (Total) angular momentum
Ĵ (Total) angular momentum, represented by an operator
J⃗ Jacobi (vector) field. — Geodesic deviation vector field (it

is a Jacobi field)
Jα Bessel function
jsj jsj (Jaco–Shalen–Johannson) or toral decomposition
k Region of space-time: k ⊂ R4

1,3

Kl Klein bottle: Kl ∼= RP2#RP2 = 2RP2

KΓ Compact core of SΓ, that is KΓ
ιδ

= Γ\K̃Γ

K̃Γ Reduced Nielsen region: K̃Γ
ιδ

= ÑΓ − {Cη}
K± Krĕın space: K± = K+ ∔ K−, where (K+ = 0) ⊂ K++ and

(K− = 0) ⊂ K−−
k G.e. (e.g. k ∈ N, or k ∈ Z). — Wave number, that is,

spatial angular frequency of the wave, or magnitude of the
wave vector

k2 Base-2 (binary number system) notation, k2 ∈ N0 and/or
k2 ∈ N+ = N\{0}

kb Boltzmann constant
ker Kernel
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Ks Splitting field; minimal, or smallest, field extension of a
field F

kam Kolmogorov–Arnold–Moser theorem
kms Kubo–Martin–Schwinger boundary condition
L Subset of X
L4 Lorentzian space-time, see L4

Ln Lorentzian space, see Ln

L̊ Line bundle
L̊C Complex line bundle
L̊−k∈Z
C Negative line bundle
L̊R Real line bundle
L4 Lorentzian space-time or Lorentz–Minkowski space-time:

L4 viz
= L4 = R4

1,3 or R4
3,1, i.e., M4 or M4 viz

= M4

Ln Lorentzian space: Ln
viz
= Ln = R1,n−1 or Rn−1,1

£ Lie derivative
L Lagrangian (function)
L(gµν) Lagrangian as a scalar density
Lm Lagrangian density of the matter-energy
Lnjl Nambu–Jona-Lasinio-type Lagrangian density
Lsm Lagrangian density in the Standard Model (of particle

physics)
Lym Yang–Mills-type Lagrangian density
ℓ Length
ℓ(γc) Length of a curve, path or geodesic
ℓ(e) Edge length
ℓ(s) Length of a string
ℓ-length Perelman’s ℓ-length functional
ℓ-geodesics Perelman’s ℓ-geodesics, whose equation is the Eu-

ler–Lagrange equation for critical curves about the ℓ-length

ℓ

G.e.
l̇ = ˙letter l is any letter with a dot above. It denotes the first deriva-

tive of a function. — It also denotes a related or derived
value, indicating e.g. a change of a quantity, a rotation
(movement of an object), a translation (geometric trans-
formation), a reflection (mapping from a space to itself),
or else representing different inertial frames of reference
(systems of coordinates). The origin of the (over)dot nota-
tion is in Newton [1938], l̈,

...
l,
....
l (second, third, and fourth

derivatives). Nota bene. This notation, for the aesthetic
issues, is usually preferred here, except special cases, to
the Lagrange’s [1560] prime notation, l′, l′′, l′′′, l′′′′ (and
then double, triple, and quadruple prime symbols), or the
Roman numeral superscript notation, l(i), l(ii), l(iii), l(iv).
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l = letter a Antimatter (antiparticle, antifield)
ln Natural logarithm
L̂ Orbital angular momentum, represented by an operator
L/ Limit point, or cluster point
L∞ Banach space, cf. Lp (Lebesgue) space(s)
L∞(G) Set of measurable essentially bounded functions
L1 b or L1-space: function space, forming part of Lp Lebesgue

space(s)
L2 b or L2-space: Hilbert space
L2(R,C, λ) b Hilbert space on the real line of complex-valued and

square-integrable functions, with respect to the Lebesgue
measure

Lαβ
viz
= αβ Line segment between points α and β (non-Archimedean

continuum)
L

ψ

Orlicz space, aka Birnbaum–Orlicz space
LG, or L-group Langlands dual group of a reductive algebraic group G,

L-group of G
Lp b or Lp-space: Lp Lebesgue space(s); function space(s).

NB. The Lebesgue Lp space, or rather, the normed vector
L-space of p-th power integrable functions, is a Banach
space for 1 ⩽ p ⩽∞

Lp Loop group, group of loops at a point p
L0
p Null-homotopic group loop, group of null-homotopic loops

at p
Lpmns
ςτ,τς Pontecorvo–Maki–Nakagawa–Sakata matrix: unitary lep-

ton (neutrino) mixing matrix in the weak interactions
Ls Intermediate splitting field satisfying F ⊂ Ls ⊂ Ks

L Side
l Left action
lh Left-handed
lot Lower order terms
lqg Loop quantum gravity
lyh Li–Yau–Hamilton’s Harnack inequality, aka Hamilton’s

Matrix inequality
M4 Minkowski space-time, see M4

M4(R)
(∞) Conformally compactified Minkowski space(-time): ordi-

nary flat Minkowski 4-space with a closed light cone, or
null cone, at infinity, embedded in a bent pseudo-Euclidean
6-space E2,4

Mn Minkowski n-space, see Mn

M Set or family of φµ-invariant Borel probability measures
a Via \antimatter command.
b L via \Lebesgue command.
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M Generic differentiable manifold, for example Riemannian
or pseudo-Riemannian manifold: (M, g)

M0 Conull set
Mn

κ Complete simply connected Riemannian manifold n-
dimensional of constant (sectional) curvature

M̃n
κ Universal covering (space) of Mn

κ, for which M̃n
κ
ιδ

= En

(κ = 0), M̃n
κ
ιδ

= Sn (κ > 0) or M̃n
κ
ιδ

= Hn (κ < 0)
M2n

T Kähler toric manifold: M2n
T

viz
= (M, ωs,Tn,JC|)

(M, ωs) Symplectic manifold
(M, ωs,JC|, g) Kähler manifold, where g viz

= gkä

(M, g) See M
maj(3,1) Majorana algebra: maj(3,1)

viz
= R3,1

∼= Cℓ3,1(R) ∼= 4R
maj

+[0]
(3,1) Even subalgebra of maj(3,1)

M4 Minkowski space-time: M4 viz
= M4 = R4

1,3 or R4
3,1

Mn Minkowski n-space: Mn viz
= Mn = R1,n−1 or Rn−1,1

Möb(Ĉ) Möbius group; group of Möbius transformations
Möb(DC) Group of all Möbius transformations leaving DC invariant
Möb(U2

C) Group of all Möbius transformations leaving U2
C invariant

Möb
+
2 (R) See Möb(U2

C)

Möb
+
B2(C) See Möb(DC)

m Mass

mν Basis 1-form
max, min Minimum (smallest) value, maximum (largest) value
mod Modulo operation
M Example of a 2×2 real or complex matrix: M viz

= [M ]2×2 =( α β
γ δ

)
Mµν

a 2-tensor
[M ]Bv

Bw
Matrix used for the change of basis with Bv and Bw

Mckm
ςτ,τς Cabibbo–Kobayashi–Maskawa matrix: 3×3 unitary matrix

concerning the strength of flavour-changing weak decays,
with the six types of quarks

MC Mandelbrot set
mpp Morales–Pacífico–Pujals scheme
N, N0, N+ Set of natural numbers: {0, 1, 2, 3, . . .}: N0 = N ∪ {0}

(naturals with zero), N+ = N\{0} (naturals without zero).
N Subset of M (generic notation)
ÑΓ Nielsen region of a Fuchsian group Γ

NΓ Convex core of SΓ, that is NΓ
ιδ

= Γ\ÑΓ

Neu von Neumann algebra
N̂ Unit normal vector

a M via \tensorM command.
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N̂ “C Inner normal vector, or unit inner normal vector, to “C
“N Measurable subset ofM, i.e. “N

viz
= N ⊂M

[Nµ
ν ] Invertible matrix of [Mµ

ν ] (MN = NM = In)
N(ρn, ε) Maximum number of points of an (n, ε)-separated set E ⊂

X
Ne, Nh Non-Archimedean numbers of elliptic or hyperbolic type,

respectively
Nτ (x, y) (Average) number of geodesics (or geodesic segments) be-

tween two points x and y with length ⩽ τ

Nic Number of independent components
Nm Matrix containing Majorana mass parameters for neutrinos
Nil One of the eight homogeneous Thurston 3-geometries (Nil

geometry, Nil space, Nilpotent Lie group)
nas Non-autonomous dynamical system
nlc No local collapsing (theorem)
O Octonion algebra (Cayley algebra); field of octonions (Cay-

ley numbers)
Ö Möbius strip: Ö ∼= S1 ×Z/2 R
O Bachmann–Landau notation or Landau symbol
O1,3(R) Indefinite orthogonal group of linear transformations of

M4 = R4
1,3, stating that O1,3(R) = Л

O2,4(R) Pseudo-orthogonal group for M4(R)
(∞) of linear transforma-

tions in E2,4

O(TpM) Orthogonal group of the tangent space
O(n) or On Orthogonal group: On(R) (o.g. over the field of real num-

bers), On(C) (o.g. over the field of complex numbers)
℘γc Parallel transport map: ℘γc(1)γc(0)

viz
= ℘γc(0)→γc(1) : E̊p → E̊p

P̊ Principal bundle, or principal G-bundle; non-short nota-
tions of P̊ are the map π : P̊ → M and the quadruple
(P̊, π,M, G)

P̊Л Component of the principal Л ↑
+-bundle over R4

1,3, aka
Lorentz bundle

P̊ß Component of the principal SL2(C)-bundle over R4
1,3, aka

spinor bundle
P̊Spin Spin(n)-principal bundle
Pn(C), PnC The same as CPn

Pn(H), PnH The same as HPn

Pn(R), PnR The same as RPn

P4[5] Alternative notation to CP4[5]

PTw Projective twistor space: real 6-space PTw6(R), or complex
3-space PTw3(C) ∼= CP3

PTw3(C)
± Complex 3-spaces of PTw6 for 0-mass particles of helicity±
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PTw5(R)
null Projective null twistor space, real 5-space

PTwZ̊ Projective space in which the fibers of the projection of Z̊
lie

p Lie-like structure on p-space (vector space), in combination
with H- or h-module decomposition: g = h⊕ p

pau(3,0) Pauli algebra: pau(3,0)
viz
= R3,0

viz
= Cℓ3,0(R) ∼= C⊗ H ∼= 2C

{P}set Poincareian set of recurrent points
P Probability density function: P(∆, τ). — Probability func-

tion in path integrals: P(x1, . . . , xj , xj+1, . . . , x ℓ)

P Pressure
Pµ Pressure of µ ∈ M(X )
Ptop Topological pressure
Ptop(

˙
ϖ) Topological pressure of a continuous function

˙
ϖ : X → R

with respect to φµ, i.e. Ptop(
˙
ϖ)

viz
= Ptop(φµ,

˙
ϖ)

p (or another letter) Pointa

pµ 4-momentum vectora

p⃗ Momentum (vector)
p̂ Momentum operator: p̂ : D(p̂)→ L2(R)
p(x) Polynomial; polynomial equation
prj Projection, see π
“P Set: “P k∈N ιδ= {x ∈ “E | φn⩾kµ (x /∈ “E)}
Pµνξ

b 3-tensor
P ℓ Probability of state

ℓ

Pµem Total 4-momentum vector of the electromagnetic field
PSL2(C) Projective special linear group of 2× 2 matrices over the

complex field; PSL2(C) ∼= Möb(Ĉ)
PSL2(F4) Projective special linear group isomorphic to A5

PSL2(F5) Projective special linear group isomorphic to A5

PSL2(R) Projective special linear group of 2× 2 matrices over the
real field; group of all biholomorphic maps of φ : U2

C → U2
C

PSL2(Z) Modular group: PSL2(Z)
ιδ

= Γ
PSU2(C) Projective special unitary group of degree 2 over the com-

plex field
Pr Prandtl number: the ratio of kinematic viscosity to thermal

diffusivity (dimensionless number)
p+fm Theorem of Pesin & Freire–Mañé
q Quaternion
Q Set of rational numbers: q = z

n , with z ∈ Z and n ∈ N+

Q Base space

a Attention: “point” and “4-momentum” (\momentum) are designated by the same cursive letter,
i.e., p. It is therefore the context that illuminates its meaning.

b P via \tensorP command.
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Q8 Quaternion group: Q8 = {±1,±i,±j,±k}
Q Heat
qkς,τχ Quark, where the superscripts ς, τ = 1, . . . , 3 designate the

flavor property, or the three quark generations, while the
subscript χ = 1, . . . , 3 is the color charge

“Q Measurable subset embedded in a Riemannian space
Qµν Quadrupole moment tensor
Qf Quadratic form (map): Qf : M

4 viz
= R4

1,3 → R
qcd Quantum chromodynamics
qed Quantum electrodynamics
qft Quantum field theory
qg Quantum gravity
R Euclidean space: R (line), R2 (plane), R3 (3-dimensional

space), etc.
R−,R+,R∗ Set of real numbers: R− (negative reals), R+ (positive

reals), R∗ = {0} ∪ R+ (non-negative reals: zero or positive
numbers)

R4 ∼= H Quaternionic space
4R Algebra of R4×4 matrices: 4R viz

= R(4) viz
= M4(R)

RPn Real projective n-space: RPn viz
= Pn(R) viz

= PnR
ℜ Real part ℜ(z) of a complex number z
R4 Set of C2×2 matrices
rk Rank
R a Riemann curvature tensor, notation without indices
Rθ Rotation (matrix) through an angle θ
Rµν , Rµν b Ricci curvature tensor, notation with indices
Rµνξ

ϱ a Riemann curvature tensor in the form of
(
1
3

)
-tensor

Rµνξϱ
a Riemann curvature tensor in the (fully covariant) form
of
(
0
4

)
-tensor

R(a) Average scalar curvature
Rs

b Scalar curvature or Ricci scalar
(Rs)min Scalar curvature at its global minimum
−R −R-th order in Bochner–Riesz means
R Distance. — Radius
Ra Rayleigh number: the ratio of buoyancy-driven flow to

viscous and thermal dissipation (dimensionless number)
Ric Ricci curvature tensor, notation without indices
Rie The same as R
r Right action
rh Right action of h ∈ H on P̊

a R via \Riemann command.
b R via \Ricci command.
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rds Random dynamical system
rh Right-handed
S1 (Unit) circle: subset of the real 2-space, S1 = {x ∈ R2 |

∥x∥ = 1} or, with complex numbers, {z = (x+ iy) ∈ C |
∥z∥ = 1}

S3H Poincaré homology 3-sphere; spherical dodecahedral space
(Poincaré–Weber–Seifert space)

Sn Spherical n-space: S1, . . . ,Sn in R2, . . . ,Rn+1

SnX Unit (n-dimensional) sphere of a normed vector space X
viz
=

(X, ∥ · ∥)
Sn−1
∞ Sphere at infinity; boundary at infinity of the ball (hyper-

bolic space)
{S1 × B1} Pseudo-cylindrical (non-Euclidean) neck in a dumb-bell-

shaped S2

{S2 × B1} Pseudo-cylindrical (non-Euclidean) neck in a dumb-bell-
shaped S3

SΓ SΓ
ιδ

= Γ\U2
C

Sc, Sc(R) Schwartz space; space of complex-valued functions
S(s) Skeleton space, i.e. simplicial complex (or collection) of

s-simplexes
Sr(s) Regge skeleton (discrete) 4-space
sl2(C) Lie algebra of SL2(C)
sln(K) Lie algebra of SLn(K)

so+(1, 3) Lie algebra of SO+
1,3(R)

so(n) or son Special orthogonal Lie algebra
sp1(H) Symplectic Lie algebra for quaternions
sp2(C) Lie algebra of the symplectic group Sp2(C)
spin(n) or spinn Spin (Lie) algebra
sta Space-time algebra: R1,3

viz
= Cℓ1,3(R) ∼= 2H

su(n) or sun Lie algebra of SU(n) or SUn
Sn Symmetric group of n-elements
S Action, or action functional (Lagrangian function, Hamil-

ton’s function, etc.)
SE Euclidean action
S

(2)
gw Action for the propagation of a gravitational wave in a flat

space (Minkowski space-time)
SS

g Entropy (action) functional for gravity
Sm Matter action
SS

m Entropy (action) functional for matter
Seh Einstein–Hilbert action
Sf Friedan action
Sr Regge (simplicial) action
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S Entropy
Sbh Bekenstein–Hawking entropy, black hole entropy
Sn Nash’s entropy
s Simplex: s0 (0-simplex: point), s1 (1-simplex: straight line

segment), s2 (2-simplex: triangle), s3 (3-simplex: tetrahe-
dron), s4 (4-simplex: 5-choron, or 5-tope), and so forth

s Singular, singularity

s(фr) Singularities in/of the Ricci flow

s{S1 × B1} Neckpinch singularity in ф(2)
r

s{S2 × B1} Neckpinch singularity in ф(3)
r

scal Scalar, mathematical element or physical quantity
sin θw, cos θw Sine and cosine of the weak mixing angle, or Weinberg

angle θw
sub Subscript
supp Support of a function
S Surface (generic notation)
Ŝ Spin angular momentum, or spin, for short, represented by

an operator
Sh(Xτ) Category of sheaves of sets on Xτ
Sh(X loc

τ
) Category of sheaves of sets on a local space

Sh(Cat ,Xtop) Topos on a site (Cat ,Xtop), having a category of sheaves
of sets, with a Grothendieck topology Xtop

SingX⃗(Λ) Set of singularities of X⃗ in Λ
SL2(C) Special linear group of 2 × 2 matrices over the complex

field; 2-fold covering of SO+
1,3(R)

SL2(R) Special linear group of 2 × 2 matrices over the real field;
2-fold covering of PSL2(R)

S̃L2(R) Universal cover of SL2(R)
SLn(K) Special linear group of degree n over K = R or K = C, set

of all n× n real or complex matrices having determinant 1
SO(n) or SOn Special orthogonal group
SO1,3(R) Indefinite special orthogonal group of linear transforma-

tions of M4 = R4
1,3, stating that SO1,3(R) = Л+

SO+
1,3(R) Indefinite special orthogonal group of linear transforma-

tions of M4 = R4
1,3, known as restricted Lorentz group,

stating that SO+
1,3(R) = Л ↑

+

SO2,4 Twistor group: SO2,4
∼=(1:2) SU2,2

SO3(R) Lie group of all rotations of 3-dimensional Euclidean space,
special orthogonal group in 3D

SO4(R) Lie group of all rotations of 4-dimensional Euclidean space,
special orthogonal group in 4D
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Sol One of the eight homogeneous Thurston 3-geometries (Sol
geometry, Sol space, solvable Lie group)

Sp1(H) Group of quaternions of norm 1 (compact symplectic group)
Sp(n) or Spn Symplectic group
Spin+

1,3(R) Spin group of signature (1, 3)+ over the real field
Spin3(R) Set of all unit quaternions {q ∈ H | qq̄ = 1}
Spin(n) or Spinn Spin group
SU2,2 Pseudo-unitary group (spin group)
SU(n) or SUn Special unitary group of n × n unitary matrices having

determinant 1
SX Set of points and a discrete category of a Grothendieck

topos: SX = (x1, . . . , xn)

sde Stochastic differential equation
srb Sinai–Ruelle–Bowen measure
T a 1-torus, i.e. circle group: T1 ιδ= S1

T2 a 2-torus: T2 ∼= S1 × S1

Tn a n-torus: Tn ∼= S1 × · · · × S1︸ ︷︷ ︸
n times

ιδ

= Rn/Zn = (R/Z)n

T, T+, T∗ Time group or time set (see below). Attention, it is the
same symbol denoting the torus; the context helps to make
a distinction and avoid confusion

T = R Two-sided continuous time: T = R = R− ∪ {0} ∪ R+

T+ = R+ One-sided (positive sided) continuous time
T∗ = R∗ One-sided continuous time: T∗ = R∗ = {0} ∪ R+ = {t ∈

R | t ⩾ 0}, i.e. T∗ = {0} ∪ T+ = {t ∈ T | t ⩾ 0}
T = Z Two-sided discrete time: T = Z = {0,±1,±2,±3, . . .}
T∗ = Z∗ One-sided discrete time: T∗ = Z∗ = {0} ∪ Z+

Tw Twistor space: vector space with a pseudo-Hermitian
metric; complex 4-space PTw4(C) ∼= C4, or real 8-space
Tw8(R) ∼= R8

Tw3(C)
± Complex 3-space of positive, (x̄Tw)µ(xTw)

µ > 0, and nega-
tive, (x̄Tw)µ(xTw)

µ < 0, twistors, respectively
Tw7(R)

null Null twistor space: real 7-space; space of null twistors
(x̄Tw)µ(xTw)

µ = 0

Tw⊕ Tw∗ Non-reduced (full) spin space for SO2,4

(TX )µ Extended phase space (for a process): (TX )µ = T×X
Tor Torricelli’s trumpet; acute hyperbolic solid
TpR1,3 Tangent space of R1,3

TIG Tangent spaceb of the Lie group G at the identity (it is
also denoted by T1G or TeG)

a T via \torus command, so it is distinct from the \mathbb{T} command used for the time group
or time set.

b Tangent and cotangent spaces are vector spaces, but, to distinguish them from the vector
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TgG Tangent space of the Lie group G
Tγc(t)M Tangent space of a curve, path or geodesic
TxM Tangent space: set of all tangent vectors at x (or other

letter) in M
T ∗
xM Cotangent space (dual space to the tangent space TxM)

(Tp)kℓM Tensor space of type (k,

ℓ

) from the tangent (vector) space:
(Tp)kℓM = TpM⊗k ⊗ TpM∗⊗

ℓ

(Tp)rsM Tensor space of type (r, s) from the tangent (vector) space:
(Tp)rsM = TpM⊗r ⊗ TpM∗⊗s

TvT̊ 1M Second (or double) tangent space: TvT̊ 1M = E+(v) ⊕
E−(v), with v ∈ T̊ 1M

T̊ F Tangent bundle of a foliation, that is, subbundle
T̊ M Tangent bundle (disjoint union of the tangent spaces TxM)
T̊ ∗M Cotangent bundle (disjoint union of the cotangent spaces

T ∗
xM)

T̊ kℓM
(
kℓ

)
-tensor bundle or bundle of tensors of type (k,

ℓ

) over
M

T̊ rsM
(
r
s

)
-tensor bundle or bundle of tensors of type (r, s) over

M
T̊ 1DC Unit tangent bundle of DC (alternative notation: S̊1DC)
T̊ 1U2

C Unit tangent bundle of U2
C (alternative notation: S̊1U2

C)
T̊ 1M Unit tangent bundle of M (alternative notation: S̊1M)
T̊ 1SΓ Unit tangent bundle of SΓ

ιδ

= Γ\U2
C; T̊ 1SΓ

∼= Γ\T̊ 1U2
C. —

T̊ 1SΓ
∼= Γ\PSL2(R)

T̊ΛM Tangent bundle concerning the attractor Λ
T̊vE̊ , T̊hE̊ Vertical (v) and horizontal (h) bundles, respectively, that

is, two subbundles of T̊ P̊
T̊ P̊ Tangent bundle of P̊ (principalG-bundle): T̊ P̊ = T̊vE̊⊕T̊hE̊
T(M) Vector space of sections of T̊ M, i.e. vector space of vector

fields on M
Trs(M) Tensor space of type (r, s) over M
T(V) Tensor space, that is, tensor algebra of V
T•(V), T•(V) Contravariant (•) and covariant (•) tensor algebra of V,

respectively
Trs(V) Tensor space of type (r, s), Trs(V) = V⊗r ⊗ V∗⊗s

, vector
space tensor product (i.e. tensor product of two vector
spaces) between r copies of a vector space V and s copies
of its dual vector space V∗, that is, space of all tensors Τrs

T2 Hausdorff space
T Temperature
Tinv Inverse temperature

space as such, the \mathcal{T} command is used instead of the \mathfrak{T}.
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Tabs Absolute temperature
top Topological (property). — Topology of/on
tr Trace
tt Transverse-traceless gauge
ttc Tomita–Takesaki–Connes flow
U2 Beltrami–Poincaré half-plane model (open upper half-

plane), i.e. real-valued U2
R or complex-valued U2

C half-plane
U2

C Complex upper half-plane
U2

F Real or complex upper half-plane (hyperbolic 2-space):
F viz
= (C ∼= R2)

U2
R Real upper half-plane

Un Beltrami–Poincaré half-space model (open upper half-
space)

Un Closed upper half-space
U (Open) cover of a topological space: e.g. U = {Uν} of X

such that X =
⋃
ν Uν

u(n) or un Lie algebra of U(n) or Un
Un(C) Vector pace of n-spinors
Uσ σ-subalgebra of Bσ

uµ 4-velocity vector
U Unitary matrix
Û Time evolution operator, or propagator
UΓ Set of limit points of all orbits in U2

C
UE Universe of a tempered random set E
U(1)em or U1(em) Gauge group or symmetry (Lie) group of electromagnetism

and, more generally, of Abelian gauge theories: U(1)em
viz
=

U(1)

U(ϝ) Potential (field)
U(n) or Un Unitary group
uv Ultraviolet
V Klein four-group of order 4 (V ∼= Z2 × Z2)
V̊(θ) Vertical fiber at θ
V

viz
= (V,F) Vector space over F

V∗ viz
= (V∗,F) Dual space of covectors

v(∂S) Tangent vector (Stokes’ theorem)
vε vε = 0, 1/

√
vol(·)

vc Constant depending on the speed of moving surface
ver Vertex
vol Volume
vol
(
Bρ(x)

)
Volume of a ball of radius ρ and center x
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V a Vitali set
vccm Veltman–Connes–Chamseddine–Marcolli version for La-

grangian density (Standard Model)
Ws, Wu Stable (s) and unstable (u) foliations (manifolds), respec-

tively
Ws(x), Wu(x) Leaves of stable (s) and unstable (u) foliations, respectively,

leafy stratifications
Wss, Wsu Strongly stable (ss) and strongly unstable (su) foliations

(manifolds), respectively
Wws, Wwu Weakly stable (ws) and weakly unstable (wu) foliations

(manifolds), respectively
W Affinely convex subset of a vector space
W, W-functional Perelman’s entropy W-functional, or just W-entropy, but,

more correctly, entropy-energy W-functional, aka shrinker
entropy functional

W Wiener process, Wt, with t ⩾ 0

w, w

µν 2-form
W Number of microscopic configurations, thermodynamic

probability in the concept of Boltzmann–Planck’s entropy
W± Charged positive/negative weak bosons
Wµνξϱ, . . . Weyl (conformal) curvature tensor: Wµνξϱ, Wµ

νξϱ, Wµν
ξϱ

prjWµ
νξϱ Weyl projective (curvature) tensor

W 1,2, W 1,2(M) Sobolev space on Riemannian n-manifolds; Sobolev space
of first derivatives in L2-space

W 1,p
0 , W 1,p

0 (Ω) b Sobolev space with zero trace
W k,p, W k,p(Ω) b Sobolev space: W k,p(Ω)

viz
= W k,p(Ω,Rk), for k ∈ Z∗ or

k ∈ N, Ω ⊂ Rn

W k,p
loc (Ω) Local Sobolev space

W⃗±
fp, Z⃗0

fp Faddeev–Popov (gauge) ghost fields associated with the
positive/negative, and neutral weak bosons

Wey Weyl curvature tensor, notation with indices
Weak-⋆ Weak-star topology
X (or another letter) Topological space, topological manifolds

or topological vector space. One example is the Lindelöf
space

Xτ Category of sheaves of sets — on a topological space/on a
site — in Grothendieck topoi

Xtop Grothendieck topology
X 1
φt
(M) Space of C1 flows φt of Anosov type onM

X rφt
(M) Space of Cr flows φt of Anosov type onM

a V via \Vitali command.
b W via \Sobolev command. As a vector space, it should be denoted here by W, but in this case

we follow the current and universal notation in literature without Fraktur typeface.
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X r(M) Space of Cr vector fields onM
X rF (M) Space of Cr smooth foliations on M
(X , ρ) Metric space; geodesic (metric) space. — Separable metric

space
(X ,Bσ,µ) Probability space: Lebesgue–Rohlin space, or Lebesgue

(probability) space
(XQ)µ Extended phase space (for a skew product flow): (XQ)µ =

Q×X
X (or another letter) Finite- or infinite-dimensional vector

space
X

viz
= (X, ∥ · ∥) Normed vector space

x̄ a (or another letter) Complex conjugate of a complex num-
ber x

x̂ Position operator: x̂ : D(x̂)→ L2(R)
∥x∥ (or another letter) Norm of a vector x
xCM Point in CM♮

(∞)

xM Point in M4(R)
(∞)

xTw Point, or twistor, in a twistor space
ẋνq , ẏνp Hamilton’s differential equations
X⃗ (or another letter) Vector fieldb

X⃗H Hamiltonian vector field associated with H or symplectic
gradient of H

Xt (or another letter) Transpose of a matrix X
X† or X̄t (or another letter) Conjugate transpose (Hermitian trans-

pose, or even adjoint matrix) of a matrix X, for which
X† viz

= X̄t (where X̄ indicates the complex conjugated en-
tries and Xt is the transpose). Note. Its generalization is
the Hermitian adjoint (or adjoint operator)

XR Group of real numbers (non-Archimedean analysis)
Yn+ Upper sheet of the elliptic hyperboloid (2-sheeted hyper-

boloid) in the hyperboloid/Minkowski–Lorentz model
Yn− Lower sheet of the elliptic hyperboloid (2-sheeted hyper-

boloid) in the hyperboloid/Minkowski–Lorentz model
Yn Set of not infinitely recurrent points x ∈ Bn
Y⃗ξ Vector field normal to ∂Ω
Z,Z−,Z+,Z∗ Set of integer numbers: Z = {0,±1,±2,±3, . . .}: Z− (neg-

ative integers), Z+ (positive integers), Z∗ = {0}∪Z+ (non-
negative integers: zero or positive numbers)

Z2 or Z/2Z Cyclic group of order 2

a In physics literature the notation with asterisk in superscript, i.e. x∗, is preferred.
b In some cases the arrow above the upper case letter may be omitted, but when a vector field

is denoted by a lower case letter, the arrow is usually omitted. Moreover, as appropriate, a boldface
capital letter without an over arrow is used, see footnote a, p. 200.
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Z̊ Curved twistor space
Z C∗-algebra, i.e. linear space of bounded operators on H

(Hilbert space), or—depending on the context—algebra of
quantum operators

z G.e.
zrs Redshift
Z0 Neutral weak boson
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Panoramic Miscellanea I. Theory of Connections,

Differential Forms, Geodesics, and Holonomy
Groups

[Q]ueste due scientie (cioè l’Ari[t]metica [la cui parte maggiore è detta Algebra], e Geometria)
hanno intra di loro tanta convenientia, che l’una è la prova dell’altra, e l’altra è la dimostration
dell’una, n[é] già puote il Matematico esser perfetto, il quale in ambedue non sia versato.a

— R. Bombelli [351, Problema cclxxii, p. 648]10

1.1. A Little Bit of Bundles

In this Section we will explore the notions of tangent and cotangent bundles,
which are typical examples of fiber bundles, known as vector bundles; the very
notions of fibrate and vector bundles, and what it calls a trivial chart. Finally,
we will define a connection on the tangent bundle.

1.1.1. Fiber Bundles (Tangent, Cotangent and Vector Bundle)

Definition 1.1.1 (Tangent and cotangent bundles). Let M be a differentiable
manifold; then the tangent bundle of M is the disjoint union of the tangent
spaces,

T̊ M =
⋃
p∈M

TpM; (1.1)

analogously, the cotangent bundle (or dual bundle to the tangent bundle) of M
is the disjoint union of the cotangent spaces, T̊ ∗M =

⋃
p∈M T ∗

pM (with the
projection π : T̊ ∗M→M), where TpM and T ∗

pM are, respectively, the tangent
and the cotangent spaces ofM at a point p ∈M. 3

Definition 1.1.2 (Fiber bundle). Let (E̊ , π,M, F̊) be a fiber bundle, where
E̊ , M and F̊ are the total space, the base space, and the fiber of the (fiber)
bundle (E̊ , M and F̊ shall be clearly all topological manifolds); π is a surjective
submersion, called (bundle) projection map. The map π : E̊ → M is a fiber

a«These two sciences (that is, Arithmetic [the major part of which is called Algebra], and
Geometry) have so much convenience with each other, that one is the proof of the other, and the
other is the demonstration of one, nor can the Mathematician be perfect, if he is not versed in both».



2 1. Panoramic Miscellanea I

bundle iff, for each p ∈M, there exists an open set Ω such that E̊ |Ω
ιδ

= π−1(Ω)
is diffeomorphic to Ω × F̊ , and the diagram(

E̊ |Ω
ιδ

= π−1(Ω)
) (

Ω × F̊
)

Ω

φ

π
π1

is commutative; π1 (or prj1) is the projection onto the first factor. The diffeo-
morphism φ : E̊ |Ω

ιδ

= π−1(Ω)→ Ω × F̊ is said to be local trivialization of E̊ over
Ω. 3

The notion of vector bundle is totally in keeping with the definition above.

Definition 1.1.3 (Vector bundle). Given a triple ζ̊ = (E̊ , π,M), the (smooth)
map π : E̊ → M is called (real) vector bundle of rank r iff,

(1) for each p ∈ M, the set E̊p
ιδ

= π−1(p), otherwise said fiber over p, is
consistent with the vector space structure (this means that on each fiber E̊p there
is an r-dimensional vector space over R);

(2) for each p ∈M, there exists a neighborhood Υ ⊂M of p and a homeo-
morphism φ : E̊ |Υ

ιδ

= π−1(Υ )→ Υ ×Rr, which is a diffeomorphism (here too φ is
a local trivialization of E̊ over Υ ), such that the diagram(

E̊ |Υ
ιδ

= π−1(Υ )
)

(Υ × Rr)

Υ Υ

π

φ

π1
viz
=πΥ

is commutative, for which π1
viz
= πΥ ◦ φ = π, with the projection π1

viz
= πΥ : Υ ×

Rr → Υ ;
(3) the restriction of φ to each fiber is an isomorphism between two spaces

E̊p
ιδ

= π−1(p) and {p} × Rr, hence it is a linear map φ : E̊p
ιδ

= π−1(p)→ {p} × Rr
(cf. Definition 1.4.1). 3

It is clear from the Definition 1.1.3 that the same concept of trivialization
can be described with the notion of chart.

Definition 1.1.4 (Trivial chart). Let (Υ, φ) be a chart on M, and assume
that Υ is a coordinate domain, or a coordinate neighborhood, and φ(p) =
x1(p), . . . , xn(p) are the local coordinates on Υ . One says that (Υ, φ) is trivial if
it is a local trivialization of E̊ defined on E̊ |Υ

ιδ

= π−1(Υ ). 3

Scholium 1.1.1. The distinction between (open) (sub)set Ω and (open) neigh-
borhood Υ in this background are often used alternately, in fact they have the
same meaning. The two notions can be substituted for each other, Ω ιδ

= Υ . ⋄
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Margo 1.1.1. A vector bundle ζ̊ = (E̊ , π,M) of rank k is a space bundle over
the field of real or complex numbers; the real and complex vector bundles are
denoted by ζ̊Rr and ζ̊Cr , respectively. L

Before going on, we need to introduce the concept of section related to this
specific kind of fiber bundles.

Definition 1.1.5 (Sections of the vector bundle). Let π : E̊ → M be a vector
bundle overM. A (global) smooth section of E̊ is a map

σE̊ :M→ E̊

such that π ◦ σE̊ = idM (identity map of M), namely σ(p) ∈ E̊p for all p ∈ M.
If Υ is an open neighborhood of M, a local smooth section of E̊ is a map

σE̊ : Υ → E̊

such that π ◦ σE̊ = idΥ (identity map of Υ ). A basis σE̊ = {σ1(p), . . . , σn(p)} of
sections of E̊ over Υ is a local frame field for the fiber E̊p at all points p ∈ Υ . 3

1.1.2. Connection on the Tangent Bundle

We now can focus on the tangent bundle, as it is a prototypical disjoint union
of the vector spaces (which are, more properly, the set of all tangent vectors
at each point in a manifold). The connection on the tangent bundle is usually
referred to as a linear connection on a smooth manifold (Definition 1.3.2).

Proposition 1.1.1 (Connection on the tangent bundle). Let σE̊ ∈ E(Υ ) be an
orthonormal local frame for the tangent bundle T̊ M, on which σE̊ = {σ1, . . . , σn}
represents the sections of T̊ M on (defined over) an open neighborhood Υ ⊂M
and E(Υ ) is the vector space of sections of the tangent bundle.a Then the required
form by the Theorem 1.3.1 can be rewritten as〈

∇σµ
, σν , σξ

〉
=

1

2

{
⟨[σµ, σν ], σξ⟩ − ⟨[σν , σξ], σµ⟩+ ⟨[σξ, σµ], σν⟩

}
, (1.2)

taking a local n-tuple σE̊ in place of X⃗, Y⃗, Z⃗.

Suppose
{

∂
∂xµ

}
is the chosen coordinate basis for the tangent bundle T̊ M of

a (pseudo-)Riemannian manifold.b In this way, for a connection ∇-like on T̊ M,
we have

∇ ∂
∂xµ

∂

∂xν
=
∑
ξ

Γ ξµν
∂

∂xξ
, (1.3)

where the Γ -functions are the so-called coefficients of connection in a coordinate
basis or Christoffel symbols for the Levi-Civita connection (Theorem 1.3.1). They
may be defined as follows.

aA section σE̊ of T̊ M is a vector field on M.
b The pair (M, g) is said to be a Riemannian manifold if the metric tensor g is a

(0
2

)
-tensor

field on a smooth manifold M, and if g is symmetric g(v, w) = g(w, v), non-degenerate g(v, w) = 0,
for any v, w ∈ TpM, p ∈ M, and positive definite g(v, v) > 0. The pair (M, g) is said to be a
pseudo-Riemannian manifold if it has these properties but g is not necessarily positive definite.
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1.2. Christoffel Symbols

The algorithm [consisting of the covariant derivative] of absolute differential Calculus [tensor
calculus], that is to say the material instrument of the methods [ . . . ] is fully included [albeit still in
nuce] in a remark by Mr. Christoffel [655].11

— G. Ricci [Curbastro] et T. Levi-Civita [2205, p. 127]

The Christoffel symbols [655] in (1.3) are coefficients completely determining
a metric connection with respect to a given coordinate system; it is about the
smooth functions in a local frame and a local chart.

Definition 1.2.1 (Christoffel symbols of the second kind). The expression that
gives the aforenamed functions is

Γ ξµν
viz
=

{
ξ

µν

}
= gξϱΓ ςµν

〈
∂

∂xς
,
∂

∂xϱ

〉
= gξϱ

〈
∇ ∂

∂xµ

∂

∂xν
,
∂

∂xϱ

〉
(1.4a)

=
1

2
gξϱ
{
∂gνϱ
∂xµ

+
∂gµϱ
∂xν

− ∂gµν
∂xϱ

}
(1.4b)

=
1

2
gξϱ
(
gνϱ,µ + gµϱ,ν − gµν,ϱ

)
. (1.4c)

3

The Christoffel symbols are named after Elwin B. Christoffel; but their
concomitant exposition is also available in R. Lipschitz [1669].

According to Proposition 1.1.1, the formula (1.3) (for the connection on
the tangent bundle) is clearly of the form ∇σµ

, σν = Γ ξµνσξ or, equivalently,
∇∂µ , ∂ν =

{
ξ
µν

}
σξ.

Definition 1.2.2 (Christoffel symbols of the first kind). In Eq. (1.4) the
Christoffel symbols are of the second kind and they are expressed in terms of the
metric tensor and its derivatives, but they are not tensors themselves. Starting
with this, one can define the Christoffel symbols of the first kind:

g
(
∇σµ

, σν , σξ
)
ιδ

= Γµνξ
viz
= [µν, ξ] = gϱξΓ

ϱ
µν =

1

2
(gµξ,ν + gνξ,µ − gµν,ξ) . (1.5)

3

Corollary 1.2.1. The Christoffel symbols of the first kind are symmetric in the
first two indices: Γµνξ = Γνµξ.

Proof. Γνµξ = 1
2 (gνξ,µ + gµξ,ν − gµν,ξ) = 1

2 (gµξ,ν + gνξ,µ − gµν,ξ) = Γµνξ. □

Corollary 1.2.2. The Christoffel symbols of the second kind are symmetric in
the lower two indices: Γµνξ = Γνµξ.

Γ ξµν = Γ ξνµ, for all µ, ν, ξ = 1, . . . , n− 1. (1.6)

Proof. The symbols of the second kind are rewritable as Γ ξµν = gξϱΓµνϱ, whence
we get

Γ ξµν = gξϱΓµνϱ = gξϱΓνµϱ = Γ ξνµ. (1.7)

□
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The Levi-Civita connection ∇ is symmetric (Definition 1.3.6) because of the
symmetry of the Christoffel symbols in an arbitrary coordinate frame. Or rather:
the connection ∇ is torsion free iff, in any local coordinate chart (Υ, x1, . . . , xn),
the Γ -functions satisfy the Eq. (1.6).

1.2.1. Matrix Notation and Kronecker δ-Function

A way of calculating the Christoffel symbols is to consider the matrix notation,
by writing the relation between the matrix [gµν ] and its inverse [gµν ] as

gϱνg
νµ = gµνgνϱ = gµϱ = δµϱ, (1.8)

where δµϱ
ιδ

= δµϱ, i.e. δk, is the Kronecker delta, which has the value 1 when the
indices are equal (δk = 1, if µ = ϱ) and 0 otherwise (δk = 0, if µ ̸= ϱ). Then

Γ ξµν = gξϱΓµνϱ =
1

2
gξϱ(∂µgνϱ + ∂νgµϱ − ∂ϱgµν). (1.9)

1.3. Parallel Transport of the Levi-Civita Connection

The parallel transport, along any path, of two concurrent directions preserves their angle. It
clearly means that the angle formed by two generic directions through the same point is also the
angle formed by their parallels through another point.12

— T. Levi-Civita [1626, p. 175]

1.3.1. Relativistic Gravitation as a Genesis of the Parallel Transport

Einstein’s theory of relativity [ . . . ] considers the geometrical structure of space as very tenuously,
but also intimately, dependent on the physical phenomena taking place in it; differently from classical
theories, which assume the whole physical space as given a priori. The mathematical development
of Einstein’s grandiose conception (which finds in Ricci’s absolute differential calculus its natural
algorithmic tool) draws on the curvature of a certain 4-dimensional manifold as an essential element
and the related Riemann symbols. Meeting these symbols, or continuously using them [ . . . ] led me
to investigate whether it would be possible to somewhat reduce the formal apparatus, which serves
commonly to introduce them and to establish their covariant behaviour.

— T. Levi-Civita [1626, p. 173]

(1) The notion of parallel transport is strongly related to that of connection.
We indeed be able to construct the parallel transport rules starting from a
connection, and vice versa; we are allowed to use a previous knowledge about
parallel transport to get a connection such as that concerning the Definition
1.3.1 and its general covariance, depending on the L. Bianchi explanations [286,
§§ 33-34] [287, §§ 36-37].

(2) An essential element of the (pseudo-)Riemannian geomerty is a connection
on the tangent bundle (Definition 1.1.1) of a manifold, drawn up by T. Levi-Civita
[1626]. It starts with an infinitesimal field, in order to characterize the parallel
transport of two directions through two very close points, i.e. from one point to
an infinitely close point (see Definition 1.3.4). The angle between two tangents
to a manifold at a point is equal to the angle between two parallel tangents at
another point very close to the first.
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(3) It is worth noting that the mathematical considerations of Levi-Civita
for the parallelism stem from a review on Einstein’s theory of gravitation (see
Section 4.1), which is algorithmically rooted in the tensor calculus, created by G.
Ricci Curbastro and re-elaborated by Levi-Civita [2205] (see Sections 3.1 and
3.2). As we know, in the general relativistic framework, Einstein utilizes the
curvature of a 4-dimensional manifold (space-time), the geometrical structure of
which is intimately dependent on the physical phenomena taking place in it.

1.3.2. Parallel Transport: a Way of Viewing Euclidean Type Small
Spaces in a Curved Space

Levi-Civita [1626], with his definition of parallelism, was the first to succeed in making the false
metric spaces of Riemann, if not true Euclidean spaces, which is impossible, at least spaces with a
Euclidean connection, considered as collections of small pieces of Euclidean space, oriented with
respect to each other in going from point to point [548, p. 297].13

A Riemannian space is ultimately formed by an infinity of small pieces of Euclidean spaces [551,
p. 2].14

— É. Cartan

To put it roughly, by parallel transport, or Levi-Civita transport, is meant
a way of comparing tangent spaces at different points on a manifold with any
metric; and it proves to be an analytic method for considering a Riemannian
space [2207] [2209] as an infinity of small pieces of Euclidean space—against
this backdrop, a Riemannian space is a set that locally resembles Euclidean
space. In so doing, a manifold endowed with a metric displaying a certain type
of curvature, for every neighborhood of each of its points, looks like (and can be
treated as) a mosaic of arbitrarily small flat spaces.

1.3.3. Severi’s Theorem (Non-ambient Parallelism of Levi-Civita),
and Other Contour Jottings

The concept of parallelism between directions, in regard to a manifold Vn with some metric,
introduced with good idea by [my] Colleague [Levi-Civita], could be formulated in a geometric form
entirely independent of [ambient] Euclidean space SN in which Vn is immersed, thus the intrinsic
character of that concept is manifest a priori, with respect to the given manifold; this, for Levi-Civita
[1626], emerges a posteriori from the differential equations, that express a way of varying a parallel
direction on a pre-assigned path.15

— F. Severi [2358, p. 227]

(1) Into the context of Levi-Civita’s theory, a manifold can be viewed as
embedded into a Euclidean space, or as a submanifold of an affine flat space.
However, the behavior that can be detected by the parallelism system has an
intrinsic character; because it is dependent only on the metric manifold, and
not on the auxiliary ambient Euclidean space as well [1626, pp. 174, 177]. But
such a character is (for Levi-Civita) a posteriori result of differential equations.

(2) F. Severi’s [2358, pp. 227, 254-256] was the first to speculate on the
possibility of describing the intrinsic form about the parallel transport through
a priori defined geometric procedures, and to give a pure model of transport on a
geodesic surface (see Section 1.6), i.e. an example of non-ambient parallelism, in
the sense that there is no embedding space, such as the n-dimensional (ambient)
Euclidean field. This is what goes by the name of Severi’s theorem, see [1630,
pp. 125-126] [1631, pp. 194-195].
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(3) See also the work of Bompiani [356], which takes up the approach of
Severi and finds a new scalar invariant (in addition to the one from the Riemann
curvature) in parallel transport; hence he introduces an invariant vector for
summarizing the scalar properties with geometric evidence.

(4) The idea of parallel transport of a vector along a positive and negative
curvature, in non-Euclidean spaces, is outlined by L.E.J. Brouwer [429, p. 133]
[430]. But only with the Levi-Civita’s paper there is a more definite formulation.
Alternative outcomes in accordance with these interpretations are due to J.A.
Schouten [2312] and H. Weyl [2629] [2630].

(5) Modern developments on the invariant theory aimed at preserving the
parallelism, under the law of linear transport (i.e. on the geometry of manifolds
with affine connection), are in En. Bortolotti [387].

1.3.4. Koszul Connection and Linear Connections, & Covariant
Derivative

Let us start by considering the general meaning of a connection on the vector
bundle; it can be understood as a technique of differentiation of vector fields on
some manifold.

Definition 1.3.1 (Connection on a vector bundle). Let π : E̊ → M be a vector
bundle (see Definition 1.1.3) over a manifoldM, and let E(M) denote the vector
space of sections of E̊ , and T(M) the vector space of vector fields on M. A
connection ∇ on E̊ is a map ∇E̊ : T(M)×E(M)→ E(M) (cf. Proposition 1.4.2),
which may be written as (X⃗, ς) 7→ ∇X⃗ς, if

(1) ∇X⃗ς is C∞(M) linear in X⃗, where ∇X⃗ς is the covariant derivative
[2195] [2196] [2197] [2205] of the section ς (cf. Definitions 1.3.3 and 1.3.4) in the
direction of the vector field X⃗; by introducing two functions f1 and f2, thus one
obtains

∇f1X⃗1+f2X⃗2
ς = f1∇X⃗1

ς+ f2∇X⃗2
ς, (1.10)

for X⃗1, X⃗2 ∈ T(M), ς ∈ E(M) and f1, f2 ∈ C∞(M);
(2) ∇X⃗ς is R-linear in ς, thus

∇X⃗(ας1 + βς2) = α∇X⃗ς1 + β∇X⃗ς2, (1.11)

for X⃗ ∈ T(M), ς1, ς2 ∈ E(M) and α, β ∈ R;
(3) ∇ satisfies the product rule

∇X⃗(fς) = f∇X⃗ς+ (X⃗f)ς, (1.12)

for X⃗ ∈ T(M), ς ∈ E(M) and f ∈ C∞(M). 3

This type of connection (on a vector bundle) is referred to as a Koszul
connection [1537].
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Definition 1.3.2 (Linear connection). A connection ∇ on the tangent bundle
T̊ M (see Definition 1.1.1) or, simply, a connection onM, exactly like the one
in the Definition 1.3.1, is commonly known as linear connection, and it is a map
∇T̊ : T(M) × T(M) → T(M). This is also described as a affine connection;
but, in some cases, it still possible to distinguish between the affine-like and the
linear-like connection. 3

Proposition 1.3.1 (Operator determined by the connection). Let ∇ be a con-
nection on the vector bundle π : E̊ → M, and let γc : I ⊂ R→M be a C∞ curve
in M, setting

I = [α, β] = {x ∈ R | α ⩽ x ⩽ β}. (1.13)

Let us also denote by E(γc), or by T(γc) (if E̊ = T̊ M), the vector space of sections
of E̊. Then there exists an operator D : E(γc) → E(γc), or D : T(γc) → T(γc),
satisfying these items:

(1) D is R-linear, for which D (ας1 + βς2) = αDς1 + βDς2;
(2) D(fς) = ḟς+ fDς, for f ∈ C∞(I);
(3) if ς ∈ E(γc), or ς ∈ T(γc), is extendible, and if ς̃ represents an extension

of ς, it follows that Dtς(t) = ∇γ̇c(t)ς̃.
Dtς is called the covariant derivative of ς along γc.

Recall that a section ς of the tangent bundle T̊ M of M is a vector field on
M, namely a vector field ς on a manifold M is the assignment of a tangent
vector ςp ∈ TpM to every point p ∈M.

Definition 1.3.3. Given a manifold M and a connection ∇ in E̊ π−→ M, a
section ς along a curve γc : I → M is parallel along γc with respect to ∇ if
Dtς(t) = 0, i.e. ∇∂tς(t) = 0. 3

Definition 1.3.4 (Parallel transport map). Let ∇ be a connection on the vector
bundle π : E̊ → M, and let γc : [0, 1] → M be a smooth curve in M, with
γc(0) = pα and γc(1) = pβ , where pα, pβ ∈M. Then

(1) for each vector wE̊
viz
= w ∈ E̊pα , there is a unique parallel section ς ∈ E(γc)

along γc such that ς(0) = wE̊ , and ς is called a parallel extension, or parallel
translate, of wE̊ along γc;

(2) the parallel transport along γc with respect to ∇γ̇c(t)ς(t) = 0, for all
t ∈ [0, 1], is the linear map γ̃c : E̊pα → E̊pβ defined by γ̃c(wE̊) = ς(1). 3

This last point helps show that the parallel transport along γc is an isomor-
phism between E̊pα and E̊pβ .

What we have seen so far is a way for constructing the parallel transport from
a connection. We will present now the reverse procedure: the parallel transport
can be used to get a connection as limit of an incremental ratio, according to a
Knebelman’s procedure [1511].

Proposition 1.3.2 (Connection as limit of an incremental ratio). Given a
connection ∇ on the vector bundle π : E̊ → M, let γc : I → M be a (smooth)
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curve in M, and let t0 ∈ I. Then

Dt0ς ∈ E(γc) =
d

dt
(γ̃c)

−1
t ς(t)

∣∣∣∣
t=t0

, (1.14)

∇wE̊
ς ∈ E(M) =

d

dt
(γ̃c)

−1
t ς
(
γc(t)

)∣∣∣∣
t=t0

. (1.15)

Here the parallel transport is E̊γc(t0)
(γ̃c)t−−−→ E̊γc(t), and D denotes again the

covariant derivative operator along γc.

1.3.5. Levi-Civita Connection Theorem on a (pseudo-)Riemannian
Manifold

Definition 1.3.5 (Torsion tensor). Let τ : T(M)× T(M)→ T(M) be a
(
1
2

)
-

tensor field or a tensor of type (1, 2), called torsion tensor of the connection
∇ on a (pseudo-)Riemannian manifold. The torsion tensor can be written as
τ ∈ T1

2(M), and it is defined by τ(X⃗, Y⃗ ) = ∇X⃗ Y⃗ −∇Y⃗ X⃗ − [X⃗, Y⃗ ]. 3

Definition 1.3.6 (Torsion free connection). If τ ∈ T∇(M) = 0, one says
the connection ∇ is torsion free and hence symmetric. Put another way, the
symmetry of the connection depends on the condition in which τ vanishes
identically (and ∇ is torsion free). 3

Definition 1.3.7 (Metric-compatible connection). For a given (pseudo-)Riemannian
manifold, the connection ∇ is compatible with the metric if ∇X⃗⟨Y⃗, Z⃗⟩ =

⟨∇X⃗ Y⃗, Z⃗⟩+ ⟨Y⃗,∇X⃗ Z⃗⟩. 3

The connection ∇, or more accurately ∇T̊ , is called a Levi-Civita connection
if both of the properties above can be verified, therefore the Definitions 1.3.6
and 1.3.7 holds.

The Riemannian metric tensor g is covariantly constant with respect to the
Levi-Civita connection; and then the covariant derivative of the metric affine
connection is zero:

gµν;ξ =
∂gµν
∂xξ

− Γ ϱµξgϱν − Γ ϱνξgµϱ

=
∂gµν
∂xξ

− gϱνgϱϖΓϖ;µξ − gµϱgϱϖΓϖ;νξ

= 0, (1.16)

where Γ ξµν are the Christoffel symbols, see Eq. (1.4) and Section 1.3.6; the
semicolon, with an index after it, indicates covariant differentiation.

Theorem 1.3.1 (Levi-Civita). If (M, g) is a (pseudo-)Riemannian manifold,
then there exists a unique affine connection ∇ for M which is symmetric and
compatible with the metric g such that

(1) ∇g = 0 (the torsion of ∇ vanishes identically),
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(2) ⟨∇X⃗ Y⃗, Z⃗⟩ =
1
2

{
X⃗⟨Y⃗, Z⃗⟩+ Y⃗ ⟨Z⃗, X⃗⟩ − Z⃗⟨X⃗, Y⃗ ⟩+ ⟨[X⃗, Y⃗ ], Z⃗⟩

− ⟨[Y⃗, Z⃗], X⃗⟩+ ⟨[Z⃗, X⃗], Y⃗ ⟩
}
, for any vector fields X⃗, Y⃗, Z⃗ ∈ T(M), where [· , ·] is

the Lie bracket (of vector fields) and T(M) is the vector space of vector fields on
M.

Proof. Supposing that ∇ exists, then one has

X⃗⟨Y⃗, Z⃗⟩ = ⟨∇X⃗ Y⃗, Z⃗⟩+ ⟨Y⃗,∇X⃗ Z⃗⟩, (1.17a)

Y⃗ ⟨Z⃗, X⃗⟩ = ⟨∇Y⃗ Z⃗, X⃗⟩+ ⟨Z⃗,∇Y⃗ X⃗⟩, (1.17b)

Z⃗⟨X⃗, Y⃗ ⟩ = ⟨∇Z⃗X⃗, Y⃗ ⟩+ ⟨X⃗,∇Z⃗ Y⃗ ⟩; (1.17c)

from the symmetry of ∇ it follows that

X⃗⟨Y⃗, Z⃗⟩+ Y⃗ ⟨Z⃗, X⃗⟩ − Z⃗⟨X⃗, Y⃗ ⟩ (1.18a)

= ⟨∇X⃗ Z⃗ −∇Z⃗X⃗, Y⃗ ⟩+ ⟨∇Y⃗ Z⃗ −∇Z⃗ Y⃗, X⃗⟩+ ⟨∇X⃗ Y⃗ +∇Y⃗ X⃗, Z⃗⟩ (1.18b)

= −⟨[Z⃗, X⃗], Y⃗ ⟩+ ⟨[Y⃗, Z⃗], X⃗⟩ − ⟨[X⃗, Y⃗ ], Z⃗⟩+ 2⟨∇X⃗ Y⃗, Z⃗⟩, (1.18c)

and this proves that the Theorem 1.3.1 is true. □

1.3.6. Fermi (Locally Geodesic Cartesian-like) Coordinates

Per fare lo studio dei fenomeni che avvengono in vicinanza di una linea oraria, cioè, in linguaggio
non relativistico, in una porzione di spazio, variabile eventualmente col tempo, ma sempre molto
piccola in confronto alle divergenze dall’euclideità, della varietà spazio-tempo, converrà anzitutto
ricercare un opportuno riferimento tale che, in vicinanza della linea studiata, il ds2 della varietà
prenda una forma semplice.a

— E. Fermi [965, p. 21]

The condition that all the Christoffel symbols vanish at every point of a
curve,

Γ ξ(µj ,...,µ1)λ

∣∣
γc

= 0, (1.19)

with ξ = 1, . . . , n, and λ, µ1, . . . , µj+1 = 2, . . . , n,

∂µj+1
Γ ξ(µj ,...,µ1)λ

∣∣
γc

= 0, (1.20)

is guaranteed by a theorem of E. Fermi [965] for a symmetric connection based on
the so-called Fermi coordinates, a reference frame that Levi-Civita [1635] exploits
to the full. As a result, we can conveniently choose some coordinates which
are locally geodesic, so they basically behave like Cartesians in the immediate
vicinity of a given point (whatever it is), and this applies to all points of the
curve. In this way, the derivatives of the coefficients of the distance, i.e. the ds2,
vanish for a limited region of space; cf. [1631, § 11, footnote on pp. 190-191].

a«To study phenomena that occur near a world line, that is, in non-relativistic language, in a
portion of space, eventually variable over time, but still very small compared to the divergences
from the Euclidity, of the space-time manifold, first of all it will be convenient to look for a suitable
reference such that, near the line under consideration, the ds2 [the square of the line element, or the
interval between two points] of the manifold takes a simple form».



1.4. Connection Forms 11

1.4. Connection Forms

[S]paces with a Euclidean connection allow of a curvature and torsion: in the spaces where
parallelism is defined in the Levi-Civita way, the torsion is zero; in the spaces where parallelism is
absolute (Fernparallelismus) [2624, chap. XIII] [2590]a [563, 564] the curvature is zero [flat metric],
thus these are spaces without curvature and with torsion.

— É. Cartan [562, p. 7, letter to A. Einstein, originally in Fr., 8 May 1929]

1.4.1. Connection 1-Form

Section 1.3 provides us with the opportunity to better define a connection ∇
on the tangent and the cotangent bundle.

Proposition 1.4.1 (On the 1-form). Given a local chart φM = (x1, . . . , xn)
on the manifold M for a point p ∈ M, let us define

{
∂
∂x1 |p, . . . , ∂

∂xn |p
}

as the
basis for the tangent space TpM and {dx1|p, . . . ,dxn|p} as the dual basis for the
cotangent space T ∗

pM. If we assume that dωR represents the differential of a

(differentiable) function in local coordinates, with dωR
ιδ

= {dx1|p, . . . ,dxn|p}, then
dωR gives a local frame for the cotangent bundle or, equivalently, dωR is a 1-form
i.e. a smooth section of T̊ ∗M, such that dωR : T(M)→ C∞(M) is a C∞(M)
linear function.

The choice of local coordinates supplies a basis of the tangent space, that is
why we are looking at an early expression of local reference frame for a vector
bundle.

The function ωR is a differential k-form (with 0 ⩽ k ⩽ n); for more on the
issues involved, see the seminal work of É. Cartan [542]. The locally coordinate
frames for ωR are

ωR =
∑

1⩽i1<...<ik⩽n

φi1,...,ikdx
i1 ∧ . . . ∧ dxik , (1.21)

where φi1,...,ik : φ→ Rn is a continuously differentiable function and the symbol
∧ indicates the exterior (or wedge) product.

The following assertions shall be used to determine the understanding of
differential form of degree k, with k = Z, also called differential k-form or just
k-form.

Definition 1.4.1 (Differential form).
(1) A differential form ω is a section of an algebra over a field R via the

exterior product of the cotangent bundle T̊ ∗M of a manifold M. Therefore
ωR :M→

∧k T̊ ∗M.
(2) Let E̊ π−→ M or ζ̊ = (E̊ , π,M) be a vector bundle. A differential form

ω with values in E̊ ιδ= ζ̊ is a section of the bundle
∧k T̊ ∗M⊗ E̊ . The set of all

aThe notion of absolute parallelism, which is a system preserving the metric but with non-zero
torsion, is considered in an accomplished manner by G. Vitali [2590] already in 1924; but it was not
until 1929 that he communicates it to Einstein (letter from Vitali to Einstein, 11 February 1929).
The first and independently use of this notion by the German physicist is in [864] [865] during an
attempt to unify gravity with electromagnetism.
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differential forms on a manifoldM with values in E̊ ιδ= ζ̊ is a vector space, and it
will be denoted by Ωk(M; E̊) or Ek(M).

(3) The space of differential forms ω with values in E̊ ιδ= ζ̊ is accordingly
computed by the isomorphism of Ωk with

Ωk(M; E̊) ∼= Γς

(
k∧
T̊ ∗M⊗ E̊

)
, (1.22)

which is the space of sections. 3

We consider for example the case where ω ∈ Ωk(M) is a (global) differential
form and ς ∈ E(M) is a (global) section of E̊ , with a section ω⊗ς of

∧k T̊ ∗M⊗E̊ ;
or we can give the example of the restricted case in which {σ1, . . . , σr} is a local
frame for E̊ on a neighborhood Υ ⊂M, and ω1, . . . , ωr ∈ Ωr(Υ ; E̊)

viz
= Er(Υ ) are

differential forms on Υ ,

ω|Υ =

r∑
ν=1

ων ⊗ σν . (1.23)

Proposition 1.4.2 (Connection 1-form). Let ∇ : T(M)× E(M)→ E(M) be
a connection on the vector bundle ζ̊ = (E̊ , π,M) of rank r (Definition 1.1.3),
and let φ∇ : E(M) → Ω1(M; E̊) viz

= E1(M) be a bundle map, which builds on
φ∇ς(X⃗) = ∇X⃗ς, where ∇X⃗ς is linear over C∞(M) in X⃗ and it is also linear
over R in X⃗, such that ς ∈ E(M), with a map X⃗ 7→ ω(X⃗)ς. Choosing a local
frame {σ1, . . . , σr} for E̊ on an open neighborhood Υ ⊂ M, i.e. establishing a
restriction E̊ |Υ

πΥ−−→ Υ so that E̊ |Υ ∼= Υ × R, and setting k = ξ for reasons of
consistency with the Eqq. (1.3) and (1.4), we have

φ∇σν =

r∑
ξ=1

ωξν ⊗ σξ, ∇X⃗σν =

r∑
ξ=1

ωξν(X⃗)σξ, (1.24)

with a uniquely connection matrix

ω∇ =
[
ωξν

]
1⩽ξ
ν⩽r

(1.25)

of differential 1-forms ωξν defined on ΥR, known generically as connection 1-
forms. Putting the Christoffel symbols for the Levi-Civita connection, the result
is

ωξν =

r∑
µ=1

Γ ξµνdx
µ. (1.26)

Scholium 1.4.1. The connection 1-forms of the Proposition 1.4.2 satisfy the
conditions

ωξν = −ωνξ, (1.27a)

dων = ωξ ∧ ωνξ. (1.27b)

⋄
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1.4.2. Curvature 2-Form and Structural Equations

We can pursue this line and give a definition related to the proposition above.

Definition 1.4.2 (Curvature 2-form in the Levi-Civita connection scenario).
Let σE̊ = {σ1, . . . , σn} be a local frame field (i.e. an orthonormal basis) for the
tangent bundle T̊ M on the usual trivializing neighborhood Υ ⊂ M, and let
χE̊ = {χ1, . . . , χn} be a dual local frame field for the cotangent bundle T̊ ∗M. If
∇ is the Levi-Civita connection on a (pseudo-)Riemannian manifold, and

ωνµ = Γ νµξω
ξ (1.28)

are its connection 1-forms (with the Christoffel symbols), one calls Ωνµ the
curvature forms, which are 2-forms on Υ , and Ω∇ =

[
Ωνµ

]
the curvature matrix.

3

The 2-forms Ωνµ allow to provide a description of the Riemann curvature
tensor, RX⃗Y⃗ σµ = Ωνµ(X⃗, Y⃗ )σν , for all X⃗, Y⃗ ∈ T(Υ ) and all µ, ν = 1, . . . , n. The
2-forms Ωνµ can be written as

Ωνµ = dωνµ − ωξµ ∧ ωνξ

=
1

2
Rνµξϱω

ξ ∧ ωϱ, (1.29)

which corresponds to the second structural equation of É. Cartan [561, p. 133];
therefore they verify the property dωνµ = ωξµ ∧ ωνξ +Ωνµ.

Scholium 1.4.2. The 1-forms ωνµ of the Definition 1.4.2 take values in the set
gln(R), and they satisfy the conditions

ωνµ = −ωµν , (1.30)
dωµ = ων ∧ ωµν , (1.31)

dχµ = −
n∑
ν=1

ωµν ∧ χν . (1.32)

⋄

It is now possible to make some additional remarks on what has been said in
the previous definition(s).

(1) For a Levi-Civita connection ∇, one says that ∇ is compatible with g iff
the connection 1-forms ωνµ relative to an orthonormal frame {σ1, . . . , σn} give
gνξω

ξ
µ + gµξω

ξ
ν = dgµν . The matrix ω∇ = [ωνµ] is skew symmetric.

(2) Here the same applies as described in the Definition 1.4.2. If τ is the
torsion (tensor) of ∇ (cf. Definition 1.3.5), we can determine a map τν : T(M)×
T(M) → C∞(M), with ν = 1, . . . , n, by τ(X⃗, Y⃗ ) = τν(X⃗, Y⃗ )σν . The 2-forms
{τ1, . . . , τn} are called torsion forms, which could be used to prove the first
structural equation of É. Cartan:

dφν = φµ ∧ ωνµ + τν . (1.33)
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1.5. Cartan Structure: Generalized Space and Lie Algebra-
valued Form

È data una varietà e in questa un gruppo di trasformazioni; studiare le forme appartenenti
alla varietà per quanto concerne quelle proprietà che non si alterano nelle trasformazioni del
gruppo dato [ . . . ]. Si sviluppi la teoria invariantiva relativa al gruppo medesimo.a

— F. Klein [1497, p. 311], transl. into It. by G. Fano from Klein’s Erlangen program [1498,
p. 67], originally presented in 1872

I realized that most of the ordinary differential equations, the integration of which can be
found using traditional methods, remain invariant by certain classes of transformations [Schaaren
von Transformationen] that are easily determinable [ . . . ]. In other words, I understood that the
concept of differential invariant of finite continuous group, even though only implicitly and in special
form, is present in every textbook about ordinary differential equations.

— M.S. Lie [1658, pp. iv-v]

[A] generalized space (espace généralisé) in the sense of Cartan is a space of tangent spaces such
that two infinitely near tangent spaces are related by an infinitesimal transformation of a given Lie
group. Such a structure is known as a connection.

— S.-S. Chern and C. Chevalley [634, p. 221]

1.5.1. Espace Généralisé of the Klein geometry: Cartan Geometry
and Connection

In view of the above (Section 1.4), the algebra of differential forms gives us a
way to reflect on the Levi-Cita connection along with Cartan space, which is a
generalization of the theory of Lie groups in line with the Felix Klein’s Erlanger
program [1498]; for a synopsis, see [556].

Firstly, we recall briefly a few properties associated with the Klein geometry.
(1) Let G be a Lie group and H a closed (sub)group of G. A Klein geometry

consists of a pair (G,H) in which the (left) coset space G/H is connected, and
it is called homogeneous space, or even Klein space.

(2) The group G acts transitively on G/H by the left action.
(3) For every Klein pair (G,H) there exists a pair of Lie algebras (g, h); h is

a (sub)algebra of g, and it is closed (see below).
This is where we can begin to define the Cartan geometry, which is properly

called espace généralisé of the Klein geometry.

Definition 1.5.1 (Cartan structure). Suppose that P̊ is a principal H-bundle
over a smooth manifold M, π : P̊ H−→M (cf. Definition 1.7.3). Then

(1) C = (P̊, ωg) is a Cartan geometry,
(2) ωg is a differential form on P̊ representing the Cartan connection [547,

549, 552] = [560, pp. 23-193] [550] [553]. 3

The principal bundle π : P̊ H−→M, with group H, is a generalization of the
bundle π : G H−→ G/H, where the connected coset space G/H =M is the space
of the Klein geometry; and the differential form ωg is a generalization of the
Maurer–Cartan form ωG (see Definition 1.5.2).

a«Given a manifoldness and a group of transformations of the same; to investigate the
configurations belonging to the manifoldness with regard to such properties as are not altered by
the transformations of the group [ . . . ]; to develop the theory of invariants relating to that group»
[1500, pp. 218-219].
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1.5.2. From ggg-Space Homogeneity to Blob-like Space

(1) The Cartan space is defined as homogeneous or non-homogeneous geom-
etry. In the first case, the Cartan space is modeled, at least locally, on the Klein
geometry/on the coset space G/H. In the second case, it adds deformations to
the Klein structure: from this point of view, the Cartan space is equivalent to a
Klein geometry deformed by some curvature; the criterion by which to visual-
ize a C-deformation is analogous to that used for introducing the Riemannian
curvatures in Euclidean space.

(2) The Cartan space is defined as flat or non-flat geometry. In the first
case, the Cartan geometry is a generalization of the standard Euclidean one,
and hence the curvature in the Cartan structure is zero; this means that the
curvature vanishes at all points; in the second case, it is a generalization of the
Riemannian one, and the fabric of Cartan space has blob-like or, to borrow from
Clifford [663, p. 158] = [665, p. 21], hill-like values in C-shape. ⋄

Example 1.5.1 (Commutative-homogeneity of space). Consider a homogeneous
g-space. It is possible to represent this type of space with a commutative diagram.
Let ζ̊ = (P̊g, π,M) a triple, where P̊g is a principal g-space, and π : P̊g →M is a
map; and let F̊h be a principal h-space, i.e. a fiber over each point p ∈M, with
Lie algebra h ⊂ g. The graphic form is

h O(F̊h)

g O(P̊g)

φ

φ|F̊h

with a homomorphism h
φ−→ O(F̊h); the symbol φ|F̊h

denotes the restriction of
φ : g→ O(P̊g) to F̊h (cf. Definition 1.1.3). 5

1.5.3. Maurer–Cartan Forms and Equations

Definition 1.5.2 (α. Maurer–Cartan form). We denote by g the Lie algebra of
the corresponding Lie group G, and let g be a vector space together with a map
[· , ·] : g× g→ g. The Maurer–Cartan form [543] ωG is a g-valued 1-form on the
group manifold G. 3

It is understandable that we are in the presence of a form in combination with
the left invariant and right invariant actions of G on itself; so the Maurer–Cartan
form can be defined as a lr-map (in the sense that it is invariant under left and
right translations in G). The left invariant Maurer–Cartan form is

ωG ∈ Ω1(G, g)
viz
= ωl

G ∈ Ω1(G, g), or ωl
G ∈ Ω1(G)⊗ g;

it can also be expressed by the map ωG : g 7→ ωG(g), or ωl
G : g 7→ ωl

G(g). The
right invariant Maurer–Cartan form is

ωr
G ∈ Ω1(G, g), or ωr

G ∈ Ω1(G)⊗ g,
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and its map is ωr
G : g 7→ ωr

G(g).
In what follows we give more details about the left invariant case, correspond-

ing to a trivialization of the tangent bundle of G by l-translation; because the
l-translation is what leads to generate a global parallel transport on a general
Lie group, or a general manifold modelled on locally space.

(1) The left Maurer–Cartan form can be written as ωG(g) : TgG→ g, identi-
fying TgG with the tangent space of G.

(2) It means that ωG, for each g ∈ G, is a linear map of tangent space at
the identity I with a Lie algebra-valued form; in fact, the tangent (i.e. vector)
space g = TIG is called the Lie algebra of the group G.

(3) If we take a vector v ∈ TgG, so that (lh)∗v ∈ ThgG, the Maurer–Cartan
map above turns out to be described by

ωG[(lh)∗v] = (lh∗ωG)v = (l(hg)−1)∗[(lh)∗v] = (lg−1)∗v = ωG(v). (1.34)

Definition 1.5.3 (α. Maurer–Cartan equation). Let ω1, . . . , ωn be the 1-forms
on G, σg = {σ1, . . . , σn} a basis of g, and cµνξ the structure constants of g with
respect to σg. By requiring that

[σν , σξ] =

n∑
µ=1

cµνξσµ, for 1 ⩽ ν, ξ ⩽ n, (1.35)

is a left invariant bracket of Lie algebra-valued form, we define

dωµ = −
n∑
ν<ξ

cµνξων ∧ ωξ = −
1

2

n∑
ν,ξ=1

cµνξων ∧ ωξ. (1.36)

The Eq. (1.36) is the so-called Maurer–Cartan equation, or even structural
equation for the Maurer–Cartan form, and it can be simplified by eliminating
the upper and lower indices, dωG = − 1

2 [ωG, ωG]
∧ (the Eq. above rests on the

assumption that ωG
ιδ

= ω). 3

1.5.3.1. Ricci Rotation Coefficients and Tetrad Formalism

It is pertinent to note here the natural use of connection coefficients γµνξ,
known as the Ricci rotation coefficients [2200, p. 303]. For

cµνξ = γµνξ − γµξν , (1.37)

we have
dωµ =

1

2
[γµνξ − γµξν ]ωξ ∧ ων . (1.38)

The Ricci rotation coefficients are widely used in combination with a set
of four linearly independent vector fields, called (local) tetrad components, to
distinguish them from the coordinate components. That kind of approach,
in combination with torsion coefficients, is a helpful tool for describing the
gravitational field (i.e. the space-time vectors).
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Let {ε(α)} or {εα̂} be the tetrad formalism of the vector fields, with α =
1, 2, 3, 4, for the tetrad bases; the Ricci rotation coefficients are indicated by

γαβλ

{
γ(α)(β)(λ) = ε(α)

µε(λ)
ν∇νε(β)µ,

γα̂β̂λ̂ = εα̂
µελ̂

ν∇νεβ̂µ.
(1.39)

It is possible to adopt one or the other of these two notations; for instance,
we can choose the one with the round brackets. From Eq. (1.39) follows an
anti-symmetric property in the first pair of indices,

γ(α)(β)(λ) = −γ(β)(α)(λ). (1.40)

Thus there are 6× 4 = 24 algebraically independent Ricci rotation coefficients
(six combinations in the first two indices and four in the third index). Using the
anti-symmetry (1.40) of γ, we see that[

ε(α), ε(β)
]
= c(λ)(α)(β)ε(λ), (1.41)

c(λ)(α)(β) = γ(λ)(α)(β) − γ(λ)(β)(α), (1.42)

for which
γ(α)(β)(λ) =

1

2

(
c(α)(β)(λ) + c(β)(λ)(α) − c(λ)(α)(β)

)
. (1.43)

Definition 1.5.4 (β. Maurer–Cartan form). By taking the same set of σ-
elements of the Definition 1.5.3, it is also possible to give an alternative description
of the g-valued 1-form,

ωG =

n∑
µ

ωµ ⊗ σµ, (1.44)

coinciding with the Maurer–Cartan form. 3

Definition 1.5.5 (β. Maurer–Cartan equation). Another way to write the
Maurer–Cartan equation is

dωµ +
1

2
cµνξων ∧ ωξ = 0, (1.45)

dωG +
1

2
[ωG, ωG]

∧ = 0,a dωr
G +

1

2
[ωG, ω

r
G]

∧ = 0, with ωG ∈ g1. (1.46)

These equations are useful to remind us that such a form determines the vanishing
of the curvature, and the geometry is flat. 3

The flatness of the Cartan connection is associated with the Eqq. (1.45)
(1.46); meaning to say: the Cartan connection is flat when the components of
the curvature tensor become zero [559, p. 437], κΩ = 0, cf. Eq. (1.55), and the
space is Euclidean.

aOr dωl
G + 1

2 [ωG, ω
l
G]∧ = 0. Cf. [1807, p. 308] [2165, p. 108].
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1.5.4. Connection with Lie Algebra Decomposition and Gauge Model

It is the notion of parallelism that gives a Euclidean connection to the surface, to quote the
words of H. Weyl [ . . . ]. In fact, what is essential in the idea of Levi-Civita [1626] is that it allows to
connect two small pieces of a manifold, which are infinitely close to each other, and it is this idea
of connection that is fruitful. We can therefore imagine, by developing this idea, the possibility of
arriving at a general theory of manifolds with an affine, conformal, or projective connection.16

— É. Cartan [550, pp. 205-206]

We can direct our attention to the concept of connection of Cartan, but not
before we state some preparatory results for this purpose.

Definition 1.5.6. We indicate by h the Lie (sub)algebra of H, for which h is a
(sub)vector space of vector space g. Once again, C = (P̊, ωg) onM is the Cartan
geometry with model pair (g, h). 3

This is why C acts like the Lie algebra, by means of a decomposition g = h⊕p

for the group of H-module algebra.
Since the Cartan connection ωg is usually described as a g-valued 1-form on

the principal bundle P̊, it can consequently be decomposed as

ωg ∈ Ω1(P̊, g) = ωh ⊕ ωp, (1.47)

in which ωh is a h-valued 1-form on P̊ , called Ehresmann connection [843], while
ωp is designated a solder form.

Scholium 1.5.1 (Ehresmann connection). Introduce the symbols rh and adj to
exhibit the right action of h ∈ H on P̊ and the adjoint action, respectively. Let
us say that η̃ is the vector field for an infinitesimal action η 7→ η̃ of the Cartan
geometry C = (P̊, ωg). The Ehresmann connection ωh satisfies

(rh)∗ωh = adj(h−1)ωh, (1.48)

and

ωh(η̃) = η, for every η ∈ h. (1.49)

If the geometry C is a Riemannian-like structure, i.e. if we are considering a
torsionless topological space, one talks about a Levi-Civita connection, therefore

ωh
ιδ

= ∇

(cf. Definition 1.5.7), where ωh ∈ Ω1(P̊, h). The Eqq. (1.48) and (1.49) occur
also in the Levi-Civita connection. ⋄

We now show the meaning of the Cartan connection, to find out that it is a
connection form, which generalizes the Maurer–Cartan form.

Proposition 1.5.1 (Cartan connection with decomposition). Let ωg ∈ Ω1(P̊, g)
be a g/h-Cartan connection on P̊. The connection ωg manifests itself in a Lie
algebra (g, h) decomposition, from which we get three properties.
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(1) The restriction

ωg(p) : TpP̊
h⊕p−−→ g, (1.50)

for each point p ∈ P̊, is a linear isomorphism.
(2) The equality

(rh)∗ωg = adj(h−1) ◦ ωg, (1.51)

holds for all h ∈ H.
(3) Let

ϝX⃗(p) =
dt

d

∣∣∣
t=0

p
(
exp(tϝ)

)
(1.52)

be a fundamental vector field on M; then ωg

(
ϝX⃗(p)

)
= X⃗, with

ϝX⃗ ∈ X(M) = ω−1
g (X⃗), (1.53)

for all vector fields X⃗ ∈ h. To lighten notation, one can just write

ωg(gη̃) = gη (1.54)

(see Scholium 1.5.1).

Scholium 1.5.2. The fundamental vector field mapping for r-action is a Lie
algebra homomorphism ϝ : g→ X(M). ⋄

Definition 1.5.7 (Cartan curvature). Let

κΩ
viz
= Ω2

g = dωg +
1

2
[ωg, ωg]

∧

= dωg + ωg ∧ ωg, (1.55)

be the curvature form of the connection ωg, knowing that Ω2
g is a g-valued 2-form

on P̊ (cf. Definition 1.4.2). 3

If Ω2
g take values in the Lie algebra h, then the Cartan geometry is torsion

free, and the κ-value lying in h is precisely zero. When Ω2
g is decomposable, it

reflects a reductive geometry with an H-module decomposition:

κΩ = κh ⊕ κp. (1.56)

Definition 1.5.8 (Cartan gauge model). Let Υ denote an open set of a manifold
M, and ϑΥ a g-valued 1-form on Υ being part of the model above (g, h). The
1-form

ϑ̃Υ : Tυ
(ϑΥ )−−−→ g, (1.57)

with canonical projection, viz. g
π−→ g/h, is a linear isomorphism, for all υ ∈ Υ .

The pair (Υ, ϑΥ ) is an example of a Cartan gauge. 3
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1.6. Geodesics, Straight Paths, and Euler–Lagrange Equa-
tions

[I]f we do not grant that the angles of incidence and reflection are equal, nature would be
labouring in vaina by following unequal angles, and instead of the eye apprehending the visible
object by the shortest route [διὰ βραχείς περιόδου] it would do so by a longer.17

— Theorem in Heron’s catoptrics [2555, pp. 496-499] according to Olympiodorus’ commentary

Along the same geodesic, directions of the tangents are parallel, which generalizes an obvious
feature of the straight line in Euclidean spaces.18

— T. Levi-Civita [1626, p. 175]

1.6.1. Geodesic: Some Features

Bear in mind that
(1) the locally shortest (and the straightest) path between two points on a

surface is a geodesic, in a Beltrami-like manner [247] [248] (but be warned, see
Scholium 1.6.1);

(2) a geodesic is a curve with zero acceleration (Definition 1.6.1); parallel
directions along a geodesic are always equally inclined with respect to the geodesic
itself;

(3) if the geodesics of a (Riemann) manifold are the same as those for the
ambient space, then the manifold is called totally geodesic, or Bompiani’s space;
see E. Bompiani [358], where he resumes and develops the insights of J. Hadamard
[1251] and G. Ricci Curbastro [2202].

Let us cut to the chase, and get now to a more technical discussion. We can
begin by saying what a geodesic (path, line or curve/curvature) is.

Definition 1.6.1 (Geodesic). Let
(1) ∇ be a linear connection on a Riemannian-like manifoldM (cf. Definition

1.3.1),
(2) γc : I →M be a smooth curve, or C∞ curve, in the manifoldM, with

an interval
I = [α, β] = {x ∈ R | α ⩽ x ⩽ β} (1.58)

(see Proposition 1.3.1),
(3) γ̇c : I → T̊M be a C∞ curve contained in the total space of the tangent

bundle—more precisely, we say that

γ̇c(t) ∈ Tγc(t)M (1.59)

at time t ∈ I ⊂ R is a velocity vector field along γc (in fact πM ◦ γ̇c = γc), where
Tγc(t)M is the tangent space of the curve, and it is defined by

γ̇c(t) =
d

dt
γc(t), (1.60)

(4) D be a covariant differentiation operator, i.e. a covariant derivative.
aThe phrase «Nature does nothing in vain nor labours in vain (οὐδὲν μάτην ἐργάζεται ἡ φύσις

οὐδὲ ματαιοπονεῖ)», which immediately precedes this portion of the epigraph, is a bad interpolation
by Olympiodorus, and it certainly does not have a physical spice.



1.6. Geodesics, Straight Paths, and Euler–Lagrange Equations 21

Then
(1) a curve γc : I →M with respect to ∇ is a geodesic (that can be arbitrarily

parametrized) if the vector field

γ̈c
ιδ

= Dtγ̇c
viz
= ∇γ̇c γ̇c, (1.61)

describing the tangential acceleration of γc, is equal to zero:

γ̈c,

Dtγ̇c,

∇γ̇c γ̇c

 = 0. (1.62)

In other words, γc is a geodesic iff the tangent vector γ̇c : I → T̊M (see Definition
1.1.1) is parallel, which means it is constant, whereby the covariant derivative
Dt on sections of E̊ along γc is zero;

(2) a C∞ curve whose speed is constant corresponds to a (regular) geodesic
on a Riemannian-like manifold, ed it is plethorically called minimizing or constant
speed geodesic; the (minimizing) geodesic has constant length of its velocity vector
field;

(3) a geodesic curve (in the sense of a minimizing curve) with vanishing
acceleration, or whose acceleration is identically zero, can be also expressed in
working coordinates by the geodesic equation

γ̈c
ξ(t) +

∑
µν

Γ ξµν γ̇c
µ(t)γ̇c

ν(t) = 0, (1.63)

or, simply,
γ̈c
ξ + Γ ξµν γ̇c

µγ̇c
ν = 0, (1.64)

where
γ̈c
ξ = −Γ ξµν γ̇cµγ̇cν (1.65)

is the (Euclidean) acceleration, technically it is the derivative of γ̇c(t), and

Γ ξµν
viz
=

{
ξ

µν

}
=

1

2
gξϱ(∂µgνϱ + ∂νgµϱ − ∂ϱgµν) (1.66)

(cf. Section 1.2.1). Hence the acceleration of the curve is always orthogonal (or
normal) to the manifold,

γ̈c
⊥ ιδ

= (Dtγ̇c)
⊥ ∈M, (1.67)

for t ∈ I ⊂ R = [α, β]. 3

Scholium 1.6.1 (Geodesic: on the distance minimizing issue).
(1) Let

ℓ(γc) =

∫ β

α

|γ̇c(t)|dt =
∫ β

α

√
g(α,β)(γ̇c(t), γ̇c(t))dt (1.68)



22 1. Panoramic Miscellanea I

be the length of a geodesic γc : [α, β]→M. Then γc is demanded to be locally
the shortest path in the surface iff its length is equal to the distance between the
points γc(α) = pα and γc(β) = pβ , and γc is called minimizing if

ℓ(γc) ⩽ ℓ(γ̃c) (1.69)

(every geodesic of the Levi-Civita connection is locally length minimizing, in
this respect). However, it is not necessarily true that a geodesic is the shortest
path between any two points; e.g. two points on the unit sphere S2 can be
connected by a segment of a great circle, and such a segment (of the sphere of
dimension 2) is a geodesic but it is not minimizing between its end-points. So
a distance minimizing path is (always) a geodesic, but not every geodesic is a
distance minimizing.

(2) The geometry of the cones is a further good example: it illustrates that
there are several geodesics that connect two points, so not all geodesics are the
shortest paths. ⋄

1.6.2. Visual Stimuli: Geodesics on Melon- and Egg-shaped Surfaces

We give some visual suggestions. In Figg. 1.1 and 1.2 geodesics on a canary
melon-shaped surface and on an egg-shaped surface are drawn; to be exact:
on an oblate spheroid, flattened at the poles, and on a quasi-prolate spheroidal
surface, to wit, an ovate 2-space, elongated in the direction of a polar diameter
at the poles. There is a plain warping effect (if compared to the sphere).

1.6.3. Geodesics as Solutions of the Euler–Lagrange Equations

Methodus maximorum & minimorum ad lineas curvas applicata, est methodus inveniendi
lineas curvas, quæ maximi minimive, proprietate quapiam proposita gaudeant.a

— L. Euler [916, p. 1]

Now here is a method which requires only a very simple use of the principles of differential and
integral Calculus.19

— J.L. Lagrange [1558, p. 336]

Because a geodesic is an extremal, and it is a possible solution when searching
for a minimum length, from the calculus of variations we know that a geodesic-
like curve, say

(
γc(t)

)
0⩽t⩽1

∈M, obeys the Euler–Lagrange equations of motion
[915] [916] [922] [923] [925] [1558] [1559] [1563, 1564], a suitable form of which
is

∂L

∂xµ
=

d

dt

(
∂L

∂ẋµ

)
or − ∂Eu

∂xµ
=

d

dt

(
∂Ek
∂ẋµ

)
, for 1 ⩽ µ ⩽ n, (1.70a)

∂L

∂xµ

(
γc(t), γ̇c(t), t

)
=

d

dt

(
∂L

∂vµ

)(
γc(t), γ̇c(t), t

)
, (1.70b)

with γc(t) = {x1(t), . . . , xn(t)}, γ̇c(t) = {ẋ1(t), . . . , ẋn(t)}. Here, if we consider a
particle of mass m moving along γc(t) with a velocity v, the function L(x, ẋ, t)

viz
=

a«The method of maxima & minima applied to curved lines, is the method for finding curved
lines on which maximum and minimum values for some proposed quantity are satisfied».
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Figure 1.1: Geodesic in #008080-tracks on an oblate
spheroid, or a canary melon-like 2-space

Figure 1.2: Geodesic in #800080-tracks on
a quasi-prolate spheroid, or an egg-like 2-
space, resembling an ovoidal surface

(x, v, t) is a Lagrangian on T̊ M× [0, 1]→ R, and it corresponds to the difference
between the kinetic energy and the potential energy. The kinetic energy is

Ek(x, ẋ, t) =
1

2
mµ∥ẋµ∥2 (1.71)

or, for a system of n particles,

Ek(x, v, t) =
1

2

n∑
µ=1

mµv
2
µ, (1.72)

where vµ = dxµ

dt ; the potential energy is Eu(x, t) = −m(Gn)
∥x∥ (Gn is a gravitational

constant depending only on the massive nature of the particle) or, for a system
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of n particles, it is equal to

1

2

n∑
1⩽µ<ν⩽n

(Eu)µν [|xµ − xν |]. (1.73)

It appears that the Lagrangian form L(x, ẋ) = Ek(ẋ) − Eu(x) (this is a
simplified formalism) is equivalent to Newton’s second law [1934, p. 12]a [1940,
p. 19]: since −∂Eu

∂xµ = mµẍµ, we conclude

F⃗µ = −∇(Eu)µν , i.e. F⃗µ = mµẍµ, (1.74)

where the force is equal to −∂Eu

∂xµ .
It is noted that all this leads us to the Hamilton’s principle, also called law

of least or stationary action [1278, pp. 10-11] [1279] [1281], which in turn may
be used to obtain the Euler–Lagrange Eqq. (1.70). Letting S[γc] :M→ R be
the action functional of a Lagrangian system,

S[γc] =

∫ tβ

tα

L
(
x(t), ẋ(t), t

)
ιδ

= L
(
γ̃c(t), t

)
, (1.75)

and taking a time interval It = [tα, tβ ] for the motion of the system over It, we
get

d

dϵ

∣∣∣∣
ϵ=0

S[(γc)ϵ]

=
d

dϵ

∣∣∣∣
ϵ=0

∫ tβ

tα

L
(
x(t, ϵ), ẋ(t, ϵ), t

)
dt

=

n∑
µ=1

∫ tβ

tα

(
∂L(x, ẋ)

∂xµ
δxµ +

∂L(x, ẋ)

∂ẋµ
δẋµ

)
dt

=

n∑
µ=1

∫ tβ

tα

[
∂L(x, ẋ)

∂xµ
− d

dt

(
∂L(x, ẋ)

∂ẋµ

)]
δxµdt+

n∑
µ=1

∂L(x, ẋ)

∂ẋµ
δxµ

∣∣∣∣tβ
tα

. (1.76)

The Eq. (1.76) shows the infinitesimal variation of the integral of the Lagrangian
function. Hamilton’s principle states that the infinitesimal variation of the
Lagrangian function is stationary (it vanishes):

d

dϵ

∣∣∣∣
ϵ=0

S[(γc)ϵ] = 0, or rather δS[(γc)ϵ] = 0. (1.77)

Using the fundamental form of Euler–Lagrange equations,

∂L(x, ẋ)

∂xµ
− d

dt

[
∂L(x, ẋ)

∂ẋµ

]
= 0, (1.78a)

∂L(x, v)

∂xµ
∣∣∣∣x=γc(t)v=

dγc(t)
dt

− d

dt

∂L(x, v)

∂xµ
∣∣∣∣x=γc(t)v=

dγc(t)
dt

 = 0, (1.78b)

aAxiomata sive Leges Motus, Lex II: «Mutationem motus proportionalem esse vi motrici impressæ,
& fieri secundum lineam rectam qua vis illa imprimitur».
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we have a geodesic equation for the (geodesic) Lagrangian, according to which
the covariant derivative of the tangent vector along the curve is vanishing,

d2xξ

dτ2
+ Γ ξµν

d2xµ

dτ

d2xν

dτ
= 0, (1.79)

d2γc
ξ(τ)

dτ2
+

{
ξ

µν

}∣∣x=γc(τ) d
2γc

µ(τ)

dτ

d2γc
ν(τ)

dτ
= 0. (1.80)

The letter τ indicates the proper time, as represented in the setting of Minkowski
space-time diagram [1827]. Which means that, for calculating particle orbits in
a curved space, the solution of the Euler–Lagrange equations for the Lagrangian
L = 1

2mẋ
2 − Eu(x) on a Riemannian-like C∞ manifold is the geodesic (Def-

initions 1.6.1 and 1.3.3) of a linear connection (Definition 1.3.1 of which the
Levi-Civita connection is the most frequently used example (Theorem 1.3.1).

1.7. On the Theory of Holonomy: Connections and Loops

We see how much these illustrations enlighten and correct our ideas of even the most elementary
portions of the theory of rotatory motion. Those who cultivate the geometrical properties of surfaces
of the second order will draw from them without difficulty a great number of curious theorems
relative to this kind of motion: for each proposition in Geometry gives a corresponding one in
Dynamics.

— L. Poinsot [2142, p. 72], transl. from [2141, p. 56]

[§ 123] A material system between whose possible positions all conceivable continuous motions
are also possible motions is called a holonomous system. The term means that such a system obeys
integral (ὅλος) laws (νόμος), whereas material systems in general obey only differential conditions.

[§ 190] In a holonomous system every geodesic path is a straightest path and, conversely, [every
straightest path is a geodesic path].

— H. Hertz [1340, pp. 91, 116] = [1341, pp. 80, 103]

1.7.1. Introductory Remarks with a Scholium on n-Torus

In this Section we will give a brief mathematical description of holonomy
(group). The first to talk about it, at least in the modern meaning, was É.
Cartan [547, 549] [553] [554, 555].

The holonomy is a global invariant of the connection, whereas the curvature is
a local invariant. Holonomy does not depend on base points, and it is called such,
ὁλο(ς)νομία (law of the entire [space]), because of that. The theory of holonomy
group shows features which may nevertheless be analyzed locally in addition to
global features; recall that the parallel transport is a way of transporting vectors
with regard to the local geometry of a manifold along a certain curve.

The holonomy of the connection gives informations on the failure of the
parallel transport of a vector around a loop to return to its initial value. A loop
is a closed curve, that is a path having the same starting and ending point. In
this sense, the concept of holonomy can of course be understood as a gap-element
of the circle group and thus of 1-torus T1 ∼= S1, which measures the defects of
an element of the fiber to be the identity.
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Scholium 1.7.1. A circle can be considered as a 1-torus, with the relation of being
isomorphic. The direct product space of n circles is topologically an n-torus:

(S1)n viz
= S1 × · · · × S1︸ ︷︷ ︸

n times

(n factors of S1) ∼= Tn. (1.81)

For example the product space of two circles is a 2-torus (a doughnut-shaped
surface): S1 × S1 ∼= T2, often described as S1-action on the 2-dimensional torus
(cf. Example 2.3.1). ⋄

1.7.2. Bundles and Holonomy Groups; Ambrose–Singer Theorem

Let us start out being a bit more technical by taking the notion of holonomy
together with the vector bundle.

Definition 1.7.1 (Holonomy group of a vector bundle connection). Let ℘γc : E̊ →
M, denoting by E̊ a vector bundle over a manifoldM and by ∇ a connection
on E̊ (cf. Definition 1.3.1). Let γc : [0, 1]→M be a piecewise closed C∞ curve.
Setting γc(0) = γc(1) = p ∈ M (this means that γc starts and ends at p), one
has a parallel transport

℘
γc(1)
γc(0)

viz
= ℘γc(0)→γc(1) : E̊p → E̊p, (1.82)

which is a linear and invertible map lying in GL(E̊p). The holonomy group of a
connection ∇ ιδ

= ∇E̊ at a point p ∈M is defined as

Hoℓp(∇)
viz
= Hoℓp(M,∇)

=
{
℘
γc(1)
γc(0)

viz
= ℘γc(0)→γc(1)

∣∣ γc is a loop based at p
}
∈ GL(E̊p). (1.83)

3

When dealing with a parallel transport ℘γc around only loops at p which are
contractible or null-homotopic C∞ curves (a space is said to be contractible if it
is homotopy equivalent to a point), one obtains the restricted holonomy group of
∇ ιδ

= ∇E̊ , denoted by

Hoℓ0p(∇)
viz
= Hoℓ0p(M,∇) ⊂ GL(E̊p) =

{
℘γc

∣∣ γc is a null-homotopic loop at p
}
.

(1.84)
If the smooth curve γc is a piecewise path from γc(0) = pα to γc(1) = pβ in

M, then the map is

℘
γc(1)
γc(0)

viz
= ℘γc(0)→γc(1) : E̊pα → E̊pβ , (1.85)

from which it is clear that the holonomy representations at pα and pβ are
isomorphic, ℘γcHoℓpα(∇)℘−1

γc = Hoℓpβ (∇), and ℘γcHoℓ
0
pα(∇)℘

−1
γc = Hoℓ0pβ (∇),

in the restricted case.
Now we shall consider the holonomy concerning the tangent bundle of a

differentiable manifold.
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Definition 1.7.2 (Holonomy group of a linear connection). Suppose thatM is
a manifold with fiber E̊p ∼= Rk. Let

℘
γc(1)
γc(0)

viz
= ℘γc(0)→γc(1) : TpM→ TpM (1.86)

be an isomorphism of vector spaces, commonly referred to as parallel displace-
ment along γc(0) → γc(1), with γc(0) = γc(1) = p ∈ M fixed. The parallel
displacement of a vector field ς 7→ ℘γc(t)(ς)

ιδ

= ς(t) along γc satisfies the equation
∇γ̇c(t)ς(t) = 0 (see Definitions 1.3.3 and 1.3.4), given that a connection is a tool
to differentiate vector field covariantly. Then the expressions

Hoℓp(∇)
viz
= Hoℓp(M,∇)

=
{
℘
γc(1)
γc(0)

viz
= ℘γc(0)→γc(1) : TpM→ TpM

}
∈ GLk(R) (1.87)

specify the holonomy group of a connection ∇ ιδ

= ∇T̊ at p ∈M. 3

Cf. [1286]. Now let us examine the idea of holonomy by applying it to a
connection on a principal bundle.

Definition 1.7.3 (Principal G-bundle). A principal bundle is a case of a fiber
bundle in which the fiber is given by G. Let G be a Lie group. A principal
bundle P̊ over a base M is a surjective smooth map π : P̊ → M, i.e. a C∞

projection π of P̊ onto M, if there exists a smooth right r-action of G on P̊,
which is

rG : P̊ ×G→ P̊, rG(x, g) = x · g, (1.88a)
rg : x 7→ x · g, (1.88b)

for x ∈ P̊ and g ∈ G. One has P̊/G =M, since the fiber bundle of a principal
G-bundle is isomorphic to G-space. (This implies that a principal G-bundle can
be subsumed in the class of smooth manifolds).

The basic assumption here is that P̊ is a fiber bundle whose fiber is G. There
is talk of principal G-bundle, C∞ (smooth) G-bundle or, simply, principal bundle,
to be exact. More widely, such a principal bundle is the quadruple (P̊, π,M, G).
The conditions under which this fiber bundle takes place are the following.

(1) The r-action of G is free, transitive and fiber preserving, π(x · g) = π(x),
for all x ∈ P̊ and g ∈ G, so that for each p ∈ M, any fiber π−1(p) is a vector
space isomorphic to G.

(2) The base space M is the quotient of P̊ . The orbits of the right G-action
coincide with the fibers of π, and that is π−1(p) = x ·G, with p ∈M, x ∈ π−1(p).

(3) P̊ is locally trivial. For each p ∈ M, there is an open neighborhood
Υp in M, namely a bundle chart (Υp, φ) with p ∈ Υ , and a diffeomorphism
Φ : π−1(Υp)→ Υp ×G, which may be written in the G-equivariant form Φ(x) =
[π(x), φ(x)]; in virtue of the diffeomorphism, the representation φ(x · g) = φ(x)g
is satisfied, for all x ∈ π−1(Υp) and g ∈ G.
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Note. A principal G-bundle can also be made explicit in another way, focusing
on the action of G on itself given by left translation:

lG : G×G→ G, (1.89a)
lg : G→ G : h 7→ g · h. (1.89b)

The G-bundle is homeomorphic to the structural group G, if there is a left
G-action on G itself. 3

We can move on to the following statements.

Definition 1.7.4. Let P̊ a principal G-bundle overM, and ωP̊ a connection
on P̊.

(1) We may take γc : [0, 1] → P̊ to be a C∞ curve (a loop) in P̊. Letting
γ̇c(t) ∈ Tγc(t)P̊ be tangent to γc(I), where I = [0, 1] = {n ∈ R | 0 ⩽ n ⩽ 1},
at time t ∈ [0, 1] (cf. Definition 1.6.1), the tangent vector γ̇c(t) ∈ Tγc(t)P̊ is
horizontal, then γc is also horizontal, namely γ̇c(t) ∈ (ωP̊)tγc.

(2) Consider the piecewise C∞ curve γc : [0, 1]→M, with γc(0) = γc(1) = p
and p ∈ M = π(x). For each x ∈ P̊ = π−1(p), there is a unique horizontal lift
γ̃c : [0, 1]→ P̊ of the curve in P̊ , with x = γ̃c(0); the end-point of the horizontal
lift, that is γ̃c(1), is in the fiber over p = π(x). 3

Finally, define the holonomy group of ωP̊ on P̊.

Definition 1.7.5 (Holonomy group of a principal G-bundle connection). The
equivalence relation x ∼ y, for x, y ∈ P̊, is possible if there exists a unique
horizontal, piecewise C∞ curve γc : [0, 1]→ P̊ joining x and y. Setting g ∈ G,
the holonomy group of a connection on a principal G-bundle is

Hoℓx(ωP̊) = {g ∈ G | x ∼ x · g}. (1.90)

The corresponding restricted holonomy group at x is the Hoℓ0x(ωP̊) arising from
the horizontal lift of null-homotopic curve in M which can be continuously
contracted to a point. 3

From the binary relation x ∼ y, it is evident that

Hoℓx(ωP̊) = Hoℓy(ωP̊), (1.91)

Hoℓx·g(ωP̊) = gHoℓx(ωP̊)g
−1. (1.92)

In order to truly appreciate the relation between the curvature and the holon-
omy group of a connection on a principal bundle, we recall the Ambrose–Singer
theorem [72, p. 438], initially proposed, without proof, by É. Cartan [553].

Theorem 1.7.1 (Ambrose–Singer). Let us suppose that (P̊, π,M, G) is a prin-
cipal G-bundle with a connected and paracompact base space M. Let Hoℓx(ωP̊)

be the holonomy group of a connection ωP̊ on P̊ and P̊(x) the holonomy bundle
of ωP̊ through x ∈ P̊. Let also Ω∇ be a curvature 2-form of ωP̊ . Then the Lie
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algebra of Hoℓx(ωP̊), denoted by holx(ωP̊) and called holonomy Lie algebra, or,
quite simply, holonomy algebra, is equal to the subalgebra (or subspace) of g,
which is the Lie algebra of G, so that holx(ωP̊) is spanned by the elements of
the form Ω∇

y (v, w), where the point y ∈ P̊(x) is joinable to x by means of a
horizontal curve (of the type described above), and v, w ∈ TyM are horizontal
tangent vectors, that is

holx(ωP̊) = span
{
Ω∇
y (v, w) ∈ g

}
. (1.93)

Said in other words, holx(ωP̊) is the Lie algebra of the holonomy group of a
connection on a principal G-bundle, and it is thereby a Lie subalgebra of the Lie
algebra g of G, i.e. holx(ωP̊) ⊂ g.

Proof. We got to prove that hol = g. If we reduce the structure group G, and
the connection to the holonomy group, we see that G = Hoℓ(ωP̊). We claim that
hol is an ideal of g. Since Ω∇ is G-equivariant, the Lie algebra (subspace) hol is
invariant under the adjoint G-action. Consider the vector bundle π : E̊ → M.
Let

T̊vE̊
viz
= (T̊vE̊ , πvE̊ , E̊) (1.94)

denote the vertical bundle of T̊ P̊ or, to be accurate, the vertical subbundle of
the tangent bundle πvE̊ : T̊ P̊ → E̊ of P̊, defined by hol. We assert that T̊vE̊ is
integrable. The tangent bundle T̊ P̊ of P̊ is the direct sum

T̊ P̊ = T̊vE̊ ⊕ T̊hE̊ (1.95)

of vertical and horizontal subbundles. Taking two horizontal vector fields V⃗ and
W⃗ , the vertical projection of the brackets of V⃗ and W⃗ is provided by Ω∇(V⃗, W⃗ ),
and it is a section of T̊vE̊ . Now, the bracket of a vertical vector field and a
horizontal vector field (both invariant vector fields, with values in the vertical
and horizontal tangent spaces) is null, for which

(1) T̊vE̊ is invariant under G-action,
(2) all integral manifolds are invariant under G-action for such a subbundle,
(3) the horizontal subspace is in the tangent space.

Finally, dim(hol) = dim(g), and then hol = g. Lie algebra of the the holonomy
group of a connection of the frame bundle is the same as the Lie algebra spanned
by the curvature 2-form. □

1.7.3. Holonomy in Riemannian Spaces

In Riemannian geometry, the parallel transport, from one point to another,
does not depend on the curve if the Riemann curvature tensor g vanishes in
this region (locally), condition in which a manifold turns out to be flat; but it
depends on the curve if the curvature tensor does not vanish. The holonomy
group (along with the non-vanishing of the Riemann curvature tensor) is a
measure of the deviation of a Riemannian-like manifold from flatness, or rather
from being locally isometric to Euclidean space.
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Definition 1.7.6 (Holonomy group of a Riemannian manifold). The parallel
translation along γc from γc(0) to γc(1) coincides with an orthogonal transforma-
tion of the tangent space TpM to the manifold. The set of all translations forms
a group, Hoℓp(g)

viz
= Hoℓp(M, g), which is a closed and compact subgroup [376]

of the orthogonal group of the tangent space O(TpM) ∼= On(R) with respect to
gp. The group

Hoℓp(g) ⊂ O(TpM)

is called the holonomy group of (M, g) at p ∈ M, and it is a Riemannian
holonomy group, with g 7→ ℘γc ◦ g ◦ ℘−1

γc . 3

The restricted holonomy group of (M, g) at p is

Hoℓ0p(g)
viz
= Hoℓ0p(M, g).

If (M, g) is a simply connected space, then the holonomy group and the restricted
holonomy group are the same algebraic structure: Hoℓp(g) = Hoℓ0p(g).

Let ∇g = 0 (the covariant derivative of the metric tensor vanishes). Since the
holonomy of a Riemannian manifold is the holonomy group of the Levi-Civita
connection on T̊ M (or vice versa, the holonomy of the Levi-Civita connection
on the tangent bundle is the holonomy of a Riemannian manifold), we have

Hoℓp(∇)
viz
= Hoℓp(M,∇) ⊂ On(R), with ∇ ιδ

= ∇T̊ = 0,

where On(R) is the orthogonal group of transformations of TpM which preserves
gp.

Scholium 1.7.2 (Holonomic automorphism). The parallel transport with loop
γc(0) = γc(1) = p is an automorphism of the tangent space TpM at a point
p. Let us say that Lp and L0

p are the sets of null-homotopic loops at p ∈ M,
respectively. So we can redefine the holonomy group of (M, g) at p as the set
of all automorphisms of TpM obtained by parallel translation in M associated
with Lp, or with L0

p if the holonomy group is restricted. ⋄

Definition 1.7.7 (Holonomy algebra of the metric tensor). Let (M, g) be a
Riemannian manifold, with p ∈ M and Levi-Civita connection of the metric
tensor g. The Lie algebra of Hoℓ(g) of a connection on the tangent bundle of
M is

hol(g)
ιδ

= hol(∇), or Hoℓ∇hol,

always putting ∇ ιδ

= ∇T̊ , where Hoℓ∇hol
· is a Lie subalgebra of the special orthogonal Lie algebra so(n)—we would

like to say that Hoℓ∇hol is a subalgebra of the vector space of all n × n skew
symmetric matrices Xt = −X, X ∈ so(n);

· is a vector subspace of TpM⊗T ∗
pM, or

⊗2 T ∗
pM, such that Hoℓ∇hol is lying

in the subspace
∧2 T ∗

pM,

2∧
±
T̊ ∗M∼=

∧
+

T̊ ∗M⊕
∧
−
T̊ ∗M, (1.96)
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taking into account that
∧2 T̊ ∗M is the second exterior power of the cotangent

bundle of M splittable into self-dual (+) and anti-self-dual (−) parts. 3

1.7.4. Berger’s Classification; from (Hyper)kählerian to Spin Mani-
folds; Simons Theorem

For purposes of exposition, we continue with the same topic as in the previous
Section and mention the M. Berger’s classification [259, p. 318], a list of
the possible restricted (Riemannian) holonomy groups of simply connected
Riemannian manifolds which are irreducible, or non-locally a product, and
non-symmetric, or non-locally a symmetric spaces.

Theorem 1.7.2 (Berger). Let (M, g) be a connected Riemannian manifold and
n = dim(M) the dimension of M. Suppose that the restricted holonomy group
Hoℓ0p(g)

viz
= Hoℓ0p(M, g) acts irreducibly on its tangent space TpM at p ∈ M.

Then (M, g) turns out to be locally isometric to a symmetric space, except if the
holonomy group is conjugate (isomorphic) to one of the underlying subgroups of
SO(n): U

(
n
2

)
, SU

(
n
2

)
, Sp

(
n
4

)
, Sp

(
n
4

)
· Sp(1), G2 and Spin(7).

Proof. The methods of the demonstration are beyond the aim of this Chapter,
so we refer the reader to Berger [259] [260] and S. Salamon [2284, chap. 10]. □

We can better describe the classification [259] in the following manner.
(1) Hoℓ0p(g)

ιδ

= SO(n), for dim(M) = n ⩾ 2.
(i) (M⩾2, g) is a generic Riemannian manifold. If Hoℓ0p(g) is a proper

subgroup of SO(n), the invariant Hoℓ is indicated as special holonomy.
(ii) The special orthogonal group SO(n) = O(n) ∩ SLn(R) is an automor-

phism group of the real field Rn.
(iii) Lie algebra: so(n); it is identified with the vector space of all n×n skew

symmetric matrices.
(2) Hoℓ0p(g)

ιδ

= U(m)
viz
= U

(
n
2

)
in SO(2m), for dim(M) = n = 2m ⩾ 4, with

m ⩾ 2.
(i) (M2m, g) is a generic Kähler manifold [1459] (see Scholium 10.2.2); the

existence of metrics having such a holonomy (with examples of compact Kähler-
spaces) is ensured by S.-T. Yau’s solution [2703] for the Calabi conjecture.

(ii) The unitary group U(m) = {X ∈ GLm(C) | X†X = Im} is an au-
tomorphism group of the complex field Cm=n

2 ∼= R2m=n, where X† viz
= X̄t

is the conjugate transpose matrix of X. The inclusion chain for this set is
Hoℓ0p(g) ⊂ U(m) ∈ GLm(C). Cf. Section 1.7.5 for a representations of the group
with complex (1× 1)-matrices and its physical interpretation.

(iii) Lie algebra: u(m) = {X ∈ glm(C) | X +X† = 0}.
(3) Hoℓ0p(g)

ιδ

= SU(m)
viz
= SU

(
n
2

)
in SO(2m), for dim(M) = n = 2m ⩾ 4,

with m ⩾ 2.
(i) (M2m, g) is a Calabi–Yau manifold, and thereby a Ricci-flat Kähler

manifold with vanishing first Chern class [633].
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(ii) The special unitary group SU(m) = U(m)∩SLm(C) is an automorphism
group of the complex field Cm=n

2 ∼= R2m=n.
(iii) Lie algebra: su(m) = u(m) ∩ slm(C).
(4) Hoℓ0p(g)

ιδ

= Sp(m)
viz
= Sp

(
n
4

)
in SO(4m), for dim(M) = n = 4m ⩾ 8,

with m ⩾ 2.
(i) (M4m, g) is a Ricci-flat hyperkähler manifold, see E. Calabi [474], i.e. a

complex manifold (with Kähler structure) admitting a holomorphic symplectic
form.

(ii) The symplectic group Sp(m) = {X ∈ GLm(H) | X†X = Im} is an
automorphism group of Hamilton’s quaternions Hm=n

4 ∼= R4m=n.
(iii) Lie algebra: sp(m) = {X ∈ glm(H) | X +X† viz

= X̄t = 0}.
(5) Hoℓ0p(g)

ιδ

= Sp(m)
viz
= Sp

(
n
4

)
·Sp(1) in SO(4m), for dim(M) = n = 4m ⩾

8, with m ⩾ 2.
(i) (M4m, g) is both a quaternionic Kähler (or quaternion-Kähler) and an

Einstein manifold with non-zero (positive/negative) Ricci curvature, as defined
by E. Bonan [359]. Note that a (compact) quaternionic Kähler manifold with
Ricci-flat Kähler metric (so we are talking about a metric of vanishing scalar
curvature) is locally conformally hyperkählerian.

(ii) The symplectic groups Sp(m) · Sp(1) are automorphism groups of the
quaternion field Hm=n

4 ∼= R4m=n.
(iii) The quaternionic projective space

HPr =
Sp(r + 1)

Sp(r) · Sp(1)
(1.97)

is itself a quaternionic Kähler manifold (recall that HPr is the quaternionic
projective space; it is defined as quotient space of Hr+1 − {0} by the action
of the multiplicative group H× of non-zero quaternions on the right). Placing
an identification between HP1 and S4, the resulting quaternionic Hopf bundles
[1395] are

Sp(1) ↪→ S7 π1 and π−1−−−−−−−→ HP1 ∼= S4 ∼=
Sp(2)

Sp(1) · Sp(1)
. (1.98)

One can see that the principal Sp(1)-bundle over HPr−1 coincides with the
sphere S4r−1, i.e.

Sp(1) ↪→ S4r−1 ∼=
Sp(r)

Sp(r − 1)

π−→ HPr−1. (1.99)

(iv) Lie algebra: sp(m)
viz
= sp

(
n
4

)
· sp(1).

(6) Hoℓ0p(g)
ιδ

= G2 in SO(7), for dim(M) = n = 7, and this holonomy is
called exceptional ; G2 is a Lie subgroup of GL7(R).

(i) (M7, g)
ιδ

= R4 × S3 [1140] is a Ricci-flat G2-manifold. Examples of
application of G2 to physics (string theory), can be found in E. Witten’s papers
in collaboration with B. Acharya and M. Atiyah [15] [159].
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(ii) The exceptional group G2 is an automorphism group of the imaginary
octonion field,a according to Cayley numbers [590], ℑ(O) ∼= R7⋊SO(7) resulting
from O ∼= R⊕ℑ(O) ∼= R7 ∼= R3 ⊕ C2.

(iii) Lie algebra: g2 in so(7).
(7) Hoℓ0p(g)

ιδ

= Spin(7) in SO(8), for dim(M) = n = 8 (this holonomy is
called exceptional).

(i) (M8, g) is a Ricci-flat Spin(7)-manifold.
(ii) The spin group Spin(7) is an automorphism group of the octonions

O ∼= R8 ∼= R⊕R7. If ς(R)M is a real spinor field onM, and if it is decomposable
into parallel and non-trivial elements

(
ς(R)+M

)
+
(
ς(R)−M

)
= ς(R)M, then the

holonomy group is reducible to Spin+(7) ∩ Spin−(7) ∼= G2. Furthermore, the
isotropy structure Spin(7)/G2 and the 7-sphere (obviously equipped with a
constant curvature metric) are holomorphic spaces:

Spin(7)

G2

∼= S7 ∼=
SO(8)

SO(7)
, (1.100)

with fibration G2 → Spin(7)→ S7.
Which brings us to the real projective space:

SO(7)

G2

∼=
SO(8)

Spin(7)
∼= RP7 viz

= P7(R) ∼= S7/Z2
viz
= Z/2Z, (1.101)

where Z2 is the cyclic group of order 2.
(iii) Lie algebra: spin(7) in so(8).
In each of the seven cases, the Riemannian manifolds are irreducible and

non-symmetric.

Margo 1.7.1. The Berger’s original list provided for the Spin(9)-structure, for
dim(M) = n = 16, but D.V. Alekseevsky [41] showed that a 16-dimensional
Riemannian manifold with such holonomy is a locally symmetric space. On the
incompleteness of Berger’s classification, and the inclusion of an (infinite) series of
candidates for the so-called exotic holonomies, as well as on the adjustment of the
classification of irreducible holonomy groups of a torsion free affine connection,
and so of the possible holonomies of the Levi-Civita connection with respect to
a (pseudo-)Riemannian metric, see [437] [439] [639] [440] [1811]. L

Then there is a theorem by J. Simons [2375] helpful to give an algebraic
generalization of the holonomy of a connection related to Berger’s list. The
theorem states that a space equipped with a non-transitive holonomy is necessarily
locally symmetric.

Theorem 1.7.3 (Simons). Given a simply connected and irreducible Riemannian
manifold (M, g), if the holonomy group Hoℓp(g)

viz
= Hoℓp(M, g) is not transitive

on the unit sphere in the tangent space TpM, then the manifold (M, g) is (must
be a) a locally symmetric space of rank ⩾ 2.

aHistorical margo: the first intuition of the octonions is ascribed to J.T. Graves [1196] and it
dates back to 1843 (26th of December), as W.R. Hamilton [1283] goes on to explain.
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Proof. Suffice it to say that Simons [2375] supposes dim(M) ⩾ 3, seeing that
the identity component is the only connected group of isometries which acts
non-transitively on S1, but this conflicts with the irreducibility. The proof follows
from previous theorems regarding the irreducible holonomy system (under which
the non-transitivity of a connected holonomy group on Sn−1 implies that S is
symmetric) and the symmetry of a irreducible Riemannian manifold of dimension
⩾ 3 and the connected component of the holonomy group on the manifold. □

The case where Hoℓp(g) acts transitively on the unit sphere in TpM, the
holonomy group falls into the Berger’s classification; but if Hoℓp(g) does not
act transitively on the unit sphere, a Riemannian manifold (M, g) is a locally
symmetric space.

From the latter proposition, C.E. Olmos [1971] has obtained a geometric
proof of Theorem 1.7.2 thanks to the use of submanifold geometry of orbits in
Euclidean space, by this showing the existence of a link between the holonomy
groups of the normal connection in submanifolds of Euclidean space and the
holonomy groups of Riemannian manifolds.

1.7.5. Holonomy in Abelian Phase Factor: Gauge Group of Electro-
magnetic Interactions

Berger’s classification (2) gets us motivated to take a closer look at the
group U(1), referred to as the group of 1-dimensional unitary transformations
or 1-parameter (Abelian) unitary group.

(1) Let
U(1) ↪→ P̊ π−→M

be a principal U(1)-bundle over M. It is well-known that every element of U(1)
is a point on the circle group marked with a unit complex number or phase factor
eiθ in the complex plane C (where i is the imaginary unit and θ is the angle of
rotation), while the set of all phases exp {iθ | θ ∈ R} generates a representation
φk of U(1).

Given an inclusion map

φk : U(1) ∼= S1 = {eiθ} ↪→ GL1(C), (1.102)

with k ∈ Z (k is an integer), we can then say that the phase of a point electric
(charged particle) is an element eiθ of U(1) ∼= S1 on C. Specifically, this involves
the group of phase transformations for some complex-valued (wave)function.

The irreducible representation of the unit circle on C is a map U(1)
φk−−→

GL1(C), since there is φk(g)z = gk(z), for all k ∈ Z, g ∈ U(1) and z ∈ C. So, in
other words, the representation φk of U(1) acts on the circle by rotations, when

g = eiθ, 0 ⩽ θ ∈ R < 2π, (1.103)

and its vector bundle has the form

πφk
: P̊ × C→M.
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(2) In physics, the group U(1)em
viz
= U1(em), or, simply, U(1), corresponds

to the gauge group of electromagnetism and, more generally, of Abelian gauge
theories, a representation of which in qft (when considering the interactions of
relativistic point-like particles) is the quantum electrodynamics (qed).

(i) The group U(1)em is a symmetry group, as there is invariance under local
unitary transformations.

(ii) For instance, one could think of a (electrically) charged point-like particle
moving in an electromagnetic field on space-time; and observe the line integral
or, equivalently, the circulation of a connection A⃗, aka vector potential, on a
loop. The definition of U(1)em-holonomy descends from the exponential of the
line integral along a loop γc,

HoℓA⃗(γc)
ιδ

= exp

{
i

∮
γc

A⃗µdx
µ

}
∈ U(1)em. (1.104)

The Abelian phase factor ei
∮
γc
A⃗ is, to put it briefly, the very U(1)em-holonomy.

(3) In this context, and nevertheless in a broader view of gauge transforma-
tions (Yang–Mills theory & non-Abelian Lie groups, qcd, Chern–Simons theory,
lqg), the development of the holonomy is related to the gauge connection using
a gauge invariant observable, the so-called Wilson loop [2676].
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Panoramic Miscellanea II. Space Forms, Möbius
(Projective) Transformations, and Fuchsian Group;

Groupable Synopsis—On the Spin(or)

Geometry has its origin in the direct observation of objects in the external world, which is the
physical space, and from the intuition of them it derives its first undemonstrable truths, necessary
for its theoretical evolution, which are the axioms [ . . . ]. However, to be exact, geometry must
represent the objects arising from the observation by way of pure abstract forms and the axioms
with well-determined hypotheses, i.e. independent of the intuition, so that geometry becomes part
of pure mathematics [ . . . ]. It is necessary to distinguish physical space from intuitive space, and the
latter from geometric space [ . . . ]. Geometric space is precisely that part of the pure extension in
which the physical and intuitive space is represented, but in turn it does not have a representation in
the real world for all its forms. And while physical and intuitive space cannot be defined, geometric
space can instead be defined [ . . . ]. The three geometries [of Euclidean, elliptic, and hyperbolic
spaces] in a very small field give the same results with good approximation [ . . . ]. It may be that,
extending the field of our external observations, or with new more precise means of measuring equal
quantities, the physical space is found to correspond to one of non-Euclidean geometries [ . . . ]. If
an observer with Euclidean intuition enters a pseudo-spheric or spherical space, he would gain the
impression, by moving, that objects move in certain ways, and dilate and shrink in certain directions,
in the same way that, according to our movement, we see that the size of the objects changes, and
we would have no chance to decide whether such a fact is apparent or real, if we did not know the
laws of perspective under other conditions.20

— G. Veronese [2571, pp. 10, 12, 14, 15-16, e.a.]

2.1. Intrinsic Surface Property

2.1.1. Gauss’ Theorema Egregium

Si superficies curva in quamcunque aliam superficiem explicatur, mensura curvaturae in singulis
punctis invariata manet.a

— C.F. Gauss [1099, p. 24]

In this Section we will briefly retrace the notion of Gaussian curvature. It is
an intrinsic quantity of a surface, which means that it depends on the metric,
and not on the manner in which the surface is immersed in 3-dimensional space
(the ambient space).

Theorem 2.1.1 (Theorema egregium). We shall indicate by κ the curvature,
by S ⊂ R3 a surface,b and by p ∈ S some point on the surface, letting p at the

a«[Theorema egregium.] If a curved surface is developed upon any other surface whatever, the
measure of curvature in each point remains unchanged» [1100, p. 20].

bA surface S, or, equally, a 2-manifold M2.
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origin of R3. There is a map {x1, . . . , xn} : Υ → S, where Υ ⊂ S, under which

κ =
∂2g12
∂v∂w

− ∂2g22
2∂v2

− ∂2g11
2∂w2

, (2.1)

where v, w are tangent vectors at p.

Proof. Setting
(v, w) 7→ φ(v, w),

for parametric equations, one gets(
g11(v, w) g12(v, w)
g21(v, w) g22(v, w)

)
=

(
(∂φ)2

(∂v)2 + 1 ∂φ
∂v

∂φ
∂w

∂φ
∂v

∂φ
∂w

(∂φ)2

(∂w)2 + 1

)
, (2.2)

and finally

∂2g12
∂v∂w

− ∂2g22
2∂v2

− ∂2g11
2∂w2

=
∂2φ

∂v2
∂2φ

∂w2
− ∂2φ

∂v∂w
= det(D2)φ = det(S) = κ, (2.3)

where D2 is the second covariant derivative. □

If we define a local parametrization of S as φ : Υ → S, putting φ(x1, x2),
we may define the Theorema egregium by resorting to the Christoffel symbols
(Section 1.2):

κ =

{
∂Γ 1

22

∂x1
− ∂Γ 1

12

∂x2
+
∑2
m=1

(
Γm22Γ

1
1m − Γm12Γ 1

2m

)}
g22

. (2.4)

2.1.2. Relative vs. Absolute Surfaces: Casorati’s Observation

If one considers surfaces as flexible but inextensible, almost like veils, and one imagines different
shapes that each one can assume in such conditions, one is led to distinguish the properties into
two classes. That is, to distinguish the properties that are no troubled by alteration due to any
change in shape of the surface to which they relate and that can be called absolute, from those that
depend on the individual shapes under which the surface can be conceived and that can be called
relative [ . . . ]. Means for the study of surfaces regardless of the shapes in which, with the conditions
of flexibility and inextensibility, can be imagined, are offered by the use of curvilinear coordinates,
for which the surfaces are considered in themselves and not referred to extraneous entities (such as
for ordinary coordinate planes) which do not necessarily change position and form with them.21

— F. Casorati [578, p. 363, e.a.]

Gauss’ Theorema 2.1.1 on the conservation of curvature, i.e. on the reciprocal
product of the main radii of curvature expresses an absolute property of a surface.

It should be noted that a surface can be thought of in two ways:
(1) as the boundary of solids,
(2) or as a flexible but inextensible solid, almost like veils («a guisa quasi di

veli»), in the words of F. Casorati [578].
When choosing the second point of view, surfaces are divided into two classes,
(i) one with relative properties, for which surfaces hinge on the distinct shapes

of conception, so that the properties change along with the particular shapes of
surfaces;
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(ii) and the other with absolute properties, for which surfaces are seen as
objects in themselves, that is, surface properties are treated independently of
any particular determination of the shape itself. Here what remains unchanged
is the length of each linear element, and from this inalterability all properties
of absolute value derive as just consequences; see also Beltrami [246, XIII, in
particular pp. 355-359].

2.2. Space Forms of Constant Curvature (Parabolic, Ellip-
tic, Hyperbolic Type), and Discrete Crystal-like Group

[A]dimandiamo che ci sia concesso due linee rette non chiudere alcuna superficie [o alcuno
spazio].a

— N. Tartaglia’s It. transl. of Euclid [2459, Lib. Primo, Petitione vi, Fo. XIII]22

In omni triangulo Sphærico, producto uno latere, angulus exterior minor erit utrisque interioribus
eidem oppositis simul sumptis: & tres anguli trianguli simul sumpti majores erunt duobus rectis.b

— Menelaus of Alexandria [1809, Lib. I, Prop. XI. Theor., p. 11], cf. the 1558 F.
Maurolico’s version [1786, p. 19].c

Semmiből egy újj, más világot teremtettem · Out of nothing I have created a new, different
world.d

— J. Bolyai [346, p. 188]23

The methods of ordinary [Euclidean] geometry always lead to results true but less extended
than those given by the general geometric method to which I have given the name of Imaginary
Geometry (Воображаемая Геометрия) [the current hyperbolic geometry]. The difference between
the equations of the one and the other comes from a new constant, that it is necessary to determine
experimentally, and which so obtained, is found such that, without sensible error, ordinary [Euclidean]
geometry more than suffices for the usual cases, while yet being possibly not rigorously true.

— N.I. Lobačevskij [1674, p. 65] = [1675, pp. 17-18]

In this Section and in the next one (Section 2.3) we will give a cursory
glance—as anticipated by the three epigraphic quotations—at the

· Euclidean and
· non-Euclidean (elliptical/spherical and hyperbolic) spaces, each characterized

by constant sectional curvature, otherwise known as space forms.

a«We enjoin that we may [think that] two straight lines do not close any surface» or space.
b«In every spherical triangle, [if] one of the sides [is] produced, [then] the exterior angle is less

than either of the interior and opposite [angles] taken together: & the three angles of the triangle
taken together are greater than two right [angles]», i.e. 180◦.

cMenelaus’ work is the first, as far as we know, to dealing the idea of a spherical triangle and of
geometry of figures on spherical surfaces. The Greek text, lost in the original, have been preserved
to us in an Arabic translation. The La. translations here consulted are those by Maurolico [1786]
and Halley [1809], based on the Arabic version; the latter is in [1810].

After Menelaus of Alexandria, it is usual to jump to 1766, with J.H. Lambert [1568, § 81, p. 353]:
«It seems remarkable to me that the [ . . . ] hypothesis [of the obtuse angle of a quadrilateral] holds if
instead of a plane triangle we take spherical one, for in this case the sum of [interior] angles of a
triangle is greater than 180 degrees and the excess is also proportional to the area of the triangle».
But in the middle there is G. Saccheri [2274] [2275]; Beltrami [253, pp. 444, 446] does not hesitate
to consider the Italian mathematician the real founder of non-Euclidean geometry, as a precursor of
Legendre [1602, propp. XX (pp. 19-20), XXII (pp. 21-22) in Livre I, note III (pp. 286-287)] and
Lobačevskij [1674] [1675].

d[344, § 15, pp. 7-8]: Systema Geometriae, hypothesi veritatis Axiomatis Euclidei XI insitens
dicatur Σ; et hypotesi contrariae superstructum sit S. Omnia, quae expresse non dicentur, in Σ
vel in S esse; absolute enuntiari, i.e. illa, sive Σ sive S reipsa sit, vera asseri intelligatur («The
System of Geometry founded upon the hypothesis of the truth of Euclid’s Axiom XI is called Σ; and
the system founded upon the contrary hypothesis is S. Any [result] that is not expressly said to be
in Σ or in S, it is understood to be enunciated absolutely, i.e. it is supposed to be true, whether it
placed in Σ or S»).
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2.2.1. Geodesics on Space Forms

The only surfaces which can be represented upon a plane in such a manner that [ . . . ] to every
geodesic line [corresponds] a straight line, are those for which the curvature is everywhere constant
(positive, negative or zero). When this is a constant null curvature, the correspondence law is no
different from the ordinary homography.24

— E. Beltrami [247, p. 203]

The upcoming definition extends the concept of geodesic to the notion of
space. Let us first introduce the notion of length space.

Definition 2.2.1 (Length space). Let (X , ρ) denote a metric space, based on
Fréchet’s axioms [1029], and let x and y be two arbitrary points of (X , ρ). The
metric space (X , ρ) is said to be a length space if the distance between x and y
is the infimum of the lengths of all curves joining them. 3

Definition 2.2.2 (Geodesic space). Let (X , ρ) denote a metric space and
γc : [α, β]→ X a geodesic path, where ρ : X × X → R is a metric or a distance
function on X and [α, β] is a geodesic segment in X . Let ρ(x, y) be the distance
between two points x and y of (X , ρ) viz

= |x− y|X . Then the pair (X , ρ)
(1) is said to be a geodesic (metric) space, if in (X , ρ) there is a (constant

speed) geodesic γc joining x to y, for all x, y ∈ X , for which γc(α) = x and
γc(β) = y,

(2) is called uniquely geodesic space, if there exists one and only one geodesic
connecting x and y. 3

In summary, a metric space (X , ρ) is a geodesic space if x and y can be
connected by a geodesic segment [α, β]

ιδ

= [x, y] whose length is at most a times
the distance between x and y.

A geodesic space (X , ρ) is at all times a length space, but the converse is not
true. Recall that the path γc is a distance minimizing curve of constant speed,
and thereby is linearly reparameterized, so ρ(α− β) = ρ(x− y) = ℓ(γc).

Now, we remember what geodesic spaces are. They can be divided into six
types:

(1) parabolic (Euclidean) space,
(2) elliptic (spherical) space,
(3) hyperbolic space,
(4) convex subsets of a normed vector space,
(5) Teichmüller space of Teichmüller’s metric,
(6) Teichmüller space of Thurston’s metric.
We want to consider the first three types of geodesic space (Section 2.3), the

so-called space forms, and, consequently, we will touch the fourth case (Section
2.4), but we exclude the treatment of geodesics in other cases, (5) and (6), with
Teichmüller spaces. We are therefore interested in studying the (connected)
Riemannian spaces, in the three forms just mentioned, as geodesic (metric)
spaces, for which (X , ρ) ιδ= (M, ρ).

Margo 2.2.1 (Apollonian–Kleinian nomenclature). Space forms descend from a
Kleinian nomenclature [1494, p. 344]; parabola is an open curve touching the line
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at infinity in one point. Beware that all these terms are a legacy of Apollonian
treatise on conic sections: παραβολή (parabola) [107, p. 38], ἔλλειψις (ellipse)
[107, p. 48], ὑπερβολή (hyperbola) [107, p. 42]. L

Proposition 2.2.1 (Geodesics in constant curvature metrics). Let Mn
κ be a

complete simply connected Riemannian n-dimensional manifold with constant
sectional curvature κ. Let κ ∈ R− and κ ∈ R∗ = {0} ∪ R+. Then

Mn
κ
ιδ

=


En⩾0
κ if κ ∈ R{0} = 0, parabolic type of Euclidean (M, ρ)-space,

Sn⩾0√
κ

if κ ∈ R+ > 0, elliptic type of non-Euclidean (M, ρ)-space,
Hn⩾2√

−κ if κ ∈ R− < 0, hyperbolic type of non-Euclidean (M, ρ)-space.
(2.5)

Spaces of constant vanishing, positive and negative (sectional) curvature (see
Margo 2.2.2), are geodesic for n ⩾ 0 both in the parabolic type and in the elliptic
type, and for n ⩾ 2 in the hyperbolic type.

Margo 2.2.2. Among the first studies of constant curvature, there are F. Minding
[1826] and D. Codazzi [668, p. 355]. L

2.2.2. Discrete ΓΓΓ-Crystallographic Group, Killing–Hopf Theorem, and
Isometric Action

The ordered internal structure of minerals normally determines their characteristic external
form of polyhedra, that is of crystals.

The particles (atoms, molecules) that constitute the minerals are, in many cases, arranged in a
fixed and determined position, and form a geometric [microscopic] structure called crystal lattice.

Crystals possess symmetry properties that manifest themselves in the [atomic] face arrangements
with respect to certain planes, axes and the center.

Taking into account the quantity and quality of the symmetry elements (planes, axes and center;
crystallographic axes, parameters), the crystals are brought together under [crystallographic or
Fedorov space] groups.25

— Palazzo Pompei Museo Civico di Storia Naturale (Lungadige Porta Vittoria 9, Verona)

An additional way to describe the Proposition 2.2.1, with respect to spaces
of constant curvature, can be stated through the use of Killing–Hopf’s theorem
[1485] [1394], originally referred (by Killing) to as Clifford–Klein space form
problem.

Theorem 2.2.1 (Killing–Hopf). Let Mn viz
= Mn

κ. Let π : M̃n
κ → Mn

κ be a
universal covering (space) of Mn

κ (π is a smooth covering map and a local
isometry). Let M̃n

κ be equals to En, Sn or Hn, with κ ∈ R. Let Γ denote a
discrete group of fixed point free isometries of M̃n

κ. Then Mn
κ is a complete

connected Riemannian manifold of constant sectional curvature and dimension
n ⩾ 2 iff it is isometric to M̃n

κ/Γ, i.e. iff Mn
κ is isometrically diffeomorphic to

a topological quotient En/Γ (κ = 0), Sn/Γ (κ > 0) or Hn/Γ (κ < 0). The group
Γ acts freely and properly discontinuously on M̃n

κ.

Proof. Let be g̃ ιδ= π∗g the metric of the universal covering (space) M̃n
κ, while

g is the metric on M. The group Γ is isomorphic to the fundamental group
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π1(Mn
κ), and it operates on M̃n

κ as the group of covering transformations. So g̃
being invariant under every covering transformation

φΓ :
(
M̃n

κ

)
1
→
(
M̃n

κ

)
2
, (2.6)

such that π◦φΓ = π and φ∗
Γg̃ = φ∗

Γπ
∗g = π∗g

ιδ

= g̃, the group Γ acts by isometries
and discontinuously. Now, letting isom(Mn

κ) be the group of isometries of Mn
κ,

we can say that Γ is a subgroup of isom(M̃n
κ), and it is a discrete set in isom(M̃n

κ)

because there is no an accumulation point in M̃n
κ about Γ. In fact, any point

x̃ ∈ M̃n
κ maps onto (projects to) the same point inMn

κ. □

The isometry group Γ is a Fuchsian group (see Section 2.6). It is also called
a crystallographic or Fedorov group [953], and more specifically a non-Euclidean
crystallographic group (because it is Fuchsian), a set describing a lattice structure
in the group of isometries of M̃n

κ. The name of it, crystallographic, is linked to
the fact that it can be thought of as a symmetry group and we are working with
the symmetry of a crystal lattice in a given configuration space (whereas the
crystal lattice is the most stable solid form).

2.3. Space Forms as Triad of Riemannian Manifolds

Let Mn
κ be a Riemannian manifold of dimension n, and κ ∈ R the sectional

curvature of n-dimensional spaces tangent to Mn
κ. To deepen what we just saw

(Theorem 2.2.1), we concentrate on the main result [554, 555] showing that, for
n ⩾ 2, there is a unique complete simply connected Riemannian manifold, which
is isometric to either

(1) Euclidean space, for κ ∈ R{0} = 0,
(2) spherical space of radius ρ = 1√

κ
, for κ ∈ R+ > 0,

(3) or hyperbolic space of curvature
√
−κ, for κ < 0.

Let us get into these three types of space.

2.3.1. Type I. Parabolic Case

The parabolic case means thatMn
κ (κ = 0) is the Euclidean n-space En repre-

senting the set of all ordered n-tuples (x1, . . . , xn) of real numbers (coordinates).
We are looking at a Riemannian manifold, with the Euclidean metric; it is clear
that the Euclidean metric is flat, or, equivalently, it has constant zero sectional
curvature (all sectional curvatures equal to zero, given that the curvature tensor
in a Euclidean space is identically zero);a in here, the fifth (parallel) postulate,
[909, αἰτήματα, ε΄v, Στοιχείων α΄v, Book I] applies.b

aThe Euclidean plane E2 (as well as other surfaces of the same type of geometry, for instance the
cylinder and the cone without apex) has constant zero Gaussian curvature. Note that if the cylinder
is locally Euclidean, the first postulate of Euclid [909, αἰτήματα, α΄v, Στοιχείων α΄v, Book I, p. 8]—«Let
it be postulated to draw a straight line from any point to any point (᾿Ηιτήσθω ἀπὸ παντὸς σημείου
ἐπὶ πᾶν σημεῖον εὐθεῖαν γραμμὴν ἀγαγεῖν)»—fails: between two points of a cylindrical surface there
is not a single straight line.

b[909, p. 8]: «Καὶ ἐὰν εἰς δύο εὐθείας εὐθεῖα ἐμπίπτουσα τὰς ἐντὸς καὶ ἐπὶ τὰ αὐτὰ μέρη γωνίας
δύο ὀρθῶν ἐλάσσονας ποιῇ, ἐκβαλλομένας τὰς δύο εὐθείας ἐπ΄ ἄπειρον συμπίπτειν, ἐφ΄ ἃ μέρη εἰσὶν αἱ
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2.3.2. Type II. Elliptic Geometry (and Parabolic View)

The elliptic case means thatMn
κ (κ ∈ R+) is a spherical n-space

Snρ = {x ∈ Rn+1 | ∥x∥ = ρ}
= {(x1, . . . , xn+1) ∈ Rn+1 | (x1)2 + . . .+ (xn+1)2 = ρ} ⊂ Rn+1, (2.7)

with radius ρ > 0. The sphere (2.7) has constant sectional curvature κ = 1
ρ2 .a

The unit sphere (a sphere of radius 1) is just

Sn(ρ=1) =

{
(x1, . . . , xn+1) ∈ Rn+1

∣∣∣∣∣
n+1∑
µ=1

(xµ)2 = 1

}
. (2.8)

The metric coefficients on Snρ is gSµν = ρ2(sin θi+1 · · · sin θn)2 if µ = ν, gSµν = 0
if µ ̸= ν.

The Eqq. (2.7) (2.8) tell that Snρ is a submanifold of Rn+1. This is evident
by the following. Take the atlases

Υ±
µ = {x ∈ Snρ | +xµ > 0 and − xµ < 0}, (2.9)

φ±
µ (x) = (x1, . . . ,xµ−1, xµ+1, . . . , xn+1), (2.10)

with µ = 1, . . . , n+ 1, from which we get the charts (Υ±
µ , φ

±
µ ) arranged in pair.

Let

ι : Snρ =

n+1⋃
µ=1

(Υ±
µ )→ Rn+1 (2.11)

be an inclusion map, and let φ±
µ : Υ±

µ → Bnρ ⊂ Rn, where Bnρ = {y = (y1, . . . , yn) ∈
Rn | ∥y∥ < ρ} is the n-ball, so that φ±

µ is a bijection between Υ±
µ and Bnρ . The

injective immersion
ι ◦ (φ±

µ )
−1(y) : Bnρ ↪→ Rn+1 (2.12)

is also an embedding. Consequently, the metric of Snρ is induced by the Euclidean
metric on Rn+1, and that is precisely why the topological space of Snρ is metrizable;
the spherical topology induced by the topology on Rn+1 is the same as the
topology induced by the ambient space (ambient manifold), for which Snρ is a
subspace (submanifold) of Rn+1.

Another result, within this framework, is obtained by seeing the real projective
n-space RPn as a quotient of Snρ . Assume first that A = {(Υµ, φµ | µ ∈ A)} is
an atlas consisting of an n-chart (Υµ, φµ). Let Υµ = {[x] ∈ RPn}, where [x] =
[x0 : · · · : xn] ∈ RPn denotes the projection of x = (x1, . . . , xn) ∈ Rn+1\{0}; and
then let

φµ[x] =

(
x0

xµ
, . . . ,

xµ−1

xµ
,
xµ+1

xµ
, . . . ,

xn

xµ

)
, (2.13)

τῶν δύο ὀρθῶν ἐλάσσονες».26 In the renowned It. translation from 1575 by F. Commandino [676,
p. 6 verso] the Euclid’s fifth postulate sounds like this: «Et se sopra due rette linee cadendo una
retta farà gli angoli interiori & da una medesima parte minori di due retti, quelle linee prolungate in
infinito congiungersi insieme da quella parte, dove sono gli angoli minori di due retti».

aThe 2-sphere S2ρ has constant (positive) Gaussian curvature κ = 1
ρ2

.
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hence φ−1
µ (y) = [y1 : · · · : yµ−1 : I : yµ : · · · : yn]. Knowing that the projection

π : Snρ → RPn is a smooth covering map, and since it is composed with the
inclusion map ι : Snρ → Rn+1\{0} and the projection π : Rn+1\{0} → RPn, one
can prove that the manifold topology induced by the smooth atlas A is the
quotient topology induced by the projection Rn+1\{0} π−→ RPn.

In general, we can say that the Eqq. (2.7) (2.8) are a representation of
Riemann’s elliptic theory [1494] in Euclidean space about the Riemann spherical
geometry [2207]. However, there are differences between the elliptic and spherical
systems, as already noted and commented on by R. Bonola [366, §§ 75-76].

Example 2.3.1 (Möbius strip vs. torus). Let

φ(θ, t) =

{(
2− t sin θ

2

)
sin θ,

(
2− t sin θ

2

)
cos θ, t cos

θ

2

}
(2.14)

be a parametrization from the map φ : [0, 2π] × (−1, 1) → R3. The image of
φ leads to an algebraic curve {Möb}φ of genus 1, with the same properties of
the elliptic plane, called the Möbius strip [1839, § 11, p. 41]a Ö ∼= S1 ×Z/2 R,
characterized by a one-sided surface (see Fig. 5.3).

On the other hand, let us get the 2-torus, a doughnut-object of genus 1 (cf.
Scholium 1.7.1) falling within the spherical system; it can be parametrized as

x = (R + ρ cos θ) cosϕ, (2.15a)
y = (R + ρ cos θ) sinϕ, (2.15b)
z = ρ sinϕ,R > ρ, θ, ϕ ∈ (0, 2π), (2.15c)

from the map φ : R → T2 ∼= S1 × S1, and it is characterized by a two-sided
surface. 5

Scholium 2.3.1 (Myers–Cheng & Grove–Shiohama sphere theorem). We are
mentioning a stimulating theorem due to S.-Y. Cheng [631] concerning the
isometry of the sphere Snρ of radius ρ > 0. If Mn

κ is a complete Riemannian
manifold of dimension n ⩾ 2 having Ricci curvature tensor

Ric ⩾ (n− 1)κ > 0 (2.16)

and a diameter
diam(M) =

π√
κ
= π

(
1√
κ

)
= πρ, (2.17)

thenMn
κ is isometric to Snρ . This result should be read in combination with the

prior Myers’s theorem [1890] (or sometimes Bonnet–Myers theorem), which, for
Ric ⩾ (n− 1)κ > 0, demonstrates that

(1) Mn
κ (n ⩾ 2) is compact,

(2) diam(M) ⩽ π√
κ
= πρ,

a Perhaps the Möbius strip should be called Listing strip, or at least Listing–Möbius strip/non-
orientable surface, for it appears in all its glory in J.B. Listing [1670, Fig. 3, Abhandlungen Bd. X,
Tab. I, after p. 182].
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(3) the fundamental group π1(Mn
κ) of Mn

κ is finite.
Another topological direction of the sphere theorem is adopted by the

Rauch–Berger–Klingenberg solution [2183] [261] [1506], under which, starting
from a complete connected n-dimensional Riemannian manifold, with 1

4 < κ ⩽ 1,
it is shown thatMn

κ is a twisted sphere and, in particular,Mn
κ is homeomorphic

to Snρ . K. Grove and K. Shiohama [1229], see also [2373], bring a generaliza-
tion of this proof (homeomorphism between Mn

κ and Snρ ), setting κ ⩾ 1 and
diam(M) > (π

√
κ)/2. ⋄

Scholium 2.3.2 (Matryoshka-space forms). Beltrami’s proof [250, p. 255] reminds
us that the geodesic sphere in an n-space of constant negative curvature − 1

R2 is
an (n− 1)-space of constant positive curvature 1

D2
q
, where Dq = R sinh ρ

R , and
by that, the spherical geometry can be regarded as contained in the hyperbolic
one. ⋄

2.3.3. Type III. Beltrami–Poincaré Hyperbolic Model (and Parabolic
View)

The third case means thatMn
κ (κ ∈ R−) is a hyperbolic n-space Hnρ having

ρ > 0 and constant sectional curvature κ = − 1
ρ2 .a

2.3.3.1. Upper Half-Space, Ball, and Hyperboloid

Next up, a subdivision into three models.
(1) The Hnρ -space corresponds to the (open) upper half-space in Rn, which in

the Beltrami–Poincaré half-space model [249] [250] [252] [2125] [2126] is written
as

Unρ = {x = (x1, . . . , xn) ∈ Rn | xn > 0}; (2.18)

the metric on Unρ is given by

g3U = ρ2(xn)−2(dx1 ⊗ dx1 + . . .+ dxn ⊗ dxn). (2.19)

The boundary of Un is provided by the boundary at infinity ∂∞Un = (Rn−1 ×
{0}) ∪ {∞}. The closed upper half-space will be

Un = {(x1, . . . , xn) ∈ Rn | xn ⩾ 0}. (2.20)

(2) The complementary version is the Beltrami–Poincaré (open) ball model,

Bnρ = {x = (x1, . . . , xn) ∈ Rn | ∥x∥ < ρ}, (2.21)

with ρ = 1√
−κ . The metric on Bnρ is

g2B = 4ρ4(ρ2 − ∥x∥2)−2(dx1 ⊗ dx1 + . . .+ dxn ⊗ dxn). (2.22)

aThe hyperbolic plane H2
ρ has constant (negative) Gaussian curvature κ = − 1

ρ2
.
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The boundary of Bn coincides with the (boundary) sphere at infinity

∂∞Bn ιδ= Sn−1
∞ = {x ∈ Rn | ∥x∥ = 1}

= {(x1, . . . , xn) ∈ Rn | (x1)2 + . . .+ (xn)2 = 1}; (2.23)

and the (n− 1)-sphere is finally the one-point compactification (in the sense of
Aleksandrov [50]) of the plane Rn−1 ∪ {∞}.

(3) There is a third model of hyperbolic space; it is the hyperboloid

Yn+
viz
= Ynρ = {x ∈ Rn+1 | (xn+1)2 − ∥(x1, . . . , xn) ∈ Rn∥2 = ρ2, xn+1 > 0},

(2.24)
also known as Minkowski–Lorentz model. The hyperboloid Yn+ is the upper sheet
of the elliptic hyperboloid, or 2-sheeted hyperboloid, in Rn+1. The metric on it is

g1Y = ι∗η, ι : Ynρ → Rn+1, (2.25)

where ι indicates the inclusion map, while η is a pseudo-Euclidean metric, more
specifically, it is about the Minkowski metric (see Section 3.4, especially Fig.
3.1).

All these three models (upper half-space, ball and hyperboloid) are represen-
tations of Lobačevskij–Bolyai’s geometry [1674] [1675] [344] [345] [347] [348] in
the Euclidean system, in addition to being examples of Riemannian manifolds.

Nevertheless, Hilbert’s theorem [1354] sets a limit on the immersive structure
of hyperbolic constructions,a by establishing the non-existence of a complete
analytic—belonging to the class Cω—regular surface of constant negative Gaus-
sian curvature in R3. The full hyperbolic plane does not admit an isometric
immersion in Euclidean 3-space. Note. Compare Hilbert’s theorem with the
publication of A. Genocchi [1121, pp. 390-404].

2.3.3.2. Isometric Spaces

Unρ , Bnρ and Ynρ are isometric (Riemannian) spaces with mutual action. For
instance, by means of a hyperbolic stereographic projection π : Ynρ → Bnρ , it can
be proved that π∗g2B = g1Y, or π−1∗g1Y = g2B. So we take the example of the first
case.

Proposition 2.3.1. The Beltrami–Poincaré ball Bnρ and the upper sheet of the
elliptic hyperboloid Ynρ are isometric in a mutual relationship, for which the
formula π∗g2B = g1Y holds.

Proof. Let us start to build the aforementioned diffeomorphism, i.e. π : Ynρ → Bnρ .
We write the map and its inverse as

π(x) =
ρ

ρ+ xn+1
ẋ ∈ Bnρ , and π−1(u) =

(
2ρ2u

ρ2 − ∥u∥2
, ρ
ρ2 + ∥u∥2

ρ2 − ∥u∥2

)
, (2.26)

aCf. G. Darboux [724, § 773, pp. 379-381], L. Bianchi [285, § 67, pp. 126-128], and U. Dini [781,
in particular § 11, pp. 184-185].
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where x ∈ Ynρ is an element on the upper sheet of a 2-sheeted hyperboloid, and
ẋ = x1, . . . , xn. Then

dπx(v) =
ρ

ρ+ xn+1

(
v̇ − vn+1

ρ+ xn+1
ẋ

)
. (2.27)

Also, let v ∈ TxYnρ be subject to the condition that xn+1vn+1 = ⟨ẋ, v̇⟩. We
finally get to

π∗g2B(v, v) = g2B
(
dπx(v), dπx(v)

)
=

4ρ4(
ρ2 − ∥π(x)∥2

)2 ∥dπx(v)∥2
=

4(
1− ∥ẋ∥2

(ρ+xn+1)2

)2 ρ2

(ρ+ xn+1)2

∥∥∥∥v̇ − vn+1

ρ+ xn+1
ẋ

∥∥∥∥2

= ∥v̇∥2 − 2vn+1

ρ+ xn+1
⟨ẋ, v̇⟩+ |vn+1|2

(ρ+ xn+1)2
∥ẋ∥2

= ∥v̇∥2 − |vn+1|2

= g1Y(v, v). (2.28)

□

Likewise, in combination with a diffeomorphism φ : Bnρ → Unρ it is possible
to prove that φ∗g3U = g2B. The maps

φ(u) =

(
2ρ2u̇

∥u̇∥2 + (un − ρ)2
, ρ
ρ2 − ∥u̇∥2 − |un|2

∥u̇∥2 + (un − ρ)2

)
, (2.29a)

φ−1(w) =

(
2ρ2ẇ

∥ẇ∥2 + (wn + ρ)2
, ρ
∥ẇ∥2 + |wn|2 − ρ2

∥ẇ∥2 + (wn + ρ)2

)
, (2.29b)

coincide with the complex Cayley transform [591] and its inverse, imposing
u̇ = (u1, . . . , un−1) ∈ R1−n.

2.3.3.3. Upper Half-Plane and Disk

For the case of the 2-dimensional hyperbolic geometry, the Beltrami–Poincaré
construction is defined by the (open) upper half-plane and disk models, U2 and
D viz

= D2 ιδ= B2, respectively. In short, the real-valued or complex-valued upper
half-plane (cf. Section 2.7),

U2
R = {(x, y) ∈ R2 | y > 0}, (2.30)

U2
C = {z = (x+ iy) ∈ C | y = ℑ(z) > 0}, (2.31)

and the unit disk in the real or complex plane,

DR
ιδ

= B2
R = {(x, y) ∈ R2 | x2 + y2 < 1}, (2.32)

DC
ιδ

= B2
C = {z = (x+ iy) ∈ C | ∥z∥ < 1}. (2.33)
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Figure 2.1: Process of tessellation, under construction, of the hyperbolic disk, i.e. of a D2- or B2-type
space, via triangles, whose angles are π

2 , π
3 , and π

7

The geodesics
(1) in U2

C are composed of vertical straight half-lines and half-circles with
center on the real axis in the upper half-plane,

(2) in DC are composed of generalized D-circles orthogonal to the (boundary)
circle at infinity ∂DC

ιδ

= S1∞ ∼= RP1 of the unit disk.

Scholium 2.3.3.
(1) The right (complex-valued) half-plane will be

{z = (x+ iy) ∈ C | x = ℜ(z) > 0}. (2.34)

(2) The closed unit disk is

D ιδ

= B2 = {(x, y) ∈ R2 | x2 + y2 ⩽ 1} or (2.35)
{z ∈ C | ∥z∥ ⩽ 1}. (2.36)

⋄

In order to give also a visual indication of the 2-dimensional hyperbolic
geometry, we present two tessellated models in Figg. 2.1 and 2.1, since they give
an excellent epitomization of this geometry, along with its eye-appeal.

2.3.3.4. Beltrami–Cayley–Klein Model

A unifying projective version of Beltrami’s disk is previously prepared by
F. Klein [1494] [1495] [1496] in the Beltrami–Klein model, sometimes called
Beltrami–Cayley–Klein model [593]:

Dπ = {x = (x1, . . . , xn+1) | (x1)2 + . . .+ (xn)2 < 1;xn+1 = 1}. (2.37)
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Figure 2.2: Process of tessellation of the hyperbolic disk, i.e. of a D2- or B2-type space, adopting an
ideal triangular process, to wit, triply asymptotic triangles

2.3.3.5. Equivalence via Cayley Transform

There is an equivalence between the Riemann surfaces (2.31) (2.33). The
Cayley transform

φC : z 7→
z − i
z + i

(2.38)

ensures a conformal mapping of the upper half-plane onto the unit disk, to wit,

{z ∈ C | ℑ(z) > 0} onto {z ∈ C | ∥z∥ < 1},

and φC is a linear fractional transformation.
The opposite Cayley’s implication,

φ(z) = i

(
1− z
1 + z

)
, (2.39)

expects to map the disk DC onto the half-plane, with a one-to-one correspondence,
such that

φ : DC → {z ∈ C | ℑ(z) > 0}. (2.40)

So the spaces U2
C and DC are said to be conformally equivalent.

2.4. Certain Geodesically Convex Conditions

Let us also say something about the convexity, since is related to the above.
First we will provide a number of definitions for the metric space, and then for
the (normed) vector space.
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2.4.1. Geodesic and Strict Convexity; Convex Function on Metric
and Vector Spaces

Definition 2.4.1 (Geodesic convexity). Given a subset W of a metric space
(X , ρ) and a (constant speed) geodesic γc : [x, y]→ X (cf. Definition 2.2.2), the
set W is said to be geodesically convex if, for any two points x and y of W , there
is a geodesic segment [x, y] in X joining them and the image of such a segment
is entirely contained in W. The set W is geodesically convex in the strongest
sense of the word, if the image of the segment is unique (there is one and only
one geodesic between x and y). 3

So let us look at when can one say that a function is convex.

Definition 2.4.2 (Convex function on a metric space). Let W be once again a
subset of (X , ρ). A function φ : W → R∪{∞} is convex if the map φ◦γc : [0, 1]→
R is convex for every (constant speed) geodesic (γc)0⩽t⩽1 : [0, 1]→W , such that

φ
(
γc(t)

)
⩽ (1− t)φ

(
γc(0) = x

)
+ tφ

(
γc(1) = y

)
, (2.41)

where
(
γc(t)

)
has to do with an evaluation map at time t ∈ [0, 1]. 3

Now, as for the vector space, the definition on convex function is the following.

Definition 2.4.3 (Convex function on a vector space). Let X be a vector space
and W ⊂ X an affinely convex subset of X. We choose two distinct points x and
y in X. The function φ : W→ R

(1) is convex if

φ
(
ty + (1− t)x

)
⩽ (1− t)φ(x) + tφ(y), (2.42)

for all x, y ∈ W and t ∈ [0, 1], with 0 ⩽ t ⩽ 1;
(2) is strictly convex if

φ
(
ty + (1− t)x

)
< (1− t)φ(x) + tφ(y), (2.43)

for all x, y ∈ W and t ∈ ]0, 1[, with 0 < t < 1. 3

Under this circumstance, it is sufficient to point out that the ball model,
whether open Bn (2.21) or closed Bn, is a geodesically convex subset (Definition
2.4.1) equipped with both hyperbolic and Euclidean metric, and one of many
examples of convex subset of normed vector space(s). Remember that

(1) a closed unit ball Bn(ρ=1) = {x = (x1, . . . , xn) ∈ Rn | ∥x∥ ⩽ ρ = 1} is a
manifold with boundary ∂B = Sn−1, and it is convex in a normed vector space;

(2) a normed vector space X
viz
= (X, ∥·∥) is a vector space whose map x 7→ ∥x∥

goes from X to [0,∞[, and having the following properties, for all vectors x, y ∈ X:
(i) ∥x∥ ⩾ 0, and ∥x∥ = 0 iff x = 0,
(ii) ∥λx∥ = |λ|.∥x∥, for any scalar λ ∈ R (homogeneity),
(iii) ∥x+ y∥ ⩽ ∥x∥+ ∥y∥ (triangle inequality).
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When a normed vector space is finite-dimensional, we say it is a Minkowski
space. The closed unit ball and the sphere(s) are strictly convex, specifically. Let
us see what this means.

Definition 2.4.4 (Strict convexity of a normed vector space). Let a normed
vector space X

viz
= (X, ∥ · ∥), a unit sphere SnX = {x ∈ X | ∥x∥ = 1} (2.8) in X, and

x, y ∈ X be given. A normed vector space X is called strictly convex on the basis
of one of the following conditions:

(1) if ∥x∥ = ∥y∥ = 1, with x ̸= y, then ∥ty + (1− t)x∥ < 1, for all t ∈ ]0, 1[,
(2) if ∥x+ y∥ = ∥x∥+ ∥y∥, with x ̸= 0, then t ⩾ 0, for which y = tx,
(3) if there is a strictly convex function x φ−→ ∥x∥2,
(4) if no affine segment (joining any two points) is contained in SnX of X. 3

Every normed vector space—that is strictly convex—is uniquely geodesic (see
Definition 2.2.2).

2.5. Some Types of Möbius (Projective) Transformations

One of the fundamental concepts of modern geometry is by Möbius [1835], that is, the general
concept of biunivocal correspondence [bijection, one-to-one correspondence] or transformation, on
the plane and on the space.

— F. Enriques [894, p. 365]a

2.5.1. Orientation Preserving Isometries of the Hyperbolic Plane and
Disk

2.5.1.1. U2
CU2
CU2
C Case

Let
U2

C = {z ∈ C ∼= R2 | ℑ(z) > 0} (2.44)
be the complex-valued upper half-plane, whose Poincaré metric is

dz̄dz

ℑ(z)2
=
dx2 + dy2

y2
, (2.45)

with z = (x + iy). The group acting smoothly and transitively on U2
C is the

special linear group

SL2(R) =
{(

α β
γ δ

) ∣∣∣∣ α, β, γ, δ ∈ R, αδ − βγ = 1

}
, (2.46)

composed of all 2× 2 real matrices with unit determinant. As a set of points,
the group SL2(R) is a subset of R4, i.e. can be regarded, topologically, as a
submanifold of dimension 3 in the 4-space. The SL2-action on the complex-valued
upper half-plane is provided by a function of the form

z 7→ φαβγδ[U2
C](z) =

αz + β

γz + δ
=

(
α β
γ δ

)
z,

for α, β, γ, δ ∈ R,det(M) = 1,M
viz
= [M ]2×2 =

( α β
γ δ

)
∈ SL2(R). (2.47)

aSee also G. Castelnuovo [581, §§ 38, 58, 136].
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The function (2.47) is called Möbius transformation, or linear fractional trans-
formation of the U2

C-hyperbolic space, mapping U2
C onto itself. Which means

that φ[U2
C] is an orientation preserving isometry map, and it leaves this model

of (negative) geometry invariant.
Here we are introducing another piece of the puzzle; it is the group PSL2(R),

the projective special linear group of 2× 2 matrices over R. If the group SL2(R)
acts by a Möbius transformation (2.47), then the group of orientation preserving
isometries of the Beltrami–Poincaré upper half-plane shall be represented by the
quotient

PSL2(R) ∼=
SL2(R){

±
(
1 0
0 1

)}
viz
= {±I}

, (2.48)

where I equals the 2× 2 identity matrix. The expression (2.48) is by lifting to
SL2(R) the group PSL2(R).

The set PSL2(R) is the group of Möbius transformations of the kind φ{U2
C},

hence it is equal to the group of all biholomorphic (or conformal and bijective)
maps of U2

C to itself,
φ : U2

C → U2
C. (2.49)

We remark that the, in the topological sense, PSL2(R) is diffeomorphic to a
solid torus S1 × D (Cartesian product of the 1-dimensional circle with the disk).
The group SL2(R) is topologically equivalent to a 2-fold covering (double cover)
of PSL2(R). It can therefore be established a correspondence between these two
groups as follows.

Proposition 2.5.1. The universal cover of PSL2(R) is S̃L2(R). Using the
Möb-group notation, we have

π :
(
M̃öb

+

2 (R) ∼= S̃L2(R)
)
→
((

Möb
+
2 (R)

ιδ

= isom
+(U2

C)
)
∼= PSL2(R)

)
.

(2.50)
The notation isom

+ denotes the general group of orientation preserving isometries
of the hyperbolic 2-space. Let Z = π1

(
PSL2(R)

)
be the center of S̃L2(R) and the

kernel of the projection from S̃L2(R) into PSL2(R) (or, stated more correctly,
the center of S̃L2(R), the kernel projection ker(π) and the fundamental group of
PSL2(R) are all isomorphic to Z). The group S̃L2(R) is a central extension of
PSL2(R), so the exact sequence is

0 −→ Z −→
(
M̃öb

+

2 (R) ∼= S̃L2(R)
)

π−−−→
(
Möb

+
2 (R) ∼= PSL2(R)

)
−→ 0.

(2.51)

Scholium 2.5.1. Let φ : U2
C → U2

C. If we are given a curve γc of the upper
half-plane, the group isomorphism isom

+(U2
C)
∼= PSL2(R) is proven exhibiting

the following integral,∫
φ(γc)

|dφαβγδ[U2
C](z)|

ℑ
(
φαβγδ[U2

C](z)
) ⩽

∫
γc

|dz|
ℑ(z)

. (2.52)

⋄
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2.5.1.2. DCDCDC Case

Similar reasoning could be applied to the unit disk in the complex plane.
The functions

z 7→ φαβ [DC](z) =
αz + β

β̄z + ᾱ
=

(
α β
β̄ ᾱ

)
z, for α, β ∈ C, |α|2 − |β|2 = 1, (2.53a)

z 7→ φα[DC](z) = eiθ
z − α
1− ᾱz

, for α ∈ C, |α| < 1, θ ∈ R, (2.53b)

with complex numbers α and β, are Möbius invariant transformations. In
particular, they are a conformal self-mapping of the unit disk (or 2-ball) DC

ιδ

=
B2
C = {z = (x+ iy) ∈ C | ∥z∥ < 1}, i.e. a diffeomorphism from DC to itself,

φ : DC → DC. (2.54)

Having regard to the distance preserving, it should be mentioned the group
of orientation preserving isometries of the Beltrami–Poincaré disk, with the
projective special unitary group

PSU2(C) ∼=
SU2(C)
{±I}

∼= isom
+(DC). (2.55)

Such a group is isomorphic to the group of rotations in ordinary Euclidean
3-space, PSU2(C) ∼= SO3(R). So there is a link between the spatial rotation of
SO3(R) and the 2-sphere S2 ∼= R̂2 ιδ= R2 ∪ {∞}, or the Riemann sphere, if we
put R2 ∼= C (see below).

2.5.1.3. Abridgment of the Two Previous Cases

In the most schematic possible view of the above, we can rewrite in this way:

Möb
+
2 (R) =

{
φαβγδ[U2

C](z) =
αz + β

γz + δ

∣∣∣∣ α, β, γ, δ ∈ R
}

= aut(U2
C)

viz
= Möb(U2

C)
ιδ

= isom
+(U2

C)
∼= PSL2(R) ∼=

SL2(R)
{±I}

, (2.56)

Möb
+
B2(C) =

{
φαβ [DC](z) =

αz + β

β̄z + ᾱ

ιδ

= φα[DC](z) = eiθ
z − α
1− ᾱz

∣∣∣∣ α, β ∈ C
}

= aut(DC)
viz
= Möb(DC)

ιδ

= isom
+(DC) ∼= PSU2(C) ∼=

SU2(C)
{±I}

. (2.57)

The automorphism groups aut(U2
C) and aut(DC) are generated, under composition

of mappings, by the set of automorphisms of U2
C and DC, as are the isomorphisms

U2
C → U2

C and DC → DC.
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2.5.2. Möbius Group and Stereographic Projection

Cum sit possibile [ . . . ] & plurimum necessarium, ut in plano repræsentetur circuli in sphæram
corpoream incidentes, tanquam esset plana [ . . . ]. Cogit ergo huiusmodi ratio loco meridiani circuli
rectis uti lineis.a

— C. Ptolemy [2163, Claudii Ptolemæi sphæræ a planetis proiectio in planum, p. 1]

Bella, & ingeniosa, & utile inventione è stata quella degli antichi di gettare i punti, & i circuli
della sphera nei piani con proportione, & rispondenza di ragione [ . . . ]. [Gli antichi] si sono fondati
sopra la Perspettiva [ . . . ] si come ne insegna Tolomeo nel suo Trattato.b

— D. Barbaro [191, Parte Sesta, Che si chiama Planispherio. Spiegatura, Descrittione, et
Digradatione della Sphera, p. 163]

The groups Möb(U2
C) and Möb(DC) are subgroups of

Möb(Ĉ) ∼= PSL2(C) ∼=
SL2(C)
{±I}

, (2.58)

the set of all Möbius transformations, called Möbius group. The hat on Ĉ ιδ

=
C ∪ {∞} represents the extended complex numbers (more frequently, but inap-
propriately, referred to as extended complex plane), the set of complex numbers
augmented with a point at infinity in the projective space. This brings us to
identify Ĉ with the complex projective line, Ĉ ∼= CP1.

Since Ĉ ∼= CP1 can be characterized in terms of topological properties,
we say that it is equivalent to the 2-sphere in the 3-dimensional real space,
S2 = {(x1, x2, x3) ∈ R3 | (x1)2 + (x2)2 + (x3)2 = 1}, through stereographic
projection. In such a case, the complex plane (C) is describable with the plane
x3 = 0 in R3, and the number z = (x+ iy) can be identified with (x, y, 0), for
z ∈ C ∼= R2 and x, y ∈ R. As a consequence, the system of the projective line
extended by a point at infinity∞ is also geometrically equivalent to the Riemann
sphere,

Ĉ ιδ

= C ∪ {∞} ∼= CP1 ∼= S2. (2.59)

The Möbius group (2.58) is thereby the set of all transformations

z 7→ φαβγδ[Ĉ](z) =
αz + β

γz + δ
, for α, β, γ, δ ∈ C, αδ − βγ ̸= 0,

( α β
γ δ

)
∈ SL2(C)

(2.60)
of the Riemann sphere Ĉ ∼= CP1 ∼= S2, so

Möb(Ĉ) =
{
φ : Ĉ ιδ

= C ∪ {∞} → Ĉ ιδ

= C ∪ {∞}
∣∣∣∣ φαβγδ[Ĉ](z) = αz + β

γz + δ

}
= aut(Ĉ) ∼= aut(CP1) ∼= PSL2(C), (2.61)

where the bijective meromorphic mapping Ĉ ιδ

= C ∪ {∞} φ−→ Ĉ ιδ

= C ∪ {∞} is an
automorphism of the Riemann sphere (which is merely a Möbius transformation).

a«Because it is possible and very necessary to represent circles of a solid sphere on a plane [of
the projection] as if it [the sphere] were flat [ . . . ]. Such a procedure therefore requires that straight
lines are used in place of the meridian circle».

b«Beautiful, & ingenious, & useful invention was that of the Ancients [of the way] of sending
[projecting] the points, & the circles of the sphere on the planes with proportion, & respondence
ratio [ . . . ]. [The Ancients] were based on the Perspective [ . . . ] as it is taught by Ptolemy in his
Treatise».



2.6. Fuchsian Group (Properly Discontinuous Action) 57

Let us check out the value at ∞ of φαβγδ[Ĉ].

Theorem 2.5.1. Let φαβγδ[Ĉ](z) = αz+β
γz+δ for α, β, γ, δ ∈ C, αδ − βγ ̸= 0, and

let z ∈ C.
(1) If γ = 0, one has φ(∞) = +∞, and φ(z) =

(
α
δ

)
z + β

δ .
(2) If γ ̸= 0, one has

φ(∞) = lim
z→∞

∣∣∣∣∣α+ β
z

γ + δ
z

∣∣∣∣∣ = α

γ
, and φ(z) = lim

z→− δ
γ

∣∣∣∣αz + β

γz + δ

∣∣∣∣ = +∞. (2.62)

Margo 2.5.1. Studies and insights on the projective geometry are disseminated
in various works of A.F. Möbius [1835] [1836] [1837] [1838] [1840]. L

2.6. Fuchsian Group (Properly Discontinuous Action)

Let us turn our attention to the group Γ ⩽ PSL2(R) called Fuchsian group
[1060] [2125]. It is interesting for us because Γ is a subgroup of PSL2(R) ∼=
Möb

+
2 (R)

ιδ

= isom
+(U2

C); an example of Γ is the modular group

PSL2(Z) =
{(

α β
γ δ

) ∣∣∣∣ α, β, γ, δ ∈ Z, αδ − βγ = 1

}
, (2.63)

with integer matrices. Here we list some of the main properties.
(1) Γ is a non-elementary discrete (see below) subgroup of PSL2(R), or a

conjugate of this group in PSL2(C). It is discrete because
(1) the Γ-identity element is not an accumulation point of Γ,
(2) every convergent sequence of Γ is eventually constant.
(2) Γ acts isometrically and properly discontinuously on U2

C. In fact, it
may be viewed as a group of isometries of the upper half-plane, or a group of
isometries of a geodesically Riemannian surface locally isometric to U2

C. The
action of Γ is said properly discontinuous, if the set{

ϵ ∈ Γ
∣∣∣ ϵ(J ) ∩ J ≠ ∅

}
(2.64)

is finite, where J is a compact set of U2
C. We can express the same thing in

another way. Take as (open) neighborhoods of z1, z2 ∈ U2
C the double set of

points Σz1 and Σz2 . According to the discontinuous action, z1 and z2 are in
different orbits, so

ϵ(Σz1) ∩Σz2 ̸= ∅, (2.65)

for ϵ ∈ Γ, with ϵ(z1) ̸= z2.
(3) Γ acts freely on U2

C, and that is because Γ does not contain any non-trivial
elements of finite order (it is torsion free).

Proposition 2.6.1. Given the properties stated above, the following equivalent
conditions hold:

(1) if Γ is free and discrete, the quotient U2
C/Γ is a hyperbolic surface;
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(2) if U2
C/Γ is a compact Riemann surface for Γ, every element in Γ is

hyperbolic.

But it means that U2
C is the universal cover of the hyperbolic surface, and Γ is

a torsion free group of covering transformations; the quotient map π : U2 → U2/Γ
(canonical projection) is a holomorphic covering.

Since the other model for the hyperbolic plane is the (open) unit disk, the
discrete action of Γ is also applicable to D ιδ

= B2.

2.7. Tessellation of the Upper Half-Plane by Modular Group

At this time, pointing out a tessellation of the Beltrami–Poincaré hyperbolic
plane (Section 2.3.3.3), is might be useful, because it can be achieved directly
through the fundamental domain for the action on U2 of the modular group
PSL2(Z):

-2.0 -1.5 -1 -0.5 0 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

2.8. Groupable Synopsis via Commutative Diagram

The diagram below provides a useful overall view on certain issues addressed
in previous Sections. Hence the inspiration for new arguments.

π1
(
SO3(R)

) ∼= Z2 π1(RP3) ∼= Z2 1

S1
Spin3(R)︷ ︸︸ ︷

S3 ∼= SU2(C) ⊂ R4 ∼= H S2 ∼= Ĉ ∼= CP1

RP1 ∼= S1 RP3 ∼= SO3(R) S2 ∼= Ĉ ∼= CP1

fev

seq.

π

ι prj

ς (2-sheeted covering) {φ}=Möb(Ĉ)

ϖ

(2.66)

2.8.1. Hopf Fibration

Per row of (2.66).
(1) Z2

viz
= Z/2Z is the cyclic group of order 2, and the fundamental group of

SO3(R). For the action of SO3(R) on RP3, there is an evaluation isomorphism

fev : π1
(
SO3(R)

) ∼= Z2 99K π1(RP3) ∼= Z2. (2.67)
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(2) The Hopf fibration [1395] states that

ι : S1 ↪→ SU2(C) ∼= S3 prj−−→ S2. (2.68)

The 3-sphere S3 is intended as the total space of a fibration over a base space S2
with fiber made up of a (unit) circle

S1 = {x ∈ R2 | ∥x∥ = 1} ∼= {z = (x+ iy) ∈ C | ∥z∥ = 1}. (2.69)

(3) The bundle ϖ : SO3(R)→ S2 is a principal fiber bundle; looking closer,
it is a SO2(R)-bundle SO3(R)→ SO3(R)/SO2(R) ∼= S2.

2.8.2. Spinorial Representation of the Orthogonal Group on a 3-Space

Spinors were first used under that name, by physicists,a in the field of Quantum Mechanics.
In their most general mathematical form, spinors were discovered in 1913 [544] by the author of
this work, in his investigations on the linear representations of simple groups; they provide a linear
representation of the group of rotations in a space with any number n of dimensions, each spinor
having 2ν components where n = 2ν + 1 or 2ν.

— É. Cartan [558, intro]

Per column of (2.66).
(1) The projection π : S1 → RP1 says that the real projective line RP1 is

homeomorphic to the circle S1 (1-sphere), RP1 ∼= S1. The fundamental group of
S1 is isomorphic to Z, for which S1 ∼= R/Z.

(2) The covering map ς : SU2(C)→ SO3(R) establishes a (smooth) surjective
homomorphism between SU2(C) and SO3(R). It is known that SU2(C) is
compact and simply connected, and SO3(R) is compact and connected but not
simply connected; from that comes the significance of the map, which has a
mathematical foundation and a physical justification. The set SU2(C) is the
(simply connected) universal covering group of SO3(R). Immediately below is a
description of this result.

(3) The automorphism of the Riemann sphere S2 ∼= Ĉ ∼= CP1 is inherent in
the group Möb(Ĉ) = aut(Ĉ), see Eq. (2.61).

2.8.3. Pauli-like Spinors in the Complex Hilbert 2-Space; Angular
Momentum in Quantum Mechanics and Topological Nature of the
Electron Spin

One has often suggested that this formally possible representation, by means of two-valued
eigenfunctions, is unfair to the true physical nature of things [wahren physikalischen Sachverhalt].
[ . . . ]. On the other hand, a representation of the quantum-mechanical behavior of the magnetic
electron using the method of eigenfunctions [ . . . ] is highly desirable.

— W. Pauli [2027, p. 602]

2.8.3.1. The Covering Morphisms SU2(C)SU2(C)SU2(C)→→→SO3(R)SO3(R)SO3(R)

Physically speaking, the covering map

ς : SU2(C)→ SO3(R), (2.70)
aThe first is P. Ehrenfest, as reported by S.-I. Tomonaga [2511, p. 129].
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by making reference to an electron, or a spin- 12 particle, is a spinor map
ς : SU2(C) ∼= Spin3(R) → SO3(R), where is possible to highlight the spin
group Spin3(R), the set of all unit quaternions

{q ∈ H | qq̄ = 1}, with q = x11 + x2i + x3j + x4k (2.71)

(see below), and ker(±I). The issue is that the universal covering of SU2(C) ∼=
Spin3(R) is a 2-valued representation of SO3(R); and it is because two elements
of SU2(C) ∼= Spin3(R) are exactly associated with each element of SO3(R), so
that the complex special unitary group of degree 2, or the real spin 3-group, is
equivalent to a 2-fold covering (double cover) of the 3-dimensional Euclidean
rotations group.

In a nutshell, SU2(C) and SO3(R) are not globally but only locally isomorphic
(related to the composition of their infinitesimal transformations); they have the
same universal covering group, with a corresponding Lie algebra su2(C) ∼= so3(R)
[545, XI, pp. 352-355].

Let us see what all the fuss is about. Consider a 2-component spinor or Pauli
spinor [2027]

ψ =

(
ψα

ψβ

)
with

{
ψα+ =

(
ψα

0

)
, ψβ− =

(
0
ψβ

) ∣∣∣∣ ψ ∈ C2 ∼= H

}
. (2.72)

Mathematically, it is a column vector with two complex components in the 2-
dimensional complex Hilbert space, denoted by C2 ∼= H and properly called spin
space. In the language of quantum mechanics, the spinor is a 2-component wave
function that serves to describe two states, ψ

[
+ 1

2

]
=
(
1
0

)
and ψ

[
− 1

2

]
=
(
0
1

)
,

of a non-relativistic electron or any particle of one-half spin, i.e. an object
obeying Fermi–Dirac statistics, by the E. Schrödinger’s method of eigenfunctions
[2314, 2315, 2316, 2317]. Applying a vector x⃗ = (x1, x2, x3), we just write the
spinor as

ψ(x) =

ψ(x⃗,+ 1
2

)
ψ
(
x⃗,− 1

2

) . (2.73)

Let Rθ =
{
Rθ1, R

θ
2, R

θ
3

}
be the rotations about the axis x1, x2 and x3 by an

angle θ,

Rθ1 =

(
1 0 0
0 cos θ1 − sin θ1

0 sin θ1 cos θ1

)
, Rθ2 =

(
cos θ2 0 sin θ2

0 1 0
− sin θ2 0 cos θ2

)
, Rθ3 =

(
cos θ3 − sin θ3 0
sin θ3 cos θ3 0

0 0 1

)
.

(2.74)

Let M viz
= [M ]2×2 =

( α β
−β̄ ᾱ

)
be a 2× 2 matrix, with α, β ∈ C, relating to the

special unitary 2-group.
The orthogonal transformations in a real 3-space of SO3(R) are thus defined:

ẋµ =
∑
ν

Rθµνxν , (2.75)
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from which ∑
µ

ẋ2µ =
∑
µνξ

RθµνR
θ
µξxνxξ =

∑
µνξ

δνξxνxξ =
∑
ν

x2ν , (2.76)

to wit, {
˙⃗x = (ẋ1, ẋ2, ẋ3)

}
=
{
Rθx⃗ = (x1, x2, x3)

}
; (2.77)

whilst the unitary transformations in a complex 2-space of SU2(C) is

ψ̇µ =
∑
ν

Mµνψ
ν , (2.78)

letting

ψ̇ =

(
αC βC
−β̄C ᾱC

)
ψ. (2.79)

The complex conjugate of ψ̇µ, together with the summation
∑
ν M̄µνψ̄

ν , gives
ψ̄µ = ψµ, where M̄ =

(
0 1
−1 0

)
M
(

0 1
−1 0

)−1.
We can set the correspondence between the two transformations (2.75) and

(2.78), by associating a C2×2 Hermitian matrixX to each 3-vector x⃗ = (x1, x2, x3)
in R3,

X = {x⃗ · σ⃗ = (σ1,σ2,σ3)} = x1σ1 + x2σ2 + x3σ3

=

{(
x3 x1 − ix2

x1 + ix2 x3

) ∣∣∣∣ x ∈ R

}
, (2.80)

such that Ẋ = MXM†, where σ⃗ = (σ1,σ2,σ3) is the 3-spin vector with the
σ-matrices as its components. The matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(2.81)

are called Pauli (spin) matrices,a having trace equal to zero, tr(σµ) = 0, and
satisfying the relation

σµσν = δµνI+ iεµνξσξ, (2.82)

where δµν is the Kronecker delta and εµνξ is the Levi-Civita symbol [1631, pp.
180-182], an anti-symmetric collection of indices,

εµνξ


1 for a cyclic permutation of {µ, ν, ξ} = {1, 2, 3},
−1 for an anti-cyclic permutation of {µ, ν, ξ} = {1, 2, 3},
0 otherwise.

(2.83)

aFor a 4-vector xµ = (x0, x1, x2, x3), in the Hermitian matrix X =
{
xµ = (x0, x1, x2, x3) · σµ =

(σ0, σ⃗)
}
= x0 + x1

σ1 + x2
σ2 + x3

σ3 =
(

x0+x3 x1−ix2

x1+ix2 x0−x3

)
, the matrix σ0

viz
= I =

(
1 0
0 1

)
is the Pauli

identity matrix.
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The Pauli matrices form a basis in the linear vector R-space of the 2×2 Hermitian
matrix (2.80).

Combining the rotation matrices and the matrix M with its conjugate
transpose M†, we get

Rθµν =
1

2
tr(σµMσνM

†). (2.84)

Since it is possible to replace M with −M (without changing the equation), it
became understandable that for a matrix Rθ of SO3(R) are set out two distinct
matrices M and −M of SU2(C).

2.8.3.2. Example. Irreducible Covering Spin-Space for 4π

Let us impose

M =

(
e−

1
2 iθ

3

0

0 e
1
2 iθ

3

)
∈ SU2(C) −→ Rθ3 =

(
cos θ3 − sin θ3 0
sin θ3 cos θ3 0

0 0 1

)
∈ SO3(R),

(2.85)
from which

ẋ1 = cos θ3x1 − sin θ3x2, (2.86a)

ẋ2 = sin θ3x1 + cos θ3x2, (2.86b)

ẋ3 = x3. (2.86c)

Let Ŝ = 1
2ℏσ⃗, namely S1 = 1

2ℏσ1, S
2 = 1

2ℏσ2, S
3 = 1

2ℏσ3, be the spin (matrix)
of an electron, where Ŝ is the spin angular momentum (or spin operator).

Let us recall the difference between the orbital angular momentum (operator)
L̂ and the spin angular momentum (operator) Ŝ of an electron, or a spin one-half
particle: the first (L̂) consists of an integer multiple of the reduced Planck
constant, ℏ = h

2π , the second (Ŝ) is a half-integer multiple of ℏ, which is 1
2ℏ. The

operator for the total angular momentum (Ĵ = L̂+ Ŝ) will be a half-odd-integer
multiple of ℏ.

There follows a remarkable occurrence. The rotation about, say, the x3-axis
through an angle θ3 = 2π = 360◦ on a coordinate system is different from
that on a spinor. A coordinate system comes back to its original state after a
rotation of 2π, but a spinor returns to its original state after two full rotations,
i.e. after completing a rotation of 4π = 720◦ about the same x3-axis. A spinor
representation, after a rotation of 2π, is therefore only halfway, so to speak, to
the identity (or neutral) symmetry element, and it has negative value, ψ̇ = −ψ.

What the wording expresses is that the operations Rθ3 and Rθ3 + 2π are the
same (rotation) element of SO3(R), but they are also two distinct elements, or
matrices, of SU2(C), one positive and one negative, M (2.85) and −M .

Let j =
{
0, 12 , 1,

3
2 , 2,

5
2 , . . .

}
be the eigenvalue of the total angular momentum

(Ĵ), be it integer or half-integer. The representation equipped with integer values
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of j, called even (actually tensor) representation, can be written as

tensor/even rep. (integer j)︷ ︸︸ ︷
D(j)(M) = +D(j)(−M), (2.87)

and the representation equipped with half-integer values of j, called odd (actually
spinor) representation, as

spinor/odd rep. (half-integer j)︷ ︸︸ ︷
D(j)(M) = −D(j)(−M) . (2.88)

Representations of type D(j) are irreducible. A representation is said to be
irreducible if it does not contain a non-trivial invariant subspace. The matrices
M∈SU2(C) and −M∈SU2(C) are the same as a double-valued representation of
SO3(R). The space both for D(j) of SO3(R) and for D(j) of SU2(C) has the
dimension 2j + 1; it is a complex Hilbert space H

ℓ

+1, and it can be called

ℓ

-dimensional representation space, where

ℓ

= 2j, with integer and half-integer
j, respectively.

The existence, in the mathematical sense, of an electronic spin, or a Pauli-like
spinor of fermionic particles, meaning objects with half-odd-integer spin, is
guaranteed by the topological nature of the rotation group in Euclidean 3-space.

(1) The representation D(j) of SO3(R) amounts to integer values of j.
(2) The representation D(j) of SU2(C) with integer values of j is a single-

valued representation of SO3(R).
(3) The representation D(j) of SU2(C) with half-odd-integer values of j is a

double-valued representation (M and −M) of SO3(R) ∼= Spin3(R).
(4) The 4π-symmetry of a 2-component wave function has to do with the

fact that the initial value, for a spin system, is reinstated with two successive
rotations by 360◦, or a rotation of 720◦.

2.8.4. Unit Quaternions

[A]n under-current of thought was going on in my mind [ . . . ]. An electric circuit seemed to
close; and a spark flashed forth, the herald (as I foresaw, immediately) of many long years to come
of definitely directed thought and work.

— W.R. Hamilton, in [1197, chap. XXVIII, pp. 434-435]

Center of (2.66). We will divide the investigation into two steps.

2.8.4.1. Step I

The bijective mapping φ−1 : S3 ⊂ R4 → SU2(C) is determined by

x 7→ φ−1(x) =

(
x1 + ix4 x2 + ix3

−x2 + ix3 x1 − ix4
)
ιδ

= R4 =

{(
α β
−β̄ ᾱ

) ∣∣∣∣ α, β ∈ C
}

= x1
(
1 0
0 1

)
+ x2

(
i 0
0 −i

)
+ x3

(
0 1
−1 0

)
+ x4

(
0 i
i 0

)
, (2.89)

involving the 3-sphere S3 = {(x1, x2, x3, x4) ∈ R4 | (x1)2+(x2)2+(x3)2+(x4)2 =
1} in R4 and the special unitary group of degree 2 over the complex field. We
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will call the space R4 the quaternionic space R4 ∼= H (because the 3-sphere can
be explained through the algebra of quaternions). The symbol R4 denotes a set
of C2×2 matrices and represents a matrix model of R4 ∼= H. Let us write the
basis elements for R4 in the form

1 =

(
1 0
0 1

)
, i =

(
i 0
0 −i

)
, j =

(
0 1
−1 0

)
, k =

(
0 i
i 0

)
; (2.90)

the Eq. (2.90) is a basis quaternions expressed with C2×2 matrices, called
complex quaternions HC (and therefore it falls under the complex quaternion
algebra).

There exists a isomorphism φ(q 7→ x) : R4 → R4 defined by {1, i, j, k}, where
a quaternion expression of type

q = x11 + x2i + x3j + x4k (2.91)

and the set x = (x1, x2, x3, x4) are at stake. It is noted that the quaternion
x2i + x3j + x4k is the imaginary part (or vector part) of q, and x11 = x1 is the
real part (or scalar part) of q. Thanks to φ(q 7→ x), the matrix multiplication is
a quaternion multiplication on R4, and hence the 3-sphere S3 can be thought of
as a group of unit quaternions in R4 ∼= H, for which S3 ⊂ R4 ∼= H.

About the group SU2(C), all its elements are in R4, so SU2(C) ⊂ R4. Then
SU2(C) is also a group of unit quaternions in R4 with a trivial bundle

SU2(C) ↪→ R4 × SU2(C)→ R4. (2.92)

It is concluded that S3 ∼= SU2(C).

Scholium 2.8.1 (Fundamental formula of Hamilton, and non-Abelian quaternion
group of order 8). It is important to remember that the basis of the quaternions
{1, i, j, k}, that is, the R4-algebra of matrices

(
1 0
0 1

)
,
(
i 0
0 −i

)
,
(

0 1
−1 0

)
,
(
0 i
i 0

)
,

satisfies the fundamental formula of Hamilton27

i2 = j2 = k2 = ijk = −1, (2.93)

together with the following explicit relations,

i2 = j2 = k2 = −1, (2.94a)
ij = −ji = k, jk = −kj = i, ki = −ik = j, (2.94b)

in which the multiplication is associative and non-commutative. Among the many
works of W.R. Hamilton on his quaternions, see [1282] [1284]. The quaternion
group is

Q8 = {1, i, j, k,−1,−i,−j,−k}; (2.95)

this is a non-Abelian group of order 8, and its subgroups are:

{1}, or the identity element (real quaternion),
{1,−1} of order 2, and
{1,−1, i,−i}, {1,−1, j,−j}, {1,−1, k,−k} of order 4.
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We should note that there is an isomorphism between the quaternion algebra
and the Pauli matrices (2.81). If i = iσ1, j = iσ2, k = iσ3, then

Q8 =
{
±[1 7→ I]2×2

,±σ
}
= {1,σ1,σ2,σ3,−1,−σ1,−σ2,−σ3} . (2.96)

⋄

Scholium 2.8.2. The complex special unitary group of degree 2 may also be
realized as the group of quaternions with norm equal to 1, which is denoted by
Sp1(H) and it is a compact symplectic group; so

S3 ∼= SU2(C) ∼= Sp1(H), (2.97)
su2(C) ∼= so3(R) ∼= sp1(H). (2.98)

⋄

2.8.4.2. Step II

The special orthogonal 3-group SO3(R) is homeomorphic to the real pro-
jective 3-space RP3, hence π1

(
SO3(R)

) ∼= Z2. The topological equivalence
(continuous bijection) RP3 ∼= SO3(R) is associated with what we saw before:
the homomorphism from SU2(C) onto SO3(R), as well as the homeomorphism
S3 ∼= SU2(C). Note the following.

(1) Given a homomorphism

ξ : SU2(C)→ SU2(C)/Z2 = {±1}, (2.99)

we construct an isomorphism

µ : SU2(C)/Z2 = {±1} → SO3(R); (2.100)

the quotient SU2(C)/Z2 = {±1} is isomorphic to SO3(R). Here is a diagram,

S3 ∼= SU2(C) ∼= Spin3(R) SO3(R)

SU2(C)
Z2={±1}

ς

ξ
µ

The morphism ς is a particular instance of the covering map ς previously stated.
The group SO3(R) can be thought of as a quotient of S3 ∼= SU2(C). But also
the projective space RP3 is homeomorphic to the quotient of the 3-sphere with
an antipodal map π : S3 → RP3, from which the equivalence between SO3(R)
and RP3.

(2) The composition of

S3 → RP3 ∼= SO3(R) (2.101)
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(action of S3 on RP3 through a map from the 3-sphere to the orthogonal group
on a 3-space) and of

RP3 → S2 ∼= SO3(R)/SO2(R) (2.102)

is but the above-mentioned Hopf bundle, or principal S1-bundle, S1 ↪→ S3 → S2.
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3
On Dimensional Continuum, Part I. Ricci

Calculus (Calculus of Tensors and Curvature
Tensors), Lorentz–Minkowski 4-Manifolds plus
Spinor Representation, and Clifford Algebra

[The] way of considering quantities in more than three dimensions is just as exact as the other;
in fact algebraic letters can always be regarded as representing numbers, whether they are rational or
not. I already said that it is not possible to conceive more than three dimensions. A clever person of
my acquaintance believes however that duration [durée] can be considered as a fourth dimension.28

— J.-B. le R. D’Alembert [47, p. 1010]

[F]unctions relate essentially to time, which we will always denote by t, and since the position
of a point in space depends on [its distances from] three rectangular coordinates x, y, z, these
coordinates, in mechanical problems, are supposed as being functions of t. So we may regard
mechanics as a geometry of four dimensions [mécanique comme une géométrie à quatre dimensions],
and mechanical analysis as an extension of geometric analysis.

— J.L. Lagrange [1562, № 185, p. 223]

3.1. Excerpts from Memory: Ricci Methods

I will designate by the name of absolute differential calculus [tensor calculus] the set of methods
I have called another time of covariant and contravariant derivative, since they are applicable for
each fundamental form regardless of the choice of independent variables and indeed require that
these [variables] be fully general and arbitrary29 [2199, p. 1336].

On Analysis issues, which by their nature are not connected with the choice of independent
variables, I have long availed myself of a tool, that I call absolute Differential Calculus, leading to
formulæ and equations, which always occur under the same form for any system of variables30 [2201,
p. 1].

— G. Ricci Curbastro

Nacque in questa casa il [12] 1 1853 Gregorio Ricci Curbastro, maestro insigne, matematico
sommo. Diede alla scienza il calcolo differenziale assoluto, strumento indispensabile per la teoria
della relatività generale, visione nuova dell’Universo.a

— Memorial plaque of G.R.C. at his birthplace, Corso Garibaldi, 39-41, Lugo, Ravenna

3.1.1. What is This Calculus?

3.1.1.1. A Multi-faceted Tool

G. Ricci [2195] [2196] [2197]31 [2198] [2199], when he conceived the absolute
differential calculus—nowadays called Ricci calculus, or tensor calculus (tensor

a«In this home Gregorio Ricci Curbastro was born on [12] 1 1853, a distinguished master, supreme
mathematician. He gave to science the absolute differential calculus, an indispensable tool for the
theory of general relativity, a new vision of the Universe».
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analysis)—as a wide extension of vector calculus (vector analysis), starting from
the Riemannian metric and the symbolic equipment of Christoffel (Section 1.2)
(see Levi-Civita [1631, p. 5] = [1633, p. vii]),32 he was moved by the intention
of finding invariant relations and equations which do not lose their validity
when there are arbitrary changes, according to the purposes of mathematical
description (in the pre-relativistic era), from one coordinate system to another
coordinate system.a Only later [758] it will be understood that it also works
well in the physical realm (general relativity).

The definition of the Ricci/tensor calculus can be divided into four ramifica-
tions, that are summarized here below. It is

(i) an algebraic theory of differential invariants (in which the differential
quantities remain unchanged with respect to certain transformations of the
coordinates);

(ii) a technique for solving partial differential equations, i.e. integrating these
equations (with the operation of taking covariant and contravariant derivatives);

(iii) an apparatus of analytical procedures readily used in Riemannian geom-
etry (reinterpretation of Christoffel’s algorithms in an analytical perspective);

(iv) a tool for the expression of laws of nature that are invariant with
respect to the displacement in space and time (general relativity under the
Grossmann–Einstein principle).

Margo 3.1.1. It is worth noting that many of these issues, which later converge
under the category of tensor algebra (Section 3.2), are transversal; we find them
mutatis mutandis e.g. in invariant theory and combinatorics. In this regard,
G.-C. Rota writes [2233, p. 21]:

[I]f equations [in the tensor algebra] are to express geometric properties, then they must hold no
matter what coordinate system is chosen; in other words, equations that describe geometric facts
must be invariant under changes of coordinates. The program of invariant theory, from Boole to our
day, is precisely the translation of geometric facts into invariant algebraic equations expressed in
terms of tensors.

This just to give an approximate idea of the wide range of applications. L

3.1.1.2. Algorithmic Theory of Mechanics of Continuous Deformable
Bodies

To put the four definitions above more succinctly, and to merge them to-
gether, we can say that the Ricci/tensor calculus is an algorithm, or rather,
an algorithmic theory, based on the notion of covariant and contravariant dif-
ferentiation processes (applicable to covariant and contravariant tensors), for
the mechanics of continuous deformable bodies at the service of the intrinsic
geometry of Riemannian spaces, see A. Palatini [1994, § 1]. It allows to translate
the geometro-physical structure of space into an analytic form independent of
the particular choice of the system of variables. To this end, some elements

aA first yet strong stimulus for the conception of tensor calculus, in the Ricci–Levi-Civita form,
is to be found in Beltrami’s differential parameters (among the various uses of differential parameters,
their extension to potential theory and theory of elasticity in Riemannian spaces is relevant in
Beltrami’s papers); for more in-depth information, see [2467].
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(e.g. the distance between two infinitely close points, or the kinetic energy) are
inserted and serve as absolute-term in the calculus.

3.1.2. The Role of Geometry in Gravitational Physics

& è forza confessare, che il voler trattar le quistioni naturali senza Geometria è un tentar di
fare quello, che è impossibile ad esser fatto.a

— G. Galilei [1072, Dialogo secondo, p. 198]

I attach special importance to the view of geometry [ . . . ], because without it I should have been
unable to formulate the theory of relativity. Without it the following reflection would have been
impossible: – In a system of reference rotating relatively to an inert system, the laws of disposition
of rigid bodies do not correspond to the rules of Euclidean geometry on account of the Lorentz
contraction; thus if we admit non-inert systems we must abandon Euclidean geometry.

— A. Einstein [861, pp. 6-7] [862, p. 33], cf. endnote 34

The space of old Euclidean geometry is comparable to a crystal [Kristall], which is made up
of uniform and immutable atoms [gleichen unveränderlichen Atomen] in the regular and rigid,
unchangeable arrangement of a lattice [starren, unveränderlichen Anordnung eines Gitters]; the
space of new Riemann–Einstein geometry is instead comparable to a liquid [Flüssigkeit], which
consists of the same uniform and immutable atoms, but in mobile positions and orientations,
depending on the forces acting upon them.

— H. Weyl [2635, p. 45]

Einstein’s subsequent understanding, on the advice of M. Grossman,33 was
to use the Ricci’s covariance method to rethink the classes of inertial frame of
reference outside the special relativity. Einstein (see epigraph) was aware that
flat geometry had to be replaced, because of the Lorentz, or FitzGerald–Lorentz,
contraction [1010] [1685]; but he lacked a study on Riemann’s geometry and had
no knowledge of Ricci’s and Levi-Civita’s investigations.34

Tensor calculus is the foundation of Einstein’s theory of general relativity, as
it is required that the laws of gravitation reveal a tensorial behavior in space-time;
here, it means that physical laws must be invariant, that is, absolute, in the face
of a generic change in the spatio-temporal frame of reference. This makes it
possible to specify, in the heart of gravitational equations, the solidarity between
phenomena and space-time, which is the theater where phenomena take place.

Incidentally, the Einstein’s postulate for the gravitation is made of two
passages.

(1) Physical laws of gravity are expressed by means of geometric postulates
of space(-time). Geometry thus guarantees to physics the request of absoluteness,
namely of independence of any reference frame (the geometric neutral-space
is, by assumption, absolute). At this stage of postulation, the law of motion
of a particle, with the equations of the geodesic (see Section 1.6), is used. In
the absence of matter and energy, there is a pseudo-Euclidean space-time, aka
Minkowski space-time, and the law of motion is the law of inertia (see Section
3.4.1); in the presence of matter and energy, with the law of motion it is expected
that matter and energy induce a curvature in space-time.

(2) Phenomena are described with a spatio-temporal tensor analysis, for
which the character of physical laws is translated tensorially. The tensor repre-
sentation then ensures the invariance of the laws in the change of reference frame.

a«& it is a forced confession, that the will to deal with natural issues without Geometry is an
attempt to do what is impossible to do».
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Here an energy-momentum tensor (4.4), often referred to as a stress-energy ten-
sor, or even stress-energy-momentum tensor, is used, and represents the intrinsic
kinetic energy of matter (it works as matter-energy flow), the linear invariant of
which is the density of matter-energy, multiplied by the square of the speed of
light in vacuum. Since gravitational field Eqq. (4.1) coincide with the definition
of the energy-momentum tensor, the concept of energy corresponds to that of
space-time curvature, or to an indicator of this curvature tensorially determined,
and the density of matter-energy is but the Gaussian curvature (see Section
2.1.1).

3.2. Rudiments of Tensor Calculus

3.2.1. Tensor Multilinear Algebra and Tensor Analysis

The grouping of the physical properties of crystals [ . . . ] is made according to the states of matter
[ . . . ] distinguished in scalar, vectorial and tensorial [tensorielle], the last of which encompasses
[states] that occur under stress and deformation [stress-strain relations] [ . . . ] of non-rigid bodies,
[ . . . ] so the characteristic physical quantities may be called tensors [Tensoren].

— W. Voigt [2592, pp. v, 20].

A tensor is an algebraic object generalizing the concept of vector and de-
scribing a linear transformation (between sets of algebraic objects). Among the
various definitions, we will take a look at those of tensor

(1) as a multilinear map,
(2) as an element of vector spaces (via tensor product),
(3) as an element obtained under a change of basis.

Other definitions on tensor spaces and algebras, tensor bundle and tensor field,
set out below.

Margo 3.2.1 (From crystal structure to algebra). The word tensor, in the usual
meaning, initially appears within the context of crystallography studies, with W.
Voigt, see J.F. Nye [1962, p. 5]. L

3.2.1.1. Covariance and Contravariance in Ricci’s Approach

If now all the linear equivalents of one of two associated forms are similarly related to corre-
sponding linear equivalents of the other, so that each may be derived from each by the same law,
the forms so associated will be said to be concomitant each to the other. This concomitance may be
of two kinds [ . . . ]. The first species of concomitance is defined by the corresponding equivalents of
the two associated forms being deduced by precisely similar, or, as we have expressed it, concurrent
transformations or substitutions, each from its given primitive. The second species of concomitance
is defined by the corresponding equivalents being deduced not by similar but by contrary, i.e. re-
ciprocal or complementary substitutions. Concomitants of the first kind may be called co-variants;
concomitants of the second kind may be called contra-variants.

— J.J. Sylvester [2442, p. 290].

Covariance and contravariance are transformations that refer to the way in
which the description of a geometric (or physico-geometric) tensor-like object
changes when a change of basis or of coordinates is made. The origin of these
two terms goes back to J.J. Sylvester.

Definition 3.2.1 (Via multilinear form and tensor product). Let V
viz
= (V,F)

be a finite-dimensional vector space over a field F, and V∗ viz
= (V∗,F) the dual
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space of covectors, that is to say, of covariant vectors. An object Τrs on V, which
is r-contravariant (contravariant of degree r), i.e. r times contravariant, and
s-covariant (covariant of degree s), i.e. s times covariant, is called

(
r
s

)
-tensor or

tensor of type (r, s), with r, s ∈ N ∪ {0}, under the following conditions.
(1) We say that Τrs is a tensor of type (r, s) since it is a multilinear map (a

function linear separately in each component),

Τ : V∗ × · · · ×V∗︸ ︷︷ ︸
r times/copies

×V× · · · ×V︸ ︷︷ ︸
s times/copies

→ F, (3.1)

where there are r-contravariant copies (indices) of V∗ and s-covariant copies
(indices) of V.

(2) The second definition of tensor implies the fixing of concept of tensor
space.a We call tensor space the vector space T(V), and hence tensor space of
type (r, s) the vector space Trs(V), that is,

Trs(V)
viz
= Trs(V,F) =

V⊗ · · · ⊗V︸ ︷︷ ︸
r times/copies

⊗V∗ ⊗ · · · ⊗V∗︸ ︷︷ ︸
s times/copies

 = V⊗r

⊗ V∗⊗s

. (3.2)

(i) We say that Τrs is a tensor of type (r, s) since it is an element of Trs(V),
as a result of a tensor product of r-contravariant copies (indices) of V and s-
covariant copies (indices) of its dual space V∗, meaning that Τrs is an element of
the tensor product space (3.2). Comprehensibly, Trs(V) is the space of all tensors
Τ
r
s.

(ii) The rank of a tensor is the number of covariant and contravariant indices,
and it is independent of the number of underlying space dimensions. Here one
has rk(V)r+s, and Trs(V) = dim(V)r+s, whilst T(V) is finite-dimensional.

(iii) The
(
r
s

)
-tensor product of module homomorphism is(

r⊗
V

)
⊗

(
s⊗

V∗

)
→ Trs(V,F). (3.3)

3

Definition 3.2.2 (Via change of basis matrix). Let V be a finite-dimensional
vector space over a field F. Let Bv = {v1, . . . , vn} and Bw = {w1, . . . , wn} be
two bases of V, and v1, . . . , vn and w1, . . . , wn the basis vectors. Assume that
Bv and Bw are related by a change of basis matrix (also known as change of
coordinates matrix ) [M ]Bv

Bw
, given by Bv 7→ Bw, putting wν =

∑n
µ=1[M

µ
ν ]vµ and

vν =
∑n
µ=1[N

µ
ν ]wµ, where [Nµ

ν ] is the invertible matrix of [Mµ
ν ] (MN = NM =

In). Now, tensors (and tensor transformation) are by definition basis-independent.
Denoting by Τ = Τν1···νrµ1···µs

the components of Τ in relation to Bv and by Τ̃
ν1···νr
µ1···µs

aA tensor space is always a vector space, but the converse is not true (there are vector spaces
that do not preserve the tensor nature along isomorphic transformations).
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the components of Τ in relation to Bw, then

Τ = Τν1···νrµ1···µs
vν1 ⊗ · · · ⊗ vνr ⊗ vµ1 ⊗ · · · ⊗ vµs

= Τ̃
ν1···νr
µ1···µs

wν1 ⊗ · · · ⊗ wνr ⊗ wµ1 ⊗ · · · ⊗ wµs . (3.4)

The coordinates of Τ with respect to Bv and Bw are

Τ̃
ν1···νr
µ1···µs

=

n∑
ξ1,...,ξr,
ϱ1,...,ϱs

[
Mν1
ξ1

]
· · ·
[
Mνr
ξr

] [
Nϱ1
µ1

]
· · ·
[
Nϱs
µs

]
Τ
ξ1···ξr
ϱ1···ϱs , (3.5)

Τ
ν1···νr
µ1···µs

=

n∑
ξ1,...,ξr,
ϱ1,...,ϱs

[
Nν1
ξ1

]
· · ·
[
Nνr
ξr

] [
Mϱ1
µ1

]
· · ·
[
Mϱs
µs

]
Τ̃
ξ1···ξr
ϱ1···ϱs , (3.6)

where an arrangement of such relations turns up. 3

Margo 3.2.2 (Upper and lower indices). The upper (superscripts) r-indices are
referred to as contravariant, since the transformations of the tensor components
are the inverse of the change of basis. The lower (subscripts) s-indices are
referred to as covariant, since the transformations of the tensor components are
the same as the transformations under change of basis. L

3.2.1.2. Tensor Spaces & Tensor Algebras

Definition 3.2.3. Let us now give a list of some identical tensor spaces.

T0
0(V) = T0(V) = T0(V) = F, (3.7)

T1(V) = T1
0(V) = V, T1(V) = T0

1(V) = V∗, (3.8)

Tr(V) = Tr0(V) = V⊗r···⊗r︸ ︷︷ ︸
times/copies

, Ts(V) = T0
s(V) = V∗⊗s···⊗s︸ ︷︷ ︸

times/copies

, (3.9)

T(V) =
⊕
r,s⩾0

Trs(V), T•(V) =
⊕
r⩾0

Tr(V), T•(V) =
⊕
s⩾0

Ts(V), (3.10)

Trs(V) = Tr(V)⊗ Ts(V). (3.11)

The tensor space T(V) is known as tensor algebra of V, while T•(V) and T•(V)
are, respectively, the contravariant (•) and covariant (•) tensor algebra of V.

3

3.2.1.3. Tensor Bundle and Tensor Field

Now, look at the notion of tensor bundle, which will be useful to define the
tensor field.

Definition 3.2.4 (Tensor bundle).
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(1) Let M be a differentiable manifold, and T̊ rsMa the vector bundle of
tangent space (Tp)rsM at a point p ∈ M, with projector (Tp)rsM

π−→ M. The
tangent space

(Tp)rsM = TpM⊗r

⊗ TpM∗⊗s

(3.12)

is neatly consistent with the tensor space of type (r, s). Then T̊ rsM is called(
r
s

)
-tensor bundle or bundle of tensor of type (r, s) overM, the standard fiber of

which is a
(
r
s

)
-tensor space over the real numbers. Moreover, T̊ rsM is isomorphic

to the tensor product of the tangent and cotangent bundles,

T̊ rsM∼=
r⊗
T̊ M⊗

s⊗
T̊ ∗M = T̊ M⊗ · · · ⊗ T̊ M︸ ︷︷ ︸

r times/copies

⊗ T̊ ∗M⊗ · · · ⊗ T̊ ∗M︸ ︷︷ ︸
s times/copies

.

(3.13)
(2) We can report particular cases of T̊ M = T̊ 1

0M and T̊ ∗M = T̊ 0
1M. 3

Definition 3.2.5 (Tensor field).
(1) A (smooth) section of T̊ rsM, denoted by ς(T̊ rsM), is said tensor field of

type (r, s), denoted by τ rs , so ς(T̊ rsM) = τ rs (M); conversely, a
(
r
s

)
-tensor field

over M is a (smooth) section of T̊ rsM, so τ rs (M) = ς(T̊ rsM).
(2) More properly, we speak of tensor field (or simply tensor) τsr = Τµ1···µr

ν1···νs
when the components of a tensor are functions of each point of a differentiable
manifold in a space, in relation to a system of coordinates x1, . . . , xn, in such
a manner that τsr varies continuously. For this purpose, it is required that the
components of τsr transform under coordinate changes xµ = xµ(y1, . . . , yn) via
partial derivatives; thusly, we obtain

τsr = Τµ1···µr
ν1···νs =

∑
ξ,ϱ

Τ̃
ξ1···ξr
ϱ1···ϱs

∂xµ1

∂yξ1
· · · ∂x

µr∂yϱ1

∂yξr∂yν1
· · · ∂y

ϱs

∂xνs
, (3.14)

if Τ̃
ξ1···ξr
ϱ1···ϱs are the components of τsr in relation to a system of coordinates

y1, . . . , yn. 3

3.2.2. Musical Isomorphism of Tensors

Below we will analyze a tensor transformation dictated by a musical isomor-
phism. Let us first see what it is.

3.2.2.1. Mapping with Key Signature (Armatura di Chiave): Bemolle
and Diesis Operators

Definition 3.2.6.
(1) Let g be a metric (tensor), which, as is generally known, is non-degenerate.

An isomorphism is said musical if between a vector space V and its algebraic

aIn a complex vector bundle (with a trivial 1-dimensional bundle), one has T̊ r
s M = C⊗R (T̊ r

s M).
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dual space V∗ there exists a bemolle (flat) map, i.e. ♭-map, or the reverse diesis
(sharp) map, i.e. ♯-map,

♭(g)
viz
= g♭ : V→ V∗, with ♭ = ♯−1, (3.15a)

♯(g)
viz
= g♯ : V∗ → V, with ♯ = ♭−1, (3.15b)

that is,

V


♭(g)−−−−→
♭=♯−1

♯(g)←−−−−
♯=♭−1

V∗. (3.16)

(2) Same goes for a (pseudo-)Riemannian manifold (M, g). We talk about
musical isomorphism, on this aspect, if there is a map between the tangent space
TpM at p ∈M and its dual space, the cotangent space T ∗

pM, determined by a
♭-map or a ♯-map; it is therefore possible to extend such an isomorphism to the
tangent bundle T̊ M and the cotangent bundle T̊ ∗M,

♭(g)
viz
= g♭ : TpM→ T ∗

pM
∣∣et T̊ M → T̊ ∗M, (3.17a)

♯(g)
viz
= g♯ : T ∗

pM→ TpM
∣∣et T̊ ∗M→ T̊M. (3.17b)

In (3.17a), for all vectors v = vµ∂µ ∈ TpM at p ∈M, it holds that

♭(v)
viz
= v♭ =

{
gp(w, v) ∈ T ∗

pM,

gµνv
µdxν = ωνdx

ν ,with ων = gµνv
µ,

(3.18)

where ων is a covector field, that is, a 1-form, or a
(
0
1

)
-tensor, and the equivalence

is in local coordinates. Note. If v ∈ TpM, then there is a vector field X⃗ such
that X⃗p = v, for each p ∈ M, from which it follows that we can rewrite the
above in this way:

♭(Y⃗ )
viz
= Y⃗♭(X⃗) = g(X⃗, Y⃗ ), (3.19a)

♭(X⃗)
viz
= X⃗♭ = g(X⃗µ∂µ, ·) = gµνX⃗

µdxν , (3.19b)

with a mapping ♭ : X⃗ 7→ ♭(X⃗).
In (3.17b), for any 1-form ω = ωµdx

µ, one has

♯(ω)
viz
= ω♯ =

{
ωµ = gµνων ,

gµνωµ∂ν = vν∂ν ,with vν = gµνωµ,
(3.20)

with a mapping ♯ : ω 7→ ♯(ω) fixed by g
(
♯(ω), Y⃗

)
= ω(Y⃗ ). If ♯(ω) ∈ T̊ ∗M, then

ω(v) = ⟨v, ♯(ω)⟩. 3

Margo 3.2.3 (From key signature to mathematical language). The isomorphism
of ♭ is for lowering indices, whilst the isomorphism of ♯ is for raising indices,
just like, in music, the bemolle and diesis signs are, respectively, a lowering
and raising of pitch of a note. The mathematical language is here inspired by
the key signature (armatura di chiave), the typical set, in musical notation, of
flat-alterations and sharp-alterations, see e.g. [264, A. IV.2, pp. 20-22]. L
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3.2.2.2. Bemolle–Diesis Convention in Tensor Description

Musical isomorphisms are applied by linearity to some cases of tensor algebra.
For instance, take a tensor space (Tp)kℓM = TpM⊗k ⊗TpM∗⊗

ℓ

from the tangent
space (cf. above). There exists an isomorphism (Tp)kℓM→ (Tp)k+1ℓ

−1M, which is
an analogue of the (r, s) version, and it can also be expressed with the convention
of raising–lowering indices. Then the ♯–♭ isomorphisms will be extended to
bundles such as T̊ rsM→ T̊ kℓM, whenever r + s = k +

ℓ

.

3.3. Curvature Tensors

3.3.1. Riemann Curvature Tensor

Definition 3.3.1. Take a (pseudo-)Riemannian manifold (M, g). The Riemann
curvature tensor [2207] [2208]a is a tensor of rank 4 on M, the expression of
which, in terms of the Christoffel symbols (Section 1.2), can be written in two
main ways:

Rµνξ
ϱ = ∂µΓνξ

ϱ − ∂νΓµξϱ + Γµς
ϱΓνξ

ς − ΓνςϱΓµξς , (3.21)
Rµνξϱ = Γµνϱ,ξ − Γµνξ,ϱ + Γ ςνϱΓ

µ
ςξ − Γ ςνξΓµςϱ. (3.22)

Let X⃗, Y⃗, Z⃗ ∈ V(M) be three smooth vector fields, where V(M) is a real vector
space. Under the Levi-Civita connection ∇ (Section 1.3.5), the Riemann tensor
is

RX⃗,Y⃗ Z⃗
viz
= R(X⃗, Y⃗ )Z⃗ = ∇2

X⃗,Y⃗
Z⃗ −∇2

Y⃗,X⃗
Z⃗

= ∇X⃗∇Y⃗ Y⃗ −∇Y⃗∇X⃗ −∇[X⃗,Y⃗ ]Z⃗

= [∇X⃗ ,∇Y⃗ ]Z⃗ −∇[X⃗,Y⃗ ]Z⃗. (3.23)

3

Scholium 3.3.1. The Riemann curvature tensor describes the curvature of a
(pseudo-)Riemannian manifold; so if it is zero, the manifold is flat. ⋄

3.3.1.1. Tensor Symmetries

What follows are algebraic properties of the Riemann curvature tensor.
(1) It is anti-symmetric with respect to the interchange of the first two

indices or of the last two indices:

Rµνξ
ϱ = R[µν]ξ

ϱ = −Rνµξϱ, (3.24a)
Rµνξ

ϱ = Rµν[ξϱ] = −Rµνϱξ, (3.24b)
Rµνξϱ = R[µν][ξϱ] = −Rνµξϱ = −Rµνϱξ. (3.24c)

aIn [2207] the concept of (Riemann) curvature is delineated, and in [2208] the (Riemann) tensor
is presented. To be fair, it might better be called Riemann–Christoffel tensor, in view of the
importance of [655] in its development and systematization.
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(2) It is symmetric with respect to the exchange of the first pair of indices
with the second pair:

Rµνξϱ = Rµνξ
ςgςϱ = Rξϱµν . (3.25)

Scholium 3.3.2. We are dealing here with two forms of the Riemann curvature
tensor. The first is Rµνξϱ, under which it is a

(
1
3

)
-tensor. The second is Rµνξϱ,

under which it is a
(
0
4

)
-tensor (in fully covariant form). ⋄

3.3.1.2. Bianchi Identities

The Riemann curvature tensor also satisfies the so-called Bianchi identi-
ties. The explicit form of these relations, accompanied by a purely analytical
demonstration, is due to L. Bianchi [284] [286, § 161, p. 351].35

The first Bianchi identity, or algebraic identity, is presented in two forms.
Under the index notation, it is

Ib
ιδ

=


Rµνξ

ϱ +Rνξµ
ϱ +Rξµν

ϱ = 0,

R[µνξ]
ϱ = 0,

Rµνξϱ +Rµξϱν +Rµϱνξ = 0,

Rµ[νξϱ] = 0.

(3.26a)
(3.26b)
(3.26c)
(3.26d)

Alternatively, it can be written as

RX⃗,Y⃗ Z⃗ +RY⃗,Z⃗X⃗ +RZ⃗,X⃗ Y⃗ = 0. (3.27)

Proof of (3.27).

RX⃗,Y⃗ Z⃗ +RY⃗,Z⃗X⃗ +RZ⃗,X⃗ Y⃗ = (∇X⃗∇Y⃗ Z⃗ −∇Y⃗∇X⃗ Z⃗ −∇[X⃗,Y⃗ ]Z⃗)

+ (∇Y⃗∇Z⃗X⃗ −∇Z⃗∇Y⃗ X⃗ −∇[Y⃗,Z⃗]X⃗)

+ (∇Z⃗∇X⃗ Y⃗ −∇X⃗∇Z⃗ Y⃗ −∇[Z⃗,X⃗]Y⃗ )

= ∇X⃗(∇Y⃗ Z⃗ −∇Z⃗ Y⃗ ) +∇Y⃗ (∇Z⃗X⃗ −∇X⃗ Z⃗)

+∇Z⃗(∇X⃗ Y⃗ −∇Y⃗ X⃗)−∇[X⃗,Y⃗ ]Z⃗

−∇[Y⃗,Z⃗]X⃗ −∇[Z⃗,X⃗]Y⃗

= ∇X⃗ [Y⃗, Z⃗] +∇Y⃗ [Z⃗, X⃗] +∇Z⃗ [X⃗, Y⃗ ]−∇[X⃗,Y⃗ ]Z⃗

−∇[Y⃗,Z⃗]X⃗ −∇[Z⃗,X⃗]Y⃗

= [X⃗, [Y⃗, Z⃗]] + [Y⃗, [Z⃗, X⃗]] + [Z⃗, [X⃗, Y⃗ ]] = 0, (3.28)

where
[X⃗, [Y⃗, Z⃗]] + [Y⃗, [Z⃗, X⃗]] + [Z⃗, [X⃗, Y⃗ ]] = 0 (3.29)

is the Jacobi identity in the Lie bracket notation, so the Bianchi identity is the
Jacobi identity for the covariant derivative. □
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Scholium 3.3.3.
(1) The algebraic Bianchi identity is true if the curvature of the connection

is torsion free, that is, if the torsion tensor of the connection is zero (Definition
1.3.6).

(2) The Riemann curvature tensor is invariant under isometries, or under all
parallel translations (there is thus a bijective map preserving the distance). ⋄

The second Bianchi identity, or differential identity, is consistent with

Ib
ιδ

=



∇κRµνξ
ϱ +∇µRνκξϱ +∇νRκµξ

ϱ = 0,

∇[κRµν]ξ
ϱ = 0,

∇ςRµνξϱ +∇ξRµνϱς +∇ϱRµνςξ = 0,

∇[ς]Rµν[ξϱ] = 0,

Rµνξϱ;ς +Rµνϱς;ξ +Rµνςξ;ϱ = 0,

Rµν[ξϱ;ς] = 0.

(3.30a)
(3.30b)
(3.30c)
(3.30d)
(3.30e)
(3.30f)

In (3.30e) (3.30f) the semi-colon is for a covariant derivative.
The Bianchi identities can also be made explicit with the symbolism of Cartan

[561, pp. 130, 133], see Section 1.4. Given a covariant derivative D of the torsion,
the first Bianchi identity is equivalent to

Ib
ιδ

=


Rµν ∧ ων = 0,

Ωµν ∧ ων = 0,

D(Θτ )
µ = Ωµν ∧ ϑν ,

(3.31a)
(3.31b)
(3.31c)

where Θτ
viz
= (Θτ )

µ = d(Θτ )
µ+ωµν∧ϑν is the torsion form (i.e. the vector-valued

2-form) of the connection form ων , and ϑν is the basis, that is, a
(
1
0

)
-tensor

valued 1-form.

Proof of (3.31c). DΘτ = dΘτ + ω ∧Θτ = d(dϑ+ ω ∧ ϑ) + ω ∧ (dϑ+ ω ∧ ϑ) =
dω ∧ ϑ− ω ∧ dϑ+ ω ∧ dϑ+ ω ∧ ω ∧ ϑ = Ω ∧ ϑ. □

Scholium 3.3.4. If we are to treat e.g. a flat (Minkowskian) tangent space, we
add a generic basis 1-form mν , and the first Bianchi identity (3.31a) becomes

Ib
ιδ

= DRµ = dRµ + ωµν ∧Rν

= dωµν ∧ mν − ωµν ∧ d mν + ωµν ∧ d mν + ωµξ ∧ ωξν ∧ mν

= Rµν ∧ mν . (3.32)

⋄
The second Bianchi identity corresponds to

Ib
ιδ

=


dRµν + ωµξ ∧Rξν −Rµξ ∧ ωξν = 0,

dΩ + ω ∧Ω −Ω ∧ ω = dΩ + [ω,Ω] = 0,

dΩ = ω ∧Ω −Ω ∧ ω,
DΩµν = 0.

(3.33a)
(3.33b)
(3.33c)
(3.33d)



80 3. On Dimensional Continuum, Part I

Proof of (3.33d). DΩ = dΩ+ω∧Ω−Ω∧ω = dΩ+ω∧dω−dω∧ω = dΩ+[ω,Ω],
and dΩ = dω ∧ ω − ω ∧ dω. □

Scholium 3.3.5. The Riemann curvature tensor is, as we have said, a tensor of rank
4 with (µνξϱ)-indices, and it has 4×4×4×4 = 256 independent components in 4D
(space-time). Nonetheless, the symmetries and identities outlined above consent
us to reduce this number: the Riemann tensor can be firstly reconceived as a
tensor product of two anti-symmetric tensors of rank 2, with 36 components; then,
thanks to the 1st Bianchi identity, there are 16 conditions on the components.
The final number of components is hence 6× 6− 4× 4 = 36− 16 = 20, or rather
(with 4 = dim): 4(4−1)2

22 − 1
64

2(4− 1)(4− 2) = 42 1
12 (4

2 − 1) = 20. ⋄

3.3.2. Riccian Algebro-geometric Properties

For a start, let us define the n-tuple E⃗1, . . . , E⃗n of smooth vector fields
on (defined over) an open neighborhood Υ ⊂ M as a frame field, that is, an
orthonormal basis for the tangent space TpM, for each point p ∈ Υ . The
collection ϑ1, . . . , ϑn will be the corresponding dual coframe field, i.e. 1-forms,
providing an orthonormal basis of the cotangent space T ∗

pM.
Then we specify a tensor

Τ = Τµ1···µr
ν1···νs E⃗µ1 ⊗ · · · ⊗ E⃗µr ⊗ ϑν1 ⊗ · · · ⊗ ϑνs , (3.34)

fixing the vectors v = ϑµ(v)E⃗µ = vµE⃗µ in T̊ M and the covectors ω = ω(E⃗ν)ω
ν =

ωνϑ
ν in T̊ ∗M.

3.3.2.1. Ricci Curvature Tensor

The Ricci curvature tensor [2198] is a tool that is used to measure the degree
of flatness or, which is the same, the value of non-flatness of a certain surface,
i.e. the difference between non-Euclidean space, or curved space, under the
Riemannian geometry, and Euclidean space, whose curvature is zero. Note. E.
Bompiani [357] (see epigraph in Section 3.3.3) was the first to introduce officially
the expression Ricci (curvature) tensor.

Definition 3.3.2. The Ricci curvature tensor is a symmetric tensor of rank 2,
and it can be written in multiple ways. Let us see them one by one.

(1) Its three primary forms:

Ric
ιδ

=


Rν

µE⃗µ ⊗ ϑν as a
(
1
1

)
-tensor,

Rνξϑ
ν ⊗ ϑξ = gνµRξ

µϑν ⊗ ϑξ as a
(
0
2

)
-tensor,

RµξE⃗µ ⊗ E⃗ξ = gµνE⃗µ ⊗ E⃗ξ as a
(
2
0

)
-tensor,

(3.35a)

(3.35b)

(3.35c)

i.e.

Ric ∈


Τ

1
1(M),

Τ
0
2(M),

Τ
2
0(M).

(3.36a)

(3.36b)

(3.36c)
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(2) The Ricci tensor correlates to a contraction of the Riemann curvature
tensor:

Ric
ιδ

=

{
Rν

µE⃗µ ⊗ ϑν = Rµξ
ξνE⃗µ ⊗ ϑν = Rµξς

νgςξE⃗µ ⊗ ϑν ,
Rµνϑ

µ ⊗ ϑν = gξϱRµξϱνϑ
µ ⊗ ϑν .

(3.37a)

(3.37b)

(3) In an explicit solution, making use of the Christoffel symbols:

Ric
ιδ

= Rµν = ∂ξΓµν
ξ − ∂νΓµξξ + Γµν

ξΓξϱ
ϱ − ΓµξϱΓνϱξ. (3.38)

(4) Ricci curvature, as a
(
0
2

)
-tensor, is also termed as the trace of a linear

operator Z⃗ 7→ RX⃗,Z⃗ Y⃗ , so

Ric(X⃗, Y⃗ ) = tr
(
Z⃗ 7→ RX⃗,Z⃗ Y⃗

)
. (3.39)

It is with this in view that we say that Ric is a trace of the Riemann curvature
tensor. 3

3.3.2.2. Scalar Curvature

The scalar curvature, or Ricci scalar [2201] [2204], is the trace of the Ricci
curvature tensor, with respect to the Riemannian metric g, and one denotes it
by Rs. The scalar curvature represents the most elementary of local invariants
of g on M. The same definition there is by contraction with g. In formulæ:

Rs ∈ C∞(M)
ιδ

=


tr(Ric),

Rµµ = gµνRµν = Rν
ν ,

gµξgνϱRµνξϱ.

(3.40a)
(3.40b)

(3.40c)

3.3.3. Einstein Tensor

I will indicate a geometric construction of the Ricci tensor Rik =
∑

h{ih, hk} from which it is
easy to deduce the Einstein tensor Rik − 1

2 gikR.
— E. Bompiani [357, p. 739]

The Einstein tensora is the combination of the Ricci curvature tensor (Rµν)
and the scalar curvature (Rs),

G[µν] = Rµν −
1

2
gµνRs, G[µν] = Gµν=νµ (3.41)

the physical purpose of which, in respect of the law of local energy-momentum
conservation, is the description of the curvature of space-time in gravitational
field Eqq. (4.1); gµν is the metric tensor. In consequence of the second Bianchi
identity (3.30a), the covariant divergence of the Einstein tensor is null,b

∇νGµν = ∇νGµν = 0. (3.42)
aTo tell the truth, it should be called Ricci–Einstein tensor, as was the custom in the 1920s

[657, p. 157].
bExactly like the energy-momentum tensor (4.4), see Eq. (4.3).
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The latter expression is known as contracted Bianchi identity dating back to A.
Voss [2602]. From (3.30a), if

Rµ;ν
ν =

1

2
(δµ

νRs);ν (3.43)

is set as the covariant divergence of the Ricci curvature tensor, we get to

equivalent Eqq.

{
∇νRµν = ∇νRξµνξ

−∇ξRµννξ −∇µRνξνξ,
(3.44a)

(3.44b)

and
2∇νRµν = ∇µRs, (3.45)

and finally

∇ν
(
Rµ

ν − 1

2
δµ
νRs

)
= 0, (3.46)

ergo (3.42) ιδ= (3.46), which also shows that it is possible to obtain the Einstein
tensor from the contracted Bianchi identity; we immediately discover that

Rµ
ν − 1

2
δµ
νRs (3.47)

and

Rµν −
1

2
gµνRs (3.48)

are equivalent. The use of the Bianchi identities in general relativity takes place
with Levi-Civita [1627]; for the role he played in all of this, see Section 4.1.1.1.

3.3.4. Weyl Curvature Tensors

The Riemann curvature tensor has 20 independent components (see Scholium
3.3.5) in 4D, half of which is contained in the Ricci curvature tensor; the other
half is captured by the so-called Weyl curvature tensor (also known as conformal
tensor)a [2630, p. 404] [2634, chap. IV]. To him we owe the formulation of
another tensor, said Weyl projective (curvature) tensor.

3.3.4.1. Conformal Curvature Tensor

Let us begin to see the first of these two tensors.

Definition 3.3.3. Given a pseudo-Riemannian manifold (M, g) of dim(M) = n,
the Weyl (conformal) curvature tensor is an algebraic object with the following

aThis is why it is often denoted with the letter C.
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forms:

Wµνξϱ = Rµνξϱ −
2

n− 2

(
gµ[ξRϱ]ν − gν[ξRϱ]µ

)
+

2

(n− 1)(n− 2)
Rsgµ[ξgϱ]ν ,

(3.49a)

Wµνξϱ = Rµνξϱ −
1

n− 2
(gµξRνϱ − gνξRµϱ − gµϱRνξ + gνϱRµξ)

+
Rs

(n− 1)(n− 2)
(gµξgνϱ − gνξgµϱ), (3.49b)

Wµνξϱ = Rµνξϱ −Rξ[µgν]ϱ +Rϱ[µgν]ξ +
1

3
Rsgξ[µgν]ϱ

= Rµνξϱ −
1

2
(Rµξgνϱ +Rµϱgνξ +Rνξgµϱ −Rνϱgµξ)

+
1

6
Rs(gµξgνϱ − gµϱgνξ), (3.49c)

Wµνξϱ = Rµνξϱ − gµ[ξRϱ]ν + gν[ξRϱ]µ +
1

3
Rsgµ[ξgϱ]ν , (3.49d)

Wey = Rie− Rs

2n(n− 1)
g ∧⃝ g − 1

n− 2

(
Ric− Rs

n
g

)
∧⃝ g, (3.50)

where the Riemann and the Ricci tensors, plus the scalar curvature, appear. The
expressions (3.49a) (3.49b) are used in D ⩾ 3, whilst (3.49c) (3.49d) in 4D. We
can also write the above expressions with indices in µ- and µν-different positions:

Wµ
νξϱ = Rµνξϱ −

1

n− 2
(δµξRνϱ − gνξRµϱ − δµϱRνξ + gνϱR

µ
ξ)

+
Rs

(n− 1)(n− 2)
(δµξgνϱ − gνξδµϱ), (3.51)

and similarly in (3.49a); the Eq. (3.49c) becomes

Wµν
ξϱ = Rµνξϱ − 2δ[µξR

ν]
ϱ] +

1

3
Rsδ

[µ
ξδ
ν]
ϱ]. (3.52)

In (3.50), the abbreviation Rie is for the Riemann tensor, i.e.

Rie =
Rs

2n(n− 1)
g ∧⃝ g +

1

n− 2

(
Ric− Rs

n
g

)
∧⃝ g +Wey, (3.53)

and the symbol ∧⃝ denotes the Kulkarni–Nomizu product [1552] [1553] [1957] of
a symmetric

(
0
2

)
-tensors building a curvature

(
0
4

)
-tensor. 3

Margo 3.3.1. Let Τa and Τb two symmetric covariant
(
0
2

)
-tensors. The Kulka-

rni–Nomizu product is consistent with the
(
0
4

)
-tensor Τa ∧⃝ Τb defined by

Τa ∧⃝ Τb(v1, v2, v3, v4) = Τa(v1, v3)Τb(v2, v4) + Τa(v2, v4)Τb(v1, v3)
− Τa(v1, v4)Τb(v2, v3)− Τa(v2, v3)Τb(v1, v4), (3.54)

with four tangent v-vectors. L
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3.3.4.2. Projective Curvature Tensor

Let us move on to the projective structure.

Definition 3.3.4. The tensor the invariant form of which coincides with

prjWµ
νξϱ = Rµνξϱ −

1

n− 1
(δµϱRνξ − δµξRνϱ)

= Rµνξϱ + 1/(n− 1)(δµξRνϱ − δµϱRνξ), (3.55)

is called Weyl projective (curvature) tensor. 3

3.3.5. Conformal Flatness and n-Dimensionality

Pay attention, in Definition 3.3.3, to the dimensionality of the space, which
is crucial.

(1) If n = 1 and n = 2, the Riemannian spaces in question (1- and 2-
manifolds) are conformally flat, in a sense that will be explained shortly (they
are in fact mono- and bi-dimensional), and there is no Weyl curvature tensor.

(2) If n = 3, the Weyl tensor vanishes identically, and it is the Ric-tensor that
completely determines the Rie-tensor, for which the curvature in a 3-manifold
is Ricci dependent. A 3-manifold is, instead, (locally) conformally flat iff the
Cotton tensor (3.57) vanishes.

(3) If n ⩾ 4, the Weyl tensor is typically not null, and the reference space
in called non-conformally flat. In the event that the Weyl tensor is identically
zero, the metric space is conformally flat. So a Riemannian n-space, with n ⩾ 4,
turns out to be conformally flat iff the Weyl tensor associated is zero. This is
the case of spaces of constant curvature (e.g. 4-sphere, Euclidean 4-space, and
hyperbolic 4-space), all of which have an identically vanishing Wey-solution.

3.3.5.1. Details, and Cotton & Cotton–York Tensors

Some clarifications on the above.
(1) A smooth (pseudo-)Riemannian space (M, g) is called (locally) confor-

mally flat if
(i) every point of M has a neighborhood Υ ⊂M conformally equivalent to

an open subset of (pseudo-)Euclidean space, i.e., equivalently,
(ii) if there is a map φ(x) : Υ → R such that Υ at every point is mapped

conformally into a flat space. The adjective conformal means angle preserving.
Note. The flatness of a (pseudo-)Riemannian depends on the possibility of

point-covering Υ by a metric coordinate system, putting ds2 = gµνdx
µdxν , with

µ, ν = 1, . . . , n.
For further information, see the basic writings of N.H. Kuiper [1548] [1549];

S.I. Goldberg [1181], and R. Schoen & S.-T. Yau [2309].
(2) The vanishing of the Weyl tensor, we already know, causes the conformal

flatness of the metric gµν . More precisely, it is true that there is a conformal
function φ(x) ∈ C∞(M), 0 < φ <∞, such that gµν = φ2(x)ηµν , where ηµν is



3.3. Curvature Tensors 85

the flat space metric, i.e. the Minkowski
(
0
2

)
-tensor; and indeed, given a conformal

transformation gµν → g̃µν = φ2(x)gµν , the Weyl tensor acts invariantly,

W̃µ
νµξ =Wµ

νµξ. (3.56)

(3) The Cotton tensor [693] can be determined as a 3-tensor,

Cµνξ =


∇ν
(
Rµξ −

1

4
Rsgµξ

)
−∇ξ

(
Rµν −

1

4
Rsgµν

)
,{

∇[µRν]ξ −
1

2(n− 1)
∇[µRsgν]ξ

}
2,

(3.57a)

(3.57b)

where the Ricci tensor and the scalar curvature appear, or as a 2-tensor, also
called Cotton–York tensor [2713] [2714] [2715],

Cµ
ν = εξϱν∇ξ

(
Rϱµ −

1

4
Rsgϱµ

)
. (3.58)

The tensor (3.58) is traceless, symmetric, and it has zero divergence: gµνCµν = 0,
C [µν], ∇νCµν = 0.

(4) The Weyl tensor is equivalent to a
(
0
4

)
-tensor, as in (3.49) (3.50), or to a(

1
3

)
-tensor, as in (3.51). As a

(
0
4

)
-tensor, its properties are:

Wµνξϱ = −Wνµξϱ = −Wµνϱξ =Wξϱµν , (3.59a)
Wµνξϱ +Wµξϱν +Wµϱνξ = 0, (3.59b)
Wµ

νµξ = 0. (3.59c)

Beware, however: the conformal invariance property belongs only to the Weyl(
1
3

)
-tensor and not to the Weyl

(
0
4

)
-tensor.

Margo 3.3.2 (Independent components compared). For 2- and 3-dimensional
spaces the Riemann and Ricci curvature tensors have the same number Nic of
independent components at each point; for a 4-dimensional space the number no
longer coincides.

(1) In 1D (1-manifold) the space is flat, and there is no intrinsic curvature.
(2) In 2D (2-manifold) one has Nic = 1 (the Gaussian curvature) for both

Riemann and Ricci tensors; this one component is related to the scalar curvature.
(3) In 3D (3-manifold) one has Nic = 6 for both Riemann and Ricci tensors,

according to the respective formulæ, 32 1
12 (3

2 − 1) and 3 1
2 (3 + 1).

(4) In 4D (4-manifold) the number Nic for the Riemann tensor is 44 =
256, reducible to 42 1

12 (4
2 − 1) = 20; but for the Ric-tensor, one has Nic =

4 1
2 (4 + 1) = 10, and the same for the Weyl tensor, based on the formula

42 1
12 (4

2 − 1)− 4 1
2 (4 + 1) = 10 (note that in D ⩽ 3, one has Nic = 0 for the Weyl

tensor).
A synopsis of the number of independent components in the tensorial objects

is in S. Weinberg [2621, pp. 142-146]. L
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3.4. Lorentz–Minkowski 4-Manifolds

We will introduce some notions of Minkowski and Lorentzian geometries in
the following Sections. In general theory of relativity,

(1) space-time is a smooth Lorentzian 4-manifold manifold, that is a special
case of a pseudo-Riemannian manifold;

(2) if space-time is empty (space without matter-energy), the 4-manifold
is equipped with a Ricci-flat Lorentzian metric, and it coincides with a 4-
dimensional Minkowski space-time, which is a special case of a Lorentzian
manifold.

3.4.1. Minkowski Space-Time (Flat Metric)

The concepts of time and space, which I want to develop, have arisen on experimental physical
grounds [see Michelson–Morley experiment [1818] against the existence of a luminiferous ether].
Herein is their strength. Their tendency is radical. Henceforth, space for itself and time for itself
will completely reduce to shadows [Schatten], and only a sort of union of the two will maintain an
independence [ . . . ]. Three-dimensional geometry becomes a chapter of four-dimensional physics.

— H. Minkowski [1828, pp. 75, 79].

Let us start by listing the fundamental properties of the Minkowski space(-
time) formalism.

(1) Minkowski space is a real vector space Mn viz
= Mn = R1,n−1 or Rn−1,1 of

n ⩾ 2 dimension, characterized by a bilinear form g
viz
= gm : M

n×Mn → R on the
tangent space at each point of M, stating that g is symmetric g(v, w) = g(w, v)
and non-degenerate g(v, w) = 0, for any v, w ∈Mn.a The bilinear form g(v, w)
is called more properly a Minkowski (or Lorentzian) inner product, or even
Minkowski (or Lorentzian) metric tensor.

Letting {e0, . . . , en−k, en−k+1, . . . , en} be a basis, n = dim(M), with v =
v0e0 + · · ·+ vnen and w = w0e0 + · · ·+ wnen, then

g(v, w) = v0w0 + v1w1 + v2w2 + · · ·+ vn−kwn−k− vn−k+1wn−k+1− · · ·− vnwn,
(3.60)

where k is a non-negative integer.
(2) Minkowski space-time [1827] [1828] [1829] is simply a 4D real vector

space M4 viz
= M4 = R4

1,3.b Let {e0, e1, e2, e3} be a basis, with v = vµeµ and
w = wνeν , µ, ν = 0, 1, 2, 3. The signature of the Minkowski metric tensor is
2-fold. We denote by (1,3)+ and by (1,3)− the Minkowski signature (+,−,−,−)
and (−,+,+,+), respectively, whilst in the Euclidean signature the signs are all
positive. The Minkowski inner product is thus

g(v, w)(1,3)
+

= v0w0 − v1w1 − v2w2 − v3w3 = ηµνv
µwν , (3.61)

g(v, w)(1,3)
−
= −v0w0 + v1w1 + v2w2 + v3w3 = ηµνv

µwν , (3.62)

aTaking a generic map g : Rn × Rn → R, we determine g(v, w) = v0w0 + v1w1 + v2w2 + · · · +
vn−1wn−1 − vnwn or g(v, w) = −v0w0 + v1w1 + v2w2 + · · · + vnwn.

bTherefore, there is a bilinear form g on the tangent space TpR1,3 at each p of R1,3.
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where g has index 1, and

ηµν = g(eµ, eν) =



1 if

{
µ = ν = 0, with η(1,3)

+

,

µ = ν = 1, 2, 3, with η(1,3)
−
,

−1 if

{
µ = ν = 1, 2, 3, with η(1,3)

+

,

µ = ν = 0, with η(1,3)
−
,

0 if

{
µ ̸= ν, with η(1,3)

+

,

µ ̸= ν, with η(1,3)
−
.

(3.63)

(3) The Minkowski metric tensor is a pseudo-Riemannian or Lorentzian
metric, and it is defined in the algebra of 4× 4 matrices

η(1,3)
+

µν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 and η(1,3)
−

µν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (3.64)

according to the respective metric signatures.
(4) We choose x = x0e0 + x1e1 + x2e2 + x3e3, with the time (x0) and the

spatial (x1, x2, x3) coordinates. Putting x0 = ct, x1 = x, x2 = y, x3 = z, the
Minkowski metric, or, better, the metric tensor of Minkowski space-stime, can
be given in standard coordinates (ct, x, y, z) by

ds2 = c2dt2 − dx2 − dy2 − dz2 = η(1,3)
+

µν dxµdxν , (3.65)

ds2 = −c2dt2 + dx2 + dy2 + dz2 = η(1,3)
−

µν dxµdxν , (3.66)

where c is the speed of light in vacuum, and t is the time, with −∞ < t, x, y, z <
+∞, i.e. (t, x, y, z) ∈ (−∞,+∞). The Eqq. (3.65) (3.66) are known as line
elements, which are line segments in the course of an infinitesimal displacement
vector at each point in M4 viz

= R4
1,3.

It is also possible to use spherical coordinates (ct, ρ, θ, ϕ), setting x0 = t,
x1 = x = ρ sin θ cosϕ, x2 = y = ρ sin θ sinϕ, x3 = z = ρ cos θ, where ρ is the
radius corresponding to the line segment moving from a point to the origin,
θ is the colatitude, that is, the polar or zenith angle measured from the z-
axis, and ϕ is the longitude, that is, the azimuthal angle measured from the
x-axis within the xy plane. Taking 0 ⩽ ρ < ∞, 0 ⩽ θ ⩽ π, 0 ⩽ ϕ < 2π, i.e.
ρ ∈ [0,∞), θ ∈ [0, π], ϕ ∈ [0, 2π), the metric Eqq. (3.65) (3.66) become

ds2(1,3)+ = c2dt2 − dρ2 − ρ2(dθ2 − sin2 θdϕ2), (3.67)

ds2(1,3)− = −c2dt2 + dρ2 + ρ2(dθ2 + sin2 θdϕ2). (3.68)

(5) A vector in a Lorentz–Minkowski space-time is said 4-vector, also known
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as event. A 4-vector

v ∈M4 viz
= R4

1,3 is



space-like if

{
g(v, v)(1,3)

+

< 0,

g(v, v)(1,3)
−
> 0,

time-like if

{
g(v, v)(1,3)

+

> 0,

g(v, v)(1,3)
−
< 0,

light-like (null) if

{
g(v, v)(1,3)

+

= 0,

g(v, v)(1,3)
−
= 0.

(3.69)

(6) Minkowski space-time is a pseudo-Euclidean vector 4-space: the topology
of Minkowski space-time, unlike Euclidean 4-space, is not locally homogeneous;
in M4 viz

= R4
1,3 space vectors are separated from time vectors, see E.C. Zeeman

[2725].
(7) Minkowski space-time, in a sufficiently small neighborhood of a point, is

a precise approximation of the 4-dimensional manifold in Einstein’s theory of
special relativity [849], and it it represents a flat 4-space, or a 4-space without
matter-energy, for which Rµν = 0, since if Τµν = 0, then

gµν

(
Rµν − gµν

Rs

2

)
= 0. (3.70)

In the presence of gravity, this space becomes non-Euclidean, or, to say it better,
non-pseudo-Euclidean (cf. Section 4.3.1).

(8) Plainly, we are free to write the Minkowski space-time as M4 viz
= M4 =

R4
3,1, provided that the signs are changed, including (3.64). We can also write like

this: x = x1e1+x
2e2+x

3e3+x
4e4, where (x1, x2, x3) are the spatial coordinates

and (x4) is the time coordinate, and e.g. g(v, w)(3,1)
+

= v1w1 + v2w2 + v3w3 −
v4w4, η(3,1)

+

= diag(1, 1, 1,−1). It is a numbering more intuitive (cf. Section
2.8.4.1) but, in this case, mathematically less efficient.

(9) The Minkowski metric (2.25) contributes to form the hyperboloid (aka
Minkowski–Lorentz) model (2.24) Yn+ in Rn+1 of hyperbolic space. Accordingly,
the Minkowski space, although not Riemannian, may contain subspaces with a
Riemannian metric directly related to hyperbolic geometry, see Fig. 3.1.

3.4.2. Lorentzian Generalization

Lorentz’s idea [1686] can be summed up as follows: if we are able to bring a translation upon a
whole system, without modification of any observable phenomena, it is because the equations of
an electromagnetic medium are not altered by certain transformations, which we will call Lorentz
transformations; two systems, one of which is motionless, the other in translation, thus become
exact images of each other.

— H. Poincaré [2137, p. 130]

3.4.2.1. Vector Spaces L4L4L4

Lorentzian geometry is a general case of Minkowskian geometry. It is sufficient
to mention a few essential points.
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x

y

z

Figure 3.1: In this image, along with a circular conical surface, there is a coexistence of quadric
surfaces, cf. Section 2.3.3.1:
(i) hyperbolic hyperboloid (gray), better known as 1-sheeted hyperboloid, along the z-axis, the

Cartesian coordinates equation being: x2

α2 + y2

α2 − z2

γ2 = 1;
(ii) elliptic hyperboloid, better known as 2-sheeted hyperboloid, along the z-axis, with Yn

+ and Yn
−

(upper and lower sheets), the Cartesian coordinates equation being: x2

α2 + y2

α2 − z2

γ2 = −1.
Parametric equations in accordance with their commands:
· circular conical surface: (u, v)u ∗ cos(v)u ∗ sin(v)u;
· 1-sheeted hyperboloid (upper part): (u, v)u ∗ cos(v)u ∗ sin(v)sqrt(u2 − 1);
· 1-sheeted hyperboloid (lower part): (u, v)u ∗ cos(v)u ∗ sin(v)−sqrt(u2 − 1);
· 2-sheeted hyperboloid (upper sheet, only partial): (u, v)u ∗ cos(v)u ∗ sin(v)sqrt(u2 + 1);
· 2-sheeted hyperboloid (lower sheet): (u, v)u ∗ cos(v)u ∗ sin(v)−sqrt(u2 + 1).
Models for space-time in special relativity start from here

(1) Lorentzian space is an n-dimensional real vector space Ln
viz
= Ln = R1,n−1

or Rn−1,1, characterized by a Lorentzian inner product g viz
= gl, that is,

g(v, w)+ = v0w0 + v1w1 + v2w2 + · · ·+ vn−1wn−1 − vnwn, (3.71)

g(v, w)− = −v0w0 + v1w1 + v2w2 + · · ·+ vnwn, (3.72)

on the tangent space at each point of L, for any v, w ∈ Ln, with the signatures
(+,−,−, . . . ,−) and (−,+,+, . . . ,+).

(2) The Lorentzian metric tensor g = gµνdx
µdxν is a pseudo-Riemannian

metric, and the signature of the quadratic form is the same one that is present
in (3.71) or in (3.72).

(3) Let Mn be an n-dimensional smooth differentiable pseudo-Riemannian
manifold, hence a connected separable metrizable C∞ space; denote by ig the
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index of g on M, with the common value ig[0 ⩽ ig ⩽ n = dim(M)]. If ig = 1

and n ⩾ 2, then the pair (Mn, g) is a Lorentzian manifold,a and g ∈ ς(T̊ 0
2M) is

the Lorentzian metric, which can be read as a section of the bundle of tangent
spaces (i.e. a section of the tangent bundle) ofM (see Definition 3.2.4).

(4) A Lorentzian space-time L4 viz
= L4 = R4

1,3 = M4 is a connected C∞

(smooth) manifold of dimension 4, as well as T2 Hausdorff 4-space (see Margo
12.4.3), with a Lorentzian metric

(
0
2

)
-tensor g(1,3). Note. Alternately, the form

is R4
3,1 and g(3,1).
(5) L4 = R4

1,3 coincides with the Minkowski’s description M4 viz
= M4 when

the Riemann curvature tensor (Section 3.3.1) of the Levi-Civita connection
is zero, and there is talk of flat Lorentzian space-time or Lorentz–Minkowski
space-time; so the Minkowskian formalism in Section 3.4.1 can be replicated
here. Given a basis {e0, e1, e2, e3}, one has the same values of (3.63), g(eµ, eν) =
ηµν = diag(1,−1,−1,−1) and g(eµ, eν) = ηµν = diag(−1, 1, 1, 1). For a system
of coordinates x1, . . . , xn, we get

gµν(x) =

(
∂

∂xµ

∣∣∣
x
,
∂

∂xν

∣∣∣
x

)
= ηµν . (3.73)

(6) L4 = R4
1,3, intended as M4 viz

= M4, is incorporated also in general relativity.
This is because the infinitesimal neighborhood around any point in a curved
4-space is still a Minkowski-like flat 4-manifold, although there is a variation of
gl from point to point. See, about that, the local Fermi’s coordinates in Section
1.3.6, and [1746].

(7) A L4-type space provides a model for geometry of Einsteinian gravity
(in which, to be more specific, the gravitational force is a manifestation of the
curvature of space-time by the action of matter-energy) when it represents a
hyperbolic 4-manifold, and there is talk of non-flat (curved) Lorentzian space-time.
Here Lorentzian space-time and Einstein’s gravitationally curved space-time are
the same mathematical object.

(8) In summary,

L4 = R4
1,3

{
flat pseudo-Euclidean Lorentzian space-time: M4 viz

= M4,

non-flat (curved) non-pseudo-Euclidean Lorentzian space-time,

3.4.2.2. Lorentz Group plus Transformations

(1) For an empty space-time, Lorentz transformations [1686] leave the
Maxwell’s equationsb [1791] [1792] unchanged between different inertial sys-
tems, i.e. if spatial and time coordinates are subjected to the Lorentz group,
according to the intuition of Poincaré [2137, §§ 1, 4].

aIf ig = 0, (M, g) is a Riemannian manifold, and g is symmetric, non-degenerate, and positive
definite; if ig ̸= 0, the pair is pseudo-Riemannian, cf. footnote b, p. 3.

bOr, more correctly, Maxwell–Heaviside equations, since in the Maxwell’s treatise there is no
sign of the Maxwell’s equations (at least as we know them today), but they are a later elaboration,
mainly due to O. Heaviside [1314, XLIV (1889), LII (1891)] [1315].
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(2) We say that {e0, e1, e2, e3} and {e′0, e′1, e′2, e′3} are two oriented and or-
thonormal time-oriented bases. If

Λ = [Λµν ]µν=0,1,2,3 =


Λ0

0 Λ0
1 Λ0

2 Λ0
3

Λ1
0 Λ1

1 Λ1
2 Λ1

3

Λ2
0 Λ2

1 Λ2
2 Λ2

3

Λ3
0 Λ3

1 Λ3
2 Λ3

3

 (3.74)

designates a matrix of an orthogonal transformation, for which eν = Λ0
νe

′
0 +

Λ1
νe

′
1 + Λ2

νe
′
2 + Λ3

νe
′
3 = Λµνe

′
µ, then Λ = [Λµν ] imposes three conditions:

(i) orthogonality , under a general Lorentz transformation:

ΛtηΛ = η, (3.75)

where Λt is the transpose of Λ, and η = η
(1,3)+

µν or η(1,3)
−

µν in (3.64),
(ii) orientability , under a proper Lorentz transformation: det(Λ) = 1,
(iii) time orientability , under an orthochronous Lorentz transformation:

Λ0
0 ⩾ 1; the adjective “orthochronous” (ὀρθός [upright] + χρόνος) means that

the direction of time is preserved.
(3) Λ = [Λµν ] is an element of the Lorentz group, denoted by Л , that is the

group of all Lorentz transformations of M4 viz
= R4

1,3 (preserving the Minkowski
metric). Here is a comprehensive outline of Л with its four components,

Л =


Л ↑

+ = Л+ ∩Л ↑ | det(Λ) = 1

Л ↑
− = Л− ∩Л ↑ | det(Λ) = −1

}
Λ0

0 ⩾ 1

Л ↓
+ = Л+ ∩Л ↓ | det(Λ) = 1

Л ↓
− = Л− ∩Л ↓ | det(Λ) = −1

}
Λ0

0 ⩽ −1,
(3.76)

where ↑ and ↓ are the inequalities. The Lorentz group

Л = Л ↑
+ ∪Л ↑

− ∪Л ↓
+ ∪Л ↓

− = O1,3(R) (3.77)

corresponds to the indefinite orthogonal group of signature (1, 3) of linear trans-
formations of Minkowski space-time, and it can be written as a union of disjunct
sets. Below are some details.

Л+ = {Λ | det(Λ) = 1} = SO1,3(R), (3.78)
Л− = {Λ | det(Λ) = −1}, (3.79)

Л ↑ = {Λ | γ ⩾ 1}, (3.80)

Л ↓ = {Λ | γ ⩽ −1}, (3.81)

Л ↑
+ = {Λ ∈ Л+ | Λ0

0 ⩾ 1} = SO+
1,3(R), (3.82)

Л ↑
− = {Λ ∈ Л− | Λ0

0 ⩾ 1}, (3.83)

Л ↓
+ = {Λ ∈ Л+ | Λ0

0 ⩽ −1}, (3.84)

Л ↓
− = {Λ ∈ Л− | Λ0

0 ⩽ −1}. (3.85)
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(3.78) is the proper Lorentz group, corresponding to the indefinite special
orthogonal group of signature (1, 3);

(3.79) is the improper Lorentz group;
(3.80) is the orthochronous Lorentz group, where

γ =
1√

1− v2

c2

=
dt

dτ
(3.86)

is the Lorentz factor ;
(3.81) is the non-orthochronous (or heterochronous) Lorentz group;
(3.82) is the proper orthochronous Lorentz group, corresponding to the indef-

inite special orthogonal group of signature +(1, 3), better known as restricted
Lorentz group;

(3.83) is the improper orthochronous Lorentz group;
(3.84) is the proper non-orthochronous (or heterochronous) Lorentz group;
(3.85) is the improper non-orthochronous (or heterochronous) Lorentz group.

Scholium 3.4.1.
(1) Each element of Л+ will be said proper Lorentz transformation, each

element of Л− will be said improper Lorentz transformation, and so forth.
(2) Take two different frames of reference, x0, x1, x2, x3 and y0, y1, y2, y3,

such that yµ = Λµνx
ν , µ = 0, 1, 2, 3. When the group/transformation is proper,

the orientation of the spatial coordinates x1, x2, x3 is preserved, when the group/-
transformation is orthochronous, the direction of time is preserved, since x0 ⩾ 0,
then y0 = Λ0

µx
µ ⩾ 0, for time-like or light-like vectors. ⋄

3.5. Spinor Representation of the Lorentz Group

Some historical background.
(1) The first analyses concerning the representation of the Lorentz group,

and thus a classification of the possible representations in Lorentz frames, are
due to

(i) Bargmann–Wigner programme [2663] [196] [197], which tackles these
issues: (a) irreducible unitary representations of the Lorentz group, (b) proper
Lorentz group, with homogeneous linear transformations in 4 variables, x0, x1, x2, x3,
(c) inhomogeneous Lorentz group, (d) transformations of wave functions under
the operations of the Lorentz group (invariance of functions), (e) Lorentz groups
for a free particle in terms of a wave packet and relativistic wave equations;

(ii) I.M. Gel’fand and M.A. Naimark [1111], see also [1110]: study of unitary
representations of the Lorentz group;

(iii) H.-Chandra [612]: infinite-dimensional irreducible representations of the
Lorentz group bearing the spin properties of a particle in Dirac’s exposition [791]
[797] of quantum mechanics.

(2) Results afferent to harmonic analysis, such as the application of the
Plancherel theorem [2106] to the complex special linear group (see below), are
in [1111], and, more fully, in H.-Chandra [613] and Gel’fand & Graev [1109].
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(3) Weyl’s contribution [2637, III.8, IV.5-8] is also worthy of mention.
(4) A first systematic discussion of the spinor fields on a space-time in general

relativity, is in R. Geroch [1125] [1126].

Margo 3.5.1 (Majorana’s brainwave). It should be added that the infinite-
dimensional unitary representations of the Lorentz group have their origin in
the Majorana’s paper [1738],a which anticipates Wigner [2663]b and Dirac [797],
and sows seeds for successive ideas, see e.g. S.-J. Chang and L. O’Raifeartaigh
[618], E.C.G. Sudarshan and N. Mukunda [2431], and A.O. Barut and I.H. Duru
[214]. L

3.5.1. Spinor Map (6-Dimensional Homomorphism): the Covering
SL2(C)SL2(C)SL2(C)→→→SO+

1,3(R)SO+
1,3(R)SO+
1,3(R)

Two words about an important link between the restricted Lorentz group
SO+

1,3(R) and the special linear group SL2(C), which will be followed (Section
3.5.2) by some mathematical objects related to it.

(1) The group SL2(C) is the set of all spin transformations in C2×2, namely
the set of C2×2 matrices with determinant 1, represented by(

z1

z2

)
7→ g =

(
α β
γ δ

)
∈ SL2(C)

(
z1

z2

)
=

(
αz1 + βz2

γz1 + δz2

)
. (3.87)

Taking advantage of the irreducible representation for spinors (see Section 2.8.3.2),
we can write the linear transformation on C2 of (3.87) as left- and right-handed
spinor irreducible representations of SL2(C), i.e.

D( 1
2 ,0) : SL2(C)→ GL(C2), D( 1

2 ,0)(g) = g, (3.88)

D(0, 12 ) : SL2(C)→ GL(C2), D(0, 12 )(g) = g, (3.89)

respectively, where

g=

(
1

g†
viz
= ḡt

)
, (3.90)

ḡt is the conjugate transpose of g (more accurately, ḡ is the complex conjugated
entries, and gt is the transpose).

With a direct sum, we get a representation on a complex 4-space:

D( 1
2 ,0) ⊕ D(0, 12 ) : SL2(C)→ GL(C4), (3.91)

D( 1
2 ,0) ⊕ D(0, 12 )(g) =

(
g 0
0 g

)
; (3.92)

aCf. endnote 37.
bWigner [2032, p. 87], unlike Pauli [2032, letters to M. Fierz № 598-600, 622, 628], does not

fully understand Majorana’s innovation.
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and the tensor product has this form:(
D( 1

2 ,0) ⊗ D(0, 12 ) = D( 1
2 ,

1
2 )
)
: SL2(C)→ GL(C4), (3.93)

D( 1
2 ,

1
2 )(g) =

(
α g β g

γ g δ g

)
=


αδ̄ −αγ̄ βδ̄ −βγ̄
−αβ̄ αᾱ −ββ̄ βᾱ
γδ̄ −γγ̄ δδ̄ −δγ̄
−γβ̄ γᾱ −δβ̄ δᾱ

 . (3.94)

(2) SO+
1,3(R) and SL2(C) have the same dimension on the real field, that is

6. Let us see why.
(i) The groups O1,3(R) and SO+

1,3(R) are real 6-dimensional non-compact
Lie spaces. Eq. (3.75) has 10 independent components relating to a symmetric
4× 4 matrix, so 16− 10 = 6.

(ii) The special linear group SL2(C) is a complex Lie group of dimension 3
and a real Lie group of dimension 6. It contains 4 complex numbers, or 8 real
numbers, inasmuch as C4 is equal to R8, but the unit determinant takes away 2
of its 8 degrees of freedom, so 8− 2 = 6. From a geometric point of view, SL2(C)
is diffeomorphic to the 3-spherea multiplied by a real 3-space, S3 × R3, and here
too its real 6-dimensionality is evident.

(3) SO+
1,3(R) and SL2(C) are topologically different, although their Lie

algebras are isomorphic,

so+(1, 3) ∼=
{(

sl2(C) = su(2)⊕ su(2)
)
∼= sp2(C)

}
. (3.95)

The above-mentioned link consists in a continuous homomorphism from
SL2(C) into SO+

1,3(R), that becomes explicit by a spinor map

ς :
(
SL2(C) ∼= Spin+

1,3(R)
)
−→

(
SO+

1,3(R) = Л ↑
+

)
, (3.96)

where SL2(C) ∼= Spin+
1,3(R) acts as a 2-fold cover of SO+

1,3(R) = Л ↑
+, for which

the former doubly covers the latter. The special linear group of 2× 2 complex
matrices, which is simply connected, is the universal covering group of the
restricted Lorentz group.

By adding a representation of the restricted Lorentz group on a real vector
space M as a homomorphism f of SO+

1,3(R) into a general linear group GL(M),
it is possible to draw the following summary diagram,

SL2(C) ∼= Spin+
1,3(R) SO+

1,3(R) = Л ↑
+

GL(M)

ς

f◦ς
f

(4) We define the Lorentz bundle and the spinor bundle.
aUnder an inclusion map, one has ι : S3 ↪→ C2 = R4.



3.5. Spinor Representation of the Lorentz Group 95

(i) The Lorentz bundle is the principal Л ↑
+-bundle over R4

1,3 (space-time),
with P̊Л ,

SO+
1,3(R) = Л ↑

+ ↪→ Л (R4
1,3)

P̊Л−−→ R4
1,3. (3.97)

(ii) The spinor bundle is the principal SL2(C)-bundle over R4
1,3 (space-time),

with P̊ß,

SL2(C) ∼= Spin+
1,3(R) ↪→ ß(R4

1,3)
P̊ß−−→ R4

1,3, (3.98)

to which we can associate the irreducible representation (3.91). The spinor
configuration is the spinor bundle (3.98) plus a map φ : ß(R4

1,3) → Л (R4
1,3),

satisfying three conditions, for any p ∈ ß(R4
1,3) and any g ∈ SL2(C):

(a) P̊Л
(
φ(p)

)
= P̊ß(p),

(b) P̊Л ◦ φ = P̊ß(p),
(c) φ(p · g) = φ(p) · Spin(g).
(iii) We can finally summarize with a diagram:

SL2(C) ∼= Spin+
1,3(R) ß(R4

1,3) R4
1,3

viz
= M4

SO+
1,3(R) = Л ↑

+ Л (R4
1,3)

P̊ß

φ
P̊Л

from which φ × Spin : ß(R4
1,3) × SL2(C) → Л (R4

1,3) × SO+
1,3(R) = Л ↑

+. Note.
The Lorentz and spinor bundles can also be obtained via product bundle,

SO+
1,3(R) = Л ↑

+ ↪→ R4
1,3 ×

(
SO+

1,3(R) = Л ↑
+

)
→ R4

1,3, (3.99)

SL2(C) ∼= Spin+
1,3(R) ↪→ R4

1,3 × SL2(C)→ R4
1,3, (3.100)

respectively.
(5) From Eq. (2.58), we note that

Möb(Ĉ) ∼= PSL2(C) ∼=
SL2(C)
{±I}

∼= SO+
1,3(R) = Л ↑

+, (3.101)

in which the restricted group is associated as a further set in the isomorphism
chain.

(6) We also have
SL2(C)/Z2

∼= SO+
1,3(R). (3.102)

We signal the implication of the Klein 4-group [1492] = [1493],

O1,3(R)
SO+

1,3(R)
∼= Z2 × Z2. (3.103)
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(7) Let Qf : M
4 viz
= R4

1,3 → R be a quadratic form determined by Qf (v) =
g(v, v). If Л = O1,3(R) (3.77) corresponds to R4×4 matrices preserving Qf , then
the explicit form of the spinor map (3.96) is{

M
viz
= [M ]2×2 viz

=
(
α β
γ δ

)}
7→ M̃

viz
=
(̃
α β
γ δ

)
=

1
2


αᾱ+ββ̄+γγ̄+δδ̄
αγ̄+γᾱ+βδ̄+δβ̄
i(γᾱ−αγ̄+δβ̄−βδ̄)
αᾱ+ββ̄−γγ̄−δδ̄

αβ̄+βᾱ+γδ̄+δγ̄
αδ̄+δᾱ+βγ̄+γβ̄
i(δᾱ−αδ̄+γβ̄−βγ̄)
αβ̄+βᾱ−γδ̄−δγ̄

i(αβ̄−βᾱ+γδ̄−δγ̄)
i(αδ̄−δᾱ+γβ̄−βγ̄)
αδ̄+δᾱ−βγ̄−γβ̄
i(αβ̄−βᾱ+δγ̄−γδ̄)

αᾱ−ββ̄+γγ̄−δδ̄
αγ̄+γᾱ−βδ̄−δβ̄
i(γᾱ−αγ̄+βδ̄−δβ̄)
αᾱ−ββ̄−γγ̄+δδ̄

M.

(3.104)

(8) The connection SL2(C)→ SO+
1,3(R) is analogous to the spinor map from

SU2(C) to SO3(R), as explained in the previous Sections 2.8.2 and 2.8.3.

3.5.2. Gamma Matrices and Type of Fermionic Spinor Fields

3.5.2.1. Dirac 4-Spinor Representation

[T]he Hamiltonian which describes the interaction of the atom and the electromagnetic waves
can be made identical with the Hamiltonian for the problem of the interaction of the atom with an
assembly of particles moving with the velocity of light and satisfying the Einstein–Bose statistics
[ . . . ]. There is thus a complete harmony between the wave and light-quantum descriptions of the
interaction.

— P.A.M. Dirac [783, p. 245]

Until a few years ago it had been impossible to construct a theory of radiation which could
account satisfactorily both for interference phenomena and the phenomena of emission and absorption
of light by matter. The first set of phenomena was interpreted by the wave theory, and the second
set by the theory of light quanta. It was not until in 1927 that Dirac [783] [784] succeeded in
constructing a quantum theory of radiation which could explain in an unified way both types of
phenomena.

— E. Fermi [968, p. 87]

The Eq. (3.91) is the representation for constructing the Dirac spinor, or
4-spinor, as a solution of the free Dirac equation [785], of which we show three
possible ways of writing, (

iℏγµ ∂
∂xµ −mc

)
ψ(

iγµ∂µ −m
)
ψ(

i/∂ −m
)
ψ

 = 0, (3.105)

To follow some specifications.
(1) γµ viz

= γµd = {γ0, γ1, γ2, γ3} are the 4× 4 Dirac gamma matrices,

γ0 =

(
1 0
0 −1

)
, γ1 =

(
0 σ1

−σ1 0

)
, γ2 =

(
0 σ2

−σ2 0

)
, γ3 =

(
0 σ3

−σ3 0

)
,

(3.106)
plus γ5 =

(
0 1
1 0

)
, where γ0 is the time-like matrix, 1 = I2, and σ1,2,3 the Pauli

matrices (2.81); in extended formulation:

γ0 =

{
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

}
, γ1 =

{
0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

}
, γ2 =

{
0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

}
, γ3 =

{
0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

}
,

(3.107)
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plus γ5 = iγ0, γ1, γ2, γ3 =

{
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

}
, under the anti-commutation relation

{γµ, γν} = γµγν + γνγµ = 2ηµνI4×4.
(2) ∂µ = ∂

∂xµ .
(3) /∂ = γµ∂µ is the partial derivative in the Feynman slash notation, see e.g.

[983, 13th lecture].
Associated with various possible representations of gamma matrices, there

are as many types of spinors (for instance, the ones in Dirac, Weyl, and Majorana
representations). The Dirac spinor is a (1/2, 0) ⊕ (0, 1/2) representation of the
Lorentz group; its form is

ψ
[
D( 1

2 ,0) ⊕ D(0, 12 )
]
=

(
ψl
ψr

)
=


ψ1

ψ2

ψ3

ψ4

 =


ψl =

(
ψ1

ψ2

)

ψr =

(
ψ3

ψ4

)
,

(3.108)

having left- and right-handed states, which transform under D(1/2,0) and D(0,1/2),
respectively. Using a neat notation, one can write(

ζ
χ

)
ei(p⃗x−Et)

{
ζ = σ⃗·p⃗

E−mχ,

χ = σ⃗·p⃗
E+mζ,

(3.109)

with energy E → iℏ ∂
∂t , and momentum p⃗→ −iℏ∇ (nabla here is the gradient

operator), where σ⃗ · p⃗ is the longitudinal polarization of the particle, in which
σ⃗ = (σ1,σ2,σ3) is the spin vector having the Pauli matrices as its components;
then

(E −m)ζ = (σ⃗ · p⃗ )χ, (E +m)χ = (σ⃗ · p⃗ )ζ. (3.110)

Scholium 3.5.1.
(1) The Dirac spinor (3.108) is a 4-component object/wave function (split-

table into two 2-component spinors), and is simultaneously left- and right-handed;
it treats massive or massless particles.

(2) Left- and right-handed components of a Dirac spinor correspond to Weyl
spinors (3.114) (3.115).

(3) The Dirac spinor is a complex (reducible) representation of the Lorentz
group. The possibility of a real representation is delegated to the Majorana
spinor (3.119) (3.122).

(4) We highlight an alternative notation to (3.108),

ψ =

(
ζα

χ̃α̇

)
=


ζα =

(
ζ1

ζ2

)
= ψl

χ̃α̇ =

(
χ̃1̇

χ̃2̇

)
= ψr,

(3.111)

by which the left-handed spinor (ζα), as well as the right-handed anti-spinor
(anti-ζα), is indicated by a letter with upper indices without dot above, whilst
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the right-handed spinor (χ̃α̇), as well as the left-handed anti-spinor (anti-χ̃α̇), is
indicated by a letter with lower indices and dot above.

(5) The Lagrangian density for the Dirac field described by (3.108) is

L =


ψ
(
iγµ∂µ −m

)
ψ,

1
2

(
iψγµ∂µψ − i∂µψγµψ

)
−mψψ,

i
2

(
ψ/∂ψ −

(
ψ/∂
)
ψ
)
−mψψ,

(
ψ/∂
)
= ∂µψγ

µ,

(3.112)

defining ψ = ψ†γ0 as the adjoint spinor (or Dirac adjoint), where ψ† viz
= ψ̄ta is

the conjugate transpose of ψ. ⋄

3.5.2.2. Weyl (Chiral) Representation

Gamma matrices (3.106) in the Weyl or chiral representationb [2636] have
this 2× 2 form:

γ0w =

(
0 1
1 0

)
, γ1w =

(
0 σ1

−σ1 0

)
, γ2w =

(
0 σ2

−σ2 0

)
, γ3w =

(
0 σ3

−σ3 0

)
,

(3.113)
plus γ5w =

(−1 0
0 1

)
, where 1 = I2, and σµ=1,2,3 are the Pauli matrices (2.81).

The correlated left- and right-handed Weyl spinors, i.e. (1/2, 0) and (0, 1/2),
respectively, can be written as

ψl → exp

{
1

2
(iθkσk − bkσk)

}
(
1
2 ,0

) =

(
1 +

iθkσk
2
− 1

2
bkσk

)
ψl =

(
ψ1

ψ2

)
,

(3.114)

ψr → exp

{
1

2
(iθkσk + bkσk)

}
(
0,

1
2

) =

(
1 +

iθkσk
2

+
1

2
bkσk

)
ψr =

(
ψ1

ψ2

)
,

(3.115)

where θk, bk ∈ R are the angles of rotation and of a boost, respectively (the boost
transformations are those between two inertial reference frames).

Scholium 3.5.2.
(1) Weyl spinors (3.114) (3.115) are 2-component objects/wave functions,

and treat massless particles; they are alternatively left- or right-handed. With
a δ-infinitesimal value, they can be written as δψl = 1

2 (iθk − bk)σkψl and
δψr = 1

2 (iθk + bk)σkψr.

aDo not confuse ψ̄, which is the complex conjugate (short overline, via \bar command), with ψ,
the adjoint spinor (long overline, via \adjoint overline-like command).

bThe term chiral, from the Greek χείρ (hand), was introduced by Lord Kelvin [2491, p. 619]: «I
call any geometrical figure, or group of points, chiral, and say that it has chirality if its image in a
plane mirror, ideally realized, cannot be brought to coincide with itself». A left hand and its mirror
image, that is, a right hand, and vice versa, are not superimposable: «[R]ight and left hands are
heterochirally similar».
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(2) Let σµ = (1, σ⃗) and σµ = (1,−σ⃗), by using them instead of (3.106),
under the assumption that γµ =

(
0 σ
σ
µ 0

)
. By dividing the spinor (3.108) into

its two 2-components,
(
ψl
0

)
= 1

2 (I − γ
5)ψ and

(
0
ψr

)
= 1

2 (I + γ5)ψ, the Dirac
equation (3.105) in Weyl’s reformulation is(

−m iσµ∂µ
iσµ∂µ −m

)(
ψl
ψr

)
= 0, (3.116)

iσµ∂µψl

iσµ∂µψr

}
= 0. (3.117)

(3) A couple of a left- and a right-handed Weyl spinor forms a Dirac spinor
(3.108), i.e., two Weyl spinors give a Dirac spinor. ⋄

3.5.2.3. Majorana Symmetric Representation

The possibility of achieving a complete formal symmetrization of quantum theory of the electron
and positron is shown by making use of a new quantization process. The meaning of Dirac equations
is somewhat modified and there is no reason to speak of negative energy states [790] [see Section
26.1.4.2]; nor to assume for any other type of particles, particularly neutral ones, the existence of
“antiparticles” corresponding to the “holes” of negative energy.36

— E. Majorana [1739, p. 171]

Gamma matrices (3.106), under the Majorana representation [1739] = [1740],37
are:

γ0m =

(
0 σ

2

σ
2 0

)
, γ1m =

(
iσ3 0
0 iσ3

)
, γ2m =

(
0 −σ2
σ
2 0

)
, γ3m =

(
−iσ1 0
0 −iσ1

)
,

(3.118)
plus γ5m =

(
σ
2 0
0 −σ2

)
, and Cm = −γ0m =

(
0 −σ2

−σ2 0

)
, with γ0m = γ0γ2, γ1m = γ2γ1,

γ2m = −γ2, γ3m = γ2γ3, γ5m = −iγ0γ1γ3, where σµ=1,2,3 are the Pauli matrices
(2.81), and Cm is the charge conjugation operator under Majorana. Here γ0m is
anti-symmetric, and γµm, µ = 1, 2, 3, are symmetric; then γ̄µm = −γµm (γ̄µm is the
complex conjugate), and γµm = Uγ̄µmU

†, in which U = U† = U−1 = 1√
2
γ0(1 + γ2)

is a unitary matrix. Majorana spinor can be written in this way:

ψ
viz
= ψm =

(
ψl
0

)
+

(
0

iσ2ψ̄l

)
=

(
ψl

iσ2ψ̄l

)
=

(
ψl

ψ(l,C)

)
, (3.119)

where σ2ψ̄l acts as a right-handed spinor, and ψ(l,C) = iσ2ψ̄l. The same

construction is for the right-handed spinor, with ψ viz
= ψm =

(
0
ψr

)
→
(

−iσ2ψ̄r
ψr

)
.

Scholium 3.5.3.
(1) Majorana gamma matrices (3.118) are all purely imaginary, so the related

Majorana–Dirac equation has no complex coefficients, and the Majorana spinor
is a real representation of the Lorentz group, for which ψ̄ = ψ. For a detailed
overview, see D.Tz. Stoyanov and I.T. Todorov [2423].

(2) The Majorana spinor (3.119) is a 2-component object/wave function; it
is alternatively left- or right-handed, and is still a (1/2, 0)⊕ (0, 1/2) representation
of the Lorentz group.
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(3) Rule of thumb: a spinor is called a Majorana spinor when ψC = ψ, i.e.

ψC = iγ2ψ̄ =

(
0 −iσ2
iσ2 0

)(
ψ̄l

iσ2ψ̄l

)
=

(
ψl

iσ2ψ̄l

)
= ψ. (3.120)

Eq. (3.120) is illustrative of Majorana’s condition under which a fermion particle
is its own anti-particle.

(4) The Lagrangian helpful for obtaining the above Majorana formalism is

L =

(
iψ†

lσµ∂µψl + i
(m
2

)
· ψ†

lσ2ψ̄l − ψt
lσ2ψl

)
. (3.121)

(5) Two Majorana spinors give a Dirac spinor: as in (3.119) it is possible to
construct a Majorana spinor from a Weyl spinor. Says otherwise, a Majorana
spinor is a Dirac spinor (3.111) in chiral-Weyl form,

(
ζα

0

)
and

(
0
χ̃α̇

)
, in which

ζ-component = χ-component, so

ψm =

(
ζα

ζ̃α̇

)
. (3.122)

⋄
Margo 3.5.2 (Electrically neutral spinors in nature and mathematical models in
comparison). The most appealing spinor in nature is, probably, the neutrino
(for a historical reconstruction inherent in this particle, see E. Amaldi [68, sec.
3, in particular footnote 277], through Pauli’s theorization and Fermi’s paper on
β-decay [969] = [970] = [2673]); not only because it is useful for understanding
the matter vs. anti-matter problem [2448], thanks to Pontecorvo’s neutrino
oscillations [2151] [2153], by which the neutrino changes its lepton flavor (electron,
muon, and tau(on) neutrino) during propagation; but also because it represents
a crossroads between Dirac and Majorana solutions, in which forms of neutrino
and anti-neutrino are and are not distinct particles, respectively. L

3.6. Clifford (Geometric) Algebra and Spinoriality

One of the most exciting characteristics of mathematics is the creation/discov-
ery of unexpected links between different fields of investigation and apparently
distinct categories. Clifford algebra is an ingenious set of instruments, almost like
a trick, that ties and holds several parts of algebra, and not only. In overall terms,
Clifford algebra, or geometric algebra, is called an associative algebra generated
by an n-dimensional vector space equipped with a symmetric quadratic form.

Margo 3.6.1. Historical reference writings for the Clifford algebra are [662]
[664]. In I. Stringham [2426] quaternions and Clifford’s view are mixed for a
construction of hyper- or multi-dimensional geometry (initially within the 4D
field). The analytical roots of multi-dimensional geometry are in J. Plücker
[2119] and, especially, in A. Cayley [589] and H. Grassmann [1194] [1195]. A
first and fundamental contribution for an algebraic (but not yet physical) theory
of connection between spinors and Clifford algebra, it is due to C. Chevalley
[636, chap. III] [637, chap. II]. L
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3.6.1. Abralgebras: Tricks of the Clifford’s Associative Tool

Pauli matrices (2.81), and Dirac (3.106), Weyl (3.113) & Majorana (3.118)
matrices, are all matrix representations of the geometric algebra of space, i.e.,
they are included in the Clifford algebra. Let us explore in more detail the
various ramifications.

(1) Pauli algebra:(
pau(3,0)

viz
= R3,0

viz
= Cℓ3,0(R)

)
∼= C⊗ H ∼=

(
2C viz

= C(2)
)
, (3.123)

where Cℓ3,0(R)
viz
= aps,C ∼= Cℓ0,1, and H ∼= Cℓ0,2 ∼= Cℓ

+[0]
3,0 .

Pauli algebra (see Pauli spinor representation in Section 2.8.3), denoted by
pau(3,0)

viz
= R3,0, coincided with the algebra of physical space, identified by aps,

that is the real Clifford algebra Cℓ3,0(R) of the Euclidean (vector) 3-space R3.
The aps-valued elements are isomorphic to the complexification of the quater-

nions (i.e., to the biquaternions), the algebra of which is given by the tensor
product C ⊗ H, that is in turn isomorphic to the algebra 2C viz

= C(2) of C2×2

(complex) matrices. Quaternions H correspond to the even subalgebra Cℓ+[0]
3,0 of

Cℓ3,0. Note that one has

Cℓ3,0 ∼= (Cℓ2,0 ∼= 2R)⊗ (Cℓ0,1 ∼= C) ∼= 2C, (3.124)

whereas Cℓ0,3 ∼= (Cℓ0,2 ∼= H)⊗ (Cℓ1,0 ∼= R⊕ R = R2) ∼= H⊕ H.
(2) Dirac algebra:(

dir(4,1)
viz
= R4,1

viz
= Cℓ4,1,C⊗(R)

viz
= Cℓ4×(C)

)
∼=
(
4C viz

= C(4)
)
, (3.125)

where 4C viz
= C(4) is the algebra of C4×4 (complex) matrices. Note that

(i) Cℓ4,1,C⊗(R) ∼= Cℓ1,1 ⊗ Cℓ3,0 ∼= 2R⊗ 2C ∼= 4C,
(ii) C⊗ H⊗ H ∼= C⊗ 4R ∼= 4C.
(3) Space-time algebra, introduced by D. Hestenes [1344] [1345] [1346]:(

sta
viz
= R1,3

viz
= Cℓ1,3(R) ∼= Cℓ1,1 ⊗ Cℓ0,2

)
∼=
(
2H

viz
= H(2)

)
, (3.126)

where 2H
viz
= H(2) is the algebra of H2×2 = H4 = R16 (quaternionic) matrices.

Note that
(1) Cℓ4,0 ∼= Cℓ2,0 ⊗ Cℓ0,2 ∼= Cℓ1,3 ∼= 2R⊗ H ∼= 2H,
(2) Cℓ1,3 + iCℓ1,3 = 4C.
Space-time algebra is but a geometric algebra characterized by a coordinate-

free reformulation, in a unified language, of relativistic theories (Dirac Eq.
(3.105), Einstein field Eqq. (4.1), Einstein–Maxwell–Dirac equations). Among
its features there is that of providing a basis vectors in space, for the Pauli
matrices (2.81), and in space-time, for the Dirac matrices (3.106); plus there
is that of giving a spatio-temporal origin, or a geometric dimension, to the
imaginary unit in quantum mechanics.
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(4) Majorana algebra:(
maj(3,1)

viz
= R3,1

viz
= Cℓ3,1(R) ∼= Cℓ1,1 ⊗ Cℓ2,0

)
∼=
(
4R viz

= R(4)
)
, (3.127)

where 4R viz
= R(4) ∼= H ⊗ H ∼= 2R ⊗ 2R is the algebra of R4×4 (real) matrices.

The Majorana algebra is the Clifford algebra of R3,1. Note that Cℓ1,1 ⊗Cℓ2,0 ∼=
Cℓ2,2 ∼= 2R⊗ 2R.

Summing up, these are the four Clifford algebras that are of interest to us:
pau(3,0)

viz
= aps = Cℓ3,0, dir(4,1), sta = Cℓ1,3, and maj(3,1). Let us look at some

intersections.(
pau(3,0)

viz
= Cℓ3,0(R)

)
∼=
(
sta+[0] viz

= Cℓ
+[0]
1,3 (R)

)
∼=
(
maj

+[0]
(3,1)

viz
= Cℓ

+[0]
3,1 (R)

)
,

(3.128)(
sta

viz
= Cℓ1,3(R)

)
∼=
(
dir

+[0]
(4,1)

viz
= Cℓ

+[0]
4,1,C⊗(R)

viz
= Cℓ

+[0]
4× (C)

)
, (3.129)

(
dir(4,1)

viz
= Cℓ4,1,C⊗(R)

)
∼=

C⊗
(
sta

viz
= Cℓ1,3(R)

)
= Cℓ1,3(R)C,

C⊗
(
maj(3,1)

viz
= Cℓ3,1(R)

)
= Cℓ3,1(R)C,

(3.130)

C⊗
(
sta

viz
= Cℓ1,3(R)

)
∼= C⊗

(
maj(3,1)

viz
= Cℓ3,1(R)

)
. (3.131)

Pauli algebra is the even subalgebra of the space-time and Majorana algebras,
i.e.

aps ∼= (sta ∼= maj)+[0],

Cℓ-pau(3,0) ∼= (Cℓ1,3 ∼= Cℓ3,1)
+[0], (3.132)

through the maps

φCℓ : sta
+[0] → Cℓ3,0(R), (3.133)

φCℓ : maj
+[0]
(3,1) → Cℓ3,0(R). (3.134)

The space-time algebra is the even subalgebra of the Dirac algebra; so the Dirac
algebra is isomorphic to the complexification of the space-time algebra or of the
Majorana algebra. The isomorphism

φCℓ : Cℓ4,1,C⊗(R)→ C⊗ Cℓ1,3(R) (3.135)

comes from the fact that Cℓ4,1,C⊗(R) ∼= 4C (the Clifford algebra Cℓ4,1,C⊗(R) is
isomorphic to the algebra of C4×4 matrices), for which each element of the Dirac
Eq. (3.105) can be represented in Cℓ4,1,C⊗(R).

Scholium 3.6.1 (Pauli algebra for the Minkowski space-time). In W.E. Baylis
and G. Jones [224] [222] [223, sec. 17.1] there is a description of how the Pauli
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algebra, although related to multiplication of vectors in 3D Euclidean space, can
form a 4-dimensional space with a Minkowski-like metric. This is because the
Minkowski space-time (Section 3.4.1), both in Dirac (3.125) or in space-time
(3.126) algebra version, can be divided into two parts, and therefore it can be
mapped onto the spinor pau(3,0)-valued algebra; in this way, the elements in
the sum of scalars and vectors, called paravectors, become elements of a real
4-space, moving from vector to 4-vector interpretation: the transformations of
the paravectors are spin Lorentz-like transformations, and from here it is possible
to (re)build the spinor map from SL2(C) into SO+

1,3(R) = Л ↑
+. ⋄

3.6.2. Spin(or) in CℓCℓCℓ-Algebra

(1) The spin group in the spinor map (3.96) has a precise identification in
the Clifford algebra,

Spin+
1,3(R) =

{
{s ∈ Cℓ3,0(R)} ∼=

{
s ∈ Cℓ+[0]

1,3 (R)
}}
∼= SL2(C), (3.136)

Spin+
1,3(R) ⊂

{
Cℓ3,0(R), with R3 ⊕

∧2 R3,

Cℓ
+[0]
1,3 (R), with

∧2 R1,3.
(3.137)

Of course, maj(3,1)-side, one has

Spin+
3,1(R) =

{
s ∈ Cℓ+[0]

3,1 (R)
}
∼= SL2(C). (3.138)

(2) The Dirac spinor (3.108) is a 4-complex column form; another form is in
terms of C4×4 matrix spinor,

ψ =



{
ψ1

ψ2

ψ3

ψ4

}
∈ C4,{

ψ1 0 0 0
ψ2 0 0 0
ψ3 0 0 0
ψ4 0 0 0

}
∈ 4Cи, with и = 1

2 (1 + γ0) 12 (1 + iγ1γ2),

(3.139)

where и is the primitive idempotent. There is a third possibility to write the
Dirac spinor, called Clifford–Dirac algebraic spinor, distinguishing between the
real part and the complex conjugate in this way,

ψ ∈ C⊗ Cℓ1,3и

ℜ(ψ) 12 =


ψ1 −ψ̄2 0 0
ψ2 ψ̄1 0 0
ψ3 ψ̄4 0 0
ψ4 −ψ̄3 0 0

 , ψ̄ =


0 −ψ̄2 0 0
0 ψ̄1 0 0
0 ψ̄4 0 0
0 −ψ̄3 0 0


 . (3.140)

Margo 3.6.2. The real part and the complex conjugate of ψ ∈ 4Cи in (3.139)
have instead the following form:

ℜ(ψ) =

{ℜ(ψ)1 0 0 0
ℜ(ψ)2 0 0 0
ℜ(ψ)3 0 0 0
ℜ(ψ)4 0 0 0

}
, ψ̄ =


ψ̄1 0 0 0
ψ̄2 0 0 0
ψ̄3 0 0 0
ψ̄4 0 0 0

 . (3.141)

L
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[2364, sec. 9.5.2] [2479, pp. 524. 610]. — On the Weyl projective curvature tensor, see [887, p.
135] [841], and [370, 2.2.4] [2353, 1.5.3].

Section 3.3.5
On the Cotton and Cotton–York tensors [643, I.14.8], see [1094] reworked in [1093, chap. 20]
[1185, sec. 7.1]. — On the conformal transformation, see [712] [1061, secc. 1.3.3, 3] [1207, secc.
2.3.3, 4.4.1]; see also [1055, sec. 17.1] [2018, sec. 2.2].

Section 3.4.1
On the Minkowski space-time, see e.g. [2069, secc. 1.1-2] [2070, summary of Vol. 1, secc. 9.1-2]
[1892, secc. 2.2, 3.4] [1893, sec. 1.2].

Section 3.4.2.1
About the Lorentzian geometry (manifolds and spaces), see [17, sec. 3.9] [190, sec. 1.3] [228,
sec. 3] [822, secc. 2.4, 3] [1975, sec. 5] [2093] [2276, secc. 8.1-2].

Section 3.4.2.2
On the Lorentz groups, see e.g. [692, sec. 3] [1262, chap. 6] [2224, sec. 2.8.1] [2436, sec. 3.4.1].

Section 3.5.1
On the representations of the Lorentz group, spinor map, and links between SO+(1, 3) and
SL2(C), see e.g. [531] [532, chapp. 3-4] [669] [706] [1892, sec. 2.4]; see also the lecture course of
S. Coleman on qft [627, chap. 18].

Section 3.5.2
· On the Dirac, Majorana and Weyl representations of gamma matrices plus spinors, see e.g. [30,
sec. 15.1] [189, chap. 1] [627, secc. 19.3-4, 20.4, 22.2] [1023] [1993] [2334, chap. 10, sec. 11.3]
[2505, chapp. 7-8].
· For a basic mathematical introduction to Dirac’s and Weyl’s formalism, you can see the book
by Talagrand [2455, part II], but it is a pity that Majorana’s inventions are limited to a brief
page.
· A broader study on the spinors is in P. Deligne [756].

Section 3.6
On the Clifford algebra, in relation to Pauli, Dirac, and Majorana theories, plus algebra of

physical space, space-time algebra, and spinors, see [811] [1698] [1699] [1867] [2095] [2154] [2222];
see also [943, sec. 4.6] [1588, chapp. 1-2].



4

On Dimensional Continuum, Part II. Action
Principles, Variations and Radiation in Curved

Space-Time—Mathematical Details of Field
Theory of Gravitation (General Relativity)

[According to Riemann] the axioms of plane geometry are true within the limits of experiment
on the surface of a sheet of paper, and yet we know that the sheet is really covered with a number
of small ridges and furrows, upon which (the total curvature not being zero) these axioms are not
true [ . . . ]. I hold in fact

(1) That small portions of space are in fact of a nature analogous to little hills on a surface
which is on the average flat; namely, [ . . . ] the ordinary laws of geometry are not valid in them.

(2) That this property of being curved or distorted is continually being passed on from one
portion of space to another after the manner of a wave.

(3) That this variation of the curvature of space is what really happens in that phenomenon
which we call the motion of matter, whether ponderable or etherial.

(4) That in the physical world nothing else takes place but this variation, subject (possibly) to
the law of continuity [663, pp. 157-158] = [665, pp. 21-22].

Our space is perhaps really possessed of a curvature varying from point to point, which we fail
to appreciate because we are acquainted with only a small portion of space, or because we disguise
its small variations under [really geometrical] changes in our physical condition which we do not
connect with our change of position [ . . . ]. We might even go so far as to assign to this variation
of the curvature of space “what really happens in that phenomenon which we term the motion of
matter” [666, pp. 224-225].

— W.K. Clifford

[I]f we assume as an axiom that space resists curvature with a resistance proportional to the
change, we find that waves of “space-displacement” are precisely similar to those of the elastic
medium which we suppose to propagate light and heat. We also find that “space-twist” is a quantity
exactly corresponding to magnetic induction, and satisfying relations similar to those which hold
for the magnetic field. It is a question whether physicists might not find it simpler to assume that
space is capable of a varying curvature, and of a resistance to that variation, than to suppose the
existence of a subtle medium pervading an invariable homoloidal [flat or Euclidean] space.

— K. Pearson, annotation on W.K. Clifford [666, pp. 225-226]

A further development of the theory of elastic mediaa in curved spaces will perhaps allow to
answer a question by Clifford: if it were not possible that we consider as physical variations certain
effects actually due to changes in the curvature of our space; in other words, if some of the causes,
that we call physical, and maybe all of them, were not by chance due to the geometric constitution
of the space in which we live.38

— E. Cesàro [607, p. 213]

4.1. Gravitational Field as a Curvature of the Space

We continue our discussion started in Sections 3.1-3.4.
aCf. Section 7.4.1.2.
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4.1.1. Einstein Field Equations

The answer is that it does not seem possible to draw any distinction between the warping of
physical space and the warping of physical objects which define space [ . . . ]. The law of gravitation
is not a law in the sense that it restricts the possible behaviour of the substratum of the world;
it is merely the definition of a vacuum. We need not regard matter as a foreign entity causing a
disturbance in the gravitational field; the disturbance is matter.

— A.S. Eddington [833, pp. 126, 190]

The theoretical nucleus of general relativity, and that is the point of union
between space-time (geometry) and matter (physics), within the Ricci calculus
of tensors, is composed of the Einstein field equations [854, pp. 844-845] [857, §
4]:

Gµν = Rµν −
1

2
gµνRs = κΤµν (4.1a)

= Rµν −
1

2
gµνRs =

8πGn

c4
Τµν , (4.1b)

= Rµν = κ

(
Τµν −

1

2
gµνΤ

)
, (4.1c)

= − ∂

∂xξ

{
µν

ξ

}
+

{
µξ

ϱ

}{
νϱ

ξ

}
+
∂2 log

√
−g

∂xµ
∂xν

−
{
µν

ξ

}
∂ log

√
−g

∂xξ

, (4.1d)

where Gµν is the Einstein tensor (3.41), Rµν is the Ricci curvature tensor (Section
3.3.2.1), gµν is the metric tensor, Rs is the scalar curvature (Ricci scalar) (3.40),
κ = 8πG

c4 is the Einstein (gravitational) constant [853], that is the strength of
coupling between matter (physical dimension) and geometric space, Τµν is the
energy-momentum tensor (4.4), Gn is the Newtonian constant of gravitation,
and

{
µν
ξ

}
etc. are the Christoffel symbols of the second kind (1.4). With the

addition of the cosmological constant, denoted by Λ,a we get

Rµν −
1

2
gµνRs + Λgµν = κΤµν . (4.2)

4.1.1.1. Invariantiveness and Tensorial Conservation: Levi-Civita’s
Analytical Expression

The mechanical meaning of the [tensorial] system [in general relativity, so that it is admissible]
implies an analytical structure with convenient invariant properties [convenienti proprietà invari-
antive] in the face of any coordinate transformations.

— T. Levi-Civita [1627, pp. 381-382]

Aik + Τik = 0b i.e. inertial[-gravitational] tensor and energy tensor are balanced [si fanno
equilibrio]. Namely the curvature of the space is such that modifying itself it balances [equilibra]
any external physical action.

— R. Marcolongo [1767, p. 181]

Levi-Civita [1627, § 7] shows that the Bianchi identities (3.26) (3.30) contain
a formal justification of the gravitational field Eqq. (4.1),c correcting a misun-
derstanding in Einstein [856, p. 696], which was unable to impress an invariant

aBy λ in [857, p. 151]: Gµν − λgµν = −κ
(
Τµν − 1

2 gµνΤ
)
.

bSame formula, but the order of the addends is reversed, in [1627, p. 338].
cAn intrinsic form of (4.1) is summarised in U. Cisotti [659].
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character to the whole, and asserting the idea that the gravitation field is, from
the mathematical perspective, a tensor-like phenomenon. We focus on (4.1a):
Rµν − 1

2gµνRs = κΤµν .
The right-hand side of (4.1a), i.e. κΤµν , is a double system, that is, a system

with covariant and contravariant indices, and zero divergence, cf. e.g. Eddington
[835, IV, sec. 54]:

∇νΤµν = ∇νΤµν = Τµν ;ν = 0. (4.3)

The vanishing covariant divergence of Τµν shall therefore guarantee the energy-
momentum conservation. The completeness of (4.1a) requires, nevertheless, that
the divergence of the left-hand side, i.e. Rµν − 1

2gµνRs, is equally identically
null. And this is precisely what the Bianchi identities express, see Eqq. (3.42)
(3.46). It is therefore appropriate, and historically more correct, the proposal
(of O. Onicescu) to call the system of gravitational equations under the name of
Einstein–Levi-Civita field equations.

4.1.1.2. Energy-Momentum Tensor as a Variational Derivative

The energy-momentum tensor is a quantity for the density of matter, which
represents the presence of a disturbance in space-time (see point (2) in Section
3.1.2):

Τµν =
2√
−g

δ
[√
−gL =

(√
−g
(
1
2g
µν∂µϝ∂νϝ− U

))]
δgµν

, (4.4)

where L
viz
= Lm = 1

2∂µϝ∂
µ
ϝ−U(ϝ) is the Lagrangian density of the matter-energy,

in which ∂µϝ = ∂L
∂(∂µϝ)

, with a scalar field ϝ and a potential U(ϝ).
It can be described as a functional in the calculus of variations. Indicating

by Sm the action functional, referred to as a matter action, useful to describe
the dynamics of gravitational fields within the doubly interactive scheme of
matter-geometry, by δ the metric g-variations, and by Ω ⊂ M4 a domain of
integration of dimension 4, i.e. a 4-volume corresponding to a region (or portion)
of Minkowski space-time, we can write the variation of the action integral,

δSm =

∫
Ω⊂M4

{
∂ ·
√
−gL

∂gµν
δgµν +

∂ ·
√
−gL

∂(∂ξgµν)
∂ξδg

µν + · · ·
}
d4x

=

∫
Ω⊂M4

(
δ ·
√
−gL

)
d4x =

(
1

2

∫
Ω⊂M4

√
−gLΤµνδgµν

)
d4x, (4.5)

where d4x = d(t, x, y, z), and again L
viz
= Lm, in which the tensor (4.4) appears.

4.1.2. Einstein–Hilbert (Gravitational) Action

The variation of Sm (4.5) brings us straight to the Einstein–Hilbert action
[1357] [1358], that is, the action from which it is possible to reconstruct the Eqq.
(4.1):

Seh = − c4

16πGn

∫
Rs

√
−gd4x = − 1

2κ

∫
Ω⊂M4

Rs

√
−gd4x. (4.6)
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The variation of Seh will be:

δSeh = − 1

2κ

∫
Ω⊂M4

δ
(
Rs

√
−g
)
d4x = − 1

2κ

∫
Ω⊂M4

δ
(
gµνRµν

√
−g
)
d4x

= − 1

2κ

∫
Ω⊂M4

(
Rµν
√
−gδgµν + gµνRµνδ

√
−g + gµνδRµν

√
−g
)
d4x

= − 1

2κ

∫
Ω⊂M4

√
−g
{(

Rµν −
1

2
gµνRs

)
δgµν + gµνδRµν

}
d4x

= − 1

2κ

∫
Ω⊂M4

√
−g (GµνδgµνδRµν) d4x. (4.7)

Margo 4.1.1. On the priority (Einstein vs. Hilbert) in [1357] for the correct
exposition of the gravitational field equations in an explicit form, see [691]. L

4.1.3. Palatini Identity, and the Variation of the Gravitational Action

After the gravitational equations were discovered, thanks to Einstein, an attempt was made to
derive them from a variational principle, as, in ordinary mechanics, one derives the [Euler–]Lagrange
equations from the Hamilton principle. The goal was achieved by Einstein himself, establishing
a new principle of Hamilton, further articulated by Hilbert [1357] and Weyl [2627] [2631, 2ed].
The procedures followed by these authors, however, do not conform to the spirit of the absolute
differential Calculus, because invariant equations (in the face of changes of variables) arise from these
procedures, passing through other formulæ that have no invariant character. I intend to achieve
the same goal preserving the invariance in the subsequent formulæ [mi propongo di raggiungere il
medesimo scopo conservando l’invarianza nelle successive formule] being introduced.

— A. Palatini [1995, pp. 203-204]

It is known that the gravitational action (4.6) can also be written in another
way, with a method of variation concocted by A. Palatini [1995] = [1996], which,
unlike the Einstein–Hilbert approach, maintains a total invariant character
throughout the process of deducing the gravitational Eqq. (4.1) from the
variational principle.

We first define the notion of identity according to Palatini. Setting the
variation δRµν of the Ricci curvature tensor (3.38), plus the variation δΓ of the
Christoffel symbols (Section 1.2),

δRµν = ∂ξδΓµν
ξ − ∂νδΓµξξ + δΓµν

ξΓξϱ
ϱ + Γµν

ξδΓξϱ
ϱ − δΓµξϱΓνϱξ − ΓµξϱδΓνϱξ,

(4.8)
and then adding the covariant derivative ∇, finally we get to the Palatini identity :

Ip =
{
δRµν = ∇ξ

(
δΓµν

ξ
)
−∇ν

(
δΓµξ

ξ
)}

. (4.9)

The variation formula for the Einstein–Hilbert action turns into

δSp = − 1

2κ

∫
Ω⊂M4

{(
Rµν −

1

2
gµνRs

)
δgµν
√
−g +

√
−g

×
[
∇ξ
(
gµνδΓµν

ξ
)
−∇µ

(
δΓµξ

ξ
)]}

d4x, (4.10a)

= − 1

2κ

∫
Ω⊂M4

(
Rµν −

1

2
gµνRs

)
δgµν
√
−gd4x, (4.10b)

which we may call the Palatini variation of the gravitational action.
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Margo 4.1.2. Palatini’s flash of inspiration is in showing that the δ-variations
of the Christoffel symbols are the components of the curvature tensor, and this
independently of any choice of a symmetric affine connection. Such a solution
should not be confused, as frequently happens, with the so-called Palatini method
of variation, see e.g. [888] [2537], which was successively conceived by Einstein
[863], even if the ideational substratum of this proposal is already in Palatini.
The Palatini method consists of assuming that the metric tensor field g and the
Levi-Civita connection (Section 1.3.5) are independent variables, along with the
intention of developing a non-symmetric Γ -connection, but a procedure of this
kind is not present in the original paper [1995]. For a historical reconstruction,
see [975]. L

4.1.4. Vetturale of Energy Radiated in Gravitational Waves

Now what is there analogous to magnetic force in the gravitational case? And if it have its
analogue, what is there to correspond with electric current? [ . . . ] [R]results will be sensibly [ . . . ]
expressed in terms of wave-propagation.

— O. Heaviside [1313, pp. 457, 460, e.a.]

[W]hen we talk about the position or velocity of the attracting body, it is its position or its
velocity when the gravitational wave [l’onde gravifique] leaves it; for the attracted body, on the
contrary, it is its position or its velocity when the gravitational wave reaches it, assuming this wave
propagates with the speed of light [vitesse de la lumière].

— H. Poincaré [2137, § 9, p. 174]

When it is perturbed, space-time—in spite of the Einstein’s initial (and perse-
vering) skepticism, or the Eddington’s [834] refusal—is the vetturalea (conveyor,
carrier) of energy in the form of gravitational radiation. One thinks of the
gravitational waves [860] [883], the ripples in the construction of space-time,
which can be flat or curved.

4.1.4.1. Quadrupolarity and Transverse-Traceless Gauge

It turns out that the structure that Einstein was seeking was the gauge field: It is a geometrical
structure [ . . . ]; the simplest Abelian gauge field is Maxwell’s electromagnetic field [ . . . ]. That
gauge fields are deeply related to the geometrical concept of connections on fiber bundles has been
appreciated by physicists only in recent years.b

— C.N. Yang [2708, p. 44]

We can think of the gravitational waves in analogy to electrodynamics, in
which electromagnetic waves, i.e. electric and magnetic fields, are produced by
accelerated charges through empty space (void, vacuum) at the same constant
speed of light.

Gravitational waves have a very similar behavior, but with the emergence of
geometric fluctuations or disturbances in respect of a curvature-undulation in
vacuum, and with a quadrupole moment, instead of a dipole moment, typical for
electromagnetic waves. The quadrupolar radiation formula [860] is

hµν =
2Gn

c4ρ
Q̈µν , with Qµν =

∫
ρQ

(
xµxν − 1

3x
ξxξδµν

)
d3x, (4.11)

aTerm used by Leonardo da Vinci about the water, in Manoscritto K (1504-), Institut de France,
Paris, foglio 2 recto: «lacqua el vetturale della natura» (water nature’s cart).

bBut compare with point (2) in Section 24.1.3.



110 4. On Dimensional Continuum, Part II

where hµν
viz
= htt

µν represents small perturbations or deviations from the flatness,
i.e. the gravitational wave-field, corresponding to a symmetric tensor field of
rank 2, ρ = |x| is the length of a position vector, i.e. the distance to the source,
and Qµν

viz
= Qtt

µν is the quadrupole moment tensor, in which ρQ is the source
density; the double tt means transverse-traceless gauge, and its conditions are
the following:

hµ0 = 0, hµµ = 0, hµ
µ = 0, hµν,ν = 0, ∂µh

µν = 0, putting h viz
= htt. (4.12)

There are two types of propagation. Gravitational waves propagate
(1) in a flat space-time β-background (Minkowski vacuum),
(2) or in a curved space-time β-background.

4.1.4.2. Flux of Gravitational Radiation in the Minkowski Vacuum

If the propagation is in the Minkowski vacuum, the metric can be written as

gµν =
(
ηµν

viz
= g βµν

)
+ hµν , (4.13)

where ηµν
viz
= g βµν and hµν are the background and perturbation parts, respec-

tively.
Without a source energy-momentum tensor, namely Τµν = 0, the metric

tensor fluctuations in a flat background is expressed with the d’Alembert operator
or, more commonly, d’Alembertian [44, 45], cf. Eq. (14.25)

□hµν = 0, □ = ηµν∂µ∂ν , (4.14)

under ∂νhµν = 1
2∂µh, that is, a harmonic gauge condition.

The action useful for determining the free dynamics propagation of a gravi-
tational wave in the flat space-time is

S(2)
gw = − 1

2κ

∫ ((√
−ggνξ

)(2)
R

(0)
νξ +

(√
−ggνξ

)(0)
R

(2)
νξ +

(√
−ggνξ

)(1)
R

(1)
νξ

)
dx4

= − 1

2κ

∫ ((√
−ggνξ

)(2)
+ ηνξR

(2)
νξ +

1

2
hνξ □hνξ

)
dx4

=
c4

32πGn

∫
1

2

(
∂µh

ξϱ∂µhξϱ
)
d4x. (4.15)

The variation δS(2)
gw = c4

32πGn

∫
1
2

(
∂µh

ξϱ∂νhξϱδg
µν · · ·

)√
−gd4x allows us to

determine the energy-momentum tensor,

Τ
gw
µν =

c4

32πGn
∂µh

ξϱ∂νhξϱ, (4.16)

which guarantees the description of the flux of energy, relatively to the radiated
wave-field, in the tt gauge (4.12), so Τνν = 0 and ∂νΤgw

µν = 0, in accordance
with the Eq. (4.14) of vacuum metric disturbances.
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Scholium 4.1.1.
(1) Note that the background metric g βµν is a neutral, that is, it can be flat

(Minkowski metric) or curved (non-pseudo-Euclidean metric).
(2) The flat Minkowski background (vacuum) is like a rigid stage of the

propagative event (cf. Section 4.3.1); it must also be remembered that the
Minkowski space-time M4 viz

= M4 (Section 3.4.1) is a manifold equipped with a
strongly asymptotic flatness, having a global dynamic stability [654]. ⋄

4.1.4.3. Formalism for a Background Curvature

The presence of perturbations of the metric tensor in a curved background is
given by

gµν → g βµν + (hµν = δgµν). (4.17)

The tt gauge, in this case, is the same as (4.12) but with covariant behavior, so

∇νhµν
gµνhµν

gµν∇µ∇νh

 = 0. (4.18)

As for the dynamics of the gravitational field, the reference equation is that
of Einstein–Levi-Civita (4.1a); with the energy-momentum tensor, it takes this
form:

R β

µν −
1

2
g βµνR

β

s = 8πGnΤ
gw
µν , (4.19)

Τ
gw
µν = − 1

8πGn

(〈
R(2)
µν

〉
− 1

2
g βµν

〈
R(2)

s

〉)
, (4.20)

where R(2)
s = R

(2)
µν g βµν .

4.1.4.4. Contour Jottings

(1) We cite here three cardine studies.
(i) The Einstein–Rosen solution [883] deals with the theoretical problem of

gravitational waves by reducing it to the cylindrical waves in a (flat) euclidean
space.

(ii) F.A.E. Pirani’s research, with H. Bondi and I. Robinson,
(a) examines and summarizes [2103] the gravitational wavefronts in terms

of a discontinuity in the Riemann tensor across a null 3-surface, establishing
criteria for a general interpretation of the plane wave metric and the gravitational
radiation;

(b) introduces [363] plane gravitational waves as non-flat solutions of Eqq.
(4.1) for an empty space-time, having the same symmetry as the plane electro-
magnetic waves.
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(2) The first detection [3] [4] of gravitational waves is related to the phe-
nomenon of binary black hole coalescence. A later detection [5] concerns a
merging of two neutron stars. On a theoretical level, a first accurate simulation
of a coalescence of binary black holes goes back to F. Pretorius [2161] [2162];
equations for the Schwarzschild (26.15) and Kerr (26.17) metrics are in Section
26.1.4.1, that are the basis for understanding the behavioral nature of black
holes.

4.2. Lovelock’s Scalar Lagrangian Density of the Gravita-
tional Field

D. Lovelock [1700] [1701] [1702] [1703] [1704] [1705] [1706, sec. 8.3, co-written
with H. Rund] showed that, in a 4-dimensional C∞ manifold, i.e. for (2-, 3-
and) 4-dimensional spaces (the starting model is the flat Minkowski space-time
with non-gravitational interactions),

(1) the Einstein field equations with cosmological constant Λ, see Eq. (4.2),
are the only admissible second order Euler–Lagrange equations, see Eqq. (1.70);

(2) the Einstein tensor (3.41) is the only tensor of rank 2 having the properties
of symmetry and zero divergence.
The two statements are no longer valid in dimension higher than 4. This has
involved a generalization of the (geo)metric theory of gravitation.

Proposition 4.2.1. Let φα = φ(xµ), with α = 1, . . . ,m and µ = 1, . . . , n,
denote m quantities on an n-dimensional space. Setting the Lagrangian as
L

viz
= L

(
φα, φαµ1

, φαµ1···µr

)
, and putting φαµ1···µj

= ∂jφα

∂xµ1 ···∂xµj , with 1 ⩽ j ⩽ r, the
system of Euler–Lagrange equations will be

∂L

∂φα
+

r∑
j=1

(−1)j ∂j

∂xµ1 · · · ∂xµj

(
∂L

∂φαµ1···µj

)
= 0. (4.21)

Now, we consider the Lagrangian as a scalar density (so that the Euler–Lagrange
equations are tensorially determined), and we write it in these forms,

L
ιδ

=

{
L(gµν , gµν,ξ1 , gµν,ξ1,...,ξr ),

L(gµν , gµν,ξ, gµν,ξϱ),

(4.22a)
(4.22b)

namely as a function of the metric tensor gµν and its first two derivatives.
Let Eµν viz

= Eµν(L) be the Euler–Lagrange operator, the components of which
correspond to those of a symmetric

(
2
0

)
-tensor density, i.e. Eµν = Eνµ. More

specifically, the Euler–Lagrange expression correlated to the scalar L-density is

Eµν =
∂L

∂gµν
+

r∑
j=1

(−1)j ∂j

∂xξ1 · · · ∂xξj

(
∂L

∂gµν,ξ1···ξj

)
. (4.23)

Then,



4.3. Historico-Philological Remarks 113

(1) for any scalar density, like that in (4.22a), the divergence components of
the Euler–Lagrange tensor density (4.23) itself vanishes identically, is automati-
cally null,

Eµν(L)|ν = 0. (4.24)

(2) If the space is a torsionless 4-space, the only second order Euler–Lagrange
equations arising from the scalar L-density (4.22) are

c(1)

(
Rµν − 1

2
gµνRs

)
+ c(2)g

µν = 0, (4.25)

which coincides with the Einstein’s Eq. (4.2) with cosmological constant Λ (the
values c(1) and c(2) are two simple constants). It also entails that the Einstein
field equations with Λ are the only obtainable second order Euler–Lagrange
equations in 4D. (The same speech is worth for the sole Einstein tensor). This is
false in D-dimensional space if D > 4. The Euler–Lagrange expression, rewritten
with the parameters in general relativity, becomes

Eµν = c(1)
√
g

(
Rµν − 1

2
gµνRs

)
− 1

2
c(2)
√
ggµν . (4.26)

Scholium 4.2.1. Lovelock’s theory is one of the cases where the mathematical
toolbox (in this context, we talk about the space dimensionality) constrains the
physics that it describes. To put it differently, it is a direct example in which
physics comes straight from mathematics. ⋄

4.3. Historico-Philological Remarks

4.3.1. Concepts (?) of Space-Time

(1) Minkowski space-time is, in the Einsteinian perspective, a rigid pal-
coscenico (Bühne) distinct or separate from matter and energy, because gravi-
tational effects are supposed to be absent (see e.g. point (7) in Section 3.4.1);
about the Minkowski space-time, in proper parlance, it is said that it has an
«existence independent» (selbständige Existenz ) of matter. However, in general
relativity, this independence is fundamentally conceptual, mathematically useful,
but it is denied on the physical level (but cf. Margo 4.3.2).

For Einstein, the condition of matter-energy free regions of space-time is an
idealization: absence of gravitational forces means assuming that, in certain
cases, gravity has a negligible effect. Such a de facto condition is not consistent
with experimental data, because there is no a candid way of testing whether a
stand-alone space-time that is independent of its content of matter-energy really
exist or not. On the subatomic scale, a separate existence or physical reality of
space-time loses the sense of itself; besides, talking here about existence has a
finely math-operational significance.

We quote some Einstein’s passages: «Physical objects are not in space [im
Räume], but these objects are spatially extended [räumlich ausgedehnt ]» [876].
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«[T]he geometric properties of space are not independent, but they are determined
by matter [ . . . ]. There is no an empty space [leeren Raum], i.e. a space without
[gravitational] field» [881, pp. 74, 107]. Space-time has no physical existence
(reale Existenz ), but it is only a metric set—that is to say, it is a mathematical
structure—of the gravitational field; or see [859, p. 271], which is a criticism
against the de Sitter’s solution [2387] of gravity field equations: «[T]here cannot
be a gµν-field, i.e. a space-time continuum, without matter that generates it».

(2) But beware: Einstein’s view is fluctuating over the years. Contrary to
what we have just read, he says in [867, p. 610]: «The strange conclusion to
which we have come is this—that now it appears that space will have to be
regarded as a primary thing and that matter is derived from it, so to speak,
as a secondary result. Space is now turning around and eating up matter. We
have always regarded matter as a primary thing and space as a secondary result.
Space is now having its revenge»; and in [868, p. 8 in the typescript with hand
written corrections]: «Space [after swallowing ether, time, field and particles]
remains the sole medium [substrate] of reality [alleiniger Träger der Realität ]».

(3) We then have three types of space-time:
(i) Minkowski space-time (in special relativity):
· stage space-time,
· flat, empty, and ambient-like pseudo-Euclidean space,
· old-fashioned substratum (ὑποκειμένος χῶρος), which underlies the matter

and has an existence independent of matter;
(ii) Curved space-time, or locally equivalent to (a set of flat frames identifying)

a curved space-time (in general relativity of the early period):
· non-pseudo-Euclidean space,
· metric not capable of separate or independent existence of the matter fields;
(iii) Space-entity (in general relativity of the last period):
· space with independent existence by itself,
· autonomous Reality, with a Newtonian reminiscence,a that destroys and

devours the whole matter and time (neo-myth of a πανδαμάτωρ χῶρος).

Margo 4.3.1 (Newtonianism and Euclidicity for gravity in Levi-Civita’s view).
(1) The fact that space-time is, in an equivocal way, physically interpreted

on several levels, is reflected, mathematically, in the possibility of guessing, as
Levi-Civita shows in his Notes I-IX [1629] on Einsteinian ds2 in Newtonian fields,
a one-to-one correspondence between classical fields (starting from Newton) and
relativistic fields, in a static model—and not just because they coincide locally
(cf. point (6) in Section 3.4.2.1), but also because they globally have in common
some groups of symmetry. One of the Levi-Civita’s exact solutions of field
equations has the particularity that the relativistic space is strictly Euclidean,
and the gravitational field is presented as a series of parallel planes, under which
relativistic-gravity phenomena are associated with equipotential surfaces the
intensity of which varies from one plane to another [1629, Note V-VII].

aIn Newton [1934, Definitiones, Scholium, p. 5] [1940, p. 9], both space and time are an
absolutum, in se & natura sua absq[ue] relatione ad externum: they are as something that is
«absolute», «in its own nature, without regard to any thing external».
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(2) The classicality in the Einstein 4-space emerges e.g. by applying the
d’Alembert–Levi-Civita version of (4.1a):

1

κ
·Rµν −

1

2
gµνRs + Τµν = 0. (4.27)

In this way of looking, cf. [1634, II, § 2, p. 96], the general theory of relativity
is but a correction of classical mechanics.

(3) We point out in passing that the mathematical predictions of gravitational
waves, among the various methods at our disposal, may be made via post-
Newtonian approximation [304], whose root is to be sought in the intuitions of
Levi-Civita [1636] about the curved n-body problem. L

Margo 4.3.2 (Faradayian deformed space). The idea of an empty space (void
of matter) having physical properties, as opposed to Newton’s absolute space,
which is a “space-container” distinct from matter, is already, rudimentary, in M.
Faraday [938]. It is not an idea introduced ex novo by Einstein, but comes, albeit
in still nuanced forms, from the experimental scientific background sprouted
around the notion of field.

Faraday [940] imagined (pure) space as something in which the magnetic
and electric lines of force “acquire” a curvature: there are thus curved lines
of inductive action that run through the space, and connect all particles, or
material masses, together. Consequently, Faraday’s space is a space deformed
by the action of the lines of force, and these deformations produce influences
on the physical state of the material masses: briefly, it is an active space, with
a physical action, since Faradayian space [939, 2787, p. 25] «has a magnetic
relation of its own». In Faraday, however, there is still no identification between
space and matter. Insights in [238, pp. 111, 127-128]. L

4.3.2. Formulation with and without Coordinates

The vector (or, in general, geometric) calculus should put the mathematician in a position to
be able to resolve directly any question of geometry, mechanics, physics, in absolute form, that is,
independent of any reference system (with zero coordinates).39

— C. Burali-Forti and R. Marcolongo [451, p. 97]

A crucial summary of the general relativity in tensor form is in R. Marco-
longo’s lectures [1767] of the academic year 1919-1920, and in V.A. Fock [1013,
chapp. II-III]; see also [728] [809, chap. XII].

The figure of Marcolongo swings between two “worlds” of thought; although
belonging to the school of Italian vectorialists, together with C. Burali-Forti, P.
Burgatti, and T. Boggio, he is a mediator and a promoter of relativistic solutions
[1768] pertaining to the other mathematical school of his era (represented by
Ricci Curbastro, Levi-Civita, and Palatini).

The school of vectorialists treats vectors as absolute entities, that is, as quan-
tities perfectly free of the choice of arbitrary reference elements, so develops a
method independent of coordinate systems, i.e. with all coordinates equal to zero,
or without fixed and moving coordinate axes [450, p. viii]. Vectorialists’ analysis
is an absolute calculus without coordinates or calculus of vector homographies
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(vector invariants without coordinates), whilst the method of Ricci and prosecu-
tors is absolute with coordinates (with covariant derivatives of contravariant and
covariant vectors) [453, pp. v-vii].

Ricci’s school, as is well-known, has prevailed, and it is the foundation of
the exposition of relativistic mathematics; but the vectorialists group, beyond
the controversies with the opposing school of thought and against the theory
of relativity, has bequeathed the idea of a formulation without coordinates for
Einstein equations, which was expanded in several directions in the succeeding
decades (see e.g. the skeleton calculus in Section 6.1.1).
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sec. 4. pp. 453-483].



5

On Dimensional Continuum, Part III. Curvature
of What?

5.1. Mathematics, Physics & Reality of Space

[E.] Kretschmann [1541] took the view that the postulate of general covariance does not make any
assertions about the physical content of the laws of nature [physikalischen Inhalt der Naturgesetze],
but only about their mathematical formulation [mathematische Formulierung]; and Einstein [858]
entirely concurred with this view. The generally covariant formulation of the physical laws acquires
a physical content only through the principle of equivalence, in consequence of which gravitation
is described solely by the gik and these latter are not given independently from matter, but are
themselves determined by field equations. Only for this reason can the gik be described as physical
quantities [physikalische Zustandsgrößen], cf. H. Weyl [2631, § 26, pp. 173-174, 182].

— W. Pauli [2025, § 52, p. 711] = [2031, § 52, p. 150]

[I]n regard to the nature of things, [the human] knowledge [of the physical laws brought on by
the theory of relativity] is only an empty shell—a form of symbols. It is knowledge of structural
form, and not knowledge of content. All through the physical world runs that unknown content
[ . . . ]. And, moreover, we have found that where science has progressed the farthest, the mind
has but regained from nature that which the mind has put into nature. We have found a strange
foot-print on the shores of the unknown. We have devised profound theories, one after another,
to account for its origin. At last, we have succeeded in reconstructing the creature that made the
foot-print. And Lo! it is our own.

— A.S. Eddington [833, pp. 200-201, e.a.]

We talk about curved space-time in general relativity; and often, erroneously,
curvature is referred to as a property of real space, since we are in the purview of
physics. However, it is a representation, a process of mathematics that realizes
(in a mathematical sense) an abstract entity, which is the space-time, with its
curvature.

What did A.S. Eddington [829] discover, along the acclaimed observation
of the solar eclipse of 29 May 1919? That space-time is curved? Actually, the
precise relationship, expressed by Einstein’s field equation, between (solar) mass
and curvature, does not refer to real space, but to physical space, which is a
mathematical representation of the real one. The conclusion of Eddington’s book
[833] mentioned in epigraph, with an arcane relish, an almost mystical (μύω)
propensity, is it laudably resumptive.a

aSome tips are in V. Benci and P. Freguglia [254, capp. 5-8].
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5.2. Beltrami–Nash’s Teachings

[A] very notable consequence which can be deduced from expression ds = R

√
dη2+dη2

1+···+dη2
n−1

η

is that an (n− 1)-dimensional space η = cost. has its null curvature at every point, since its linear
element has the form ds = cost.

√
dη21 + dη22 + · · · + dη2n−1 [ . . . ] whence we conclude [ . . . ] that

an (n− 1)-dimensional space η = cost. is none other than one of the orthogonal trajectories of all
geodesics converging towards the same point at infinity, that is, of a system of geodesics [that are]
parallel to each other.40

— E. Beltrami [250, pp. 419-420]

To what extent are the abstract Riemannian manifolds a more general family than the sub-
manifolds of euclidean spaces?

— J.F. Nash [1906, p. 20]

We can draw a line over a surface, such that at each point the main normal
(the normal vector to the curve) coincides with the normal to the surface at
that point. We have built a geodesic. When (and if) a natural phenomenon
follows this path, it expresses a differential paradigm, and is connectable to a
non-Euclidean geometry.

Nevertheless, as E. Beltrami [249] [250] taught, it is possible to derive figures
of non-Euclidean geometry within flat spaces of higher dimension, so a non-
Euclidean space has one less dimension than the ambient (or surrounding)
space—tersely, Beltrami constructs a mathematical 2-space for non-Euclidean
geometry in R3 (Euclidean 3-space), cf. Fig. 5.1. And as J.F. Nash’s embedding
theorems [1905] [1906] (see Section 5.3) demonstrate, it is possible to isometrically
embed any Riemannian manifold into a(n) (ambient) Euclidean space.

The concept of curvature, or the condition of a geometric object of departing
from a plane, under the Euclidean axiomatic, from a mathematical point of
view—which coincides with that of physics, because it makes use of the language
of mathematics (see, more thoroughly, Sections 22.1, 24.1 and 25.1)—is still
related to a flat structure.

The catch of the issue is that, not infrequently, the physical space is intended as
a real space (and confused with this), but instead it is just a space of representation
of reality. Space-time in relativity, which is a psuedo-Riemannian–Lorentzian
manifold, as well as Nash’s embedded spaces, are spaces of mathematics, or
spaces of mathematical physics, but are not directly identifiable as real spaces.

5.3. Nash Embeddings: (Curved) Spaces in Euclidean Spaces

In this Section we will look into, although fleetingly, some theorems that are
the cornerstone of the embedding theory in Riemannian geometry.

5.3.1. Schläfli’s Inverse Beltrami Problem

Mr. Beltrami [250] has shown that in the linear element expression of an n-dimensional space
of constant curvature, the n independent variables can be chosen so that each geodesic line within
such a space is represented by n− 1 linear equations between the independent variables. And it was
the reading of this interesting Memoir that led me to propose the following inverse problem: Find
the definition of a space, whose geodetic lines are represented each one by a system of n− 1 linear
equations, n being the number of variables independent in space.41

— L. Schläfli [2301, p. 178]
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L. Schläfli [2301] was among the first to treat the question of finding a way
of isometrically embedding a Riemannian manifold in a Euclidean space, albeit
limited to a local level, and it is a Note to Beltrami [250]. And there is a response
from Beltrami [251, p. 194]:

The final result achieved by Mr. Schl[ä]fli in his previous Memoir is that the more general
n-dimensional space, for which the property that each geodetic line is represented by the set of n− 1
linear equations holds, is obtained simply by making a homographic transformation on that space
that I had already considered in the Memoir [250], and for which I had demonstrated a posteriori
the existence of this property.

But it is only later, with the surveys of Whitney, that a greater framing is
reached; and it will take the stream of Nash’s visionarity, subsequently accompa-
nied by the works of Kuiper, Gromov and Günther, to find a vast answer to the
question posed.

5.3.2. Whitney Embedding & Immersion

According to H. Whitney [2649], the starting question is: can any differ-
entiable manifold be mapped, in an analytic manner, into a Euclidean space?
In fact, it should be remembered that a differentiable manifold can be defined
either

· as a set of points with neighborhoods homeomorphic with Euclidean space
Rn, whose coordinates are related by differentiable transformations,

· or as a subset of Rn, so that, near each point, the coordinates are expressed
with differentiable functions.

Theorems 5.3.1 (Whitney). A group of Whitney’s propositions [2649, p. 654]
establishes the following.

(1) Any Cr manifold M of dimension m, with r ⩾ 1 finite or infinite, is Cr

homeomorphic with an analytic manifold in a Euclidean space R2m+1.
(2) Take two manifolds M and N of dimension m and n, respectively, each

of which is embedded in some Euclidean space. Let φ be a Cr map of M into
N , with r ⩾ 0 finite, and я+ a continuous function in M. Then there exists a
Cr map Φ of M into N under which

(i) Φ gives an approximation of (φ,M, r, я+),
(ii) if n ⩾ 2m, Φ is completely regular,
(iii) Φ is analytic.

In another group of statements he shows that
(3) [2650, pp. 236-237] any smooth n-manifold can be embedded in 2n-space

R2n, where for n = 1, the proof is trivial, while for n = 2, the embedding process
is about a sphere, a projective plane, and a Klein bottle [1491] (a surface with
self-intersection, see Fig. 5.2), in R4,

(4) [2651, p. 265] any smooth n-manifold may be immersed in (2n− 1)-space
R2n−1, with n ⩾ 2.

5.3.3. Nash C1C1C1 Isometric Embedding

The credit for the solution of the isometric embedding problem on a global
level goes to Nash in two papers.
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Theorems 5.3.2 (Nash on C1 embeddings in Euclidean spaces). Below we list
some results in the first paper [1905] by Nash.

(1) Any closed Riemannian n-manifold of class C1 may be always isometri-
cally embedded in 2n-space R2n.

(2) Any Riemannian n-manifold of class C1 may be always immersed in
2n-space R2n, and isometrically embedded in (2n+ 1)-space R2n+1.

(3) Given an open Riemannian n-manifold having a short C∞ immersion,
or embedding, in Rk, with k ⩾ n+2, we claim that if the manifold does not meet
its limit set, it possesses an isometric immersion, or embedding, in Rk.

(4) An n-manifold of class C3, for an embedding (of type C3), requires a
space of 1 1

2n
2 + 5 1

2n dimensions.

5.3.4. Kuiper’s Prosecution

N.H. Kuiper completes the pathway of [1905] in two works; the theorems
concerned are called C1 embedding Nash–Kuiper theorems.

Theorems 5.3.3 (Kuiper on C1 embeddings in Euclidean spaces).
(1) In [1550] Kuiper proves a Nash’s conjecture: take a compact Riemannian

n-manifold of class C1 with (void) boundary; if it has a C1 embedding in
Euclidean m-space Rm, with m = 2n, for m ⩾ n+ 1, then our n-manifold may
be isometrically embedded in Rm via C1 embedding.

(2) In [1551] he expresses the following propositions.
(i) Let us say that a C∞ Riemannian n-manifold has a C∞ embedding in

Rm, for m = 2n, and that it does not meet its limit set; then the n-manifold has
a short C∞ embedding in Rm+1 which in turn does not meet its limit set.

(ii) Let us assume that an open n-manifold, with C∞ Riemannian metric,
has a short C∞ embedding in Rm, m > n, which does not meet its limit set;
then n-manifold has a C1 isometric embedding in Rm which in turn does not
meet its limit set.

(iii) Let us say that an open n-manifold, with C∞ Riemannian metric, has
a C∞ embedding in Rm, m ⩾ n, which does not meet its limit set; then, putting
m = 2n, the n-manifold has a C1 isometric embedding in Rm+1 which in turn
does not meet its limit set.

(iv) The hyperbolic space Hn admits a C1 isometric embedding in a Euclidean
(n+ 1)-space Rn+1. E.g. the hyperbolic plane H2 can be isometrically embedded
in R2+1.

5.3.5. Nash CkCkCk Isometric Embedding

Now we come to the second paper [1906] by Nash.

Theorems 5.3.4 (Nash on Ck embeddings in Euclidean spaces).
(1) Any compact Riemannian n-manifold, with Ck positive metric, as long as

3 ⩽ k ⩽∞, has a Ck isometric embedding in a Euclidean space Rn
2 (3n+11), i.e.

every compact Riemannian n-space is realizable as a submanifold of a Euclidean
space of dimension 1

2n(3n+ 11).
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(2) Any compact Riemannian n-manifold, with Ck positive metric, pro-
vided 3 ⩽ k ⩽ ∞, admits a Ck isometric embedding in a Euclidean space
R1 1

2n
3+7n2+5 1

2n, i.e. every compact Riemannian n-space is realizable as a sub-
manifold of a Euclidean space of dimension 1 1

2n
3 + 7n2 + 5 1

2n.

The
{

1
2n(3n+ 11)

}
- and

(
1 1
2n

3 + 7n2 + 5 1
2n
)
-spaces are Nash’s ambient

(surrounding) spaces, coinciding with Euclidean spaces of those dimensionality,
which can also contain non-Euclidean spaces.

5.3.6. Gromov and Günther Instances

Let us move on to other subsequent contributions.

Theorems 5.3.5 (Gromov immersions).
(1) [1212] Any C∞ Riemannian manifold has an isometric C∞ immersion

in Rs, for s = m+ 2n+ 3, namely into a Euclidean (m+ 2n+ 3)-space.
(2) [1213, 3.1.7] Given two C∞ Riemannian manifolds Nn and Ms, let

be φ0 : Nn → Ms a strictly short map between them, on the assumption that
s ⩾ n + 2n+3

2 . Then φ0 has a fine C0 approximation via free isometric C∞

mapping
φ : Nn →Ms⩾ 1

2 (n+2)(n+3).

M. Günther [1241] attains to this corollary, but that has the value of a
statement: any C∞ Riemannian manifold admits a C∞ isometric embeddding
into Rs, with s = max

{
nn+5

2 , nn+3
2 + 5

}
. We are therefore talking about a

Euclidean space of dimension max
{

1
2n(n+ 5), 12n(n+ 3) + 5

}
.

5.4. Appendix with Figures

5.4.1. Pseudosphere, or Tractricoid (an Example of No Embedding
Hyperbolic 2-Space)

Beltrami’s pseudosphere [249], also called tractricoid, is a surface (2-space) in
R3 with constant negative curvature κ = − 1

R2 . But beware: as we have already
mentioned in Section 2.3.3.1, D. Hilbert [1354] proved that a complete,a regular
(i.e. without singular points) surface of constant negative curvature cannot be
isometrically embedded into Euclidean 3-space.

The pseudosphere is no exception to this; moreover, it is not a complete
space, because it ends with a rounded rim. H. von Helmholtz [1330, pp. 13-14]
tells us of it, comparing Beltrami’s pseudosphere to a Champagnerglas with a
tapering stem infinitely elongated, and he warns us that it is a surface bounded
by a sharply edge beyond which a continuous extension of the calyx-shaped
2-space is not directly realizable.

aWe say that a topological space (then also a metric space) is complete if any Cauchy sequence
(see Definition 9.2.1 and Theorem 9.2.1) in that space is convergent, or has a limit.
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Figure 5.1: Beltrami’s pseudosphere, or tractricoid: same but inverted surface & in different colors

5.4.2. Klein Bottle and Möbius Strip

Klein bottle [1491, Abschnitt II] = [1499, part II] is a connected sum of two
projective planes:

Kl ∼= RP2#RP2 = 2RP2. (5.1)

It is a non-orientable surface, whose realization in R3 it possible exclusively as a
space with self-intersection, so that its inside and its outside are the same; ergo
it refers to a one-side 2-space. The Möbius strip [1839, § 11, p. 41]

Ö ∼= S1 ×Z/2 R, (5.2)

which we have already come across in Example 2.3.1, is equally a non-orientable
surface. What is engaging is that, if we glue two Möbius strips, we get a Klein
bottle.

Figure 5.2: Klein bottle: one-side 2-space
Kl ∼= RP2#RP2 = 2RP2

Figure 5.3: Möbius strip (but see footnote
a, p. 46) Ö ∼= S1 ×Z/2 R
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A Klein bottle can whence be seen as a sphere with two disks removed and,
in their place, two Möbius strips glued together; its coordinates are: (x, y),
0 ⩽ x ⩽ 1, 0 ⩽ y ⩽ 1, in which, for any x, one has the points (x, 0) and (1−x, 1),
and, for any y, the points (0, y) and (1, y).

References and Bibliographic Details

Section 5.3
On embeddings and immersions (as an overview), see the aforementioned Gromov book [1213].





6
Foundational Issues:

Discreteness & Quantum Manifolds
(Regge’s Skeletonization, Topological Defects,

Foam Substructure),
Initial Boundary Problems in Cosmology,

Wheeler’s Pre-geometry and Pieri’s Raw Materials

Diconsi stelle di xvi grandezza e tanto più lontane sono che la luce loro solo dopo xxiv secoli
arriva a noi: visibili furono esse coi telescopi di Hærschel.a Ma chi narrerà delle stelle anche più
remote: atomi percettibili solo colle più meravigliose lenti che la scienza possegga o trovi? Quale
cifra rappresenterà tal distanza che solo correndo per milioni d’anni la luce alata valicherebbe?
Uomini udite: oltre quelle spaziano ancora i confini dell’Universo!b,42

— Epitaph on the anonymous sarcophagus of C. Mattei in his Rocchetta, on SP 62, in the
vicinity of Riola, Bologna

6.1. New Quantitates Sylvestres,c Part I

We know many properties of (ordinary) geometric space (3D) and space-time
(4D), including the space-relatedness of mathematical objects, by reason of num-
ber and symbol systems, and algebraic-topological structures; but, conceptually,
a great deal of confusion is prevailing about the notion of absolute quantity
(for instance like the Einsteinian–Newtonian entity, see (iii) in Section 4.3.1) or
relational quantity (on the model of ordo coexistendi). But there is more. Once

aJ.F.W. Herschel [1337] [1338] [1339].
b«They are called stars of xvi magnitude and are all the more distant that their light only after

xxiv centuries reaches us: they were visible with Hærschel’s telescopes. But who will tell about
the stars even farther away: atoms, perceptible only with the most wonderful lenses that science
possesses or finds? What numerical digit will represent such a distance that only by running for
millions of years the winged light may cross? Hear ye, men: beyond those [stars] the edge of the
Universe extends still further!».

c Quantitas silvestris, «wild quantity», is an evocative expression that G. Cardano [521, cap.
X, p. 20] has used for calling the imaginary number; in his time (1570) it was still an unknown or
non-domestic mental entity, i.e. a «quantity that is not in any kind of roots, nor it is composed by
those» (in quãtitate sylvestri, scilicet quæ non sit in aliquo genere radicum, nec composita ex
illis). Penetrating the wild and dark zones of thought, or constructing models applying to natural
phenomena not yet understood, it is like an adventure that leads us to meet monstruosi objects of
mathematics, or unseizable theories (praedæ fugaces) of physics.

The introduction of the term “imaginary” comes from R. Descartes [759, Livre Troisième], in a
later period (1637); see his comment in the margin («Que les racines, tant vrayes que fausses peuvent
être r[é]elles ou imaginaires») plus the paragraph on p. 380.
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it has been accepted one of its natural dimensions, or physical realities, we do
not know, within this framework, if space(-time) is continuous on all scales or if
it is characterized by a Planckian discontinuity, arranged in a discrete lattice
shape, with the formation of conical or curved singularities, related in some way
to the problem of the extension of (cosmic) space, going back to the to the
so-called primordial singularity. Nor do we know where space(-time) emerges, if
it emerges from something.

What is certain is that such a range of possibilities is due to the transfer of
our mathematical categories into nature; and despite that, this is the charm of
exploration, through mathematics, in the unknown regions of nature. Let us
make seven examples in the Sections below.

6.1.1. Ex. 1. Regge Calculus: Simplicial Decompositions

Simplicial decompositions of Riemannian manifolds are introduced, which constitute higher-
dimensional analogs of polyhedra [the so-called skeleton spaces, and approximate smoothly curved
spaces in general relativity]. It is hoped that this new formalism will make it possible to discuss
solutions of Einstein’s equations corresponding to highly complex topologies [like Wheeler’s wormhole].

— T. Regge [2188, pp. 571, 558]43

Regge’s skeleton calculus puts within the reach of computation problems that in practical terms
are beyond the power of normal analytical methods. It affords any desired level of accuracy by
sufficiently fine subdivision of the space-time region under consideration.

— C.W. Misner, K.S. Thorne, J.A. Wheeler [1832, p. 1179]

The first example is dedicated to Regge calculus [2188]. It is silent on the
nature of space-time; it is a «computational» tool to facilitate the solution of
Einstein field equations and calculus problems, thanks to the use of Riemannian
manifolds without coordinates (cf. Section 4.3.2). Nonetheless, it allows to build
a quantum geometrization of space, known as geometrodynamics, see Wheeler
[2643, chap. 8] [2644], and better understand quantum gravity. In essence,
Regge calculus develops, according to Aleksandrov [53, chapp. III-IV], a discrete
mathematical approach to Einstein curved spaces.

6.1.1.1. Skeletonization in a Piecewise Flat Space

This approach [2188], in its basic version, consists in the partitioning-
triangulation of a curvature of space(-time) into simplexes,a or rather, into
a number r of simplexes, denoted by sn1 , . . . , s

n
r , i.e. in the decomposition of a

surface that has continuously varying curvature into flat pieces of Euclidean
space. Just so we are clear,

· a point is a s0, i.e. 0-simplex in 0D,
· a (straight) line segment is a s1, i.e. 1-simplex in 1D,
· a triangle is a s2, i.e. 2-simplex in 2D,
· a tetrahedron is a s3, i.e. 3-simplex in 3D,
· a 5-hedroid, aka 5-choron, or 5-tope, is a s4, i.e. 4-simplex in 4D, and

suchlike.
aFrom the La. simplex, with sine-plica as a probable derivation: “without” (sine) a “fold”

(plica).
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The result is that a continuous space, or the metric of space(-time) manifold,
with the gravitational action and smoothness properties, can be approximated
arbitrarily closely by a polyhedron built with a net of triangular-like polygons
acting as a support structure (see Fig. 6.1), that is, a family of blocks gradually
more and more small glued to each other, under a process of reduction called
simplicial discretization or, more effectively, skeletonization.a

If a collection of n-dimensional simplexes is usually known as simplicial
complex, reasonably, we can call skeleton space the number r of n-simplexes in
the collection S(s), i.e. {

sn1 , . . . , s
n
r

}
∈ S(s),

forming all together a discrete approximation of a smooth variation concerning
a certain geodetic.

Figure 6.1: 2-torus S1 × S1 ∼= T2 built with a net of triangular-like polygons (dashed version on the
right). The more triangles, the better the approximation: a higher number of smaller triangles allow
a more accurate and smoother curved surface. Nothing new: it is an evolution of the great legacy of
Archimedes [118, κα΄v, κβ΄v, βδ΄v]; it deals with a calculus process via triangular approximants, namely
a parabolic segment (τμᾶμα περιεχόμενον ὑπὸ εὐθείας καὶ ὀρθογωνίου κώνου τομᾶς) dissection into
infinitely many triangular slices, each of them is infinitesimally thin in an arbitrary manner

6.1.1.2. Regge Action, and Discretum 4-Space: Skeleton for a Lattice
Gravity Representation

A great manner to approximate a smooth or C∞ curved 4-space in general
relativity with a skeleton space, consisting of pieces of s4 (4-dimensional sim-
plexes), and therefore have a discrete representation of the geometrical part of
Einstein field equations, is to use a variational principle into simplicial mode
with which to calculate the continuum action functional (4.6), and translate it
into a skeleton-shaped manifold. The resulting action,

Sr =
∑
ŋr

vol(ŋ)δ∠(ŋ), ŋ = s2 =

△

, (6.1)

aThis terminology is taken from the language of biology, on account of the similarity that a
Regge geometry of this type has with the bone complex and the articular apparatus.
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is in the form of a lattice approximating the continuum limit in (classical)
relativistic gravity, and reproducing the spatio-temporal curvature; in this action,
ŋ = s2 is the so-called hinge (or bone) in 2D, which is a triangular subspace of
codimension 2, i.e. a subsimplex ŋ ⊂ s4, while

δ∠(ŋ) viz
= δ∠ŋ = 2π −

∑
s4r at ŋ

θ∠d
1 , . . . , θ∠d

j , (6.2)

is the angular deficit on a hinge, which is equal to 2π minus the sum of the
dihedral angles emerging from the gluing of various faces of the 4-simplexes
(acting as rigid blocks) that meet at ŋ, so that δ∠(ŋ) reflects the measure of the
curvature of 4-space on ŋ.

Scholium 6.1.1.
(1) A collection of sn (simplexes of dimension n) meet on their flat faces of

dimension (n− 1), and the measure of the curvature (which must be reproduced-
approximated) is given by ŋ of dimension (n− 2), according to the number of ŋ
necessary for the construction of triangles under the fixed skeletonization.

(2) The angular deficit in 2D,

δ∠(ver)
viz
= δ∠ver = 2π −

∑

△

r
at ver

θ∡1 , . . . , θ
∡
j , where △= s2, (6.3)

is a deficiency at a vertex, and it is equal to 2π minus the sum of the vertex
angles θ∡1 , . . . , θ∡j of the triangles △

1, . . . ,

△
r that meet on ver.

(3) In 2D a hinge is (called) a side, and in 3D is (called) an edge—recall that
an edge, as a segment on the boundary, is an example of s1 (1-simplex). In 4D a
hinge is consistent with a triangle, i.e. a s2 (2-dimensional simplex).

Alternatively and with greater fascination, a hinge can be thought of as the
place where conical singularity is formed, or as a limit-point in which, finitely,
the space is no longer smooth, see J.W. Barrett [207]. ⋄

Regge’s Einsteinian type field expression is obtained, in a heuristic way, by
varying the action (6.1) in relation to the edge length; from here one has a
variation of the angular deficit at the edges that vanishes identically:

Sr(s)

{∑
ŋr

∂vol(ŋ)
∂ℓ(e)

δ∠(ŋ) = 0. (6.4)

Eq. (6.4) is the simplicial equivalent of gravitational field Eqq. (4.1) in keeping
with Levi-Civita’s thinking (Section 4.1.1.1) for an empty discrete space [2188,
p. 570], which can be named the Regge skeleton 4-space. The skeleton space
replaces, within the limits of the lattice representation, the smoothness of the 4-
dimensional psuedo-Riemannian–Lorentzian–Einsteinian manifold (Section 3.4.2)
with a rigid discreteness of flat block spaces; cf. A.P. Gentle [1123] and H.W.
Hamber [1264] [1265].

Finally, Eqq. (6.1) and (6.4) allow the construction of piecewise linear
Einstein 4-manifolds. The papers of R. Friedberg and T.D. Lee & collaborators
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[1050] [954] go in this direction; but especially see J.B. Hartle [1296] [1297], M.
Roček, and R.M. Williams [2220] [2221] [2669] [2189] [2670] [2671], as well as R.
Loll [1676].

Margo 6.1.1 (Some indications and applications).
(1) In [1267] there is a discrete (simplicial) analogue [2188, p. 566] of

Bianchi identities under an order of rotation matrices in the product around
null-homotopic loops.

(2) The 4-geometry of Regge calculus holds two versions [2672, sec. 2.3] of
simplicial space-time:

(i) in one version, time is discrete, with space-like hypersurfaces divided by
a finite interval of time;

(ii) in the other, time is continuous, or better, it presupposes at first a
discrete time, and where the hypersurfaces are infinitesimally close the limit is
taken; alternatively, the discretization process is direct.

(3) An investigation on the Regge calculus (skeleton manifolds) and func-
tional/path integrals is e.g. in J. Fröhlich [1056].

(4) In D. Weingarten [2623] an integration over discrete space is built with
4-cubes embedded in a flat 5-cubic (5-dimensional hypercubic) lattice, having 80
edges + 80 faces.

(5) A major application of simplicial geometry and Regge-like calculus is the
simplicial quantum gravity (dynamical triangulations approach), see J. Ambjørn,
M. Carfora, A. Marzuoli [70] [528].

6.1.2. Ex. 2. Regge-like Discretization of Wheeler–DeWitt Equation

I tend to assume that space-time and everything in it are in some sense emergent. By the way,
you’ll certainly find that that’s what Wheeler expected in his essay [2648]. As you’ll read, he thought
the continuum was wrong in both physics and math. He did not think one’s microscopic description
of space-time should use a continuum of any kind—neither a continuum of space nor a continuum of
time, nor even a continuum of real numbers.a On the space and time, I’m sympathetic to that. On
the real numbers, I’ve got to plead ignorance or agnosticism. It is something I wonder about, but
I’ve tried to imagine what it could mean to not use the continuum of real numbers,b and the one
logician I tried discussing it with didn’t help me.

— E. Witten44

In H.W. Hamber and R.M. Williams [1268] the Wheeler–DeWitt equation
[2643] [763] [2644] [762] [764] [765] is presented in the discretized formalism of
Regge.

a Compare with R. Thom [682, pp. 101-102, e.a.]: Interlocutor: «Nothing in itself, not a single
real world entity is continuous [ . . . ]. I cannot imagine the physical objects as being continuous».
— R. Thom: «When you refer to a physical object, you mean an object which can be scientifically
described. I would accept that, in any kind of description, we have a discrete element, because a
true continuum has no points. We are unable to specify anything in the continuum. The continuum
is something which cannot be described. It is a sort of unsayable. It is a world in which one lives
outside of symbolic description. But nevertheless, it exists [mathematically], despite the fact that
we cannot describe it in any sense».

bM. Picone and G. Fichera [2096, pp. 56-57] write: «[In Mathematical Analysis] the ordered line
on which a system of abscissae is introduced is identified [ . . . ] with the body R of the real numbers
[ . . . ]. On a strictly logical level, the so-called geometric representation of the numbers of R by means
of points of a straight line is completely inessential [del tutto inessenziale] from the perspective of
Mathematical Analysis, since it consists solely of replacing R with another model isomorphic to it
(arithmetically and orderly) [thanks to a one-to-one correspondence]. However, this representation,
by resorting to our geometric intuition, has such a force of suggestion that it is extremely useful
under a purely practical aspect».
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Let |Ψ⟩ be a state vector. Denoting by

|Ψ⟩ → Ψ [ γµν ] (6.5)

a vacuum wave functional of a 3-metric γ

µν , to wit, of 3-dimensional metric
associated with a hypersurface, the Wheeler–DeWitt equation is written as{
− 16πGn

(
Gµν,ξϱ =

1

2
√ γ

(

γ

µξ

γ

νϱ + γ

µϱ

γ

νξ − γ

µν

γ

ξϱ

))
δ2

δ γ

µνδ γ

ξϱ

− 1

16πGn

√ γ

(
R(3)

s − 2Λ
)
+ Ĥφm

}
Ψ [ γµν ] = 0, with γ

µν
viz
= γ(3)

µν ,

(6.6)

where Gµν,ξϱ is the Wheeler–DeWitt metric, R(3)
s the Ricci curvature scalar

relatively to γ-metric, Λ the cosmological constant (with a scaling behavior),
and Ĥφm is the matter Hamiltonian operator, in which φm indicates a matter
field, i.e. a space-time function representing matter.

A discrete analogue of (6.6) is achieved through solutions of Regge’s sim-
plicial lattice model from which, in a piecewise linear space of dimension 3, an
approximation of the continuum wave functional of the universea descends:{

− (16πGn)
2Gµν

(
ℓ2(e)

) ∂2

∂ℓ2µ(e)∂ℓ
2
ν(e)

−
√

γℓ2(e)
(
R(3)

s ℓ2(e)− 2Λ
)}

Ψ
[
ℓ2(e)

]
= 0, (6.7)

where Gµν is taken on the space of squared edge lengths ℓ2(e), with µ- or ν-edges
of tetrahedra, that is, simplexes in 3D, under which the first term in (6.7) can be
obtained with a sum of edge contributions of a tetrahedron as a (n− 1)-simplex.
If all the contributions are summed over all hinges ŋ on the tetrahedral 3-simplex,
for which all hinges are edges in 3 dimensions, one has{

− (16πGn)
2
∑
µ,ν⊂s3

Gµν(s
3)

∂2

∂ℓ2µ(e)∂ℓ
2
ν(e)

− 2ns3(ŋ)

∑
ŋ⊂s3

ℓ(ŋ)δ∠(ŋ) + 2Λ
(
vol(s3) =

√

γ(s3)
)}

Ψ
[
ℓ2(e)

]
= 0, (6.8)

where ℓ(ŋ) is the ŋ-edge length, δ∠(ŋ) the angular deficit on ŋ, and vol(s3) is
the volume of the tetrahedron. The discrete version, in tetrahedral-like shape,

a It is an exercise in style. There is no wave function of the universe, if by universe we mean
the entire space. This is because there are no observers/devices outside the all-space-universe for
measuring the wave function of the universe. We are internal parts of the space-universe (πᾶς
κόσμος), which is our total space (πᾶσα χώρα).
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of the Wheeler–DeWitt metric is then

Gµν,ξϱ(s
3) = 1

2
√ γ(s

3)
(

γ

µξ(s
3) γ

νϱ(s
3) + γ

µϱ(s
3) γ

νξ(s
3)

− γ

µν(s
3) γ

ξϱ(s
3)
)
, with γ

µν
viz
= γ(3)

µν .

(6.9)

6.1.3. Ex. 3. Hartle–Hawking Proposal: Euclidean Functional Inte-
gral for a No Initial Boundary of the Universe with Feynman Calculus

It is established that space [spacium] [universe] be finite [finitum]; [and suppose that] someone
runs towards the fartherest verge [i.e., border of space] [ad oras / Vltimus extremas], and from
thence he throws a winged dart [uolatile tellum], with arbitrary vigorous force, should [this dart]
reach the point designed, and fly away, or you think that something should stop or hinder [its flight?]
[longeq[ue] uolare / An prohibere aliquid censes obstareq[ue] posse].

— T. Lucretius Carus [1710, Liber primus, 14v]

We put forward a proposal for the wave function of the “ground state” or state of minimum
excitation: the ground-state amplitude for a three-geometry is given by a path integral over all
compact positive-definite four-geometries which have the three-geometry as a boundary [ . . . ]. Our
proposal is that [ . . . ] the Universe does not have any boundaries in space or time [ . . . ]. If this were
the case, one would have solved the problem of the initial boundary conditions of the Universe: the
boundary conditions are that it has no boundary.

— J.B. Hartle, S.W. Hawking [1298, pp. 2960-2961, 2975]

Another example that combines the problem of space-time structure with
the issue of gravitational singularity, playing between mathematical categories
and physical (experimental) knowledge, is the Hartle–Hawking proposal [1298],
which, in accordance with the Wheeler–DeWitt Eq. (6.6), describes a quantum
state of a spatially closed universe through the use of a wave function (functional)
on compact 3-manifolds and related matter fields; calculation goes deep into the
Feynman path integral [978] [985] technique (see Examples 26.1.1 and 26.1.2).

The wave function of Hartle–Hawking
· is a function of the ground state, this is, state of minimum excitation, the

amplitude of which is defined by a path integral over all compact positive definite
Euclidean Riemannian 4-geometries with a 3-geometry as a boundary;

· is constructed as a Euclidean functional integral of the form

Ψ0

[

γ(3)
µν , φ

(3)
m

]
=
∑
M

∫
δ
[

γ(4)
µν , φ

(4)
m

]
exp

{
−SE

[

γ(4)
µν , φ

(4)
m

]}
, (6.10)

letting
∑

M be a summation over M-topologies, where γ(3)
µν is the induced 3-

metric of the 3-geometry, acting as a boundary space-like surface, and γ(4)
µν the

4-metric of the 4-geometry, whilst φ(3)
m and φ

(4)
m are the 3- and 4-dimensional

matter fields, respectively. Then

SE

[

γ(4)
µν , φ

(4)
m

]
= − 1

16πGn

∫
M

√ γ(Rs − 2Λ)d4x− 1

8πGn

∫
∂M

√

γ(3)
µν κ(tr)d

3x

−
∫
√ γLmd

4x, (6.11)
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is the Euclidean action for gravity with a cosmological constant Λ, in which Rs

is the Ricci curvature scalar,

κ(tr) = γµνκµν (6.12)

the trace in the γ-metric of the extrinsic curvature of (on) the bounding 3-surface,
to wit, the boundary surface ∂M in 3-space,a and Lm is the Lagrangian density
of the matter-energy.

Margo 6.1.2 (No singular space-time ab ovo).
(1) The operation of Euclideanization of Lorentz–Minkowski geometry in the

Hartle–Hawking’s idea fully exploits the Wick rotation [2652], under which a
line element

ds2 = −dt2 + dx2 + dy2 + dz2 (6.13)

transforms to
ds2 = dτ2 + dx2 + dy2 + dz2, (6.14)

so a pseudo-Riemannian metric of Lorentz–Minkowski type becomes equivalent
to a general Euclidean 4-metric, if the time coordinate is such that t→ −iτ .

This is due to the advantage of moving from a non-compact Lorentz model,
with both the group O1,3(R) = Л , and the restricted group SO+

1,3(R) = Л ↑
+,

having a possibly infinite-dimensional representation (see point (i) in Section
3.5.1, and Margo 3.5.1), to a compact and finite model, with the group SO4(R)
of all rotations of 4-dimensional Euclidean space.

(2) The Hartle–Hawking universe is devoid of initial boundary conditions,
with no initial singularity, and the thorny problems arising therefrom—what
we can call the Lucretius’ dart dilemma. It is a cosmogony, at the pre-Planck
epoch, characterized by no-boundary Euclidean Riemannian smooth metrics.
Topologically, this kind of universe is in the shape of a shuttlecock with a base of
pure-space, where the earliest superposition of different (sub)space-times occurs,
from which the quantum cosmic evolution in terms of path integrals follows; in
the future, its expansion proceeds continuously in a de Sitter type state [2387].

(3) Limitations and incompleteness of the Hartle–Hawking theory are dis-
cussed by J. Ambjørn et al. [71] and D.N. Page [1991]; more recently, see these
opposing [956] [957] and supporting [1436] arguments. L

6.1.4. Ex. 4. Topological and Cosmic Defects

The [topological] defects are formed, roughly speaking, because the directions of symmetry
breaking are different in different regions of space. When these regions try to match at the boundaries,
they sometimes run into topological problems, and as a result we get defects which trap the high-
energy symmetric vacuum in their cores.

— A. Vilenkin [2577, p. 1]

We will look at the fourth example. The image of a discreetness or fuzziness
of space-time, together with the expectation of a speed variation inherent to the
propagation in quantum space-time, can be read in parallel with a proposal that

aThe trace κ(tr) of the extrinsic curvature is more often referred to as the mean curvature.
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space(-time) is afflicted, on different scales, by some kind of flaws distinguishable
from the classical continuum, the so-called topological defects the classification of
which is laid down in the homotopy groups; see A. Vilenkin and E.P.S. Shellard
[2576] [2578] [2577]. Here is a list:

· domain walls in 2D with π0(X ), or defects in the form of surfaces;
· strings in 1D with π1(X ), or defects in the form of lines;
· monopoles in 0D with π2(X ), or defects in the form of points;
· textures with π3(X ), or defects without localized cores in a small and

temporary region of high-energy vacuum;
· monopoles connected by strings and walls bounded by strings, or hybrid

defects.

6.1.5. Ex. 5. Riemann Busillis (Discretuum vs. Continuum), and
the Quantum Manifold

We are [ . . . ] quite at liberty to suppose that the metric relations of space in the infinitely small
[Unendlichkleinen] do not conform to the hypotheses of geometry [ . . . ]; in a discrete manifoldness
[discreten Mannigfaltigkeit], the ground of its metric relations is given in the notion of it,a while in a
continuous [stetigen] manifoldness, this ground must come from outside. Either therefore the reality
which underlies space [Raume zu Grunde liegende Wirkliche] must form a discrete manifoldness, or
we must seek the ground of its metric relations outside it, in binding forces which act upon it [ . . . ].
This leads us into the domain of another science, of physic.b

— B. Riemann [2207, pp. 149-150] = [2209, p. 37]

[M]acroscopic space-time may be the classical-geometrical limit of a causal quantum space.c
— D. Finkelstein [999, p. 1261]

Finkelstein’s words [999, p. 1261] are worth quoting at length, because they
go to the crux of the problem without the need for further explanations.

Until we find a satisfactory theory of space-time structure, we shall be beset by the dilemma
of the discrete versus the continuous, the dilemma already posed by Riemann [2207], in much the
following terms:

(a) A discrete manifold [like a chessboard or honeycomb, a tesselation or graph] has finite
properties, whereas a continuous manifold does not. Natural quantities are to be finite. The world
must be discrete.

(b) A discrete manifold possesses natural internal metrical structure, whereas a continuous
manifold must have its metrical structure imposed from without. Natural law is to be unified. The
world must be discrete.

aAs it is contained in the concept of number.
b See what A. Grothendieck [1227, 2.20. Coup d’oeil chez les voisins d’en face, note 71, p. 58

otm, e.a.] affirms about it: «[Riemann] observes that it may very well be that the ultimate structure
of space is “discrete”, and that our “continuous” representations of it are perhaps a simplification
[ . . . ] of a more complex reality; that for the human mind, the “continuous” [is] easier to grasp
than the “discontinuous”, and that therefore we need it as an “approximation” for understanding
the discontinuous [ . . . ]; in a strictly logical sense, it is rather the discontinuous which, traditionally,
functioned as a method of technical approach to [understanding] of the continuous.

Developments in mathematics in recent decades showed a much more intimate symbiosis between
continuous and discontinuous structures [ . . . ]. To finding a “satisfactory” model [ . . . ], which can be
“continuous”, “discrete” or “mixed” nature—such work will undoubtedly involve a great conceptual
imagination [ . . . ]. I predict that the expected renewal (if it must yet come . . . ) will come from
someone who is a mathematician in the soul, well informed about the great problems of physics,
rather than from a physicist. But above all, it will take a man with “philosophical openness” to
grasp the crux of the problem. This is not a technical problem at all, but a fundamental problem of
“natural philosophy”», the good one, thence, and not that in the hands of fumesophers (cf. Section
23.1).

c«The problem is posed of giving finite quantum rules for the generation of quantum symbol
sets such that the order of generation becomes, in the classical limit, the causal order of space-time».
Finkelstein’s full publication on the subject: [999, 1000, 1001, 1002], and [1003, with G. Frye and L.
Susskind]; cf. V. Kaplunovsky and M. Weinstein [1465].
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(c) A continuous manifold has continuous symmetries [see Lorentz symmetries], whereas a
discrete manifold does not. Nature possesses continuous symmetries. The world must be continuous.

[ . . . ] The same question about matter, asked for two millen[n]ia—Is it continuous or is it
discrete?—has at last been answered in this century: No. Matter is made neither of discrete objects
nor [continuous] waves but of quanta [ . . . ]. A quantum is an object whose coordinates form a non-
commutative algebra [ . . . ] [and] whose class calculus is neither a discrete nor a continuous Boolean
algebra, but an algebra which is not even Boolean, being non-distributive. This non-distributive class
calculus is the lattice of subspaces of a separable Hilbert space, and is naturally imbedded in (and
defines) the algebra of operators on that Hilbert space. A quantum manifold is a third possibility for
space-time too.a This possibility would pass us cleanly between the horns of Riemann’s dilemma:

(a) A quantum manifold, like a discrete one, has better convergence than a continuous mani-
fold—remember Planck and the black body.

(b) A quantum manifold, like a discrete one, is born with internal structure and is even more
unified, being coherent.

(c) A quantum manifold, like a continuous one, possesses continuous symmetry groups.

6.1.6. Ex. 6. Space-Time Foam Effect

[I]t is possible [ . . . ] to construct a completely self-consistent quantum theory of gravity within
the framework of special relativity (i.e. when the space-time continuum is “Euclidean”). However,
within the domain of General Relativity theory, where deviations from “Euclideanness” can be
arbitrary large, the situation is quite different.45

— M.P. Bronštejn [427, p. 150] = [428, p. 276]

The events, in terms of which the world is to be described in general relativity theory, are
thought of as intersection nodes of the coordinate “mollusc” [881, §§ 28-29].46 No matter what the
[space-time] transformation of [the four] coordinates, the intersection nodes cannot be transformed
away, but persist in all systems, and it is this invariant background of nodes of intersection that
corresponds to the physical “reality”. But there is no general relativity theory of what the nodes
represent. The implication seems to be that they represent some sort of discreteness or singularity
in the solution of the underlying equations, and that there is nothing more to be said about the
situation than the mere fact of the existence of the discontinuities.

— P.W. Bridgman [417, p. 199, e.a.].

The dependence of quantum fluctuations in the geometry upon the scale of observation [in a
domain of extension] L suggests the following picture. Space is like an ocean which looks flat to an
aviator who flies high above it (big L). On closer approach dynamic structure of the surface is seen
(quantum fluctuations; smaller L). Under still closer examination wave crests are seen to be forming
and breaking up foam with a scale of millimeters, governed by the surface tension. The topology the
ocean surface is recognized to be non-Euclidean. It is natural to conclude the geometry of space
is likewise impermeated every which way with worm-holes at distances of the order of 10−33 cm.
In other words, geometry in the small would seem to have to be considered as having a foam-like
character.

— J.A. Wheeler [2643, p. 509, e.a.].

Regarding the sixth example, reference is made to the studies on the foam-like
quantum gravity fluctuations, that is, the fuzzy structure of space-time; see G.
Amelino-Camelia et al. [79] [1429] [80] [2561]. It is possible to determine the
contribution to the light travel time due to quantum-mechanical fluctuations of
space-time (τqg), from a specific source (gamma-ray burst) to a given detector,
searching for Lorentz invariance violation:

τqg = −s±
Eγ
mqg

∆zrs =
c
H0

∫ zrs
0

(
1+ζrs√

Ωm(1+ζrs)3+ΩΛ

)
dζrs

c
, (6.15)

where Eγ is the photon energy, zrs the redshift, c the speed of light, H0 the Hubble
constant, Ωm the matter density parameter, and ΩΛ the dark energy density

aOne of the first investigations into a Lorentz invariant discrete (quantum) space-time is owed
to H.S. Snyder [2399].
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parameter, in which Λ is the cosmological constant [857]; the sign parameter s±
and the scale mqg shall be determined experimentally. Clearly, ζrs

viz
= z′rs.

6.2. New Quantitates Sylvestres, Part II

6.2.1. Ex. 7.a. Wheeler’s Pre-geometry, and its Fundamental Ques-
tion: Where Does (Geometry of) Space-Time Come from?

[A]n elastic substance [as a piece of cloth] reveals at a crack that the concept of “ideal elastic
medium” is a fiction. Cloth shows at a selvage that it is not a continuous medium but woven out of
thread [ . . . ]. At big bang and at collapse [space-time] cannot be a continuum [ . . . ]. If the elastic
medium [of space-time] is built out of electrons and nuclei and nothing more, if cloth is built out of
thread and nothing more, we are led to ask out of what “pregeometry” [underlying structure] the
geometry of space and space[-]time are built [ . . . ]. There is no such thing as “elasticity” in the space
between the electron and the nucleus [ . . . ]. [T]he gates of time tell us that physics must be built
from a foundation that has no physics [ . . . ]—to make up the grand structure that we call “reality”.

— J.A. Wheeler [2647, pp. 1-2, 6]

Going back to and seeing, by means of imagination, the condition in which
the geometry of space-time is dynamically generated, in Wheeler’s effort, is
like thinking of what he calls pre-geometry, a substratum (underlying structure)
that acts as a reservoir for the emergence of continuum space-time. There
is, and remains, the difficult to conceive of something that predetermines a
Riemann–Einstein geometry, without referring to geometric notions (such as the
concept of distance).

Into physics field-work, this entails that it is hard to conceive of something
from which the physics of space-time might emerge, without referring to physical
notions of (subsequent) limitations. In this regard, Wheeler [2646, pp. 227,
243-244, e.m.] notes that

[T]here is no such thing as space[-]time in the real world of quantum physics [ . . . ]. A “prege-
ometry” that is primordial chaos, and law built upon this chaos [ . . . ]. Molecular chaos leads to
concepts like temperature and entropy only when limitations are imposed, such as fixity of volume
and total energy. Otherwise chaos is chaos. Does the chaos, the “pregeometry”, that we think of as
underlying the universe, also fail to yield any law until it is analogously limited?

6.2.2. Ex. 7.b. Backtracking to the Source of Pieri’s Raw Materials
of Point and Motion

Primitive ideas [in geometry] are perhaps comparable to the raw materials for the industry;
as are the primitive propositions [axioms or postulates] to simple machines [Le idee primitive son
forse paragonabili alle materie prime dell’industria; come le proposizioni primitive alle macchine
semplici].

— M. Pieri [2098, p. 171]

The most elementary system for a foundation of geometry that I know is
the M. Pieri’s system [2098], see also [2097] [2099]. If in authors such as M.
Pasch [2021], G. Peano [2041], and D. Hilbert [1351], the axiomatic method of
geometry is grounded on three or more fundamental entities,

· point,
· straight line,
· line segment,
· flat surface,
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· motion,
· congruence, or coincidence,

in Pieri there are only two fundamental entities,
· point,
· motion,

from which the whole spatio-geometric system arises. Pieri call his underlying
binary-system (the notions of point and motion in its various formal declinations)
in different ways: «mother, primitive, or undecomposed ideas» (idee madri,
primitive, o indecomposte) [2098, p. 170], «primary ideas» (idee prime) [2098,
p. 175], «raw materials» (materie prime) [2098, pp. 171, 176], «fundamental»,
«simple» or «primitive» «concepts» or entities» (concetti o enti fondamentali,
semplici o primitivi) [2097, § 1] [2098, pp. 171, 203]. Pieri writes

[2097, pp. 2, 6] Primitive or undecomposed concepts, around which all postulates are deposited
[ . . . ], are like the raw material of every proposition [ . . . ]. The main character of primitive entities
of any hypothetical-deductive system is that they are capable of arbitrary interpretations, within
certain boundaries assigned by primitive propositions (axioms or postulates).47

[2098, pp. 175, 180] The system, which is now offered to the public’s judgment, admits only two
primary ideas [raw materials, i.e. general ideas, or classes]: the point and the motion; the latter
being understood as a representation of points in points, and far from any mechanical meaning [ . . . ].
[E]ach motion is a representation of the “point” class [ . . . ], and acts on each point (it operates in all
space). The “motion” is therefore an individual [entity] of the category that goes by the names of
“function”, “representation”, “transformation”, etc.48

The concept of point can be intended primitively as a position, and does not
need a spatial proto-definition, because it is an embryo-concept for the geometry
space—it goes from zero to infinity (singularity); but this, however, poses a
problem in terms of extension. If, on the contrary, we use an analytic language,
i.e. a coordinate geometry, the dimensionality of the point loses a part of its
tearing enigmaticity, as well as of its charm: a point can nonetheless be regarded
as a certain value, and its position-notion shall be represented e.g. by a pair of
numbers, or a couple of parameters.

Question 6.2.1. Is it possible to build a pre-geometry [2647], starting from
primary ideas (raw materials) of point and motion à la Pieri? Or from a
primitive hodgepodge, with a kind of pre-space soup? But then the following
interrogation is: how primitive does a Wheelerian pre-geometry have to be? Or,
how much primitiveness, or raw material, does a pre-geometry hold? C

Question 6.2.2. Finally, is it possible to trace back over a primitive point-motion
system in geometry, and hence generate, from this undecomposed and atomic-like
aggregate, the subsequent formation and formulation of the Riemann–Einstein’s
space continuum?

Furthermore, it should be remembered, within a pre-geometry background,
there is still no border (as we know it) between a metamathematics of Euclidean
geometry and a metamathematics of non-Euclidean geometry. C

Question 6.2.3. How can we ensure that a foundation of geometry, which serves
as the backbone to advance some considerations on the pre-geometry topic, is
independent from other branches of mathematics? It may well be, for instance,
that the foundation of geometry is preceded by that of arithmetic.
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This is the opinion of M. Pasch, when he abandons his original mindset
presented in [2021]. In a letter (dated 11 February 1894) to F.L.G. Frege, Pasch
writes: «Arithmetic must be placed on firm foundations before this can be done
for geometry. In this respect I have not yet been able to make up my mind to
regard arithmetic as merely part of logic».a C

Question 6.2.4. Who guarantees that nature, at its core, is «simple», or «primi-
tive»? Or that it needs a primitive conceptual toolkit to be understood? P.W.
Bridgman icastically notes that «“simple” means simple to us, when stated in
terms of our concepts», which shows that anthropomorphism pervades scientific
dictates no less than religious ones; he writes [413, pp. 198-203]:

The hypothesis of simplicity assumes several forms; some physicists are convinced that the laws
which govern nature are simple, others that the ultimate stuff of which nature is composed is simple
[ . . . ]. Practically all the history of physics is a history of the reduction of the complicated to the
simpler [ . . . ]. One may find great justification here for the belief that all nature will ultimately be
reduced to a similar simplicity, and, in particular, justification for the attempt to find the explanation
of all nature in the action of mechanical laws. Now, of course, as a matter of physical and historical
fact, this program could not be carried through, but obdurate physical phenomena were discovered
[ . . . ]. In one respect it is obvious that nature is not simple, namely numerically—try counting the
electrons or atoms or stars! [ . . . ] We have in the first place to notice that “simple” means simple to
us, when stated in terms of our concepts [ . . . ]. A tempting question is whether there may not be
some laws of nature that are really simple, without relation to our mode of formulation, such as the
law of the inverse square.b C

References and Bibliographic Details

Section 6.1.2
For a synopsis in discrete vs. continuum methods for quantum gravity in this context, see e.g.
[1144]. — A compendium on the continuum in physics and the problems hidden therein is [173].

References for multiple Sections
Useful books on various subjects (Regge calculus, discrete Wheeler–DeWitt equation, Har-
tle–Hawking wave function) are [529] [1266].

aFrom Correspondence XIII/1 Frege–Pasch, in Frege’s correspondence [1034] = [1035, p. 103].
bCf. Section 22.1.4.2.





7
Γῆ Δρακόντων,a Part I. Quantum Field Space

and Gravity

[L]a debolezza del nostro Intelletto intorno alle cose naturali, ed anco Geometriche, è tale che
venendo noi interrogati di qualsivoglia Problema, se vogliamo rispondere per verità, ed aggiustata-
mente, non possiamo rispondere meglio che con un sincero e schietto non lo so [ . . . ]; ed insomma
la nostra risposta non può essere assoluta, ma sibbene come si suole dire ex suppositione.b

— B. Castelli [580, p. 550]

[L]es opérations de la nature sont infiniment supérieures à celles que l’adresse humaine est
capable de produire.c

— L. Euler [924, lettre XIII, 24 May 1760, p. 49]

7.1. A Lot but Not Everything: the Lagrangian Farrago in
Standard Quantum Fields

We’re not building a machine that calculates answers; instead, we’re discovering questions.
Nature’s shape-shifting laws seem to be the answer to an unknown mathematical question [ . . . ].
The ascension to the tenth level of intellectual heaven would be if we find the question to which the
universe is the answer, and the nature of that question in and of itself explains why it was possible
to describe it in so many different ways.

— N. Arkani-Hamed49

In this Section, we will go towards the limits of knowledge in high energy
physics, reporting the representation of a function of quantum fields in Lagrangian
formalism. Beyond this representation lands (still) unknown open up.

7.1.1. Lagrangian Density in 3-Interactions

Scientific ideas [of physics] are prisoners, and more than one thinks, of the experimental devices,
just as musical ideas are of their musical instrumentation.d

— Inverted phrase from P. Schaeffere

aTerra draconum, that is, unknown/dangerous «land of dragons», in Αιλιανού περί ζώων ιδιότητος
Βιβλία ιζ΄—Aeliani De natura animalium Libri XVII [21, Lib. II, cap. XXI, p. 55].

b«The weakness of our Intellect around natural and also Geometric things is such that when we
are being interrogated on any Problem, if we want to answer truthfully, and properly, we cannot
answer better than with a sincere and blunt i do not know [ . . . ]; in short, our answer cannot be
absolute, but rather as is usually said ex suppositione».

c«[O]perations of nature are infinitely superior to those that human skill is capable of producing».
dCf. footnote a on p. 429.
eThe original version, in P. Schaeffer [2293, p. 17], reads as follows: «[L]es idées musicales sont

prisonnières, et plus qu’on ne le croit, de l’appareillage musical, tout comme les idées scientifiques
de leurs dispositifs expérimentaux». An En. transl. is in [2294, p. 2].
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We will analyze below the Lagrangian density in the Standard Model of
particle physics, which describes three of the four known fundamental interactions
of nature: electromagnetic, weak, and strong forces, excluding gravity. We
will organize the analysis into two parts, one preparatory, the other with the
exposition of the Lagrangian.

7.1.1.1. I. Preparatory Parts: Higgs Field and Adjustments for Neu-
trinos (Majorana Mass & Pontecorvo’s Oscillation)

The expression of the Lagrangian density is a Frankenstein’s monster equa-
tion,a created by sewing pieces together from M. Veltman’s book [2563, app.
E],b according to Connes–Chamseddine–Marcolli revision [681] [611] [683, sec.
9.4], compare with [680].

(1) Should we get a list of all mathematical objects to use for Frankenstein’s
equation in Section 7.1.1.2.

(i) Let αH0 =
m2

H0

4m2
W

be a parameter for Higgs boson, via scattering processes,
where mH0 and mW are the masses of the Higgs and weak (W -type) bosons,
respectively (see below).

(ii) Let θw be the mixing angle, aka Weinberg angle, a parameter of the
electroweak interaction under the Glashow–Weinberg–Salam theory [1163] [1164]
[2281] [2620].

(iii) Let λαg-m
viz
= λαχiχj

, be the Gell-Mann matrices [1113, p. 1074], with
α = 1, . . . , 8,

λ
1
g-m =

(
0 1 0
1 0 0
0 0 0

)
, λ2g-m =

(
0 −i 0
i 0 0
0 0 0

)
, λ3g-m =

(
1 0 0
0 −1 0
0 0 0

)
, λ4g-m =

(
0 0 1
0 0 0
1 0 0

)
,

(7.1a)

λ
5
g-m =

(
0 0 −i
0 0 0
i 0 0

)
, λ6g-m =

(
0 0 0
0 0 1
0 1 0

)
, λ7g-m =

(
0 0 0
0 0 −i
0 i 0

)
, λ8g-m =

( 1√
3

0 0

0 1√
3

0

0 0 − 2√
3

)
.

(7.1b)

(iv) Let A(γ) be the photon field, that is, the electromagnetic field—in particle
terms, A(γ) corresponds to the photon, the gauge boson for electromagnetic
interactions; A(γ) is accompanied by subscripts (µ) or (ν), i.e. A(γ)

µ , A(γ)
ν .

(v) Let ct be a constant in the so-called tadpole 1-loop Feynman diagram.
(vi) Let fαβγδϵ be the (gauge group) structure constants, or structure coeffi-

cients, of the Lie algebra su3 of SU3, the special unitary group of degree 3, that
find application in quantum chromodynamics (qcd).

(vii) Let в(g) be a (gauge) coupling constant, putting в(g) =
√
4παem,

αem =
sin2

w в(g)
2

4π being the fine-structure constant, which determines the coupling
strength for electromagnetism.

aBut not quite a modern Prometheus.
bA Veltman’s pre-Diagrammatica is ’t Hooft–Veltman’s Diagrammar [1380].
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(viii) Let в(g)s
be the strong (gauge) coupling constant, i.e. qcd coupling

constant.
(ix) Let gℓ be the gluon [1113, p. 1073], the gauge boson acting in the strong

interaction between quarks; gℓ is accompanied by superscripts (α), (β), (γ),
(δ), or (ϵ), where αβγδϵ = 1, . . . , 8, since there are eight types of gluons, and
subscripts (µ) or (ν).

(x) Let Γ⃗fp, G⃗ℓαfp, W⃗+
fp, W⃗−

fp, and Z⃗0
fp be the Faddeev–Popov ghosts [933], i.e.

ghost gauge fields, which are thought to make the quantum formalism consistent:
Γfp is the Faddeev–Popov ghost field associated with the photon; G⃗ℓαfp, with
α = 1, . . . 8, are the Faddeev–Popov ghost fields associated with the eight types
of gluons; W⃗+

fp, W⃗−
fp, and Z⃗0

fp, are the Faddeev–Popov ghost fields associated
with the positive/negative, and neutral weak bosons (see below).

(xi) Let H0, ϝ0H0 , ϝ+H0 , and ϝ−H0 be the Higgs boson and Higgs scalar fields;
refer to papers by F. Englert & R. Brout [892], P.W. Higgs [1347] [1348] [1349],a
and G.S. Guralnik, C.R. Hagen & T.W.B. Kibble [1243].

(xii) Let λς,τ , νς,τ be the leptons, where ς, τ = 1, . . . , 3 mean generation
indices; there are six types of leptons, with three lepton generations: electron
and electron neutrino in the first generation, muon and muon neutrino in the
second generation, tau(on) and tau(on) neutrino in the third generation.

Note. Let ν(≀)ς denotes the image of a neutrino νς under cpt symmetry, or
under transformations of charge conjugation (c), parity transformation (p), and
time reversal (t); in Majorana’s case, ν = ν

(≀)
ς .

(xiii) Let

Lpmns
ςτ,τς =

(
L1 L2 L3

L4 L5 L6

L7 L8 L9

)
(7.2)

be the Pontecorvo–Maki–Nakagawa–Sakata matrix [2152] [1744], a unitary lepton-
neutrino mixing matrix in the weak interactions, for the phenomenon of neutrino
mixing, where

L1 = cos θ12 cos θ13,
L2 = sin θ12 cos θ13,
L3 = sin θ13e

−iδcp ,
L4 = − sin θ12 cos θ23 − cos θ12 sin θ23 sin θ13e

iδcp ,
L5 = cos θ12 cos θ23 − sin θ12 sin θ23 sin θ13e

iδcp ,

aAbout the Englert–Brout–Higgs mechanism, it is sufficient to recall here the theoretical core
that animates it:

(1) F. Englert & R. Brout [892, p. 321] examine a model based on a chiral invariant Lagrangian,
with vector and pseudo-vector gauge fields, in such a way as to guarantee an invariance under local
phase and local γ5 phase transformations (cf. Section 3.5.2.1). «In this model the gauge fields
themselves may break the γ5 invariance leading to a mass for the original Fermi field», and it is
possible to show that «the pseudovector field acquires mass».

(2) P.W. Higgs [1349, pp. 508-509] reports that «the spin-one quanta of some of the gauge fields
acquire mass», imagining that «a spontaneous breakdown of symmetry under an internal Lie group
occurs», and if «the conserved currents associated with the internal group are coupled to gauge
fields». «[T]he longitudinal degrees of freedom of these particles (which would be absent if their mass
were zero) go over into the [Nambu–]Goldstone bosons [1900] [1183] when the coupling tends to zero».
«It may be expected that when a further mechanism (presumably related to the weak interactions)
is introduced in order to break [ . . . ] conservation, one of these gauge fields [in particle-form of weak
bosons W± and Z0] will acquire mass, leaving the photon as the only massless vector particle». The
Higgs boson makes its first appearance in [1349, p. 508, equation 2b].
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L6 = sin θ23 cos θ13,
L7 = sin θ12 sin θ23 − cos θ12 cos θ23 sin θ13e

iδcp ,
L8 = − cos θ12 sin θ23 − sin θ12 cos θ23 sin θ13e

iδcp ,
L9 = cos θ23 cos θ13,

with the mixing θ-angles, δcp is the cp symmetry violating phase [653] (c stands
for charge conjugation symmetry, and p stands for parity symmetry). Here
Lpmns = L†

pmns = L−1
pmns.

Note. This is related to Pontecorvo’s neutrino oscillation [2151] [2153], under
which the three types of neutrino (electron, muon, and tau(on) neutrino) change
their lepton flavor as while they propagate (cf. Margo 3.5.2).

(xiv) Let m be the mass: e.g. mν (neutrino mass), mλ (lepton mass), mW

(mass of W±);
(xv) Let

Mckm
ςτ,τς =

(
M11 M12 M13

M21 M22 M23

M31 M32 M33

)
=

(
Mu(qk)d(qk) Mu(qk)s(qk) Mu(qk)b(qk)

Mc(qk)d(qk) Mc(qk)s(qk) Mc(qk)b(qk)

Mt(qk)d(qk) Mt(qk)s(qk) Mt(qk)b(qk)

)
(7.3)

be the Cabibbo–Kobayashi–Maskawa matrix [461] [1515], a 3× 3 unitary matrix
concerning the strength of flavour-changing weak decays, with the presence of
the six types of quarks (see below). Here again Mckm =M†

ckm =M−1
ckm.

(xvi) Let Nm be the matrix containing Majorana mass parameters for neu-
trinos, in pursuance of the Majorana representation [1739] = [1740] (see Section
3.5.2.3).

(xvii) Let qkς,τχ be the quark (see Gell-Mann’s [1112, eightfold way] [1114]
and G. Zweig’s [2743] [2744] theoretical papers), divided in (u)qk

ς,τ
χ

and (d)qk
ς,τ
χ

,
where the superscripts ς, τ = 1, . . . , 3 designate the flavor property, or the three
quark generations : up and down in the first generation, strange and charm in the
second generation, bottom and top in the third generation; while the subscript
χ = 1, . . . , 3 is the color charge (blue, green, and red).

(xviii) Let

sin θw =
в(g)1√

в(g)
2
1
+ в(g)

2
2

and cos θw =
в(g)2√

в(g)
2
1
+ в(g)

2
2

(7.4)

be the sine and cosine of the weak mixing angle (or Weinberg angle) θw.
(xix) Let W± and Z0 be the positive/negative charged and neutral weak

bosons, respectively, the vector bosons that mediate the weak interaction. Note.
The W± and Z0 particles have a definitive theorization within the electroweak
model by S. Glashow [1163] [1164], A. Salam [2281], and S. Weinberg [2620];
nevertheless the prediction of Z0 is already outlined in J. Leite Lopes [1610].

(2) So, concisely, the Standard Model, in its Lagrangian form, is modified
with the addition of

· Higgs boson and Higgs scalar fields,
· Majorana mass terms for neutrinos,
· Pontecorvo’s neutrino oscillation,
· neutrino mixing, with the Pontecorvo–Maki–Nakagawa–Sakata matrix.
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(3) Antimatter (antiparticle, antifield) is indicated with a horizontal line
over the particle’s and field’s symbols.

7.1.1.2. II. An Equation à la Frankenstein

But the Snark is at hand, let me tell you again! / ’Tis your glorious duty to seek it! [ . . . ] For
the Snark’s a peculiar creature, that won’t / Be caught in a commonplace way.

— L. Carroll [537, pp. 39-40]

A Revision of the Veltman–Connes–Chamseddine–Marcolli Version

We shall now proceed to the writing of the Lagrangian sm density via vccm
version (the acronym stands for Veltman, Connes, Chamseddine, and Marcolli),
in which each part is marked with the yellow #F7C015 color in superscript.

· Eq. [a] is the color Lagrangian, with the gluonic interactions in qcd;
· Eq. [b] is the fermionic color Lagrangian, with fermionic plus gluonic

interactions, and Gell-Mann matrices;
· Eq. [c] is the Faddeev–Popov ghost Lagrangian in qcd;
· Eq. [d] is the weak Lagrangian, with weak vector bosons & weak nuclear

force, and Englert–Brout–Higgs mechanism;
· Eq. [e] is the fermion Lagrangian, with interactions between fermions and

weak vector bosons;
· Eq. [f] is the fermion-Higgs Lagrangian, with interactions of the fermions

in the Englert–Brout–Higgs mechanism;
· Eq. [g] is the Faddeev–Popov ghost Lagrangian in the weak interaction.

Lsm =
[a] − 1

2∂νgℓ
α
µ∂νgℓ

α
µ − в(g)s

fαβγ∂µgℓ
α
ν gℓ

β
µgℓ

γ
ν − 1

4в(g)
2
s
fαβγfαδϵgℓβµgℓ

γ
νgℓ

δ
µgℓ

ϵ
ν

[b] + 1
2 iв(g)s

λ
α
χiχj

(
qkςχi

γµqkςχj

)
gℓαµ

[c] + G⃗ℓαfp∂
2G⃗ℓαfp + в(g)s

fαβγ∂µG⃗ℓ
α
fpG⃗ℓ

β
fpgℓ

γ
µ

[d] − ∂νW+
µ ∂νW

−
µ −m2

WW
+
µ W

−
µ − 1

2∂νZ
0
µ∂νZ

0
µ − 1

2 cos θ2w
m2
WZ

0
µZ

0
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7.2. What is the Quantum Field Space?

7.2.1. Underlying Minkowskian Space

We may think of space of the monster equation (Section 7.1.1.2)—the reference
system for the Lagrangian dynamics—as an underlying Minkowski manifold, or
space-time (cf. Section 3.4), for relativistic (without gravity) qft.

7.2.2. Function Multi-Space of Hilbertian Type

I expressed the concept that, for various researches of analysis, it is appropriate to consider the
totality of analytic functions of one variable x or—to fix the ideas better—the totality of series of
positive integer powers of x, as a manifold [varietà] or space of which every single series constitutes
an element. To such a manifold, evidently with an infinite number of dimensions, we can give the
name of function space; any power series of x will be a point of this space and the coefficients of
the series can be regarded as the coordinates of the point.50

— S. Pincherle [2101, p. 85, e.a.]

We should also remember that the space structure on the quantum states
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corresponds to the Hilbert space,a one among the many function spaces, see
S. Pincherle in epigraph for a primal meaning. Hilbert space is thus a space
by which quantum states are (geometrically) modeled. Alongside this set of
functions there is a configuration space—again with Hilbertian schemes, or even a
Krĕın spaceb—of the quantum fields. Hilbert space has properties of a generalized
Euclidean geometry, whilst a Krĕın space is psuedo-Euclidean.

7.2.3. Spatiality in Particle Aspect vs. Wave-Field Aspect

Here we would like to stress that a quantum space (intended as belonging to
quantum mechanics and qft), either as a Minkowskian arena, or a Hilbert space
from a functional analysis, is a system for discrete particles, the punctual datum
(see Section 7.2.5), whose continuity is expounded in the wave-field structure (of
each particle): elementary particles are vibrations, or excitations, under a discrete
manner, of the quantum fields, which in turn are fields of the particles—it is a
conceptual circularity: particles of the quantum fields and quantum fields of the
particles are interchangeable notions.

There is an infinite number of possible modes in which a field can vibrate.c
With clarity, it is a mathematical infinity, as well as the Hilbert space is an abstract
(scilicet: mathematical) entity, which has an infinite number of dimensions,
because in qft it has an infinite number of degrees of freedom associated with
the states of a system. In the real world, that is a different kettle of fish.

7.2.4. Spectral Continuity, Discrete Set of Eigenvalues, and Punctual
Relations in Function Spaces

It is worth noting the following. In the definition of a function space, whatever
the function space is, the double notion of discretum and continuum is explicitly
co-present. If we take account of several eigenvalues of a certain system, and
these values form a discrete set of a linear operator, we may speak of a continuous
set of values, i.e. of a spectrum of the operator (on a finite-dimensional vector
space), based on punctual relations—e.g. in the case of Pincherle, it is the
homography.d

aJ. von Neumann was the first to give a rigorous exposition of the Hilbert space in [1919] [1920]
[1928, chap. II], precisely named (abstrakten) Hilbertschen Raum; but his first studies on the Hilbert
space are about a quantum context: [1916] [1917] [1918] [1362, written in collaboration with Hilbert
and Nordheim].

bA Krĕın space, denoted by K±, is a non-degenerate inner product space, characterized by
completeness, and a decomposability such as this one, K± = K+ ∔ K−, in which (K+ = 0) ⊂ K++

and (K− = 0) ⊂ K−− are (intrinsically complete) Hilbert spaces. In a Krĕın space there is, by
definition, a rank of metric indefiniteness [167].

cThe birth of qft can reasonably be traced back to E. Fermi, with his paper on β-decay [969]
= [970] = [2673]. F. Wilczek [2665, pp. S86-S87, e.a.] writes: «The first conscious exploitation of
the potential for quantum field theory to describe processes of transformation was Fermi’s theory
of beta decay. He turned the procedure around, inferring from the observed processes of particle
transformation the nature of the underlying local interaction of fields. Fermi’s theory involved
creation and annihilation not of photons, but of atomic nuclei and electrons (as well as neutrinos)—the
ingredients of “matter”. It began the process whereby classic atomism, involving stable individual
objects, was replaced by a more sophisticated and accurate picture. In this picture it is only the
fields, and not the individual objects they create and destroy, that are permanent».

dHe writes [2101, p. 87]: «Let us remember that an operation [ . . . ] which, applied to analytic
functions, gives rise to analytic functions too [ . . . ], therefore gives a transformation of the function
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7.2.5. Particle(s) Kermesse

[T]he elementary particle is not an individual; it cannot be identified, it lacks “sameness” [ . . . ].
In technical language it is covered by saying that the particles “obey” new-fangled statistics, either
Einstein–Bose or Fermi–Dirac statistics [ . . . ]. It is certainly useful to recall at times that all
quantitative models or images conceived by the physicist are, epistemologically, only mathematical
devices [or rather, mathematical fictions] for computing observable events [ . . . ]. A [particle] lacks
the most primitive property we associate with a piece of matter in ordinary life [ . . . ]: the modern
atom[ism] consists of no stuff at all but is pure shape [ . . . ]. I believe the situation is this. We have
taken over from previous theory the idea of a particle and all the technical language concerning it.
This idea is inadequate. It constantly drives our mind to ask information which has obviously no
significance. Its imaginative structure exhibits features which are alien to the real particle.a

— E. Schrödinger [2320, pp. 183, 185, 191, 188, e.a.]

In physics, one does not have the faintest idea of what a particle is (from
experimental evidences), since if the definition of a particle starts from, or
arrives at, the concept of point,b the leap of physics from the abstract world
of mathematics to the phenomeno-observational one is itself determined by a
theoretical burden (contradictory postulates, definitional inconsistencies, unclean
logic, etc.), which is already present on a mathematical level, cf. Sections 10.4.5
and 14.4.

Between the point of mathematics and the particle of physics there is,
in the middle, a kermesse of convictions—all mathematical concepts, obvi-
ously—betraying a (con)fusion between mathematics and physics, see Chapters
22, 24, 25, 26. The main ones are those in which a particle is

· a corpuscular ray,
· a wave function,
· an excitation of a quantum field,
· an algebraic structure (set, or groups).
The four are one, from which the notorious wave-particle duality [2486] [734],

as reflected in the de Broglie’s hypothesis of matter waves [735], from which
Bohr’s complementarity [315] is affirmed (1927).

Schrödinger’s comment [2322, pp. 472-473] is acrid, calling the complemen-
tarity character (of the quantum theory) a «thoughtless slogan»: «If I were
not thoroughly convinced that the man [Bohr] is honest and really believes in
the relevance of his—I do not say theory but—sounding word, I should call it
intellectually wicked»; he concludes with these verses from Goethe’s Faust I
[1176, p. 72, vv. 1995-1996]:

Denn eben wo Begriffe fehlen
Da stellt ein Wort zur rechten Zeit sich ein,

which in En. means
For just where concepts are lacking,
a word appears at the right moment [to take its place].

Now stop and ponder, for a moment, over this fact.

space which, for each linear manifold of finite order of this space, is reduced to a homography. Such
an operation can be continuous for the whole function space or for a part [ . . . ] of it».51

aCf. Section 14.4.6.
bIt is a mathematical concept, and as such it is not about nature.
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7.3. Intermezzo. Limits of (Common) Language, and Ver-
bal Ploys

About the conclusion of the previous Section, there is a pronouncement from
M. Born [383, p. 97, e.a.] that fits like a glove:

The ultimate origin of the difficulty [inherent in the wave-particle duality] lies in the fact [ . . . ]
that we are compelled to use the words of common language when we wish to describe a phenomenon,
not by logical or mathematical analysis, but by a picture appealing to the imagination. Common
language has grown by everyday experience and can never surpass these limits. Classical physics has
restricted itself to the use of concepts of this kind; by analysing visible motions it has developed two
ways of representing them by elementary processes: moving particles and waves. There is no other
way of giving a pictorial description of motions—we have to apply it even in the region of atomic
processes, where classical physics breaks down. Every process can be interpreted either in terms of
corpuscles or in terms of waves, but on the other hand it is beyond our power to produce proof
that it is actually corpuscles or waves with which we are dealing, for we cannot simultaneously
determine all the other properties which are distinctive of a corpuscle or of a wave, as the case may
be. We can therefore say that the wave and corpuscular descriptions are only to be regarded as
complementary ways of viewing one and the same objective process, a process which only in definite
limiting cases admits of complete pictorial interpretation.

Let us dwell on the consideration of the limits of our (verbal/spoken) language.
Similar thoughts are also in P.W. Bridgman [415, p. 225, e.a.]:

[O]ne is impressed by the complexity of the verbal structure that mankind has erected through
the ages. Here is an autonomous world in which a man can, and frequently does, live a more or less
self-contained and independent existence. On the other hand, despite the complexity of the verbal
world, the external world of objects and happenings is inconceivably more complex—so complex
that all aspects of it can never be reproduced by any verbal structure. Even in physics this is
not sufficiently appreciated, as is shown, for example, by the reification of energy. The totality of
situations covered by various aspects of the energy concept is too complex to be reproduced by any
simple verbal device.

Here the energy concept is challenged. We run up against examples of
inadequacy of language at every turn. The same goes for the notion of mass.
This is what H.L. Jackson [1426, p. 278, e.a.] declares, with a caustic tone:

Mass may be compared with an actor who appears on the stage in various disguises, but never
as his true self. Actually mass—like the Deity—has a triune personality. It may appear in the role
of gravitational charge, or of inertia, or of energy; but nowhere does mass present itself to the senses
as its unadorned self.

Regrettably, though, we cannot do without the language, despite the aforestated
limits [417, p. 31]:

The words in which the physicist defines the meaning of such concepts as “length” must be of
the type that have nonverbal referents [ . . . ]. [But] even here we have to get back onto the verbal
level if we wish to communicate the results of our nonverbal operations [ . . . ]. I as I write and you
as you read cannot get away from words [ . . . ]. Any effects which I can here produce on you must be
through the medium of words. It is a tautology to say that our verbal communication [ . . . ] cannot
get away from words.

The search for, say, a pre-linguistic truth, which overcomes, or gets through,
the language misunderstandings, whatever they may be, is just one of the many
(Western) μῦθοι anchored to the Platonic idea of Truth (cf. footnote a, p. 467).
Mathematics, with its symbolism, and the physics that takes possession of it,
do not escape the—entirely scientific—process of ambiguity of words and the
multiplicity of their interpretations.52
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7.4. Space and Time from No-space and No-time

All of this stuff, more correctly, must be examined in the limit of a combination
of the monster equation with a doctrine in which the gravitational force coincides
with the energy-momentum tensor, and the density of matter-energy is interpreted
as a Gaussian-like curvature (see Chapters 3 and 4). The most intriguing
proposals, having the goal of imagining a quantum world, are

· those in which space-time is a sort of elastic entity decomposed into granules
(we will mention the exemplary Sakharov case);

· and those that seek to establish a connection between, on the one hand,
curved space-time, and hence gravity (as it is ascribed to a curvature of a
Lorentz-like manifold), or time (as an independent quantity, a concept distinct
from space), and entropy, on the other.

The implication is that representations of space-time & gravity, and time, as
a one-directional flow, or time’s arrow, in the words of A.S. Eddington [837, pp.
68-80], cease to be fundamental entities and become emergent phenomena.

7.4.1. Emergent Gravity

7.4.1.1. Sakharov’s Elasticity of Space, and Liquid Space-Time

Ingenious hypotheses [ . . . ] have been proposed to explain light, heat, magnetism, etc., consid-
ering the phenomena as produced by a reaction of space’s opposition to the variability of its own
curvature over time. And here it is important to observe that the additional term BΦ

∇ in the effective
part [ . . . ] of the elastic potential can be considered precisely as the expression of the energy of the
reactions that the space, rigid in its geometric constitution, opposes to the elastic matter filling it,
assuming [the matter] inert in the sense that, forced to deform in the said space, it tends to do it as
if the space itself were Euclidean.53

— E. Cesàro [607, p. 213]

The presence of the action S(R) = − 1
16πG

∫
(dx)

√
−gR [in Einstein’s theory of gravitation]

[where R is the invariant of the Ricci tensor, with (R) = L(0) +A
∫
kdk ·R+B

∫
dk
k R

2 + · · · , and
A & B ∼ 1] leads to a “metrical elasticity” of space, i.e., to generalized forces which oppose the
curving of space. Here we consider the hypothesis which identifies the [above] action with the change
in the action of quantum fluctuations of the vacuum if space is curved.

— A.D. Sakharov [2280, p. 394]

The aforesaid issues (Section 7.2) push to look for a manner of combining
the continuous part (quantum fields, including gravity) with the discrete part
(particle units, or singularities). Among the many proposals, in this respect, an
interesting one comes from Sakharov.

The above-mentioned piece of Cesàro’s text precedes his sentence reported
in epigraph under Chapter 4. There, as suggested by the theory of elastic media,
he wonders—on the heels of Clifford—whether the physical variations of certain
phenomena can coincide with the effects due to changes in the curvature of
space.

Curiously, in A.D. Sakharov [2280, p. 394] the invocation of elasticity, for
the physical significance of spatial curvature in qft, is pushed further. Space
itself, for Sakharov, is identified with the concept of elastic continuum, so the
gravitational attraction is considered as a sort of elasticity of space; and the
spatio-temporal continuum becomes a property emerging from the discrete cluster
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of the particles, analogously to the continuum mechanics of elastic bodies and/or
of fluids emerging from the molecular aggregates, see [2088] [2588].

More recently, the postulation of a liquid space-time, under the suggestion
of a “smolecularization” into its alleged ground-constituents, is deepened by S.
Liberati and L. Maccione [1652], through analysis of the space-time viscosity
(which appears to be very low, approaching zero), the possible dispersion relation,
together with the phenomenology of the hydrodynamics-like dissipative effects.a

7.4.1.2. Spatio-temporal/Gravitational Thermodynamics, & Entropic
Gravity

In thermodynamics, heat is energy that flows between degrees of freedom that are not macro-
scopically observable. In spacetime dynamics, we shall define heat as energy that flows across a
causal horizon. It can be felt via the gravitational field it generates, but its particular form or nature
is unobservable from outside the horizon.

— T. Jacobson [1434, p. 1260]

The key statement is simply that we need to have a temperature in order to have a force. Since
we want to understand the origin of gravity, we need to know where the temperature comes from.

— E.P. Verlinde [2567, p. 8]

(1) In the wake of (i) Bardeen–Carter–Hawking laws of black hole thermody-
namics [193], (ii) the black hole entropy, also called Bekenstein–Hawking entropy
[230] [231]b [1303] [1304],c

Sbh =
c3

4Gnℏ
Ah, (7.6)

and (iii) Hawking’s results on the quantum thermal radiation [1305], T. Jacobson
[1434] establishes a proportionality of entropy and area. He finds that a horizon
area, relative to the boundary of a null hypersurface in the Rindler frame [2212]
[2213], is proportional to the entropy of the space enclosed therein. This allows
him to derive the Einstein field Eqq. (4.1) from the area-entropy relation

δQ = TdS, (7.7)

intertwining heat Q, temperature T, and entropy S. Consequently, expressions
of mathematics of gravitation, appear to be local equations of state, acquiring a
thermodynamic interpretation, for which the surface gravity is a(n indication of)

aThe analogy with water excites the imagination: water, macroscopically, is a continuous element;
on a microscopic scale, it has a decomposition into H2O molecules. Any molecule of water (one
oxygen and two hydrogen atoms), taken by itself, is not water: the (H2O)-group is not a transparent
substance in a liquid phase. So we say that water is a phenomenon of emergence from discrete
constituents.

bFor insights on the black hole entropy, see e.g. [530], in particular sec. 2, entitled Prehistory:
Black Hole Mechanics and Wheeler’s Cup of Tea, pp. 416-418. What happens if we throw a cup of
(hot) tea into a black hole? As reported by Bekenstein [231, pp. 2336-2337], the black hole entropy
increases, and since the Schwarzschild radius—the size of the event horizon—is proportional to the
mass of the black hole, the cup of tea produces an expansion of its horizon: the black hole entropy is
but the ratio of the black hole area to the square of the Planck length times a dimensionless constant
of order unity ηc,

Sbh = f(α)
viz
= ηcℏ−1

α, (7.5)

where α =
Ah
4π symbolizes the rationalized area of a black hole.

cLetting c be the speed of light, Gn the Newtonian constant of gravitation, and Ah the horizon
area, or, to say it better, the (surface) area of the event horizon of a black hole.
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temperature, and the energy flux is a (kind of) heat flow. See also Padmanabhan’s
articles [1987] [1988], and book [1989, chap. 16].

(2) E.P. Verlinde [2567] sketches out an identification between gravity and
entropy, the latter seen as a force

F⃗∆x = T∆S, where ∆x =
ℏ
mc

, ∆S = 2πkb
mc

ℏ
∆x, (7.8)

caused by changes in the information correlated to the position of collections
of matter, with their degrees of freedom, where kb is the Boltzmann constant.
More precisely, the relationship between temperature T and entropy S is but the
amount of information resulting from the microscopic degrees of freedom, as well
as from the energy costs, or entropy changes in the amount of information.a

For this reason, we can speak of emergent gravity as a general phenomenon
arising from discrete distributions of matter. Here, too, a spur of analogy
produces its effects: the equations of gravity resemble the laws of thermo- and
hydro-dynamics.

The pedestal on which Verlinde’s thesis rests is the adoption of the tenets
of the holographic model, already mentioned by Jacobson.b The holographic
principle, or ’t Hooft–Susskind principle [1375] [2438], which has its first stimulus
in the laws of black hole mechanics, and then in the AdS/cft correspondence,
also called gauge/gravity duality, which is a duality conceived by J. Maldacena
[1745], commonly believed to be an exemplary evidence of the holographic
principle; see E. Witten [2682] and L. Smolin [2396].

The AdS/cft is a duality conjecturing a connection between a negatively
curved space, called anti-de Sitter space, or anti-de Sitter space-time, denoted by
AdSn,c and the conformal field theory (cft),d assuming that the cft is a dataset
image that may be defined on the boundary of AdSn. Verlinde argues that a
certain (not infinite) number of the microscopic degrees of freedom associated
with a collection of matter is representable holographically on the boundary of
space-time, or on black hole horizons, under the T-S relation.

7.4.1.3. Entropy Functionals for Matter and Gravity

The general form for the entropy (action) functional for matter, as normal
to a null hypersurface, is

SS
m =

∫
Ω

(√
−gΤm

µνX⃗
µX⃗ν

)
dnx, (7.9)

aThe entropy, as a thermodynamic system property, corresponds to S(Etot, x) = kb logΩ(Etot, x),
setting Ω(Etot, x) as the volume of the configuration space, in which a function of the total energy
Etot is placed.

b[1434, p. 1263]: «Another argument that might be advanced in support of the proportionality
of entropy and area comes from the holographic hypothesis, i.e., the idea that the state of the part
of the universe inside a [3-dimensional] spatial region [spatio-temporal region] can be fully specified
[stored] on the [2-dimensional] boundary of that [spatio-temporal] region».

cde Sitter (and anti-de Sitter) spaces owe their name to W. de Sitter [2386, communicated in
the meeting of March 31, 1917] [2387] [2388]; but they were invented independently, and in the same
year, by T. Levi-Civita [1628, seduta del 20 maggio 1917]. Perhaps it would be more correct to call
them de Sitter–Levi-Civita spaces.

dA qft equipped with invariance under conformal transformations.
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for n ⩾ 4, where Ω is a spatio-temporal region, Τm
µν is the energy-momentum

tensor of matter, and X⃗µ,ν is a null vector field; whilst the entropy (action)
functional for gravity is

SS
g = −4

∫
Ω

√
−g
(
Ζµν

ξϱ∇ξX⃗µ∇ϱX⃗ν
)
dnx, (7.10)

where Ζµνξϱ is a Riemann-like 4-tensor; from which

SS
m|g = −

∫
Ω

√
−g
(
4Ζµν

ξϱ∇ξX⃗µ∇ϱX⃗ν − Τm
µνX⃗

µX⃗ν
)
dnx, (7.11)

where

4Ζµν
ξϱ∇ξX⃗µ∇ϱX⃗ν = [: 4∇ξ[ΖµνξϱX⃗µ∇ϱX⃗ν ] :]− 4X⃗µ

Ζµν
ξϱ∇ξ∇ϱX⃗ν

= [: · · · :]− 2X⃗µ
Ζµν

ξϱ∇[ξ∇ϱ]X⃗ν

= [: · · · :]− 2X⃗µ
Ζµν

ξϱRνςξϱX⃗
ς

= [: · · · :] + 2X⃗µPµςX⃗
ς . (7.12)

where the symbols [: and :] signify that the expression within them must be
repeated, inspired by the beginning and ending repeat signs in music notation,
and R is the Riemann tensor. Hence

SS
m|g =−

∫
∂Ω

√
ш
(
4Ζµν

ξϱX⃗µ∇ϱX⃗ν
)
dn−1xY⃗ξ

−
∫
Ω

√
−g
{(

2Pµν − Τm
µν

)
X⃗µX⃗ν

}
dnx, (7.13)

putting 2Pµν = Τm
µν , where ш is the determinant of the induced metric on the

boundary surface ∂Ω, and Y⃗ξ is the vector field normal to ∂Ω. Inside the Eq.
(7.13) the gravitational entropy functional is

SS
g =−

∫
Ω

√
−g
(
4Ζµν

ξϱ∇ξX⃗µ∇ϱX⃗ν
)
dnx

−
∫
∂Ω

√
ш
(
4Ζµν

ξϱX⃗µ∇ϱX⃗ν
)
dn−1xY⃗ξ −

∫
Ω

√
−g
(
2PµνX⃗

µX⃗ν
)
dnx.

(7.14)

In view of the foregoing, this defines the entropy flux vector, of which we
say it is proportional to the heat flux vector—the entropy flux is related to the
energy-momentum tensor of matter. The information, measured by entropy,
about a region of space-time, concerning matter and its distribution, combined
with gravitational force, is stored, in terms of variable, on the boundary surface
of that region, i.e. on a holographic spatio-temporal screen,a relative to that part
of the universe.

aThe 2-dimensionality of the boundary-space justifies the term screen.
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7.4.1.4. Information Flow of What? An Entropy Flux Question

There is a dark spot in the above topic (Sections 7.4.1.2 and 7.4.1.3).
(1) We say that a (space-like) 2-dimensional surface is a set of screen-events.

The area of a set of screen-events is a measure of the flow of quantum information,
i.e. a measure of the information flow capacity of a 2-surface, to which the
concept of quantum space-time (or discrete skein at the Planck scale) is connected;
see e.g. F. Markopoulou and L. Smolin [1770]. We keep the aforementioned
analogies and identities:

· surface gravity = T,
· energy flux as a heat flow,
· connection between temperature and entropy (T-S relation).
(2) By information is to be understood, in the this context, not as the amount

of information relating to a state of knowledge (which is always a subjective
state, within the limits of human knowledge), but a physical disposition, in a
system, to show change of state (objective aspect), which are defined by entropy.
We can take a Bateson’s definition [217, p. 231] as an example:

The technical term “information” may be succinctly defined as any difference which makes a
difference in some later event. This definition is fundamental for all analysis of cybernetic systems
and organization. The definition links such analysis to the rest of science, where the causes of events
are commonly not differences but forces, impacts and the like. The link is classically exemplified by
the heat engine, where available energy (i.e. negative entropy)a is a function of a difference between
two temperatures. In this classical instance “information” and “negative entropy” overlap.

(3) Now, entropy is said to be a measure of the degree of disorder (chaos),b
uncertainty, or mixed-up-ness à la Gibbs [1143, p. 418] (Section 13.2.1). The
crux of the issue is that information, even if it has to do with a succession of real
events, is a statistical succession of such events, in which the subjective aspect,
or ignorance, is mixed, at least partly, with the physical disposition:c entropy,
in fact, is a lack of information on the microscopic state of the system. It is a
question, therefore, of reconciling our ignorance with the emergence acting as a
gravitational disposition.

(4) Where is the fringe between an amount of material information, or
a set of events in nature, and a representation/interpretation of information,
as an understanding of data? How can we discern information as (quantum)
process from information as knowledge? To what extent are the two concepts
separable? For instance, what is a sequences of binary (base-2) digits, 0s and
1s, without knowledge—of which physics and mathematics are part, of course?
Information without knowledge is not physics (seen as rational description of
natural phenomena), it is Nature: it is a process without observers, or conscious
minds (physicists, or mathematicians), cf. point (4) in Section 22.1.6.

aSee footnote a on p. 303.
b To be stickler, we should cautiously separate the concept of “disorder” from that of “chaos”,

or “apparent randomness”, even if the two concepts end up merging into one, until we have given
a satisfactory—for us—definition of “disorder”, see footnote a, p. 286. The identification between
“chaos” and “state of disorder” is already in the Gr. word χάος,54 which means a “primordial
space/state” (πρώτιστα χ.), or a “limitless/infinite space” (ἄτρυτον χ.).

cCf. P.W. Bridgman [413, pp. 205-206, e.a.]: «[A] statistical method is used either to conceal
a vast amount of actual ignorance, or else to smooth out the details of a vast amount of actual
physical complication, most of which is unessential for our purposes».
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(5) In Shannon’s theory [2361] (cf. Section 13.2.2), information is synony-
mous with (freedom of) choice, uncertainty, and entropy (the four words are
interchangeable).a Shannon entropy, in its simplest expression, can be written as

Hs = −
n∑

ℓ

=1

P ℓlogb P

ℓ= −
∑
n

P ℓlog2 P

ℓ, (7.15)

letting P ℓbe the probability of state

ℓ

(the base of the logarithm is usually
b = 2). From (7.15) it is almost immediate to return to the Gibbs entropy [1142],
and then, originally, to the Boltzmann entropy [329] [330], see footnote b, p. 276.
W. Weaver, in the comments of Shannon’s work, writes [2362, p. 15]:

In the limiting case where one probability is unity (certainty) and all the others zero (impossi-
bility), then H [entropy] is zero (no uncertainty at all—no freedom of choice—no information).

Without information, in the Shannon sense, there is no entropy; but this
conception no longer fits for thermodynamic systems, since heat is a form
of energy, which is part of nature, and exists even without information à la
Gibbs–Shannon.b

The equivalence of information entropy, in the Shannon, or Gibbs–Shannon,
sense, and thermodynamic entropy, in the Boltzmann sense (see Section 13.1.1),
is valid because our concept of information is a mixture of material information
and information as knowledge,55 although the idea of entropy—including that of
Boltzmann—is somehow related to a lack of form, that is to say to a missing
information.

7.4.1.5. Margo. In-depth Readings

(1) On the Standard Model in curved space-time, and Lorentzian–Einsteinian
quantum space-time in qft and beyond: see monographs [807, sec. 8.2] [189,
secc. 6.1, 6.3], and F. Finster’s et al. papers [1004] [1005].

(2) To follow some indications on entropic gravity, in holographic and ther-
modynamic pictures, plus entanglement.

(i) M. Van Raamsdonk [2551] [2552], and co-written papers [1585] [949]
[2440]: fulcrum of these studies is the claim that space-time arises from a
set of nodes, and discrete qubits [2326], in a network of tensor type, and that
entanglement works as a ligand of the network—inevitably, entanglement is
thought to be the node-composition of space-time.

(ii) Jacobson [1435], and lecture book by M. Rangamani and T. Takayanagi
[2178, part IV].

aShannon asks [2361, p. 392] = [2362, p. 49], in a paradigmatic way: «Can we find a measure
of how much “choice” [information] is involved in the selection of the event or of how uncertain we
are of the outcome?».

bAlternatively, we can consider information exclusively in its physical content. But what is
information if not, first of all, the form with which we know, or specify, the events in a statistical
succession? Information has a natural dimension: it is physical; for us, however, information is mostly
mathematical, from the Gr. μάθ-ημα, -ματα, “knowledge”, because by means of the μάθημα-knowledge
we become aware of the physical systems, in terms of laws and empirical data. No physicist sees the
world outside his μάθημα-knowledge. More details can be found in Chapters 22, 24, 25.
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(iii) For a construction of a spatio-temporal manifold, and its Lorentzian ge-
ometry, that is, for the emergence of space-time and gravitational field equations,
from the entanglement phenomenon of a quantum state—the measure of which
is the entanglement entropy—in an abstract Hilbert space, see S.M. Carroll &
collaborators [503] [502].

(iv) For a succinct but exhaustive account on the entropic holographic/ther-
modynamic gravity, and entanglement, we refer to [540].

(v) Complementary, there are holographic (entropy) models with a spherical
de Sitter space (dS), so the curvature is positive, obtained from anti-de Sitter
spaces; which leads to the construction of a dS/dS duality. The dual of dSn+1

contains two coupled cft sectors. See X. Dong et al. [810].

7.4.2. Connes–Rovelli Time Flow in Heat Flow via von Neumann
Algebra

We ascribe the temporal properties of the flow to thermodynamical causes, and therefore we tie
the definition of time to thermodynamics [ . . . ]. [W]hat we intend to ascribe to thermodynamics is
not the direction of the time flow. Rather, it is the time flow itself.

— A. Connes and C. Rovelli [684, pp. 2901, 2908]

C. Rovelli and A. Connes [2235] [684] develop a conjecture according to which
physical time flow—as a description of the way in which events (sequence of facts,
actions, or changes) have a regular occurrence, in a before-after succession—has
a thermodynamic origin.

Which merely means that the thermodynamic, or thermal, state of a system
is what determines, and defines, the time flow. Thermal energy transfer, i.e. the
flow of heat, causes the time evolution, and not the opposite (the passage of
time does not “generate” the flow of heat). This proposal goes by the name of
thermal time hypothesis, under a time-thermodynamics relation.

In a mechanical key, the characterization of a thermodynamic state is per-
formed within the Maxwell–Boltzmann distribution & Gibbs statistical ensemble
(Section 13.1.1), and it is, mathematically, a statistical flow. But, in our in-
terpretation of dimensionality in which we conceive the passing of things, a
statistical/thermodynamic state is consistent with the physical time flow.

Let us see in three steps (divided into three Sections) how the thermal time
hypothesis is technically articulated.

7.4.2.1. I. Modular ∗∗∗-automorphisms, and Tomita–Takesaki Relation

Connes–Rovelli’s proposal is built on von Neumann algebra, created by F.J.
Murray & J. von Neumann [1920] [1886] [1887] [1922] [1923] [1888] [1924].

(1) For our purposes, we say that a von Neumann algebra Neu is a ∗-algebra
(one of the subforms of C∗-algebra) of operators on a Hilbert space H. Let Neu

be equipped with a 1-parameter group {φωt }t∈R of ∗-automorphisms on H, with
ω denoting a state of the operator system, that is, a positive linear functional of
norm 1, over Neu.

(2) Here the {φωt }-group is a group of ∗-automorphisms of the weak-⋆ op-
erator topology closure of Neu, called modular group, or group of modular
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automorphisms.
(3) A state ω, or ω-state, over Neu determines a 1-parameter {φωt }-group

of ∗-automorphisms on H. Such a determination expresses a relation of the
Tomita–Takesaki analysis [2509] [2451] [2452, chap. VI], see as a reference [1410],
and it is at the heart of von Neumann algebra.

(4) From what we said above, we easily write the map

{φωt }t∈R : {Neu,H} → {Neu,H}. (7.16)

Tomita–Takesaki relation requires that the map (7.16) is specified by

{φωt }t∈RZ = △−it
ω Z△itω , (7.17)

with Z ∈ Z, where Z is a C∗-algebra, which is a linear space of bounded operators
on H, and △ is a self-adjoint (Laplacian) positive operator. Eq. (7.17) is what
defines the modular group of a ω-state.

(5) At this stage, we are ready for a mental leap from von Neumann abstract
algebra to its observable version, simply by applying it to phenomenal data (the
normal flow of time), that is, by turing, with the mind, from a discussion of pure
mathematics to one of mathematical physics (cf. Sections 22.1, 24.1 and 25.1,
for a better comprehension), with a view to combining the operator system with
the physical system.

(i) We associate the ω-state in ∗-algebra with a thermal state, in keeping
with a Gibbs (statistical) distribution [1142], taking care to extend the system
to a generally covariant context in quantum mechanics. E.g. the observables of
a quantum system are a C∗-algebra plexus, and every ω-state is a positive linear
functional over the C∗-plexus.

(ii) We associate the 1-parameter group {φωt } of ∗-automorphisms with the
concept of physical time flow (the one is the representation of the other).

(iii) We recall that the Connes–Rovelli hypothesis establishes a link between
a thermal state, or heat flow, and the the time flow, asserting that time flow is
determined by/made dependent on the thermal state of the system.

(iv) Now, the Tomita–Takesaki relation (7.17), which is basically an algebraic
equality, can be interpreted as a modular flow to derive the time flow from a
heat flow, i.e. from a thermal state of the physical system.

7.4.2.2. II. Cocycle Radon–Nikodým Theorem, and ttc Flow

Summarizing the above points in the previous Section, the modular flow
(7.17) of the ω-state is (coincident with) the physical time flow of the thermal
state, so that the modular group {φωt } of the ω-state is (coincident with) a
thermal time flow.

The cocycle Radon–Nikodým theorem [2174] [1963] assures that two modular
∗-automorphisms determined by two different ω-states of a von Neumann algebra
Neu are inner equivalent, or that the difference between two modular flows under
Tomita–Takesaki relation (7.17) is an inner automorphism, see Connes [678] [679,
chap. V.5]. As a result, any modular-like flow describes an intrinsic property
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of Neu, since it is independent of all the ω-states. In a quantum framework, a
modular flow of this type can be called a Tomita–Takesaki–Connes flow (ttc),
and it provides greater completeness to the thermal time flow.

7.4.2.3. III. Kubo–Martin–Schwinger Boundary Condition

The relation between the modular ∗-automorphism group {φωt } and a ω-state
ensures that ω over Z is {φωt }-kms at the inverse temperature

Tinv =
1

kbTabs
, (7.18)

with the specification that Z plays here the role of an algebra of quantum
operators (kb is the Boltzmann constant, and Tabs the absolute temperature);
i.e. a ω-state respects a kms boundary condition [1546] [1776], an acronym of
the initials of R. Kubo, and P.C. Martin & J. Schwinger, so named by R. Haag,
N.M. Hugenholtz and M. Winnink [1246]—a kms condition is a representation
of the C∗-algebra of observables equivalent to thermal equilibrium (or Gibbs
state) of a system at a certain temperature T. Lastly, one has a kmsTinv ω-state
for a Tomita–Takesaki–Connes {φωt }-flow.

7.4.2.4. Thermo-clocks and Entropic Flow: the Fundamental Limitsa

of Measuring Time

The thermal time hypothesis, on the wake of the Connes–Rovelli’s sugges-
tion—under which it is not the time flow that “produces” a heat dissipation,
but it is the heat dissipation that “produces” a time flow—can swimmingly be
illustrated, and exemplified, saying that any sort of clock is a thermal device,
and its flow is a measure of the entropic flow, or of the heat flow.

The most rudimentary case is that of a quantum 3-atomic thermo-clock. The
stream of “ticks” of such a thermo-clock system is marked by its thermalization
events, as representative of the one-way direction of time’s arrow. The more
accurate a clock is, the more energy it requires, and the greater is its entropy.
A clock whose precision is, for argument’s sake, absolute, needs, absurdly, an
infinite quantity of energy, viz. an infinite entropy. See P. Erker, M. Huber, &
collaborators [902] [2339].

7.4.3. Fragments of a Pattern

The most complicated part of Section 7.4 is the task of putting together all
the pieces of the mosaic, so as to devise a coherent pattern, at least in the math-
ematical intentions. Yes, because Jacobson’s and E.P. Verlinde’s thermodynamic

aWith a better accuracy, these are thermodynamic limits and not limits tout court. Since time
is not an observable, since there is no a time in and for itself, and resultantly its measurement
must be indirect, videlicet, it can only be measured in conjunction with other objects, the thermal
time hypothesis does not exhaust the concept of time tout court, but it is only a model of time
measurements [902], via heat dissipation. Another problem is wondering if time, or rather, the
word “time”, has any (physical) meaning outside the indirect measurements. This is something else
entirely.
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space-time (Section 7.4.1.2) is not related to Connes–Rovelli’s thermodynamic
time (Section 7.4.2) without forcing. These conjectures on a thermodynamic
origin are, in their turn, separate from Sakharov’s elastic space (Section 7.4.1.1).
A fortiori Minkowskian space-time for the monster equation (Section 7.1.1.2)
does not bind with an entropic, or elastic, space-time.

There are fragments of hypotheses the meaning of which is precise within
the fragments, while the conversion between the meanings of each theoretical
proposal requires translation sacrifices. This happens because the notions of
space and time differ, from one proposal to the next, on the basis of principles
chosen, and preliminary conditions imposed, or, more generally, of mathematics
adopted.
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Little astonishment there should be [ . . . ] if the description of nature carries one in the end to
logic, the ethereal eyrie at the center of mathematics. If, as one believes, all mathematics reduces to
the mathematics of logic, and all physics reduces to mathematics, what alternative is there but for
all physics to reduce to the mathematics of logic? Logic is the only branch of mathematics that can
“think about itself”.a

— C.W. Misner, K.S. Thorne, J.A. Wheeler [1832, p. 1212, e.a.], excerpt from a Box
annotation about the Wheelerian concept of pregeometry [2647]

8.1. Spatial Primitiveness I. Primary vs. Secondary Spatio-
temporal Archetypes

Another chance to arrive at an alternative conception of relativistic space-
time, in the Minkowski sense, is the one undertaken by R. Penrose, with the
elaboration of the so-called twistor space. What we care for is that Penrose’s
space has, algebraically, a more primitive nature in comparison to Minkowski
space-time, for which the twistor space stands out as primary, whilst Minkowski
space becomes secondary, or subsidiary.

8.1.1. Pre-space(s) in Penrose’s Twistor Algebra

Ordinary space-time concepts can then be translated into twistor terms. However, the geometrical
expressions of the most immediate twistor concepts have a somewhat non-local character. Thus, the
primary geometrical object will not be a point in Minkowski space-time, but rather a null straight
line or, more generally, a twisting congruence of null lines. Points do, in fact, emerge, but only at a
secondary stage. (It also turns out that a natural description of physical fields in twistor terms is
given by quantities having a non-local space-time interpretation). However, any vector, tensor, or
spinor operation can be translated into twistor terms, if desired, and vice versa.

— R. Penrose [2052, p. 346, e.a.]

Space-time points arise as secondary concepts corresponding to linear sets in twistor space.
They, rather than the null [light] cones, should become “smeared out” on passage to a quantised
gravitational theory [ . . . ]. Space-time points can then be reconstructed from the twistor space (being
represented as certain linear subspaces), but they become secondary to the twistors themselves.

— R. Penrose and M.A.H. MacCallum [2068, pp. 241, 244, e.a.]

Reference works are: R. Penrose [2052] [2064] [2066] [2067], R. Penrose and
M.A.H. MacCallum [2068], and R. Penrose & W. Rindler [2070, chapp. 6, 9.3].
Following are some twistorial ingredients useful for our discussion.

aCf. G. Boole [367, p. 13]: «Logic not only constructs a science, but also inquires into the origin
and the nature of its own principles,—a distinction which is denied to Mathematics».
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8.1.1.1. A Vice Versa Structure: Projective Null Twistor Space &
Compactified Minkowski Space(-Time)

(1) Twistor is said to be any element xTw in twistor spaces. We can think of
the simplest type of twistor as a representation of a null geodesic with a pair of
2-component spinors (cf. Section 2.8.3.1)—one of which gives the direction of the
geodesic, and the other its moment—with four complex components, otherwise as
a representation of the restricted conformal group in dimension 4, or in dimension
8 if reflections are counted.

(2) We denote the twistor space by Tw. It designates a complex vector space
with a pseudo-Hermitian metric and signature (+,+,−,−). In the conventional
assumption, Tw is a complex 4-space Tw4(C) ∼= C4, or a real 8-space Tw8(R) ∼= R8.

(3) By PTw is denoted the projective twistor space. It is a real 6-space
PTw6(R), or a complex 3-space PTw3(C) ∼= CP3. It derives from Tw.

(i) Letting SO2,4
∼=(1:2) SU2,2 be the twistor group for the previously men-

tioned spinorial object, under which the pseudo-unitary group SU2,2 is 2-fold
covering (double cover) of SO2,4, the reduced spin space for SO2,4 is Tw, and
the non-reduced (full) spin space for SO2,4 is Tw⊕ Tw∗, where the latter is the
dual space of Tw.

(ii) Regarding the congruence with double covering, there is a composition
preserving map onto the identity connected component of SO2,4 through a
morphism

SU2,2
ς-homomorphism−−−−−−−−−−−→ SO2,4 (8.1)

in a (2 : 1) modality.
(4) Tw7(R)

null indicates a null twistor space (and a subspace of Tw). It is a
non-complex and exclusively real 7-space,a then we say that a space Tw7(R)

null

of null twistors (x̄Tw)µ(xTw)
µ = 0, where x̄Tw is a complex conjugate, divides

Tw into two parts, Tw3(C)
+ and Tw3(C)

− , i.e. a complex 3-space of positive (rh)
twistors (x̄Tw)µ(xTw)

µ > 0, and a complex 3-space of negative (lh) twistors
(x̄Tw)µ(xTw)

µ < 0.
Here is that the twistor space Tw, as a full space, is the disjoint union of

Tw3(C)
+ and Tw3(C)

− , plus Tw7(R)
null . It is an aggregate-space formed by these 3

parts-(sub)spaces.
(5) PTw5(R)

null is the projective null twistor space, which is a real 5-space, being
a subspace of PTw6(R).

(i) Each element of PTw5(R)
null is called projective null twistor, and it is consis-

tent with a point of PTw5(R)
null .

(ii) A locus in PTw5(R)
null is consistent with a Riemann sphere S2 ∼= CP1, since

R̂2 ιδ= R2 ∪ {∞} ∼= S2, that is, Ĉ ιδ

= C ∪ {∞} ∼= CP1.
(6) Let be M4(R)

(∞) a conformally compactified Minkowski space(-time), with
topology S1 × S3, endowed with a Lorentzian-like conformal metric, which is the
ordinary flat Minkowski 4-space with a closed light cone, or null cone, at infinity,

aA complex space requires an even number of dimensions.
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assuming to embed the light cone in a bent pseudo-Euclidean 6-space E2,4.
(i) More precisely, M4(R)

(∞) is generated by the elements of a complex line
in PTw3(C) ∼= CP3, imagining such a complex line as a complex 2-subspace of
Tw4(C) for the past and future null infinities of M4(R)

(∞) .
(ii) The group acting on E2,4 is the pseudo-orthogonal group O2,4(R), which

preserves the quadratic form, or distance between points in 6 dimensions. Hence
a twistor for M4(R)

(∞) is but a reduced spinor whose group is O2,4(R).
(iii) A point in M4(R)

(∞) is consistent with an event, which means that a point

of M4(R)
(∞) is a generator of the light cone at infinity.

(iv) A locus in M4(R)
(∞) is consistent with a ray of light, or null geodesic.

(7) Now, what is the relationship between PTw5(R)
null and M4(R)

(∞) ?

(i) A point, that is, a projective null twistor, in PTw5(R)
null corresponds to a

ray of light, or null geodesic, in M4(R)
(∞) . Vice versa, a locus, as a ray of light, in

M4(R)
(∞) represents a point, i.e. a twistor, in PTw5(R)

null .

(ii) A locus, as a sphere S2 ∼= CP1, in PTw5(R)
null corresponds to a point (event)

in M4(R)
(∞) . Vice versa, a point (event) in M4(R)

(∞) represents a sphere S2 ∼= CP1 at

the origin of E2,4 in PTw5(R)
null . Note. there are two other ways to express the

same thing:
(α) a point in M4(R)

(∞) represents a projective line in PTw5(R)
null , since S2 ∼= CP1

is a projective line in PTw, but situated in PTw5(R)
null ,

(β) a point in M4(R)
(∞) is a holomorphic entity in PTw5(R)

null , in the sense that it
is related to a complex-valued function, since S2 ∼= CP1 is a complex 1-space,
recalling that Ĉ ιδ

= C ∪ {∞} ∼= CP1.
(iii) Let xTw be a point (twistor) in PTw5(R)

null , and xM a point in M4(R)
(∞) , and

let γnull be a ray of light, or null geodesic. To summarize,

in PTw5(R)
null

{
xTw

corr
== γnull in M4(R)

(∞) ,

S2 ∼= CP1 corr
== xM in M4(R)

(∞) ,

in M4(R)
(∞)

{
xM

corr
== S2 ∼= CP1 (at the origin of E2,4) in PTw5(R)

null ,

γnull
corr
== xTw in PTw5(R)

null .

Ultimately, in a general perspective, the 5-space PTw5(R)
null is the space of all null

geodesics in the 4-space M4(R)
(∞) .

(8) PTw5(R)
null divides PTw6(R) into two parts, PTw3(C)

+
∼= CP3

+ and PTw3(C)
−
∼=

CP3
−, two complex 3-spaces, for 0-mass particles of positive (rh) and negative

(lh) helicity±. Accordingly, a point of PTw3(C)
+ is for a positive helicityrh

+ 0-mass,
and a point of PTw3(C)

− is for a negative helicitylh
− 0-mass. On the whole, any

point of
{
PTw3(C)

+ ,PTw3(C)
−
}

is a vector 1-(sub)space of Tw.
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Here is that the projective twistor space PTw6(R), as a full space, is the
disjoint union of PTw3(C)

+ and PTw3(C)
− , plus PTw5(R)

null . It is an aggregate-space
formed by these 3 parts-(sub)spaces.

(9) Which brings us to a complexification of (real) M-space, and its com-
pactified version, symbolized by CM♮ and CM♮

(∞), which are ♮-spaces (bequadro-
dimensional), where the time and spatial coordinates, x0 and x1, x2, x3, are
complex numbers. Note that:

(i) points of CM♮ and CM♮
(∞) correspond to complex projective lines in PTw,

(ii) in CM♮
(∞) it creates a double complex 2-locus of points, of which one,

a self-dual locus is incident with every non-zero twistor xµTw, the other, an
anti-self-dual locus, is incident with every non-zero twistor yµTw.

8.1.2. Curved Twistor Space as a Projective Distortion: Quantum
Complex 4-Space of Gravity from a Kodaira Analytic Family

There is also an evolution of twistors in curved space. A curved twistor space
is a Z̊-bundle, with the (fibers of the) projection of Z̊ to a projective space
PTwZ̊, for the anti-self-dual gravity [2056] [2057], with the incorporation of a lh
non-linear graviton, the quantum particle which, as a complex 4-space G4(C), is
entrusted with the task of carrying space-time curvature. Here is how it happens,
in layman’s terms.

(i) Operating—not globally, but in portions—a distortion (or deformation)
of PTw is allowed. One starts from an open neighborhood ΥCM of a point xCM
in CM♮, then a commensurate neighborhood ΥPTw of a line γ(PTw) in PTw is
identified, known as tubular region, with topology S2 × R4. It should be noted
that γ(PTw) corresponds to xCM of CM♮.

(ii) ΥPTw is the region subject to distortion. Distortion of ΥPTw results in the
breaking of γ(PTw).

(iii) A theorem of completeness of K. Kodaira [1522], see also [1523], ensures
the existence of a family of 4-parameter curves γk

(PTw) in PTwZ̊, from which the
complex 4-space G4(C), for the postulation of a lh non-linear graviton, is finally
determined;a PTwZ̊ is the space in which the fibers of the projection of Z̊ lie.

(iv) Any point of G4(C) is thus equal to the cross-sections by Kodaira’s
holomorphic lines.

(v) The Weyl curvature (Section 3.3.4) of G4(C) is anti-self-dual, and it turns
out to be Ricci-flat (Ric = 0).

8.1.3. Twisotrial Hierarchy: Non-locality and Holomorphicity

The fact that Minkowski space(-time) is treated as a space of complex lines in
PTw5(R)

null decrees PTw5(R)
null as a primary space, whilst Minkowski M-space turns into

a secondary (subsidiary) space, namely a space that can be constructed/derived
from PTw5(R)

null (cf. Penrose’s epigraphs at the beginning of Section). This

aDifficulties and developments of the rh non-linear graviton are in [2062].
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hierarchy, or classification, is also repeatable with other twistorial spaces, basically
thanks to the use of complex numbers, and therefore to the holomorphic geometry
of twistors. In conclusion, twistors & twistor spaces are, respectively, objects and
structures relating to Minkowskian space-time in a global, or non-local manner,
whereas classical vectors, tensors, and spinors act on a (single) point.

8.1.4. Summary Graph

A summary graph getting together the main twistorial spaces:

PTw5(R)
null

{
PTw3(C)

+ ,PTw3(C)
−

}
∼= CP3

± CM♮,CM♮
(∞) M4(R)

(∞) in E2,4

PTw6(R) ∼= PTw3(C) ∼= CP3 Tw3(C)
+ ,Tw3(C)

− Tw7(R)
null

Tw4(C) ∼= Tw8(R)

8.2. Spatial Primitiveness II. The Loop Quantum Gravity
Program: How Far Can We Go?

8.2.1. Spin Networks, Nodes, and Loops: a Relational Conception of
Space

8.2.1.1. Topological Discrete Graph Structure

The Penrose hierarchy (Section 8.1) does not address the problem of quantum
space, or the origin of space at the Planck scale, with the related disagreements
between continuous and discrete overtures. Moreover, twistorial spaces do not
treat the Lagrangian with the same naturalness as field theories (qft), see
the monster equation (Section 7.1.1.2); and indeed, the execution itself of a
twistorialization of qft is in fieri.a

Nevertheless, in Penrose’s works can be found a theoretical arsenal, the
so-called spin networks [2053] [2054] [2055] [2059], to tackle the quæstio of space
in its foundations.

This arsenal, together with the (spinorial) Ashtekar variables [143], have
constituted the driving force for the birth of the loop quantum gravity (lqg),
with main contributions from C. Rovelli & L. Smolin [2240] [2241] [2242], and
later from other researchers.

aAttempts to amalgamate space in twistor theory and holographic principle, by virtue of the
point/line vice versa structure, are, for instance, in J.J. Heckman & H. Verlinde [1317] and Y.
Neiman [1913].
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Spin network is a topological graph structure of simple lines and vertices
of a discrete character but capable of representing a quantum state, under a
combinatorial calculational rule. Penrose writes [2053, e.m., p. 151]:

The basic theme of these suggestions have been to try to get rid of the continuum and build
up physical theory from discreteness. The most obvious place in which the continuum comes into
physics is the structure of space-time. But, apparently independently of this, there is also another
place in which the continuum is built into present physical theory. This is in quantum theory, where
there is the superposition law [ . . . ]. One scarcely wants to take every concept in existing theory and
try to make it combinatorial: there are too many things which look continuous in existing theory.
And to try to eliminate the continuum by approximating it by some discrete structure would be to
change the theory. The idea, instead, is to concentrate only on things which, in fact, are discrete
in existing theory and try and use them as primary concepts—then to build up other things using
these discrete primary concepts as the basic building blocks. Continuous concepts could emerge in
a limit, when we take more and more complicated systems.

The inspiring plan is to understand space(-time) in a relational way, à la
Leibniz–Mach,a that is, not as an entity pre-existing in a background, but rather
as a notion that derives, probabilistically, from the spin network. Space, with its
continuous nature, arises from the discretum-spin quantum combinatorics.

8.2.1.2. Spatial Lumpiness via Node-Point (Spatiumculus)

Loop quantum gravity, in accordance with this (Section 8.2.1.1), assumes
that space is made up of (spin network) nodes and links, which are line segment
between one node to another. Nodes are points where links are touching.

The lqg space is necessarily an elementary set of two non-definite elements
of elementary geometry (Section 9.1): point and line segment, two primitive
geometric ideas, one discrete and the another continuous (albeit within the
segment); together they form a spin graph structure.

Each spin graph structure is a granular network, since its nodes form, by
postulation, a loop. A set of loops forms, in turn, a complex of interwoven space-
based lumps, for the generation of the quantum dimension of the gravitational
field.

A (spin network) node, i.e. a point, is not located in space, by definition; it
is a quantum of space, which is the space itself —to be more exact, interactions
between several nodes create space(s), without referring to an external space.
Space, for its part, is an emergence of this relational network of points and line
segments (links); the (α-β-γ-δ-ε-ζ-η)-nodal space graph (Figg. 8.1 and 8.2) is
just a small lump of emerging space.

One of the reasons why quantum gravity is elusive is that, in both relativity
(continuum mechanics) and quantum theory (with continuous but above all
discrete values), space, or space-time,b is an entity (more or less absolute, cf.

aG.W. Leibniz [1608, Leibniz’s Third Letter, Being an Answer to Clarke’s Second Reply, 25
February 1716, p. 14, e.a.]: «I hold space to be something purely relative, as time is—[ . . . ] I hold it
to be an order of coexistences, as time is an order of successions». The space(-time) itself (αὐτὸ καθ᾿
αὑτό)—on a range of Leibnizian inspirations—rests in its relational nature.

bHere we neglect the distinction between space and space-time. Admittedly, see cosmology, it
is possible to have a space e.g. negatively curved even in the presence of a space-time with zero
curvature (flat space-time), if space is expanding (proportionally with the coordinate time). For the
same reason, it is possible to think of a space with zero curvature for a curved space-time, where
space is in an expansive, or contractive, phase.
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Figure 8.1: Granular spin network: it is a loop-like graph. There are (spin network) nodes, i.e.
points acting as quanta of space, and links, for a (α-β-γ-δ-ε-ζ-η)-nodal lump of space. Note that
αβγ order is chosen with personal preference: there is no rotational privilege, because there is no
spatial order ab initio

Figure 8.2: Oversimplification of a lump of emerging space, highlighted with multi-colored hunks,
which are but quanta of space, sketched by the nodes of the granular spin network, the before-
mentioned (α-β-γ-δ-ε-ζ-η)-nodal lump. Each hunk must be imagined adjacent to each other, separated
by surfaces, and not isolated within a circular-shaped configuration; compare with Rovelli [2237,
Fig. 5, p. 38]

Section 4.3), and not a relational structure. Relationality is one of the keys to
open the casket of quantum space-time.

A relational conception of space is the best theory from which to think
about space, or space-time. Certainly, a theory of relationality has many
theoretical steps in need of convenient accommodations with the prevailing non-
Leibniz–Mach view; but the bigger problem, anyhow, is that lqg is grounded on
the concept of (spin network) node, that is, of point, a spatiumculus, so to speak,
which, in this context, takes on the guise of a gravitational quantum of space;
but a node is, and remains, a geometric point, exactly as it is pseudo-explained
(῞Ορος, α΄v, Στοιχείων α΄v) in Euclid, with all the captivating quandaries involved
(see Section 9.1).

Margo 8.2.1. We report some others difficulties in lqg, of which we can only
give a quick hint.

(1) Ashtekar variables are a connection representation; and they are usually
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defined starting from a 3-surface, so the spin bundle Γ (P̊ß)-connection, or
rather, the connection on a spinor bundle P̊ß (cf. Section 3.5.1) for the parallel
transport (cf. Section 1.3) of spinors, has a definitional approach on a 3-space.
But, in strictly relativistic terms, a space+time connection is required, i.e. a
Γ (P̊ß)-connection taken on a 4-space. This entails, in some instances, that a
Γ (P̊ß)-connection is formulated with undetermined quantities.

(2) Directly related to what has just been said: Einstein Hamiltonian needs,
in some cases, a more rigorous definition.

(3) To manage loops variables for 4-spaces, it is possible to invoke the
dynamic theory, with the so-called spin foam models, see J.C. Baez [170] [171].
The spin foam notion facilitates the transition from a kinematic aspect (quantum
geometry of space) to a dynamic one (quantum geometry of space-time), for the
quantum gravity.

The difference is this: in a spin network, one has edges labeled by representa-
tions, and vertices labeled by intertwining operators; in a spin foam, one has a
2-dimensional complex with faces labeled by representations, and edges labeled
by intertwining operators. L
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Γῆ Δρακόντων, Part IIb. Space-numeral

Primitiveness

In re mathematica ars proponendi quaestionem pluris facienda est quam solvendi.a
— G. Cantor [490, p. 31]

9.1. Point and Line as Primitive Ideas

Σημεῖόν
b
ἐστιν, οὗ μέρος οὐθέν · A point is that which has no part.c

— Euclid [909, ῞Οροι, α΄v, Στοιχείων α΄v, Book I, p. 2]d or [2554, pp. 436-437]

Il punto è quello, che non hà parte alcuna, cioè, che non occupa spatio alcuno.e
— V. Giordano [1150, p. 5]

When a point is defined, its definition opens up to some ambiguities, if by
definition we mean a proposition that identifies and clearly describes, or explains,
a concept from other terms having a supposedly known meaning, to wit, from
concepts that are presumed to be primitive. The fact is that the point is a
primitive concept, not derivable from a previous concept.

Elementary geometry (definitions of point, straight line, surface, plane sur-
face, etc.) has a foundational character, anyway, and is tied in with spatial
primitive ideas, as it deals with topics such as “nature”, “adequacy” and “va-
lidity” of geometric principles, cf. [11, § 2.1.3]. We cannot go up the river of
mathematical thought in infinitum, in search of something that precedes the
spatio-geometric primitiveness, if indeed it is a primitiveness; at most, we can

a«In mathematics the art of proposing a problem must be [worth] more than solving it».
b The word σημεῖόν (“sign”, hence “boundary”, “limit”, and mathematical “point”) is a Hellenistic

term that stands for the previous—but later reintroduced—στιγμή (“tittle”, “spot”, or mathematical
“point”, from the vb. στίζω, “mark”, “punctuate”), the La. calque of which is punctum.

cBe careful: M. Capella [514, p. 150] offers a different translation: «Punctum verò est, cuius
pars nihil est: quæ si duo fuerint, linea interiacente iunguntur» («A point is that, a part of which is
nothing: if there be two [points], they are joined by an interconnecting line»). A similar interpretation
is reflected in many other authors/translators in the following centuries, see e.g. O. Finé [993, p. 1]:
«Punctum est, cuius pars nulla». Capella’s transcription makes the Euclidean statement harder than
it already is, as T.L. Heath [913, p. 155] stresses: it is one thing to say that a part of a point is
nothing, and it is another to say that a point has no part.

dFor a historical reconstruction of the first seven definitions of Book I of Euclid’s Elements, see
L. Russo [2266] [2268, chap. 2.2].

eCompare with these previous translations: N. Tartaglia [2459, foglio iiii]: «Il Ponto è quello
che non ha parte»; F. Commandino [676, p. 1 verso]: «Il punto, è quello che non ha parte, ò vero
che non ha grandezza alcuna»; or with this, which is subsequent: F. Gio. Ricci [2194, p. 1]: «Punto,
è una cosa, che nella quantità continua hà positione, ma non ha parti».
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replace one primitiveness with another. It is our source, the river-head, as it
were.

This is to say that Euclid’s definition [909, p. 2], Σημεῖόν ἐστιν, οὗ μέρος
οὐθέν,a is a non-definition; and the same is true for Heron’s (or Diophantus’)
affirmation,b which is equally, and wonderfully, ambiguous.c The repercussion is
that a point—thus (not) defined—is a marvelous germination of problems and
paradoxes of various kinds,d,e see Sections 6.2.2, 10.4.5, and 14.4.

9.1.1. Peano’s, Enriques’, and Pieri’s Non-defined Source Geometry

Which of the geometric entities can be defined, and which ones should be assumed without
definition? And among the properties, experimentally true, of these entities, which ones must be
assumed without proof, and which ones can be deduced as a consequence? [ . . . ] Starting from
non-defined concepts of point and line segment, we can define the infinite line, the plane and its
parts, as well as the parts of space. It is also possible to recognize, among the propositions, those
(axioms) that express the simplest properties of the entities considered, and those (theorems) that
can be deduced from other simpler ones [2038, pp. 3-4, e.a.].56

Given an order to ideas of a science, not all of them can be defined. The first idea, which has no
precedent, cannot be defined; we cannot define the = sign, which appears in any definition. An idea
is said to be primitive, with regard to a given order, if, in this order of ideas, one does not know how
to define it. Therefore being a primitive idea, is not an absolute character, but only relative [to the
group of ideas which are supposed to be known]. The question “is the idea of point itself primitive,
or can it be defined?”, makes no precise sense, if we do not fix in advance what ideas are supposed
to be known [ . . . ]. Pieri [2098] [cf. Section 6.2.2] came to express all the ideas of Geometry [ . . . ]
via just two primitive ideas: “point, and distance between two points” [2045, p. 9].57

— G. Peano

Besides Peano, F. Enriques is also crystalline about the non-definiteness and
primitiveness in mathematics. He writes [893, pp. 2-3, e.m.]:

Geometry has as its object of study the relations inherent to the concept of space as it springs
from our mind [quale esso scaturisce dalla nostra mente] from the order of external sensitivity, that
is, as it is presented to us by intuition. The concept of space includes the notions of many geometric
entities, such as points, lines, surfaces [ . . . ]; some of these entities can be defined by establishing
their relations with other [entities] already given [ . . . ], but some entities must be supposed to be
given [ . . . ] as fundamental, since they cannot be reduced to others without falling into a vicious
circle. There is arbitrariness in the choice of the fundamental entities of space; relations intercede
between them, some of which (theorems) are proved by logical deduction from other [relations]

aSee M. Simon’s comment, Euclid und die sechs planimetrischen Bücher, Teubner, Leipzig,
1901, p. 25, in [913, pp. 157-158]: «The point is the limit of localisation; if this is more and more
energetically continued, it leads to the limit-notion “point”, better “position” [ . . . ]. Content of space
vanishes, relative position remains. “Point” then [ . . . ] is the extremest limit of that which we can
still think of (not observe) as a spatial presentation, and if we go further than that, not only does
extension cease but even relative place», and in this sense [ . . . ] a point has no part.

b«A point is [ . . . ] an extremity without extension (ἢ πέρας ἀδιάστατον)», also quoted in epigraph
of Section 14.4.1.

cAlso noteworthy is the pre-Euclidean definitions of point in the Stagiriticus corpus: a point is a
«geometric fiction» (δόγμα γεωμετρικόν); dogma (δόγμα), from the vb. δοκέω, “think”, “suppose”,
“imagine”, is perceptively translated by Heath [913, p. 156] with fiction. Another valid translation
is: «geometric supposition», see e.g. U. Cassina [579, p. 113].

dDepending on how the continuum concept is understood, is quite simple to pull paradoxes out
of the hat in which the point, even if it is intended as a nothing, equals the rest of space. To take
an example, Galileo, in controversy with B. Cavalieri, affirms [1073, p. 29]: «thus, it appears that
the circumference of an immense circle may be called equal to a single point (par dunque che la
circonferenza di un cerchio immenso possa chiamarsi eguale à un sol punto)».

eLet us take a break, just trying to have a laugh. Worthy of being remembered is the amusing
description given by E.A. Abbott in his novella [6, p. 91] of the Point, which lives in «the realm
of Pointland, the Abyss of No Dimensions». Sphere (one of the characters) says: «[A] Point is a
Being like ourselves, but confined to the non-dimensional Gulf. He is himself his own World, his own
Universe; of any other than himself he can form no conception; he knows not Length, nor Breadth,
nor Height, for he has had no experience of them; he has no cognizance even of the number Two;
nor has he a thought of Plurality; for he is himself his One and All, being really Nothing».
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already known or supposedly known: but even here it is not possible to sail against the current [of
thought] indefinitely [non si può risalire indefinitamente], and some geometric relations between
the fundamental entities must be given [ . . . ] as postulates. Postulates are derived from intuition.

[ . . . ] In its principle and in its development, Geometry—in the above sense—is a subjective
science [la Geometria . . . è scienza soggettiva]. In its principle, because the fundamental entities
and the postulates that refer to them reflect the concept of intuitive space as it is in our mind;
in the development, because definitions and demonstrations with which other entities are added
to the fundamental ones and theorems to postulates, are only logical explanations [definizioni e
dimostrazioni . . . sono soltanto spiegazioni logiche].58

Enriques reiterates his standpoint in a text [894, pp. 1-3, e.m.] a few years
later:

Some elements must be introduced as first or fundamental elements of Geometry, without
definition, since one could not give a (logical) definition of all without falling into a vicious circle.
The choice of fundamental elements of Geometry is not a priori; one chooses the simplest elements
with regard to psychological intuition, that is, those [elements] of which the notion is formed in our
mind as the content of the concept of space: such are e.g. the point, the straight line and the plane
[ . . . ]. Whatever the fundamental geometric elements may be, they are chosen in an arbitrary way
and in a superabundant number, [for which] any other geometric entity at a later stage introduced
will have to be logically defined through the fundamental elements [ . . . ]. It is not possible to
demonstrate all the properties that are assumed as postulates without falling into a vicious circle. It
is thereby necessary to place some postulates in the beginning of geometry;a these are chosen from
the properties that have more intuitive evidence, but their choice is not a priori determined.59

Something similar asserts M. Pieri [2098, pp. 170-171]:
If by definition we mean a pure and simple imposition of names on things already known or

acquired by the system, the primitive ideas will be the not defined concepts [ . . . ]: thereupon we will
say that the primitive concepts are not defined “otherwise than by postulates”. The latter indeed
attribute to those certain properties sufficient to qualify them, for the deductive purposes we want
to achieve. And to avoid any misunderstanding we will use the term “definition in the strict sense”,
or “nominal definition”, when we want to exclude the “real” definition, or [definition] “of what”.60

Cf. Pieri in Section 6.2.2. Peano also expresses himself [2045, p. 10] in a
similar manner: a primitive idea is determined, in its «fundamental properties»,
by «primitive propositions», wherefore by axioms or postulates, which are devoid
of proof, but represent the first link of the deductive chain; all «primitive
propositions serve in a certain way as definitions of primitive ideas».

As a conclusion, Peano’s (but see Scholium 9.1.1), Enriques’ and Pieri’s
observations leave no way of escape in this regard: something non-definite must
be there (concepts as point and line), so that there is a beginning of geometric, or
physico-geometric, reasoning. In C. Segre [2347] this mental make-up is already
clear-cut; he leaves the nature of the point «indeterminate», when the point is
not imagined as a «geometric entity», nor as an «analytic entity», but as an
«entity in itself».b

Scholium 9.1.1 (More precise information on Peano). Take heed: Peano is not
always on the same line of thought. Not unlike Enriques and Pieri, when he enters
into the issue of the primitive ideas, in geometry, he also speaks of arbitrariness
in the choice and interpretation of such primitiveness, see [2038, §§ 1-2, esp.
pp. 24-25]; but elsewhere he feels the need to anchor the geometric practice

aWe could say: ᾿Εν ἀρχῇ ἐστίν ὁ ὅρος, but the ὅρος (definition), when it contains primitive
concepts, is a pseudo-definition, a non-definition.

bIn his [2347, pp. 4 and 16] words: «[T]he element or point [of] space is not considered as a
geometric entity of ordinary space (nor, which then is the same, as an analytic entity consisting of
values of n variable quantities), but rather as an entity in itself [ . . . ]. Let us consider any linear
space with n− 1 dimensions. We will call each of its elements a point, whatever its nature (which
for us has absolutely no importance)».
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into the physical reality, so that the arbitrary ingredient somehow disappears,
or is candidly negated. In [2041, p. 141] he observes that «[o]f course, anyone
is allowed to preface those [primitive] hypotheses he wants, and develop the
logical consequences contained in those hypotheses. But to deserve the name of
Geometry in this work, those hypotheses or postulates must express the result of
the simplest and most elementary observations of physical figures»; in [2042, p.
365] he goes so far as to write: «si postulatos es hypothetico, et non respondentes
ad factu reale», then «[p]roba de coexistentia de systema de postulatos pote es
utile», and this is because we «[n]am nos non crea pustulatos ad arbitrio». ⋄

9.1.2. What is a Point, or a Line? Hilbert vs. Frege

The correspondence between G. Frege and D. Hilbert is very instructive, in
this regard. It is worth quoting some excerpts from their letters.

Frege to Hilbert [1034, IV/3 · XV/3] = [1035, 27 December 1899, pp. 34-35]:
I was interested to get to know your Festschrift on the foundations of geometry [1351] [ . . . ]

here the meanings of the words “point”, “line”, “between” are not given, but are assumed to be known
in advance. At least it seems so. But it is also left unclear what you call a point. One first thinks of
points in the sense of Euclidean geometry, a thought reinforced by the proposition that the axioms
express fundamental facts of our intuition. But afterwards you think of a pair of numbers as a point.
I have my doubts about the proposition that a precise and complete description of relations is given
by the axioms of geometry and that the concept “between” is defined by axioms. Here the axioms
are made to carry a burden that belongs to definitions. To me this seems to obliterate the dividing
line between definitions and axioms in a dubious manner.

Hilbert to Frege [1034, IV/4 · XV/4] = [1035, 29 December 1899, pp. 39-40,
e.a.]:

If one is looking for other definitions of a “point”, e.g., through paraphrase in terms of exten-
sionless, etc., then I must indeed oppose such attempts in the most decisive way; one is looking for
something one can never find because there is nothing there; and everything gets lost and becomes
vague and tangled and degenerates into a game of hide-and-seek [ . . . ]. You write: “I call axioms
propositions . . . From the truth of the axioms it follows that they do not contradict one another” [ . . . ].
I have been saying the exact reverse: if the arbitrarily given axioms do not contradict one another
with all their consequences, then they are true and the things defined by the axioms exist. This is for
me the criterion of truth and existence [ . . . ]. On the other hand, to try to give a definition of a point
in three lines is to my mind an impossibility, for only the whole structure of axioms yields a complete
definition. [Therefore: the definition of the concept of point is not complete till the structure
of the system of axioms is complete].a That is right: every axiom contributes something to the
definition, and hence every new axiom changes the concept. A “point” in Euclidean, non-Euclidean,
Archimedean, and non-Archimedean geometry is something different in each case [ . . . ]. [E]very
theory is only a scaffolding or schema of concepts together with their necessary relations to one
another, and that the basic elements can be thought of in any way one likes. If in speaking of my
points I think of some system of things, e.g. the system: love, law, chimneysweep . . . and then
assume all my axioms as relations between these things, then my propositions, e.g. Pythagoras’
theorem, are also valid for these things.

Frege to Hilbert [1034, IV/5 · XV/5] = [1035, 6 January 1900, p. 45]:
Given your definitions, I do not know how to decide the question whether my pocket watch is a

point. The very first axiom deals with two points; thus if I wanted to know whether it held for my
watch, I should first have to know of some other object that it was a point. But even if I knew this,
e.g., of my penholder, I still could not decide whether my watch and my penholder determined a
line, because I would not know what a line was.

The mix-up between definition and axiom, or postulate, which makes Frege
doubtful—as a logician, he is unable to accept it—is a distinctive feature of

aDraft or Excerpt by Hilbert [1034] = [1035, p. 42].
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primitive concepts. Hilbert, as a mathematician, seems instead to be fully in
tune with Peano and Enriques.

9.1.3. Margo. Grothendieckian topos-point

In Grothendieck topoi [138], which inhere in the categories of sheaves of sets
on a topological space, the point

x ∈ [τόπος]X→Y

is but a (geometric) morphism

φx : Xτ → Yτ, (9.1)

from a topos Xτ to topos Yτ, viz. a transformation of Xτ into Yτ keeping
unchanged the structurality of the two topoi; or, much more simply, a topos-
point is a morphism from a topos of sets to Xτ, viz.

φx
Sets−−−→ Xτ. (9.2)

Another formalism to define a topos-point is this: let

SX = (x1, . . . , xn)

be a set of points and a discrete category of a Grothendieck topos Xτ indexed by
a set Σ, with a function

φx : Σ → SX .

The set SX can be determined with a morphism

φ̃x : [Σ,Set ]→ Xτ. (9.3)

The Grothendieckian point, having an initially geometric nature, thus be-
comes a functor

Fgr(Xτ)→ Fgr
(
{X⟨∗⟩}

)
. (9.4)

Which allows us to make other sub-definitions:
· topos-point as a Set → [Cat ,Set ], given a topos [Cat ,Set ];
· topos-point as a

Xtop-continuous functor Fgr(Cat)→ Set ,

for a topos Sh(Cat ,Xtop) on a site (Cat ,Xtop), having a category of sheaves of
sets, with a Grothendieck topology Xtop.

· topos-point as a homomorphisms

X loc
τ
→ {0, 1}

(we have to do here with a local space), given a topos Sh(X loc
τ

).
Conclusion: the concept of primitiveness is not in the least bypassed by

Grothendieck; his is just an operational proposal to the concept of point.
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9.2. Space-numeral Primitiveness: On the Continuum of
Real Numbers

9.2.1. Dedekind’s Continuity Axiom

9.2.1.1. Euclidean Discretum, and Discrete Numerability

If space has at all a real existence [Hat überhaupt der Raum eine reale Existenz ], it is not
necessary to be continuous, for it; a huge amount of its properties would remain the same even if it
were discontinuous [unstetig]. And if we knew for sure that space was discontinuous, there would be
nothing to block us [ . . . ] from filling its gaps in our thought, so as to make it continuous [736, pp.
18-19].

I can imagine that the whole [Euclidean] space and every line in it [ . . . ] is entirely discontinuous
[ . . . ]; the concept of space [Raumbegriff ] [including Euclidean space] is completely independent and
separable from the idea of continuity [Vorstellung der Stetigkeit] [737, letter to R. Lipschitz, 27
July 1876, pp. 478-479].

It is easy to see [that Euclidean space] is made up of points everywhere discontinuous [Punk-
ten . . . überall unstetig]; but in spite of the discontinuity [ . . . ], all constructions in Euclid’s Elements
can be just as accurately carried out as in perfectly continuous space; the discontinuity [Unstetigkeit]
of this space would therefore not be noticed in Euclidean science, would not be felt, not a bit [738,
pp. xii-xiii].

— R. Dedekind

(1) Mathematics is an act of creation precisely for what we have just seen
(Sections 9.1.1 and 9.1.2): it has a non-definite (scilicet: ambiguous) socle. Let
us now take another example of a non-defined concept. But first a premise is
needed.

(2) Physicists often speak of the continuity of space, os space-time (macro-
scopic level), and try to imagine a granular scene (microscopic level), so as to
theorize quantum gravity. See e.g. A. Schild [2300, p. 29, e.m.], figuring the
(macroscopic) space-time as a (microscopic) discrete cubic lattice in compliance
with some Lorentz transformations (cf. Section 3.4.2.2):

The idea of introducing discreteness into space and time has occasionally been considered. It
seems likely that a physical theory based on a discrete space-time background will be free of the
infinities which trouble contemporary quantum mechanics. The objection which is usually raised
against such discrete schemes is that they are not invariant under the Lorentz group. The purpose
of this investigation is to show that there is a simple model of discrete space-time which, although
not invariant under all Lorentz transformations, does admit a surprisingly large number of Lorentz
transformations.

Space, or space-time, that physicists dream up is not something other than
what they can envisage by means of continuous/discrete mathematical tools (see
Chapters 22, 24, 25); however, for those who know mathematics, space—starting
from Euclidean space, which is the basic space for every theory—can very well
do without the concept of continuity.

(3) The concept of continuum in Euclid is no necessary, nor is any axiom of
continuity explicitly defined, as R. Dedekind says (see epigraph), but it is only
tacitly presupposed, even though the physical tradition believes, uncritically,
that Euclidean space is the continuous structure pre-eminently; some results
from Euclid, by contrast, are achieved within discontinuous space-image, and
remain true even in non-continuous domains of algebraic numbers.a

aSee e.g. Euclid [909, Proposition α΄v, Στοιχείων α΄v, Book I, p. 10]: «Upon a given finite
straight line to construct an equilateral triangle (᾿Επὶ τῆς δοθείσης εὐθείας πεπερασμένης τρίγωνον
ἰσόπλευρον συστήσασθαι)». No continuous fabric of space is defined here; yet the proposition is
implicitly ally with a continuous spatiality, at least intuitively.
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The concept of space is actually independent and separable from the notion
of continuity. And no wonder why: continuity is part of the calculation; but
calculation cannot be performed only with continuous values, since we should be
struggling with (a computability of) infinite quantities, or an infinite number
of states. Which provides a perspicuous clue: real numbers are surreptitiously
treated as a finite set of discrete values (cf. footnote a, p. 129). There is more:
every measurement, to be such, relies upon on discrete numerical outcomes. The
moral is that our use of infinity is by its finite approximations.

Not even the continuum à la Dedekind flees from this status, as we will see
below. Dedekind’s continuum—in which «every real number is [considered to be]
the representative of a certain partition of rational numbers», to use the words
of A. Capelli [515, p. 209]—is also a false continuum: it too has, say, holes,
because not every distance, on the line, can be reworded via real numbers: the
points of Dedekind’s line-space are proof of this.

Margo 9.2.1. I find the same persuasion in P. Zellini’s book [2734], published in
the summer of 2022, according to which the continuum is an approximation of
the discretum; rather than starting with an initially assigned continuum, which,
at a later stage, is divided into a discrete number of parts, it is more correct to
start with the idea that the continuum is defined and constructed via discrete
operations. «What we actually know is only the discrete-datum, even if the
behavior of discrete series of numbers must be analyzed, for the most part, by
means of the continuum notion», writes Zellini, in perfect harmony with Thom,
see the previously mentioned footnote a on p. 129. Ergo the discrete-datum
precedes the continuous one, so the latter cannot be understood without the
former, cf. footnote b on p. 133 (Grothendieck’s note), and Section 9.2.2.7. L

9.2.1.2. Schnitt and Bijection

It is no accident that the Dedekindscher Schnitt [736, § 4. Schöpfung der
irrationalen Zahlen], as a construction of the real numbers (indispensable for the
scientific depth of arithmetic), thanks to the practice of cutting, and the creation
of irrational numbers, in the will to reach a compatibility between continuity of
the numerical straight line and punctual discreteness of each number, is echoed
from Euclid’s Elements of geometry, 5th Definition, Book V (see Margo 9.2.2).

Here is the thing: given two sets, A1 and A2, of a discontinuous domain
(unstetige Gebiet) of rational numbers Q, we can get a continuous R-domain
(stetige Gebiet), as a completion of the Q-domain. Dedekind [736, pp. 19, 21]
writes:61

Whenever there is a cut [Schnitt] (A1, A2) that is not produced by any rational number, we
create [erschaffen] a new, an irrational number α, which we consider to be completely [defined] by
this cut (A1, A2); we shall say that the number α corresponds to this cut, or that it produces this
cut. Hence, from now on, to every definite cut there corresponds one and only one definite rational
or irrational number.

Dedekind’s continuity is a completeness concept-axiom, flanked by the con-
tinuity of the (straight) line, under which all points of a line are placed into
one-to-one correspondence (bijection) with all real numbers, or elements of the
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set R. Unlike the rational number line (Q-line), the real number line (R-line) is
complete. In [736, p. 18] Dedekind makes it clear that:

I find the essence of continuity [ . . . ] in the following principle: “If all points of the straight line
fall into two classes in such a manner that every point of the first class lies to the left of every point
of the second class, then there is one and only one point, which divides all points into two classes,
this division of the straight line into two portions”.

In T.L. Heath [914, pp. 124-126] [1309, pp. 326-327], but see also L. Russo
[2268, sec. 2.5], the Dedekindian theory of irrationals, for real numbers, is utterly
coincident with the Euclidean theory of magnitudes (continuous quantities). It
does not signify that the continuum of Dedekind is the same as the Euclidean
continuum—when the congruence of segments is being examined, for instance:
the two concepts of continuum are not identifiable, although they have strong
similarities; and this is all the more true in the non-Archimedean mathematics
(we will make a brief mention of it in Section 9.4), see e.g. V. Benci and P.
Freguglia [255, § 3.2. Alla ricerca del continuo euclideo].

Margo 9.2.2 (Euclidean theory of magnitudes: continuous quantities). In [910,
῞Οροι, ε΄v, Στοιχείων ε΄v, Book V, p. 2] we read: «Magnitudes are said to be in the
same ratio, the first to the second, and the third to the fourth, when equimultiples
of the first and the third exceed, are equal to, or are less than, equimultiples of the
second and the fourth, being taken in corresponding order, respectively (᾿Εν τῷ
αὐτῷ λόγῳ μεγέθη λέγεται εἶναι πρῶτον πρὸς δεύτερον καὶ τρίτον πρὸς τέταρτον,

ὅταν τὰ τοῦ πρώτου καί τρίτου ἰσάκις πολλαπλάσια τῶν τοῦ δευτέρου καὶ τετάρτου

ἰσάκις πολλαπλασίων καθ᾿ ὁποιονοῦν πολλαπλασιασμὸν ἑκάτερον ἑκατέρου ἢ ἅμα

ὑπερέχῃ ἢ ἅμα ἴσα ᾖ ἢ ἅμα ἐλλείπῇ ληφθέντα κατάλληλα)». Compare with [914, p.
114]. Namely: ratios between magnitudes—consider, for example, straight line
segments—α, β and γ, δ are defined to be equal, α : β = γ : δ, if

k2α > k1β and k2γ > k1δ, (9.5a)
k2α = k1β and k2γ = k1δ, (9.5b)
k2α < k1β and k2γ < k1δ, (9.5c)

for each pair of natural numbers k1 and k2. L

9.2.2. Cantorian Hierarchy: Transfinite Arithmetic, and Cardinality
of the Continuum

I arrived at a well-ordered sequence of cardinalities [Mächtigkeiten] or transfinite cardinal
numbers [transfiniten Kardinalzahlen], which I call “alephs”: ℵ0,ℵ1,ℵ2, . . . ,ℵω0

, . . . [ . . . ]. The big
question was whether there are other cardinalities, besides the alephs; [ . . . ] I have a evidence that
there are no others, so that e.g. the arithmetic linear continuum [arithmetischen Linear-kontinuum]
(the totality of all real numbers) has a certain aleph [ℵ1] as [its] cardinal number.

— G. Cantor [500, letter to R. Dedekind, 28 July 1899, p. 443]

Closely linked to the aforementioned matters is the mathematical issue of the
continuum pertaining to the infinite sets. The referent is G. Cantor, who was the
first to establish an ambitious hierarchy for order types of infinite sets. Let us
schematically retrace the Cantorian thought, taking for granted the knowledge
of all transfinite arithmetic; a summary, for a quick revision, is available in A.
Kanamori [1462] [1463].
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9.2.2.1. Transfinite Ordinals

To follow the transfinite ordinal numbers, see Cantor’s papers [495] [498]
[499].

(1) The transfinite ordinal number ωN
(i) symbolizes a collection of natural numbers having some order, since they

are labeled for their position,
(ii) more precisely, is the set of all natural numbers in the ordinal aspect, for

which is the order type of N0 = N ∪ {0}, cf. J. von Neumann [1915],

ωN



0 = ∅,
1 = 0 ∪ {0} = {0} = {∅},
2 = 1 ∪ {1} = {0, 1} = {∅, {∅}},
3 = 2 ∪ {2} = {0, 1, 2} = {∅, {∅}, {∅, {∅}}},
. . .

k = k − 1 ∪ {k − 1} = {0, . . . , k − 1} = {∅, . . . , {∅} · · · }, k ∈ N,

(9.6)

(iii) is the first transfinite ordinal number, that is, the lowest/smallest count-
able infinity of N0.

(2) The second transfinite ordinal number is ωN + 1, the third one is ωN + 2,
the fourth one is ωN + 3, and so on.

(3) With the multiplication and exponentiation, a pyramid of N-infinities is
constructible, generating new transfinite ordinal ωN-numbers, for k, n ∈ N:

ωN, ωN + 1, ωN + 2, ωN + 3, . . . , ωN + k, (9.7)

then
ωN · 2, ωN · 3, . . . , ωN · k, (9.8)

then

ωN · 2 + 1, ωN · 2 + 2, . . . , ωN · 2 + 3, ωN · 2 + k, (9.9a)
ωN · 3 + 1, ωN · 3 + 2, ωN · 3 + 3, . . . , ωN · 3 + k, (9.9b)
. . .

ωN · k + 1, ωN · k + 2, ωN · k + 3, . . . , ωN · k + n, (9.9c)

then
ω2
N, ω

3
N, . . . , ω

k
N, (9.10)

then
ω2
N + 1, ω2

N + 2, ω2
N + 3, . . . , ω2

N + k, (9.11)

then
ω2
N · 2, ω2

N · 3, . . . , ω2
N · k, (9.12)
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then

ω2
N · 2 + 1, ω2

N · 2 + 2, ω2
N · 2 + 3, . . . , ω2

N · 2 + k, (9.13a)

ω2
N · 3 + 1, ω2

N · 3 + 2, ω2
N · 3 + 3, . . . , ω2

N · 3 + k, (9.13b)
. . .

ω2
N · k + 1, ω2

N · k + 2, ω2
N · k + 3, . . . , ω2

N · k + n, (9.13c)

then
ω3
N + 1, ω3

N + 2, ω3
N + 3, . . . , ω3

N + k, (9.14)

then
ω3
N · 2, ω3

N · 3, . . . , ω3
N · k, (9.15)

then

ω3
N · 2 + 1, ω3

N · 2 + 2, ω3
N · 2 + 3, . . . , ω3

N · 2 + k, (9.16a)

ω3
N · 3 + 1, ω3

N · 3 + 2, ω3
N · 3 + 3, . . . , ω3

N · 3 + k, (9.16b)
. . .

ω3
N · k + 1, ω3

N · k + 2, ω3
N · k + 3, . . . , ω3

N · k + n, (9.16c)

then
ωrN + 1, ωrN + 2, ωrN + 3, . . . , ωrN + k, (9.17)

then
ωrN · 2, ωrN · 3, . . . , ωrN · k, (9.18)

then

ωrN · 2 + 1, ωrN · 2 + 2, ωrN · 2 + 3, . . . , ωrN · 2 + k, (9.19a)
ωrN · 3 + 1, ωrN · 3 + 2, ωrN · 3 + 3, . . . , ωrN · 3 + k, (9.19b)
. . .

9.2.2.2. Burali-Forti Paradox

The main purpose of this Note is to demonstrate that there are transfinite numbers [498] (or
order types) a, b such that a is not equal to, nor less and greater than b [ . . . ]. If [in two different
propositions] we put Ω instead of a and [ . . . ] Ω+1 instead of a, we have [ . . . ] Ω+1 > Ω; Ω+1 < Ω
[ . . . ] [and thereby] we have arrived at an absurd [ . . . ]. It is therefore impossible to order the order
types in general, and in particular also the ordinal numbers, in ascending sense, that is to say: the
order types cannot provide a sample class for the ordered classes.

— C. Burali-Forti [449, pp. 154, 164]

The most exciting thing, for us, is the origination of a typology of contradic-
tion, known as Burali-Forti paradox [449], with infinities of different magnitudo,
which have their gemmation from the fact that the set of all ordinal numbers ωN
is, in itself, an ordinal number, for which e.g. ωN + 1 is both greater than ωN,
because it has one more unit, and less than ωN, because ωN + 1 is an element
contained in ωN, being this latter the set of all ordinal numbers.62

Cantor copes with the paradox by distinguishing between absolutely infinite,
or inconsistent multiplicity, impregnated with the Burali-Forti’s absurdity, and
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consistent multiplicity (set, in the good acceptation).a Cantor’s solution is
logically correct but mathematically dissatisfying, since it shifts what he calls
«absolutely infinite» or «inconsistent multiplicity» onto a meta-mathematical
plane; this multiplicity is a primitive type idea, albeit necessary as an image on
which to attack the rest of the transfinite theory.

9.2.2.3. Transfinite Cardinals

(1) Cardinality is for the quantity, or size, of the elements of a set.
(2) The cardinality of the set of all natural numbers N0, or the cardinality of

ωN (set of all natural numbers that can be well-ordered in a ordinal construction),
is designated by ℵ0 (aleph null).

(i) ℵ0 is the first infinite cardinal, i.e. the lowest/smallest transfinite cardinal
number.

(ii) Then there are ℵ1,ℵ2,ℵ3, . . . (aleph one, two, three, etc.).
(3) Since [494] two sets are said to have the same power (Mächtigkeit) if

there is a bijection, or a one-to-one correspondence, so that two sets can be
associated with each other in a complete way, element by element, we say that
two natural sets, nay, two infinite sequences, like, e.g.

a pumpkin set P = {0, 1, 2, 3, . . .}
and

a cyan-blue set C = {1, 3, 5, 7, . . .},

with different ordinalities, {p}-ordinality and {c}-ordinality, respectively, have
the same ℵ-cardinality, and they appear equally numerous, when they respect
this bijective correspondence:

0 1 2 3 4 5 p

1 3 5 7 9 11 c

where
P = {p}, p ∈ N0,

and
C = {c}, c ∈ N+ = N\{0}.

But it does not end here. We can have fun with different base numeral

aIn [500, p. 443] he writes: «A multiplicity can be such that the assumption that all its elements
are “together” leads to a contradiction, so that it is impossible to conceive the multiplicity as a unity,
as “a finished thing” [fertiges Ding]. I call such multiplicities absolutely infinite [absolut unendliche]
or inconsistent multiplicities [inkonsistente Vielheiten] [ . . . ]. If, on the other hand, the totality
of the elements of a multiplicity can be thought of as “being together” without contradiction, so
that it is possible to combine them [the elements] into “one thing”, I call it a consistent multiplicity
[konsistente Vielheit] or a “set” [Menge]».



178 9. Γῆ Δρακόντων, Part IIb. Space-numeral Primitiveness

systems, for setting up another countably infinite; an example:a

0 1:1−−−−−−−−−→ 1

1 1:1−−−−−−−−−→ 112

102
1:1−−−−−−−−−→ 1012

112
1:1−−−−−−−−−→ 1112

1002
1:1−−−−−−−−−→ 10012

1012
1:1−−−−−−−−−→ 10112

p2
1:1−−−−−−−−−→ c2

9.2.2.4. Properties of Real Numbers: Archimedeanity, Completeness,
Cauchy Criterion, and Cantor–Dedekind Axiom

One-to-one correspondence becomes focal with the treatment of real numbers.
We have seen (Section 9.2.1.2) that, in Dedekind, the arithmetization of the
continuum can be considered independently of geometric intuition, but it does
not go against its geometric explanation; it presupposes such a spatial construal,
asserting that every real number corresponds to a point on the line. So Dedekind
constructs the continuity of real numbers on the analogy of the continuity of the
line.b

Conversely, Cantor [492] [493]—since he believes that a Cauchy sequence [584,
chap. VI] (see below) is, by definition, a representation of real numbers—considers
the continuity of the line as a property reflecting the property of continuity of real
numbers. Dedekind’s and Cantor’s positions are then equivalent but independent.
Let us examine them in a little more detail, but not before having enunciated
the Cauchy criterion.

Definition 9.2.1 (Cauchy criterion). A sequence of real numbers

{xn} = x1, . . . , xn,

or of points {xn} ∈ R, is a Cauchy sequence iff, for an arbitrary ε > 0, there is a
fixed number Nε ∈ N on ε such that the inequality

|xn − xj | < ε (9.20)
aCantorian infinities, whether they are ordinal or cardinal, are nice kayos against the Anselm-like

arguments: ens quo nihil majus cogitari potest. It is always possible to think of a greater numerical
entity. (To the contrary, the “absolute infinity”, which constitutes Cantor’s religious part, is definitely
Anselmian).

bFor example H. Poincaré [2130, pp. 26-27] notes: «The continuum thus conceived [by mathe-
maticians] is no more than a collection of individuals arranged in a certain order, in infinite number
[Le continu ainsi conçu n’est plus qu’une collection d’individus rangés dans un certain ordre, en
nombre infini], it is true, but external to each other. This is not the ordinary conception, where
one supposes that there is, among the elements of the continuum, a kind of intimate link which
makes it a whole, in which the point does not exist before the line, but the line [before] the point.
[In an analytic sense], the continuum is unity in multiplicity, only multiplicity subsists, unity has
disappeared. Analysts are nonetheless right to define their continuous as they do [ . . . ]. But this is
enough to warn us that the genuine mathematical continuum is something quite different from that
of physicists».
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holds for all n ⩾ Nε and j ⩾ Nε. 3

Cauchy’s theorem on this criterion for sequences is as follows.

Theorem 9.2.1 (Cauchy criterion). A sequence of {xn} ∈ R is convergent iff it
is a Cauchy sequence.

Proof. Denote by L/ ∈ R a limit point, or cluster point (in a rough way, a
sequence of partial sums is said to be convergent if the partial sums are clustered
together). We say that {xn} converges to L/ as n→∞. Since ε > 0, there is a
number Nε such that

|xn − L/| <
ε

2
, (9.21)

for any n ⩾ Nε. So if n ⩾ Nε and j ⩾ Nε, then

|xn − xj | ⩽ |xn − L/|+ |xj − L/| <
(ε
2
+
ε

2

)
=
ε+ ε

2
=

2ε

2
=

2

2
ε = ε. (9.22)

□

Let us return to Dedekind’s and Cantor’s assiomatic positions.
Dedekind’s axiom [736], aka completeness axiom of the real numbers, states

that any non-empty set of R with an upper bound has a least upper bound.
Dedekind’s definition of the continuum implies the Archimedean property, and
the Dedekind reals are an ordered Archimedean field.

The Archimedean property, or axiom of Archimedes [116, Λαμβάνω δὲ ταῦτα,
ε΄v, p. 10, 18-28] = [122, p. 4] = [121, p. 36],a is often read (and interpreted) in
parallel with the axiom of Eudoxus, which is present in Euclid’s Elements [910,
῞Οροι, δ΄v, Στοιχείων ε΄v, Book V, p. 2].b Let us see what we got.

Theorem 9.2.2 (Eudoxus–Archimedes’).
(1) Axiom of Eudoxus: «Magnitudes are said to have a ratio to one another

which, being multiplied, are capable of exceeding one another (Λόγον ἔχειν πρὸς
ἄλληλα μεγέθη λέγεται, ἃ δύναται πολλαπλασιαζόμενα ἀλλήλων ὑπερέχειν)».

(2) Axiom of Archimedes: «Of unequal lines, unequal surfaces, and unequal
solids, the greater exceeds the less by such a magnitude that is capable, when
added to itself, of exceeding any magnitude among those which are in a ratio
[i.e. comparable] with [it and with] one another (῎Ετι δὲ τῶν ἀνίσων γραμμῶν
καὶ τῶν ἀνίσων ἐπιφανειῶν καὶ τῶν ἀνίσων στερεῶν τὸ μεῖζον τοῦ ἐλάσσονος

ὑπερέχειν τοιούτῳ, ὃ συντιθέμενον αὐτὸ ἑαυτῷ δυνατόν ἐστιν ὑπερέχειν παντὸς

τοῦ προτεθέντος τῶν πρὸς ἄλληλα λεγομένων)».
(3) Translating everything into modern notation, we have:

aG. Veronese [2568, p. 83] [2572, p. 198] reminds us that O. Stolz [2421] gave to this axiom the
name of Archimedes because it is assumption № 5 in Περὶ σφαίρας καὶ κυλίνδρου (On the Sphere
and the Cylinder) [116, Λαμβάνω δὲ ταῦτα, ε΄v, p. 10] of Archimedes. The axiom in question is also
mentioned in Τετραγωνισμός παραβολής (Quadrature of the parabola) [118, proem, p. 296] and in
Περί ἑλίκων (On Spirals) [117, proem, p. 14].

bFor a debate on the distinction, or similarity, between axiom of Eudoxus (Euclid) and axiom of
Archimedes, see E.J. Dijksterhuis [779, pp. 145-149, and especially 431-433], and F. Acerbi [12, pp.
347-348].
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(i) letting x, y ∈ R be two positive real numbers, there exists a natural number
n ∈ N such that nx > y, or y < nx,

(ii) for any κ > 0, κ ∈ R, there exists some n ∈ N, with n > κ, and 1
n < κ,

(iii) the natural set N has no upper bound in R, and no real number is an
upper bound for N, that is, the set N is bounded below but not above in R.

Proof. Assume that N has an upper bound, and κ is the least upper bound;
seeing that κ − 1 is not an upper bound, there has to be some n ∈ N, with
n > κ − 1. Since n + 1 > κ, then κ cannot be the least upper bound, and y

x
is not an upper bound, for which there is a number n ∈ N, with n > y

x , and
nx > y. □

Cantor’s axiom [492] states that, given a sequence of nested intervals—i.e.
a collection of sets of R-numbers under which any interval is nested in each
other—there exists at least one point common belonging to all interval of the
sequence. Unlike what happens for the Dedekind reals, Cantor’s axiom does not
ensue from the Archimedean Property 9.2.2, so there is no implication between
the Cantorian axiom and the axiom of Archimedes; and in fact Cantor’s condition
may be satisfied by a non-Archimedean field (see Section 9.4).

Which marks the independence between Dedekind’s condition and Cantor’s
axiom. Their equivalence—on this subject, the Cantor–Dedekind axiom is being
talked about—is guaranteed by the fact that, in both formulations, a unique real
number can be assigned to each and every point on a line, and each real number
can be identified uniquely by a point on the line.

Compendium

We are now able to list some main properties of the real numbers R:
(1) Archimedean property,
(2) Cauchy’s criterion (test of convergent sequences of the reals),
(3) Dedekind’s axiom, or completeness axiom,
(4) Archimedes–Dedekind axiom, to wit, completeness and archimedeanity,
(5) Cantor–Dedekind axiom: the set of the reals can be put in one-to-one

correspondence with the points of a straight line—this correspondence is an
order-isomorphism, i.e. an isomorphism preserving the structures of ordered sets
both on R and the line too;

(6) general postulate in algebro-geometric analysis: the real number line, or
R-line, is the substratum of the continuum.

9.2.2.5. Cantor’s Continuum Problem

Cantor’s continuum problem is simply the question: How many points are there on a straight
line in Euclidean space? In other terms, the question is: How many different sets of integers do
there exist?

— K. Gödel [1169, p. 515, e.a.]

Alongside the axiom of correspondence the investigation, in Cantor, is imposed
on the nature of the real set, which debouches into a fork: each infinite set of
real numbers is countable or has the power of the continuum; and, as it is known,
all this bring about the following Cantorian statements.
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(1) The continuum CR, or the set of real numbers R, cannot be numbered, it
is greater than any countable set. Real numbers are not countable, inasmuch as
a set is said countable if there is a one-to-one correspondence between the set
under consideration and the set of natural numbers.

(2) The continuum CR, which also contains a countably infinite subset, has
a higher power than countable.

(3) The continuum CR has the second power,

card(CR) = 2ℵ0 > card(N0) = ℵ0, (9.23)

where ℵ0 is the cardinality of the set of all natural numbers, or of ωN (for the
ordinal aspect); or even the cardinality of the (natural) integers card(Z∗). This
is the Cantorian hypothesis [494, p. 257], but see also [495, p. 574].

(4) Between the cardinality of the continuum/the set of real numbers R and
the cardinality of the set of natural numbers N0 there are no sets of intermediate
cardinality,

∄(S) : card(N0) = ℵ0 < card(S) < card(CR) = 2ℵ0 , (9.24)

where S is some set.a
(5) Which translates into the continuum hypothesis,

card(CR) = 2ℵ0 = ℵ1, (9.25)

card(CR) = 2ℵαk = ℵαk+1, (9.26)

where ℵ1 is the the first uncountable cardinal number, and also the cardinality
of the set of all countable ordinal numbers, indicated by (ωN)1. Intended as a
number, (ωN)1 is the lowest/smallest uncountable ordinal number, so (ωN)1 is the
first ordinal of ℵ1. The Eq. (9.26), for every ordinal number αk, is a generalised
continuum hypothesis, see K. Gödel [1168].

(6) Some of the above rules may be imposed by beth numerical notation:

ℶ0,ℶ1,ℶ2, . . .

(beth null, beth one, beth two, etc.), outlining a sequence of infinite cardinals.
(i) Beth null is equal to aleph null: ℶ0 = ℵ0.
(ii) Beth one is equal to aleph one:{

ℶ1 = ℵ1
}

viz
=
{
ℶ1 = card(CR)

}
, (9.27)

and this is the continuum hypothesis.
a But here is how D. Hilbert [1353, p. 263, e.m.] = [1355, p. 70] describes the Cantorian

hypothesis in the celebrated Parisian list of mathematical problems in 1900, see [212, pp. 1-10]. It is
the problem № 1 (Cantors Problem von der Mächtigkeit des Continuums): «Any system of infinitely
many real numbers, i.e. any infinite set of numbers (or points), is either [equivalent to] the set of
natural integers 1, 2, 3, . . . or [to] the set of all real numbers and hence [to] the continuum, that is,
to the points of a line; in the equivalence sense, there are [therefore] only two sets of numbers, the
countable set and the continuum. From this assertion it would follow at once that the continuum
has the next power [cardinal number] beyond the power [cardinal number] of the countable sets; the
proof of this theorem would thus build a new bridge [Brücke] between the countable set and the
continuum».
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(iii) Beth αk-number, where αk is any ordinal number, is an auxiliary form
of the generalised continuum hypothesis:

ℶαk+1 = 2ℶαk . (9.28)

9.2.2.6. No Bridge between the Countable Set & the Continuum

[T]he statement 2ℵ0 = ℵτ , for τ in [a certain model] M, may not be capable of being expressed
as a statement in Z[ermelo]–F[raenkel] or may have different interpretations in different countable
models M or N. If τ is a particular natural number or ω2

N +1, etc., then it can readily been expressed
in Z[ermelo]–F[raenkel] and the proof sketched goes through.

— P.J. Cohen [673, p. 110, e.a.]

P.J. Cohen [672, 673], availing himself of a technique called forcing, showed
that the continuum hypothesis is independent of the Zermelo–Fraenkel set theory
[2736][1024], including the axiom of choice, for which the continuum hypothesis
is not a theorem: the conundrum Is card(CR) = 2ℵ0 = ℵ1? appears to be
undecidable. There is no bridge (as as wished by Hilbert, see footnote a above, p.
181) between

card(N0) = ℵ0, or card(Z∗) = ℵ0,

on one side, and
card(CR) = 2ℵ0 ,

on the other. In fact, there is a set-gap, a form of numeric discreteness, that
separates the countable set from the continuum.

9.2.2.7. The Ultimate Representation

It is very gripping to wonder which quantity is better when the Cantorian
system is adopted to give voice to the physical world; that is: which order
types of infinite sets are more effective in the ultimate representation of natural
phenomena. The princely infinity, in mathematical physics, is the continuum of
real numbers; but one wonders whether, in more or less specific cases, an order
of a discrete infinity is better suited to the purpose, at least to enclose, in a
more likely description, the core of certain laws of nature.

9.2.2.8. Back on Point(s), Line and Correspondence

A line is not composed of points as the forest is composed of trees, nor may a line be produced
by putting together “all” the points in it.

— P.W. Bridgman [414, p. 229]

Hilbert designates [1359, p. 170] the (Cantorian) set theory as a paradise:
«Aus dem Paradies, das Cantor uns geschaffen, soll uns niemand vertreiben
können». And in sooth it has its own enchantment; but it also has a dark side,
ineluctably. B. de Finetti used to call the diabolical waste of that theory as
insiemistificazione, a playful crasis between “insiemi” (the It. word for “sets”)
and “mystification”.

But still and all, what interests us, is the concept of point, the definition
of which, once again, remains eluded. There is, in this vein, an article by P.W.
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Bridgman [414, pp. 227-229], which outlines the problem without frills, and gets
down to the nitty-gritty. Let us read some of the highlights:

It is said [in the spirit of the set theory] that there is a one-to-one correspondence between all
the points of a line of unit length and all non-terminating decimals less than unity [ . . . ]. Given
any terminating decimal, of no matter how many digits, then we can find by a perfectly definite
geometrical procedure a unique corresponding point on the line. If one wants to know how I am
sure the point corresponding to this construction exists, I believe the only answer is, “It exists by
definition”. It would be silly to say that I know the point exists because I can reach it by actual
construction with ruler and compass [ . . . ]; how shall we show that given any point on the line we
can approximate as closely as we please to it by a variable point, itself determined by a terminating
decimal of a continually increasing number of digits? The crux of the whole situation is contained
in the expression “any point” [ . . . ]. If point is to mean anything, it must be identifiable, and this
involves some operation or procedure for describing it. The simplest method perhaps is to specify its
distance from one end of the line. This may be given in terms of terminating decimals or in terms
of other things defined as numbers, such as the rationals. But there are other purely geometrical
procedures possible. First there are Euclidean procedures expressible in terms of compass and rule;
we can add to these other procedures involving the intersections of algebraic curves of any orders. All
such procedures will obviously give us algebraic points. We can add other procedures, corresponding
to integrations, and involving lengths of arcs or area [ . . . ]. But in any event, “point” has no meaning
unless it is defined, and this involves the specification of some sort of procedure.

And by that, Bridgman find cause for rejection of the Cantorian diagonal
Verfahren (the diagonal method) [497] for proving the non-denumerability (by a
one-to-one correspondence) of the points on a line, viz. the non-denumerability
of the non-terminating decimals. He continues thusly:

“All the points of a line” as a purely intuitional concept apart from the rules by which the points
are determined, can have no operational meaning, and accordingly is to be held for mathematics an
entirely meaningless concept.

A line is not composed of points as the forest is composed of trees, nor may a line be produced by
putting together “all” the points in it. Points may be “determined” on a line, and the determination
involves an operation according to a rule of some sort. “All the points of a line” means no more than
“All the rules for determining points on a line” [ . . . ]. In other words, we have no more reason to
describe the points on a line as non-denumerable than the non-terminating decimals.

In this other passage [417, pp. 98-99], his stance is even more stringent:
[W]e talk about all the points on a line between the origin and 1, for example [ . . . ] — a point

is a curious thing and I do not believe that its nature is appreciated, even by many mathematicians.
A line is not composed of points in any real sense. The above statement about all the points of the
line between 0 and 1 is a paraphrase for “the entire line between 0 and 1”. We do not construct the
line out of points, but, given the line, we may construct points on it. “All the points on the line”
has the same sort of meaning that the “entire line” has [ . . . ]. We create the points on a line just as
we create the numbers, and we identify the points by the numerical values of the coordinates. The
point is the number, or, more generally, a point is an aggregate of three numbers [ . . . ]. And the
point was not “there” before the numbers were given or determined.

9.3. Umbratilea Elements: Non-measurable Spaces

The problem of measure of [sets] of points on a straight line is impossible [ . . . ]: the possibility
of the problem of measure of [sets] of points of a straight line and that of well-ordering the continuum
cannot coexist.63

— G. Vitali [2589, p. 5]

The continuum of real numbers opens the doors to delightful oddnesses, which
nestle in the shadowy zones of mathematical logic. One of the most debated
theorems is that of S. Banach and A. Tarski [186] [187] directly related to Vitali
sets.

aBeing in the shade, shadowy.
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9.3.1. Double Measure of a Volume: Banach–Tarski Paradox

Paradox 9.3.1 (Banach–Tarski). Let B3 be a closed unit 3-ball of R3, that is
to say, a volume vol(B3) > 0 bounded by a 2-sphere S2 in Euclidean 3-space. It
is stated that B3 can be decomposed, or splitted, into a finite number of disjoint
sets (pieces) SB,

B3 = (SB)1 ⊔ · · · ⊔ (SB)m, (9.29)

which appear to be mutually congruent, hence they can be reassembled through
isometric motions of rotations and translations (under the group of isometries
of Euclidean space), so as to form two 3-balls of the same radius, whose measure
is therefore equal to that of the original 3-ball,

m-sets∑

ℓ

=1

vol(B3) ℓ= 2vol(B3). (9.30)

This theorem (of dissection into finitely many closed bounded sets, reassem-
bling and duplication of the measure of a volume) also works in higher dimensions,
taking a hyperball Bn bounded by an (n− 1)-sphere in Rn, for n ⩾ 3, but it stops
working in the plane R2, and in the line R.

What is the catch? It lies here, in the assemblage of these two previous
results:

(1) each disjoint piece is non-measurable, thanks to G. Vitali [2589], due
to the fact that there are subsets of the real line R which are not measurable
(Section 9.3.2), by virtue of the axiom of choice [2735];

(2) in a (ordinary) 3-dimensional space, under a F. Hausdorff’s [1301, pp.
401-402, 469-472] outcome, a 2-sphere can be decomposed, or splitted, into four
disjoint sets (pieces), three of which are equal to each other and, at the same
time, equal to their rearrangement.

In view of the Vitali’s non-measurability of certain real (sub)sets, which have
no length, the Theorem-Paradox 9.3.1 is not a paradox at all, but a curious
consequence of this fact brought to a further level: there is no volume (since
it is not well-defined), so a volume may be doubled. That is how B3 is equally
decomposable, or scissors-congruent, to the disjoint union of two (rotated and
translated) copies of B3.

This discussion is only a glancing exploration of the Banach–Tarski paradox;
for a deep study, see [2510] [817, chap. 17].

9.3.2. Non-measurability of Vitali Sets

Proposition 9.3.1 (Vitali). A Vitali set [2589] is a subset V ⊂ [0, 1] of the real
line R such that, for each real number ϵ, there is properly one number o ∈ V for
which o− ϵ is a rational number k

z , where k and z ̸= 0 are integers. The claim
is that V ⊂ [0, 1] appears not measurable.

Proof. Let
qk = Q ∩ [−1, 1], k = 1, . . . , n, (9.31)
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be an enumeration of rational numbers in an interval [−1, 1]; we know that the
set of Q is countable; let

Vk = {o+ k}o∈V , (9.32)

under which
[0, 1] ⊂

⋃
k∈qk

Vk ⊂ [−1, 2], (9.33)

where ⋃
k∈qk

Vk

is the countable system of sequences of pairwise disjoint sets. Suppose that V
and Vk are measurable, it follows that

⋃
k∈qk Vk will also be measurable. The

measure of
⋃
k∈qk Vk is 0 if V is 0, and ∞ if the measure of V is ∞. The first

case is impossible, given that

[0, 1] ⊂
⋃
k∈qk

Vk, (9.34)

and the second one is impossible, considering that⋃
k∈qk

Vk ⊂ [−1, 2]. (9.35)

Then V is a non-Lebesgue-measurable and non-countable set. □

9.4. Non-Archimedean System

9.4.1. Veronese’s Non-Archimedean Geometry: a Fully-holed Linear
Continuum

According to Dedekind [and Cantor] to clarify [ . . . ] the representation of space continuum we
need the numerical continuum [ . . . ]. In my opinion, however, it is the intuitive rectilinear continuum
[as a simple and primitive representation] through the idea of a point without parts with respect
to the continuum itself that serves to give us the abstract definitions of the continuum, of which
the numerical one is only a particular case [ . . . ]. The rectilinear continuum is never made up of its
points but of segments connecting them two by two and which are also continuous. In this way the
mystery of continuity is pushed back from a given and constant part of the line to an indeterminate
part, which is as small as we wish, and still continuous, and into which we are not allowed to enter
further with our representation.64

— G. Veronese [2568, p. 48, footnote]

Veronese’s name is associated with the non-Archimedean continuum;a in
addition to [2568, e.g. pp. xxix-xxx, 564], for Veronese’s non-Archimedean
geometry, see also his works [2569] [2570] [2572].

That which is important to consider, in this short Section, is that Veronese,
in controversy with the Cantor–Dedekind axiom (Section 9.2.2.4), defines the
linear continuum within a non-Archimedean geometry, obtained through actually
infinite (line) segments, or actual infinitesimal (line) segments [2569, cf. pp.

aBut before him, P. Du Bois-Reymond [818] and O. Stolz [2422] built a core of non-Archimedean
systems.
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424-429]. In the last part of the above-mentioned epigraph, it can be read a
hoary, and bewitching, diatribe between a continuum atomized in indivisible/ele-
mentary points and a continuum generated by segments having a continuous
(not punctiform) nature.a

Let us take a look at the non-Archimedean axiom in Verone’s approach under
the effective synthesis of F. Enriques [895, § 7, p. 38 (see also §§ 39-44)].

Proposition 9.4.1 (Veronese’s non-Archimedean continuum). Let Lαβ
viz
= αβ be

a line segment between points α and β. We will divide all the points x0, . . . , xω ∈
Lαβ into two classes, CLα and CLβ , so that

· α ∈ CLα ,
· β ∈ CLβ ,
· each point x ∈ Lαβ belongs to one or the other of these two classes,
· each point x ∈ CLα is inside the segment that joins α with any point x ∈ CLβ .

Then
(1) CLα has an end-point xω, and CLβ has a initial-point x0, so there is a

leap,
(2) CLα has an end-point xω, and CLβ has no initial-point x0,
(3) CLα has no end-point xω, and CLβ has an initial-point x0,
(4) CLα has no end-point xω, and CLβ has no initial-point x0, so there is a

gap, to wit, a hole.
In Dedekind’s theory (Section 9.2.1) there are no leaps nor gaps, i.e. holes;

in Veronese’s non-Archimedeanity there are no leaps but there are gaps, or holes.

9.4.2. Non-Archimedean Analysis with the Levi-Civita’s Monosemii

Relying on the intuitions of Veronese [2568], T. Levi-Civita [1625] is the first
to systematize the notion of non-Archimedean field, wherefore with an analytical
treatment (and not exclusively via geometry, as it happens instead in Veronese),
thanks to the introduction of the so-called monosemii numbers. We start with
the following distinction:

· numbers infinitely close to 0 are said to be infinitesimals,
· numbers infinitely close to any real number are said to be finite,
· reciprocal infinitesimal numbers are said to be infinite,
· ordinary real numbers having index 0 are said to be monosemii numbers,

e.g. ϵr, where ϵ, r ∈ R, is a monosemio, with r = 0 (ϵ is the characteristic, and
r the index).

The monosemii of index r > 0 are greater than all the (real) finite numbers
(monosemii of index 0), and the monosemii of r < 0 are less than any finite
number. So it is easy to sight in the monosemii the marks of infinite and
infinitesimal quantities [1625, footnote, p. 1768].

aThe point, for Veronese [2568, p. 210], is consistent with a primitive definition (Section 9.1),
and does not touch the question of whether or not it has parts in itself, although he makes no bones
about his view.
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A sum of monosemii has this form:
n∑
j=1

(ϵr)
j = (ϵr)

1 + . . .+ (ϵr)
n, (9.36)

whilst, if we fix a group ΓR = {r1, . . . , rn} of ordinary real numbers such that

(ΓR)
α =

{
rj : rj > α

}
, (9.37)

for each α ∈ R, we can define, for a formal power series, the sum and product,

Ne =

∞∑
j=1

(ϵr)
j , (9.38)

with (ϵr)
j ∈ ΓR, assuming that ΓR consists of a succession, the terms of which

are arranged in descending order. The number Ne is called a non-Archimedean
number of elliptic type. If instead we fix a group XR such that

(ER)
α =

{
rj : rj < α

}
, (9.39)

assuming that XR consists of a succession, the terms of which are arranged in
ascending order, then one has a non-Archimedean number of hyperbolic type,
indicated by Nh.
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10
The Ricci Flow, or the Hamilton–Perelman Metric

Evolution Machinery

As far as Mechanics is concerned, I do not have to say how great a part Geometry plays and
necessarily must play in it [ . . . ]. Indicating the vis viva with ds2/dt2, the motion problem is
equivalent to the geometric one of geodesics in a space of n-dimensions [under a representation of a
mobile system with n degrees of freedom by means of a point of n- or 2n-dimensional space]. About
the links between Geometry and Analysis, it can be said that they derive mainly from the fact that
the objects studied are largely the same [ . . . ]. So what analyst calls a function y = f(x), geometer
considers it as a curve, or as a correspondence between the points x and y. What analyst calls
differential equation will be for a geometer a variety of elements in the sense of Sophus Lie. And
the groups of linear transformations used in the study of automorphic functions by Poincaré and
Klein [ . . . ] can be considered as particular groups of non-Euclidean movements.

— C. Segre [2348, pp. 109-110, slight textual amendments for purposes of improvement]

10.1. Propaedeutics to Ricci Flow

[S]ome geometrical object can be improved by evolving it with a parabolic partial differential
equation. In the Ricci Flow we try to improve a Riemannian metric g(x, y) by evolving it by its
Ricci curvature Rc(x, y) under the equation ∂

∂t g(X,Y ) = −2Rc(X,Y ). In local geodesic coordinates
{xi} at a point P [,] where the metric is ds2 = gijdx

idxj [,] we find that the ordinary Laplacian of
the metric is “△ ”gij = gpq ∂2

∂xp∂xq gij = −2Rc(X,Y )[,] so the Ricci flow is [or rather, resembles]
really the heat equation for a Riemannian metric ∂

∂t g = “△ ”g.
— R.S. Hamilton [1275, p. 7]

Ricci flow is the object of our attention in this Chapter. Some starting
information follows immediately.

10.1.1. Quasi-linear Weakly Parabolic Equation

Definition 10.1.1 (Ricci flow).
(1) Ricci flow was introduced by R.S. Hamilton [1269], and we can write as

фunn
r


∂gt
∂t = −2Ric(gt), gt

viz
= g(t),

∂tgµν(t) = −2Rµν(t),
with the initial condition g(0) = g0,

(10.1)

фnor
r


∂gt
∂t = −2Ric(gt) + 2

nR(a)gt, gt
viz
= g(t),

∂tgµν = −2Rµν + 2
nR(a)gµν ,

with the initial condition g(0) = g0, and R(a) =

∫
Mn Rsdµ∫
Mn dµ

,

(10.2)
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where gt
viz
= g(t) and gµν denote the Riemannian metric, smoothly structured in

some interval t ∈ [0, T ) ⊂ R, with T ∈ (0,∞], Ric (notation without indices) and
Rµν (notation with indices) are the two notations for the the Ricci curvature
tensor (Section 3.3.2.1), which gives its name [1272] to the flow, whereasM is
a smooth n-manifold. Plainly, gt is a solution to фr (Ricci flow)—on the basis
of Eqq. (10.1) or (10.2)—for an arbitrary C∞ initial metric g0 (see Theorem
10.1.2).

(2) Eqq. (10.1) and (10.2) are the unnormalized and normalized versions
of фr, respectively. The normalized flow is a volume preserving equation with
respect to gt, in which, for a smooth measure µ, the differential element dµ is
the volume element, or density (ð), i.e.

dµ =

ð(x)dx = ð(x)dx1, . . . , dxn, in local coordinates,√
det(gµν)dx,

(10.3a)

(10.3b)

where dx is the volume element in Rn, and R(a) =
∫
Mn Rsdµ/

∫
Mn dµ is the

average of the scalar curvature, with the Ricci scalar Rs (Section 3.3.2.2).
(3) Eq. (10.1), to be more accurate, is a quasi-linear weakly parabolic equation.

3

10.1.2. Evolution of Curvature: Stretching-Shrinking Processes

What is it? Ricci flow is a geometric flow with algebro-geometric descriptions,
or even a gradient flow for a given functional, such as the one of Einstein–Hilbert
(4.6), on an n-space of Riemannian metric.

More specifically, it is a evolutionary process that stretches, or expands, the
metric g of a manifold in directions corresponding to negative coefficients of the
Ricci tensor, and contracts, or shrinks, g in directions corresponding to positive
coefficients of the Ricci tensor.a For a graphic supports, see—as illustrative
examples—Figg. 10.1 and 10.2.b

This is why Hamilton, by analogy, associates (10.1) with a heat-like equation
in a tensor guise, although the geometric flow is quasi-linear, here; and then he
compares фr to a Laplacian operator △ of the Riemannian metric (see epigraph).

10.1.3. Heat-like Diffusion from Harmonic Mappings

[Q]uales esse debeant proprietates corporis motum caloris determinantes et distributio caloris, ut
detur systema linearum quae semper isothermae maneant [ . . . ]. Disquisitiones haece interpretatione
quadam geometrica illustrari possunt, quae quamquam conceptibus inusitatis nitatur.c

— B. Riemann [2208, pp. 370, 382]

Hamilton’s idea [1269, p. 256] is openly inspired by the Eels–Sampson [839]
harmonic mapping of Riemannian spaces, φυ :M→N , leading to deformations

aThe metric is stationary under фr if there is a Ricci-flat metric (Ric = 0).
bThese drawings are taken from J.H. Rubinstein and R. Sinclair [2247, Fig. 2, p. 290, and Fig.

5, p. 293]. They deserve credit for the design. See also [1942].
c«[P]roperties of a body determining the conduction of heat and distribution of heat, such that

there is a system of lines which remain isothermal [ . . . ]. These investigations may be illustrated
with some geometrical interpretation, though this is founded on unusual concepts».
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Figure 10.1: Warping deformation under Ricci flow: cross-section of a surface of
revolution

Figure 10.2: Warping deformation under Ricci flow: cross-section of a dumb-bell-
shaped surface of revolution

of maps by the classical heat (or diffusion) equation,

∂υ

∂t
= αT

(
∂2υ

∂x21
+ · · ·+ ∂2υ

∂x2n

)
, (10.4)

υt = αT△ υ, υt = △ υ, (10.5a)
υt −△ υ = 0, (10.5b)

△ = ∇2υ − ∂υ
∂t = 0, (10.5c)

which can then either be written with spatial and temporal variables (10.4), or
in Laplacian form (10.5), where

υ : Ω → R, υ = υ(x1, . . . , xn, t) = υ(x, t), (10.6)

is a function reliably identifiable with the temperature T, defined on an open
(sub)set Ω ⊂ Rn, x ∈ Ω ⊂ Rn, t ∈ Rn, αT is the thermal diffusivity, namely the
rate of diffusion for the medium through which heat flows (when we say that the
heat flows in a medium, we clearly use a liquid analogy), and △ is the Laplacian.

Scholium 10.1.1. The Eels–Sampson harmonic map heat flow, for the associated
energy functional, is the same as a gradient flow. ⋄

Margo 10.1.1 (Heat & geometry). Riemann [2208] presents (see epigraph) an
explicit forerunner of such an association, establishing a relationship between
physical results (heat conduction problem) and differential geometry issues. L
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10.1.4. Modifying the Shapes of Space

What is it for? Ricci flow is chiefly used to deform a (Riemannian) space for
non-linear/quasi-linear evolutions, in order to better handle this space, in purely
geometric terms, or analytically.

Otherwise stated: being some sort of quantity of evolution, it is a mathe-
matical tool for creating, controlling, or transforming, within certain limits, the
shapes of space, and its volume growth, also following geodesic paths; in the end,
a tool for flatting-smoothing, at least locally, possible irregularities inherent in
the topological space under examination.

Hamilton investigates the Ricci flow properties on 2- [1272], 3- [1269] and
4-manifolds [1271], focusing on metrics of strictly positive/non-negative Ricci
curvature.

10.1.5. A Small Formulario for Evolving Curvatures

We will give three examples of curvature evolution for the Riemann and Ricci
curvature tensors (Sections 3.3.1 and 3.3.2.1), and scalar curvature (Section
3.3.2.2), in the presence of a solution to the Ricci flow ∂gt

∂t = −2Ric(gt). It is
about seeing what happens when the flow equation intervenes in this type of
geometry.

10.1.5.1. Riemann Curvature Tensor under фrфrфr

Proposition 10.1.1. The evolution of the Riemann curvature in the
(
1
3

)
-form

under the Ricci flow is

∂

∂t
Rµνξ

ϱ = gϱς
(
−∇µ∇νRξς −∇µ∇ξRνς +∇µ∇ςRνξ

+∇ν∇µRξς +∇ν∇ξRµς −∇ν∇ςRµξ
)

(10.7)

= △Rµνξϱ + gςτ
(
Rµνς

τ

R ττξ
ϱ − 2Rςµξ

τ

Rντ τϱ + 2Rςµ τϱRντξ

τ)
−RµςRςνξϱ −RνςRµςξϱ −RξςRµνςϱ +Rς

ϱRµνξ
ς . (10.8)

Proof of (10.8) satisfying a heat-like Eq. (10.5). By the second Bianchi identity
(3.30), we calculate

△Rµνξϱ = gςτ∇ς∇τRµνξϱ = gςτ∇ς
(
−∇µRντξϱ −∇νRτµξϱ

)
= gςτ

(
−∇µ∇ςRντξϱ +Rςµν

τ

R ττξ
ϱ

+Rςµτ

τ

Rν τξ
ϱ +Rςµξ

τ

Rντ τϱ −Rςµ τϱRντξ

τ

+∇ν∇ςRτµξϱ −Rςνµ

τ

R ττξ
ϱ

−Rςντ

τ

Rµ τξ
ϱ −Rςνξ

τ

Rµτ τϱ +Rςν τϱRµτξ

τ)
, (10.9)

from which gςτ∇ςRντξϱ = gςτgϱ

ϱ(−∇ξRντ ϱς − ∇ ϱRντςξ
)
= ∇ξRνϱ − ∇ϱRνξ.
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Hence

△Rµνξϱ =−∇µ∇ξRνϱ +∇µ∇ϱRνξ +∇ν∇ξRµϱ −∇ν∇ϱRµξ
+ gςτ

(
Rςµν

τ

R ττξ
ϱ +Rςµτ

τ

Rν τξ
ϱ +Rςµξ

τ

Rντ τϱ −Rςµ τϱRντξ

τ

−Rςνµ

τ

R ττξ
ϱ −Rςντ

τ

Rµ τξ
ϱ −Rςνξ

τ

Rµτ τϱ +Rςν τϱRµτξ

τ)
.

(10.10)

By the first Bianchi identity (3.26), Rςµν

τ

R ττξ
ϱ −Rςνµ

τ

R ττξ
ϱ = −Rµνς

τ

R ττξ
ϱ,

for which

△Rµνξϱ =−∇µ∇ξRνϱ +∇µ∇ϱRνξ +∇ν∇ξRµϱ −∇ν∇ϱRµξ
−Rµ

τ

Rν τξ
ϱ +Rν

τ

Rµ τξ
ϱ

+ gςτ
(
−Rµνς

τ

R ττξ
ϱ +Rςµν

τ

Rντ τϱ +Rςν τϱRµτξ

τ

−Rςµ τϱRντξ

τ

−Rςνξ

τ

Rµτ τϱ
)
. (10.11)

And finally

∂

∂t
Rµνξ

ϱ =−∇µ∇ξRνϱ +∇µ∇ϱRνξ +∇ν∇ξRµϱ −∇ν∇ϱRµξ

+ gϱς (Rµνξ
τRτς +Rµνς

τRξτ ) . (10.12)

□

Proposition 10.1.2. The evolution of the Riemann curvature in the
(
4
0

)
-form

under the Ricci flow is

∂

∂t
Rµνξϱ = [: △Rµνξϱ :] + gςτ (Rµνς

τ

R ττξϱ − 2Rςµξ

τ

Rντ τϱ + 2Rςµ τϱRντξ

τ

)

= [: · · · :] + 2(Τµνξϱ − Τµνϱξ + Τµξνϱ − Τµϱνξ)
−RµςRςνξϱ +Rν

ςRµςξϱ +Rξ
ςRµνςϱ +Rϱ

ςRµνξς , (10.13)

where Τµνξϱ = Τνµϱξ = Τξϱµν is a
(
4
0

)
-tensor.

Proof. By the first Bianchi identity (3.26),

gςτRµνς

τ

R ττξϱ = gςτg

τυR τςνµRυτξϱ

= gςτg

τυ (−R τνµς −R τµςν) (−Rυξϱτ −Rυϱτξ)
= −Τνµξϱ + Τνµϱξ + Τµνξϱ − Τµνϱξ, (10.14)

where the symbols [: and :] indicate that the expression within them must
be repeated, on inspiration of the musical beginning and ending repeat signs;
so gςτRµνς

τ

R ττξϱ = 2(Τµνξϱ − Τµνϱξ). Here too a heat-like Eq. (10.5) is
satisfied. □
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10.1.5.2. Ricci Curvature Tensor under фrфrфr

Proposition 10.1.3. The evolution of the Ricci curvature under the Ricci flow
is

∂

∂t
Rνξ = ∇Rνξ +∇ν∇ξRs − gςτ (∇τ∇νRξς +∇τ∇ξRνς) (10.15a)

= △lRνξ = △Rνξ + 2gςτg

τυRςνξ τRτυ − 2gςτRνςRτξ, (10.15b)

where △l is the Lichnerowicz Laplacian [1654].

Note. Eq. (10.15b) is a consequence of the recourse to Ib (3.30).

Proof of (10.15b).

∂

∂t
Rνξ = [: △lRνξ +∇ν∇ξRs :]− gςτ (∇ν∇ςRτξ +∇ξ∇ςRντ ) (10.16a)

= [: · · · :]− 1
2 (∇ν∇ξRs +∇ξ∇νRs). (10.16b)

□

10.1.5.3. Scalar Curvature under фrфrфr

Proposition 10.1.4. The evolution of the scalar curvature, or Ricci scalar,
under the Ricci flow is

∂

∂t
Rs = 2△Rs − 2gνξgςτ∇τ∇νRξς + 2|Ric|2 (10.17a)

= △Rs + 2|Ric|2. (10.17b)

Note. Eq. (10.17b) comes from applying Ib (3.30).

10.1.6. Occurrence of Singularities of the Ricci Flow

The aforementioned control (Section 10.1.4) of the Ricci evolution of curvature
encounters limitations: singularities in finite time T can be formed [1275] in
some parts of the manifold and in a number of ways.

10.1.6.1. Local Finite Time Neckpinch Singularity in 2- and 3D

We choose two very simple examples, related to the so-called pinching singu-
larity, see M. Simon [2374], and S. Angenent & D. Knopf [95] [96].

We consider a 2-sphere S2, that is, a 2-dimensional surface of a 3-ball, or
a positively curved space embedded in 3D Euclidean space. Imagine that it
is a rubbery sphere. The 2-sphere is now pinched, that is, squeezed, along its
equatorial line, so it takes gradually the form of a dumb-bell.

The process of pinching, or of squeezing-shrinking, that proceeds over time as
t↗ T <∞, gives rise to a pseudo-cylindrical (non-Euclidean) neck, generating
in it a series of cross-sectional 1-spheres S1, or 1-dimensional circumferences of a
disk, with variable length (depending on where the circumference is taken).
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Be careful: the neck looks like {S1 × B1}, since appear bounded B1-intervals,
but it stretches into an increasingly (infinitely) thin central part, leading in last
steps to singularity s{S1 × B1},

rubbery 2-surface S2 t↗T<∞−−−−−−−−−−→
pinching of ф(2)

r

{S1×B1}-neck−−−−−−−−−−−−−→
infinitely long & thin

singularity of ф(2)
r

s{S1 × B1} .

(10.18)
What we are witnessing, under the action of the Ricci flow, is the (de)formation

of a S2-space in a constantly evolving new space which gets longer and thinner
all the time in the middle, and it is distinguished by a dynamic mix of positive
curvature (as the two lateral spheriform bulbs) and negative curvature (the collar
zone, the almost tubular center portion of S1 × B1); for that reason, in this case,
it is referred to as local finite time neckpinch singularity in 2D Ricci flow.

In three dimensions the procedure is similar:

rubbery 3-boundary S3 t↗T<∞−−−−−−−−−−→
pinching of ф(3)

r

{S2×B1}-neck−−−−−−−−−−−−−→
infinitely long & thin

singularity of ф(3)
r

s{S2 × B1} ,

(10.19)
where we have a 3-sphere S3 in 4D Euclidean space, a {S2 × B1}-neck in which
the cross-sectional collars are 2-spheres multiplied by bounded B1-intervals, and
a local finite time neckpinch singularity in 3D Ricci flow.

10.1.6.2. Four Types of Singularities

Let us draw up a classification of four types of Hamiltonian singularities
[1275] that may arise in a generic smooth topological n-space of dimension, and
an equally generic metric gt determining the фr-flow:

type



I s(фr): T <∞ and sup
Mn×[0,T )

|Rie(x, t)|(T − t) <∞,

IIα s(фr): T <∞ and sup
Mn×[0,T )

|Rie(x, t)|(T − t) =∞,

IIβ s(фr): T =∞ and sup
Mn×[0,∞)

|Rie(x, t)|(t) =∞,

IIγ s(фr): T <∞ and sup
Mn×[0,T )

|Rie(x, t)|(t→ 0) =∞,

III s(фr): T =∞ and sup
Mn×[0,∞)

|Rie(x, t)|(t) <∞,

IV s(фr): T <∞ and sup
Mn×[0,T )

|Rie(x, t)|(t→ 0) <∞,

(10.20a)

(10.20b)

(10.20c)

(10.20d)

(10.20e)

(10.20f)

where Rie is the Riemann curvature tensor.

10.1.7. Geometro-topological Surgery of Cutting off and Gluing Back

A “surgery” on a differentiable manifold W of dimension n = p+ q+1 has the effect of removing
an imbedded sphere of dimension p from W , and replacing it by an imbedded sphere of dimension q.

— J. Milnor [1820, p. 39]
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The epigraph mentions the surgery technique, as it was historically introduced,
out of the blue, by J. Milnor. Surgery, in topological geometry, means cutting
one or more parts of the manifold, and replacing it with others, and then, when
necessary, gluing in the cut parts ad hoc spaces with artificial-prosthesis function.

10.1.7.1. Discrete Mechanism for Discontinuous Metrics

It is this technique that provides the pedestal on which Hamilton [1275]
[1276] stands to address the problem of singularities.

In the specific case of the Ricci flow, it is a question of removing any singular-
ity (one at a time), with the final purpose of recovering the geometro-analytical
functionality compromised by points in the evolution field of the flow in which
infinite values, or non-monovalued attributes, are assumed. That is, a surgically
modified Ricci flow is a stopped movement-diffusion (as defined above) at discrete
time intervals, or, in technical words, a discontinuous piecewise smooth opera-
tional mechanism. Consequently, the topology of the manifold is being changed
little by little, following both geometro-topological and metric discontinuities.

10.1.8. Li–Yau’s & Hamilton’s Harnack Inequalities, and Space-Time
Gradient Estimate

Singularities can be analyzed by comparing curvatures for solutions of weakly
parabolic equations (10.1) (10.2), at different points (x1, x2) and times (t1, t2).
For this, Hamilton [1274] implements an estimation method for calculating
spatio-temporal differences in the Ricci topological description (Section 10.1.8.4).
This method is a type of Harnack inequality [1292] (Section 10.1.8.1) elaborated
by P. Li and S.-T. Yau [1646] (Section 10.1.8.2). The Harnack inequality of
Li–Yau–Hamilton [1273] (Section 10.1.8.3) is applied to the matrix of second
derivatives in the scalar heat flow, to the Ricci flow on a surface, as well as to
mean curvatures. Here is a synopsis.

10.1.8.1. Classical Harnack Inequality

Proposition 10.1.5 (Harnack inequality). Take a smooth domain, which is
a connected complete Riemannian manifold M of dimension n, and let υ ∈
C∞{Mn × (0, T )} be a non-negative harmonic function, for x1, x2 ∈Mn and
t1 < t2 ∈ (0, T ). We say that υ solves the linear heat equation{

△ υ = ∂υ
∂t ,

△ υ − ∂tυ = 0,

(10.21a)
(10.21b)

on M. Then, under the Harnack inequality ⌢IHar

υ(x1, t1) ⩽ υ(x2, t2)

or

υ(x2,t2)
υ(x1,t1)

⩾
(
t2
t1

)−n
2

 exp

{
−d(x1, x2)

2

4(t2 − t1)

}
, (10.22)
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one has
sup
Mn

υ(x1, t1) ⩽ c inf
Mn

υ(x2, t2), (10.23)

where c is a time- and M-dependent constant.

10.1.8.2. Li–Yau’s Harnack (Differential) Inequality

Proposition 10.1.6 (Harnack inequality of Li–Yau). Take a smooth domain
with bounded curvature, ∂M ≠ ∅, and Ric ⩾ 0. Let υ :Mn × [0,∞) → R+

be a smooth non-negative solution for the heat Eq. (10.21). The Li–Yau’s
Harnack inequality gives a gradient estimate for solutions of this kind, that is, if
△φυ − n

2t =
∂φυ

∂t + |∇φυ|2 ⩽ 0, derives a heat kernel estimate in a differential
manner:

⌢IHar
ly

{
△ log υ + n

2t =
∂
∂t log υ − |∇ log υ|2 + n

2t ⩾ 0,

∂tυ
υ −

|∇υ|2
υ2 + n

2t ⩾ 0.

(10.24a)

(10.24b)

Subproposition 10.1.1. We can get identity (10.22) from identity (10.24).

Proof. For a geodesic curve γc, we put
∣∣dγc
dt (t)

∣∣ ιδ= d(x1,x2)
t2−t1 , if

log
υ(x2, t2)

υ(x1, t1)
=

∫ t2

t1

d

dt

(
log υ(γc(t), t)

)
dt

=

∫ t2

t1

(
∂

∂t
log υ +∇ log υ

(
dγc
dt

))
dt

⩾
∫ t2

t1

(
|∇ log υ|2 − n

2t +∇ log υ
(
dγc
dt

))
dt

⩾ − n
2t log

(
t2
t1

)
− 1

4

∫ t2

t1

∣∣∣∣dγcdt (t)
∣∣∣∣2 dt. (10.25)

□

10.1.8.3. Li–Yau–Hamilton’s Harnack Inequality, aka Hamilton’s Ma-
trix Inequality

Proposition 10.1.7 (lyh’s Harnack inequality). Given a compact Riemannian
manifold of dimension n, let υ ∈ C∞(Mn) be a non-negative solution for the
heat equation △ υ = ∂υ

∂t , see (10.21), for t > 0. If M is Ricci parallel and has
weakly positive sectional curvatures, one gets

⌢IHar
lyh

{
∇µ∇νυ + 1

2tυgµν +∇µυ(X⃗ν) +∇νυ(X⃗µ) + υX⃗µX⃗ν ⩾ 0,

∇µ∇νυ − ∇µυ∇νυ
υ + υ

2tgµν ⩾ 0,

(10.26a)

(10.26b)

on Mn × [0, T ), for any vector field X⃗.

The Li–Yau–Hamilton’s Harnack inequality, or Hamilton’s matrix inequality,
via Eq. (10.26), is the non-linear equivalent of (10.24), and it is intended as a
trace of a full matrix inequality. A summary is in L. Ni [1945].
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10.1.8.4. Harnack–Hamilton Estimate for the Ricci Flow

Theorem 10.1.1 (Hamilton’s Harnack estimate of the Ricci flow). Let gµν
be a complete solution with bounded non-negative curvature to the Ricci flow
∂
∂tgµν = −2Rµν on a manifold of dimension n, and assume that gµν has a weakly
positive curvature operator, for some time interval, 0 < t < T , i.e. t ∈ (0, T ), so
that

Rµνξϱ

w

µν

w

ξϱ ⩾ 0, (10.27)

for each 2-form w∈ C∞, where Rµνξϱ is the Riemann curvature tensor in the
form of

(
0
4

)
-tensor. Let

Pµνξ = ∇µRνξ −∇νRµξ (10.28)

be a 3-tensor, and let

Mµν = △Rµν −
1

2
∇µ∇νRs + 2RµξνϱRξϱ −RµξRνξ +

1

2t
Rµν (10.29)

be a symmetric 2-tensor. Then, for all 1- and 2-forms ω, w,∈ C∞, respectively,
we have

Mµνωµων + 2Pµνξ

w

µνωξ +Rµνξϱ

w

µν

w

ξϱ ⩾ 0, (10.30)

and, for any ω-type 1-form,

∂Rs

∂t
+
Rs

t
+ 2∇µRs(ωµ) + 2Rµνωµων ⩾ 0. (10.31)

The proof of the previous propositions, with the central focus of Eqq. (10.22)
(10.24) (10.26) (10.30), exceeds the scope of this Chapter, so we refer to the
respective articles mentioned above.

10.1.9. On the 3-Manifold with Positive Ricci Curvature Tensor

Later on we will see a distinguished theorem of Hamilton and its proof.

10.1.9.1. Hamilton’s Main Theorem, plus Corollary

Theorem 10.1.2 (Hamilton). Let (M3, g0) be a compact Riemannian 3-manifold
with an initial metric g0 of strictly positive Ricci curvature tensor. Then there
exists a unique maximal smooth solution gt, t ∈ [0, T ), to the Ricci flow фr
(Definition 10.1.1) with g(0) = g0, for all time t ⩾ 0 and a T ⩽ Tmax ∈ (0,∞].
If in addition t → ∞, subsequently gt converges exponentially fast to a C∞

metric g∞(t) of constant positive sectional curvature.a

Corollary 10.1.1 (Hamilton’s special case of the Poincaré conjecture). Let M3

be a closed Riemannian 3-manifold with strictly positive Ricci curvature. One
gets that (by the main Theorem 10.1.2) it admits a metric of constant positive
sectional curvature. If M3 is simply connected, then it is diffeomorphic to the
3-sphere S3.

We will pick this up in Section 10.3.1.
aHamilton’s theorem in its original form is in [1269, № 1.1].
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10.1.9.2. Short Time Existence and Uniqueness in Ricci–DeTurck’s
Strictly Parabolic System

Hamilton, for the purpose of verifying the validity of the statement 10.1.2,
relies [1270] on the Nash–Moser inverse function theorem [1906] [1878] [1879];
in fact, the weakly parabolic nature of the Ricci flow does not allow to have
recourse to the standard parabolic theory. But we adopt a weakness-free modus,
originally devised by D.M. DeTurck [761], to demonstrate a short time existence
of фr, which is a strictly parabolic version of the Ricci flow thanks to the pullback
by diffeomorphisms.

Proof of the Theorem 10.1.2 (via DeTurck’s modus). Let

фr

{
∂tgµν(x, t)

viz
=

∂gµν

∂t (x, t) = −2Rµν(x, t),
gµν(0, x) = gµν(x),

(10.32)

be the initial value problem of фr in the indices form, taking for granted that
g = gt = gµν(x, t). We have to prove that (10.32) has a unique solution on
M3 × [0, T ), with T > 0, for x ∈M3.

(1) Let us begin to see why (10.32), combined with the Lie derivative £ of
g, is a parabolic system of equations, setting a DeTurck’s parabolic system of
equations{

∂tgµν(x, t)
viz
=

∂gµν

∂t (x, t) = −2Rµν(x, t) +
[
£W⃗ g

]
µν

(x, t),

gµν(0, x) = gµν(x),
(10.33)

with the vector field

W⃗ = W⃗ ξ(x, t)
∂

∂xξ
, W⃗ ξ = gςτ

(
Γςτ

ξ − Γςτ ξ(0)
)
, (10.34)

where Γςτ ξ and Γςτ ξ(0) are the Christoffel symbols (Section 1.2) of g in (10.32)
and g0, respectively. For a local coordinate system, we write

фrde

{
∂tgµν

viz
=

∂gµν

∂t = −2Rµν +∇µW⃗ν +∇νW⃗µ,

g(0) = g0.
(10.35)

The double formula in (10.35) is what is called Ricci–DeTurck flow, where ∇W⃗
is the element of the covariant derivative of the dual 1-form of W⃗ , that is,
∇ ∂
∂xµ W⃗µdx

µ, with W⃗µ = gµξW⃗
ξ. This is possible since, for two vector fields

X⃗ and Y⃗ , it is true that ∂tgt(X⃗, Y⃗ ) = −2Ric(gt)(X⃗, Y⃗ ) + gt{∇X⃗W⃗ (t), Y⃗ } +
gt{X⃗,∇Y⃗ , W⃗ (t)}.

Using the acronym lot (which means lower order terms) to denote all terms
including the first derivatives relating to the metric g, we have

∇νW⃗µ = gµξg
ςτ∂νΓςτ

ξ

= 1
2gµξg

ςτ∂ν

(
gξϱ (∂τgςϱ + ∂ςgτϱ − ∂ϱgςτ )

)
= 1

2g
ςτ (∂ν∂τgςµ + ∂ν∂ςgτµ − ∂ν∂µgςτ )

+ lot. (10.36)
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And then −2Rµν+∇µW⃗ν+∇νW⃗µ = gξϱ∂ξ∂ϱgµν+lot, once the Ricci curvature
tensor is set as Rµν = − 1

2g
ξϱ(∂µ∂νgξϱ − ∂ξ∂µgνϱ − ∂ξ∂νgµϱ + ∂ξ∂ϱgµν) + lot.

The flow (10.35) becomes thus

∂tgµν
viz
=
∂gµν
∂t

= gξϱ∂ξ∂ϱgµν + lot, (10.37)

and it is a quasi-linear strictly parabolic equation; such is consequently also
the the system of Eqq. (10.33) which has a C∞ solution on some (short) time
interval 0 ⩽ t < T , under the standard parabolic theory.

(2) Let Д t be a 1-parameter family of diffeomorphisms; puta

dД t

dt
=
(
Д t∗W⃗ (Д t, t) = W̃ (Д t, t)

)
. (10.38)

We have to prove that there is a solution of the Ricci flow, as the theorem
demands, that is, a solution

g̃t
viz
= g̃(t) = (Д ∗

t )
−1gt, (10.39)

to (10.32). Knowing that gt = Д ∗
t g̃t, we calculate

∂tgt = [: ∂tД ∗
t g̃t = Д ∗

t∂tg̃t :] + ∂t(Д ∗
t g̃t) (10.40a)

= [: · · · :] + Д ∗
t (£W̃ (t)g̃t) (10.40b)

= [: · · · :] +£(Д t∗)
−1W̃ (t)Д

∗
t g̃t (10.40c)

= [: · · · :] +£W⃗ (t)gt. (10.40d)

Thank to (10.33), it is clear that ∂tgt = −2Ric(gt)+£W⃗ (t)gt = −2Д
∗
t

(
Ric(g̃t)

)
+

£W⃗ (t)gt, from which
∂tg̃t = −2Ric(g̃t). (10.41)

This last equation ensures the short time existence of фr, for which there is a
solution g̃t to (10.32) on a (short) time interval [0, T ), T > 0.

(3) It is the turn of the demonstration of uniqueness. Firstly, we define the
Christoffel symbols of gt = Д ∗

t g̃t
b as

Γνϱ
ξ =

∂yα

∂xν
∂yβ

∂xϱ
∂xξ

∂yγ
Γ̃αβ

γ +
∂xξ

∂yα
∂2yα

∂xν∂xϱ
, (10.42)

where Γ̃αβγ are the Christoffel symbols of g̃t.c The vector field W⃗ is now

W⃗ ξ ∂

∂xξ
= gνϱ

(
∂yα

∂xν
∂yβ

∂xϱ
∂xξ

∂yγ
Γ̃αβ

γ +
∂xξ

∂yα
∂2yα

∂xν∂xϱ
− Γνϱξ(0)

)
∂

∂xξ
. (10.43)

a The symbol W (\mathbold command) is the same as the symbol W⃗ (\vec command). The
choice of a bold type is to avoid the double presence of the arrow and the tilde over the letter.

bThe metric gt = Д∗
t g̃t appears to be a solution to (10.33) if we do the inversion of Eqq. (10.40).

cDo not forget that the connection coefficients of the Levi-Civita connection, in a system of
local coordinate, are the Christoffel symbols; this means that the metric connection described by Γ̃
acquires true meaning as a Levi-Civita connection of g̃t.
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Let (Д t∗W⃗ )г = W⃗ (г ◦ Д t), with Д t(x) =
[
y1(x, t), . . . , yn(x, t)

]
, where г is a

C∞ function; we get

(Д t∗W⃗ )г = W⃗ ξ ∂(г ◦Д t)

∂xξ
= W⃗ ξ ∂г

∂yδ
∂yδ

∂xξ

= gνϱ
(
∂yα

∂xν
∂yβ

∂xϱ
∂xξ

∂yγ
Γ̃αβ

γ +
∂xξ

∂yα
∂2yα

∂xν∂xϱ
− Γνϱξ(0)

)
∂г
∂yδ

∂yδ

∂xξ

= gνϱ
(
∂yα

∂xν
∂yβ

∂xϱ
Γ̃αβ

δ +
∂2yδ

∂xν∂xϱ
− Γνϱξ(0)

∂yδ

∂xξ

)
∂г
∂yδ

. (10.44)

In consequence, Eq. (10.38) becomes{
∂ty

δ = gνϱ
(

∂2yδ

∂xν∂xϱ + Γ̃γβ
δ ∂y

β

∂xν
∂yγ

∂xϱ − Γνϱξ(0) ∂y
δ

∂xξ

)
yδ(x, 0) = xδ,

(10.45)

which states that Eq. (10.38) is a quasi-linear strictly parabolic system with a
unique solution in C∞ sense and for a short time, in the awareness that

gνϱ = g̃αβ
∂yα

∂xν
∂yβ

∂xϱ
, (10.46)

gνϱ = (gνϱ)
−1. (10.47)

□

10.2. Ricci Solitons: a Synoptic Classification

There is a classification, based on the shape and other flow-evolutionary char-
acteristics, which allows the Ricci flow to be classified into solitonic categories.

Margo 10.2.1 (Why solitons?). The reference, in this geometro-topological con-
text, is inspired by a physical phenomenon: a soliton is a solitary wave which
does not change its shape during propagation, according to the Korteweg–de
Vries equation [1535] in the model of wave motions on the shallow water surface.
The geometric soliton, as is the Ricci soliton, does something similar: it evolves,
but maintains its original shape, establishing diffeomorphism symmetries for any
specific flow. L

Definitions 10.2.1 (Ricci solitons).
(1) Via ordinary differential equation. Let M be a Riemannian manifold,

and g0 the initial metric. The smooth space (M, g0) is called Ricci soliton фs
r if,

for a constant λ ∈ R and a vector field X⃗, there is an equation like this

Ric(g0) +
1
2£X⃗g0 = λg0, (10.48)

under which if

λ > 0,фs
r is said shrinking ,

λ = 0,фs
r is said steady ,

λ < 0,фs
r is said expanding ,



202 10. The Ricci Flow, or the Hamilton–Perelman Metric Evolution Machinery

at a time t0, where £ is the Lie derivative. So, for the sake of completeness, a
Ricci soliton should be written as фs

r = (M, g0, X⃗, λ).
(2) Via pullback of the metric. Choose a 1-parameter family of diffeomor-

phisms of the form Д t :M→M, i.e. of invertible functions between smooth
manifolds, for some time evolution; and put

∂

∂t
Д t(x) =

1

1− 2λt
X⃗|Д t(x)

, (10.49)

x ∈ M. Then a solution gt of ∂tg = −2Ric is called Ricci soliton, such that
фs

r = (M, g0), if there is a pullback of g0,

gt = (1− 2λt)Д ∗
t (g0). (10.50)

(3) Potential function, and gradient soliton. Let

υ:M→ R, υ∈ C∞(M), (10.51)

be a potential function of фr onM. Setting

−2Ric(g0) = £X⃗g0 − 2λg0, (10.52)

then

Ric υ= λg0, where Ric υ= Ric(g0) +Hes( υ), (10.53a)
Ric(g0) +Hes( υ) = λg0, (10.53b)

Ric(g0) +∇2( υ) = λg0, (10.53c)

which are three equivalent forms, in which Hes is the Hessian [1343] of υ. A Ricci
soliton фs

r = (M, g0, X⃗, λ) is known as gradient Ricci soliton фs
r = (M, g0,

υ, λ),
if X⃗ = ∇ υis both a vector potential field and the gradient of υ. Note. When
the µν-indices are expressed, Eq. (10.53c) becomes

Rµν +∇µ∇ν( υ) = λgµν . (10.54)

3

The three Sections that follow provide some examples of Ricci solitons.

10.2.1. Shrinkers (фs
r)λ>0(фs
r)λ>0(фs
r)λ>0

10.2.1.1. Gradient Shrinker with Potential Function

If gt = (T − t)Д ∗
t (g0), compare with Eq. (10.50), is a gradient shrinking

soliton with potential υ, see point (3) in Definitions 10.2.1, the function υmeets
these statements:(

Ric(g0) +Hes( υ) = Ric(g0) +∇2( υ)
)
− g0

2τ
= 0, (10.55)

Rs +△ υ− n

2τ
= 0, (10.56)

∂t

υ= |∇ υ|2 = −∂τ υ, where τ = −t. (10.57)
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10.2.1.2. Shrinker from an Einstein Manifold

A shrinking Ricci soliton is an extension of an Einstein manifold (Scholium
10.2.1), since the Ricci curvature tensor is invariant under uniform dilation, or
scaling, of the metric. We affirm that g0 is an Einstein metric if

Ric(g0) = λg0, (10.58)

for λ ∈ R, and
gt = (1− 2λt)g0 (10.59)

is a solution to фr (10.1) (10.2) with g0.

Scholium 10.2.1 (Einstein manifold). A (pseudo-)Riemannian manifold (M, g)
is called an Einstein manifold, and the metric g is an Einstein metric, see e.g.
[89], if {

Ric(v, w) = λ⟨v, w⟩,
Ric(g) = λg,

(10.60a)
(10.60b)

for all tangent vectors v, w ∈ T̊ M, and for some constant λ ∈ C∞(M), with
λ = 1

nRs, where n is the dimension ofM, ergo Ric = 1
nRs(g). ⋄

10.2.1.3. Gaussian (λ > 0)(λ > 0)(λ > 0)-Soliton

The form of it is

фs
r =

(
Rn, gE, υ(x) =

λ > 0

2
|x|2
)
, (10.61)

cf. G. Perelman [2072, sec. 2.1] for the first appearance of this soliton.

10.2.1.4. Shrinking Sphere

We are talking about an object in 2D or in a higher dimension, фs
r =

(Sn⩾2, gSn).

10.2.1.5. Shrinking Cylinder

Its form is

фs
r =

(
Sn−1 × R, gt = (n− 2)

√
t2gSn−1 + dρ2

)
, (10.62)

with t ∈ (−∞, 0), n ⩾ 3, or its Z2
viz
= Z/2Z quotient; the Ricci tensor here is

Ric(gt) = (n− 2)gSn−1 =
gt

2
√
t2
− dρ2

2
√
t2
. (10.63)

The cylindrical-like shrinking Ricci soliton is, more generally, a Riemannian C∞

manifold satisfying(
Ric(g0) +Hes( υ) = Ric(g0) +∇2( υ)

)
=

1

2
gSn−1 . (10.64)
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10.2.1.6. Kähler–Ricci Shrinking Gradient Soliton

Identified and studied by N. Koiso [1525] and H.-D. Cao [505] [504], they are
constructed directly on the Kähler–Ricci flow,

фunn
kr =

∂gµν̄
∂t

= −Rµν̄ , (10.65a)

фnor
kr =

∂gµν̄
∂t

= −Rµν̄ + gµν̄ , (10.65b)

this is, the Ricci flow on a Kähler manifold [1459] (see Scholium 10.2.2). The
metric

gµν̄
viz
= gµν̄(t), t ⩾ 0, (10.66)

represents a solution to фkr in (10.65) under a 1-parameter family of biholo-
morphisms. For a holomorphic vector field X⃗ = X⃗µ, we say that a Käh-
ler–Ricci soliton and a gradient Kähler–Ricci soliton are formed when, respec-
tively, Rµν̄ = X⃗µ,ν̄ + X⃗ν̄,µ and X⃗ is the gradient of a potential function υ(see
above) such that

for фunn
kr

{
Rµν̄ = υ

,µν̄ ,

υ

,µν = 0,
(10.67)

for фnor
kr

{
Rµν̄ − gµν̄ = υ

,µν̄ ,

υ

,µν = 0.
(10.68)

Eq. (10.68) is for the condition on a compact Kähler space with positive first
Chern class C̊1(M) [633]. For more details on the local and global generality of
gradient Kähler–Ricci solitons, see Bryant [443].

Scholium 10.2.2 (Kähler manifold, and almost complex structure).
(1) A Kähler manifold is a complex structure but it can be defined as a

Riemannian manifold of a special type. More accurately, a Kähler structure on a
Riemannian manifold is a symplectic manifold (M, ωs) = (R2n, ωs) endowed with
an integrable almost complex JC|-structure compatible with a symplectic form
ωs, i.e. a non-degenerate closed real-valued differential 2-form (cf. Definition
12.4.1), the metric of which is Kählerian. From a Riemannian viewpoint, JC| is
on a real manifoldM of dimension 2n.

(2) The symbol JC| denotes an almost complex structure,

x 7→ JC| : TxM
linear map−−−−−−−→ TxM, J 2

C| = −idTxM, (10.69)

JC| : T̊ M
linear map−−−−−−−→ T̊M, J 2

C| = −idT̊ M, (10.70)

coinciding with a smooth field of complex structures on the tangent spaces
(10.69), or even with an automorphism on the tangent bundle (10.70). ⋄
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10.2.1.7. Kähler–Ricci Soliton on Toric Fano Manifold

X.-J. Wang & X. Zhu [2611] show that a Kähler–Ricci soliton exists on any
Kähler geometry of toric manifolds with C̊1 > 0, and that, iff Futaki invariant
[1063] vanishes, the Kähler–Ricci soliton exists on toric Fano manifold [935]
[936]a with a Kähler–Einstein metric.

Scholium 10.2.3 (Kähler toric manifold). We remember that a Kähler toric
manifold is a closed connected Kähler 2n-space

M2n
T

viz
= (M, ωs,Tn,JC|) (10.71)

having a Hamiltonian holomorphic map

ο : Tn → Diff(M2n
T ) (10.72)

of the real n-torus. We remind that M2n
T , because of its structure, is locally

symplectomorphic to
(
R2n, (ωs)0

)
. ⋄

Margo 10.2.2 (Kähler–Einstein on CPn#kCPn, and on toric Fano 3- and 4-folds).
Among the first investigations in this direction, are to be mentioned the articles
of G. Tian & S.-T. Yau [2504] and Y.-T. Siu [2389], in which there is a proof
of the existence of Kähler–Einstein structures, with λ > 0 and C̊1 > 0, on any
differential manifold of type CPn, that is, specifically,

CP1 × CP1, or CP2#kCP2, for 3 ⩽ k ⩽ 8,

i.e. over complex projective spaces, by blowing-up CP2 at generic k-points, and
then, by C. Real [2184], for n > 2, k = n+ 1.

Kähler–Einstein metrics on toric Fano 3- and 4-folds (with vanishing of the
Futaki invariant) are analyzed and demonstrated in T. Mabuchi [1718], for Fano
3-folds [218], and in Y. Nakagawa [1895] [1896] and Batyrev & Selivanova [220],
for Fano 4-folds [219] and symmetric toric Fano manifolds. L

10.2.1.8. Feldman–Ilmanen–Knopf’s Kähler–Ricci Shrinking (Gradi-
ent) Solitons

The fik’kr [955] solitons lie on complex line bundles over a (n−1)-dimensional
complex projective space CPn−1, with n ⩾ 2. Some of these have an initial or
final state equivalent to a metric cone Cn/Zk, k > n, and its quotient flat metric.
The part of interest of the fik’kr solitons is that they evolve for t < 0, as a
non-compact Ricci flow with shrinking and C∞-flowing behavior, then become
a cone at t = 0, and, finally, expand self-similarly for t > 0 (smooth evolution in
space-time), until the formation of a spatio-temporal singular point causing the
flow-down (or blow-down) of a CPn−1 space.

aBrutally said, an algebraic variety (set of solutions to polynomial equations over R or C
numbers) and a manifold (topological space) have terms of coincidence but they are distinguished
by the absence of singular points in the topological space.
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10.2.2. Steadies (фs
r)λ=0(фs
r)λ=0(фs
r)λ=0

10.2.2.1. Gradient Steady Soliton

If gt = Д ∗
t (g0) represents a gradient steady solitonic wave with potential υ,

see point (3) in Definitions 10.2.1, the function υmeets these statements:

Ric(g0) +Hes( υ) = Ric(g0) +∇2( υ) = 0, (10.73)
Rs +△ υ= 0, (10.74)

∂t

υ= |∇ υ|2. (10.75)

10.2.2.2. Steady Soliton from an Einstein Manifold

A steady Ricci soliton is a natural extension of an Einstein manifold, see
Eqq. (10.60) (10.59).

10.2.2.3. Gaussian Steady Soliton

It corresponds to Euclidean n-space (Rn, gE), with flat metric (curvature
zero) and stationary Ricci flow, with λ = 0.

10.2.2.4. Cigar Soliton, or Euclidean Witten’s Black Hole

This space, in mathematics literature is called cigar soliton, see L.-F. Wu
[2698], but in physics literature it is known as (Euclidean) Witten’s black hole
[2681] (Margo 10.2.3). The cigar soliton is given bay the R2-space,

фs
r

viz
= фcig|R2

r =
{

[: R2,
(
gcig

viz
= g0

)
:] = ρ2(dx2 + dy2)

}
, (10.76a)

=

{
[: · · · :] = dx2 + dy2

1 + x2 + y2

}
, (10.76b)

with ρ2 = 1
1+x2+y2 , dx2 = dx ⊗ dx, which is asymptotically equivalent to a

cylinder at spatial infinity. When there is a time dependence, the metric in
(10.76) becomes gcig

viz
= gt =

dx2+dy2

e4t+x2+y2 , t ∈ (−∞,+∞).
The Ricci curvature tensor, with the initial metric g0, can therefore take the

Gaussian form,

Ric(g0) = κ(g0), κ =
2

1 + x2 + y2
, (10.77)

where κ is the Gaussian curvature. Then

£(−2·x ∂
∂x+y ∂

∂y )
g0 = −

(
4

1 + x2 + y2

)
g0. (10.78)

Scholium 10.2.4. If we use the metric gt = Д ∗
t (g0), cf. point (2) in Definitions

10.2.1, for the cigar-shaped space we have the map Д t : R2 → R2 in accordance
with the determination

Д t(x, y) =

(
x√
et
,
y√
et

)
, x, y ∈ R2, (10.79)
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wherefore gcigt = Д ∗
t g

cig
0 . ⋄

Margo 10.2.3 (Witten’s semi-infinite cigar as a 2D black hole). Witten imagines
[2681, pp. 315-316] a semi-infinite cigar, which, in a polar coordinate system, is
written as

ds2 = 1
1+ρ2 · dρ

2 + ρ2dθ2 =
dρ2 + ρ2dθ2

1 + ρ2
, (10.80)

ρ and θ are the radial and angular coordinates; and he interprets it as a (Eu-
clidean) black hole in a space-time of dimension 2 within a framework of corre-
spondence between an exact conformal field theory and an SL2(R)/U(1) gauged
Wess–Zumino–Witten model [2625] [2678] [2679]; see [1567]. L

10.2.2.5. Bryant Soliton, and the Warped Product

R.L. Bryant [441] finds a steady Ricci soliton on R3 rotationally symmetric
with SO3(R)-symmetry and κ > 0 (positive sectional curvature), which is
asymptotically equivalent to a paraboloid, see S. Brendle [409] [410].

Example 10.2.1 (Bryant-like soliton). The Bryant’s radially symmetric Ricci
soliton in 3D can be conveniently generalized to Rn-space. Let gSn−1 be the
standard metric on the unit sphere Sn−1 in Rn. A Bryant soliton is constructed
as a steady Ricci soliton warped product (0,∞) ×в Sn−1, n > 1, for a radial
warping function в. By adopting the warped product metric

gв = dρ2 + в(ρ)2gSn−1 , (10.81)

with the radial coordinate ρ, it happens that
(1) the Ricci tensor of gв (10.81) is

Ric(gв) = −(n− 1)
в̈
в
dρ2 +

{
(n− 2)(1− в̇2)− вв̈

}
gSn−1 , (10.82)

(2) and, given some function υof ρ, the Hessian of υin relation to gв (10.81)
is

∇∇ υ= ¨υ(ρ)dρ2 + вв̇ ˙υgSn−1 . (10.83)

Then

Ric(gв) +∇∇ υ= 0
turns into−−−−−−→

{
¨υ= (n− 1) в̈

в ,

вв̇ ˙υ= −(n− 2)(1− в̇2) + вв̈.
(10.84)

From here it is possible to sketch out a steady gradient Ricci soliton, whose
potential function υis exclusively on ρ. 5

Generalizations of the Bryant model are in
(1) T. Ivey [1424], where 1-parameter family of solutions with complete

non-compact Ricci solitons is shown;
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(2) A.S. Dancer & M.Y. Wang [715], with non-Kähler complete steady
gradient Ricci solitons; and [716], with the production of complete shrinking,
steady and expanding Kähler–Ricci solitons foliated by hypersurfaces, i.e. by
circle bundles over an arbitrary product of Fano Kähler–Einstein spaces, or over
a coadjoint orbit of a compact connected semi-simple Lie group;

(3) Betancourt de la Parra, Dancer & Wang [280], with the exhibition of
non-Kähler Ricci solitons in 5D.

10.2.2.6. Non-collapsed Non-Kähler & Non-Einstein Steady Solitons
in Dimensions ⩾⩾⩾ 4D

In A. Appleton [109] is constructed a family of non-collapsed Ricci steady
solitons of dimension ⩾ 4, which are non-Kähler and non-Einstein but they exist
on complex line bundles L̊C(k) (i.e., complex vector bundles of rank 1) of CP1

over Kähler–Einstein spaces with Rs > 0. The Appleton solitons in dimension 4
· lie on R>0 × S3/Zk when a 2-sphere S2 is placed at the origin, where Zk is

a cyclic group of order k ⩾ 3,
· are asymptotic to the quotient of the 4-dimensional Bryant soliton by Zk⩾3.

Scholium 10.2.5 (κ-non-collapsing condition). Let фs
r = (M, g). Taking a ball

B(x, ρ) ⊂M of dimension n, with ρ > 0, and putting |Rie(y)| ⩽ ρ−2 on B(x, ρ)
such that

vol
(
B(x, ρ)

)
ρn

⩾ κ, (10.85)

for any y ∈ B(x, ρ), where Rie is the Riemann curvature tensor, the κ-non-
collapsing condition occurs if exists a constant curvature κ > 0. ⋄

10.2.3. Expanders (фs
r)λ<0(фs
r)λ<0(фs
r)λ<0

10.2.3.1. Expander Soliton

For an expanding solitonic wave with potential υ, see point (3) in Definitions
10.2.1, the function υmeets these statements:(

Ric(g0) +Hes( υ) = Ric(g0) +∇2( υ)
)
+

g0
2(t− T )

= 0, (10.86)

Rs +△ υ+
n

2(t− T )
= 0. (10.87)

10.2.3.2. Expanding Soliton from an Einstein Manifold

A steady Ricci soliton is a natural extension of an Einstein manifold, see
Eqq. (10.60) (10.59).

10.2.3.3. Gaussian (λ < 0)(λ < 0)(λ < 0)-Soliton

Its form is
фs

r =

(
Rn, gE, υ(x) =

λ < 0

2
|x|2
)
. (10.88)
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10.2.3.4. Feldman–Ilmanen–Knopf’s Kähler–Ricci Expanding (Gra-
dient) Solitons

See above, fik’kr [955] solitons in Section 10.2.1.8.

Example 10.2.2 (Basic expander on a negative complex line bundle). Considering
the complex coordinate space of dimension n, {Cn × · · · × Cn}, a gradient
Kähler–Ricci soliton of homothetically expanding type, cf. [504], emerges if
n ⩾ 2, and it corresponds to

фL̊−k
C

r
viz
=
{
фs

r
}n,k,r
t

=
(
L̊−k
C , gt

)
, 0 < t <∞, (10.89)

for a value k > n, k ∈ Z, and a number r > 0, r ∈ R, with a cone-like end on
the quotient (Cn\{0})/Zk of the metric cone Cn/Zk>n by Zk, and a negative
line bundle L̊−k

C . This is the so-called expanding soliton. 5

10.3. Geometrization of Topology (or of Process of Creating
the Space as a Geometry)

It is geometers’ dream (first articulated by Heinz Hopf [1396], I believe) to find a canonical
metric gbest on a given smooth manifold V so that all topology of V will be captured by geometry.

— M.L. Gromov [1215, p. 138]

10.3.1. Poincaré Conjecture

Is it possible that the fundamental group of [a 3-manifold] V is reduced to the identical
substitution, but V is not simply connected [that is, homeomorphic to the 3-sphere]?65

— H. Poincaré [2136, pp. 110, 46]

As it is known, Hamilton’s program (Section 10.1) constitutes the basement
on which G. Perelman (Section 10.4) has erected the proof of the Poincaré
conjecture. Let us see in brief (without dwelling on the backstories) what it is.
For a historical reconstruction of the conjecture, which has survived for nearly
100 years, see [1862].

Conjecture 10.3.1 (Poincaré conjecture). If a closed (compact) smooth 3-
manifold, where any closed loop is shrinkable continuously to a point, is simply
connected, then it is homeomorphic (diffeomorphic) to the 3-sphere S3.a

The simple connectivity, as Poincaré writes (see epigraph), here means
homeomorphic to the 3-sphere, whilst, more broadly, a connected topological
spaceM is simply iff its fundamental group (first homotopy group, or Poincaré
group) π1(M) turns out to be trivial. Call to mind that a loop is a closed curve,
or, even better, a path whose two initial- and end-points are equal to a fixed
point. The property of being simple in the spatio-topological connectedness
results in the fact that, visually, a loop on the surface e.g. of an ordinary sphere
could be deformed, or shrunk (as long as it remains on the surface), to a single
point.

aIn the formulation of Thurston [2496, p. 358]: «Is every 3-manifold with trivial fundamental
group homeomorphic to the 3-sphere?»
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Margo 10.3.1 (Proofs of the Poincaré conjecture from dimensions 1 up to ⩾ 7).
· With manifolds of dimension 1 and 2, the Poincaré conjecture is trivial and

classical, respectively.
· J.R. Stallings [2412] (1960) manages to demonstrate that in dimension

n ⩾ 7 the Poincaré conjecture is true for piecewise linear n-manifolds which has
the homotopy type of the n-sphere Sn.

· E.C. Zeeman [2723] (1961) [2724] (1962) gets a similar result with homotopy
n-spheres in dimension n ⩾ 5 (5 and 6, to be precise).

· S. Smale’s paper [2392] (1961) [2393] (1962) deals with differentiable ho-
motopy n-sphere in dimensions n ⩾ 7, and n ⩾ 5, drawing on a differentiable
method, known as handlebody procedure, useful for building an n-ball to which
certain handles are attached and then removed, piece by piece.a

· In dimensions 4 the proof is the work of M.H. Freedman [1033] (1982), and
it involves the topological case.

· M.H.A. Newman [1933] (1966) gives a demonstration in dimension ⩾ 5 for
topological manifolds within the Stallings’ homotopic structures.

· The last and most difficult proof of the Poincaré conjecture touches its
primal enunciation (1904), which concerns spaces of dimension 3. The Perelman’s
demonstration [2072] [2073] [2074] (2002-2003) embraces three distinct categories:
topological, piecewise linear, and differentiable manifolds. L

10.3.2. Thurston’s Conjecture: Decomposition into Pieces having
Geometric Structures

[A] geometric structure [is] a space (X,G), where X is a manifold and G is a group of diffeo-
morphisms of X such that the stabilizer of any point x ∈ X is a compact subgroup of G [ . . . ].
There are precisely eight homogeneous spacesb (X,G) which are needed for geometric structures
on 3-manifolds [ . . . ]. To find a geometric structure for a particular manifold is a great help in
understanding that manifold.

— W.P. Thurston [2496, p. 358]

A generalization of the Poincaré conjecture is the Thurston’s geometrization
conjecture [2496, p. 357]. Perelman, when he showed the resolution of the
Poincaré conjecture, gave [2072, sec. 13] the first proof, at the same time, of the
Thurston’s conjecture.

Conjecture 10.3.2 (Thurston’s conjecture).
(Short exposition). The interior of any compact and orientable 3-manifold

can be cut along, or split into, pieces which have geometric structures.
(Detailed exposition). Every prime 3-manifold of this type has a canonical

decomposition into a finite collection (after a finite number of steps) of embedded
2-spheres S2 (Kneser–Milnor decomposition) and 2-tori T2 (toral decomposition
by Jaco–Shalen–Johannson). Next comes the gluing action: 3-balls are glued to
the resulting boundary components, and then other pieces are glued along the
boundary tori. The result is a collection of simpler 3-manifolds compared to the
initial one.

aBut note: the cases n ⩾ 5 are a discovery belonging to Smale, as he explains in [2395, p. 47].
The Stallings’ and Zeeman’s proofs come after.

bSee Margo 10.3.2.
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Margo 10.3.2 (The eight 3-geometries of Thurston).
(1) Three geometries with constant curvatures (Section 2.3), κ = 0, κ > 0,

and κ < 0: (i) Euclidean E3, (ii) spherical S3, and (iii) hyperbolic H3 simply
connected spaces, with groups R3 × SO3(R), SO4(R), and PSL2(C).

(2) Two product geometries: (iv) S2 × E1, and (v) H2 × E1, whose groups
are the orientation preserving subgroup of SO3(R)× isom(E1) and isom(H2)×
isom(E1).

(3) Three twisted product geometries: (vi) geometry of S̃L2(R), where the
manifold is the universal cover of the unit sphere bundle of a hyperbolic surface
H2, and the group is R× S̃L2(R); (vii) Nil geometry, where the manifold is a
nilpotent Heisenberg group Hei3 of 3× 3 upper triangular matrices of dimension
3, and the group is Hei3⋊S1, the semidirect product of Hei3 acting on a 1-sphere;
(viii) Sol geometry, where the manifold is a solvable Lie group of dimension
3, and the group is an extension of it. See W.P. Thurston [2494] [2495] [2496]
[2497] [2499] [2500] [2501]. L

10.3.2.1. Kneser–Milnor Prime Decomposition and jsj Decomposition
(with Atoroidal or Seifert Fiber Spaces)

About the decomposition into spheres, the demonstration of the existence
was made by H. Kneser [1512], whereas that of the uniqueness by J. Milnor
[1821]:

Theorem 10.3.1 (Kneser–Milnor decomposition). Any compact and orientable
3-manifold can be built up, with a connected sum, by prime 3-manifolds, or by
3-manifolds homeomorphic to S1 × S2.

The splitting techniques along the tori is due to W.H. Jaco & P.B. Shalen
[1427] [1428, chap. IV], and K. Johannson [1439, §§ 14-21].

Theorem 10.3.2 (Jaco–Shalen–Johannson decomposition). A compact, ir-
reducible, sufficiently large 3-manifold can be cut (split) along tori into 3-
submanifolds, thus forming a finite and unique up to isotopy collection of disjoint
and canonical embedded incompressible tori or annuli. All 3-submanifolds that
are generated by the cutting (splitting) are atoroidal or Seifert fiber spaces [2350].

10.3.2.2. Geometrization Subconjectures

Conjecture 10.3.2 consists of four parts. Let us see them one by one.
(1) Poincaré conjecture 10.3.1, i.e., π1(M3) = 0⇒M3 ∼= S3 (the 3-manifold

is homeomorphic and homotopy equivalent to the 3-sphere).
(2) Clifford–Klein spherical space form conjecture, or Hopf conjecture [1394],
(i) A finite group of diffeomorphisms that acts freely on the 3-sphere S3 is

conjugate to a group of linear isometries which replicates the symmetries of
crystals, see Section 2.2.2.

(ii) It is evident that the Poincaré conjecture is a special case of the spherical
space form conjecture: every closed 3-manifold having a finite fundamental group
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is diffeomorphic to a spherical space form of dimension 3, that is, to a quotient
of S3 under the free and linear action of a finite subgroup of the orthogonal
group O4(R).

(3) Elliptization conjecture. The previous conjecture takes the following
formulation. Let M3 be an irreducible, orientable, and closed 3-manifold with
finite fundamental group π1(M3). As a result M3

· is diffeomorphic to a quotient S3/Γ of S3 by a finite subgroup Γ of the
orthogonal group O4(R),

· admits a metric with constant positive sectional curvature (κ > 0).
(4) Hyperbolization conjecture, expressed in two ways.
(i) (Thurston’s version). Let M3 be a compact 3-manifold with non-empty

boundary; its interior has a hyperbolic metric iffM3 is a prime and homotopically
atoroidal, and if it is not homeomorphic to T2 × I = [0, 1]/Z2

viz
= Z/2Z, which

appears to be true for Haken 3-manifolds (see Margo 10.3.3). A sketch of proof
is in Thurston [2496], see C.T.C. Wall [2606] and J.W. Morgan [1860].

(ii) We say that M3 is irreducible, orientable, and closed 3-manifold with
infinite fundamental group π1(M3), and π1(M3) does not have a subgroup
isomorphic to Z⊕ Z = Z2. As a result M3 presents a hyperbolic structure of
finite volume.

Note. The proof of all the above conjectures are by Perelman, with the
exception of the hyperbolization proposition for some special cases, see e.g. M.
Kapovich [1466] and C.T. McMullen [1804].

Margo 10.3.3 (Haken manifold). A Haken manifold [1259] is a compact, ir-
reducible, and orientable (sufficiently large) 3-manifold that is prime and it
contains a properly embedded two-sided incompressible surface which is not a
2-dimensional sphere S2. L

10.4. Perelman Tapestry

The Ricci flow has also been discussed in quantum field theory, as an approximation to the
renormalization group (rg) flow for the two-dimensional nonlinear σ-modela [ . . . ]. I would like to
speculate on the Wilsonian picture [2674] [2675] of the rg flow. In this picture, t corresponds to
the scale parameter; the larger is t, the larger is the distance scale and the smaller is the energy
scale [ . . . ].66 In other words, decreasing of t should correspond to looking at our Space through a
microscope with higher resolution, where Space is now described not by some ([R]iemannian or any
other) metric, but by an hierarchy of [R]iemannian metrics, connected by the Ricci flow equation.
Note that we have a paradox here: the regions that appear to be far from each other at larger
distance scale may become close at smaller distance scale; moreover, if we allow Ricci flow through
singularities, the regions that are in different connected components at larger distance scale may
become neighboring when viewed through microscope. Anyway, this connection between the Ricci
flow and the rg flow suggests that Ricci flow must be gradient-like.

— G. Perelman [2072, p. 3]

To follow a résumé of the key findings presented in the papers of G. Perelman
[2072] [2073] [2074], who draws and interweaves, on a single conceptual tapestry,
the Ricci flow, in full possession of the Hamilton’s techniques (Section 10.1), and
the Poincaré 10.3.1 and Thurston’s 10.3.2 Conjectures. For an exhaustive and

a So named by M. Gell-Mann and M. Lévy [1117, p. 717] because of the scalar meson σ, as
already established by J. Schwinger [2345]. See Section 10.4.6.



10.4. Perelman Tapestry 213

close examination on the Perelman innovations, we refer to H.-D. Cao and X.-P.
Zhu [508], J.W. Morgan and G. Tian [1864], B. Kleiner and J. Lott [1504].

10.4.1. Entropy-Energy Functionals: Variations, Monotonicity, and
Gradient Flow

Perelman [2072] develops a concept of entropy for the Ricci flow, revisiting
an idea of B. Chow [645], already partly analyzed by Hamilton [1272, secc. 7-8],
but whose roots lie in J.F. Nash [1908].a This type of entropy is associated with
certain functionals (see below, Sections 10.4.1.1 and 10.4.1.2), and it is not about
the measure of the degree of atomic disorder (chaos) (see point (iii), p. 276 in
Section 13.1.1, and Section 13.2.1), as a consequence of heat conduction; but it
measures the geometric disorder (chaos) on space-time.

Not unlike the entropy of thermodynamics, the Perelman’s entropy increases
unidirectionally, and there is no reversibility process, except that it describes
a quantity of energy combined with the Sobolev inequality (Sections 10.4.4.3
and 10.4.4.4). Note. In L. Ni [1943] [1944] there is a simplified version of the
Perelman’s entropy without Ricci flow for a heat-like equation on a static space.

10.4.1.1. The FFF-Functional (and Link with the Nash’s Entropy)

The first definition of entropy [2072, sec. 1] is given in conjunction with an
energy functional F : Xg × C∞(M)→ R,b so the formulation is

F(gµν ,

υ) =

∫
M

(
Rs + |∇ υ|2

)
e−

υ

dµ, (10.90)

for a Riemannian metric gµν and a function υ∈ C∞(M) on a closed manifold
M, where dµ is the volume element (10.3). Eq. (10.90) is what we can call
entropy-energy F-functional.

We define the gradient flow of (10.90) as{
∂tgµν = −2(Rµν +∇µ∇ν υ),

∂t

υ= −△ υ−Rs.
(10.91)

The gradient flow (10.91) is none other than the Ricci flow modified by a 1-
parameter family of diffeomorphisms Д t (cf. point (2) in Definitions 10.2.1),
an example of which is the DeTurck’s modus (Section 10.1.9.2). In fact, Eq.
(10.91) becomes ∂tgµν = −2Rµν , that is (10.1), plus the adjoint (or conjugate)
heat equation

h□∗e−

υ

=
[(
−∂t

viz
= − ∂

∂t

)
−△+Rs

]
e−

υ

= 0, e−

υ

= υ, (10.92)

where
h□∗ = −∂t

viz
=

∂

∂t
−△+Rs (10.93)

aThat is why it is possible to connect the Nash’s entropy, see below Eq. (10.97), with the
Li–Yau’s Harnack inequality (Section 10.1.8.3).

bXg is the space of the g-metric on M.
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is the adjoint of the heat operator h□ = ∂t
viz
= ∂

∂t −△ on C∞ ∈ MT . The heat
operator, or Laplace–Poisson operator, is the solution of the heat equation (10.5),
and goes back to P.-S. Laplace [1583] (for the 1-dimensional space), and S.D.
Poisson [2144].

Margo 10.4.1. Letting e−

υ

= υ be a solution of the adjoint heat Eq. (10.92), we
have

∫
M e−

υ

dµ = 1 in (10.90), which is therefore preserved. L

(1) We can set down the first variation of (10.90) at (gµν ,

υ). Putting
g

♡

µν = δgµν , υ♡

= δ υ, and g‡ = gµνg

♡

µν , one has

δF(g

♡

µν ,

υ♡

)(gµν ,

υ) =

∫
M
e−

υ

{
−△ g‡ +∇µ∇νg

♡

µν −Rµνg

♡

µν − g

♡

µν∇µ υ∇ν υ

+ 2⟨∇ υ,∇ υ♡

⟩+
(
Rs + |∇ υ|2

)(g‡
2
− υ♡

)}
=

∫
M
e−

υ

{
−g

♡

µν(Rµν +∇µ∇ν υ) +

(
g‡

2
− υ♡

)
(
2△ υ− |∇ υ|2 +Rs

)}
. (10.94)

Note the value g‡

2 −

υ♡

vanishes identically in a state where e−

υ

dµ is pointwise
invariant.

(2) The entropy-energy F-functional (10.90) is a monotone quantity. Its
monotonicity formula is (without and without indices)

d

dt
F
(
gµν(t),

υ

t

)
= 2

∫
M
|Rµν +∇µ∇ν υ|2e−

υ

dµ ⩾ 0, (10.95a)

∂tF(gt,

υ

t) = 2

∫
M
|Ric +Hes( υ)|2e−

υ

dµ ⩾ 0, (10.95b)

under which F is a monotonically increasing (or non-decreasing) quantity along
the Ricci flow, but also a constant value on steady Ricci solitons (cf. Section
10.2.2) with potential υwith Rµν +∇µ∇ν υ= Ric +Hes( υ) = 0.

(3) From (10.95) we derive the gradient flow of the F-functional:{
∂tgµν

viz
= ∂

∂tgµν = −2(Rµν +∇µ∇ν υ),

∂t

υviz
= ∂

∂t

υ= −Rs −△ υ.
(10.96)

Scholium 10.4.1. The entropy-energy F-functional (10.90)
· originally appears in the string theory literature as a low energy effective

action, and the function υacts as a dilaton field, see e.g. [1203, chap. 13];
· is an enhanced version of the Einstein–Hilbert action (4.6).
· is correlated with the Li–Yau’s Harnack inequality⌢IHar

ly (10.24) by means
of the Nash’s entropy, which is also a monotone quantity.
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We define the Nash’s entropy [1908, p. 936] as

Sn(

υ, τ) = −
∫
M
υ log υdµ− n

2
log(4π τ)− n

2
= −

∫
M

υυdµ− n

2
, (10.97a)

Sn(υ, t) = −
∫
M
υ log υdµ, (10.97b)

assuming a quantity τ(τ) > 0 satisfying d τ

dτ = 1, and that the function υis
dictated by υ = (4π τ)−

n
2 e−

υ

with
∫
M υdµ = 1, and υ coincides with the heat

kernel, or the fundamental (positive) solution, of the heat equation{
h□υ = 0,

△ υ = ∂υ
∂τ ,

(10.98a)

(10.98b)

on a closed manifoldM, cf. Eq. (10.21). Now, Eq. (10.90) gets to be{
F( υ, τ) = d

dτ Sn(

υ, τ)

F(gµν ,

υ) = ∂tSn(υ, t)
viz
= ∂

∂tSn(υ, t),

(10.99a)

(10.99b)

that is, it can be regarded as the first derivative of (10.97b). ⋄

10.4.1.2. The WWW-Functional

Perelman’s second notion of entropy [2072, sec. 3] is a generalization of the
previous one, with the insertions of a constant scale parameter τ = (T−t) > 0, for
the explicit purpose of handling a shrinker (фs

r)λ>0 (cf. Section 10.2.1.3). Taking
a closed Riemannian manifold (Mn, g) of dimension n, a function υon Mn,
and a functional W : Xg × C∞(M)× R+ → R, the Perelman’s entropy-energy
functional, serving as a shrinker entropy functional, is determined by

W(gµν ,

υ, τ) =

∫
Mn

(
τ
(
Rs + |∇ υ|2

)
+ ( υ− n)

)
(4πτ)−

n
2 e−

υ

dµ, (10.100)

provided that υsatisfies
∫
Mn(4πτ)

−n
2 e−

υ

dµ = 1. The entropy-energy W is
· monotonically increasing (or non-decreasing) quantity,
· invariant under simultaneous change of the scale of both gµν and τ , under

parabolic conditions, and also under diffeomorphism.
(1) As in the previous case, we put g

♡

µν = δgµν , υ♡

= δ υ, g‡ = gµνg

♡

µν , and
τ

♡

= δτ , for writing the first variation of (10.100) at (gµν ,

υ, τ),

δW(g

♡

µν ,

υ♡

,τ

♡

)(gµν ,

υ, τ) =

∫
Mn

−τg

♡

µν

(
Rµν +∇µ∇ν υ− gµν

2τ

)
(4πτ)−

n
2 e−

υ

dµ

+

∫
Mn

(
g‡

2
− υ♡

− n

2τ
τ

♡

)(
τ
(
Rs + 2△ υ− |∇ υ|2

)
+ υ− n− 1

)
(4πτ)−

n
2 e−

υ

dµ

+

∫
Mn

τ

♡(
Rs + |∇ υ|2 − n

2τ

)
(4πτ)−

n
2 e−

υ

dµ.

(10.101)
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We report a demonstration, in view of its single step conciseness.

Proof of (10.101).

δW
(
g

♡

µν ,

υ♡

, τ

♡)
=

∫
Mn

{
τ

♡(
Rs + |∇ υ|2

)
+ τ
(
−△ g‡ +∇µ∇νg

♡

µν −Rµνg

♡

µν

− g

♡

µν∇µ υ∇ν υ+ 2⟨∇ υ,∇ υ♡

⟩
)
+ υ♡}

(4πτ)−
n
2 e−

υ

dµ

+ [:
∫
Mn

{(
τ
(
Rs + |∇ υ|2

)
+ υ− n

)(
−n
2

τ

♡

τ
+
g‡

2
− υ♡

)}
(4πτ)−

n
2 e−

υ

dµ :]

=

∫
Mn

{
τ

♡(
Rs + |∇ υ|2

)
+ υ♡}

(4πτ)−
n
2 e−

υ

dµ

+

∫
Mn

{
−τg

♡

µν(Rµν +∇µ∇ν υ)

+ τ
(
g‡ − 2 υ♡) (

△ υ− |∇ υ|2
)}

(4πτ)−
n
2 e−

υ

dµ

+ [: · · · :]

= −
∫
Mn

τg

♡

µν

(
Rµν +∇µ∇ν υ− gµν

2τ

)
(4πτ)−

n
2 e−

υ

dµ

+

∫
Mn

(
g‡

2
− υ♡

− n

2τ
τ

♡

){
τ
(
Rs + |∇ υ|2

)
+ υ− n

+ 2τ
(
△ υ− |∇ υ|2

)}
(4πτ)−

n
2 e−

υ

dµ

+

∫
Mn

{
τ

♡(
Rs + |∇ υ|2 − n

2τ

)
+

(

υ♡

− g‡

2

n

2τ
τ

♡

)}
(4πτ)−

n
2 e−

υ

dµ

=

∫
Mn

−τg

♡

µν

(
Rµν +∇µ∇ν υ− gµν

2τ

)
(4πτ)−

n
2 e−

υ

dµ

+

∫
Mn

(
g‡

2
− υ♡

− n

2τ
τ

♡

){
τ
(
Rs + 2△ υ− |∇ υ|2

)
+ υ− n− 1

}
(4πτ)−

n
2 e−

υ

dµ

+

∫
Mn

τ

♡(
Rs + |∇ υ|2 − n

2τ

)
(4πτ)−

n
2 e−

υ

dµ. (10.102)

Patently δW
(
g

♡

µν ,

υ♡

, τ

♡) viz
= δW(g

♡

µν ,

υ♡

,τ

♡

)(gµν ,

υ, τ). □

(2) Consider 
∂tgµν

viz
= ∂

∂tgµν = −2Rµν ,
∂ υ

∂t = −△ υ−Rs + |∇ υ|2 + n
2τ ,

dτ
dt = −1,

(10.103)



10.4. Perelman Tapestry 217

that is, a Ricci flow together with a backward heat-like equation, and let υ =
(4πτ)−

n
2 e−

υ

be a process that satisfies the adjoint heat equation

h□∗υ =

(
−∂t

viz
= − ∂

∂t
−△+Rs

)
υ = 0, (10.104)

cf. (10.92), containing the adjoint of the heat operator (10.93), i.e. h□∗ = −∂t
viz
=

∂
∂t −△+Rs. From the system (10.103) one arrives to the monotonicity formula
for the W-functional (without and without indices),

d

dt
W
(
gµν(t),

υ

t, τt
)
= 2τ

∫
Mn

∣∣∣Rµν +∇µ∇ν υ− gµν
2τ

∣∣∣2 (4πτ)−n
2 e−

υ

dµ ⩾ 0,

(10.105a)

∂tW(gt,

υ

t, τt
)
= 2τ

∫
Mn

∣∣∣Ric +Hes( υ)− g

2τ

∣∣∣2 υdµ ⩾ 0. (10.105b)

The result d
dt W

(
gµν(t),

υ

t, τt
)
= 0, or ∂tW(gt,

υ

t, τt
)
= 0, shall apply to

gradient shrinker in which the potential υfulfills the condition Rµν +∇µ∇ν υ−
gµν

2τ = 0, or Ric +Hes( υ)− g
2τ = 0, respectively.

10.4.2. The ℓℓℓ-Length Functional

Alongside the geometric entropy formulæ (Sections 10.4.1.1 and 10.4.1.2),
Perelman [2072, sec. 7] outlines the notion of ℓ-length (10.106), an energy-like
functional, and builds an overall picture of Riccian flow singularities. Incidentally,
the paper [2072] offers solutions with non-negative curvature that may show up
as blow-up limits of finite time singularities, which satisfy a given non-collapsing
condition (see Theorem 10.4.1) and correspond to a bounded entropy.

Let us now look at exactly what the ℓ-length is. Let ∂τgτ
viz
= ∂gτ

∂τ = 2Ric(gτ ),
gτ = g(τ), be a backward Ricci flow, where τ = t0 − t, for a fixed time t0.
Let γc : [τ1, τ2] → M be a C1 curve (parameterized by backward time), with
[τ1, τ2] ⊂ (0,∞) and τ1 ⩾ 0, i.e. 0 ⩽ τ1 < τ2

a (supposing that M is compact, or
that gτ is complete with uniformly bounded curvature). The ℓ-length is a local
length functional defined on the space of all space-time curves, or paths ; its form
is

ℓ(γc) =

∫ τ2

τ1

√
τ

{
Rsgτ

(
γc(τ)

)
+

∣∣∣∣dγcdτ τ
∣∣∣∣2
gτ

}
dτ, (10.106a)

=

∫ τ2

τ1

√
τ
{
Rsgτ

(
γc(τ)

)
+|γ̇c(τ)|2gτ

}
dτ, γ̇c(τ) = ∂τγc(τ)

viz
= ∂γc

∂τ ,

(10.106b)

in which the metric gτ is used at time t0 − τ for both the Ricci scalar Rsgτ and
the norm |γ̇c(τ)|. Setting the vectors fields X⃗(τ) = γ̇c(τ) and Y⃗ (τ) along a curve

aPerelman’s original assumption is 0 < τ1 ⩽ τ ⩽ τ2.
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γc(τ) in M, the variation formula of (10.106) is

δY⃗
(
ℓ(γc)

)
= 2
√
τ⟨X⃗, Y⃗ ⟩

∣∣∣τ2
τ1
+

∫ τ2

τ1

√
τ

〈
Y⃗,∇Rs − 2∇X⃗X⃗ − 4Ric(X⃗, ·)− 1

τ
X⃗

〉
dτ,

(10.107)
where ⟨· , ·⟩ is the inner product by reference to gτ , whilst Ric(X⃗, ·) is a horizontal
1-form along γc(τ) here equivalent to its dual Ric(X⃗, ·)∗, which in turn is a tangent
vector field.

Proof.

δY⃗
(
ℓ(γc)

)
=

∫ τ2

τ1

√
τ
(
⟨Y⃗,∇Rs⟩+ 2⟨∇Y⃗ X⃗, X⃗⟩

)
dτ

=

∫ τ2

τ1

√
τ
(
⟨Y⃗,∇Rs⟩+ 2⟨∇X⃗ Y⃗, X⃗⟩

)
dτ

=

∫ τ2

τ1

√
τ

(
⟨Y⃗,∇Rs⟩+ 2

d

dτ
⟨Y⃗, X⃗⟩ − 2⟨Y⃗,∇X⃗X⃗⟩ − 4Ric(Y⃗, X⃗)

)
dτ

=

∫ τ2

τ1

{
2
d

dτ

(√
τ⟨Y⃗, X⃗⟩

)
− 1√

τ
⟨Y⃗, X⃗⟩

+
√
τ
(
⟨∇Rs, Y⃗ ⟩ − 2⟨Y⃗,∇X⃗X⃗⟩ − 4Ric(X⃗, Y⃗ )

)}
dτ

= 2
√
τ⟨X⃗, Y⃗ ⟩

∣∣∣τ2
τ1

+

∫ τ2

τ1

√
τ

〈
Y⃗,∇Rs − 2∇X⃗X⃗ − 4Ric(X⃗, ·)− 1

τ
X⃗

〉
dτ,

(10.108)

□

10.4.2.1. The ℓℓℓ-Geodesics, or the Euler–Lagrange Equation for a
Critical Curve

We can then write the ℓ-geodesics equation, that is, the Euler–Lagrange
equation for critical curves about the ℓ-length:

∇X⃗X⃗ −
1

2
∇Rs +

1

2τ
X⃗ + 2Ric(X⃗, ·) = 0, (10.109)

where ∇Rs designates a horizontal gradient.

10.4.3. Perelman’s No Local Collapsing Theorem

Hamilton in [1276] had hoped for the possibility that, in treating surgically
(Section 10.1.7) a space of dimension 3 with no prior conditions and uniformly
bounded curvature, after a finite number of cutting/gluing operations, the
normalized Ricci flow exists for all time t→∞, and that фnor

r is non-singular
[1277].

Perelman does not confirm the Hamilton’s expectation; but he finds a way to
control the onset of unwanted singularities (Section 10.1.6), through the so-called
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no local collapsing (nlc) theorem [2072, secc. 4, 8] [2073, sec. 7] related to
the action of the Ricci flow with or without surgery, but in any case with a
classification of the asymptotic behavior of blow-ups of singularities in dimension
3, as Hamilton [1275] had already started to do, thanks to his reinterpretations
of the Harnack inequality (Section 10.1.8). Let us find out what it is.

10.4.3.1. κ-(Non-)collapsing, and Ball Volume Ratio

The nlc theorem is a consequence of the monotonicity (10.105) of the W-
functional. Before stating the theorem, there is need for definitions.

Definitions 10.4.1 (κ-non-collapsing and κ-collapsing).
(1) The κ-non-collapsing and κ-collapsing on the topological space.
(i) Let (Mn, g) be an n-dimensional Riemannian manifold. For for some

positive constants ϵ∈ (0,∞] and κ > 0, a metric gµν is said to be κ-non-collapsed
below the scale ϵif, for a metric n-ball B(x, ρ) ⊂ Mn of radius ρ < ϵ, for any
x ∈Mn, it happens that, equivalently,

vol
(
B(x, ρ)

)
ρn

⩾ κ,

vol
(
Bρ−2g(x, 1)

)
⩾ κ,

vol
(
B(x, ρ)

)
⩾ κρn,

(10.110)

with ρ > 0, and the Riemann curvature tensor is |Rie(y)| ⩽ ρ−2, for any
y ∈ B(x, ρ), cf. Scholium 10.2.5. The metric gµν is κ-non-collapsed at all the
scales if gµν is κ-non-collapsed below the scale ϵ<∞.

(ii) A metric gµν , by contrast, is κ-collapsing at the scale ρ and the point x if

vol
(
B(x, ρ)

)
ρn

⩽ κ. (10.111)

(2) The κ-non-collapsing and κ-collapsing in the Ricci flow .
(i) Let gt

viz
= g(t), t ∈ [0, T ), be a solution to the Ricci flow фr (Definition

10.1.1), where T ∈ (0,∞]. Then gt is said to be κ-non-collapsed below the scale
ϵif gt keeps this κ-condition for all t ∈ [0, T ).

(ii) Given an n-dimensional manifoldMn, a solution gt, t ∈ [0, T ), is called
locally collapsed at T if there is a sequence

· of points xk ∈Mn,
· of times tk → T ,
· of metric balls Bg(tk) = B(xk, ρk) at times tk, with radius ρk ∈ (0,∞), such

that ρ2k/tk is uniformly bounded, |Rie|(gµν)tk ⩽ ρ−2
k in Bg(tk), and ρ−nk vol(Bg(tk))→

0, or limk→∞ ρ−nk vol(Bg(tk)) = 0. 3

Theorem 10.4.1 (Perelman’s no local collapsing). Let gt
viz
= g(t), t ∈ [0, T ), be

a smooth solution to the Ricci flow фr, i.e. ∂(gµν)t
∂t = −2Ric(gt) on a closed

n-dimensional Riemannian manifold Mn. Given a constant ϵ∈ (0,∞), i.e.
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a finite scale ϵ> 0, if T < ∞, then gt is κ-non-collapsed below the scale ϵ
(as described in Definitions 10.4.1), for some constant κ = κ(n, g0, T, ϵ) > 0,
g(0) = g0, and for every t ∈ [0, T ).

Corollary 10.4.1. If the manifold Mn is a closed space, and gt is a solution to
фr on [0, T ), T <∞, ergo gt is not locally collapsing at T .

Proof of the Theorem 10.4.1.
(α) — step I. A first part of the demonstration is to show that, for a spatial

dimensionality n ⩾ 2, there exists a form

µ(g, ρ2) ⩽ log
vol
(
B(x, ρ)

)
ρn

+ c(n, ϵ), (10.112)

g
viz
= gµν , for a constant c

(
n, ϵ, c(n)

)
, and the previous quantities, that is, a finite

scale ϵ∈ (0,∞), a point x ∈Mn, and the radius ρ ∈ (0, ϵ], such that the Ricci
curvature tensor is Ric ⩾ −c(n)ρ−2, the Ricci scalar is Rs ⩽ c(n)ρ−2, and both
are in the ball B(x, ρ). It follows that, for κ > 0 and ρ > 0, g is κ-collapsed on
the scale ρ ⩽ ϵ, and that µ(g, ρ2) ⩽ log κ+ c(n, ϵ).

(β) — step II. Putting t ∈ [T2 , T ), one finds that
(i) Ricgt ⩾ −c(n)ρ−2 and Rsgt ⩽ c(n)ρ−2 are effectively in Bgt(x, ρ),
(ii) t + ρ2 ∈ [T2 , T + ϵ2), for 0 < ρ ⩽ ϵ, so (owing to the monotonicity

structure) −c(g0, T, ϵ) ⩽ µ(g0, t+ ρ2) ⩽ µ(gt, ρ2).
This last expression, combined with (10.112), leads to

−c(g0, T, ϵ) ⩽ µ
(
gt,ρ

2
)
⩽ log

volgt
(
B(x, ρ)

)
ρn

+ c(n, ϵ), (10.113)

and hence

volgt
(
B(x, ρ)

)
ρn

⩾ exp
{
−c(g0, T, ϵ)− c(n, ϵ)

}
> 0, (10.114)

in which we can enforce the equality exp
{
−c(g0, T, ϵ)− c(n, ϵ)

}
= κ1(g0, T, ϵ).

Remember that, as imposed by the theorem, T <∞, thereby −c(g0, T, ϵ) >
−∞ = infτ∈[T2 ,T+ ϵ2] µ(g0, τ), by which (inasmuch as T

2 < T ) we can write
κ0 = κ0(g0, T, ϵ) > 0, so that gt is κ0-non-collapsed on the scale ϵ, for any
t ∈ [0, T2 ]. The only conclusion is that κ(g0, T, ϵ) = min{κ0, κ1}.

(γ) — step III. Hints on step I. Its demonstration arises from the infimum
statement

µ(g, ρ2) ⩽ W(g, υ, ρ2) =

∫
Mn

{
ρ2
(
Rs + |∇ υ|2

)
+ υ− n

}
(4πρ2)−

n
2 e−

υ

dµ.

(10.115)
By placing þ2 = (4πρ2)−

n
2 e−

υ

, with a function þ > 0, one proceeds to

µ(g, ρ2) ⩽ W1(g, þ, ρ2) =
∫
Mn

{
ρ2
(
4|∇þ|2 +Rsþ2

)
+ υþ2

}
dµ, (10.116)
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for
∫
Mn þ2dµ = 1. By way of a cutoff function∖ȷ : [0,∞)→ [0, 1], having∖ȷ = 1 on

[0, 12 ],∖ȷ = 0 on [1,∞), and |∖ȷ(i)| ⩽ 3, and then choosing a constant c∖ȷ = c∖ȷ(g, x, ρ),
it is determined that

þ21(y) = (4πρ2)−
n
2∖ȷ
(
d(y, x)/ρ

)2
e−c∖ȷ . (10.117)

To connect the quantity volume of B(x,ρ)
ρn and the constant c∖ȷ, it is necessary to

impose an expression of this type,

log
vol
(
B(x, ρ)

)
ρn

− c1(n, ϵ) ⩽ c∖ȷ ⩽ log
vol
(
B(x, ρ)

)
ρn

, (10.118)

for a constant’s value c1(n, ϵ) < ∞, and a radius ρ ∈ (0, ϵ). By means of Eq.
(10.117), via |∖ȷ(i)| ⩽ 3 and Eq. (10.118), we get to define that

ρ2|∇þ1|2 ⩽ (4πρ2)−
n
2 e−c∖ȷ |∖ȷ(i)|2 ⩽ 9(4π)−

n
2 e−c∖ȷ/ρn ⩽

9(4π)−
n
2 ec1(n, ϵ)

vol
(
B(x, ρ)

) .

(10.119)
We would point out that the energetic-entropic values of the W-functional are
regulated by ∫

Mn

ρ2
(
4|∇þ1|2 +Rsþ21

)
dµ ⩽ c(n, ϵ), (10.120)

and ∫
Mn

υ

1þ21dµ ⩽ c∖ȷ +
1
e (4π)

−n2 ·
e−c∖ȷvol

(
B(x, ρ)

)
ρn

⩽ c∖ȷ +
1
e (4π)

−n2 ec1(n, ϵ)

⩽ log
vol
(
B(x, ρ)

)
ρn

+ c(n, ϵ). (10.121)

So this means W1(g, þ1, ρ2) ⩽ log volume of B(x,ρ)
ρn + c(n, ϵ). Since þ must be

positive, cf. Eq. (10.116), it is appropriate to introduce a small value ε ∈ vε,
vε = 0, 1/

√
vol(Mn), by which þε(y)cε(þ1 + ε) > 0, and 1

2 ⩽ cε ⩽ 1, which
accordingly gives

µ(g, ρ2) ⩽ W1(g, þε, ρ
2), (10.122)

for any ε. From the value ε ∈ vε it also follows that limε→0+ cε = 1, and
limε→0+ þε = þ1. If limε→0+ ε log ε = 0, then

lim
ε→0+

W1(g, þε, ρ
2) = W1(g, þ1, ρ

2), (10.123)

and therefore µ(g, ρ2) ⩽ log volume of B(x,ρ)
ρn + c(n, ϵ).

(δ) — step IV. What happens next? For a constant κ > 0 and a radius
ρ > 0, the metric tensor field g is κ-collapsed on the scale ρ, and thus there is a
volume ratio volume of B(x,ρ)

ρn ⩽ κ of a ball centered at x, in complete contradiction
to the monotonic request assumed under the Theorem 10.4.1.

□

Corollary 10.4.1 is equivalent to the Theorem 10.4.1, so there is no need to
prove it.
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10.4.4. Non-collapsing via Sobolev Inequalities

The nlc Theorem 10.4.1 can also be developed as a result of Sobolev embed-
ding instances (cf. Theorems 10.4.2 and 10.4.3), so it appears related to certain
Sobolev spaces; this is because the Perelman’s entropy-energy W-functional
(10.100), and its monotonicity (10.105), entail specific Sobolev inequalities along
the Ricci flow, known by the name logarithmic Sobolev inequalities (see Proposi-
tion 10.4.2).

10.4.4.1. Sobolev Space W k,p(Ω)W k,p(Ω)W k,p(Ω)

Let us provide some basic indications, in the most general terms, before going
forward in the hot core of the matter.

Definition 10.4.1 (Sobolev space). A Sobolev space [2400] [2401] of type
W k,p(Ω)

viz
= W k,p(Ω,Rk), for k ∈ Z∗ (non-negative integer), or even k ∈ N

(natural number), 1 ⩽ p ⩽ ∞, with a domain (open subset) Ω ⊂ Rn of real
numbers, is a normed vector space of functions, or the space of equivalence
classes of functions, having weak derivatives. Let us put it more technically.

· The space

W k,p(Ω) =
{
υ ∈ Ck | Dαυ,∀α ∈ Z∗, |α| ⩽ k ∈ {0, 1, 2, . . .}

}
(10.124)

is the set of all functions υ : Ω → Rn locally summable, under which, fixed a multi-
index α = (α1, . . . , αn) ∈ Z∗ of order |α| ⩽ k ∈ Z∗, where |α| = α1 + · · ·+ αn,
there is a weak α-th partial derivative

Dαυ =
∂|α|

∂xα
=

∂α1

∂xα1
1

· · · ∂
αn

∂xαn
n
υ (10.125)

of υ lying in the (Lebesgue) function space Lp, so W k,p(Ω) = Lp(Ω); the norm
of W k,p(Ω) is defined as

∥υ∥Wk,p(Ω) =


∥υ∥k,p =

∑
|α|⩽k

∫
Ω

|Dαυ|pLp(Ω)


1
p

, 1 ⩽ p <∞

∥υ∥k,∞ =
∑
|α|⩽k

ess sup
Ω
∥Dαυ∥∞L∞(Ω), p =∞,

(10.126)

where ess sup indicates the essential supremum operator.
· The space

W k,p(Ω) =
{
υ ∈ Lp(Ω) | Dαυ,∀α ∈ Nn0 , |α| ⩽ k

}
(10.127)

is the set of all functions υ ∈ Lp(Ω)
viz
= Lp(Ω,Rk), Ω ⊂ Rn, with weak derivatives

Dαυ in Lp(Ω), for any α = (α1, . . . , αn) ∈ Nn0 , |α| ⩽ k ∈ N, the norm of which
is

∥υ∥Wk,p(Ω) = ∥υ∥Lp(Ω) +
∑
|α|⩽k

∥Dαυ∥Lp(Ω). (10.128)

3
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Margo 10.4.2 (Tempered distribution). The weak α-th partial derivative (10.125)
corresponds to what is called a tempered distribution, which is just a slowly
increasing distribution, for any multi-index α, whilst υ is a tempered function
(by making explicit a tempered distribution). L

Scholium 10.4.2.
(1) For p = 2, the Sobolev space W k,p(Ω) is (coincided with) a Hilbert space,

i.e. W k,2(Ω) = Hk(Ω), and L2(Ω) = H0(Ω).
(2) As a function space, for 1 ⩽ p ⩽∞, and kN ∈ {1, 2, 3, . . .}, the Sobolev

space W k,p(Ω) is (coincided with) a Banach space [185].
(3) The local Sobolev space is simply denoted by W k,p

loc (Ω). We say that υ is
a function of W k,p

loc (Ω) if υ ∈ W k,p(Χ ), for any Χ ⋐ Ω, and the embedding is
W k,p

loc (Ω) ↪→W k,p(Χ ), for any Χ ⋐ Ω. ⋄

10.4.4.2. Sobolev Embedding for a Null Trace Space, Orlicz Space,
and General Sobolev Inequality

Let us endeavour to define the concept of Sobolev embedding, accompanied by
that of inequality, for a generic spaceW k,p

0 (Ω), with zero trace, and a Riemannian
space W k,p(M), respectively, but in both cases having k = 1, since they will
come in handy for the purposes of this Section.

Definition 10.4.2 (Sobolev space with zero trace). Letting Ω ⊂ Rn, k ∈ N,
and 1 ⩽ p <∞, the Sobolev space W k,p

0 (Ω), is the closed subspace of functions
υ ∈W k,p(Ω), that is, the closure in W k,p(Ω) of the vector (sub)space C∞

c (Ω)
of forms compactly supported, with tr(υ) = 0. The case k = 1,

W 1,p
0 (Ω) =

{
υ ∈W k,p(Ω) | C∞

c (Ω)-form, tr(υ) = 0
}
, (10.129)

repeats the same definition. 3

Proposition 10.4.1 (Sobolev embedding for a null trace space). In light of
Definition 10.4.2, the Sobolev embedding for the space W 1,p

0 (Ω), given a domain
Ω ⊂ Rn, is

W 1,p
0 (Ω) ↪→

{
L

np
n−p (Ω),

C1−n
p (Ω),

(10.130a)

(10.130b)

W 1,p
0 (Ω) ↪→ L

ψ

( “Ω) =

{
л : “Ω → Rn

∣∣∣∣∣
∫

“Ω

ψ

(λл)dµ(x) <∞

}
, (10.130c)

for 1 ⩽ p < n in (10.130a), p > n in (10.130b), and p = n in (10.130c), which
is an example of null trace Sobolev space embedded in Orlicz space.

Scholium 10.4.3 (Orlicz space). Given a σ-finite measure space ( “Ω,µ) (see
Chapters 12 and 13), the Orlicz function space, aka Birnbaum–Orlicz space
[297], L

ψ

( “Ω)
viz
= L

ψ

( “Ω,µ), formed by the Orlicz function ψ: [0,∞)→ [0,∞], is
the space of every Lebesgue (measurable) function л : “Ω → Rn under which∫

“Ω⊂Rn

ψ(λл)dµ(x) <∞, for some λ > 0, where λл = λ|л(x)|. ⋄
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We now come to the Sobolev inequalities. They are familiar when we have
to provide the proof of embedding theorems, in particular for compact objects,
and to verify connections with heat kernels. Here is a glimpse.

Example 10.4.1 (General Sobolev inequality). Given a Riemannian n-space
(Mn, g), a function υ ∈ W 1,p(M), and a constant c, we say that there is
an inequality(∫

Mn

υ
np

(n−p) dµ

) (n−p)
np

⩽ c

(∫
Mn

|∇υ|pdµ

) 1
p

+ c

(∫
Mn

|υ|pdµ

) 1
p

, (10.131)

for all p ∈ [1, n), W 1,p(M) ⊂ L
np

(n−p) (M), by which c = c(M) > 0. This is a
Sobolev inequality in a generalized form. 5

10.4.4.3. Carron–Akutagawa’s Sobolev Embedding

We shall move on to the next embedding & inequality statement by G. Carron
[541] and K. Akutagawa [32]. Its importance is due to the fact that it can be used
as a first evidence for the non-collapsing request within the Sobolev structures.

Theorem 10.4.2 (Carron–Akutagawa’s). Let Mn be a complete n-dimensional
Riemannian manifold endowed with a metric tensor g. We are adopting the
embedding W 1,p(M) ↪→ L

np
n−p (M), under which, for all p ∈ [1, n), and for every

function υ ∈W 1,p(M), one has the following inequalities
∥υ∥ np

n−p
⩽ c
(
∥∇υ∥p + ∥υ∥p

)
,

volg
(
B(x, ρ)

)
⩾

min
(

1
2c

)n
,

min

(
ρ

2
n+2p

p c

)n
,

(10.132a)

(10.132b)

letting B(x, ρ) ⊂Mn be an n-ball, with ρ > 0.

Proof. From Hölder inequality [1382], one obtains

∥υ∥p ⩽
[
volg

(
B(x, ρ)

)] 1
n ∥υ∥ np

n−p
⩽
[
volg

(
B(x, ρ)

)] 1
n c
(
∥∇υ∥p + ∥υ∥p

)
,

(10.133a)

∥υ∥p −
[
volg

(
B(x, ρ)

)] 1
n c∥υ∥p ⩽

[
volg

(
B(x, ρ)

)] 1
n c∥∇υ∥p, (10.133b)

1−
[
volg

(
B(x, ρ)

)] 1
n c ⩽

[
volg

(
B(x, ρ)

)] 1
n cÐ, (10.133c)

1[
volg

(
B(x, ρ)

)] 1
n

− c ⩽ cÐ, putting Ð =
∥∇υ∥p
∥υ∥p

. (10.133d)

Here two possibilities branch out: either
[
volg

(
B(x, ρ)

)] 1
n ⩾ 1

2c or ⩽ 1
2c , so, in

the latter case, c ⩽ 1
2[volume of B(x,ρ)]1/n and 1

2[volume of B(x,ρ)]1/n ⩽ cÐ.
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Considering that υ is a Lipschitz-type function, we write

∥υ∥p =

(∫
B(x,ρ)

|υ|pdµ

) 1
p

⩾

(∫
B(x, ρ2 )

|υ|pdµ

) 1
p

, (10.134a)

∥υ∥p ⩾

(∫
B(x, ρ2 )

(ρ
2

)p
dµ

) 1
p

=
ρ

2

[
volg

(
B
(
x, ρ2

))] 1
p

. (10.134b)

Since 1
2[volume of B(x,ρ)]1/n ⩽ cÐ,

1

2
[
vol
(
B(x, ρ)

)] 1
n

⩽ c

[
volg

(
B(x, ρ)

)] 1
p

ρ
2

[
volg

(
B(x, ρ2 )

)] 1
p

, (10.135a)

volg
(
B(x, ρ)

)
⩾
( ρ
4c

) np
n+p

[
volg

(
B
(
x, ρ2

))] n
n+p

. (10.135b)

Let a distance R > 0 be given. By induction,

volg
(
B(x,R)

)
⩾

(
R

4c

) np
n+p [

volg

(
B
(
x, R2

))] n
n+p

(10.136)

volg

(
B
(
x, R2

))
⩾

( ρ
2

4c

) np
n+p [

volg

(
B
(
x, R4

))] n
n+p

, (10.137)

and, for every r ∈ N\{0},
volg

(
B(x,R)

)
⩾
(
R
2c

)pZ1(r)
, with Z1(r) =

∑r
j=1

(
n
n+p

)j
,(

1
2

)pZ2(r)
, with Z2(r) =

∑r
j=1 j

(
n
n+p

)j
,[

volg
(
B(x, R

2r )
)]pZ3(r)

, with Z3(r) =
(

n
n+p

)r
,

(10.138a)

(10.138b)

(10.138c)

by multiplying the above three items.
We denote by volR the volume of the Euclidean ball of radius ρn. Hence[

volg

(
B
(
x, R

2r

))]
⩾ volRn/2

(
R
2r

)n
, (10.139a)[

volg

(
B
(
x, R

2r

))]Z3(r)

⩾
(
(volRn/2)2−rn · Rn

)( n
n+p )

r

= (volRn/2)(
n

n+p )
r

2−rn(
n

n+p )
r

Rn(
n

n+p )
r

, (10.139b)

and thus
lim
r→∞

[
volg

(
B
(
x, R

2r

))]Z3(r)

= 1. (10.140)

From the group (10.138), i.e.

volg
(
B(x,R)

)
⩾

(
R

2c

)pZ1(r)(1

2

)pZ2(r) [
volg

(
B(x, R

2r )
)]pZ3(r)

, (10.141)
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being that pZ1(r)→ n, and pZ2(r)→ n2+np
p , letting r →∞, we observe that

volg
(
B(x,R)

)
⩾

(
R

2c

)n(
1

2

)n2+np
p

(
R

2
n+2p

p c

)n
, (10.142)

and volg
(
B(x,R)

)
⩾ min

(
1
2c ,

R

2
n+2p

p c

)n
. □

10.4.4.4. Logarithmic Sobolev Inequality, and Lower Bound for the
WWW-Entropy-Energy

Also the following theorem contributes to reach a demonstration of non-
collapse on topological spaces, but this time centered on the Ricci flow. In
combination with Theorem 10.4.2, it provides, within the Sobolevian context, an
alternative proof to the Perelman’s result 10.4.1 for the no local collapsing issue.

Theorem 10.4.3 (Sobolev inequality and the Ricci flow). Take a metric g = gt
evolving under the Ricci flow ∂gt

∂t = −2Ric(gt) (10.1) on a compact (n ⩾ 3)-
dimensional Riemannian manifold Mn. Then, for each function υ ∈W 1,2(M),
the Sobolev inequality(∫

Mn

υ
2n

n−2 dµ(g0)

)n−2
n

⩽ c(1)

∫
Mn

|∇υ|2dµ(g0) + c(2)

∫
Mn

υ2dµ(g0) (10.143)

in respect of (Mn, g0) is true, with two positive constants c(1) and c(2). In
addition, the inequality(∫

υ
2n

n−2 dµ(gt)

)n−2
n

⩽ c(1)(t)

(∫
|∇υ|2 + 1

4
Rsυ

2

)
dµ(gt) + c(2)(t)

∫
υ2dµ(gt)

(10.144)
in respect of (Mn, gt) holds, with t ∈ [0, T0), T0 ⩽∞, where c(1)(t) and c(2)(t)
are treated as positive functions on g0, and Rs is the scalar curvature relative to
gt.

Proof (Frog’s eyeaperspective). The entire demonstration is beyond the scope
of this Chapter; see the works of Q.S. Zhang [2737] [2738, chap. 6.2] for a
painstaking exposition. We are interested, rather, to draw attention, in the rest
of the text, on few but chief points that, emerging from this Theorem, connect
the Perelman’s work with the Sobolevian toolkit. □

The foremost aspect to underline it is the opportunity to bring out the close
implication between, on the one hand, the Perelman’s W-entropy-energy formula
(10.100), together with the W-monotonicity (10.105), and, on the other, the
Sobolev inequality in logarithmic forms.

To start with, the logarithmic Sobolev inequality is a dimensionless Sobolev-
type inequality, and it was devised by L. Gross [1222], according to the following
meaning.

aFrog’s eye, with and against bird’s eye, is a mental-math categorization of F. Dyson [828].67
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Definition 10.4.3. Given a Gaussian measure γ, and a Lebesgue measure λ,
both on Rn, let

dγ(x) = (2π)−
n
2 exp

{
−|x|2/2

}
dλ. (10.145)

The logarithmic Sobolev inequality is originally defined as∫
Rn

|υ(x)|2 ln |υ(x)|dγ(x) ⩽
∫
Rn

|∇υ(x)2|dγ(x) + ∥υ∥22 ln ∥υ∥2. (10.146)

3

We are looking for the logarithmic Sobolev inequality on a topological space
of Riemannian-type (because that is what counts in Theorem 10.4.3). And here
is the statement for the closed case.

Proposition 10.4.2 (Logarithmic Sobolev inequality on a Riemannian space).
The logarithmic Sobolev inequality on a closed Riemannian manifold Mn, with
metric g and dimension n > 2, dictates that

∫
Mn υ

2dµ = 1, for a function υ > 0,
and a constant c(λ, g), λ > 0, such that∫

Mn

υ2 log υdµ ⩽ λ

∫
Mn

|∇υ|2dµ + c(λ, g). (10.147)

Proof. Let c(n) log υ ⩽ υ
2
n , so, for every ε > 0,

c(n)

∫
Mn

υ2 log υdµ ⩽
∫
Mn

υ2+
2
n dµ ⩽ ε

∫
Mn

υ2+
4
n dµ +

1

ε

∫
Mn

υ2dµ, (10.148)

because υ1+
2
n υ ⩽ ευ2(1+

2
n ) + 1

ευ
2. Via Hölder inequality,∫

Mn

υ2υ
4
n dµ ⩽

(∫
Mn

υ
2n

n−2 dµ

)n−2
n
(∫

Mn

υ2dµ

) 2
n

. (10.149)

By introducing the Sobolev constant

cs(Mn, g) = inf

υ∈C1(M)

∫
Mn(|∇ υ|+ | υ|)dµ(∫
Mn

υn
n−1 dµ

)n−1
n

, (10.150)

and imposing cs(Mn, g) > 0, we write an inequality known as L2-type Sobolev
inequality,

cs(Mn, g)

(∫
Mn

υ
2n

n−2 dµ

)n−2
n

⩽
∫
Mn

|∇υ|2dµ + volg(Mn)−
2
n . (10.151)

Putting ε = λcs(Mn, g), we conclude that

c(n)

∫
Mn

υ2 log υdµ ⩽ ε

(∫
Mn

υ
2n

n−2 dµ

)n−2
n

+
1

ε

⩽
ε

cs(Mn, g)

(∫
Mn

|∇υ|2dµ + volg(Mn)−
2
n

)
+

1

ε
,

(10.152)

under which c(λ, g) = λvolg(Mn)−
2
n + 1

λcs(Mn,g) . □
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We are now able to give a new form to the entropy-energy W-functional
(10.100):

W(gµν ,

υ, τ) +
(n
2
log(4πτ) + n

)
=

∫
Mn

{
τ
[
4
∣∣∇(4πτ)−n

4 e−

υ

2

∣∣2 +Rs

(
(4πτ)−

n
4 e−

υ

2

)2]
−
(
(4πτ)−

n
4 e−

υ

2

)2
log
(
(4πτ)−

n
4 e−

υ

2

)2}
dµ. (10.153)

The logarithmic Sobolev inequality (10.147) ensures a lower bound for the
W-entropy-energy by exploiting the L2-structure—see Eq. (10.151)—of the first
derivative of the entropic functional. If λ = 2τ , then

W(gµν ,

υ, τ) ⩾
∫
Mn

{
4τ
∣∣∇(4πτ)−n

4 e−

υ

2

∣∣2
−
(
(4πτ)−

n
4 e−

υ

2

)2
log
(
(4πτ)−

n
4 e−

υ

2

)2}
dµ

+ τ(Rs)min −
(n
2
log(4πτ) + n

)
⩾ −2c(2τ, g) + τ(Rs)min −

(n
2
log(4πτ) + n

)
> −∞, (10.154)

where the scalar curvature has its global minimum; this inequality shows that

c(2τ, g) = 2τvolg(Mn)−
2
n +

1

2τcs(Mn, g)
, (10.155)

in line with the above proof.

10.4.5. Null Space No Infinite Time: the Point as a Capstone, and
the Poincaré–Perelman Paradox

[Τ]ὸ μὴ ἐνδέχεσθαι τὰ ἄπειρα διελθεῖν [ . . . ] ἐν πεπερασμένῳ χρόνῳ · No possibility is given to
traverse an infinity [of singularities] [ . . . ] in a finite time.

— Zeno of Elea in the testimony of Stagirite’s Physics [126, VI.2.10, p. 124]

The non-collapsing assumption is but a way to have a bounded entropy, and
this ties in with being able to have a flow-solution, for non-negative curvatures,
in which appear blow-up limits of finite time singularities of the Ricci flow.

The crux of the matter, as illustrated by Perelman, is that the rule of a
bounded entropy must be conceived in conjunction with the surgery operation
[2073], already tested by Hamilton, as we have seen previously (Section 10.1.7).
We take e.g. a quasi-circular cylindrical neck; we pinch it, and we cut it, or
we open the neck; and then we glue small caps to each of the boundaries, after
which the Ricci flow normally (re)starts to run, until the solution meets the
next singularity (in the next time). The whole operation is repeated from the
beginning: pinch/cut/glue, and the solution goes singular again as t→ T . The
process of forming new singularities is (apparently) continuous. We are faced with
a Zeno-like paradox, with the generation of infinite singularities. The no local
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collapsing Theorem 10.4.1 should therefore be mixed with a self-contradictory
assertion.

The possibility found by Perelman [2074] of avoiding the paradox, that is, of
finding a solution to the Ricci flow with surgery that becomes extinct in finite
time, is directly related to the proof of the Poincaré conjecture (Section 10.3.1),
by virtue of estimate values on the time of formation of the singularity on the
3-space under consideration. This singularity-time is small enough to allow an
approximate evaluation on the existence of a minimal disk (or a family of disks)
that can be continuously deformed or shrank to a point—i.e. to a 0-dimensional
spatial entity—in finite time. In that point, which is equal to a null space
coordinate, the solution to the Ricci flow with surgery finally is extinguished, and
the Perelman tapestry is completed.

Scholium 10.4.4. We end up with the occurrence of an additional paradox—a
kind of Zeno’s revenge. The point is the identifier of the singularity, the position
in which the topological space explodes to infinity, with an unpredictable (patho-
logical) behavior; here the Ricci flow produces a singularity-point (in the sense
that it becomes singular), namely it runs into a singularity-point. Per contra,
the point is also what furnishes a solution of the singularity problem, with the
reduction of a closed loop to a null space, or single point (verification of the
Poincaré conjecture). ⋄

10.4.6. Margo. Non-linear σ-Model and Ricci Flow (Renormalization
Group Flow in Quantum Field Theory for Geometrical Couplings)

The infinitesimal form of the renormalization group [flow] is the renormalization group equation
d
dt gij = −βij(g), where β is a vector field on [the space] R̃ [of Riemannian metrics], called the
β-function. The tangent vector β(g) to the space of metrics at g is the symmetric tensor field βij(g)
on [the manifold] M [ . . . ]. When M is a homogeneous space G/H [the quotient G/H of a Lie group
G by a compact subgroup H], the β-function is shown to be a gradient on the finite[-]dimensional
space of G-invariant metric couplings on M . And, when M is a two[-]dimensional compact manifold,
the β-function is shown to be a gradient on the infinite[-]dimensional space of metrics on M .a

— D.H. Friedan [1049, pp. 390-391, 318]

A first definition, although still not explicit and collateral, of the Ricci flow,
under the approach later known as Ricci–DeTurck in the Hamilton’s system,
as well as a first proto-description of the Ricci soliton, are not in differential
geometry, but both are descended from quantum field theory, for work of D.H.
Friedan [1048] [1049].

Friedan’s attention, being a physicist (and not a mathematician), is mainly
paid to a generalization of the non-linear σ-model (part of particle physics, see
footnote a, p. 212, aimed at theorising quantum strings flowing in a dynamic
arena of space-time), pushing forward on the ideas of J. Honerkamp [1387] and
A.M. Polyakov [2149]. Following are some pieces of the puzzle that he considers.

(1) A (high energy) model renormalizable in (2 + ϵ)-dimensions; specifically,
it is a scalar field ϝ(x) on Euclidean (2 + ϵ)-space the values of which lie in a
finite-dimensional smooth manifoldM.

aCompare with the Perelman’s epigraph at the beginning of Section 10.4.
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(2) In the wake of the intuition of K. Meetz [1806], a geometric character of
the coupling constant, for which the dimensionless coupling is but a Riemannian
metric Τ−1gµν on M, called a metric coupling.

(3) An action having an energy integral

Sf(ϝx) =

∫
1

2

(
Τ

−1gµν
)
∂ ℓϝ

µ(x)∂ ℓϝ
ν(x)dx. (10.156)

(4) Topological properties of the renormalization group flow, that is, the
group acting on the infinite-dimensional space of Riemannian metrics, necessary
for the purpose of the above generalization; renormalization respects the action
of the reparametrizations ofM, i.e. the action of the diffeomorphism group as a
group of equivalence transformations.

Note. For an in-depth study and advances on the connection between the
non-linear σ-model and the Ricci flow, see the writings of M. Carfora [523] [524]
[526] [528, chap. 4].
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11
Calabi–Yau Theorem: a Non-linear Complex

Equation of Monge–Ampère Type on Compact
Kähler Manifolds

Let Mn be a closed, n-dimensional complex manifold. We assume that Mn admits at least one
Kähler metric gαβ∗ ; its associated closed exterior form ω =

√
−1gαβ∗dzα ∧ dzβ

∗
determines a real

cohomology class, called the principal class of the metric. Consider the space Ω of all infinitely
differentiable Kähler metrics in Mn with the same principal class; the topology of Ω is defined by
the L2 topology of the tensorial components of metrics in Ω [ . . . ]. If Rαβ∗ is the Ricci tensor of
any metric in Ω, then the Ricci form

√
−1Rαβ∗dzα ∧ dzβ

∗
is closed and its cohomology class is

2πC(1) (C(r) = rth Chern class). Theorem 1. Given in Mn any real, closed, infinitely differentiable
exterior form Σ of type (1, 1) and cohomologous to 2πC(1), there exists exactly one Kähler metric
in Ω whose Ricci form equals Σ.

— E. Calabi [471, pp. 206-207]

11.1. Ricci Form on the Space of a Kählerian Metric

We propose a pocket reconstruction of E. Calabi’s conjecture, and its proof
under the line dictated by T. Aubin and S.-T. Yau.

11.1.1. Calabi Conjecture

(1) Let (M,JC|, g) be a complex manifold, where JC| is an almost complex
structure, and g is a Riemannian metric. We can define g viz

= gh a Hermitian
metric if g(X⃗, Y⃗ ) = g(JC|X⃗,JC|Y⃗ ), for any vector field X⃗ and Y⃗ on M.

Once we have established that g is Hermitian, we can determine on M a
2-form ω as a Hermitian form of g such that ω(X⃗, Y⃗ ) = g(JC|X⃗, Y⃗ ),

Thus one can see that ω is, in typological terms, a (1, 1)-form, i.e. a differential
2-form of type (1, 1), whose Hermitianity is given only and exclusively by ω > 0.

(2) Take a complex manifold (M,JC|, g), with a Hermitian metric g, and
a Hermitian form ω of g. We characterize g viz

= gh as a Kähler metric g viz
= gkä

on M if the equality dω = 0 holds, which implies that ω is a symplectic form
ωs (cf. Definition 12.4.1), and therefore ω = ωs is called Kähler form. We can
then define (M, ωs,JC|, g) a Kähler manifold [1459], with g viz

= gkä (cf. Scholium
10.2.2).a

aLetting ∇ be a Levi-Civita connection (see Sections 1.2 and 1.3), in a manifold with g viz
= gh
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Conjecture 11.1.1 (Calabi conjecture). Original references are [471] [472]. Let
(M, ωs,JC|, g) be a compact Kähler manifold, where ωs is a Kähler/symplectic
form, with g viz

= gkä on M. Let ωR be a Ricci form, and C̊1(M)R the first Chern
class [633]. The conjecture says that

(1) there exists a unique Kähler metric g̃ onM with a Kähler form ω̃s, under
which the cohomology class {ω̃s} = {ωs} ∈ H2

c (M)R ∩ H1,1
c (M)C is a Kähler

class—where {ωs} is a (de Rham) cohomology class as a Kähler class of g, and
H2

c (M)R the second (de Rham) cohomology group of M with coefficients in R,
(2) ω̃R, in the cohomology class {ω̃R} = 2π C̊1(M)R, is the Ricci form of g̃.

Besides, if C̊1(M)R = 0, that is, if the first Chern class is a vanishing class,
then the metric of (M, ωs,JC|, g) is Ricci-flat Kähler.

Conjecture 11.1.1 is tantamount to asking, directly, and more simply, the
following.

Question 11.1.1. On a compact Kähler manifold, is any closed real 2-form of
type (1, 1), having a cohomology class {ωR} = 2π C̊1(M)R, the Ricci form of
a Kähler metric? Note. If C̊1(M)R = 0, then there is a flatness of the Ricci
Kähler metric. C

11.1.2. Aubin–Calabi–Yau Theorem

Demonstration of the Calabi conjecture is the work of T. Aubin [161]—see
also [162, chap. 7]—and, independently, of S.-T. Yau [2702] [2703]. Which
turns the conjecture into a theorem. This theorem is usually called Calabi–Yau
theorem, but maybe it would be more correct to refer to it as Calabi–Aubin–Yau
theorem.

The keystone to resolve the Calabi conjecture is to transform the conjecture’s
equational ensemble into a Monge–Ampère equation [1848] [82], i.e. a non-linear
(second order) partial differential. See, as preparatory studies, Calabi [473], A.V.
Pogorelov [2122] [2123] [2124], and S.-Y. Cheng & S.-T. Yau [632]. Guiding
hints are in G. Tian [2502, chap. 5].

Proof of the Conjecture 11.1.1.
(α) — step I. Reductio to Monge–Ampère equation.
(i) Given a Kählerian space, i.e. a compact complex manifold (M, ωs,JC|, g),

with a Kähler metric g viz
= gkä onM, and a Kähler form ωs = gµν̄dzµ ∧ dz̄ν̄ .a Let

ωR = −∂∂̄ log det(gµν̄) be a Ricci form,a ϖa smooth real function representing
the Kähler potential, and ь some smooth real function on M, such that∫

M

ϖdVg = 0, (11.1)

where dVg is the volume form on M induced by the metric g.

and a Hermitian form ω it is true that ∇JC| = 0 and ∇ω = 0.
a But actually

√
−1gµν̄dzµ∧dz̄ν̄ , and ωR = −

√
−1∂∂̄ log det(gµν̄). The omission of the negative

square root is dictated by agility requirements.
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Note. Bar notation is for the complex conjugate. Choosing local holomor-
phic—complex—coordinates z1, . . . , zn, we put

− ∂∂̄ log det
(
gµν̄ +

∂2 ϖ

∂zµ∂z̄ν̄

)
= −∂∂̄ log det(gµν̄)− ∂∂̄ь, (11.2)

∂∂̄ log

det
(
gµν̄ +

∂2 ϖ

∂zµ∂z̄ν̄

)
det(gµν̄)

 = ∂∂̄ь, (11.3)

in local and global coordinates, respectively, with indices µν̄ = 1, . . . , n; hence

det
(
gµν̄ +

∂2 ϖ

∂zµ∂z̄ν̄

)
det(gµν̄)

= eь+c, (11.4)

that is, (ωs + ∂∂̄ ϖ)n = eь+cωns , with a constant c.
(ii) Inasmuch as (ωs + ∂∂̄ ϖ)n − ωns , thanks to the Stokes–Cartan’s theorem

[2420, question № 8, p. 320] [557, §§ 29-32, pp. 38-43] (see Section 11.2.2), we
fix ∫

M
eь+cωns =

∫
M
(ωs + ∂∂̄ ϖ)n = volg(M) =

∫
M
ωns , (11.5)

where volg(M) is the volume of M with the volume form. So

(ωs + ∂∂̄ ϖ)n = eьωns , (11.6a)

det

(
gµν̄ +

∂2 ϖ

∂zµ∂z̄ν̄

)
= c · eь det(gµν̄), (11.6b)

which are two non-linear partial differential equations of Monge–Ampère type in

ϖ(cf. Section 11.2.1), expressing the same inhomogeneous content in different
forms.

(β) — step II. Uniqueness.
(i) Take two positive 2-form of type (1, 1), (ωs)1 = ωs + ∂∂̄ ϖ

1 and (ωs)2 =
ωs∂∂̄

ϖ

2. Then there is no more than a function ϖ∈ C3(M)R under which
(11.1) is true.

(ii) If ϖ

1 = ϖ, and ϖ

2 = 0, ϖ

1,

ϖ

2,∈ C3(M)R, since (ωs)
n
1 = c · eьωns =

(ωs)
n
2 , with ь ∈ C1(M)R, one has

0 = (ωs)
n
2 − (ωs)

n
1 = ωns − (ωs + ∂∂̄ ϖ)n

= −∂∂̄ ϖ∧
(
ωn−1
s + ωn−2

s ∧ (ωs)1 + · · ·+ (ωs)
n−1
1

)
. (11.7)

Under Stokes’ theorem again, we get∫
M
∂ ϖ∧ ∂̄ ϖ∧

(
ωn−1
s + · · ·+ (ωs)

n−1
1

)
= 0. (11.8)

From the last equation, and setting
∫
M ωns as the volume, we see that

1∫
M ωns

∂ ϖ∧ ∂̄ ϖ∧
(
ωn−1
s + · · ·+ (ωs)

n−1
1

)
⩾

1∫
M ωns

∂ ϖ∧ ∂̄ ϖ∧ ωn−1
s , (11.9)
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and that

0 ≥ 1∫
M ωns

∂ ϖ∧ ∂̄ ϖ∧ ωn−1
s =

1

2n
(∫

M ωns
) ∫

M
|∇ ϖ|2ωns . (11.10)

This says that
· ∇ ϖ= 0, and
· ϖ

1 − ϖ

2 is constant, being the Kählerian manifold connected.
Since ∫

M

ϖ

1dVg =

∫
M

ϖ

2dVg = 0, (11.11)

it is clear that ϖ

1 − ϖ

2 = 0, and ϖ

1 = ϖ

2.
(γ) — step III. Existence. Let

(ωs + ∂∂̄ ϖ)n = eьςωns (11.12)

be the reference equation, with
· ьς = ςь + cς , for 0 ⩽ ς ⩽ 1,
· ь0 = 0, and
· ь1 = ь.
We introduce the set Я as a subset of [0, 1]. It is self-evident that 0 ∈ Я ,

and if 1 ∈ Я , then there is, unique up to a constant, a C-solution of (11.12).
The solvability of such an equation lies in showing that Я is an open and closed
subset of [0, 1].

(i) We prove that Я is open. If we solve Eq. (11.12) via ϖ

ς , the corresponding
form is (ωs)ς = ωs + ∂∂̄ ϖ

ς , and (ωs)
n
ς = eьςωns . But assume (ωs + ∂∂̄ ϖ

τ )
n =

eьτωns , for an imaginable solution ϖ

τ , so that(
(ωs)ς + ∂∂̄( ϖ

τ − ϖ

ς)
)n

= eьτ−ьς (ωs)
n
ς , (11.13)

and, for a certain η = ϖ

τ − ϖ

ς ,

log

[
(ωs)ς + ∂∂̄η

]n
(ωs)nς

= ьτ − ьς . (11.14)

Let us define an operator

Ηo(η) = log

[
(ωs)ς + ∂∂̄η

]n
(ωs)nς

: C
2, 12
0 (M)R → C0, 12 (M)R(·), (11.15)

where C
2, 12
0 and C

0, 12
0 are subspaces of any continuous function υ :M→ R in

the Ck,
1
2 (M)R-topology.

Whenever ∥ьτ −ьς∥0, 12 is sufficiently small, there exist a function η such that

Ηo(η) = ьτ − ьς , (11.16)

and
DΗo|η=0 : [: C

2, 12
0 (M)R → C

0, 12
0 (M)R :]. (11.17)
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Imposing
DΗo|η=0(υ) = △(ωs)ς υ, (11.18)

as the map △(ωs)ς υ : [: · · · :] implies an inverse function, where [: and :] are for
a repeat sign (see Glossary), we find the solvability of (11.16) for |τ − ς|. The
set Я is therefore open, being that τ ⩽ ς.

(ii) We must now show that Я is closed. We can start from an equation like
this, (

ωs + ∂∂̄( ϖ

µ − cµ)
)n

= eьςµωns , (11.19)

supposing a convergence to ϖ

∞ by ϖ

µ− cµ, for which (ωs + ∂∂̄

ϖ

∞)n = eьς∞ωns ,
such that ς∞ ∈ Я , given a sequence ςµ ∈ Я , limµ→∞ ςµ = ς∞, which serves to
finally detect the closed nature of Я in C2, 12 . To do this, we have to use an a
priori estimate.

By virtue of the Ascoli–Arzelà theorem [142] [139] [140], we adopt the priori
estimate ∥ ϖ

µ − cµ∥3 ⩽ Cu, for a uniform constant Cu, by selecting two work
tools.

The first one is a Green’s function [1202, § 3] G(x, y) so that

ϖ(x) ∈ C∞(M) =
1∫

M ωns

∫
M

ϖ(y)ωns (y)−
1∫

M ωns

∫
M
△g ϖ(y)G(x, y)ωns (y).

(11.20)
The second tool is the Sobolev inequality (cf. Sections 10.4.4.2 and 10.4.4.3);

for some constant c(1) and c(2), we write

c(1)

(
1∫

M ωns

∫
M
|ь|

2n
n−1ωns

)n−1
n

−
c(2)∫
M ωns

∫
M
|ь|2ωns ⩽

1∫
M ωns

∫
M
|∇ь|2ωns .

(11.21)
At this point, estimates are outlined.

(a) We say that x0 is the supremum for the Kähler potential ϖ, by selecting
supM

ϖ= −1. Consequently

ϖ(x0) = −
1∫

M ωns

∫
M
| ϖ(y)|ωns − [:

1∫
M ωns

∫
M
△ ϖ(y)G(x0, y)ω

n
s :] = −1,

(11.22a)

− [: · · · :] ⩽ n∫
M ωns

∫
M

G(x0, y)ω
n
s = −1 + 1∫

M ωns

∫
M
| ϖ(y)|ωns , (11.22b)

after a 0 < n+△ ϖvalue is entered in the second equation. As a result, the
inequality 1∫

M ωn
s

∫
M |

ϖ(y)|ωns ⩽ Cu is clarified.
If ϖ

− = − ϖ⩾ 1, and ω̃s = ωs − ∂∂̄ ϖ

− are specified, then

(eьς − 1)ωns = ω̃ns − ωns
= −∂∂̄ ϖ

− ∧
(
ω̃n−1
s + ω̃n−2

s ∧ ωs + · · ·+ ω̃s ∧ ωn−2
s + ωn−1

s

)
.

(11.23)
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For some real number ϵ ⩾ 1, we register

− 1∫
M ωns

∫
M

ϖϵ
−∂∂̄

ϖ

− ∧
(
ω̃n−1
s + · · ·+ ωn−1

s

)
⩾

1∫
M ωns

∫
M
∂ ϖϵ

− ∧ ∂̄ ϖ

− ∧ ωns =
ϵ∫

M ωns

∫
M

ϖϵ−1
− ∂ ϖ

− ∧ ∂̄ ϖ

− ∧ ωn−1
s

=
ϵ∫

M ωns

∫
M

ϖϵ−1
2

− ∂ ϖ

− ∧ ϖϵ−1
2

− ∂̄ ϖ

− ∧ ωn−1
s

=
4ϵ∫

M ωns (ϵ+ 1)2

∫
M
∂ ϖϵ+1

2
− ∧ ∂̄ ϖϵ+1

2
− ωn−1

s

⩾ F

c(1)
(

1∫
M ωns

∫
M

∣∣∣ ϖϵ+1
2

−

∣∣∣ 2n
n−1

ωns

)n−1
n

−
c(2)∫
M ωns

∫
M

∣∣∣ ϖϵ+1
2

−

∣∣∣2 ωns
 ,

(11.24)

with F = 4ϵ
n(ϵ+1)2 . As

− 1∫
M ωns

∫
M

ϖϵ
−∂∂̄

ϖ

− ∧
(
ω̃n−1
s + · · ·+ ωn−1

s

)
=

1∫
M ωns

∫
M

ϖϵ
− (eьς − 1)ωns

⩽
c∫

M ωns

∫
M

ϖϵ+1
− ωns , (11.25)

we obtain

F

c(1)
(

1∫
M ωns

∫
M

∣∣∣ ϖϵ+1
2

−

∣∣∣ 2n
n−1

ωns

)n−1
n

−
c(2)∫
M ωns

∫
M

∣∣∣ ϖϵ+1
2

−

∣∣∣2 ωns


⩽
c∫

M ωns

∫
M

∣∣ ϖϵ+1
−
∣∣ωns , (11.26a)

(
1∫

M ωns

∫
M

∣∣ ϖϵ+1
−
∣∣ n
n−1 ωns

)n−1
n

⩽
Cu(ϵ+ 1)∫

M ωns

∫
M

∣∣ ϖϵ+1
−
∣∣ωns . (11.26b)

By look to the Nash–Moser iteration technique [1906] [1878] [1879], for ϵ0 = 1
and ϵµ + 1 = n

n−1 (ϵµ−1 + 1), we expound the formulæ

∥ ϖ

−∥Lϵµ+1 ⩽
µ−1∏
ν=0

Cu(ϵν + 1)
1

ϵν+1 ∥ ϖ

−∥L2 , (11.27a)

sup
M
| ϖ

−| = lim
µ→∞

∥ ϖ

−∥Lϵµ+1 ⩽
∞∏
ν=0

Cu(ϵν + 1)
1

ϵν+1 ∥ ϖ

−∥L2 <∞. (11.27b)

The result is that supM | ϖ| = supM | ϖ

−| ⩽ Cu∥ ϖ

−∥L2 . By means of the
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Poincaré inequality [2129],

c∫
M ωns

∫
M
| ϖ|ωns ⩾

1∫
M ωns

∫
M

ϖ(1− eьς )ωns

=
1∫

M ωns

∫
M

ϖ

(
ωns − (ωs + ∂∂̄ ϖ)n

)
⩾

1

n
(∫

M ωns
) ∫

M
|∇ ϖ|2ωns

⩾
λ1ωs

n
(∫

M ωns
) {∫

M
| ϖ|2ωns −

(∫
M

ϖ(ωns )

)2
}
, (11.28)

ϖ∈W 1,2(M)R,

where λ1 is a constant, and ϖbelongs to Sobolev space W 1,2(M) (see Section
10.4.4.1), we conclude that ∥ ϖ∥L2 ⩽ Cu · ∥ ϖ∥L1 + 1, and supM | ϖ| ⩽ Cu.

(b) We shall now proceed to the second estimate step. What we need is to
bound trωs

(ω̃s) = n +△ ϖ= ∥gµν̄ + ∂2 ϖ

∂zµ∂z̄ν̄
∥ ⩽ trg

(
gµν̄ +

∂2 ϖ

∂zµ∂z̄ν̄

)
. Recalling

Eq. (11.12), let ьς + log det(gµν̄) = log det
(
gµν̄ +

∂2 ϖ

∂zµ∂z̄ν̄

)
. If we want to find

the derivative, we will write

∂ьς
∂zξ

= g̃µν̄
(
∂gµν̄
∂zξ

+
∂3 ϖ

∂zµ∂z̄ν̄∂zξ

)
− gµν̄ ∂gµν̄

∂zξ
, (11.29a)

∂2ьς
∂zξ∂z̄ϱ̄

= g̃µν̄
(
∂2gµν̄
∂zξ∂z̄ϱ̄

+
∂4 ϖ

∂zµ∂z̄ν̄∂zξ∂z̄ϱ̄

)
+ gτν̄gµς̄

(
∂gτ ς̄
∂z̄ϱ̄

∂gµν̄
∂zξ

)
− gµν̄ ∂

2gµν̄
∂zξ∂z̄ϱ̄

− g̃τν̄ g̃µς̄
(
∂gτ ς̄
∂z̄ϱ̄

+
∂3 ϖ

∂zτ∂z̄ς̄∂z̄ϱ̄

)(
∂gµν̄
∂zξ

+
∂3 ϖ

∂zµ∂z̄ν̄∂zξ

)
, (11.29b)

with respect to ∂
∂zξ

, in Eq. (11.29a), and to ∂
∂z̄ϱ̄

, in Eq. (11.29b).
We thus consider

△ ьς = gξϱ̄g̃µν̄
(
∂2gµν̄
∂zξ∂z̄ϱ̄

+
∂4 ϖ

∂zµ∂z̄ν̄∂zξ∂z̄ϱ̄

)
− gξϱ̄g̃τν̄ g̃µς̄

(
∂3 ϖ

∂zτ∂z̄ς̄∂z̄ϱ̄

∂3 ϖ

∂zµ∂z̄ν̄∂zξ

)
− gξϱ̄gµν̄ ∂

2gµν̄
∂zξ∂z̄ϱ̄

, (11.30)

and

△̃(△ ϖ) = −gξϱ̄g̃µν̄ ∂
2gµν̄

∂zξ∂z̄ϱ̄
+ gξϱ̄g̃τν̄ g̃µς̄

(
∂3 ϖ

∂zτ∂z̄ς̄∂z̄ϱ̄

∂3 ϖ

∂zµ∂z̄ν̄∂zξ

)
+ gξϱ̄gµν̄

∂2gµν̄
∂zξ∂z̄ϱ̄

+△ ьς + g̃ξϱ̄
(
∂2gµν̄

∂zξ∂z̄ϱ̄

∂2 ϖ

∂zµ∂z̄ν̄

)
, (11.31a)

△̃(△ ϖ) = △ ьς + gξϱ̄g̃τν̄ g̃µς̄ ϖ

τ ς̄ϱ

ϖ

µν̄ξ + g̃µν̄Rµν̄ξϱ̄ − gµν̄Rµν̄ξϱ̄ + g̃ξϱ̄Rµν̄ξϱ̄

ϖ

µν̄ ,
(11.31b)
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by replacing in the last equation ∂2gµν̄

∂zξ∂z̄ϱ̄
with −Rµν̄ξϱ̄, and ∂2gµν̄

∂zξ∂z̄ϱ̄
with Rµν̄ξϱ̄,

where R is the Riemann curvature tensor.
Return to coordinate geometry, and formulate the above equations a second

time:

△̃(△ ϖ) =

(
1

1 + ϖ

µµ̄

)(
1

1 + ϖ

νν̄

)

ϖ

µν̄ξ

ϖ

µ̄νξ̄ +△ ьς

+ [: Rµµ̄ξξ̄

(
−1 + 1

1 + ϖ

µµ̄
+

ϖ

µµ̄

1 + ϖ

ξξ̄

)
:], (11.32)

where [: · · · :] = 1

2
Rµµ̄ξξ̄

{
( ϖ

ξξ̄ − ϖ

µµ̄)
2

(1 + ϖ

µµ̄)(1 +

ϖ

ξξ̄)

}

⩾
Cu

2

{
(1 + ϖ

ξξ̄ − 1− ϖ

µµ̄)
2

(1 + ϖ

µµ̄)(1 +

ϖ

ξξ̄)

}

= Cu

(
1 + ϖ

µµ̄

1 + ϖ

ξξ̄

− 1

)
, with Cu = inf

µ̸=ξ
Rµµ̄ξξ̄. (11.33)

Via Schwarz lemma [2338] [518] it is possible to infer that

△̃
(
e−ζ

ϖ

(n+△ ϖ)
)
= e−ζ

ϖ

△̃(△ ϖ)− ζe−ζ

ϖ

g̃µµ̄ ϖ

µ(△ ϖ)µ̄

− ζe−ζ

ϖ

g̃µµ̄ ϖ

µ̄(△ ϖ)µ − ζe−ζ

ϖ

△̃ ϖ(n+△ ϖ)

+ ζ2e−ζ
ϖ

g̃µµ̄ ϖ

µ

ϖ

µ̄(n+△ ϖ)

⩾ e−ζ

ϖ

△̃(△ ϖ)− e−ζ

ϖ

g̃µµ̄(n+△ ϖ)−1(△ ϖ)µ(△ ϖ)µ̄

− ζe−ζ

ϖ

△̃ ϖ(n+△ ϖ). (11.34)

And with the aid of the Cauchy–Schwarz inequality [585] [2337], we can draw
up a relation of this kind,

(n+△ ϖ)−1 · 1

1 + ϖ

µµ̄

∣∣∣∣∣ ϖ

ξξ̄µ

(1 + ϖ

ξξ̄)
1
2

(1 + ϖ

ξξ̄)
1
2

∣∣∣∣∣
2

⩽ (n+△ ϖ)−1

(
1

1 + ϖ

µµ̄

)(
1

1 + ϖ

ξξ̄

)

ϖ

ξξ̄µ

ϖ

ξξµ̄ · 1 + ϖ

ϱϱ̄, (11.35)

and −(n+△ ϖ)−1 1
1+ ϖ

µµ̄
(△ ϖ)µ(△ ϖ)µ̄ + △̃△ ϖ⩾ △ ьς +Cu(n+△ ϖ) 1

1+ ϖ

µµ̄
.

It follows that △̃
(
e−ζ

ϖ

(n + △ ϖ)
)

⩾ e−ζ

ϖ(△ ьς + Cu(n + △ ϖ) 1
1+ ϖ

µµ̄

)
−

ζe−ζ

ϖ△̃(n+△ ϖ).
There is a further next inequality to require:

∑
µ

1

1 + ϖ

µµ̄
⩾

{∑
µ(1 +

ϖ

µµ̄)∏
µ(1 +

ϖ

µµ̄)

} 1
n−1

= exp
{
− ьς

n−1

}
(n+△ ϖ)

1
n−1 , (11.36)

for e−ζ

ϖ∑
µ

1
1+ ϖ

µµ̄
(n+△ ϖ) ⩾ exp

{
− ьς

n−1

}
exp

{
− ζ
n−1

}[
e−ζ

ϖ

(n+△ ϖ)
] n

n−1 .
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We can bring to an end this sub-step. Conceding that υ = e−ζ

ϖ

(n+△ ϖ),
we have △̃υ ⩾ −c(1) − c(2)υ + c(0)υ

n
n−1 , under the condition that ϖ⩽ −1 and

e−ζ

ϖ

⩾ 1. If x0 is the maximum of υ, do we conclude that

0 ⩽ (n+△ ϖ)(x) ⩽ eζ

ϖ(x)υ(x0) ⩽ Cu, (11.37)

which is the second estimate of the Kähler potential.
(c) The last step is to find an estimate for third-order derivatives of the

Kähler potential, and an a priori bound for ∥∇3 ϖ∥C0 , accompanied by another
estimate ∥ ϖ

µ − cµ∥3 ⩽ Cu, with which, finally, we can assert that Я is closed.
The chain of sub-steps is in Aubin [160, pp. 410-411] and Yau [2703, app. A, pp.
403-406].

(δ) — step IV. The end. The Conjecture 11.1.1 becomes a theorem, which
also answers positively the Question 11.1.1.

□

11.2. Addendum

In this Addendum there are a few clarifications we should like to make on
the Monge–Ampère equation. After this, we shall enunciate the Stokes’ theorem
[2420, p. 320] mentioned above, cf. Eq. (11.5), reformulate in the Cartan’s
language [557, §§ 29-32, pp. 38-43], complete with a proof.

11.2.1. Postilla on the Monge–Ampère Equation

We saw above the Monge–Ampère equation [1848] in dual form (11.6) ser-
viceably adapted, in the field of complex numbers, for the Calabi conjecture.
Here we want to mention, very briefly, some of its general forms.

(1) The first one is

det
(
D2υ(x)

)
= φ

(
x, υ,∇υ(x)

)
on Ω, (11.38)

the archetypal Monge–Ampère statement [1848] [82], which is a non-linear
degenerate elliptic partial differential equation, letting

D2υ(x) = [Dµνυ(x)] =
∂2υ(x)

∂xµ∂xν
, 1 ⩽ µ, ν ⩽ n, (11.39)

be the Hessian matrix [1343] (of second derivatives) of a convex function υ : Ω →
R in a domain (open set) Ω ⊂ Rn, and φ : Ω × R × Rn → R+ some positive
function, where ∇υ(x) is the gradient of υ at x.

(2) If υ ∈ C2(Ω), by imposing an elliptic function ΦR with respect to υ on

x 7→
{
x, υ(x),∇υ(x), D2υ(x)

}
, (11.40)

then the Monge–Ampère equation takes the form

ΦR
(
υ(x)

)
= det

(
D2υ(x)

)
− φ

(
x, υ,∇υ(x)

)
= 0. (11.41)
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11.2.2. Stokes–Cartan’s Theorem (a Foundation of Exterior Calculus)

IfX,Y, Z be functions of the rectangular co-ordinates x, y, z, dS an element of any limited surface,
l,m, n the cosines of the inclinations of the normal at dS to the axes, ds an element of the bounding
line, shew that

∫∫ {
l
(
dZ
dy − dY

dz

)
+m

(
dX
dz − dZ

dx

)
+ n

(
dY
dx − dX

dy

)}
dS =

∫ (
X dx

ds + Y dy
ds + Z dz

ds

)
ds,

the differential coefficients of X,Y, Z being partial, and the single integral being taken all round the
perimeter of the surface.

— G.G. Stokes [2420, p. 320]a

It is demonstrated that with analogous orientation conventions, we have a completely general
Stokes formula

∫
ω =

∫
dω; the first integral is extended to the p-dimensional boundary of a (p+ 1)-

dimensional domain, and it is to this last domain that the second integral extends.
— É. Cartan [557, § 29, p. 40]

Theorem 11.2.1 (Stokes–Cartan). Let M be a smooth n-dimensional mani-
fold, or an open set oriented by Rn, ∂M the boundary of M with the induced
orientation of Rn (that is, ∂M is oriented by an exterior normal vector to M),
and ι : ∂M ↪→M the inclusion map, i.e. the injection of the boundary ∂ into
M. Given a smooth (n − 1)-form of class C1 (cf. Section 1.4), indicated by
ω ∈

∧n−1
c (M), with compact support on M—and in fact

k∧
c

(·) viz
= Ωkc (·)

denotes the set of all k-forms having compact support—,b then∫
M
dω =

∫
∂M

ι∗ω, (11.42)

by setting ι∗ω as a pullback under the inclusion map, where if ∂M = ∅,∫
∂M ι∗ω = 0.

Proof. We will show three demonstrations, for three cases different cases.
(1) The first one analyzes, locally, a smooth (n− 1)-form

ω = яdx1 ∧ · · · ∧ dxn−1, (11.43)

on M = Rn, and the exterior differential

dω = (−1)n−1 ∂я
∂xn

dx1 ∧ · · · ∧ dxn. (11.44)

Via Fubini’s theorem [1058], one sees that∫
Rn

dω = (−1)n−1

∫
Rn−1

{∫ +∞

−∞

∂я
∂xn

dxn
}
dx1 · · · dxn−1, (11.45)∫ +∞

−∞

∂я
∂xn

(x1, . . . , xn−1, xn)dxn

= lim
s→∞

{
я(x1, . . . , xn−1, s)− я(x1, . . . , xn−1,−s)

}
= 0, (11.46)

aStokes theorem looks like this; it appears, historically, as a question № 8 in Smith’s Prize
Examination Papers, February 1854. The examination was completed by J.C. Maxwell, who writes
[1791, p. 27]: «This theorem was given by Professor Stokes, Smith’s Prize Examination, 1854,
question 8».

bω ∈ Ωn−1
c (M).



11.2. Addendum 241

considering that я has compact support; ergo∫
Rn

dω = 0, (11.47)

which gives a proof of (11.42) for Rn without a boundary.
(2) The second case is local again, but in the geometric context of the upper

half-space (cf. Section 2.3.3.1); it provides that M = Hn = {(x1, . . . , xn) ∈ Rn |
xn ⩾ 0}, with the boundary ∂Hn = {xn = 0}. We designate

(i) a smooth (n− 1)-form as

ω =

n∑
ν=1

(−1)ν−1яνdx1 ∧ · · · ∧<dxν> ∧ · · · ∧ dxn, (11.48)

where яν is equipped with a compact support, and the chevrons <· · ·> indicates
that this ν-element is omitted (it is not part of the exterior product),

(ii) its exterior differential as

dω =

{
n∑
ν−1

(−1)ν=1 ∂яν
∂xν

(x1, . . . , xn−1, xn)

}
dx1 ∧ · · · ∧ dxn

=

{
n∑
ν=1

∂яν
∂xν

}
dx1 ∧ · · · ∧ dxn, (11.49)

After that we fix∫
∂Hn

ω = (−1)n
∫
Rn−1

яn(x1, . . . , xn−1, 0)dx1 · · · dxn−1,a (11.50)

and, for 1 ⩽ ν ⩽ n− 1,

[:
∫ +∞

−∞

∂яν
∂xν

(x1, . . . , xn−1, xn)dxν :] = lim
xν→∞

{
яν(x1, . . . , xν , . . . , xn)

− яν(x1, . . . ,−xν , . . . , xn)
}
= 0,

(11.51a)∫
Hn

∂яν
∂xν

(x1, . . . , xn−1, xn)dx1 · · · dxn

=

∫ ∞

0

{∫
Rn−2

[: · · · :]dx1 · · ·<dxν> · · · dxn−1

}
dxn = 0, (11.51b)

for ν = 1, . . . , n− 1 in (11.51b), through the repeat sign [: and :]. Hence∫ ∞

0

∂яn
∂xn

(x1, . . . , xn−1, xn)dxn

= lim
s→∞

яn(x1, . . . , xn−1, s)− яn(x1, . . . , xn−1, 0). (11.52)

aNote that ω|∂Hn = яn(x
1, . . . , xn−1, 0)dx1 ∧ · · · ∧ dxn−1.
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By determining

ι∗ω = (−1)n−1(яn ◦ ι)ι∗(dx1 ∧ · · · ∧ dxn−1), (11.53)

finally,∫
Hn

dω = (−1)n−1

∫
Hn

∂яn
∂xn

(x1, . . . , xn−1, xn)dx1 · · · dxn

= (−1)n−1

∫
Rn−1

{∫ ∞

0

∂яn
∂xn

(x1, . . . , xn−1, xn)dxn
}
dx1 · · · dxn−1

= (−1)n−1

∫
Rn−1

яn(x1, . . . , xn−1, 0)︸ ︷︷ ︸
яn◦ι

dx1 · · · dxn−1 =

∫
∂Hn

ι∗ω. (11.54)

(3) The third case is global. Let A = {(Υµ, φµ | µ ∈ A)} be an atlas with an
n-chart (Υµ, φµ), for each index µ, and {Ŋµ}µ∈A ⊂ C∞(M) be a partition of
unity subordinate to A onM, i.e. a set such that

· 0 ⩽ Ŋµ ⩽ 1 onM, ∀µ ∈ A,
· supp(Ŋµ), that is, Ŋµ has compact support.
If dω =

∑
µ∈A d(Ŋµω) and ι∗Mω =

∑
µ∈A(i) ι∗M(Ŋµω), it would appear that∫

M
d(Ŋµω) =

∑
µ∈A

∫
Υµ

d(Ŋµω)

=
∑
µ∈A

∫
φµ(Υµ)

(φ−1
µ )∗d(Ŋµω) =

∑
µ∈A

∫
φµ(Υµ)

d(φ−1
µ )∗(Ŋµω)

=

∫
∂φµ(Υµ)

(φ−1
µ )∗(Ŋµω) =

∫
φµ(Υµ∩∂M)

(φ−1
µ )∗(Ŋµω)

=
∑
µ∈A(i)

∫
φµ(Υµ∩∂M)

(φ(∂)−1
µ )∗ι∗M(Ŋµω)

=

∫
∂M

Ŋµω =

∫
∂M

ι∗Mω. (11.55)

□

Margo 11.2.1 (Stokes’ theorem in terms of flux and circulation). Outside the
differential forms language, Stokes’ theorem is as follows. Given

· a compact surface S ⊂ R3, i.e. a piecewise smooth surface in 3-space, whose
orientation is established by the unit normal vector N̂ ,

· a boundary ∂S endowed with a positive orientation, via tangent vector v(∂S),
which is consistent with the orientation of S, and

· a smooth vector field X⃗ of class C1 on an open set containing S,
then ∫

S⊂R3

curl(X⃗) · N̂ =

∮
∂S

X⃗ · v(∂S), curl(X⃗) = ∇× X⃗, (11.56)

where curl(X⃗) is the curl (vector operator for the infinitesimal circulation) of X⃗.
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Its meaning: the flux of curl(X⃗) passing through S is equal to the line integral
of X⃗ around the surface’s boundary ∂S, that is, the flux of the curl of X⃗ equals
the circulation of the tangential component of X⃗ about the (closed) line bounding
S in 3-space.a L

References and Bibliographic Details

Section 11.1
· For a look at the contributions of E. Calabi in geometry, see [213].
· Insights on the Calabi conjecture, space of Kähler metrics, and Calabi–Yau structures, are in
[1719] [183, chap. 7] [1455, chap. 6] [1870, chap. 18] [306].
· On the Calabi–Yau spaces, see [1223] [1368].

Section 11.2.1
· For a thorough examination on the Monge–Ampère equation (together with its many applica-
tions), see [2122] [467] [469] [1245] [989] [990].

aThe concept of curl, already sketched out by J. MacCullagh [1720, lemma II], is clarified, as
well as terminologically conceived, by Maxwell [1790, pp. 231-232].





12
Geometric and Topological Aspects of Complexity
and Dynamics, Part I. Flows, Hyperbolicity, and

Foliations

Plasmare dunque concetti in modo da potere introdurre la misura; misurare quindi; dedurre
poi delle leggi; risalire da esse ad ipotesi; dedurre da queste, mercè l’analisi, una scienza di enti
ideali sì, ma rigorosamente logica; confrontare poscia colla realtà; rigettare o trasformare, man mano
che nascono contraddizioni fra i resultati del calcolo ed il mondo reale, le ipotesi fondamentali che
han già servito; e giungere così a divinare fatti ed analogie nuove, o dallo stato presente arrivare
ad argomentare quale fu il passato e che cosa sarà l’avvenire; ecco, nei più brevi termini possibili,
riassunto il nascere e l’evolversi di una scienza avente carattere matematico.a

— V. Volterra [2593, pp. 442-443]

12.1. Geodesic Flow on the Unit Tangent Bundle of a Neg-
atively Curved Surface by the ΓΓΓ-Action on the Hyperbolic
Half-Plane

12.1.1. Geodesic Flow from Lobačevskijan Geometry

Definition 12.1.1. Let γc(z,v)(t) be a geodesic for a fixed initial conditions{
γc(z,v)(0) = z,

γ̇c(z,v)(0) = v.
(12.1)

Let T̊ 1U2
C

b be the unit tangent bundle of U2
C = {z ∈ C | ℑ(z) > 0}, that is the

Beltrami–Poincaré upper half-plane (2.31). The vector v ∈ T 1
z U2

C is the unit
tangent vector at z ∈ U2

C to the geodesic at unit speed; this means that γc(z,v)(t)
passes through the point z in the direction of the unit tangent vector, i.e. with
v as its tangent. The flow on U2

C that moves each v along its geodesic at unit
speed is called geodesic flow, and it is more aptly defined as the flow on the unit

a«Shape concepts so as to be able to introduce the measure(ment); hence measure; then deduce
laws; from them trace back to hypotheses; deduce from these, by means of analysis, a science of
ideal entities, yes, but [a] rigorously logical [science]; later, compare with reality; reject or transform,
as contradictions arise between the results of the calculation and the real world, the fundamental
hypotheses already used; and thus get to predict new facts and analogies, or from the present state
argue about what the past was and what the future will be; here, in the shortest possible terms, a
summary of the birth and evolution of a science with a mathematical character».

bIt is sometimes denoted by S̊1[manifold], so S̊1U2
C.
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tangent bundle of a surface of constant negative curvature,

{φt}t∈R : T̊ 1U2
C → T̊ 1U2

C. (12.2)

(We remind that U2
C is one of the best-known examples of Riemann surfaces,

along with the unit disk). The geodesic flow on T̊ 1U2
C is the diffeomorphism

defined as
φt(z, v)

ιδ

=
(
γc(z,v)(t), γ̇c(z,v)(t)

)
, (12.3)

for
(z, v) ∈ T̊ 1U2

C = {(z, v) ∈ U2
C × C | ∥v∥z = 1},

where γ̇c(z,v)(t) is the velocity vector of a point-mass (particle) at an instant of
time t. The tangent bundle T̊ 1U2

C is invariant, because the speed of a geodesic
is constant; one can think of T̊ 1U2

C as a constant-energy hypersurface of a
point-mass flowing (moving smoothly) along U2

C. 3

12.1.2. Projective Linear Transforms: Dynamics on the Modular
Surface, and Horocycle Flow

Carrying on the above speech, we are alert to the fact that there exists an
identification between the unit tangent bundle and the projective special linear
group of 2× 2 matrices over the real field. This last one, denoted by

PSL2(R) ∼=
SL2(R)
{±I}

∼= Möb
+
2 (R)

ιδ

= isom
+(U2

C), (12.4)

where ±I is equal to
(
1 0
0 1

)
, is the Möbius group of all biholomorphic maps of

φ : U2
C → U2

C, i.e. it is the orientation preserving isometry group of U2
C, see Eq.

(2.48). So if PSL2(R) acts isometrically on U2
C is isometric, it also acts freely

and transitively on the unit tangent bundle T̊ 1U2
C of U2

C, thereby we can identify
T̊ 1U2

C with PSL2(R), i.e. T̊ 1U2
C
∼= PSL2(R).

We care about the right multiplication on T̊ 1U2
C
∼= PSL2(R); it provides us

with two flows.
(1) The first is the geodesic flow φt as illustrated in (12.2); however, under the

identification between T̊ 1U2
C and PSL2(R), the action of φt on T̊ 1U2

C corresponds
to the action by right multiplication of the diagonal (1-parameter) group

Dg =

{
φt(g) = gt

ιδ

=

(
e

t
2 0

0 e−
t
2

) ∣∣∣∣ t ∈ R
}
, (12.5)

on PSL2(R), so the flow is

{φt}t∈R : PSL2(R)→ PSL2(R), (12.6)

and the Eq. (12.3) is of course φt(z, v) = (z, v)gt. We can talk about geodesic
flow arising from the the 1-parameter group gt in this instance. Therefore, the
geodesic flow on T̊ 1U2

C can be described as the geodesic flow on PSL2(R) by
the right translations g 7→ gφt(g) = gt.
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(2) The other one is the horocycle flow.a Keep in mind that a horocycle (Fig.
12.1) lying in U2

C is
(i) a horosphere in dimension 2, that is to say a (Euclidean) circle tangent

to the boundaryb ∂∞U2 passing through a certain point x ∈ RP1, or a curve
tangent to the real axis at x, so that the horocyclic curve is an orbit of PSL2(R),

(ii) a horizontal line at ∞ ∈ RP1, form which we can distinguish between a
horocycle at γc(v)(+∞), concerning φt of a positive-stable manifold with t→ +∞,
and a horocycle at γc(v)(−∞), concerning φt of a negative-unstable manifold
with t→ −∞.

Figure 12.1: Some horocycles (in mallard color) in the Beltrami–Poincaré disk model intersecting
some asymptotic parallel lines (in eggplant color)

A horocycle can be stable or unstable; it is a set contains vectors orthogonal
to the horocycle, in both cases; but in the stable set there are vectors pointing
inward, in the unstable set the normal vectors point outward. Consequently,
the horocycle flow can be stable or unstable, denoted by {η+t }t and {η−t }t,
respectively,

{ηt}t∈R : T̊ 1U2
C → T̊ 1U2

C, with ηt = η+t or ηt = η−t , (12.7)

given by right multiplication by the groups

H+
η =

{
η+t

ιδ

=

(
1 t
0 1

)}
t∈R

or H−
η =

{
η−t

ιδ

=

(
1 0
t 1

)}
t∈R

, (12.8)

respectively. Put another way, the horocycle flow is a positive or negative
horocycle field on T̊ 1U2

C that moves each v ∈ T̊ 1U2
C along {ηt}t at unit speed.

aHorocycle flows on a compact negatively curved manifold are uniquely ergodic (see below) iff
Γ-invariant measures are the constant multiples of Lebesgue measure, as has been demonstrated by
H. Furstenberg [1062].

bThe name betrays the definition: ὅρι[ον]-κύκλος (border-circle).
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The 1-parameter group η+t generates the stable horocycle flow; the 1-parameter
group η−t generates the unstable horocycle flow. But even here, the action
of η+t

viz
= {η+t }t and η−t

viz
= {η−t }t on T̊ 1U2

C corresponds to the action by right
multiplication of H−

η and H+
η on PSL2(R); the flow is {ηt}t∈R : PSL2(R) →

PSL2(R), and it is represented by the right translations g 7→ gη+t or g 7→ gη−t .
We shall now proceed with the modular surface still on the subject of the

projective special linear group. Let

Γ ⊂ PSL2(R) ∼= Möb
+
2 (R)

ιδ

= isom
+(U2

C) (12.9)

be a discrete cocompact subgroup of PSL2(R) (see Section 2.2.2), namely a
Fuchsian group (see Section 2.6). Let

SΓ
ιδ

= Γ\U2
C (12.10)

be a Riemann surface; more technically,

SΓ = {Γ(z) | z ∈ U2
C}, (12.11)

also called modular surface, is an orbit space of the modular group Γ.a
We must take account of the action of PSL2(R) by left multiplication on

T̊ 1U2
C
∼= PSL2(R), whereas this is a derivative action by isometries through

PSL2(R) on the unit tangent bundle. Since the group Γ acts on PSL2(R) by
multiplication to the left (by the projective special linear group), one understands
that T̊ 1U2

C
∼= PSL2(R) leads to another identification,

T̊ 1Γ\U2
C
∼= Γ\PSL2(R), (12.12)

and, that is,
T̊ 1SΓ

∼= Γ\PSL2(R), (12.13)

whereby the unit tangent bundle of SΓ
ιδ

= Γ\U2
C equates with the compact

quotient Γ\PSL2(R), with the specification that Γ is a lattice in PSL2(R)b
and Γ\PSL2(R) is the Γ-orbit projective space. Considering that Γ\PSL2(R)
is determined by the action of Γ on the left, the flows φt, η+t and η−t are
consequently also defined on T̊ 1SΓ

∼= Γ\PSL2(R). So there we have it:
(1) the flow φt : T̊ 1SΓ → T̊ 1SΓ, or else, in the long form,(
T̊ 1
(
SΓ

ιδ

= Γ\U2
C
)) ∼= Γ\PSL2(R)→

(
T̊ 1
(
SΓ

ιδ

= Γ\U2
C
)) ∼= Γ\PSL2(R),

(12.14)
is equivalent to the flow Γ\PSL2(R)→ Γ\PSL2(R) and the right translations
Γg 7→ Γgφt(g) = gt or

φSΓ(Γg) 7→ Γg

(
e

t
2 0

0 e−
t
2

)
; (12.15)

aWe also write the space of Γ-orbit(s) as a quotient surface U2
C/Γ, so πz

ιδ

= Γ(z) : U2
C → U2

C/Γ.
bAs long as Γ\PSL2(R) has finite measure.
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(2) the flow linked to orbits of the stable or unstable horocycle,

ηt : T̊ 1SΓ → T̊ 1SΓ, with ηt = η+t or ηt = η−t , (12.16)

is equivalent to the flow Γ\PSL2(R)→ Γ\PSL2(R) and the right translations
Γg 7→ Γgη+t or Γg 7→ Γgη−t .

12.1.3. Continuous Function on the Unit Tangent Bundle with Com-
pact Support

(1) Let

м =

(
α β
γ δ

)
∈ Γ (12.17)

be a matrix; the corresponding Möbius transformation is

м(z) =
αz + β

γz + δ
, (12.18)

with м ∈ Γ acting on z in U2
C by Möb-transformation, and Γ here represents

a discrete group of a hyperbolic Möb-transformation (see Section 2.5.1). It
is noted that if м ∈ Γ is a hyperbolic Möb-transformation preserving length
minimizing paths, we obviously have a unique geodesic, called the axis of м.
Let dµ = y−2dxdy be an invariant measure on U2

C under the action of SL2(R),
see. Eq. (2.46). From the measure dζ = dµ(z)dθ on T̊ 1U2

C
∼= PSL2(R), where

θ ∈ [0, 2π[, with 0 ⩽ θ < 2π, one obtains a measure ζ̃ on T̊ 1SΓ
∼= Γ\T̊ 1U2

C fixed
by ∫

T̊ 1U2
C

(
φм ∈ Cc(T̊ 1U2

C)
)
dζ =

∫
Γ\T̊ 1U2

C

∑
м∈Γ

φм
(
м(x)

)
dζ̃(x), (12.19)

where φм is a continuous function on T̊ 1U2
C of compact support by Cc

ιδ

= {φм ∈
Cc(T̊ 1U2

C) | supp(φм) is compact}, and Cc is the space of φм , in the sense that
the class Cc of compactly supported continuous φм -functions is made into (or
forms) a vector space over T̊ 1U2

C. The support of φм , indicated with supp(φм),
is the closure of the set (or interval) on which the function is non-zero, φм ̸= 0
or, equivalently, is the smallest closed set (or interval) outside which the function
vanishes, φм = 0. The bundle T̊ 1SΓ

∼= Γ\PSL2(R) is found to be measurable
with a finite measure, and the associated geodesic flow establishes the structure
of measure preserving (group) actions on spaces of this type.

(2) Let z = (x+ iy) ∈ U2
C. Let

м =

(
α β
γ δ

)
∈ SL2(R), for α, β, γ, δ ∈ R,det(м) = 1, (12.20)

be an element acting via Möbius (or linear fractional) transformation, z 7→
м(z) = (αz + β)(γz + δ)−1 on U2

C, such that м(z) ∈ U2
C, for м ∈ SL2(R) and

z ∈ U2
C. It follows that

ℑ
(
м(z)

)
=

ℑ(z)
|γz + δ|2

, (12.21)
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for which м(U2
C) is a subset of U2

C. Since the Jacobian [1432] of м(z) reads
det(Jм) = 1

|γz+δ|4 , using ℑ
(
м(z)

)
and making a change of variables (integration

by substitution), we see that∫
U2

C

φм
(
м−1(z)

)dxdy
y2

=

∫
U2

C

φм(z)
1

|γz + d|4
|γz + δ|4

y2
dxdy =

∫
U2

C

φм(z)
dxdy

y2
,

(12.22)
for a compactly supported continuous function φм .

12.2. Stable and Unstable Foliations with Leaves and Totally
Geodesic Foliations

12.2.1. Leafy Stratifications for the Geodesic Flow by Tangent Vectors

The geodesic and horocycle flows satisfy φt+s = φt ◦ φs and ηt+s = ηt ◦ ηs,
for any t, s ∈ R, and they have commutation relations of the form

φ−tη
+
s φt = η+se−t , φ−tη

−
s φt = η−set , (12.23)

and this is reflected in the fact that the orbits of the stable and unstable horocycle
flows (12.8) are (coincide with) the stable and unstable manifolds of the geodesic
flow (12.3).

Example 12.2.1. Denote by Ws the stable (s) manifold and by Wu the unstable
(u) manifold. We shall say thatWs andWu are the stable and unstable foliations
for a geodesic flow φW

t . Let v ∈ T̊ 1SΓ
∼= Γ\PSL2(R) be a vector, where

SΓ
ιδ

= Γ\U2
C (see above). Indicating by Ws(v) the leaf of Ws and by Wu(v) the

leaf of Wu, the stable and unstable leaves of v for φW
t are defined by

Ws(v) =

{
w ∈ T̊ 1SΓ

∼= Γ\PSL2(R)
∣∣∣ ρ
(
φW
t (v), φW

t (w)
)
−−−−→
t→+∞

0

}
, (12.24)

Wu(v) =

{
w ∈ T̊ 1SΓ

∼= Γ\PSL2(R)
∣∣∣ ρ
(
φW
t (v), φW

t (w)
)
−−−−→
t→−∞

0

}
, (12.25)

respectively, where w = v̇ and ρ = dist. The manifolds Ws and Wu of v ∈ T̊ 1SΓ

are
(1) foliated with (smooth) leaves or leafy stratifications (of W-stable and

W-unstable foliations) in T̊ 1SΓ,
(2) determined by the positive and negative horocycle flows: the positive

η-flow is for the stable case,

lim
t→+∞

{
ρ
(
φt(v), φt(w)

)
W

}
= 0, (12.26)

the negative η-flow is for the unstable case,

lim
t→−∞

{
ρ
(
φt(v), φt(w)

)
W

}
= 0, (12.27)
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(3) are (coincide with) framed horocycles by inwardly and outwardly directed
tangent vectors to geodesics centered at the points γc(v)(+∞) and γc(v)(−∞),
respectively. In short, the W-foliations consist of orbits of the horocycle flows.
Consider that each leaf is a C1 immersed surface, so the averages take constant
values, and the foliations in T̊ 1SΓ are invariant under φW

t , whether they are
stable and unstable. 5

12.2.2. Invariant and Geodesible Foliations

We summarize some more or less recent results through a series of Scholia.
First of all we say that

· a folition is a decomposition of an n-manifold in terms of submanifolds of
lower dimension, called leaves;

· a folition is a concept made of several parts, for which it is comparable to a
higher dimensional dynamical system.

Scholium 12.2.1 (Totally geodesic foliation). Let F denote a foliation on a
Riemannian manifold (M, g), g = gM. Let T̊ F be a tangent bundles to the
leaves of F , under which T̊ F could be thought of as a subbundle of T̊ M. A
noteworthy remark formalized by P. Tondeur [2512, Corollary 6.6, Theorem 10.6]
is that

· iff the induced metric g(T̊ F) along the leaves of F is invariant under the
flow of vector fields orthogonal to F , then F is a totally φF

t -geodesic foliation,
· there is a g-metric such that F is a geodesible foliation, and the vector flow

is a leaf preserving flow.
Note. Cf. Johnson–Whitt theorem [1440, Theorem 1.6], about a geometriza-

tion of a totally geodesic foliation in which gM is a fiber-like metric for F .
In Ghys [1130] can be found a classification of totally geodesic foliations of
codimension 1 on a complete, not necessary compact, Riemannian manifold. ⋄

Scholium 12.2.2 (No totally geodesic foliations).
(1) F.G.B. Brito [424, Théorèmes 4.2-3]: there exist no totally geodesic C∞

foliations of codimension 1 on a closed Riemannian manifold with non-zero
(positive or negative) sectional curvature. In this case, the obstruction to this
type of existence also includes positively curved spaces.

(2) P.G. Walczak [2603, Theorem 4]: given an oriented C3 foliation F on a
compact Riemannian manifold of negative sectional curvature, then there is a
positive number ε > 0 such that there exist no non-trivial foliations for which
the second fundamental form of F and the norm of its covariant derivative are
less than ε.

(3) E. Ghys [1131]: there exist no totally geodesic C0 foliations of dimension
⩾ 2 on a compact hyperbolic space. Generalizing, there are no totally geodesic
foliations on the hyperbolic structure of a compact Riemann manifold.

(4) A. Zeghib [2726, Théorème A]: there exist no geodesic C0 foliations of
dimension 1 on a closed hyperbolic 3-manifold with geodesic leaves; see [2727]
for φ-geodesic foliations of class C1. In [2728, Théorème B] it is proven that
a locally Lipschitz foliation having totally geodesic leaves is not admitted on
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a complete negatively curved manifold of finite volume which carries a locally
symmetric metric.

(5) P. Tondeur and L. Vanhecke [2514, Proposition 5.10], see also [2513,
Proposition 5.91]: given a Riemannian foliation F with bundle-like metric gM
on (M, g), and a Ricci curvature tensor Ric(T̊ F) < 0 at least one point of M,
for a tangent bundles T̊ F ⊂ T̊ M to the leaves of F , then there are no totally
φF
t -geodesic foliations on (M, g). For the demonstration it is advantageous to

make use of the notion of partial Ricci curvature [1486] [2244]. ⋄

Scholium 12.2.3 (Totally geodesic foliations of hyperbolic space, and totally
geodesic non-smooth foliations of codimension 1).

(1) Proofs of existence of totally geodesic foliations of hyperbolic space Hn
relate to hypersurfaces that are orthogonal to a geodesic curve. Proceeds in
this way e.g. the following theorem by D. Ferus [976, cf. Theorems 1, 3-4].
Let ι : Hn → Hn+1 denote an isometric immersion free of umbilics (points
on the surface where the normal curvature is equal in all directions) between
hyperbolic spaces, and suppose ι is a C∞ (smooth) map; let γc : I ⊂ R → Hn
be a (constant speed) geodesic of curvature ⩽ 1. Then every (complete) totally
geodesic hypersurface of Hn orthogonal to γc forms a totally geodesic foliation
Fι of Hn. This foliation is known as nullity foliation of ι.

(2) A classification of totally geodesic non-smooth foliations of codimension
1 of Hn is drafted by H. Browne [434, Theorem 5.5]. Let γc : I ⊂ R→ Hn be a
geodesic curve, where I is an interval, possibly infinite; let

Ψ
be a unit-length

vector field along γc such that ⟨

Ψ

, γ̇c⟩ > 0 and

lim sup
α→β

ργc
( Ψ

(α),

Ψ

(β)
)

|β − α|
⩽ ⟨

Ψ

(β), γ̇c(β)⟩, (12.28)

for any β ∈ I ⊂ R, where ρ is the distance for which

Ψ

is parallel by maintaining
a constant angle with γ̇c. Then the hypersurfaces orthogonal to

Ψ

extend to a
unique totally geodesic foliation of Hn. ⋄

12.3. Anosov Diffeomorphism and Flow

[A] geodesic flow on a closed Riemannian manifold of negative curvature satisfies a certain
“condition (У )” [ . . . ] a dynamical system satisfies the condition (У ) if near an arbitrary fixed
trajectory the behavior of the neighboring trajectories with respect to the fixed one is similar to the
behavior of the trajectories close to a saddle.

— D.V. Anosov [99, p. 1] (p. 3. in the Ru. version)

12.3.1. Diffeomorphism and Flow on Negatively Curved Surfaces

In general, the geodesic flow on (the tangent bundle of) a compact Rieman-
nian manifold of negative curvature is called an Anosov flow [97] [98] [99] of
which (12.2) is part; see P.B. Eberlein [831] and S. Smale [2394, II.3]. Never-
theless, there are also other examples of Anosov flows. One may start with a
propaedeutic description of an Anosov system, forming part of non-trivial and
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complex dynamical systems; see the works of D.V. Anosov in collaboration with
Ya.G. Sinai [102] and V.V. Solodov [103, pp. 70-84].

Definition 12.3.1 (Anosov diffeomorphism). Let φ :M→M be a diffeomor-
phism of a compact Riemannian manifold. The map φ

viz
= φ[A] is an Anosov

diffeomorphism, imagining e.g. a C1 Anosov system, so φ ∈ Diff1(M),
(1) if there is a direct sum decomposition TxM

ιδ

= Es(x) ⊕ Eu(x), i.e. a
splitting of the tangent space into two dφ-invariant distributions, or rather,
subspaces, the stable (s) subspace Es(x) and the unstable (u) subspace Eu(x), at
each point x ∈M,

(2) if there exist some constants c > 0 and 0 < λ < 1 < ϵ such that

dφEs(x) = Es
(
φ(x)

)
and dφEu(x) = Eu

(
φ(x)

)
, (12.29a)

∥dφn(v)∥ ⩽ cλn∥v∥, for all v ∈ Es(x) and n ∈ N ⩾ 0, (12.29b)

∥dφ−n(v)∥ ⩽ cϵ−n∥v∥, for all v ∈ Eu(x) and n ∈ N ⩾ 0, (12.29c)

for which φ is hyperbolic and the intersection Es(x) ∩ Eu(x) = 0 is transversal,
where Es is uniformly contracted and Eu uniformly expanded by dφ, and ∥ · ∥ is
the norm induced on TxM by the Riemannian metric. 3

In conclusion, M φ[A]−−−→ M is of Anosov type if φ[A] is hyperbolic on the
whole of M.

Example 12.3.1 (Hyperbolic toral automorphism). The hyperbolic automorphism
of the n-dimensional torus is a basic model of Anosov diffeomorphism [99, pp.
7-12] [102, pp. 140-141] in which the map φ[A] : Tn → Tn is a space preserving
(Anosov) diffeomorphism of Tn, such that |λ1| ⩽ · · · ⩽ |λ ℓ| < 1 < |λ ℓ

+1| ⩽ · · · ⩽
|λn|, with 1 ⩽

ℓ

< n. A Franks–Newhouse theorem [1027] [1932] states that
an Anosov diffeomorphism φ[A] of codimension 1, for which dim

(
Esx
)
= 1 or

dim
(
Eux
)
= 1, is topologically conjugate to a hyperbolic toral automorphism, so the

manifold equipped with this diffeomorphism is homeomorphic to Tn ∼= S1×· · ·×S1.
5

Scholium 12.3.1 ( Cr Anosov diffeomorphism). It is understood that, by choos-
ing a smooth compact connected Riemannian C∞ manifold, the Anosov dif-
feomorphism M φ−→ M is a Cr diffeomorphism, with 1 ⩽ r ⩽ ∞, so that
φ[A] ∈ Diffr(M) is Cr⩾1 differentiable. ⋄

Similarly to the continuous (T φ)-invariant splitting of TxM for the Anosov
map, we are able to express the Anosov flow, using three subspaces rather than
two.

Definition 12.3.2 (Anosov flow). Let us exemplify the case of a hyperbolic Cr

flow, e.g. with r = 2. More specifically, we shall use the class C2 to prove the
Hölder continuity of subspaces (Theorem 12.3.1) and the ergodicity (Theorem
13.1.4) in maps with the Anosov property . Given a smooth compact Riemannian
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manifold M and a vector field X⃗, consider the non-singular smooth Cr flow
φt :M→M such that

X⃗(t) =
d

dt

(
φt(x)

)∣∣
t=0

, (12.30)

having continuous time t ∈ R. The flow φt
viz
= φt[A] is said to be an Anosov flow

(1) if there is a decomposition of the tangent space into three dφt-invariant
subspaces,

TxM
ιδ

= Es(x)⊕ E0(x)⊕ Eu(x), (12.31)

i.e. if TxM splits into a direct sum of the stable subspace Es(x), the 1-dimensional
subspace E0(x) spanned by X⃗(t), and the unstable subspace Eu(x), at each point
x ∈M,

(2) if there exist some constants c > 0 and 0 < λ < 1 < ϵ such that

dxφtEs(x) = Es
(
φt(x)

)
and dxφtEu(x) = Eu

(
φt(x)

)
, (12.32a)

∥dxφt(v)∥ ⩽ cλt∥v∥, for all v ∈ Es(x) and t ∈ R ⩾ 0, (12.32b)

∥dxφ−t(v)∥ ⩽ cϵ−t∥v∥, for all v ∈ Eu(x) and t ∈ R ⩾ 0, (12.32c)

where ∥ · ∥ is again a Riemannian metric on TxM. 3

An Anosov flow φt
viz
= φt[A] is topologically transitive if it contains a dense

orbit in M, i.e. if there exists the condition that ΩN ∩ φtΩO ̸= ∅ of M, for all
non-empty open subsets ΩN , ΩO ⊂M.

Scholium 12.3.2. When speaking of tangent bundle T̊ M instead of tangent
space, we refer to the Anosov system through a (T̊ φt)-invariant splitting of T̊ M
into a direct sum of flow invariant subbundles, of course, i.e.

T̊ M ιδ

= E̊s ⊕ E̊0 ⊕ E̊u. (12.33)

The subbundles E̊s, E̊u, E̊s⊕E̊0 and E̊u⊕E̊0 are uniquely integrable. The Anosov
foliations (manifolds) that occurred in these integral spaces are strongly stable
(ss), strongly unstable (su), weakly stable (ws) and weakly unstable (wu), denoted
by Wss, Wsu, Wws and Wwu, respectively. The stable and unstable leaves of an
Anosov-like foliation can be written as

Ws(x) =
⋃
t∈R
Ws
(
φW
t

viz
= φW

t [A](x)
)
, Wu(x) =

⋃
t∈R
Wu
(
φW
t

viz
= φW

t [A](x)
)
,

(12.34)
cf. Eqq. (12.24). ⋄

12.3.2. Hölder Continuity of Subspaces in a Map with the Anosov
Property

The stable and unstable subspaces Es(x) and Eu(x) satisfy the Hölder con-
dition, for which they are not always smooth in the analytic category. This
statement is a theorem, and it is proven by Anosov [100], showing that tangential
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fields in term of transversal contractible and extensible foliations in C2 Anosov
systems are Hölder continuous.

We will follow the presentation of M. Brin’s [422] proof. (The core of Brin’s
argument is already present, in broad terms, in one of his paper in collaboration
with Yu. Kifer [423, § 5. App.] on the dynamics of Markov chains). Firstly, we
remind the meaning of Hölder continuity in this context; after which it will be
necessary to introduce two Lemmas 12.3.1 and 12.3.2, and then move on to the
theorem.

Definition 12.3.3 (Hölder condition).
(1) Let (M, g) be a (smooth) Riemannian manifold. We assume that M ↪→

Rn, an embedding ofM in the Euclidean space Rn, for all sufficiently large n.
Let E be a k-dimensional distribution on a subset N of M. The distribution
E forms a set of k-dimensional subspaces E(x) in TxM, at each point x ∈ N .
Distances in the tangent space TxM, and those in the space of k-dimensional
subspaces in TxM, are the induced distances from the Riemannian metric g on
M. If we suppose that M is compact, then g is equal to the Euclidean distance
∥x− y∥ in the embedded space.

(2) Taking a subspace Ωξ ⊂ Rn and a vector v ∈ Rn, we have a distance
ρ(v,Ωξ), that is the length of the difference between v and its orthogonal
projection w = v̇ onto Ωξ,

ρ(v,Ωξ) = min
w∈Ωξ

∥v − w∥. (12.35)

Given two subspaces Ωξ, Ωϖ ⊂ Rn, we write

ρ(Ωξ, Ωϖ) = max

max
v∈Ωξ

∥v∥=1

ρ(v,Ωϖ), max
w∈Ωϖ

∥w∥=1

ρ(w,Ωξ)

 . (12.36)

Let α ∈ (0, 1] be the Hölder exponent. A distribution E of dimension k on NRn

is said to be Hölder continuous if there exists a value ε0 > 0 such that

ρ
(
E(x), E(y)

)
⩽ ch∥x− y∥α, (12.37)

for a positive Hölder constant ch > 0 and any x, y ∈ N , with ∥x− y∥ ⩽ ε0. 3

Lemma 12.3.1. Consider two sequences Ωkξ and Ωkϖ of n×n real matrices, with
k = Z∗, namely k = 0, 1, 2, . . ., such that ∥Ωkξ −Ωkϖ∥ ⩽ ∆µk, for fixed ∆ ∈ (0, 1)
and µ > 1. If there exist subspaces EΩξ

, EΩϖ
⊂ Rn, and values 0 < λ < ϵ and

ζ > 1, with λ < µ, such that

∥Ωkξ (v)∥ ⩽ ζλk∥v∥, if v ∈ EΩξ
, (12.38a)

∥Ωkξ (w)∥ ⩾ ζ−1ϵk∥w∥, if w ∈ (EΩξ
)⊥

viz
= w ⊥ EΩξ

, (12.38b)

∥Ωkϖ(v)∥ ⩽ ζλk∥v∥, if v ∈ EΩϖ
, (12.38c)

∥Ωkϖ(w)∥ ⩾ ζ−1ϵk∥w∥, if w ∈ (EΩϖ )⊥
viz
= w ⊥ EΩϖ , (12.38d)
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then
ρ
(
EΩξ

, EΩϖ

)
⩽ 3ζ2

ϵ

λ
∆

log ϵ−log λ
log µ−log λ . (12.39)

Proof. Let us set

ΛkΩξ
=
{
v ∈ Rn

∣∣ ∥Ωkξ (v)∥ ⩽ 2ζλk∥v∥
}
, (12.40)

ΛkΩϖ
=
{
v ∈ Rn

∣∣ ∥Ωkϖ(v)∥ ⩽ 2ζλk∥v∥
}
, (12.41)

and write v = vi + vj , where vi = vλ ∈ EΩξ
and vj = v⊥ ∈ (EΩξ

)⊥
viz
= v⊥ ⊥ EΩξ

,
for every v ∈ Rn. If v ∈ ΛkΩξ

, one sees that
(1) ∥Ωkξ (v)∥ = ∥Ωkξ (vi+vj)∥ ⩾ ∥Ωkξ (vj)∥−∥Ωkξ (vi)∥ ⩾ ζ−1ϵk∥vj∥−ζλk∥vi∥,
(2) ∥vj∥ ⩽ ζϵ−k(∥Ωkξ (v)∥+ ζλk∥vi∥) ⩽ 3ζ2

(
λ
ϵ

)k ∥v∥,
and hence ρ(v, EΩξ

) ⩽ 3ζ2
(
λ
ϵ

)k ∥v∥. A fixed δ = λ
µ < 1 determines a unique

non-negative integer k so that δk+1 < ∆ ⩽ δk. If w ∈ EΩϖ , then

∥Ωkξ (w)∥ ⩽ ∥Ωkϖ(w)∥+ ∥Ωkξ −Ωkϖ∥ · ∥w∥

⩽ ζλk∥w∥+∆µk∥w∥ ⩽
(
ζλk + (δµ)k

)
∥w∥ ⩽ 2ζλk∥w∥. (12.42)

Therefore w ∈ ΛkΩξ
, plus ΛkΩξ

includes EΩϖ
and, inversely, ΛkΩϖ

includes EΩξ
.

We finally get to

ρ
(
EΩξ

, EΩϖ

)
⩽ 3ζ2

(
λ

ϵ

)k
⩽ 3ζ2

ϵ

λ
∆

log ϵ−log λ
log µ−log λ . (12.43)

□

Scholium 12.3.3. Note that if ∥vi − vj∥ ⩾ θ, then for a value θ > 0 there exist
subspaces Ei and Ej which we call θ-transverse, for all unit vectors vi ∈ Ei and
vj ∈ Ej . ⋄

Lemma 12.3.2. Let φ : M → M denote a C1+β map of a compact m-
dimensional C2 manifold M⊂ Rn. For each

µ >

(
max
z∈M

∥dzφ∥
)1+β

(12.44)

there is τi > 1 such that ∥dxφn − dyφn∥ ⩽ τiµ
n∥x − y∥β, for any n ∈ N and

x, y ∈M.

Proof. We should impose τj so that ∥dxφ− dyφ∥ ⩽ τj∥x− y∥β . Let
(1) ν = maxz∈M ∥dzφ∥ ⩾ 1,
(2) ∥φn(x)− φn(y)∥ ⩽ νn∥x− y∥, for any x, y ∈M,
(3) µ > ν.
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It ensues that the lemma is true for n = 1 and τi ⩾ τj . Then

∥dxφn+1 − dyφn+1∥ ⩽ ∥dφn(x)φ∥ · ∥dxφn − dyφn∥
+ ∥dφn(x)φ− dφn(y)φ∥ · ∥dyφn∥

⩽ ντiµ
n∥x− y∥β + τj

(
νn∥x− y∥

)β
νn

⩽ τiµ
n+1∥x− y∥β

(
ν

µ
+
τj
τi

(ν1+β)n

µn+1

)
. (12.45)

If µ > ν1+β , there exists τi ⩾ τj and the factor in parentheses is always smaller
than 1. □

Theorem 12.3.1. LetM be a compact m-dimensional C2 manifold in Rn, with
m < n, and φ :M→M a C1+β map, with β ∈ (0,1). Suppose that there exist
a subset N ofM, real numbers 0 < λ < ϵ, c > 0, and θ > 0, so that there are
θ-transverse subspaces Es(x), Eu(x) in TxM, at each x ∈ N , and the following
properties hold:

(1) TxM
ιδ

= Es(x)⊕ Eu(x),
(2) ∥dxφk(vs)∥ ⩽ cλk∥vs∥ and ∥dxφk(vu)∥ ⩾ c−1ϵk∥vu∥, for all vs ∈ Es(x)

and vu ∈ Eu(x), and every Z∗.
Then the distribution E is α-Hölder continuous, with

α =
log ϵ− log λ

logµ− log λ
β, (12.46)

for each µ > (maxz∈M ∥dzφ∥)1+β.

Proof. Let E(x)⊥ be the orthogonal complement to the tangent plane TxM in
Rn, for x ∈ M. Given that Es(x) and Eu(x) are θ-transverse and moreover
of complementary dimensions in TxM, there is d > 1 such that ∥dxφk(w)∥ ⩾
d−1ϵk∥w∥ at each x ∈ N and for every w ⊥ E(x). Let Ωkξ and Ωkϖ be two
sequences of n× n real matrices, with k = Z∗, for any x, y ∈ N , such that

(1) Ωkξ (v) = dxφ
k(v), if v ∈ TxM, and Ωkξ (w) = 0, if w ∈ (TxM)⊥

viz
= w ⊥

TxM,
(2) Ωkϖ(v) = dyφ

k(v), if v ∈ TyM, and Ωkϖ(w) = 0, if w ∈ (TyM)⊥
viz
= w ⊥

TyM. The Lemma 12.3.2 tell us that ∥Ωkξ −Ωkϖ| ⩽ τiµ
k∥x− y∥β (by replacing

the natural dimensionality with a non-negative integer).
Observe the case with the stable distribution. The theorem is true since it

is related to Lemma 12.3.1 by putting Ẽs = Es ⊕ E⊥, with ∆(x) = τi∥x− y∥β ,
EΩξ

= Ẽs(x), EΩϖ = Ẽs(y), and ζ = max(c, d). By reversing the time we get the
result inherent in the continuous Hölderianity of the unstable distribution. □

Essentially, through the Theorem 12.3.1 it can be stated that the stable and
unstable subspaces Es(x) and Eu(x) of an Anosov diffeomorphism φ[A] depend
α-Hölder continuously on the point x in the manifold M. These subspace
distributions may also be non-smooth. See B. Hasselblatt [1300].
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12.3.3. Structural Stability: Andronov–Pontrjagin Criterion

[The] definition of the coarseness [грубости]a of a system can be considered as the determination
of the stability [устойчивости] of a set of orbits of a dynamic system with respect to sufficiently
small perturbations in the right-hand sides of equations [such as] dx

dt = P (x, y); dy
dt = Q(x, y).

— A. Andronov and L. Pontrjagin [93, p. 248]

The idea of [structural stability] is that qualitative properties of structurally stable diffeomor-
phisms [or flows] are unchanged by small C1 perturbations.

— J.W. Robbin [2214, p. 447]

An Anosov system is called structurally stable, or a coarse system, whether it
be a diffeomorphism or a flow, by applying the Andronov–Pontrjagin criterion
[93] in the C1 topology. Simply stated, the criterion establishes a condition of
equivalence, claiming that small perturbations of a hyperbolic (Anosov) dynamical
system from the initial state do not alter the future behavior of its orbits.
Therefore, a dynamical system is structurally stable if the qualitative properties
that characterize the system remain the same after some form of perturbation.

Example 12.3.2 (Harmonic and van der Pol oscillator). Some primary examples
of structurally stable dynamic systems are:

(1) the equation(s) of a harmonic oscillator

ẍ+ (μ)ẋ+ x = 0, (12.47a)
ẋ = y, ẏ = −x− (μ)y, (12.47b)

under the influence of a dissipative force, e.g. by friction or damping, that is,
mechanically, the motion of a pendulum in the phase plane, for a coefficient
of friction μ, whereas a pendulum without friction (μ = 0) is proving to be
structurally unstable. The behavior of a damped pendulum (with the dissipation
of energy) remains the same, figuring that the friction, combined with the mass
and length, is changed by a sufficiently small amount.

(2) the van der Pol’s equation of the second order [2146] [2147]

ẍ− ε(1− x2)ẋ+ x = 0, (12.48)

where ε is a parameter, with a linear restoring force for damped non-linear
electronic oscillator in a triode vacuum tube circuit, despite the fact that it is a
model of deterministic chaos. For a sufficiently small value of ε, the Eq. (12.48)
contains a hyperbolic chaotic invariant set, and it has stability: except for

x = ẋ = 0,

there exists a solution lying on a closed curve, which is a periodic orbit describing
a harmonic-like oscillation; see the pioneering works of Cartwright-Littlewood
[571] [572] [570] [1671] [1672], the contributions e.g. by P.J. Holmes and D.A.
Rand [1384] [1383], and the most recent developments by R. Haiduc [1258]. 5

Now on to the formal definition of the concept of structural stability.
aSystems that are structurally stable are denominated as coarse systems.
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Definition 12.3.4 (Structurally stable Anosov system).
(1) Let X⃗ be a vector field in the C1 topology. We say that a diffeomorphism

φ
viz
= φ[A] in Diff1(M) is structurally stable
(i) if there is a C1 neighborhood Y⃗ of X⃗ and a C1 diffeomorphism ψ ∈ Y⃗ such

that every ψ :M→M is orbitally topologically equivalent to φ, i.e. topological
properties of φ are preserved under sufficiently C1 small perturbations of φ,

(ii) if there is a Hölder (continuous) homeomorphism ϑh :M→M conju-
gating ψ and φ, such that ψ ◦ ϑh = ϑh ◦ φ.

(2) Let X 1
φt
(M) be the space of all C1 flows φt of Anosov type onM. Let

Y⃗ be a vector field determining a flow ψt, and let us say that Y⃗ is sufficiently
C1 close to X⃗, and hence ψt is sufficiently C1 close to φt in X 1

φt
(M). A flow

φt
viz
= φt[A] is said to be structurally stable if there is a Hölder (continuous)

homeomorphism ϑh : M → M for which all (φt)-orbits and (ψt)-orbits are
order preserving. This means that ϑh maps the (φt)-orbits to (ψt)-orbits, and
preserves the count of points of each orbit by guaranteeing a one-to-one orbital
correspondence between φt and ψt (in short, these flows shall be topologically
equivalent). 3

In the case of Cr diffeomorphisms and Cr flows, for r ⩾ 1, it is clear that the
structural stability is developed with open subsets Diffr(M) of Cr

(
M φ−→M

)
,

X rφt
(M) spaces and any sufficiently Cr close vector field.
Let us take the example of the foliations, whose definition of structural

stability is similar to the one we have just saw, but it can be given in a more
intuitive manner.

Definition 12.3.5 (Structurally stable foliation). Let

F =
(
φt, f(inv),M

)
(12.49)

be a triple expressing a Cr foliation, where φt : M× R → M is a Cr flow
and f(inv) :M → M is an involution, with the identity map (f(inv))

2 = idM,
assuming φt and f(inv) are both smooth on the manifoldM. Let X rF (M) be the
space of all Cr smooth foliations onM. We say that a foliation Fµi ∈ X rF (M)
is structurally stable if there is a neighborhood ΥF of Fµi

in X rF (M) so that any
foliation Fµj

∈ ΥF is topologically conjugate to Fµi
. 3

A rich classification of structurally stable systems came into being in the
Smale’s [2394] and Palis–Smale’s [2000] studies, the (geometric) sufficient condi-
tions of which are shown especially in J.W. Robbin [2214], with emphasis on Cr

diffeomorphisms, for r ⩾ 2; W. de Melo [1808], focusing on C1 diffeomorphisms
on 2-dimensional manifolds, referring to Palis–Smale tubular families; and C.
Robinson [2218], with attention to Cr diffeomorphisms, for r = 1. The hyperbol-
icity of structural stability of C1 diffeomorphisms is proved by R. Mañé [1753],a
while that of C1 flows by S. Hayashi [1308].

aA deficiency in the Mañé’s proof is filled by Y. Zhang and S.B. Gan [2740].
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Margo 12.3.1. The structural stability of Anosovian C1 flows, or of flows with
hyperbolic-like dynamics, can be proved in several ways; the geometrical demon-
stration by Arnold–Avez [135, § 16] and the analytical resolutive stages in J.
Moser [1880] are classic examples of proofs. L

Scholium 12.3.4 (Morse–Smale system, or hyperbolic strange attractors). In
reference to the dimensionality, the structural stability is typical (generic) in
low dimensions, as we know from Peixoto’s theorem [2049] [2050]: it is valid for
a certain class of 2-dimensional differential systems on the plane; but in higher
dimensions (n ⩾ 3) no such stability exists (it is theoretically incomplete), and
this leads to bifurcation sets and non-structurally stable dynamical systems.

Take the case of the Morse–Smale system [2391] [2394], with which it is pos-
sible to carry over the definition of structural stability into the multi-dimensional
space. The Morse-Smale approach specifies the criteria for identifying struc-
turally stable dynamical systems with a finite number of equilibrium points and
orbits of hyperbolic type; the related stable and unstable manifolds have mutual
transverse intersections. But in dimension n ⩾ 3 appear strange attractors within
the structurally stable systems that, giving different examples of structurally
unstable vector fields, prevent an extension of the typicality of Morse–Smale
criteria. ⋄

12.4. Integrability and Recurrence of Flow: Models in Com-
parison

(1) We shall now refer back to Section 12.1. Let U2
F be the hyperbolic 2-space,

with F viz
= (C ∼= R2), in which a unit tangent vector v of U2

F identifies a geodesic

γc(x,v)(t) : R→ U2
F, with γc(x,v)(0) = x and γ̇c(x,v)(0) = v, (12.50)

passing through two points, γc(+∞), γc(−∞) ∈ R ∪ {∞}, on the boundary
∂∞U2, where γ̇c(x,v) is the derivative with respect to time t. In this model,
γc(x,v)(t) is interchangeably a semicircle based on γc(+∞) and γc(−∞), or a
vertical line based on the real x-axis. So, we can identify two pairs of points:

(i) the first pair is x and γc(+∞), and it determines the positive horocycle
flow η+t

(
x, γc(+∞)

)
;

(ii) the second pair of points is x and γc(−∞), and it determines the negative
horocycle flow η−t

(
x, γc(−∞)

)
.

The horocycle η+t is the circle tangent to the real line at the end-point of
the geodesic; the framing of η+t , with vectors (as the vector v) perpendicular to
η+t and pointing inwardly to γc(+∞), is the stable foliation Ws(x, v) through
(x, v). The horocycle η−t is the circle tangent to the real line at the origin of the
geodesic; the framing of η−t , with vectors (as the vector v) perpendicular to η−t
and pointing outwardly to γc(−∞), is the unstable foliation Wu(x, v) through
(x, v).

The geodesic flow

φt : (x, v) 7→
(
γc(x,v)(t), γ̇c(x,v)(t)

)
(12.51)
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on U2
F is of Anosov type (since it is an R-action on a negatively curved surface).

(2) When the geodesic flow is considered on some surface, it is stated that
the flow acts on the unit tangent bundle which moves, with unit speed, a tangent
vector along its geodesic γc(x,v)(t) : R → M. Letting M be a Riemannian
manifold, we can visualize the unit tangent bundle T̊ 1M as coinciding with the
unit sphere bundle for the tangent bundle T̊ M, and that can be done by defining
T̊ 1M as the collection of all unit spheres Sn−1(x) in all of the tangent spaces
TxM to M. For a natural projection π : T̊ 1M→M, it is easy to see that each
fiber π−1(x) of T̊ M at any point x ∈ M is a unit sphere Sn−1(x) included in
π−1(x).

(3) In general, the geodesic flow could be described, with a similar reasoning,
as a dynamical R-system on the tangent, or cotangent, bundle of a Riemannian
manifold M. There is talk of tangent and cotangent bundles (Definition 1.1.1)
because we can identify the tangent bundle of M at each point x ∈M with the
corresponding cotangent bundle through the isomorphism φ : T̊ M → T̊ ∗M, and
therefore by identifying any tangent vector v ∈ TxM with the cotangent vector

φT̊ M→T̊ ∗M(v) ∈ T ∗
xM. (12.52)

The tangent bundle is associated with the velocity vector field γ̇c(t) ∈ Tγc(t)M
at time t ∈ I ⊂ R along γc(t) ∈M (see Definition 1.6.1), the cotangent bundle
with the momentum

φT̊ M→T̊ ∗M
(
γ̇c(t)

)
∈ T ∗

γc(t)
M. (12.53)

(4) Flows of this kind, such as those discussed above, are characterized by
(i) a (complete) integrability in the sense of Liouville, by viewing these flows

as motions of a dynamical system of Hamiltonian type,
(ii) a chaoticity, implying that the behavior of its foliations becomes unpre-

dictable (see Margo 12.4.2), whenever we are dealing with a discrete set, like
imposing the Fuchsian group Γ ⊂ PSL2(R) (see Section 12.1.2). One other case
of emerging chaos (for which the behavior of geodesics ceases to be regular) is
that of a closed spherical surface with deformations, e.g. a ping-pong ball with
a bump or a dip. Later, we will analyze the chaotic (Chapters 14 and 15) and
even random roots (Chapter 16) of some attractorial flows.

Note that the property of Liouville integrability naturally results in the con-
cept of complete integrability primarily when doing a behavioral survey into the
Hamiltonian systems. Two examples of classes of Riemannian manifolds whose
geodesic flows are integrable are the Liouville manifolds and Kähler–Liouville
manifolds in the Kiyohara nomenclature [1490].

Margo 12.4.1 (Eulerian equations of motion for rigid bodies and incompressible
fluids as geodesic flows). We mainly used in this Chapter the geometry of
Lobačevskij with the Beltrami–Poincaré 2-space. The issue may nonetheless be
extended to higher-dimensional manifolds; e.g. V.I. Arnold [130] identifies some
examples of geodesic flow living on a Riemannian manifold, i.e. a Lie group,
provided with a left invariant, or right invariant, riemannian metric:
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(1) Euler equations [917] [921] of motion of a 3-dimensional rigid body , which
are equations of motion along geodesics in the group of rotations of Euclidean
R3-space;

(2) Euler equations [920]68 [918], originally in 2 and 3 dimensions, for the
flow of an inviscid (zero or very low viscosity) incompressible fluid.
These two families of Eulerian equations are actually geodesic flows. L

12.4.1. Liouville Measure: Integral Invariant of Hamiltonian Dynam-
ics

Let us focus on the integrability mentioned in the previous Section. It has to
do with the fact that the geodesic flow φt preserves

(1) the (Riemannian) volume form induced by the metric g,
(2) the related smooth measure, known as Liouville measure [1668], on the

manifold.
In case the manifold is compact, the Liouville measure is finte (so the flow

also exhibits a non-trivial recurrence) and normalizable. The invariance of
the Liouville measure under the flow correlates with Hamiltonian conservative
systems in the phase space. Indeed, the geodesic flow can also be thought of (and
defined) as a special case of a Hamiltonian flow, assuming M is endowed with a
symplectic form. Before proceeding we need a quick remark.

Scholium 12.4.1 (On the correspondence between the geodesic and Hamiltonian
flows).

(1) It should be recalled that the phase space is the space in which the points
correspond to the possible states of the system, and each point of the phase
space represents one state of the system, and one only.

(2) The Hamiltonian flow, to be more precise, is said to be a cogeodesic
flow, because it is created when the system acts on the (unit) cotangent bundle
with the momentum (12.53). The expression “geodesic flow”, for a Hamiltonian
system, is thus comprehensive.

(3) A flow, when it is geodesic, is also Hamiltonian; but a Hamiltonian flow
may not be geodesic. Some manifolds may have singularities in the geodesic
structure, and a distinction exists between locally and globally geodesic spaces;
e.g. C. McCord, K.R. Meyer and D. Offin [1800] show that the flows of the
planar n-body and spatial 3-body problems, both on the reduced spaces, are not
geodesic flows, excluding the case in which the components of the orbital angular
momentum are zero (with no rotation at all) and the energy levels of a system
are positive. ⋄

12.4.2. Symplectic Geometry; Liouville’s, Noether’s and Poisson’s
Theorems

The name “complex group” formerly advocated by me in allusion to line complexes, as these are
defined by the vanishing of antisymmetric bilinear forms, has become more and more embarrassing
through collision with the word “complex” in the connotation of complex number. I therefore propose
to replace it by the corresponding Greek adjective “symplectic” [συμπλεκτικός]. Dickson calls the
group the “Abelian linear group” in homage to Abel who first studied it.

— H. Weyl [2639, p. 165]
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Now let us examine in detail the aforementioned issues, with remembering
some important concepts.

Definition 12.4.1 (Hamiltonian vector field or symplectic gradient).
(1) Let (M, ωs) = (R2n, ωs) be a symplectic manifold, with a pair of a smooth

manifold M of dimension 2n and a symplectic form

ωs ∈ Λ2(M) = dx1q ∧ dy1p + · · ·+ dxnq ∧ dynp (12.54)

viz
=

n∑
ν=1

dxνq ∧ dyνp , (12.55)

that is a non-degenerate closed differential 2-form, for which dωs = 0 and
ωs(x) is a symplectic tensor, namely an alternating covariant 2-tensor, at each
point x ∈ M, where (x1q, . . . , x

n
q , y

1
p , . . . , y

n
p ) are the standard coordinates on

M = R2n
x,y.

(2) Let H :M→ R be a smooth function. Then there is a vector field

X⃗H(x1q, . . . , x
n
q , y

1
p , . . . , y

n
p ) =

(
∂H

∂y1p
, . . . ,

∂H

∂ynp
,−∂H

∂x1q
, . . . ,− ∂H

∂xnq

)
, (12.56)

X⃗H |Υx⊂M =

n∑
ν=1

(
∂H

∂yνp

∂

∂xνq
− ∂H

∂xνq

∂

∂yνp

)
, (12.57)

determined by
X⃗H⌟ωs = dH and ιX⃗H

ωs = −dH, (12.58)

where the symbol ⌟ and the letter ι indicate, indistinctly, an operator called
interior product or contraction, and finally H is a Hamiltonian for X⃗.

(i) There are Hamilton’s differential equations in use, corresponding to the
the well-known formulæ ẋ

ν
q =

dxν
q

dt = ∂H
∂yνp

,

ẏνp =
dyνp
dt = − ∂H

∂xν
q
.

(12.59)

(ii) The Eq. (12.57) is the mathematical relation for X⃗ of H in Darboux
coordinates on an open neighborhood Υx ⊂M, such that we might find a local
chart (Υx, φ) in x with φM = (x1q, . . . , x

n
q , y

1
p , . . . , y

n
p ), for any x ∈M.

(iii) The time dependent condition of X⃗H can be written ιX⃗Ht
ωs = −dHt,

with Ht(x) = H(t, x), by putting H = H(t, x) : [0, 1]× R2n → R.
(3) Let ω̂s : T̊ M → T̊ ∗M be a bundle (fiberwise) isomorphism induced by

ωs, which is an identification of the tangent bundle and the cotangent bundle
through the 2-form.

Under these three conditions, the following properties and results hold.
(1) One calls

X⃗H = ω̂s
−1(dH) (12.60)
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onM the (globally) Hamiltonian vector field associated with H or the symplectic
gradient of H, for any H ∈ C∞(M). The vector field X⃗H is said to be locally
Hamiltonian if for each x ∈M there exists a neighborhood Υx ⊂M on which
X⃗ is Hamiltonian. It is obvious that every (global) Hamiltonian vector field is
also a locally Hamiltonian vector field.

(2) H is constant on the integral curves of X⃗H , and X⃗H is tangent to the
smooth level sets of H, being that(

X⃗H

)
H = dH

(
X⃗H

)
= ωs

(
X⃗H , X⃗H

)
= 0. (12.61)

3

Definition 12.4.2 (Hamiltonian flow). Let us keep the conditions of the
Definition 12.4.1, and go ahead with another definition.

(1) Let
d

dt
φt(x) = X⃗

(
φt(x)

)
, with x ∈M = R2n, (12.62)

be the flow of a vector field X⃗. Let X⃗ ιδ

= X⃗H . The flow φH
t , given by ẋ = X⃗H(x)

on M, is said Hamiltonian flow of H, and it is defined by

dx

dt
= φ̇H

t = X⃗H(x). (12.63)

For a symplectic manifold (M, ωs) of fixed dim(M) = 2n, the Eq. (12.63)
reproduces the Hamilton–Jacobi equation(s) [1279] [1280] [1281] [1431] [1433], a
canonical expression of which is (12.59).

(2) Let H ∈ C∞(M).
(i) The Hamiltonian flow φH

t is the time evolution of (xq, yp) ∈ T̊ ∗M that
sets out a Hamiltonian vector field on the (unit) cotangent bundle or, more
generally, on the phase space of M under the Eqq. (12.59).

(ii) The Hamiltonian flow φH
t is a specially geodesic flow if it evolves on the

(unit) tangent bundle, φH
t : T̊ M → T̊M, the form of which is fully equivalent

to Eq. (12.2).
(3) Let

£X⃗ωs = ιX⃗dωs + dιX⃗ωs (12.64)

be the Lie derivative of ωs along X⃗, according to the so-called Cartan’s magic
formula [546] and the explicit formula of Ślebodziński [2390]. We say that X⃗ is
symplectic if the Lie derivative vanishes, £X⃗ωs = 0, i.e. if ωs is flow invariant
with respect to the vector field X⃗.

Let the vector field X⃗ be Hamiltonian, which means X⃗ ιδ

= X⃗H , so

£X⃗H
ωs = 0 (12.65)

(that is because a Hamiltonian vector field is symplectic). We can state the same
reasoning writing

d

dt

(
φH
t

)∗
ωs =

(
φH
t

)∗
£X⃗H

ωs = 0. (12.66)
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Conversely, if X⃗ is symplectic, and therefore is Hamiltonian in the sense of the
Eq. (12.58), the flow of X⃗ preserves the symplectic form and the energy (or
Hamiltonian) function, so

£X⃗H
H = 0, (12.67)

and (
φH
t

)∗
ωs = ωs. (12.68)

To put it another way, the flow φH
t is volume preserving (Theorem 12.4.1).

(4) Letting φH
t : Υ →M be a (local) flow of X⃗ on a neighborhood Υx ⊂M

of x ∈M, we define the Lie derivative of ωs along X⃗ as

£X⃗ωs(x) = lim
t→0

(
φH
t

)∗(
(ωs)φH

t (x)

)
− ωs(x)

t
(12.69)

= lim
t→0

((
φH
t

)∗
ωs

)
x
− ωs(x)

t
=

d

dt

∣∣∣∣
t=0

((
φH
t

)∗
ωs

)
x
, (12.70)

by a pullback of (ωs)φH
t (x) through

(
φH
t

)∗. 3

We transcribe in terms of theorem and proof a key point of this definition.

Theorem 12.4.1. The flow of a Hamiltonian vector field preserves the symplectic
form, as is the equality (12.68); that is to say: a symplectic form is conserved
along φH

t .

Proof. For fixed t, s ∈ R, we know that

d

dt

(
φH
t

)∗
ωs =

d

ds

(
φH
t+s

)∗∣∣∣∣
s=0

ωs =
d

ds

((
φH
t

)∗(
φH
s

)∗) ∣∣∣∣
s=0

ωs =
(
φH
t

)∗
£X⃗H

ωs,

(12.71)
and

£X⃗H
ωs = ιX⃗H

dωs + dιX⃗H
ωs = 0. (12.72)

Then (
d

dt

(
φH
t

)∗
ωs = 0

)
viz
=
((
φH
t

)∗
ωs =

(
φH
t

)∗∣∣
t=0

ωs = ωs

)
. (12.73)

□

After the Definitions 12.4.1 and 12.4.2, we are ready to exhibit without a
hitch the result on the invariance of the Liouville measure under the Hamiltonian
flow.

Theorem 12.4.2 (Liouville invariance). Let (M, ωs) be a symplectic manifold,
with the 2-form such as (12.54). We suppose M is a (smooth) Riemannian
manifold. Let the volume measure (x1q, . . . , x

n
q , y

1
p , . . . , y

n
p ) be a Liouville measure

on M = R2n. The Hamiltonian (specially geodesic) flow φH
t on the manifold

of a Hamiltonian vector field X⃗H preserves the symplectic volume form, or the
phase volume, hence the Liouville measure on the phase space.
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Proof.

d

dt

(
φH
t

)∗
ωs =

(
φH
t

)∗
£X⃗H

ωs =
(
φH
t

)∗ (
d(X⃗H⌟ωs) + (X⃗H⌟ dωs)

)
= 0.

(12.74)
□

Scholium 12.4.2. The flow φH
t is invariant under the time-reversal transformation

t→ ṫ = −t, and the Hamiltonian system is the same in the reverse direction of
time. ⋄

We are adding another theorem a latere derived from the large basket of E.
Noether [1955].

Theorem 12.4.3 (Noether—on symplectic transformations). Via Theorem
12.4.2, we declare that a Hamiltonian vector fields is of Liouville type, and
we may as well assume that H :M→ R is a symplectic invariant function for a
1-parameter group of symplectic transformations (thanks to which the symplectic
form is invariant) by a function ξ. Consequently, ξis also an integral of the
Hamiltonian flow φH

t .

Proof. Adopting the Poisson bracket of ξ,H ∈ C∞(M), that is an R-bilinear
operation, we have a combined function { ξ,H} ∈ C∞(M) given by

{ ξ,H} = ωs(X⃗ ξ, X⃗H) = d ξ(X⃗H) = X⃗H( ξ). (12.75)

One could imagine that the function H is an integral with regard to the flow of

ξ, so the function ξis an integral with regard to the flow of H. Two steps are
required.

(1) The first is to prove the following proposition: ξis an integral of φH
t

iff such a function has zero Poisson bracket with H, i.e. { ξ,H} = 0. One of
the properties of the Poisson bracket is { ξ,H} = £X⃗H

ξ. Letting x ∈ M and
t, s ∈ R, from this we obtain

£X⃗H

ξ=
d

dt

∣∣∣∣
t=0

(
φH
t

)∗ ξ= { ξ,H} = 0, (12.76)

thereby

d

dt

ξ

(
φH
t (x)

)
=

d

dt

(
φH
t

)∗ ξ(x) =
d

ds

∣∣∣∣
s=0

(
φH
t+s

)∗ ξ(x)

=
d

ds

((
φH
t

)∗(
φH
s

)∗) ∣∣∣∣
s=0

ξ

(x) (12.77)

=
(
φH
t

)∗ d
ds

(
φH
s

)∗∣∣∣∣
s=0

ξ

(x) =
(
φH
t

)∗
£X⃗H

ξ

= 0.

(2) The second step is revealed by another property of the Poisson bracket,
the anti-symmetry, or skew symmetry : { ξ,H} = −{H, ξ}, and we are done.
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□

Corollary 12.4.1 (Poisson). By adopting the premises and the result of Theorem
12.4.3, that is

(1) H :M→ R,
(2) X⃗H⌟ωs = dH

(3) dx
dt = φ̇H

t = X⃗H.
Let ηbe a third smooth function on M. Then the combined function { ξ, η} ∈
C∞(M) is an integral of φH

t .

Proof. By manipulating the Jacobi identity, we see a further property of the
Poisson bracket, {

{ ξ, η},H
}
+
{
{ η,H}, ξ

}
+
{
{H, ξ}, η

}
= 0, (12.78)

so we can write
{
{ ξ, η},H

}
=
{ ξ, { η,H}

}
+
{

η, {H, ξ}
}
= 0, and the corollary

is proven. □

The reader should be aware that the integrability of Hamiltonian vector fields
is still a ill-defined notion (evidently, the integrable Hamiltonian systems are
a special class of Hamiltonian systems), working principally from a physical
perspective, as Hamiltonian systems are generally regarded as being of chaotic
nature.

Margo 12.4.2 (Hamiltonian chaos through a geometrization of dynamics). Let
us define Hamiltonian chaos as a deterministic Hamiltonian dynamics, which,
however, is unstable and therefore unpredictability. Worth of mention is the
geometric approach to instability properties, that is, chaotic attributes, of Hamil-
tonian dynamics; see the work of M. Pettini et al. [2091] [576] [606] [575] [2092],
see also [1400] [2705]. It identifies a Hamiltonian flow with a geodesic flow on a
Riemannian manifold, with a suitable metric, and proves that some curvature
properties, or rather the fluctuations of curvature along the geodesics, generate
dynamical instability, i.e. chaos, in the geodesic flow (suppose e.g. there is a
locally unstable geodesic flow; that entails a sensitive dependence on the initial
conditions from neighboring geodesics, as they diverge exponentially).

Such a instability is investigated by means of the equation of geodesic deviation,
otherwise referred to as Levi-Civita equation [1632] [1635], or even Jacobi–Levi-
Civita equation,

∇
ds

∇
ds
J⃗µ +Rµνξϱ

dxν

ds
J⃗ξ
dxϱ

ds
=
∇2J⃗

ds2
(s) +R

(
J⃗(s), γ̇c(s)

)
γ̇c(s) = 0, (12.79)

where J⃗ ∈ Tγc(s)M, for each s ∈ R, is a Jacobi field (see Margo 13.2.3) acting as
the vector field of geodesic deviation and serving to locally measure the distance
between two nearby geodesics, ∇

ds is the covariant derivative along a geodesic,
Rµνξϱ is the Riemann curvature tensor, and

γ̇c(s) =
d

ds
γc(s). (12.80)
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This occurs chiefly when it comes to compact negatively curved manifolds, but
there are also cases with positive curvature [1513]. L

12.4.3. Poincaré Recurrence Theorem

In the mechanistic hypothesis, all phenomena must be reversible [ . . . ] A theorem, easy to prove,
tells us that a bounded world, controlled only by the laws of mechanics, will always come back
through a state very close to its initial state. On the contrary, according to accepted experimental
laws [ . . . ] the universe tends toward a certain final state, from which it will never depart [as emblem
of the irreversibility]. In this final state, which will be a kind of death, all bodies will be at rest
at the same temperature [ . . . ] but [the universe] does not remain that way forever, for which the
above-mentioned theorem is not violated; it solely stays there for an enormously long time, which
is longer the more numerous are the molecules. This state will not be the definitive death of the
universe, but a sort of slumber, from which it will awake after millions of millions of centuries.a

— H. Poincaré [2131, pp. 534, 536]

It may be interesting to discuss a renowned application of Liouville’s theo-
rem, that is the Poincaré recurrence theorem (in the sense that the latter is a
consequence of the former), and see how these two theorems are intertwined.
The recurrence theorem, discussed by Poincaré in his groundbreaking paper
on the three-body problem [2128], and subsequently revisited and proved by C.
Carathéodory [519], claims, broadly, that a dynamical systems, after a sufficiently
long time (long but finite), will return to a state very close to its initial state.
There is also a quantitative version of the theorem, and it is the work of M. Kac
[1456].

On the whole, we can say that the Poincaré recurrence theorem is considered
the first pivotal mathematical result, at least in the qualitative acceptation, of
ergodic theory (Section 13.1).

12.4.3.1. Step I

Theorem 12.4.4 (Poincaré—recurrence time).
(1) Let ( “Ω,µ) be a σ-finite measure space and φµ : “Ω → “Ω a measure pre-

serving transformation, where “Ω is a non-empty set and µ is a finite measure
invariant under φµ. Let “E ⊂ “Ω be a measurable subset, with µ( “E) > 0. Then
µ-almost any point x ∈ “E returns (is recurrent) to “E infinitely often; so, there
exists an infinte set {n ∈ N | φnµ(x ∈ “E)} (see (3) in Scholium 12.4.3).

(2) Let (X , ρ) be a separable metric space, that means a set with a countable
dense subset, and thereby a topological space with the Lindelöf property (see (1)
in Scholium 12.4.3). Let µ denote a finite Borel measure on X , based on the
σ-algebra Bσ(X ) of Borel sets (see (2) in Scholium 12.4.3). Then µ-almost any
point x ∈ X is recurrent, or rather there exist integers 0 < n1 < n2 < n3 · · · for
which

limℓ

→∞
φn

ℓ

µ (x) = x. (12.81)

aOne similar idea is also expressed in Kelvin [2490, §§ 13, 31 and postscript, pp. 559-560]; read
e.g. § 31, p. 559: «Our result proves that every path infinitely near to the orbit is unstable unless
every root of the equation for e has a real value between 1 and −1. It does not prove that the
motion is stable when this condition is fulfilled. Stability or instability for this case cannot be tested
without going to higher orders of approximation in the consideration of paths very nearly coincident
with an orbit».
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Before proceeding with the theorem, it is good to dwell on some concepts
mentioned above.

12.4.3.2. On the Lindelöf Space, Borel Measure plus σ-Algebra

Scholium 12.4.3 (Lindelöf space, Borel measure plus σ-algebra).
(1) A topological space X is said to be a Lindelöf space [1663]a if it is possible

to extract a countable subcover from every open cover of X . Recall that
(i) a metric space (X , ρ) is a Lindelöf space if every open cover of X has a

subcover with a countable number of members;
(ii) a space with a countable basis is as such a Lindelöf space (it is therefore

a second-countable space);
(iii) a separable metric space has the property of being Lindelöf (as well as a

Lindelöf metric space has the property of being separable);
(iv) a σ-compact space is a Lindelöf space.
(2) A Borel measure on X , see e.g. [377], is a measure in which the Borel

sets are measurable. We can conceive of Borel sets as being the members of the
smallest collection containing open, or closed, sets formed through countable
unions and countable intersections, or else, if the Borel sets are in a Hausdorff
σ-compact space, as being the members of the smallest σ-ring including compact
sets. The collection of all Borel sets on X is known as Borel σ-algebra (sometimes
Borel σ-field), and it is denoted by Bσ(X ), or simply by Bσ, thus the σ-algebra
Bσ(X ) on X is the smallest σ-algebra (σ-field) that contains all the open, or
closed, Borel sets and that is closed under the operations of countable union and
countable intersection.

(3) The statement (2) of Theorem 12.4.4 is equivalent to the first but is
topologically structured; in fact, in the statement (1), it would be the same if a
probability space ( “Ω,Bσ,µ), with a Borel σ-algebra on “Ω, were used; we should
just specify that there is a set “F ⊂ “E, with µ( “F ) = µ( “E), and, for any x ∈ “F ,
one has a sequence 0 < n1 < n2 < n3 · · · for which φn ℓ

µ (x ∈ “E), for every value

ℓ

⩾ 1. ⋄

12.4.3.3. Step II

Proof. This is the resolution for both versions of Theorem 12.4.4.
(1) Taking k ∈ N, and imposing the set “P k

ιδ

= {x ∈ “E | φnµ(x /∈ “E)}, n ⩾ k,
we define

“P k = “E\
⋃
i⩾k

φ−i
µ ( “E), (12.82)

for any i ⩾ k, so that “P k is measurable and “P k∩φ−i
µ ( “P k) = ∅. Letting i−

ℓ

⩾ k,
it ensues that

φ−i
µ ( “P k) ∩ φ−

ℓ

µ ( “P k) = ∅, (12.83)

aE.L. Lindelöf’s first writing in which a space named in his honour appears is [1663], but the
systematic study of Lindelöf-type space(s) begins later, with C. Kuratowski and W. Sierpiński [1555],
whilst in Ru. literature it appears as финально компактные пространство (finally compact
space), see P.S. Aleksandrov [54, p. 27, Ru. version].
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and that there is a sequence {φ−ik
µ ( “P k)}i∈N0 of disjoint sets. Since φµ preserves

µ, the measure µ of each set is the same. Finally, it appears that µ( “P k) = 0,
given that µ( “Ω) is finite.

(2) Fix a countable basis Bn for the topology of X , and this shows that X is
second-countable and, for this reason, separable (is, in short, a Lindelöf space).
Indicating by X̃ the full collection of infinitely recurrent points x ∈ X and by
Yn the set of not infinitely recurrent points x ∈ Bn to the countable basis, it
happens that

X\X̃ =
⋃
n

Yn. (12.84)

The above-mentioned result indicates that µ(Yn) = 0, from which derives
µ(X\X̃ ) = 0.

□

At this stage, let us take a glance at the intertwining of Liouville’s 12.4.2
and Poincaré’s 12.4.4 Theorems.

Example 12.4.1 (Liouvillian volume preserving system and stability à la Poisson
in Poincareian method). Let Υ ⊂ Rn be an open subset of an n-dimensional
Euclidean space. Let λ be the Lebesgue measure on Υ . Let ϝ ∈ C∞(Υ ) be a
continuously differentiable map from Υ into Rn, i.e. ϝ : Υ ⊂ Rn → Rn, where
ϝ = ϝ1σ1 + · · · + ϝnσn. Note that ϝ is also called vector function of position,
or more commonly vector field on Υ , since ϝ is a relation which associates one
vector ϝ(x) with each point. We identify the divergence (operator) of ϝ with the
scalar field, that is, the real function

div ϝ = ∇ · ϝ =
∂ϝ1
∂x1

+ · · ·+
∂ϝn
∂xn

=

n∑
ν=1

∂ϝν
∂xν

, (12.85)

indicating the outward flux density of ϝ. We know that
(1) according to Liouville’s Theorem 12.4.2, a geodesic flow φt within the

Hamiltonian action-flow framework (meaning that the first flow is a special case
of the second one) preserves the volume measure, or the phase volume, on the
manifold,

(2) λ is flow invariant, it does not change under φt,
iff div ϝ = 0 at each point, or iff ϝ is divergence free. Denoting by “E a compact
(closed and bounded) set, for any value α ∈ R, it follows that

λ
(
φt+α( “E)

)
=

∫
φt+α( “E)

dx =

∫
φt( “E)

∣∣∣∣det(∂φα(x)∂x

) ∣∣∣∣dx. (12.86)

Let O be the Bachmann–Landau notation, or Landau symbol (big-oh and little-
oh) [1570, p. 61] [1571, p. 883], and consider a Taylor series expansion [2464] at
the point x of a system ẋ = ϝ(x), in which ẋ is the derivative of ϝ with respect
to the single independent variable x. We have

det

(
∂φα(x)

∂x

)
= 1 + div ϝ(x)α+ O(α). (12.87)
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Read O(α) as oh of α, and it stands for order of magnitude. Then

d

dt
λ
(
φt( “E)

)
= lim
α→0

∫
φt( “E)

div ϝ(x)α+ O(α)

α
dx =

∫
φt( “E)

div ϝ(x)dx. (12.88)

Through the Poincaré recurrence Theorem 12.4.4, for almost any y ∈ Υ , the
equation

lim inf
t→∞

d
(
φt(y), y

)
⩽ lim inf

n→∞
d
(
φn(y), y

)
= 0 (12.89)

holds. It goes to show that in a dynamical system like this there is an orbital
stability, called Poisson stability and unearthed by Poincaré [2134, chap. XXVI]
in studying the celestial mechanics, so that almost all recurrent points are
non-wandering, or Poisson-stable. 5

12.4.4. Continuous Flow on a Hausdorff Space Containing Recurrent
Points

A topological space is nothing other than a set of arbitrary elements (called “points” of the
space) in which a concept of continuity is defined. Now this concept of continuity is based on the
existence of relations, which may be defined as local or neighborhood relations—it is precisely these
relations which are preserved in a continuous mapping of one figure onto another. Therefore, in more
precise wording, a topological space is a set in which certain subsets are defined and are associated to
the points of the space as their neighborhoods. Depending upon which axioms these neighborhoods
satisfy, one distinguishes between different types of topological spaces. The most important among
them are the so-called Hausdorff spaces.

— P.S. Aleksandrov [52, pp. 8-9], see also [51]

Poincaré’s Theorem 12.4.4 can be efficiently applied to the highly generic no-
tion of flow as continuous dynamical system on spaces with a topology introduced
by F. Hausdorff [1301, Kap. VII].

Margo 12.4.3 (Hausdorff space). A topological space X is said Hausdorff space,
or T2 space,a if there are two distinct points x ̸= y of X admitting disjoint
neighborhoods, e.g. Eµ and Eν , such that x ∈ Eµ, y ∈ Eν and Eµ ∩ Eν = ∅.

L

Theorem 12.4.5. Let us say that φt is a generic flow representing a continuous
map on a Hausdorff space X . Let {P}set

viz
= {P}set(φt) be the Poincareian set of

recurrent x-points ∈ φt. Resorting to Poisson stability (Example 12.4.1), one
can see that {P}set is flow invariant.

Proof. We have a Poincaré recurrent point x ∈ {P}set of φt, a value α ∈ R, and
a sequence {tn}n ∈ R with limn→∞ tn =∞. Then

φα(x) = φα

(
lim
n→∞

φtn(x)
)
= lim
n→∞

φα
(
φtn(x)

)
= lim
n→∞

φtn
(
φα(x)

)
. (12.90)

We then infer that φα(x) ∈ {P}set, so {P}set is flow invariant on X . □

aThe letter T (from the Ge. Trennungsaxiom) is for separation axiom, in the terminology of H.
Tietze [2506, p. 291], the subscript 2 is just a classification for Hausdorffian spaces.
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13
Geometric and Topological Aspects of Complexity
and Dynamics, Part II. Ergodicity and Entropy

Every hypothesis must derive indubitable results from mechanically well-defined assumptions by
mathematically correct methods. If the results agree with a large series of facts, we must be content,
even if the true nature of facts is not revealed in every respect. No one hypothesis has hitherto
attained this last end, the Theory of Gases not excepted [ . . . ]. [I]n gases certain entities [ . . . ] [c]an
it be seriously expected that they will behave exactly as aggregates of Newtonian centres of force, or
as the rigid bodies of our Mechanics? And how awkward is the human mind in divining the nature
of things, when forsaken by the analogy [cf. Section 21.6] of what we see and touch directly?

— L. Boltzmann [334, pp. 413-414, e.a.]

13.1. A Framework for Ergodicity

In this Section we explore the subject of ergodicity, initially with a premise
regarding its theoretical origins, by drawing attention to the germinal input of
Maxwell and Boltzmann. We have previously dealt with the Poincaré recurrence
Theorem (Section 12.4.3), which is the qualitative foundation of ergodic theory.
We shall take up here some more technical statements: the ergodic Theorems
of Birkhoff 13.1.1 and Anosov 13.1.4, and the Hopfian statistical process 13.1.5
about the ergodicity of the geodesic flow.

13.1.1. Prior Knowledge: Maxwell–Boltzmann Probability Distribu-
tion, and Ergodic Hypothesis of Thermodynamics

The only assumption which is necessary for the direct proof [of Boltzmann’s [325] theorem about
the solution of the problem of the equilibrium of kinetic energy among a finite number of material
points, or the equilibrium of temperature in a liquid or solid system]a is that the system, if left to
itself in its actual state of motion, will, sooner or later, pass through every phase which is consistent
with the equation of energy.

— J.C. Maxwell [1794, p. 548]

As Maxwell [1794] has demonstrated, if the distribution of systems is a completely stationary
one, as long as the values of the slowly-varying coordinates are constant, the number of systems, for
which the coordinates and momenta lie between the [above] limits, will always remain the same. (I
have proposed the name of Ergoden for such a totality of systems).

— L. Boltzmann [333, p. 208]

(1) It should first be said that the idea of ergodicity was born with L.
Boltzmann [333], as regards the need to describe statistically the action of a

aThe problem of defining the mathematical condition of the equilibrium of energy as the
dynamical representative of the physical condition of the equality of temperature e.g. for a system
of gas molecules.
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transformation relating to a set of microstates of a thermodynamic system on
a constant-energy surface. Microstates are microscopic configurations (such as
position and momentum, or energy) that the system can assume exhibiting the
distinctive thermal fluctuations. The probability of finding the system in one
of its microstates is described by a function that furnishes the probabilities of
occurrence of possible states with reference to a statistical ensemble of many
microscopic configurations. This function is what characterizes the macroscopic
properties (e.g. temperature, pressure, volume, density) of the system.

(i) The ergodicity is connected with the notion of probability distribution
(uniformly distributed) with random mechanical processes, and it takes as its
springboard the revealing glimpses of J.C. Maxwell [1788, 1789] [1794] and Boltz-
mann [325] [326] [327] [331]; see also Kelvin [2489] [2490, postscript]. According
to the distribution of the system, the statistical ensemble average of possible
microstates and the respective time average on the evolution of initial conditions
are identical along the orbit of any point moving in the phase space (the space in
which to each point corresponds a possible state of the system), see Eq. (13.1).

(ii) The supposition of Boltzmann, commonly called ergodic hypothesis of
thermodynamics, provides in origin that, for a thermal system, the orbit of
each phase point equals the whole of the surface of constant-energy. This
approach stems from the need to show that the evolution of a system proceeds
towards the equilibrium state, starting from an initial non-equilibrium state,
e.g. from a state that initially occupies a small region of the energy surface
(volume). The Boltzmann (transport) equation and the H-theorema (see the quick
reminder (1) in Definition 13.2.2), both presented in [328], contribute to explain
a similar evolutionary behavior, that if we adopt a probability distribution, the
Maxwell–Boltzmann distribution is always obtained asymptotically.

The Boltzmann equation is a transport evolution equation for the probability
density of the velocities of the molecules (with statistical behavior) in an ideal
gas, simple fluid, etc. in a non-equilibrium state. The ergodic hypothesis serves
precisely to mark out the transition, via transport equation, from non-equilibrium
to equilibrium phenomena.

(iii) The natural logarithm of the number of microstates represents the well-
known entropy, that is a thermodynamic quantity. Boltzmann’s [329] [330] goal
was to seek a relationship between the macroscopic nature (thermodynamics
of irreversible processes) and the microscopic nature (dynamics of reversible
processes),b through a probabilistic interpretation of thermodynamic, or law of
increase of entropy, at the microscopic level.

aThe letter originally chosen by Boltzmann is E. The adoption of the letter H comes from S.H.
Burbury [452], and then it is also accepted by Boltzmann [335]. E.g. in [335, p. 59] Boltzmann
writes explicitly: «[ . . . ] apart from a constant, −H represents the logarithm of the probability of
the state of the gas analyzed [Logarithmus der Wahrscheinlichkeit des betreffenden Zustandes des
Gases darstellt]». The letter H can be interpreted as the La. H (aitch) or even the Gr. Η, η (eta)
[435], as appears to be the case of J.W. Gibbs [1141, p. 309] [1142, e.g. chap. IV].

b The Boltzmann’s formula carved onto his grave, S = kb logW , is placed in perpetual memory
of this relationship, where S is the entropy of a thermodynamic system, with macroscopic properties,
and W is the number of microscopic configurations, multiplied by the Boltzmann constant kb. In
spite of its name, it was not written by Boltzmann (in this form), but by M. Planck;69 it would
thence not be wrong, if we called it Boltzmann–Planck formula.
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The H-theorem, for this purpose, is conceived for a gas composed of molecules
in ceaseless and chaotic movements obeying the laws of Newtonian (classical)
mechanics, and in Boltzmann’s mind it implements such a relationship.

(2) Below are some remarks on the double nature of the ergodic hypothesis.
(i) Stricto sensu, the ergodic hypothesis is false, since it would be nearly

impossible that the orbit of any phase point traverses all points of the surface.
This is apparent e.g. from the Kolmogorov–Arnold–Moser (kam) theorem [1530]
[129] [1877] and the Fermi–Pasta–Ulam & Tsingou (fpu+t) problem [973].
For instance, the fpu+t experiment with a 1-dimensional chain of non-linear
oscillators or, equivalently, a vibrating string of N particles reproducing the
discretized structure of a flat crystal, exhibits an almost periodic and non-ergodic
behavior.

Another example of non-ergodicity is presented by spin glasses. The Parisi
solution [2012] [2013] [2014] of the Sherrington–Kirkpatrick model [2370] on a
mean field approximation, shows that, in the low temperature phase, there is a
ergodicity breaking, forming an infinite number of pure equilibrium states with a
non-trivial order parameter distribution, i.e. pure thermodynamic states with
a hierarchical organization. The mathematical transcription of the physical
conditions behind these states is the so-called replica symmetry breaking, which
is a spontaneous mechanism allied with the breakdown of ergodicity in the spin
glass transition [1815] [1816, chap. III].

(ii) Lato sensu, namely in a weak form, the ergodicity is a powerful statement,
inasmuch as it allows to treat the probability of certain outcomes (occurring
with asymptotic frequency) as a “measurable” property: A.I. Khinchin [1482,
chap. III] proves that the (weak) ergodicity is a basically valid hypothesis for
systems of many degrees of freedom.

Physically, in terms of practical calculus, it is more appropriate to talk about
quasi-ergodic transformation(s), as suggested by P. and T. Ehrenfest [842, p.
90], by enforcing the less restrictive condition under which there are microstates
arbitrarily close to states that are compatible with the entire constant-energy
surface.

In this context, we can remember the contributions of G.D. Birkhoff [295] (see
below) and J. von Neumann [1921], providing the basis of a proof of correctness
for a ergodic hypothesis, whose theorem can be summarised as follows: for almost
all phase points along the corresponding orbits, there exists a 1-parameter group
of measure preserving transformations (of a measure space) standing for the
time evolution of the system, and the group is metrically transitive [296], i.e.
such that any measurable subset (of this space) has zero measure.

(3) The ergodic theory can be intended, ultimately, as a theory of the long-run
probabilistic, or statistical, behavior of a dynamical system, which is a way for
analyzing and measuring (in the widest sense of the term) chaotic phenomena.
The Poincaré recurrence Theorem 12.4.4 is illuminating in connection therewith.

(4) The couple Ehrenfest [842, p. 89] ascribe the origin of the word ergodic
to ἔργον-ὁδός, “energy-path”, and so does N. Wiener [2661, p. 49], while G.
Gallavotti, F. Bonetto and G. Gentile [1083, p. 2] to ἔργον-εἶδος, “energy-that
which is seen/measured”.
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13.1.2. Birkhoff’s Ergodic Theorem

Theorem 13.1.1. Let ( “Ω,µ)
viz
= ( “Ω,Bσ,µ) be a σ-finite measure space and “E

a subset of “Ω, where “Ω is a non-empty set equipped with a so-called σ-algebra
(cf. Theorem 12.4.4 and Scholium 12.4.3), µ : Bσ → [0,∞] is a finite measure
on “Ω, and Bσ is a σ-algebra of subsets of “Ω. We can define a measure space
to be a probability space if µ( “Ω) = 1. Let φµ : “Ω → “Ω be a measure preserving
transformation of a measure space onto itself, and L1( “Ω,µ) [2210] the space of
a measurable function τµ : “Ω → R. To be noted that µ is φµ-invariant because
µ
(
φ−1

µ ( “E)
)
= µ( “E). We shall indicate by M( “Ω) the set of such φµ-invariant

(probability) measures on “Ω. Then the Birkhoff proposition [295]a assumes that
there exists a limit

(τµ)φµ(x) = lim
n→∞

1

n

n−1∑
ν=0

τµ

(
φνµ(x)

)
=

∫
“Ω
(τµ)φµdµ =

∫
“Ω
τµdµ, (13.1)

for each τµ ∈ L1( “Ω,µ) and µ-almost any point x ∈ “Ω, or rather, there exists a
time average, for all measures µ ∈ M( “Ω), such that µ is ergodic, i.e. µ( “E) = 0
or µ( “Ω\ “E) = 0. This is the Boltzmann–Birkhoff formula according to which the
time average equals the space average.

Proof. Let ζµ1ζµ2, ζµ3, . . . ∈ L
1( “Ω,µ) denote a non-decreasing sequence {ζµn}n∈N

of µ-integrable functions. Let us fix

ζµn = max
1⩽r⩽n

{
r−1∑
ν=0

ζµ ◦ φνµ

}
, (13.2)

and ∫
“Ω

∣∣ζµn

∣∣dµ ⩽
n−1∑
ν=0

∫
“Ω

∣∣ζµ ◦ φνµ
∣∣dµ. (13.3)

If

ζµn+1 = ζµ + max
1⩽r⩽n

{
0,

r∑
ν=1

ζµ ◦ φνµ

}
= ζµ +max

{
0, ζµn ◦ φµ

}
, (13.4)

one has
lim
n→∞

ζµn+1(x) = +∞ iff lim
n→∞

ζµn

(
φµ(x)

)
= +∞, (13.5)

from which the φµ-invariance of

“E =
{
x ∈ “Ω

∣∣∣ lim
n→∞

ζµn(x) = +∞
}

(13.6)

aA further, classical, proof of this theorem, as well as that of Birkhoff, can also be found in N.
Wiener [2659].



13.1. A Framework for Ergodicity 279

is obtained, and ζµn+1 − ζµn ◦ φµ = ζµ + max
{
0, ζµn ◦ φµ

}
− ζµn ◦ φµ = ζµ −

min
{
0, ζµn ◦ φµ

}
. What follows is ζµn+1 − ζµn ◦ φµ ↘ ζµ on “E. The adoption

of the Lebesgue’s and Levi’s dominated and monotone convergence theorems (cf.
Theorems 13.1.2 and 13.1.3) gives

0 ⩽
∫

“E

(
ζµn+1 − ζµn

)
dµ =

∫
“E

(
ζµn+1 − ζµn ◦ φµ

)
dµ −−−−→

n→∞

∫
“E
ζµdµ, (13.7)∫

“E
ζµdµ ⩾ 0. (13.8)

Let Uσ =
{
φ−1

µ ( “E) = “E
}

be a σ-subalgebra of Bσ and τµ(U) ∈ L1( “Ω,µ) a
Uσ-measurable function such that∫

“E
τµ(U)dµ =

∫
“E
τµdµ. (13.9)

Taking the function ζµ = τµ − τµ(U) − ϵ, with ϵ > 0, we get∫
“E
ζµdµ = −ϵµ( “E), (13.10)

consequently µ( “E) = 0, and limn→∞ ζµn(x) < +∞, at µ-almost x ∈ “Ω. Write

lim sup
n→∞

1

n

n−1∑
ν=0

ζµ ◦ φνµ ⩽ lim sup
n→∞

ζµn

n
⩽ 0. (13.11)

We shall say that τµ(U) is φµ-invariant; this leads to

lim sup
n→∞

1

n

n−1∑
ν=0

τµ ◦φνµ ⩽ τµ(U) + ϵ and lim inf
n→∞

1

n

n−1∑
ν=0

τµ ◦φνµ ⩾ τµ(U) − ϵ, (13.12)

with τµ replaced by −τµ in the limit inferior of the sequence, µ-almost everywhere
on “Ω. Then

τµ(U) − ϵ ⩽ lim inf
n→∞

1

n

n−1∑
ν=0

τµ ◦ φνµ ⩽ lim sup
n→∞

1

n

n−1∑
ν=0

τµ ◦ φνµ ⩽ τµ(U) + ϵ, (13.13)

and so

lim
n→∞

1

n

n−1∑
ν=0

τµ ◦ φνµ = τµ(U). (13.14)

The last equation tells us that (τµ)φµ is the same as τµ(U) µ-almost everywhere
on “Ω. It is therefore possible to conclude that∫

“Ω
(τµ)φµdµ =

∫
“Ω
τµ(U)dµ =

∫
“Ω
τµdµ, for all µ ∈ M( “Ω). (13.15)

□
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13.1.2.1. Addendum. Convergence Theorems: Lebesgue, Levi and
Fatou’s Lemma

And now about the convergence theorems by H. Lebesgue [1590] and B. Levi
[1620], as well as an inequality theorem by P. Fatou [948], commonly called
Fatou’s lemma.

Theorem 13.1.2 (Lebesgue’s dominated convergence). Let ( “Ω,Bσ,µ) be a mea-
sure space, and {ψµn} : “Ω → C a sequence of complex-valued Bσ-measurable
functions on “Ω pointwise converging µ-almost everywhere to ψµ. We define
ψµ(x) = limn→∞ ψµn(x), for all points x ∈ “Ω. If there is a non-negative µ-
integrable function ζµ ∈ L1( “Ω,µ) : “Ω → [0,∞] such that |ψµn(x)| ⩽ ζµ(x), for
any n ∈ N, then ψµ ∈ L1( “Ω,µ), i.e. the function ψµ is µ-integrable, and

lim
n→∞

∫
“Ω
ψµndµ =

∫
“Ω
ψµdµ, (13.16)

and also
lim
n→∞

∫
“Ω
|ψµn − ψµ|dµ = 0. (13.17)

Proof. Without loss of generality, assume that ψµn converges pointwise every-
where (and not µ-almost everywhere), and that ψµn is real, separating the
involved sequence of complex numbers into real and imaginary parts, so that
−ζµ ⩽ ψµn ⩽ ζµ. Thanks to Fatou’s lemma (13.1.1) we can write∫

“Ω
(ψµ + ζµ)dµ ⩽ lim inf

n→∞

∫
“Ω
(ψµn + ζµ)dµ. (13.18)

Since the integral
∫

“Ω ζµ is finite, it is possible to subtract this quantity,∫
“Ω
ψµdµ ⩽ lim inf

n→∞

∫
“Ω
ψµndµ. (13.19)

The same applies to ζµ − ψµn,∫
“Ω
(ζµ − ψµ)dµ ⩽ lim inf

n→∞

∫
“Ω
(ζµ − ψµn)dµ, (13.20)

from which, subtracting
∫

“Ω ζµ, we have

lim sup
n→∞

∫
“Ω
ψµndµ ⩽

∫
“Ω
ψµdµ, (13.21)

and
lim sup
n→∞

∫
“Ω
|ψµn − ψµ|dµ ⩽ 0. (13.22)

□
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Theorem 13.1.3 (Lebesgue–Levi monotone convergence). Let ( “Ω,Bσ,µ) be a
measure space, and {ψµn} : “Ω → [0,∞] a sequence of Bσ-measurable func-
tions such that ψµn(x) ⩽ ψµn+1(x), for any n ∈ N. We define ψµ(x) =

limn→∞ ψµn(x), for each x ∈ “Ω. Suppose that 0 ⩽ ψµ1(x) ⩽ ψµ2(x) ⩽ · · · ⩽∞
(monotone non-decreasing sequence). Then

lim
n→∞

∫
“Ω
ψµndµ =

∫
“Ω
ψµdµ, (13.23)

or

lim
n→∞

∫
“Ω
ψµndµ =

∫
“Ω

lim
n→∞

ψµndµ. (13.24)

Proof. The sequence ψµn is non-decreasing, from which follows that

lim
n→∞

∫
“Ω
ψµndµ ⩽

∫
“Ω
ψµdµ. (13.25)

The reverse inequality is given by including a function ζµ with a pointwise
property, ∫

“Ω
ζµdµ ⩽ lim

n→∞

∫
“Ω
ψµndµ. (13.26)

Fixing
(1) 0 < cν <∞ (in which cν are finite non-negative constants),
(2) some Bσ-measurable subsets [ “E1, . . . , “Er] ⊂ “Ω,
(3) an indicator function 1 “E : “Ω → {0, 1},

suppose that ζµ is vertically-truncated, so we get

ζµ =

r∑
ν=1

cν · 1 “Eν
, (13.27)

∫
“Ω
ζµdµ =

r∑
ν=1

cνµ( “Eν), (13.28)

and ψµ(x) = supn ψµn(x) > (1 − ε)cν , for a value 0 < ε < 1. The upwards
monotonicity allows us to determine limn→∞ µ( “Eν,n) = µ( “Eν), where “Eν,n ={
x ∈ “Eν | ψµn(x) > (1− ε)cν

}
. Therefore∫

“Ω
ψµndµ ⩾ (1− ε)

r∑
ν=1

cνµ( “Eν,n), (13.29)

and

lim
n→∞

∫
“Ω
ψµndµ ⩾ (1− ε)

r∑
ν=1

cνµ( “Eν), (13.30)

putting n→∞. The demonstration shall be provided through ε→ 0. □
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Lemma 13.1.1 (Fatou). Let ( “Ω,Bσ,µ) be a measure space, and {ψµ}n : “Ω →
[0,∞] a sequence of Bσ-measurable functions. Then∫

“Ω
lim inf
n→∞

ψµndµ ⩽ lim inf
n→∞

∫
“Ω
ψµndµ. (13.31)

Proof. Setting ζµn(x) = infk⩾n ψµk(x), one has 0 ⩽ ζµn ⩽ ψµn, ζµn ⩽ ζµn+1,
for which {ζµ}n is a monotone sequence of measurable functions. By Theorem
13.1.3, ∫

“Ω
ψµdµ = lim

n→∞

∫
“Ω
ζµndµ. (13.32)

Since ∫
“Ω
ζµndµ ⩽

∫
“Ω
ψµkdµ, (13.33)

we have∫
“Ω
ψµdµ = lim

n→∞

∫
“Ω
ζµndµ ⩽ lim

n→∞
inf
k⩾n

∫
“Ω
ψµkdµ = lim inf

n→∞

∫
“Ω
ψµndµ. (13.34)

□

13.1.3. Anosov’s Ergodic Theorem

We will adopt the Hopf–Anosov–Sinai modus operandi [1390] [102, pp. 144-
146], summarised by Ya.B. Pesin [2086, pp. 85-86] with a diffeomorphism of
class C2. Other advantageous solutions are e.g. in Ya.G. Sinai [2380], see R.
Mañé [1752, pp. 180-189], and in R. Bowen [401, chap. 4].

Theorem 13.1.4. Let φ viz
= φ[A] :M → M be a C2 Anosov diffeomorphism

(Definition 12.3.1), and M a smooth compact connected Riemannian manifold.
Let Ws and Wu be the stable and unstable foliations F ofM with smooth leaves,
then Ws(x) and Wu(x) the local leaves (of foliations) passing through x ∈ M.
Let Bσ(F) be a σ-algebra of sets invariant with reference to φ. Then φ is ergodic,
if φ preserves the volume form.

Proof. Consider a continuous real-valued function τ :M→ R, and write a trio
of functions

τ+(x) = lim
n→+∞

1

n

n−1∑
ν=0

τ−(x) = lim
n→−∞

1

|n|

n+1∑
ν=0

τ̄(x) = lim
n→+∞

1

2n+ 1

n∑
ν=−n


τ
(
φν(x)

)
. (13.35)

The continuous trio, formed by τ+(x), τ−(x) and τ̄(x), is
(1) identical at almost any x ∈M (this is due to Birkhoff’s Theorem 13.1.1),
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(2) dense in the space of µ-functions onM concerning the σ-algebra Bσ(F) ⊂µ

Bσ(Ws) ∩Bσ(Wu).
We shall say that a set is conull if the set is the complement of a null set.

Fixing a conull setM0 inM, and taking a local leafWs(x) of the stable foliation,
i.e. a local stable manifold, for all x ∈M0 and any point z ∈ Ws(x), we observe
that ∣∣τ(φν→∞(x)

)
− τ
(
φν→∞(z)

)∣∣→ 0 (13.36)

and then τ+(x) = τ−(z). The Anosovian absolute continuity [99, § 17] ensures
that, for almost any z ∈ Ws(x), the set membership z ∈ M0 holds, at almost
any x ∈M. The condition that z /∈M0 gives a set of null measure, with a leaf
of the unstable foliation:⋃

sub {z ∈ Ws(x), z /∈M0}Wu(z). (13.37)

Letting y ∈ M, for almost each y close enough to x, it is clear that z =
Ws(x) ∩ Wu(y) is a point of M0, and τ̄(y) = τ−(y) = τ−(z) = τ̄(z) = τ̄(x).
It follows that τ̄ appears to be locally constant almost everywhere on some
neighborhood of x, and thence almost everywhere on M, by means of locally
path-connected space between any two points of the manifold, and we are done
with the ergodicity of φ viz

= φ[A]. □

13.1.4. Ergodicity of the Geodesic Flow: Hopfian Statistical Process

Birkhoff’s 13.1.1 and Anosov’s 13.1.4 Theorems give the cue to show that
the geodesic flow

(1) on the tangent bundle of a negatively curved compact Riemannian
manifold, or of a compact (and connected) surface of finite area and constant
negative Gaussian curvature,

(2) or, more widely, for any hyperbolic C2 Anosov system, whether it be a
flow or diffeomorphism,
is ergodic, and it is with respect to the Liouville measure (Theorem 12.4.2).

To be accurate, the ergodicity of a geodesic flow with respect to the Liouville
measure on (the unit tangent bundle of) surfaces of variable negative curvature
and on manifolds of constant negative curvature of arbitrary dimension, was
initially investigated and proved by G.A. Hedlund [1318] and, especially, E. Hopf
[1390] [1391]; about Hopf, see also [1389] [1393]. Hopf’s insight was extended by
Anosov [99] as it stands today.

Theorem 13.1.5 (Hopfian statistical process). Let SΓ
ιδ

= Γ\U2
C be a Riemann

(also modular) surface, for some Fuchsian group Γ [1388] (Section 12.1.2), a
non-elementary discrete subgroup of PSL2(R) or a conjugate of such a group in
PSL2(C). Let T̊ 1DC

a be the unit tangent bundle of the Beltrami–Poincaré unit
disk (2-ball) DC

ιδ

= B2
C = {z ∈ C | ∥z∥ < 1}, cf. Eq. (2.33). Assume further that

the unit tangent bundle T̊ 1SΓ of SΓ can be identified with the quotient Γ\T̊ 1DC.
aAlternative notation: S̊1DC.
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The geodesic flow φt on T̊ 1SΓ is conservative and, consequently, ergodic, with
respect to the Liouville-like measure µ.

Note that the above identification is connect to the projection π : T̊ 1DC →
T̊ 1SΓ, so

π ◦ φt
∣∣
T̊ 1DC

= φt
∣∣
T̊ 1SΓ

. (13.38)

Proof. We rely partly on the Patterson–Sullivan method [2023] [2432] [2433]
[2434] to proceed with the demonstration.

(1) Let us introduce the limit set UΓ ⊂ ∂U2
C, which is the set of limit points

of all orbits in U2
C. Take the case of DC, and imagine an object formed by

circles-horocycles tangent to the boundary circle. (Comprehensibly, we need
to think about the correspondence of disk to the upper half-plane, within the
Beltrami–Poincaré models: in these two solutions of 2-dimensional hyperbolic
geometry, every horocycle corresponds to each other). Let ÑΓ be the set of a
Fuchsian group Γ, called Nielsen region [1949] [1950] [960], corresponding to the
convex hull of UΓ. The quotient

NΓ
ιδ

= Γ\ÑΓ (13.39)

is the convex core of SΓ. Find a horocyclic region Cη in the Beltrami–Poincaré
disk, i.e. an open region bounded by a horocycle tangent to ∂U2

C. Let

K̃Γ
ιδ

= ÑΓ − {Cη} (13.40)

be the reduced Nielsen region, and

KΓ
ιδ

= Γ\K̃Γ (13.41)

the quotient region, known as compact core of SΓ. Let us draw a geodesic on
DC starting inside K̃Γ. Since µ(∂U2

C − UΓ) = 0, almost any geodesic does not
leave the Nielsen region ÑΓ. Without dwelling too much on it, if the set of all
geodesics has zero µ-measure, associated with the fact that any geodesic ends
in parabolic fixed points in UΓ, then almost any geodesic on SΓ will return to
the compact core KΓ after so many times. This proves that the geodesic flow on
T̊ 1SΓ is conservative with respect to µ.

(2) Let λµ ∈ L1(T̊ 1SΓ, dµ) be a continuous, positive definite and µ-integrable
function. Let

ъ : α, α̇ 7→ ъ(α), ъ(α̇) (13.42)

be a transformation acting on the space

∂DC × ∂DC
ιδ

= {α, α̇ ∈ ∂DC × ∂DC | α ̸= α̇}. (13.43)

If the geodesic flow is conservative, it follows that

lim
ъ→∞

∫ ъ

0

λµ

(
φt(x)

)
dt = +∞, (13.44)
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for almost every x ∈ T̊ 1SΓ. Let κµ ∈ L1(T̊ 1SΓ, dµ) be another µ-integrable
function. We set (via Birkhoff’s 13.1.1 Theorem) the quotient function and the
convergence

κµ

(
ъ, x
)
=

∫ ъ
0
κµ

(
φt(x)

)
dt∫ ъ

0
λµ

(
φt(x)

)
dt
, κµ(x) = lim

ъ→∞
κµ

(
ъ, x
)
, (13.45)

so

(κµ)λ(x) = lim
ъ→∞

∫ ъ
0
κµ

(
φt(x)

)
dt∫ ъ

0
λµ

(
φt(x)

)
dt
. (13.46)

The function (κµ)λ is invariant under the geodesic flow φt, provided that λµ

satisfies (13.44). The next step is to demonstrate that, in the conditions in
which κµ is µ-integrable, (κµ)λ is constant almost everywhere, and as a result the
geodesic flow is ergodic. Assuming that κµ is compactly supported continuous,
the ergodicity of the geodesic flow is tied to the constancy of (κµ)λ for κµ, given
that functions of κµ type are dense in L1(T̊ 1SΓ, dµ). In other words, this implies
that

d
(
φt(x), φt+s(ẋ)

)
→ 0,

and it tends to zero as t→∞, for a value s ∈ R. Let us treat the differences

∫ ъ
0
κµ

(
φt(x)

)
dt∫ ъ

0
λµ

(
φt(x)

)
dt
−
∫ ъ
0
κµ

(
φt+s(ẋ)

)
dt∫ ъ

0
λµ

(
φt+s(ẋ)

)
dt

=

∫ ъ
0

{
κµ

(
φt(x)

)
−κµ

(
φt+s(ẋ)

)
λµ

(
φt(x)

) }
λµ

(
φt(x)

)
dt∫ ъ

0
λµ

(
φt(x)

)
dt

−
∫ ъ
0
κµ

(
φt+s(ẋ)

)
dt∫ ъ

0
λµ

(
φt+s(ẋ)

)
dt
·

∫ ъ
0

{
λµ

(
φt(x)

)
−λµ

(
φt+s(ẋ)

)
λµ

(
φt(x)

) }
λµ

(
φt(x)

)
dt∫ ъ

0
λµ

(
φt(x)

)
dt

. (13.47)

Let us look at the the right-hand side of Eq. (13.47): the first term and the last
factor tend to 0 as t→∞, but the first factor is bounded. Thus we observe that

(κµ)λ(x) = (κµ)λ(ẋ) = lim
ъ→∞

∫ ъ
0
κµ

(
φt(ẋ)

)
dt∫ ъ

0
λµ

(
φt(ẋ)

)
dt

= lim
ъ→∞

∫ ъ
0
κµ

(
φt+s(ẋ)

)
dt∫ ъ

0
λµ

(
φt+s(ẋ)

)
dt
.

(13.48)
Briefly, after the action of Γ on ∂DC, it appears that (κµ)λ is a Γ-invariant
function on ∂DC × ∂DC which is constant almost everywhere on ∂DC × {α+}
and on {α−}×∂DC, as well as on ∂DC×∂DC, thanks to Fubini’s theorem [1058].
This proves that the geodesic flow on T̊ 1SΓ is ergodic with respect to µ.

□

Summarising: the geodesic flow on the unit tangent bundle of a surface (of
finite area) and constant negative curvature represents a prototypal object of an
ergodic flow. The Anosov flow is a generalization of this object, and it, too, is
ergodic.
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13.2. Entropy within the Topological Thermodynamics: at
the Frontier of Order and Chaos

13.2.1. The Entropy-Energy Roots

I propose to call the quantity S the entropy of the body, from the Greek word ἡ τροπή, the
transformation. I have deliberately formed the word entropy to be as similar as possible to the word
energy, because the two quantities to be denoted by these words are so closely intertwined in their
physical sense that a nominologic similarity of some sort seems appropriate.

— R. Clausius [660, p. 390]

The birth of entropy tallies with the research put forward by L. & S. Carnot
[535] [536], but R. Clausius [660] is the one to introduce this magnitude, starting
with the name, and elaborating a mechanical theory of heat, in an attempt to
better clarify the significance of the second law of thermodynamics.

Boltzmann was the first to establish a connection between entropy (S) and
microscopic states of a system (W ) that are consistent with an observed macro-
scopic (thermal) phenomenon. He assumes the existence of a relationship between
entropy and thermodynamic probability of a macroscopic state, by defining the
thermodynamic probability as the number of ways in which this state can be
realized with different microscopic configurations (see point (iii), p. 276).

Subsequent studies have shown that the entropy is a flexible magnitude,
with a wide application in the physical-mathematical disciplines; in general, it
designates the measure of the degree of disorder,a chaos, or uncertainty, and
mixed-up-ness—to use Gibbs’ categorization [1143, p. 418]—in an isolated, or
conservative, system.

What we are interested in doing here is merely investigating the entropy in
the following arguments: metric entropy (Kolmogorov–Sinai entropy), topological
entropy and pressure (Ruelle–Walters free energy density), and related variational
Theorems 13.2.1 and 13.2.2. We will also take into consideration the entropy of
the geodesic flow (Theorem of Pesin & Freire–Mañé 13.2.3, with a look at the
Lyapunov exponent).

13.2.2. Kolmogorov–Sinai Metric Entropy (Quantity for a Measure
Preserving Transformation)

The topological entropy corresponds to an invariant magnitude in ergodic
theory for continuous transformations defined

(1) on a compact topological space, according to R.L. Adler, A.G. Konheim
and M.H. McAndrew [20],

(2) on a (compact) metric space of finite dimension, according to R. Bowen
[399] and E.I. Dinaburg [780],

a The concept of order/disorder is relative: it is subordinate to some of our mental constructs.
The atomic-molecular components of tea, when they are contained in a tea leaf, can be said to
be less disordered, or more ordered (with, let we say, low entropy), compared to when they are
released in hot water inside a teapot, appearing more disordered, or less ordered (with a higher
entropy). But what is established to be a state of order/disorder is relative to an initial condition
(the atomic-molecular state of the leaf), as long as it is conventionally taken as a postulate (ὑπόθεσις,
cf. Section 26.1.6.3), or a starting-principle. An ordered/disordered state subsequently derives from
this postulate. Cf. footnote b, p. 153, on the distinction between “disorder” and “chaos”.
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(3) on any compact Hausdorff space, according to T.N.T. Goodman [1178],
(4) or on subsets of a compact space in a manner that resembles a Hausdorff

fractal dimension, according to R. Bowen [400].
The mathematical background of the topological entropy is offered by the
Kolmogorov–Sinai metric entropy [1531] [1532] [2379], also known as measure-
theoretic entropy.

We present some definitions of topological entropy, but first we need to say a
quick word about the entropy of Kolmogorov and Sinai. We are starting with the
assumption that the phase space of the dynamical system is a Lebesgue–Rohlin
space.

Definition 13.2.1 (Lebesgue–Rohlin space). Let X be a separable metric
space, Bσ the σ-algebra of Borel sets of X , and µ a Borel measure on X . A
probability space (X ,Bσ,µ) is called a Lebesgue–Rohlin space [2226], or Lebesgue
(probability) space, if it is a complete mod 0 (modulo zero) with respect to one of
its countable bases Bn, namely if there is a complete measurable space (X̃ , B̃σ, µ̃)
with respect to a basis B̃n, a set X0 ∈ B̃σ of full µ̃-measure, and X π−→ X0 so
that π(Bn) = B̃n ∩ X0, µ ◦ π−1 = µ̃. 3

Definition 13.2.2 (Kolmogorov–Sinai metric entropy).
(1) We remind that the Boltzmann’s H is a quantity with which to measure

the extent to which the condition of a system is different from its corresponding
equilibrium; the Boltzmann’s H-theorem is responsible for exhibiting that H tends
to decrease with time to a minimum, and therefore the system is approaching
the equilibrium condition (cf. (ii) in Section 13.1.1).

(2) Denote by φµ : X → X the measure preserving automorphisms of the
Lebesgue–Rohlin space, or the transformation of X onto itself. The probability
space (understood as in Definition 13.2.1) and the measure preserving transforma-
tion generate a measure preserving dynamical system, indicated by (X ,Bσ,µ, φµ).
Take a finite or countable measurable partition CX = {C1, . . . , Cr} of X . The
theory of information, see the Shannon–McMillan theorem [2361] [1802], in which
the entropy is interpreted as a measure of uncertainty about a system, tells that
the entropy of CX is fixed by

H(CX ) = −
r∑

ν=1

µ(CX
ν ) log µ(CX

ν ). (13.49)

For each partition CX , there exist the limit

hµ(φµ, C
X ) = lim

n→∞

1

n
H

(
n−1∨
ν=0

φ−ν
µ (CX )

)
= lim
n→∞

H

(
CX

∣∣∣∣∣
n∨
ν=1

φ−ν
µ (CX )

)
,

(13.50)
through which an entropy of invariant metric type appears. The Kolmogorov–Sinai
metric entropy of (X ,Bσ,µ, φµ) is the upper bound of hµ over all CX ,

hµ(φµ) = sup
CX

lim
n→∞

1

n
H(CX ) = sup

CX
hµ(φµ, C

X ), (13.51)
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and we can define it as the entropy of the automorphism φµ : hµ = supCX hµ(C
X ),

i.e. the entropy of a measure preserving transformation. 3

13.2.3. Topological Entropy and Pressure, aka Ruelle–Walters Free
Energy Density

The purpose of this work is to introduce the notion of entropy as an invariant for continuous
mappings [on a compact topological space].

— R.L. Adler, A.G. Konheim and M.H. McAndrew [20, p. 309]

Ergodic theory involves itself with the study of transformations of a measure space. Topological
dynamics is involved with homeomorphisms of a topological space. The entropy of a measure
preserving transformation is a gauge of its randomness.

— F. Hahn and Y. Katznelson [1257, p. 335]

Definition 13.2.3 (Topological entropy).
(1) Adler–Konheim–McAndrew solution. Suppose that the space X is com-

pact and a topologic structure. Let φµ : X → X be a continuous transformation,
where µ is an φµ-invariant Borel measure on X . Let U = {Uν} be an open cover
of X such that X =

⋃
ν Uν . The entropy of φµ with respect to U is

Hµ(φµ,U) = lim
n→∞

1

n
Hµ

(
U ∨ φ−1

µ U ∨ . . . ∨ φ−n+1
µ U

)
. (13.52)

The topological entropy of φµ is the supremum of H(φµ,U) over all open covers
U ,

htop(φµ) = sup
µ

Hµ(φµ,U). (13.53)

(2) Bowen–Dinaburg solution. Let φµ : X → X be a continuous transfor-
mation of a compact metric space (X , ρ), with a metric ρ on X , where µ is an
φµ-invariant Borel measure on X , i.e. a probability measure on every Borel set
“E ⊂ X , with µ(X ) = 1 and µ

(
φ−1

µ ( “E)
)
= µ( “E). For each number n ∈ N, we

impose on X a metric

ρn(x, y) = max
{

ρ
(
φνµ(x), φ

ν
µ(y)

)
| 0 ⩽ ν ⩽ n− 1

}
. (13.54)

Given a value ε > 0, a set “E of X is said to be (n, ε)-separated with respect
to φµ if ρn(x, y) > ε, for each pair of distinct points x, y ∈ “E, x ̸= y. Write as
N(ρn, ε) the maximum number of points of (n, ε)-separated sets “E ⊂ X . Then
the topological entropy of φµ is defined as

htop(φµ)
viz
= hρ

top(φµ) = lim
ε→0

(
lim sup
n→∞

1

n
logN(ρn, ε)

)
. (13.55)

(3) Summary solution. Let M(X ) be a family of Borel probability measures
on X . The topological entropy of φµ is the supremum of the Kolmogorov–Sinai
metric entropy hµ,

htop(φµ) = sup
µ

hµ(φµ), (13.56)

with µ ∈ M(X ). The Eq. (13.56) is governed by a variational principle (see
Theorem 13.2.1) under which hµ(φµ) ⩽ htop(φµ), as revealed by L.W. Goodwyn
[1180].
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(4) htop(φµ) is said invariant (more precisely, it consists of an invariant of
topological conjugacy) in the sense that, given a transformation φµk=1,2

of X
into itself, and a homeomorphism

ϑ : X1 → X2, with ϑ ◦ φµ1
= φµ2

◦ ϑ, (13.57)

then
htop(φµ1

) = htop(φµ2
). (13.58)

In this way (since the homeomorphism is no more than a topological isomorphism),
the topological htop-entropy can be described as an isomorphism invariant for a
measure preserving transformation. 3

Margo 13.2.1 (Entropy and topology in Pettini’s interpretation). Also of note
is the M. Pettini’s [2092, pp. 248, 285-294] solution, coming from a physical
background, that combines entropy and topology as part of the involvement
of topology at the origin of thermodynamic phase transitions; it based on a
Riemannian theory of Hamiltonian chaos, and consists in studying curvature fluc-
tuations of an (enlarged) configuration space(-time) described by the Riemannian
geometrization of (Hamiltonian) dynamics. In essence, it will be shown in an
analytical way that a certain topological change in the configuration space(-time)
is necessarily related to a phase transition phenomenon. L

We are introducing a further quantity about the thermodynamic formalism,
the so-called topological pressure, more correctly known also as free energy density.
The free energy, in this context, is the sum of the Kolmogorov–Sinai metric
entropy and the integral of a continuous (Borel-measurable) function regarding
the phase space probability distribution. It is a notion modelled on the grand
canonical ensemble definition for lattice gas calculations [900, pp. 942-943], as a
generalization of the topological entropy. The genesis of the topological pressure
can be found in D. Ruelle [2253] [2254] and P. Walters [2609], cf. [2258, 6.20-22].

Definition 13.2.4 (Topological pressure). Letting φµ : X → X be a continuous
transformation of a compact metric space (X , ρ), the topological pressure of a
continuous function

˙
ϖ : X → R (13.59)

with respect to φµ is

Ptop(
˙
ϖ)

viz
= Ptop(φµ,

˙
ϖ) = lim

ε→0
lim sup
n→∞

1

n
log sup

“E⊂X

∑
x∈ “E

exp

{
n−1∑
ν=0

˙
ϖ
(
φνµ(x)

)}
,

(13.60)
where “E ⊂ X is an (n, ε)-separated set in the way that the Bowen–Dinaburg
solution shows. The expressions

Pµ(
˙
ϖ)

viz
= Pµ(φµ,

˙
ϖ) = hµ(φµ) +

∫
X ˙
ϖdµ. (13.61)

defines the pressure of µ ∈ M(X ). 3
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13.2.4. Application of the Calculus of Variations in the Topological
Entropy and Pressure

Next is the variational principle for these quantities.

Theorem 13.2.1 (Variational principles for the topological entropy). Let φµ : X →
X be a continuous transformation of a compact metric space (X , ρ), where µ is
an φµ-invariant Borel measure on X . Then

htop(φµ) =

{
sup

µ
hµ(φµ)

∣∣∣∣∣ µ ∈ M(X )

}
. (13.62)

Proof. Take two finite or countable measurable partitions CX = {C1, . . . , Cr}
and KX = {K0, . . . ,Kr} of X , where

K0 = X\
r⋃

ν=1

Kν , (13.63)

according to the inclusion relation Kν ⊂ Cν , for ν = 1, . . . , r, and a value δ > 0
such that µ(Cν\Kν) < δ. Then

hµ(φ
k
µ, C

X ) ⩽ hµ(φ
k
µ,K

X ) + Hµ(C
X | KX ) < hµ(φ

k
µ,K

X ) + 1, (13.64)

for any k ∈ N. Let U = {K0 ∪K1, . . . ,K0 ∪Kr} and

Ukn =

{
n−1⋂
ν=0

φ−νk
µ Uν

∣∣∣∣ U0, . . . , Un−1 ∈ U

}
k,n∈N

(13.65)

be open and finite covers of X . Moreover, K0 ∪Kν ∈ U is an union each element
of which intersects at most the elements K0,Kν ∈ KX , so #KX

kn ⩽ 2n#Ukn,
where # denotes the cardinality. Since Hµ(K

X
kn) ⩽ log#KX

kn, we see that
Hµ(K

X
kn) ⩽ log#KX

kn ⩽ log(2n#Ukn).
Let us say that ε viz

= Leb(U) is the Lebesgue number of U , on the basis of
which (for each open covering of a compact metric space) there exists a positive
number ε > 0 such that any subset of X of diameter less than ε is fully contained
in one of the elements of U . (This means, for example, that it is possible to cover
X by a finite number of open balls of radius ρ = ε

3 , in order to demonstrate the
compactness in a sequentially compact metric space, and it appears that each of
these balls lies in some element of U , i.e. ε-Bρ ⊂ U). Thus ε is also the Lebesgue
number of Ukn with respect to the metric ρ(∗)

viz
= ρnφkµ. In addition, Ukn is a

minimal covering, and every open set U ∈ Ukn contains at least a point xU not
in any other element of Ukn, therefore Bρ(∗)(xU , ε) ⊂ U .

By Eq. (13.64) we have hµ(φ
k
µ, C

X ) ⩽ htop(φ
k
µ) + log 2 + 1. Since hµ(φ

k
µ) =

khµ(φµ), we obtain

hµ(φµ) =
1

k
hµ(φ

k
µ) ⩽

1

k

(
htop(φ

k
µ) + log 2 + 1

)
= htop(φµ)+

1

k
(log 2+1). (13.66)
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Imposing k →∞, it turns out that hµ(φµ) ⩽ htop(φµ).
Now, assume two probability measures

µn∈N =
1

n

n−1∑
ν=0

φνµ⋆σn and σn =
1

# “En

∑
x∈ “En

δx. (13.67)

It is known that, for a compact metric space X and an (n, ε)-separated set
“En ⊂ X , there exists in the weak-⋆ topology an accumulation point

µ = lim
n→∞

µrn ∈ M(X ) (13.68)

of the sequence {rn}n∈N of measures µrn with

lim
n→∞

1

rn
log# “Ern = lim sup

n→∞

1

n
log# “En, (13.69)

for which
lim sup
n→∞

1

n
log# “En ⩽ hµ(φµ). (13.70)

The same goes for

lim sup
n→∞

1

n
logN(ρn, ε) ⩽ hµ(φµ) and lim sup

n→∞

1

n
logN(ρn, ε) ⩽ sup

µ
hµ(φµ),

(13.71)
so

lim sup
n→∞

1

n
logN(ρn, ε) ⩽ sup

µ
hµ(φµ). (13.72)

The variational principle is demonstrated by imposing ε→ 0. □

Theorem 13.2.2 (Variational principles for the topological pressure). Let
φµ : X → X be a continuous transformation of a compact metric space (X , ρ),
where µ is an φµ-invariant Borel measure on X . Let

˙
ϖ : X → R denote a

continuous function, that is
˙
ϖ ∈ C0(X ). Then

Ptop(
˙
ϖ)

viz
= Ptop(φµ,

˙
ϖ)

= sup
µ

(
hµ(φµ) +

∫
X ˙
ϖdµ

)
=

{
sup

µ
Pµ(

˙
ϖ)

∣∣∣∣∣ µ ∈ M(X )

}
. (13.73)

Proof. Same initial conditions of the previous Theorem 13.2.1. Take two finite
or countable measurable partitions CX = {C1, . . . , Cr} and KX = {K0, . . . ,Kr}
of X , where K0 = X\

⋃r
ν=1Kν , according to the inclusion relation Kν ⊂ Cν ,

for ν = 1, . . . , r, and a value δ > 0 such that µ(Cν\Kν) < δ. For a choice of δ
sufficiently small, we have hµ(φµ, C

X ) < hµ(φµ,K
X ) + 1.

For n ∈ N, we select an
(
n, ε2

)
-separated set “E ⊂ X , with # “E = N

(
ρn, ε2

)
.

Let xC such that
˙
ϖn(xC) = sup{

˙
ϖn(x) | x ∈ C}, where

˙
ϖn =

∑n−1
ι=0 ˙

ϖ ◦φιµ, for
ι = 0, . . . , n− 1, and yC ∈ “E such that ρn(xC , yC) < ε. Since |

˙
ϖ(x)−

˙
ϖ(y)| < 1
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whenever d(x, y) < ε, we observe that
˙
ϖn(xC) ⩽

˙
ϖn(yC) + n, and #{C ∈

KX
n | yC = x} ⩽ 2n, for each x ∈ “E. To follow, a lemma is required for the

continuation of the proof.

Lemma 13.2.1. Given some number αν ⩾ 0, with
∑r
ν=1 αν = 1, and βν ∈ R,

for ν = 1, . . . , r, the formula
r∑

ν=1

αν(βν − logαν) ⩽ log

r∑
ν=1

eβν (13.74)

holds with equality iff

αν =
eβν∑r
ν=1 e

βν
, (13.75)

where eβν
viz
= exp {βν} is the exponential function.

Proof. Let

γν =
eβν∑r
ν=1 e

βν
(13.76)

and xν = αν

γν
. For a convex function υ : [0, 1]→ R,

υ(x) =

{
x log x if 0 < x ⩽ 1,

0 if x = 0,
(13.77)

it happens that

0 = υ

(
r∑

ν=1

γνxν

)
⩽

r∑
ν=1

γνυ(xν) =

r∑
ν=1

αν

(
logαν + log

r∑
ν=1

eβν − βν

)
(13.78)

with equality iff αν = γν . □

The lemma raised enables us to move forward:

Hµ(K
X
n ) +

∫
X ˙
ϖndµ ⩽

∑
C∈KX

n

µ(C)
(
− log µ(C) +

˙
ϖn(xC)

)
⩽ log

∑
C∈KX

n

e ˙
ϖn(xC) ⩽ log

∑
C∈KX

n

e ˙
ϖn(yC)+n

⩽ n+ log

2n
∑
x∈ “E

e ˙
ϖn(x)

 ,

(13.79)

and
1

n
Hµ(K

X
n ) +

∫
X ˙
ϖdµ =

1

n
Hµ(K

X
n ) +

1

n

∫
X ˙
ϖndµ

⩽ 1 + log 2 +
1

n
log

sup
“E

∑
x∈ “E

e ˙
ϖn(x)

 , (13.80)
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so

hµ(φµ, C
X ) +

∫
X ˙
ϖdµ < hµ(φµ,K

X ) + 1 +

∫
X ˙
ϖdµ

⩽ 2 + log 2 + lim sup
n→∞

1

n
log

sup
“E

∑
x∈ “E

e ˙
ϖn(x)

 , (13.81)

and, if ε→ 0,

hµ(φµ)+

∫
X ˙
ϖdµ = sup

CX

(
hµ(φµ, C

X ) +

∫
X ˙
ϖdµ

)
⩽ 2+log 2+Ptop(

˙
ϖ), (13.82)

where Ptop(
˙
ϖ)

viz
= Ptop(φµ,

˙
ϖ). Leveraging the equality Pktop(

˙
ϖk) = kPtop(

˙
ϖ),

for k ∈ N, yields

hµ(φµ) +

∫
X ˙
ϖdµ =

1

k

(
hµ(φ

k
µ) +

∫
X ˙
ϖkdµ

)
⩽

1

k

(
2 + log 2 + Pktop(

˙
ϖk)

)
=

2 + log 2

k
+ Ptop(

˙
ϖ). (13.83)

Letting k →∞, we arrive at

hµ(φµ) +

∫
X ˙
ϖdµ ⩽ Ptop(

˙
ϖ), (13.84)

and

sup
µ

(
hµ(φµ) +

∫
X ˙
ϖdµ

)
⩽ Ptop(

˙
ϖ). (13.85)

We are only halfway along the road to the completion of the proof. At this stage,
take

(1) an (n, ε)-separated set “En ⊂ X of points in the metric ρn, with ε > 0,
such that

log
∑
x∈ “En

e ˙
ϖn(x) > log

sup
“E

∑
x∈ “En

e ˙
ϖn(x)

− 1; (13.86)

(2) two probability measures µn = 1
n

∑n−1
ν=0 φ

ν
µ⋆σn, as in (13.67), and σn, by

imposing

σn =

∑
x∈ “En

e ˙
ϖn(x)δx∑

x∈ “En
e ˙
ϖn(x)

, (13.87)

and a sequence {rn}n∈N of µrn such that

lim
n→∞

1

rn
log

∑
x∈ “Ern

e ˙
ϖrn (x) = lim sup

n→∞

1

n
log

∑
x∈ “En

e ˙
ϖn(x). (13.88)
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Let be WX = {W1, . . . ,Wr} a partition of X of diameter W < ε and µ(∂W ) = 0.
Setting “En = {x1, . . . , xr}, αν = σn{xν}, and βν =

˙
ϖn(xν), for ν = 1, . . . , r, we

see that

αν =
e ˙
ϖn(xν)∑

x∈ “En
e ˙
ϖn(x)

=
eβν∑r
ν=1 e

βν
. (13.89)

Now, it is quite clear that the formula (13.74) is an identity; thanks to Lemma
13.2.1,

Hσn
(WX

n ) + n

∫
X ˙
ϖdµn = Hσn

(WX
n ) +

∫
X ˙
ϖndσn

=
∑
x∈ “En

σn{x}
(
− log σn{x}+

˙
ϖn(x)

)
= log

∑
x∈ “En

e ˙
ϖn(x).

(13.90)

Let n = mk + u, with m ⩾ 0 and 0 ⩽ u < k, for k, n ∈ N, so we can establish

WX
n =WX

mk+u =

m−1∨
ι=0

φ−ιk
µ WX

k ∨
mk+u−1∨
ι=mk

φ−ι
µ WX , (13.91)

and, for ν = 0, . . . , k − 1,

CX =

m−1∨
ι=0

φ−ιk−ν
µ WX

k ∨
mk+u−1∨
ι=mk

φ−ι
µ WX ∨WX

ν . (13.92)

Using Eq. (13.90), it appears that

k

n
log

∑
x∈ “En

e ˙
ϖn(x) =

k

n
Hσn(W

X
n ) + k

∫
X ˙
ϖdµn

=
1

n

k−1∑
ν=0

Hσn(W
X
n ) + k

∫
X ˙
ϖdµn

⩽
1

n

k−1∑
ν=0

m−1∑
ι=0

Hσn(φ
−ιk−ν
µ WX

k ) +
2k2

n
log#WX + k

∫
X ˙
ϖdµn

⩽ Hµn(W
X
k ) +

2k2

n
log#WX + k

∫
X ˙
ϖdµn, (13.93)

and hence, under the Eq. (13.88),

lim
n→∞

1

rn
log

∑
x∈ “Ern

e ˙
ϖrn (x) ⩽ lim

n→∞

(
1

k
Hµrn

(WX
k ) +

2k

rn
log#WX +

∫
X ˙
ϖdµrn

)

=
1

k
Hµ(W

X
k ) +

∫
X ˙
ϖdµ. (13.94)
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If k →∞

lim
n→∞

1

rn
log

∑
x∈ “Ern

e ˙
ϖrn (x) ⩽ hµ(φµ,W

X )+

∫
X ˙
ϖdµ ⩽ hµ(φµ)+

∫
X ˙
ϖdµ. (13.95)

Therefore

lim sup
n→∞

1

n
log

∑
x∈ “En

e ˙
ϖn(x) ⩽ sup

σ

(
hσ(φµ) +

∫
X ˙
ϖdσ

)
. (13.96)

From Eq. (13.86), letting ε→ 0, we get

Ptop(
˙
ϖ) ⩽ sup

σ

(
hσ(φµ) +

∫
X ˙
ϖdσ

)
=

{
sup

σ
Pσ(

˙
ϖ)

∣∣∣∣∣ σ ∈ M(X )

}
, (13.97)

and the proof is complete. □

13.2.5. Entropy of the Geodesic Flow

13.2.5.1. Topological Entropy (via Mañé’s Formula) and Geodesic
Entropy

We consider here the topological entropy of any geodesic flow and the geodesic
entropy of the Riemannian metric, denoted by htop(φt) and hgeo(g), respectively.

(1) Let a closed connected C∞ Riemannian manifoldM and a geodesic flow
on the unit tangent bundle φt : T̊ 1M→ T̊ 1M be given; fix τ > 0 and indicate
with Nτ (x, y) the number of geodesics parametrized by arc length between two
points x and y in M with length ⩽ τ . R. Mañé [1754] identifies the topological
entropy as a Riemannian characterization, which relates the exponential growth
rate of Nτ (x, y), as a function of τ , with the topological entropy htop(φt). The
function Nτ (x, y) is finite and locally constant on an open full measure subset
in the product manifold M×M. More specifically, the following statement,
known as Mañé’s formula, is applicable,

htop(φt) = lim sup
τ→∞

1

τ
log

∫
M×M

Nτ (x, y)dxdy

= lim sup
τ→∞

1

τ
log

∫
T̊ 1M

exn(dθφt)dθ

= lim sup
τ→∞

1

τ
log

∫
T̊ 1M

det
(
dθφt

∣∣
V̊(θ)

)
dθ

= lim sup
τ→∞

1

τ
log

∫
M

vol
(
φt (TxM)

)
dx, (13.98)

where V̊(θ) = dθπ
−1({0}) represents the vertical fiber at θ = (x, v) ∈ T̊ 1M,

with the projection map π : T̊ 1M→M, and

vol
(
φt (TxM)

)
=

∫
TxM

det
(
d(x,v)φt

∣∣
V̊(x,v)

)
dv, (13.99)
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cf. [2036, pp. 82-92]. The referential background supporting the Mañé’s formula
consists partly in the theorem of Y. Yomdin [2712] on the coincidence of the
(boundary of the) growth rate of volumes and the topological entropy (conceived
as a growth rate under iteration), and partly in the Berger–Bott formula [263] and
Przytycki’s inequality [2170] for the C2 flow on a closed Riemannian manifold.

(2) Let a compact C∞ Riemannian manifoldM, the Riemannian measure
µ (induced by the Riemannian structure), and x, y ∈M be given. Let N ⊂M
be a compact smooth submanifold, and Nτ (N , y) the number of geodesics (i.e.
geodesic arcs or segments) with length ⩽ τ that connect a point in N to y and
are orthogonal to N . G.P. and M. Paternain [2034] [2037] define the geodesic
entropy as

hgeo(g) = lim sup
τ→∞

1

τ
log

∫
M
Nτ (N , y)dµ(y), (13.100)

or
hgeo(g) = lim sup

τ→∞

1

τ
log

∫
M×M

Nτ (x, y)dµ(x)dµ(y), (13.101)

if N is the diagonal in M×M. By means of Yomdin’s theorem again, they
show this inequality: hgeo(g) ⩽ htop(φt). Mañé [1754] demonstrates instead that
hgeo(g) ⩾ htop(φt).

Remember that the notion of (exponential) growth rate λvol of volume of a
Riemannian manifold is developed by A. Manning [1760] in this way:

λvol(M) = lim
ρ→∞

1

ρ
log vol

(
Bρ(x)

)
, (13.102)

where vol
(
Bρ(x)

)
is the volume of the ball Bρ of radius ρ and center x in the

universal covering M̃ of M, such that ρ−1 log vol
(
Bρ(x)

)
converges to a limit

λvol ⩾ 0 as ρ → ∞ and λvol is independent of x. It was demonstrated that
λvol(M) ⩽ htop(φt), for a compact Riemannian manifold and a geodesic flow
on T̊ 1M, and λvol(M) = htop(φt), if all sectional curvatures ofM are ⩽ 0 (in
this instance, the growth rate of volume on the universal covering is the volume
entropy). By putting ρ = τ , and letting x̃ be a lift of a point x ∈ M to M̃, it
can be noted that even ∫

M
Nτ (x, y)dy ⩾ vol

(
Bτ (x̃)

)
, (13.103)

and τ−1 log vol
(
Bτ (x̃)

)
converges to λvol ⩾ 0 and is independent of x̃.

13.2.5.2. Positive vs. Zero Topological Entropy

There are several examples showing that the topological entropy is positive,
htop(φt) > 0; nevertheless, integrable Hamiltonian systems have null topological
entropy, htop(φt) = 0; this includes verifying, on a case by case basis, that the
integrability of the geodesic flow involves fading away of the topological entropy.
But be careful: as it has been found out subsequently [322, pp. 67-72], this does
not mean that the integrability is possible iff there is a zero topological entropy:
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the vanishing of the topological entropy is neither a necessary nor a sufficient
condition for integrability.

Example 13.2.1 (Positive topological entropy in the case of geodesic flows on a
2-dimensional surface, and on a manifold which is not rationally elliptic). About
the positiveness of the topological entropy of geodesic flows, we mention the
following works:

(1) E.I. Dinaburg [780]. Assuming that the fundamental group π1(M) has
exponential growth, for all smooth Riemannian metrics onM with a suitable
topology, it is possible to prove that the entropy htop of some geodesic flow on a
2-dimensional surface of genus g > 1 is positive.

(2) G.P. Paternain [2033] [2034] [2035]. Given a compact simply connected
Riemannian manifoldM, ifM is not rationally elliptic, then the entropy htop of
some geodesic flow is positive—a manifold is called rationally elliptic if the total
number of rational homotopy groups πz(M)⊗Q is finite-dimensional, z ∈ Z, or
if there is a positive integer z0 such that πz(M)⊗Q = 0, for any z ⩾ z0. 5

Example 13.2.2 (Zero topological entropy in the case of completely integrable
geodesic flows). As regards the vanishing of the topological entropy htop(φt), we
describe briefly two results achieved again by Paternain.

(1) For a compact Riemannian manifold whose geodesic flow is completely
integrable with periodic integrals, the group π1(M) has sub-exponential growth.
Suppose that π1(M) is finite, soM is rationally elliptic. It is possible to show
that htop of this flow is zero, cf. [2034].

(2) Let (M, ωs) be a symplectic manifold (cf. (1) in Definition 12.4.1), H a
smooth Hamiltonian function, φH

t the flow of a Hamiltonian vector field X⃗H ,
cf. Eq. (12.63), and W⃗H ⊂ X⃗H a compact separable flow invariant subset.
If H is completely integrable with non-degenerate first integrals, then htop of
φH
t

∣∣
W⃗H

vanishes. More simply put, given a certain smooth compact Riemannian
manifold whose geodesic flow is completely integrable with non-degenerate first
integrals, the number htop of this flow is zero, cf. [2035]. 5

Example 13.2.3 (Positive topological entropy in the case of a C∞ integrable
geodesic flow). This construction is due to A.V. Bolsinov and I.A. Taimanov
[323]; see also [456]. Take a 3-dimensional real-analytic Riemannian manifold
diffeomorphic to the quotient of T2 = R2/Z2 × R1 concerning a free action of Z,
i.e. a homogeneous space that is a quotient of the 3-dimensional Lie group Sol ,
which is one of the eight homogeneous Thurston 3-geometries [2494] [2495] [2496]
[2497] [2499] [2500] [2501] (see Margo 10.3.2); the group Sol can be imagined as a
split extension of R2 by R, so the exact sequence is 0 −→ R2 −→ Sol −→ R −→ 0.
Under these circumstances, the following holds:

(1) the geodesic flow on the Sol -manifold is (Liouville) integrable by C∞

smooth first integrals and not (Liouville) integrable by real-analytic first integrals;
(2) the fundamental group of the Sol -manifold has an exponential growth;
(3) the Kolmogorov–Sinai metric entropy of the geodesic flow vanish (hµ = 0),

especially for a Liouville-like measure;
(4) the topological entropy of the geodesic flow is positive. 5
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13.2.5.3. Metric Entropy of the Geodesic Flow: on a Theorem of
Pesin & Freire–Mañé; Lyapunov Exponent

We talk again on the Kolmogorov–Sinai metric entropy (Definition 13.2.2), but
this time associated with the geodesic flow, and we treat a theorem summarizing
its features, whose roots stretch back to the papers of Ya.B. Pesin [2081] [2082]
and Freire–Mañé [1039]; cf. the previous work of Eberlein [831].

Theorem 13.2.3 (p+fm). Let φt : T̊ 1M→ T̊ 1M be the geodesic flow on the
unit tangent bundle of a compact C4 negatively curved surface κ(v), and µ a
Liouville-like measure. For each tangent vector v ∈ T̊ 1M, the Kolmogorov–Sinai
metric entropy of φ1 is

hµ(φ1) = −
∫
T̊ 1M

κ(v)dµ(v). (13.104)

Proof. Let v⊥ be the set of vectors w ∈ M orthogonal to v. For w ∈ v⊥,
take a vector ϑw

viz
= ϑ(w). The set of the vectors w ∈ v⊥, ϑw

viz
= ϑ(w) forms a

1-dimensional linear subspaces of the second (or double) tangent space TvT̊ 1M,
which is denoted by E±(v). Comprehensibly, TvT̊ 1M = E+(v) ⊕ E−(v). The
subspaces E±(v) ⊂ TvT̊ 1M are invariant space under dφt, namely dφtE+(v) =(
E+φt(v)

)
and dφtE−(v) =

(
E−φt(v)

)
. Keep in mind that the vector ϑw ∈ E±(v)

is such that dπϑw = w. Let κx(v1, v2) ⩾ −α2, for a value α > 0 and all points
x ∈ M, so ∥κϑw ⩽ α∥dπϑw∥. Fixing t ⩾ 1, we have therefore ∥dφtϑw∥ ⩽
(1 + α)∥dπ ◦ dφtϑw∥, and the function

λ−l (v, ϑw) = lim
t→∞

1

t
log ∥dφtϑw∥ = lim

t→∞

1

t
log ∥dπ ◦ dφtϑw∥, (13.105)

where λ−l is a Lyapunov exponent (see Margo 13.2.2); note that each point in
such a space is backward regular (which depends on whether the Lyapunov
exponent λ−l is backward regular and the filtration F− is coherent), as stated by
the Lyapunov–Perron method [1716] [2078] [2079].

Fix s ̸= 0, and let

χs(v) =
∥dπ ◦ dφsϑw∥
∥dπϑw∥

. (13.106)

Thanks to Birkhoff’s ergodic Theorem 13.1.1 and Eq. (13.105), one gets

hµ(φs) = −
∫
T̊ 1M

λ−l (v, ϑw)dµ(v)

= −
∫
T̊ 1M

lim
n→∞

1

sn
log ∥dπ ◦ dφsnϑw∥dµ(v)

= −
∫
T̊ 1M

lim
n→∞

1

sn

n−1∑
ν=1

logχs
(
φsn(v)

)
dµ(v)

= −
∫
T̊ 1M

logχs(v)dµ(v), (13.107)
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and, in view of the fact that hµ(φs) = |s|hµ(φ1),

hµ(φ1) =
1

s
hµ(φs) = lim

s→0

1

s
hµ(φs) = −

∫
T̊ 1M

lim
s→0

1

s
logχs(v)dµ(v), (13.108)

for s > 0. We indicate by J⃗ϑw
the Jacobi field in regard to ϑw (see Margo 13.2.3).

It ensues that

|J⃗ϑw
(s)|2 = |J⃗ϑw

(0)|2 +
∫ s

0

d

dy
|J⃗ϑw

(y)|2dy

= |J⃗ϑw
(0)|2 + 2

∫ s

0

|J⃗ϑw
(y)| d

dy
|J⃗ϑw

(y)|dy. (13.109)

By setting

α(s) =
1

s

∫ s

0

|J⃗ϑw
(y)| d

dy
|J⃗ϑw

(y)|dy, (13.110)

we can write

α(0) = 2|J⃗ϑw
(s)| d

ds
|J⃗ϑw

(s)| = 2κ(v), (13.111)

for s = 0. By means of the last two equations, we get

∥dπ ◦ dφsϑw∥ =
√
∥dπ ◦ dφsϑw∥2 =

√
|J⃗ϑw

(s)|2 =
√

1 + sα(s), (13.112)

given that |J⃗ϑw
(0)|2 = 1. Then

lim
s→0

1

s
logχs(v) = κ(v), (13.113)

from which we obtain (13.104), as required. □

Margo 13.2.2 (On the Lyapunov exponent).
(1) Let us have a general definition. Given two vectors v, w ∈ Rn, a function

λl : Rn → R ∪ {−∞} is said to be a Lyapunov exponent if
(i) λl(αv) = λl(v), for α ∈ R\{0},
(ii) λl(v + w) ⩽ max{λl(v), λl(w)},
(iii) λl(0) = −∞.

One should replace Rn by an n-dimensional real vector space, and it means the
same thing.

(2) A function λl : Rn → R ∪ {−∞} is a Lyapunov exponent on Rn iff there
are numbers (λl)1 < · · · < (λl)k, for some integer 1 ⩽ k ⩽ n, and a filtration
F = {Eν | ν = 0, . . . , k}, which is a collection of linear subspaces Eν of Rn, such
that

(i) λl(v) ⩽ (λl)ν , for v ∈ Eν ,
(ii) λl(v) = (λl)ν , for v ∈ Eν\Eν−1,
(iii) λl(0) = −∞.
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In the following the proof of this statement. Each vector v ∈ Eν\Eν−1 cor-
responds to (λl)ν−1 < λl(v) ⩽ (λl)ν . Since there are no values of λl be-
tween (λl)ν−1 and (λl)ν , then λl(v) = (λl)ν . Because λl attains the con-
stant value (λl)ν on Eν\Eν−1, the linear subspace Eν can be described as
Eν = {v ∈ Rn | λl(v) ⩽ (λl)ν}. We see that if v ∈ Eν\Eν−1, subsequently
αv ∈ Eν\Eν−1 and λl(αv) = λl(v), for v ∈ Rn and α ∈ R\{0}. Let the
vectors v1, v2 ∈ Rn\{0}, and the function λl(vξ) = (λl)νξ , for ξ = 1, 2, be
given. By putting ν1 < ν2, we have v1 + v2 ∈ Eν1 ∪ Eν2 = Eν2 , and thus
λl(v1 + v2) ⩽ (λl)ν2 = max{λl(v1), λl(v2)}, which proves that the function λl
is Lyapunov exponent, and also F = (Fλ)l, assuming that λl(v) = (λl)ν . L

Margo 13.2.3 (Jacobi field). Incidentally, we remember that a Jacobi field J⃗ϑw

is a vector field along a geodesic γc(t), with a parameter t, satisfying the second
order equation

D2J⃗ϑw

dt2
viz
= ∇γ̇c(t)∇γ̇c(t)J⃗ϑw

+R
(
J⃗ϑw(t), γ̇c(t)

)
γ̇c(t) = 0, (13.114)

where D2 is the second covariant derivative along γc(t) with respect to the
Levi-Civita connection (Section 1.3.5), γ̇c(t) is the velocity vector field of the
geodesic, and R is the Riemann curvature tensor. From the map ϑw 7→ J⃗ϑw

(t) it
is possible to check that

J⃗ϑw(0) = dπϑw, (13.115)
d

dt
J⃗ϑw(0) = κ(ϑw), (13.116)

and

J⃗ϑw
(t) = dπ ◦ dφtϑw, (13.117)

d

dt
J⃗ϑw

(t) = κ ◦ dφtϑw, (13.118)

for v ∈ T̊ 1M and ϑw ∈ TvT̊ 1M. L
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14
On the Chaos, Part I. Micro- and Macro-scales

Chinese tea is some kind of optimal function, say 茶-function, for the daily math-struggle for
negative entropy:a from chaos to order; as the Hatter says, 「因為老是吃茶」· “It’s always tea-time”.b

— Personal application of the Boltzmann–Schrödinger law of life [332, p. 40]c [2319, p. 71]d
via Camellia sinensis

14.1. Bohr’s Tea Principle—Uncertainty and Entropy

In the rigorous formulation of the law of causality: “If we know the present precisely, we can
calculate the future”, it is not the conclusion that is erroneous, but the premise. In principle, we cannot
know the present in all its parameters [Wir können die Gegenwart in allen Bestimmungsstücken
prinzipiell nicht kennenlernen]. Resultantly the whole of what is perceived is a selection from a
totality of possibilities and a limitation of what is possible in the future [ist alles Wahrnehmen eine
Auswahl aus einer Fülle von Möglichkeiten und eine Beschränkung des zukünftig Möglichen].

— W. Heisenberg [1322, p. 197]

a The concept of negative entropy, indicating the amount of information (number of bits) that is
ordered, was introduced by E. Schrödinger; it is sometimes expressed with a bad crasis, negentropy,
coined by L. Brillouin [420, p. 1152], cf. [610, p. 49]; alternatively, there is the word syntropy, due
to L. Fantappiè [937, capp. II-III].

The syntropic phenomena of Fantappiè are the ones that converge to a state of complexity—«such
as e.g. the formation of the eye and of many very complicated systems of living beings, the chlorophyll
process, the ascent of the lymph in plants, the psychic phenomena of the human personality» [937,
pref.]—under variable stages of differentiation, up to a high degree of diversity. A syntropic system
is, inherently, an ordered system, i.e. with low entropy, and richly complex. But beware:

(1) All phenomena, including the syntropic ones, depend, from what we can tell, on an initial
state of low entropy, which proceeds towards a state whose entropy is stringently increasing with
time; so syntropy—a measure of the degree of order, or apparent absence of randomness, and
presence of information—and entropy—a measure of the degree of disorder, or randomness, and
lack of information (Section 7.4.1.4)—are braided together: local phenomena producing order and
complexity (think of biological evolution) coexist, without contradiction, with the entropy increase
principle on a global scale, by the growing disorder, or randomness, of the universe.

(2) The increasing amounts of order and complexity are not the only evolutionary directions of
localized structures: we can witness a decrease of complexity, to wit, an increase of simplicity, in
the course of evolution (one thinks of the manifestation of new circumstances more efficient, with a
lower degree of complexity than the old ones, without losing an ordered state).

On grounds of the definition of complexity, all this reasoning incorporates conceptual changes.
We can say that the complexity of a system

· is a state in which several parts are connected, in an orderly fashion, to each other; or
· is the amount of information suitable to describe the regularities of that system, as proposed by

M. Gell-Mann and S. Lloyd [1118] [1119]; after which we must agree on what is meant by “regularity”
[1115] [1116], as distinct from “randomness”, “fortuitousness”, etc., according to the context of
study/application, cf. footnote c on p. 453.

bL. Carroll [539, VII. 瘋茶會 · A Mad Tea-Party, p. 一百二].
c«The general struggle for existence of animate beings is [ . . . ] a struggle for [against] entropy

[Der allgemeine Daseinskampf der Lebewesen ist [ . . . ] ein Kampf um die Entropie]».
d«[A] living organism continually increases its entropy [ . . . ] and thus tends to approach the

dangerous state of maximum entropy, which is death. It can only keep aloof from it, i.e. alive, by
continually drawing from its environment negative entropy».
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Let us look at the properties of an individual hydrogen atom inside the teapot. Its temperature,
if we can talk about it at all, is surely as high as that of the rest of the tea, [e.g.] 70 degrees, because
it exchanges heat with all the other tea molecules. Its energy, however, must fluctuate and this
precisely because it exchanges heat; hence we can only define a probability curve for its energy. If,
conversely, we had measured the energy of the hydrogen atom and not the temperature of the tea,
then we could not deduce the latter unequivocally from the former; once again we could only draw a
probability curve — for the temperature [ . . . ]. [T]he lack of certainty as to the precise temperature
or energy values, is relatively large in so small an object as a hydrogen atom, and hence significant.
In a much larger object, for instance a small quantity of tea within the pot, it becomes considerably
smaller and can therefore be neglected.

— N. Bohr in the recollection of W. Heisenberg [1326, pp. 106-107]

Let us have a cup of tea. We want to pause on the fact that the correlation
between macroscopic and microscopic phenomena in probabilistic terms, that
we have found in the ergodic hypothesis and in the definitions of entropy (see
Chapter 13), is transferred and repurposed into quantum mechanics. Whether it
is classical thermodynamics or quantum mechanics, we fail to fully understand
the passage from micro- to macro-matter, and vice versa, and the so-called
emergence in nature (cf. Section 14.5), especially in connection with complex
dynamic systems, or the transition from discrete to continuous states, and vice
versa, with the reduction of aggregate matter (macroscopic structures) at the
level of subatomic constituents (elementary particles).

We can think of temperature of tea within the pot as a measure of the
average kinetic energy (or the average speed) of its atomic-molecular components;
therefore the thermodynamic properties reflect the statistical and quantum-
mechanical behavior in the underlying microstates. The entropy of the teapot,
which is the production of energy but also of information associated with it, is
a measure of the number of possible microscopic arrangements of the atomic-
molecular components.

The mathematical knot that ties these two physical worlds, of micro- and
macro-matter, is a collection of probabilistic, or statistical, laws. As we mentioned
previously (Chapter 13), it was Boltzmann that forged an interconnection between
the atomism of matter and the statistical theory. This knot is beautifully
exemplified by Bohr’s consideration, cited in epigraph, on the hydrogen atom
in a teapot, and its energy and temperature, which recalls the Heisenberg’s
uncertainty principle [1322], but see also contributions by E.H. Kennard [1472]
and H. Weyl [2637, pp. 77, 393-394]. Let us check this out with the language of
mathematics.

14.1.1. Quantum Heisenberg–Weyl Inequality, and Schwartz Space

Theorem 14.1.1 (α. Heisenberg–Weyl Inequality).
(1) Let ψ be a unit vector, identifying a state of a particle, in the Hilbert

space H = L2(R), where L2(R) is the space of all square-integrable functions
я : R→ C ∪ {∞}.

(2) Let x̂ : D(x̂)→ L2(R) be a position operator, given by (x̂ψ)(x) = xψ(x),
for any ψ ∈ D(x̂), and p̂ : D(p̂) → L2(R) a momentum operator on the real
line (also known as position and momentum observables of a particle), where
D(·) = {ψ ∈ L2(R)} is a linear subspace of H, i.e. a domain of x̂ and p̂.



14.1. Bohr’s Tea Principle—Uncertainty and Entropy 305

(3) The D-domain of [x̂, p̂] contains the Schwartz space (Margo 14.1.1),
denoted by Sc(R), for which Sc(R) ⊂ D([x̂, p̂]) and [x̂, p̂]ψ = iℏψ, with the reduced
Planck’s constant, for any ψ ∈ Sc(R).

If x̂ and p̂ are symmetric, x̂p̂ = p̂x̂, such that [x̂, p̂] = x̂p̂ − p̂x̂ = iℏI, and
ψ ∈ D(x̂p̂) ∩D(p̂x̂) ∩D(x̂2) ∩D(p̂2), then

∆2
ψ(x̂)∆

2
ψ(p̂) ⩾

1
4 |⟨ψ, [x̂, p̂]ψ⟩|

2. (14.1)

Proof. Setting ⟨(x̂ + iβp̂)ψ, (x̂ + iβp̂)ψ⟩ ⩾ 0, for a value β ∈ R, one has

⟨(x̂ + iβp̂)ψ, (x̂ + iβp̂)ψ⟩ = β2⟨ψ, p̂2ψ⟩+ iβ⟨ψ, x̂p̂ψ⟩ − iβ⟨ψ, p̂x̂ψ⟩+ ⟨ψ, x̂2ψ⟩
= β2⟨ψ, p̂2ψ⟩+ β(−⟨ψ,ψ⟩) + ⟨ψ, x̂2ψ⟩, (14.2)

which holds when ⟨ψ,ψ⟩2 ⩽ 4⟨ψ, p̂2ψ⟩⟨ψ, x̂2ψ⟩. □

From (14.1), ∆2
ψ(x̂)∆

2
ψ(p̂) ⩾

ℏ2

4 , and

∆ψ(x̂)∆ψ(p̂) ⩾
ℏ
2
, (14.3)

in which ∆ψ(x̂) and ∆ψ(p̂) are the uncertainties of x̂ and p̂ in the state ψ.
The inequality (14.3), combining the standard deviations ∆ψ of position and
momentum, carries with it a break between small and large scales (e.g. of motion
and distribution) in the matter.

Theorem 14.1.2 (β. Heisenberg–Weyl Inequality). Let ψ ∈ D(x̂) ∩ D(p̂) in
H = L2(R), then ∆ψ(x̂)∆ψ(p̂) ⩾ ℏ

2 .

Proof. We consider the expression (p̂ψ)(x) = −iℏ limu→0

(
ψ(x+u)−ψ(x)

u

)
, for any

ψ ∈ D(p̂), so

⟨x̂ψ, p̂ψ⟩ = lim
u→0

〈
x̂ψ,−iℏ

(
ψ(x+u)−ψ(x)

u

)〉
= lim
u→0

{
1
u ⟨iℏ(y − u)ψ(y − u), ψ(y)⟩+

iℏ
u ⟨x̂ψ,ψ⟩

}
= lim
u→0

{〈
iℏ
(
ψ(x−u)−ψ(x)

u

)
, x̂ψ(x)

〉
+ iℏ⟨ψ(x− u), ψ(x)⟩

}
= ⟨p̂ψ, x̂ψ⟩+ iℏ⟨ψ,ψ⟩. (14.4)

Based on the Cauchy–Schwarz inequality [585] [2337], for a value α, β ∈ R, one
has

⟨ψ,ψ⟩ = 1
iℏ{⟨(x̂− αI)ψ, (p̂− βI)ψ⟩ − ⟨(p̂− βI)ψ, (x̂− αI)ψ⟩}

= 2
ℏℑ⟨(x̂− αI)ψ, (p̂− βI)ψ⟩ ⩽

2
ℏ∥(x̂− αI)ψ∥ · ∥(p̂− βI)ψ∥. (14.5)

Putting α = ⟨ψ, x̂ψ⟩ and β = ⟨ψ, p̂ψ⟩, there follows that ∥(x̂− αI)ψ∥2 = ∆2
ψ(x̂)

and ∥(p̂− βI)ψ∥2 = ∆2
ψ(p̂), ergo 1 ⩽ 2

ℏ∆ψ(x̂)∆ψ(p̂). □
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Margo 14.1.1 (Schwartz space). The Schwartz space Sc(Rn) is named after A.
Grothendieck [1225] in L. Schwartz’s honour [778] [2330]. It is a locally convex
topological vector space, or even a nuclear space, intended as a finite-dimensional
vector space. Let ν = (ν1, . . . , νn) and ξ = (ξ1, . . . , ξn) denote multi-indices
consisting of n-tuples of non-negative integers, that is to say, of natural numbers

ν1,...,n, ξ1,...,n ∈ Nn0 = Nn ∪ {0}.

Technically, the Schwartz space is the space of complex-valued functions я ∈
Sc(Rn) of rapid decrease on Rn if

(1) я ∈ C∞(Rn),
(2) limx→±∞ |xν∂ξя(x)| = 0, where xν = xν11 · · ·xνnn and ∂ξ = ∂|ξ|

∂x
ξ1
1 ···∂xξn

n

of

order |ξ| = ξ1 + · · ·+ ξn, i.e.

lim
x→±∞

∣∣∣∣∣xν11 · · ·xνnn ∂ξ1

∂xξ11
· · · ∂

ξn

∂xξnn
я(x)

∣∣∣∣∣ = 0, (14.6)

and
Sc(Rn) =

{
я ∈ C∞(Rn)

∣∣∣∣ sup
x∈Rn

∣∣xν∂ξя(x)∣∣ <∞} . (14.7)

By (14.7), any element of Sc(Rn) is square-integrable onto the n-dimensional
real coordinate space, which means that the Schwartz space is a linear—but not
topological—subspace of the Hilbert L2-space, Sc(Rn) ⊂ L2(Rn), and, in general,
Sc(Rn) ⊂ Lp(Rn), for any p ⩾ 1. The Schwartz space includes the vector space
of all smooth and compactly supported functions, the so-called bump functions,
denoted by C∞

0 , for which C∞
0 (Rn) ⊂ Sc(Rn) ⊂ C∞(Rn). L

14.2. (In)deterministic Flow: Lorenz System in Compari-
son with Quantum Mechanics

[W]e shall assume [ . . . ] that the [idealized fluid] systems [in the small and large scales of motion]
with which we are dealing are deterministic [that is, the exact present state determines the exact
state at any future time]. We shall acknowledge that the state of a system cannot be observed
without error, but we shall assume [ . . . ] that there is no limit to how small the error may be made.
We shall then produce evidence favoring the conclusion that the observable behaviour of certain
deterministic [fluid] systems is indistinguishable from that of indeterministic systems [ . . . ], in that
they possess an intrinsic finite range of predictability which cannot be lengthened by reducing the
error of observation to any value greater than zero [ . . . ].

It is appropriate to ask at this point whether real fluid systems possess a similar lack of
predictability [ . . . ]. [T]he fact [is] that we do not know the governing equations for any real systems.
We need not invoke Heisenberg’s Principle of Uncertainty [cf. epigraph under Section 14.1] to make
such a statement, nor do we even need to recognize that fluids are collections of molecules rather
than continua; there are processes of somewhat larger scale which are not completely understood.

— E.N. Lorenz [1691, pp. 290, 306, 304, e.a.]

The Lorenz system [1688] [1691], which originates from the weather forecast-
ing, allows us to see that certain formally deterministic fluid systems possessing
many scales of motion are not observationally distinguishable from indeter-
ministic systems; we can visualize the motion as the flow of a fluid, or as a
hydrodynamic flow, in the phase space. Because of small and negligible, or even
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undetectable, errors in observing the fluid system, the initial uncertainties in
the smallest scales are amplified in the largest scales, so the predictability of the
future of the system does end up containing some errors.

Here the instability in meteorology (that is, the instability of the atmosphere)
becomes, thanks to Lorenz’s strange attractor (Section 15.1), the basal property
of irregular or chaotic dynamical systems, and it is considered the root of the
irregularity [1693]. A distinctive feature of the irregularity is the absence of
periodicity, such is the case e.g. of the instability of non-periodic flow in systems
of deterministic equations.a Solutions of these equations are identified with the
orbits in the phase space.

It is also clear that there is a relationship between Lorenz type attractor and
the simultaneous growth of both entropy and information, as it is shown in R.
Shaw [2366], or that an information entropy of the attractor is associated with
the measure of its dimensionality, see Grassberger & Procaccia [1192].

According to the study of chaos, given a certain dynamical system, we cannot
achieve absolute precision in the measurement of the initial state of its evolution,
for which there is (and remains) some approximation, or uncertainty of the
prediction about the future state of the system. This component, let us repeat,
is closely related to the presence of one or more uncorrectable errors in the
measurement of the initial data, because it is possible to measure all state
variables, or magnitudes dependent on time, only with relative precision (Section
15.1.1).

In quantum theory, the concept of indetermination, as well as the concept
of uncertainty, or entropy, have a connotation other than that emanating from
dynamical systems investigated by chaotic mathematical models. It is enough to
mention the non-relativistic Schrödinger equation [2314, 2315, 2316, 2317].

14.2.1. Schrödinger Wave Equation in 1D and Solution via Fourier
Transform

One could summarise [ . . . ] paradoxically: the movement of particles follows a probability law,
but the probability itself evolves in accordance with the law of causality [under which the punctual
knowledge of a state at a certain instant determines the distribution of the state for all later times].

— M. Born [381, p. 804]

One of the most satisfactory features of the present quantum theory is that the differential
equations that express the causality of classical mechanics do not get lost, but are all retained in
symbolic form, and indeterminacy appears only in the application of these equations to the results
of observations.

— P.A.M. Dirac [794, p. 4]

Let us examine the most common situation. We show an exemplification.

Example 14.2.1 (Quantum Schrödinger particle). Setting the potential energy
function to zero, we analyze the case of a particle of mass m freely moving in
a 1-dimensional space. Let ψ(x) represent the state vector, or wave function,
of the particle, and Ĥ the Hamiltonian operator, on the assumption, known

aThe use of the word “chaos” in mathematics and physics appears in a paper written by T.-Y.
Li and J.A. Yorke [1647] about a situation in which there is a non-periodic sequence in a Lorenz
type fluid flow.
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as de Broglie hypothesis [735], that there is a wave-like behavior of matter on
the microscopic scale (here, wave packets directly represent the moving atomic
corpuscles). The corresponding Schrödinger equation is

iℏ
∂ψ

∂t
(x, t) = − ℏ2

2m

∂2

∂x2
ψ(x, t), (14.8a)

∂ψ

∂t
=

iℏ
2m

∂2ψ

∂x2
, (14.8b)

the second one is in simplified form, while the general form is

iℏ
∂ψ

∂t
(x, t) = Ĥψ(x, t), or

∂ψ

∂t
=

1

iℏ
Ĥψ. (14.9)

The solution of (14.8) is the function

ψ(x, t) = eik
(
x−ω(k)

k t
)
, (14.10)

where k is the wave number, i.e. the spatial angular frequency of the wave, and
ω(k) = ℏk2

2m is the angular frequency—in radians—per unit time. 5

We shall now give a propositional theorem.

Proposition 14.2.1 (Solution of the Schrödinger equation through the Fourier
transform method). Let ψ0 ∈ L2(R) be a Schwartz function, as an element of the
Schwartz space (see Margo 14.1.1), representing the initial (state) wave function,
and ψ̂0 the Fourier transform [1021] of ψ0 for which

ψ(x, t) =
1√
2π

∫ +∞

−∞
ψ̂0(k)e

ik
(
x−ω(k)

k t
)

(14.11)

is fixed. Then ψ(x, t) is the solution of (14.8) imposing ψ0.

Proof. Knowing that ψ̂0 is itself a Schwartz function, we know, too, that ψ̂0

decays faster than 1
k4 as k tends to plus-minus infinity. For an eigenfunction of

the form
ψk(x) = eikx, k → ±∞, (14.12)

expressing a particle with momentum ℏk, we integrate the derivative of eikx to
get an estimate like this: ∣∣∣∣eik(x+g) − eikxg

∣∣∣∣ ⩽ |k|. (14.13)

To take a derivative with respect to x under the integral sign, we need to use
the Lebesgue’s dominated convergence theorem [1590] (see Theorem 13.1.2), so
that the derivative can “pull down” a factor of ±ik, and so on for the second
derivative, owing to the rapid decay of the Fourier transform ψ̂0 on the space of
Schwartz functions. The process of differentiation under the integral sign is thus
the method by which the Schrödinger equation (14.8) is solved by ψ(x, t), given
that (14.10) satisfies this equation for any spatial frequency of the wave. □
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The time dependent Eq. (14.8) is a linear partial differential equation of
second order; it is of a deterministic type (for which the evolution of the wave
function of a particle is deterministically described), and the unpredictability
appearing in quantum mechanics, starting with the Copenhagen interpretation,
is not chaotic, or at least, it is not chaotic under the above-mentioned Lorenzian
acceptation (see Margo 14.2.1), but is connected to the nebulous notion of
probability amplitude, introduced by M. Born [380] [381].70

In the view instead of deterministic chaos, the unpredictability of the evolution
of a system is inherent in the fact that small initial differences, in the data
collected, can turn into increasingly and dramatically large differences over time.
Nonetheless, there are schemes, such as the one in the Ghirardi–Rimini–Weber
theory [1128] [1129], allowing the possibility to add stochastic and non-linear
ramifications in a Schrödinger dynamical framework; in that context, see J.S.
Bell [235] [236].

Margo 14.2.1 (Quantum chaos). Attempts at grafting a deterministic/classical
chaos onto quantum mechanics are multiple. We report here T.N. Palmer [2001]
[2002], because he is in the wake of Lorenz’s picture, and takes advantage of
the Alexander–Yorke–You–Kan riddled basin [49]. We remind also a quantum
version of the classical Hamiltonian system involving the Anosov flow with
chaotic behavior; this quantum dynamics, that is, a quantum manifestation of
Hamiltonian chaos, is in keeping with the flow generated by Laplace–Beltrami
operator on a compact Riemannian manifold of negative curvature. L

14.3. Non-perfect Fluid in the Teapot and Brownian Motion

While examining the form of these particles [contained in the grains of pollen] immersed in
water, I observed many of them very evidently in motion [ . . . ]. These motions were such as to satisfy
me, after frequently repeated observation, that they arose neither from currents in the fluid, nor
from its gradual evaporation, but belonged to the particle itself.

— R. Brown [433, pp. 466-467]

I think that the dancing motion of the extremely minute solid particles in a liquid, can be
attributed to the different velocities that must be at the same temperature, both in these solid
particles and in the molecules of the liquid that strike them on all sides [ . . . ]. And thereby the
Brownian motion, thus declared, provides us with one of the most beautiful and direct experimental
demonstrations of the fundamental principles of the mechanical theory of heat, manifesting the
assiduous vibrational state necessarily present both in liquids and solids even when their temperature
is not altered.71

— G. Cantoni [489, pp. 163, 167]

[I]t will be shown that according to the molecular-kinetic theory of heat, bodies of microscopically-
visible size suspended in a liquid will perform movements of such magnitude that they can be easily
observed in a microscope, on account of the molecular motions of heat [847, p. 549, transl. p. 1].

[T]he so-called Brownian motion is caused by the irregular thermal movements of the molecules
of the liquid [850, p. 371, transl. p. 19].

— A. Einstein

14.3.1. From Camellia Sinensis to Clarkia Pulchella

We know that a drop of tea, at the atomic-molecular level, is not a perfect
(or ideal) fluid, to wit, a fluid absolutely free from viscosity, in which there are
no shear stresses (between the fluid particles). The equation of state of the
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perfect fluid is used in idealized models capable of describing the distribution of
matter, as is the case with the Friedmann–Lemaître–Robertson–Walker (flrw)
metric [1051] [1052] [2215] [2216] [2217] [2605], that is an exact and analytically
solvable solution of Einstein’s field equations, i.e. with the general relativity,
whose geometric structure is a 4-dimensional continuum (the differentiable space-
time manifold).

A drop of tea split in two is still a drop of tea, the same holds true for
the half of the latter, and so forth; but, when we get to the hydrogen and
oxygen, we no longer have to deal with it as a infinitely (continuously, or in an
arbitrary manner) divisible tea-substance, together with the additive of tannin
(polyphenolic compounds) extracted from the leaves of Camellia sinensis (茶树).
What we are actually dealing with here is an aggregate of organic molecules and
N atoms. The image of a fluid as a homogeneous continuum, spatially uniform,
falls into a macroscopic viewpoint (tea in the teapot); but, at a higher-resolution
“peek”, it breaks into a granular structure.

We can take a cue from Brownian motion. The observations through the
microscope by R. Brown [433] of the random and incessant motion of particles
contained in the grains of pollen of the plant Clarkia pulchella suspended in water,
are the simplest and most direct evidence that the macroscopic physico-chemical
substance (the continuum fluid) consists of a structure of discrete molecules
and elementary constituents. The irregular movements of microscopic grains
of pollen arise from thermal molecular movement, so the Brownian motion is
related to the molecular theory of heat. G. Cantoni was the first to give this
explanation, and A. Einstein [847] [850] made a quantitative description of it.

On a micro-scale, the fluid is atomic-molecular, on a macro-scale, it is a
continuum. The passage from one to another is a pressing problem in quantum
mechanics (e.g. Schrödinger’s cat [2318, p. 812] and decoherence), but also in
chaotic dynamical systems (e.g. weak predictability in Lorenz-like attractors).

The same trouble of passage from micro-scale to macro-scale is present in the
Brownian motion, with a micro- and macro-physics of fluids. Brownian motion
is considered a specific model of random walk, this is because the diffusion of
visible particles of organic origin, included in the grains of pollen, is due to
their apparently random fluctuation in the liquid in which they are suspended.
There are, however, some experiments [760] [419] [1798, chap. 18] that, on a
microscopic dynamics, seem to show a fractal nature of Brownian paths, and a
possible presence of deterministic chaos in Brownian-like motions, or a positive
dynamic entropy congruous with microscopic chaos. These are outstanding issues
in this regard.

14.3.2. Fokker–Planck (Diffusion) Equation in Einstein’s Theory of
Brownian Motion

We now resume the discourse on the Einstein’s theory [847, § 4] for Brownian
particles. Denote by τ an interval of time, and by ∆ a positive or negative
amount,a or better said, a certain displacement, i.e. a length of path, measuring

a√∆2, to be exact [851, p. 238], the square root of the mean value of ∆.
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the increase of each particle, intended as suspended pollen particle (particle
expelled from pollen grains in the liquid) along x-axis, that is in 1-dimensional
space. (A solute molecule is another terminology for a pollen particle, not, of
course, to be confused with a solvent molecule, like a water molecule, which
is much smaller). The number of the particles with a displacement from ∆ to
∆+ d∆ occurring in τ can be expressed as

dn = nP(∆, τ)d∆, (14.14)

where P(∆, τ) is the probability density function, and∫ +∞

−∞
P(∆, τ)d∆ = 1. (14.15)

It is supposed that there is no external agent that exerts force on the Brownian
system, for which there is a homogeneous distribution of mass. By adopting the
symbol ð for the solute density, the average number of particles per unit volume
vol = ð(x, t) between x and x+ dx at time t+ τ can thus be defined as

ð(x, t+ τ)dx =

∫ ∆=+∞

∆=−∞

{
ð(x−∆, t)dx

}
×
{
P(∆, τ)d∆

}
, (14.16)

which corresponds to a Chapman–Kolmogorov equation. In this equation, ð(x−
∆, t)dx is the average number of particles in the interval dx at x−∆ at t, whilst
P(∆, τ)d∆ represents the particles, which (having a displacement along x from
∆ to ∆+ d∆) are in the interval dx along x at t+ τ . The density ð(x−∆, t)
can be expanded under the integral sign into Taylor series, and one has

ð(x, t+ τ) =

∫ +∞

−∞
P(∆, τ)ð(x−∆, t)d∆

=

∫ +∞

−∞
P(∆, τ)

(
ð(x, t) +

∞∑
ν=1

(−∆)ν

ν!

∂νð(x, t)
∂xν

)
d∆

= ð(x, t)
∫ +∞

−∞
P(∆, τ)d∆

+

∞∑
ν=1

∂xνð(x, t)
∂xν

(
1/ν!

∫ +∞

−∞
(−∆)νP(∆, τ)d∆

)
, (14.17)

with ν ∈ Z. The integral ∫ +∞

−∞
P(∆, τ)

is equal to 1 on account of the properties of P in ∆, whereas the integral
representation under the sign of summation vanishes, noticing that the function
P(∆, τ) is an even function of ∆, i.e.

P(∆, τ) = P(−∆, τ). (14.18)
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It then proceeds by writing the time derivative of ð(x, t) by means of the infinite
series

∂ð(x, t)
∂t

=

∞∑
ν=1

(
(1/τ)

1

(2ν)!

∫ +∞

−∞
∆2νP(∆, τ)d∆

)
∂2νð(x, t)
∂x2ν

. (14.19)

The converge, from Einstein’s perspective, is sufficiently rapid to ignore any
terms other than the first. This truncation, as was noted, has no foundation,
even if it looks reasonable; and yet it is in Einstein’s derivation of the Brownian
process. (This is a case in which the physical intuition, aimed at explaining
an experimental fact, can be disengaged from the mathematical guide, without
compromising the overall validity of the theory). By assumption, the coefficient
of diffusion is defined as

Dm = (1/2τ)

∫ +∞

−∞
∆2P(∆, τ)d∆ = (1/τ)

∫ +∞

−∞

∆2

2
P(∆, τ)d∆, (14.20)

and from (14.19) there is the 1-dimensional diffusion equation [988] (Fick’s law),

∂ð(x, t)
∂t

= Dm
∂2ð(x, t)
∂x2

, (14.21)

which corresponds to a Fokker–Planck equation [1015] [2111].

14.4. Continuity and Discreteness—Differential Equations
and Numerical Computing

Properly speaking, there is no science that does not have its metaphysics, if we understand by
this word the general principles on which a science is based.72

— J. le R. d’Alembert [46, p. 294]

Science is what we understand well enough to explain to a computer. Art is everything else we
do.

— D.E. Knuth [1514, p. xi]

One does not believe that one has created a clear concept of what a continuum is merely by
employing this word or writing out a differential equation. On closer examination, the differential
equation is only the expression for the fact that we need to think firstly of a finite number, and
then this number must grow until every further [incremental] growth is no more relevant [336, pp.
233-234] = [342, p. 144].

The concepts of differential and integral calculus, detached of any atomistic notions [atomistis-
chen Vorstellung], are of a truly metaphysical character, if, following a successful Mach’s definition,
by this we mean something that we have forgotten how we did arrive at our conceptions [337, p.
792] = [342, p. 160].

— L. Boltzmann

[F]rom the most remote ages to the present day, the idea of continuity has dominated the
mathematical surveys and all their most interesting and productive applications. When the conditions
of the problems have allowed it, the attempt has always been made to trace (sometimes even intuitively
and unconsciously) the cases of discontinuity back to cases of continuity [ . . . ] induced by the power
of infinitesimal methods [ . . . ]; at the same time, every infinitesimal question has been considered as
a limiting case of questions concerning the discontinuous.

— V. Volterra [2595, pp. 539-540]

Data processing relating to one or more orbits e.g. in a Lorenz attractor
with an executable computer program is always a partial processing, since the
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collection of data items cannot be achieved through numbers with infinite decimal
places, so it is truncated, and thereby approximated, at some level. Furthermore,
perform a full computation means to do operations for manipulating data with
the measurements at our disposal, that are never completely accurate, as they
are sensitive to initial conditions. This implies that the behavior of a calculated
orbit will thus be different from that of the real (or exact) orbit. This is why
the mathematical physics is defined as a building models discipline, with the
known laws which govern the behavior for example of a real hydrodynamical
systems, or the set of idealizations of a hydrodynamical system, that is, idealized
equations as the exact equations for a model of a real system, cf. [1691, p. 289].

Take some chaotic dynamical system; we say that it shall be expressed resort-
ing to an integration of ordinary differential equations, or to partial differential
equations requiring a continuous dependence of solutions on changes in the
initial-value data, with given parameters, changes e.g. in the various coefficients,
or in the boundary-value data. Once we have worked out the computability of
these equations, when the analytical model is solved using finite length numerical
data (that is, when the numerical value of the unknowns is calculated), the
differential equations end up being discretized. The system of equations, from
its continuous modeling, is, of course, brought back to the discrete, or “atomic”,
origin of numbers.

Margo 14.4.1 (Cellular automata). There are models, like cellular automata,
that are intrinsically discrete; it is possible to treat mathematically fluid flows
as lattice gas, see S. Wolfram [2692] [2693], allowing us to have a simulation, but
still partial, of flows derived from the Navier–Stokes equations. The aggregate
behavior of cellular automata can in fact be a tool for approximating continuum
systems. Cellular automaton interpretations in quantum theory are in G. ’t
Hooft [1379] [1377] [1378]. L

14.4.1. Hyperbolic Equation of a Vibrating String: d’Alembert’s For-
mula for the 1-Dimensional Wave Phenomenon

Σημεῖόν
a
ἐστιν [ . . . ] ἢ πέρας ἀδιάστατον · A point is [ . . . ] an extremity without extension.

— Heron (Diophantus?) [1334, α΄v. 〈Περὶ σημεῖόν〉, 11-12, p. 14] = [2555, pp. 468-469]

To pick up the thread of the previous speech, there is a charming yet
problematic coexistence of a continuous scheme, relating to the macroscopic-like
behavior of differential equations, and an atomic unit, relating to the microscopic-
like behavior of numbers or (as a geometric counterpart) points. As an example
of this tension, we will choose an eminent result of hyperbolic partial differential
equations, the d’Alembert’s equation for the oscillatory motion of a vibrating
string, and the corresponding formula [44, 45], that is a solution for the wave
equation of dimension 1. Its application is wide: fluid dynamics, acoustics (sound
waves), electromagnetic waves, such as light. This is the equation:

∂2υ

∂t2
=
∂2υ

∂s2
, (14.22)

aSee footnote b, p. 167.
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where υ = υ(s, t) is the the unknown function, or the dependent variable, s is
the length parameter and t the time, evidently using s and t as independent
variables. Let c be a constant concerning the speed of propagation of the wave.
If we identify s with the x-axis, and υ with the direction aligned with the y-axis,
in order to have the height of the oscillating string, then the Eq. (14.22) can be
written in the following equivalent forms,

∂2υ

∂t2
= c2

∂2υ

∂x2
, (14.23a)

∂2υ

∂x2
=

1

c2
∂2υ

∂t2
, (14.23b)

c2
∂2υ

∂x2
− ∂2υ

∂t2
=
∂2υ

∂x2
− 1

c2
∂2υ

∂t2
= 0, (14.23c)

under which the function υ ιδ= y(x, ct) gives the vertical displacement of the string,
or better, of the points of the string (see below), from a horizontal equilibrium
at position x and time t. Another way of writing the wave equation is with the
d’Alembertian (d’Alembert operator), □ = △− 1

c2
∂2

∂t2 = 1
c2

∂2

∂t2 −∇
2,

□ υ =

(
△− 1

c2
∂2

∂t2

)
υ = 0, i.e. □ υ = 0, (14.24)

where △ = ∇2 = ∇ · ∇ is the Laplace operator, or Laplacian.

Margo 14.4.2. The Eq. (14.24) occurs extensively within the field of physics,
see e.g. the formalism of Landau–Lifshitz [1573, § 46]. A typical application
is in Minkowski space-time, the well-known 4-dimensional flat space for the
Einsteinian relativity, in which the d’Alembertian is consistent with

□ = ηµν∂µ∂ν =
1

c2
∂2

∂t2
−∇2 =

1

c2
∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
, (14.25)

where ηµν is the Minkowski metric. L

We say that the string is tied at both ends to some support, or that it is
fixed at the end-points x = 0, and let x = ℓ(s) be the length of the string. The
boundary conditions are

υ(0, t) = υ
(
ℓ(s), t

)
= 0

{
υ(0, t) = 0,

υ
(
ℓ(s), t

)
= 0.

(14.26)

Suppose that the initial speed of the string is zero, and let υ(x, 0) = я(x) at
t = 0, for 0 ⩽ x ⩽ ℓ. The solution of the wave equation, according to (14.26), is
υ(x, t) = 1

2я(x+ ct) + 1
2я(x− ct), where я is an arbitrary function. Putting{

υ(x, 0) = я(x),
∂υ
∂t (x, 0) = ю(x),

(14.27)
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as initial conditions (Cauchy data), with −∞ < x ∈ R < +∞ (string of infinite
length), and t ⩾ 0, the d’Alembert’s formula, representing the general solution
to (14.23), becomes

υ(x, t) =
я(x+ ct) + я(x− ct)

2
+

1

2c

∫ x+ct

x−ct
ю(z)dz. (14.28)

Scholium 14.4.1.
(1) If я ∈ C2(R) and ю ∈ C1(R), then υ ∈ C2 in R× [0,∞).
(2) The Eq. (14.28) is also called solution of the Cauchy problem for the 1D

wave equation (since the initial value conditions fall under the Cauchy boundary
conditions). ⋄

It is possible to find the solution by introducing a change of variables,
γs+ = x+ ct and γs− = x− ct. By the chain rule, one has

∂2υ
∂x2 = ∂2υ

∂γ2
s+

+ 2 ∂2υ
∂γs+∂γs−

+ ∂2υ
∂γ2

s−
,

∂2υ
∂t2 = c2

(
∂2υ
∂γ2

s+
− 2 ∂2υ

∂γs+∂γs−
+ ∂2υ

∂γ2
s−

)
;

(14.29)

consequently the wave equation is of the form

∂2υ

∂γs+∂γs−
= 0, (14.30)

and its solution is

υ(γs+, γs−) = я(γs+) + ю(γs−) = υ(x, t) = я(x+ ct) + ю(x− ct). (14.31)

14.4.2. Bi-punctuality

The mathematician considers only celestial bodies as fictitious, reducing them to simple material
points, and subject exclusively to the action of their mutual gravitational attraction, which strictly
obeys Newton’s law. How will a similar system behave? Is it stable? The analyst faces a problem
as difficult as it is interesting. And yet it is not the same problem which is present in the natural
context. Real stars are not material points, and are also subject to forces other than Newtonian
attraction.

— H. Poincaré [2133, p. 540]

From d’Alembert’s proposal, the string (14.23) (14.24) is a continuous object
(macroscopic-like behavior) but formed by a discrete sequence of bead-like
corpuscles, usually called material points, that have a certain mass; but each
corpuscle is treated, for calculation purposes, as a point of the string (microscopic-
like behavior), or a line devoid of width and thickness, an entity without dimension
(0-dimensional). The d’Alembert’s brainchild is to replace a finite number of
corpuscles with an indefinitely increasing number for a fixed-length string, with
a gradual mass-reduction of each of them that tends to 0 (punctiform state).
Similarly, the distance of corpuscles from one another, i.e. the segment or
interval-length ∆x that separates two points, tends to 0. We have

∂2υ(x, ct)

∂t2
= c2

{
υ(x, ct+∆x)− 2υ(x, ct) + υ(x, ct−∆x)

∆x2

}
, (14.32)
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that leads to
∂2υ(x, ct)

∂t2
= c2

∂2υ(x, ct)

∂x2
, (14.33)

namely the first form of (14.23). In this way, a continuous line is generated;
in other words, d’Alembert postulates that the string is a perfect infinitely
(sub)divisible element. As a result, there is a conflicting overlapping of concepts,
the concrete one of segment (corpuscle mass, or material point) and the abstract
one of geometric point (without extension) of the string. The d’Alembert’s
formula is a hybrid specimen of real and idealized vibrating string.

It is striking that a recourse to the material point, which is a geometric
point-mass, can be found in the reasoning of Poincaré (see epigraph) regarding
the celestial mechanics, on the stability or chaoticity of the Solar system. Later
it will be shown by J. Laskar [1586] that the orbits of the planets are chaotic.

Margo 14.4.3. Studies on the existence of non-linear phenomena in vibrating
strings,a including chaotic oscillations, are available in [2542] [1847] by N.B.
Tufillaro and T.C. Molteno. L

14.4.3. Geometro-physical Singularities: 1D Lines, 0D-like Elements,
and the Point-electron, or any Particle as a Point-mass

Quoad continui aute[m] compositionem manifestum est ex præostensis ad ipsum ex indivisibilibus
componendum nos minimè cogi, solum enim continua sequi indivisibilium proportionem, & è
conversò.b

— B. Cavalieri [587, Liber septimus, p. 2]73

Suppono in limine (juxtâ Bonaventuræ Cavallerii Geometriam Indivisibilium) Planum quodlibet
quasi ex infinitis lineis parallelis conflari: Vel potiùs (quod ego mallem) ex infinitis P[ar]allelogrammis
æquè altis; quorum quidem singulorum altitudo sit totius altitudinis 1

∞ [= 0], sive aliquota pars
infinite parva.c

— J. Wallis [2607, Pars Prima, Prop. I, p. 4]

It should be observed en passant that the above paradox, which arises from
the definition of point, and it is debating the choice between the mathematical
notion and the physical one, is at the root of the current understandings, with
all the problematic consequences, of elementary particles within the Standard
Model (the consideration of the electron as a geometric point-mass, so as a
fundamental particle of null-valued dimension, the electron cloud model, the
question of zero-point energy, the renormalization procedures in qft, etc.).

aJust by coincidence, one of the first examples of non-linearity was discovered in the study of
strings, and dates back to Vincenzo Galilei, musician and musical theorist [1076] [1077], and father
of Galileo. The frequency of the fundamental tone (which is the lowest frequency) of a vibrating
string is

· directly proportional to the square root of the string tension (length and mass constant), which
is a sign of non-linearity, and

· inversely proportional to the square root of the mass per unit length of the string (tension and
length constant), i.e. linear density.

These laws go nowadays under the name of M. Mersenne [1812].
b«As regards the composition of the continuum, it is clear from the above that we are not

obliged to think that it is composed of indivisibles: indeed, our only intention was to show that the
continuum follows the proportional magnitudes of indivisibles, and vice versa».

c«I suppose in advance (based on Bonaventura Cavalieri’s geometry of indivisibles) that any
plane is formed by an infinite number of parallel lines: Or rather (which I prefer) by an infinite
number of parallelograms of equal altitude; the altitude of each of which can certainly be 1

∞ [= 0] of
the whole altitude, or an infinitely small part».
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Mathematics, for its part (we can start, for convenience, from Cavalieri, and
then Wallis), amphibolically conceives of space, take e.g. a plane, as an extent
with geometric entities having an infinitesimal thickness or width (that is, small
but non-zero quantities), and as an infinity of 1D lines (Cavalieri’s indivisibles),
which, in their turn, are composed by 0D-like elements. Here geometric and
arithmetic arguments are confused with each other, without distinction. (Wallis’
work is emblematic because in him the notions of infinity and zero are explicitly
interlaced for the first time).a

Physics, on the other side, describes nature by mathematics, albeit at different
levels, i.e. by theoretico-physical models or by more purely mathematical
approaches; and when the corpuscular properties of a particle are being described,
in which unavoidably the idea of (physical) space is participating, it epitomizes the
operative-creative spirit of this view. Otherwise expressed, physics re-elaborates
and combines mathematical and physico-mathematical concepts such as zero
and infinite energy, respectively, transferring them also to nature: infinite, in
fact, and in a exquisitely mathematical sense, are the charge and mass of a
0-dimensional point-electron, viz. of any particle contemplated as a point-mass
(cf. Section 14.4.6).

14.4.4. Classical Ultraviolet Divergence: Electrodynamics of Charged
Point-Particles, and Rowe’s Renormalization

[C]he l punto
¯
p la sua indivisibilitade et imensurabile.b

— D. Alighieri [57, p. d ii-left, or unnumbered p. 52]

Field-theoretic infinities—first encountered in Lorentz’s computation of electron self-mass—have
persisted in classical electrodynamics for seventy [years] and in quantum electrodynamics for some
thirty-five years. These long years of frustration have left in the subject a curious affection for the
infinities and a passionate belief that they are an inevitable part of nature.

— C.J. Isham, A. Salam, and J. Strathdee [1413, Introduction, p. 2]

There are techniques to circumvent, at least in some contexts, the problem
related to the conception of punctiformity of charged particles, such as electrons.c
Here we can take a look at the issue of infinite energy of the electromagnetic
field of a point-like charge, with a E.G.P. Rowe’s ad hoc solution. We will then
give an overall appraisal on this solution separately, in Section 14.4.5.

aSee [2608, Prop. CLXXXII, Scholium, p. 152]: «[T]he more terms there are supposed, the
smaller becomes the difference of the base or the altitude [of the parallelogram], [so] if we proceed to
infinity it vanishes: indeed 1/∞ (an infinitely small part) can be taken for nothing [i.e. zero] [ubi in
infinitum proceditur evanescet, quippe 1

∞ (pars infinite parva) habenda erit pro nihilo]»; see also
[2608, Prop. CLXXXVIII, p. 169]: since 1

∞ = 0 and 1
0 = ∞, «propterea [ . . . ] esset ∞ × 0 = 1».

b«Point because of its indivisibility is immeasurable». Note. The letter
¯
p (pee with stroke

through descender) is a medieval abbreviation of per.
cThe first identification of the electron with a point (point-particle, point-like particle, etc.)

dates back to J. Frenkel [1047, p. 527]: «The inner equilibrium of an extended electron becomes an
insoluble riddle in electrodynamics. I hold this riddle [ . . . ] to be a wholly scholastic problem. It has
emerged from an uncritical application to the elementary parts of matter (electrons) of a principle of
division, which, if applied to composite systems (atoms, etc.), led precisely to these “smallest” parts.
The electrons are not only physically but also geometrically indivisible [Die Elektronen sind nicht
nur physikalisch, sondern auch, geometrisch unteilbar ]. They have no extension in space [Sie haben
gar keine Ausdehnung im Raume]. There are no inner forces between the elements of an electron;
such elements do not exist. The electromagnetic interpretation of the mass is thereby eliminated,
and with it all difficulties in the determination of exact equations of motion of an electron based on
the (Lorentzian) principle disappear».
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Example 14.4.1 (Singularities of the energy-momentum tensor for the electromag-
netic field, and Rowe’s fix). We start ex abrupto from the problem. We adopt
the perspective of K. Lechner and P.A. Marchetti [1592] [1594] [1593, chap. 16].

Given a distance ρ = |x− y(t)| from a point-like charge, the anti-symmetric
electromagnetic tensor, also called Maxwell tensor, F [µν], i.e. Fµν = −F νµ,
which represents the electromagnetic field, with asymptotic behavior diverges in
y(t) as

(div)Fµν
viz
= Fµν ∼

1

ρ2
, (14.34)

so Fµν(yρ) = ∞. We shall write the energy-momentum tensor of the charged
point-particle for an electromagnetic field as

Τ
µν
em = FµξFξ

ν +
1

4
ηµνF ξϱFξϱ, (14.35)

where ηµν is the metric tensor of Minkowski space-time. The asymptotic Τ-
divergence will be

(div)
Τ
µν
em

viz
= Τµνem ∼

1

ρ4
. (14.36)

Tensor (14.35) is a non-integrable singularity, i.e. it is not a D∗(Υ )-distribution
element,a for which there are not partial derivatives for the 4-divergence

∂µΤ
µν
em = ∂µF

µξFξ
ν + Fµξ∂µFξ

ν +
1

2
Fξϱ∂

νF ξϱ; (14.37)

while the electrostatic self-energy for an electrically charged point-particle e.g.
in a static electromagnetic field is infinite:

Eem =

∫
Τ

00
emd

3x =
1

2

( ec
4π

)2 ∫ 1

ρ4
d3x =∞. (14.38)

One has actually a divergence of the integrals for the total 4-momentum vector
Pµem =

∫
Τ

0µ
emd

3x of the electromagnetic field. In this context, the Lorentz–Dirac
equation [1687] [792]

dpµ

ds
=
e2c
6π

(
daµ

ds
+ a2uµ

)
+ ecF

µν
ext(y)uν (14.39)

is also divergent, in which the 4-velocity uµ = dyµ

ds , and the derivatives of the
4-momentum pµ = muµ and 4-acceleration aµ = duµ

ds appear, whilst m is the the
particle’s mass, and ecF

µν
ext(y)uν is an external 4-force.

Indubitably, all these stumbling blocks, on account of the ultraviolet divergence
(uv since it occurs at infinitesimal distances), arise from the idealization of the
particle intended as punctiformity or 0-space.

aBy D∗(Υ ) is denoted the linear space of distributions; it is a locally convex topological vector
space, that is, a continuous dual space of space D(Υ ) of test functions, for a continuous linear
functional φD : D(Υ ) → F, with an open subset Υ ⊂ F.
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The resolutive intuition comes from an article by Rowe [2245]. The first step
is to regularize the various fields. Note that the electromagnetic tensor, in its
entirety, is the sum of the Liénard–Wiechert field [1661] [2653] and of an external
field (of an arbitrary nature): Fµν = Fµνlw + Fµνext. We write the regularized
Liénard–Wiechert field as

Fµνlw(ε) = Fµνlw

∣∣
s(x)→sε(x)

, (14.40)

and the same can be done for the other fields, for any value ε > 0. Then

Fµνε = Fµνlw(ε) + Fµνext(ε), (14.41)

under which the electromagnetic (Maxwell) tensor Fµνε is a regular distribution,
and its components are C∞(R4) bounded functions. This allows us to regularize,
that is, to make finished, the energy of the electromagnetic field, by replacing
Eq. (14.38) with

Eem(ε) =
1

2

∫
E2
εd

3x =
1

2

( ec
4π

)2 ∫ ρ2d3x
(ρ2 + ε2)3

, (14.42)

the divergence of which is 1
ε , for ε → 0, and the same we do with the energy-

momentum tensor (14.35) rewritten in terms of regular distribution,

Τ
µν
em(ε) = Fµξε F(ε)ξ

ν +
1

4
ηµνF ξϱε F(ε)ξϱ

, (14.43)

from which limε→0 Τ
µν
em(ε) = Τµνem pointwise, if xµ ̸= yµ(s), with an arbitrary

world line yµ(s) of the point-particle; but if xµ = yµ(s), this convergence limit
does not apply.

Now, it is necessary to rely on the renormalization, subtracting the divergent
part of Τµνε ,

Τ̄
µν
em = D∗ − lim

ε→0

(
Τ
µν
ε − div

Τ
µν
ε

)
, (14.44)

denoting by Τ̄µνem the renormalized electromagnetic energy-momentum tensor,
and by

div
Τ
µν
ε =

1

ε

( ec
4π

)2 ∫
Ζ
µνδ4(x− y)ds (14.45)

the symmetric and traceless divergent part of Τµνε , i.e. div
Τ

[µν]
ε ηµν = 0, including

an arbitrary tensor Ζµν = cαu
µuν + cβη

µν , where cα and cβ are constants, such
that cβ = − cα4 , as long as Ζµν is symmetric and traceless. In (14.44) Τ̄µνem results
to be a distribution unequivocally. So we get

Τ̄
µν
em = D∗ − lim

ε→0

(
Τ
µν
ε −

cα
ε

( ec
4π

)2 ∫ (
uµuν − 1

4η
µν
)
δ4(x− y)ds

)
. (14.46)

The determination of cα must ensure that Τ̄µνem is conserved, and this happens iff
cα = π2

2 .
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Let us analyze the simplified case of a free point-particle, i.e. a particle
not subject to external forces, so Fµνext = 0, but where there is only a radiation
damping force dpµ/ds = e2c/6π

(
daµ

ds + a2uµ
)
, and the active fields (regular

distributions) are Τµνε = Fµνlw(ε). The individual components of Τµνem can then be
reformulated in this way:{
Τ

00
em =

1

2

( ec
4π

)2 1

ρ4

}
refo
==

{
Τ

00
ε =

1

2

( ec
4π

)2 ρ2

(ρ2 + ε2)3

}
, (14.47){

Τ
0k
em = 0

}
refo
==

{
Τ

0k
ε = 0

}
, (14.48){

Τ
k

ℓ

em =
1

2

( ec
4π

)2 1

ρ4

(
δk

ℓ

− 2
xkx

ℓ

ρ2

)}
refo
==

{
Τ
k

ℓ

ε

1

2

( ec
4π

)2 δk ℓρ2 − 2xkx

ℓ

(ρ2 + ε2)3

}
.

(14.49)

From these equations and (14.46), we arrive at

Τ̄
00
em =

1

2

( ec
4π

)2
D∗ − lim

ε→0

(
ρ2

(ρ2 + ε2)3
− 3cα

2ε
δ3(x)

)
, (14.50)

Τ̄
0k
em = 0, (14.51)

Τ̄
k

ℓ

em =
1

2

( ec
4π

)2
D∗ − lim

ε→0

(
δk

ℓ

ρ2 − 2xkx

ℓ

(ρ2 + ε2)3
− cα

2ε
δk

ℓ

δ3(x)

)
. (14.52)

The existence of Τ̄00
em in (14.50) is proven by showing that, for every test

function φD(x) ∈ D = D(R3), there is a limit ε→ 0, by putting a tensor

Τ̄
00
em(φ) =

1

2

( ec
4π

)2
lim
ε→0

{∫
ρ2φ(x)

(ρ2 + ε2)3
d3x− 3cα

2ε
φ(0)

}
(14.53a)

=
1

2

( ec
4π

)2
lim
ε→0

{∫
ρ2[φ(x)− φ(0)]

(ρ2 + ε2)3
d3x+

3

2ε
· π

2

2
− cα · φ(0)

}
,

(14.53b)

in whose integral explicitation the Lebesgue’s dominated convergence Theorem
13.1.2 is invoked, specifying the function |яn(x)| ⩽ ю(x) ∈ L1(R3). In order to
prove this, firstly we write a regularized distribution

яε(x) =
ρ2[(φ(x)− φ(0)− xk∂kφ(0)]

(ρ2 + ε2)3
Ζ(1− ρ) +

ρ2[(φ(x)− φ(0)]
(ρ2 + ε2)3

Ζ(ρ− 1),

(14.54)
thanks to which the limit ε→ 0 is possible, for the integral∫

ρ2[(φ(x)− φ(0)]
(ρ2 + ε2)3

d3x =

∫
яε(x)d3x. (14.55)

Setting ρ → 0, then φ(x) − φ(0) − xk∂kφ(0) gives the value a zero as ρ2, but
ю(x) is increasing as 1

ρ2 . Setting ρ→∞, then ю(x) gives the value a zero as 1
ρ4 .
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We can thus take the limit under the integral sign to get

lim
ε→0

∫
ρ2[(φ(x)− φ(0)]

(ρ2 + ε2)3
d3x =

∫
ρ<1

φ(x)− φ(0)− xk∂kφ(0)
ρ4

d3x

+

∫
ρ>1

φ(x)− φ(0)
ρ4

d3x, (14.56)

whence it follows that in (14.53) there is a limit iff cα = π2

2 , and its renormalized
final form is

Τ̄
00
em(φ) =

1

2

( ec
4π

)2 ∫ φ(x)− φ(0)
ρ4

d3x. (14.57)

The same procedure is valid to demonstrate the existence of a distributional
limit in (14.52), with the final form

Τ̄
k

ℓ

em(φ) =
1

2

( ec
4π

)2 ∫ φ(x)− φ(0)
ρ4

(
δk

ℓ

− 2
xkx

ℓ

ρ2

)
d3x. (14.58)

The conservation of the electromagnetic energy-momentum tensor is equiva-
lent to affirming that in (14.50) (14.51) (14.52) the continuity equation ∂µΤ̄µνem = 0
is satisfied. This occurs when the component is ν = 0, in fact Τ̄00

em does not
depend on the time and Τ̄0k

em = 0. Different is the case of ν =

ℓ

, for which it
must apply ∂µΤ̄k

ℓ

em = 0. Here are the steps to verify the validity of the continuity
equation. From the divergence of Eq. (14.52), with cα = π2/2, one has

∂Τ̄k

ℓ

em =
1

2

( ec
4π

)2
D∗ − lim

ε→0

{
∂k

(
δk

ℓ

ρ2 − 2xkx
ℓ

(ρ2 + ε2)3
− π2

4ε
∂ ℓδ3(x)

)}
=

1

2

( ec
4π

)2
∂ ℓ

{
D∗ − lim

ε→0

(
ε2

(ρ2 + ε2)3
− π2

4ε
δ3(x)

)}
. (14.59)

Such an equation presupposes that, for ε→ 0, is zero the limit of∫
ε2φ(x)

(ρ2 + ε2)3
d3x− π2

4ε
φ(0) =

∫
ε2[(φ(x)− φ(0)]

(ρ2 + ε2)3
d3x− π2

4ε
=

∫
γε(x)d

3x,

(14.60)
where

γε(x) =
φ[ε(x)]− φ(0)
ε(ρ2 + 1)3

(14.61)

is a sequence of functions. Once again is the dominated convergence theorem
that is helpful, with which we can determine the pointwise limit

lim
ε→0

γε(x)
xk∂kφ(0)

(ρ2 + 1)3
. (14.62)

Accordingly, it is possible to take the limit under the integral sign to get

lim
ε→0

{∫
ε2φ(x)

(ρ2 + ε2)3
d3x− π2

4ε
φ(0)

}
=

∫
lim
ε→0

γε(x)d
3x =

xk∂kφ(0)

(ρ2 + 1)3
d3x = 0.

(14.63)
Ergo the continuity Τ̄-equation is valid for Τ̄k

ℓ

em in (14.58). 5
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14.4.5. Open/Unsolved Problem in Rowe’s Solution

The continuum theories make direct use of the ordinary concept of electric field strength, even
for the fields in the interior of the electron. This field strength is however defined as the force acting
on a test particle, and since there are no test particles smaller than an electron [ . . . ], the field
strength at a [mathematical] point in the interior of such a particle would seem to be unobservable,
by definition, and thus be fictitious and without physical meaning [eine physikalisch inhaltslose
Fiktion] [2025, § 67, p. 775] = [2031, § 67, p. 206, e.a.].a

We may be foolishly barking up the wrong tree if we pursue a theory of continuity within the
electron [2024, e.a.].

— W. Pauli

(1) Rowe’s strategy combines the renormalization of the electromagnetic
energy-momentum tensor (Τµνem

refo
== Τ̄µνem) with the interpretation of Τ̄µνem not as

a distributional limit, but rather as a sum of n-th derivative of a distribution.
It is also explicit that he assumes the geometric model of punctiformity of the
charged particle, and therefore the problem of infinity, within this model, is
not tackled at the root, that is, it is not resolved, but it is analytically fixed to
overcome the uv divergence.

(2) The reference distributions, or linear functionals, in Example 14.4.1
require the assumption of continuity, which is a double-edged analytical weapon
tied to the infinity from which the problem originates.

(3) Rowe implicitly takes for granted that the physical space (whatever that
means) has the same characteristics of continuity and infinite divisibility as the
space of geometry (because this is where the singularity of point-like charges
arises). Yet these characteristics are simultaneously denied in the elementary-
particle description of matter, in favor of a discontinuous property.

14.4.6. Scholium: Point-charge/Point-mass of Electricity: Singulari-
ties (or Quasi-singularities) of Fields

The question remains as to why Nature should have chosen [a] particular [spinning electron]
model for the electron [with the pruriginous questions about the electron’s internal structure] instead
of being satisfied with the point-charge.

— P.A.M. Dirac [785, p. 610]

The nuclear radius being of the same order of magnitude as the classical electron radius, it is
very doubtful that the motion of the electron in the nucleus can still be considered as that of a
point-charge, and therefore whether quantum mechanics can be applied.

— F. Rasetti [1983, p. 149]

What we have explored and discussed above (Sections 14.4.3, 14.4.4, 14.4.5)
encourages us to open a “Scholium” Section on the point-like electron (having
zero radius). The two epigraphic bits, one from 1928 (Dirac), the other from

aCompare it to what P.W. Bridgman [413, pp. 63, 149-150] writes: «The structure of our
mathematics is such that we are almost forced, whether we want to or not, to talk about the
inside of an electron, although physically we cannot assign any meaning to such statements [ . . . ].
[W]hen we get down to this scale of magnitude, our mathematics ought to be making statements
about the relative behavior of discrete electrons, and not mention so much as by implication the
density at points inside an electron. But this sort of thing we apparently cannot yet do; the proper
mathematical language has not been developed». [413, pp. 107-108]: «The question which interests
in principle here is what meaning, if any, shall be attached to the mass of the elements of the
electron. It is evident that we here go beyond any possible experience, at least for the present».
[413, pp. 145-146, e.a.]: «[T]he concept of the field at points inside the electron is an invention
without physical reality. Not only is the field concept meaningless at points inside the electron, but
it is meaningless at points outside within a certain distance, because the exploring charge can never
be made smaller than the electron itself, and so can never come closer than a certain distance».
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1936 (Rasetti), provide a historical insight, and do understand that the question
has been open for a long time.

The following passage by P.W. Bridgman [417, pp. 188-194, e.a.] is full of
suggestions that make us reflect on the many pitfalls concealed in the concept
of particle as a point-mass of electricity, charged point-mass, point-charge (of
definite mass and charge), et similia. Its clear-headedness compels us to an entire
reading.

The idea of particle seems to imply a certain simplicity, but it [ . . . ] covers a growingly
complicated experimental situation. The particle of Newtonian mechanics [ . . . ] was a mass point
[whose motion] was governed by the equations of mechanics [ . . . ]; this of course was an idealization
from experience. At first its value was mostly in treating the situations of astronomy, in which
the dimensions of the planets or other heavenly bodies are so small compared with their distances
apart that their motions can be calculated within the precision of measurement by treating their
masses as all concentrated at the centers of gravity. The validity of the idea of mass-points was
presently accepted for itself and projected toward the very small, where it found itself in congenial
ground [ . . . ]. Here it proved of a value in attempts to explain the constitution and properties of
matter in bulk, as, for example, in some of the speculations of Lord Kelvin, or the speculations of
Newton himself in the Opticks. Even this early mass-point developed complications, and almost
from the beginning was invested with the property of impenetrability or infinite hardness in addition
to the possession of mass and position [ . . . ]. But what is the experiment by which one could decide
whether such mass particles are “really” impenetrable or not? [ . . . ]

What about “identity”, or is it perhaps that impenetrability is merely another way of saying
that the particle has identity? [ . . . ] Another question is “How many independent parameters may a
particle have and still be a particle?” [ . . . ] How about velocity as another independent parameter?
[ . . . ] When we admit velocity we at the same time admit other parameters, such as momentum
and kinetic energy. These new parameters are indispensable in describing the behavior of our
particle when brought into reaction with other particles or objects but they are not independent
parameters because they may be computed in terms of velocity and mass. We recognize, nevertheless,
that with the possession of these various parameters our particle is getting more complicated than
the simple thing with which we started. We cannot mull over this situation without presently
wanting to ask questions of “how” or “why” [ . . . ]. A Greek like Zeno would have been genuinely
perplexed to find a satisfactory answer to the question “How is it that a thing characterized by
position can also have velocity?” The modern physicist, on the other hand, does not regard this as
a pressing or important question. He accepts as a brute fact that ordinary bodies have velocities
and, simultaneously, positions, and regards any difficulty of reconciling them as due to something
in his thinking machinery, which he need not bother to straighten out for most of his purposes
[ . . . ]. His attempts at explanation do not prove very illuminating, however. Impenetrability might,
for example, be explained in terms of the infinite forces brought into play when two particles are
brought into close juxtaposition, but such infinite forces are themselves in need of explanation. If one
attempts to explain them in ordinary terms, one is soon talking of infinite elastic constants of the
material of the particle, which involves deformation of the particle and all such unwelcome logical
consequences as the ultraviolet catastrophe which sparked the development of quantum theory [ . . . ].

The association of the idea of particle with point is not necessary—in fact we give numerical
value to the diameter of an electron or proton. It is true that this diameter is somewhat nebulous; it
may mark the order of magnitude of the distance from the associated mathematical point at which
the forces begin to increase in a catastrophic surge, or it may mark the boundary of the region
within which the charge must be concentrated in order to account for its mass, as in the Lorentz
electron. The idea of mathematical point thus does not appear to be essential—only that of a
physically unanalyzable region.

How does mathematics handle particles? There seems to be a tacit ideal here which is not
attained in practice. We would like to have a system of equations, some of the solutions of which have
point singularities with unique properties which can be set into correspondence with the physical
properties of the corresponding particle. That is, the existence of the singular point and the particle
should be forced by the equation. But this is not what we have, as can be seen by looking at the
simple electrostatic case for an electron [ . . . ]. We do not have equations, the singularities of which
are forced by the equations themselves, but we have equations which respond by singularities in
their solutions to other singularities which we impose from outside. In other words, given only
Laplace’s equation [for the potential], there would be no way whatever of predicting the physical
occurrence of electrons. So far as I can see, the same is true of Schrödinger’s equation for wave
mechanics [ . . . ].

Physically, and for the physicist, we would appear to be in the presence of a particle when there
is no experimental evidence demanding internal structure [ . . . ]. Mathematically it does not seem
that the mathematics (the equations) of itself proclaims when we are dealing with a particle, but a
“text” has to be added, stating that this or that property of the mathematics means a particle. The
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simplest example is a point singularity, which the text proclaims to mean a particle. This is natural
enough, but is it inevitable? Logically and humanly the concept of particle comes pretty close to
containing a concealed contradiction. Logically, “particle” is a verbal flag to indicate that we have
come to the end [ . . . ].74

“Particle” seems to be in some ways a necessity of thought. I have seen no evidence that any
physicist, or any one else for that matter, is capable of thinking of an ostensible continuum, as in the
equations of hydrodynamics for example, without inventing particles in the continuum to which to
tie his thought. “Particle” for the physicist plays a role similar to that of “point” for the geometer,
and seems to be equally unavoidable.

The hydrodynamic case deserves a few more words [416, p. 232]:
The equations of hydrodynamics, for instance, purportedly deal with continuous media, but

the variables in the equations refer to the motion of “particles” of the fluid, which, whatever other
properties they may have, at least have the property of identifiability». But it «would seem to violate
the presumptive perfect homogeneity and continuity of the fluid. The two concepts are mutually
contradictory and exclusive, but nevertheless our thinking seems to demand them.

14.5. How Far is it Possible to Analyze Nature? The Crux
of the Mathematics of Emergence

All previous Sections (of this Chapter) can be linked by a under a common
thread, that of the relationship between the microscopic scale and the macroscopic
scale, to which the distinction between macroscopic continuity and atomic-
molecular discreteness is connected.

What we call emergent phenomena is our attempt to understand how mat-
ter—or even space—can change its properties as it passes from one scale to
another. The problem is very enthralling. An excerpt by P.W. Bridgman [413,
pp. 220-221] gives an efficacious summing-up of it, with some biting questions:

There is a certain thesis that is loosely related to the view that nature is finite downward [the
microscopic world], namely, that an explanation of the universe is possible in which we start with
small scale things, and explain large scale phenomena in terms of their small scale constituents, the
thesis, in other words, that all the properties of the large are contained in the properties of the small
and that the large may be constructed out of the small [ . . . ]. To maintain this thesis would demand
that aggregates of things never acquire properties in virtue of their numbers which they do not
already possess as individuals. Is this true? Consider, for example, the two-dimensional geometry
on the surface of a sphere. This is non-Euclidean. Is the geometry of the individual elements of
the surface of the sphere non-Euclidean, or do they acquire this property in changing scale? Is the
kinetic energy of a number of electrons all moving together in such a way as to constitute an electric
current the sum of the kinetic energies of the individual electrons, or is there an additional term? Is
the mass of an electron the sum of the masses of its elements?

A mathematical consideration is suggestive here. Those properties of a system which can be
described in terms of linear differential equations have the property of additivity; the effect of
a number of elements is the sum of the effects separately, and no new properties appear in the
aggregate which were not present in the individual elements. But if there are combination terms
(as in the electrical energy, which contains the square of the field), then the sum is more than (or
different from) its parts, and new effects may appear in the aggregate.

This excerpt is befittingly entitled On the Possibility of Describing Nature
Completely in Terms of Analysis : “analysis” comes from the Gr. ἀναλύω, “break
down”, “unloose”, “resolve (into its elements)”. This is at the core of the mathe-
matics of emergence: resolving a system into its microscopic scale elements, and
seeing how it takes the form that it presently has.

The emergence problem is immensely huge. We can probe the secrets of
molecular clusters regardless of the underlying atomic nature—and this is what
happens e.g. in condensed matter physics and, even more, in biology. But the
questions that arise are wondrous. Here are a few examples.
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· Why are the water molecules not wet?
· Why do a lot of animals have perceptions but all the atoms of which they

are composed are devoid of percipiency?
· What relationship exists between the emergent properties of a phenomenon,

at a more macroscopic level, and its atomic ground?
· To what extent can an emergent order be examined as such (emergent)?
· Where is the “point” of separation that causes an independence between

the two worlds, the micro- and macro-cosm? We can say it with a quantum
paradox: where do all atoms “end” and where does a Schrödinger’s cat (state)
[2318, p. 812] “begin”? Is this independence also an incompatibility, viz. an
incommensurability/irreducibility?

Unavoidable reading on the emergence a propos of the «hierarchical structure
of science» is the paper [90] by P.W. Anderson.
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Section 14.4.3
For those who love historical studies corroborated by a rigorous philology, on the figure of J.
Wallis and his mathematical bequest, we invite you to read L. Maierù [1734, pp. 91-172] [1735].
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My purpose here is to make the case for a mathematical beauty [ . . . ] with the [ . . . ] intellectual
pleasure of creating order from seeming chaos.

— R.P. Langlands [1578, p. 43]

15.1. The Lorenz Flow: a Strange Attractor

15.1.1. Sensitivity to Initial Conditions, and Weak Predictability

[T]he good [result] is obtained through many calculations by means of small differences [παρὰ
μικρὸν διὰ πολλῶν ἀριθμῶν]. In the same way in this tekhne, because many calculations are needed,
making a small change in the individual parts [μικρὰν ἐν τοῖς κατὰ μέρος παρέκβασιν] gives rise to a
large error in the result [μέγα συγκεφαλαιοῦν ἐπὶ πέρας ἁμάρτημα].75

— Philo of Byzantium, also known as Philo Mechanicus [2094, 50, 7-13, p. 8]

When the state of things is such that an infinitely small variation of the present state will alter
only by an infinitely small quantity the state at some future time, the condition of the system,
whether at rest or in motion, is said to be stable; but when an infinitely small variation in the present
state may bring about a finite difference in the state of the system in a finite time, the condition of
the system is said to be unstable. It is manifest that the existence of unstable conditions renders
impossible the prediction of future events, if our knowledge of the present state is only approximate
and not accurate [ . . . ]. There are certain classes of phenomena, as I have said, in which a small
error in the data only introduces a small error in the result [ . . . ]. The course of events in these cases
is stable [ . . . ]. There are other classes of phenomena which are more complicated, and in which
cases of instability may occur, the number of such cases increasing, in an exceedingly rapid manner,
as the number of variables increases.

— J.C. Maxwell [1795, pp. 362, 364]

Any change, however small, carried in the initial direction of a geodesic which remains at a
finite distance is sufficient to produce any kind of variation in the final aspect of the [disturbed]
curve [1249, pp. 70-71].

One of the important problems of Mechanics, namely that of the stability of the Solar System,
can be characterized under the category of misplaced questions. If, indeed, we replace the study of
stability of the Solar System with the analogous study of geodesics on [negatively curved] surfaces
[ . . . ], we observe that any stable orbit can be transformed, by an infinitely small change in the
initial data, into a completely unstable orbit [ . . . ]. Now, in astronomical problems, the initial data
are never known except [within certain error limits]. This error, no matter how small, can lead to a
total and absolute perturbation [1250, p. 14].

— J. Hadamard

[I]t may happen that small differences in the initial conditions [in the causes] generate very great
ones in the final phenomena [in the effects]; a small error in the former will produce an enormous
error in the latter. Prediction becomes impossible and we have the fortuitous phenomenon.

— H. Poincaré [2140, I, chap. IV,76 pp. 68-69]

Small errors in the coarser structure of the weather pattern [ . . . ] tend to double in about three
days [ . . . ]. Small errors in the finer structure—e.g., the positions of individual clouds—tend to grow
much more rapidly, doubling in hours or less [ . . . ]. Errors in the finer structure, having attained
appreciable size, tend to induce errors in the coarser structure.

— E.N. Lorenz [1692, p. 3 in the original typescript]
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We should like to say a couple of words about the Lorenz strange attractor.
In its first appearance [1688, p. 137] it already has the standard double-winged
shape, which coincidentally is a butterfly-like image (Fig. 15.1); basically, it
involves two spirals in a 3-dimensional phase space that map the condition of
the dynamic system as it moves/evolves. The system under examination is an
idealized hydrodynamic flow of deterministic ordinary non-linear differential
equations, focusing on its implementation in the thermal convection in atmo-
spheric motion as a form of the convective fluid flow. The system’s Lorenz
equations are

x, y, z ∈ R3


ẋ = dx

dt = −Prx+ Pry, with Pr = 10,

ẏ = dy
dt = −xz +Rax− y, with Ra = 28,

ż = dz
dt = xy − βz, with β = 8

3 ,

(15.1)

indicating a time rate of change of three physical quantities, x, y, z, with three
positive parameters: the Prandtl number Pr, or the ratio of kinematic viscosity
to thermal diffusivity, the Rayleigh number Ra, or the ratio of buoyancy-driven
flow to viscous and thermal dissipation, and a physical proportion β of the
attractor.

Figure 15.1: Lorentz attractor via Euler method in 6 strokes, with
localsigma[Pr] = 3, localrho[Ra] = 26.5,
localbeta = 1, and
return{sigma ∗ (y − x),−x ∗ z + rho ∗ x − y, x ∗ y − beta ∗ z}.
The total number of orbits starting from various initial points is six: • • • • • •

The Eqq. (15.1) describe statistically the oscillatory behavior of a truncated
(or finite, or else discrete) Fourier representation; otherwise stated, these consist
in a system of equations approximated in terms of Fourier modes and divided
into a triad interaction, vertical, horizontal and vertical-horizontal, for the
hydrodynamical simulation of atmospheric convection.

Lorenz shows that non-periodic solutions (if the solutions are bounded) are
ordinarily unstable in respect of small modifications, so that marginally different
initial states can evolve into greatly different states; ergo a marginal uncertainty
in the initial conditions can grow into a considerable uncertainty in the final state,
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for which the idea of predicting the future in the long-term becomes impossible.
This is the so-called sensitive dependence upon initial conditions,a or the loss of
stability through any small displacement, and it is what characterizes a system
of deterministic chaos.

15.1.2. Necessary and Sufficient Conditions for the Chaos, and More

[A]t the macroscopic level, numerous phenomena present a certain type of instability, due to
the fact that initial symmetry disappears. Thus a homogeneous disc allowed to fall freely through
the air from a horizontal position will fall in a spiral. If one takes a cylindrical bath, full of water,
and drains it through a central plug-hole, the liquid will drain with a rotary movement the sense
of which is a priori unknown and unpredictable. In all cases of this type, minute variations in
initial conditions may lead to very great variations in subsequent development [and nevertheless]
it is quite possible to postulate that the phenomenon is determined, but this is properly speaking
a metaphysical position, impossible to verify experimentally.b If we are only going to be happy
with experimentally controllable properties, we shall be led to replace the unverifiable hypothesis of
determinism by the empirically verifiable property of “structural stability” [see [93] in Section 12.3.3]:
a process (P ) is structurally stable if a small variation in initial conditions leads to a process (P ′)
isomorphic to (P ) (in the sense that a small transformation in space-time, an ε-homeomorphism in
geometry, will bring the process (P ′) back to the process (P )).

— R. Thom [2480, p. 16]

(1) The presence of the instability is a necessary but not sufficient condition
for the chaos. A sufficient condition is provided by the persistence of instability
(during the motion) in any length of time.

(2) The existence of a sensitivity to the initial states is a necessary but
not sufficient condition for the occurrence of chaos. One of the differentiating
traits of a chaotic system with strange attractors is the generation of orbits
that remain confined to a bounded region of the phase space, in addition to the
above-mentioned sensitivity.

(3) A Lorenz type attractor can be geometrically defined as a flow having
local instability paired with (global) non-persistent structural stability, see. e.g.
[1233]. Weather pattern and climatological statistics are an example of this
paradoxical combination.

(4) There are many other examples of systems, in addition to that of Lorenz,
appearing with irregular and non-periodic fluctuations, or else models with a
quasi-cyclic motion or behaving quasi-periodically. It is important to mention
the dynamical structure of some biological systems built with Lotka–Volterra
equations [1695] [1696] [2596] [2597] [2598] [2601] for the predator-prey interac-
tion.

aThe mathematical unpredictability of certain physical phenomena, caused by the sensitivity of
the initial conditions, is a limitation that can be represented from many different perspectives. One
of the most common ones is that of the orbital representation (trajectories, paths, and so on). See
e.g. L. Brillouin [421, p. 125]: «It is impossible to study the properties of a single (mathematical)
trajectory. The physicist knows only bundles of trajectories, corresponding to slightly different
initial conditions. É. Borel [379, note II, pp. 94-101], for instance, computed that a displacement of 1
cm, on a mass of 1 gram, located somewhere in a not too distant star (say, Sirius) would change the
gravitational field on the earth by a fraction 10−100. The present author went further and proved
that any information obtained from an experiment must be paid for by a corresponding increase of
entropy in the measuring device: infinite accuracy would cost an infinite amount of entropy increase
and require infinite energy! This is absolutely unthinkable».

bCf. P.W. Bridgman [413, p. 211, e.a.]: «Determinism to the physicist is simply a way of stating
certain implications of his conviction of the connectivity of nature». This stance can act as a key to
interpreting the purport of Laplace’s demon [1584], a célèbre figura of scientific literature.77
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15.2. Curves of Infinite Length in a Finite Volume: Three
Examples from the Past

One apparent contradiction requires further examination. It is difficult to reconcile the merging
of two surfaces, one containing each spiral, with the inability of two trajectories to merge.

— E.N. Lorenz [1688, p. 140]

The peculiarity of the Lorenz’s set is that, in the double-winged geometry
of an attractor, there is a merging of the surfaces, each with a spiral, while the
orbits, which are the solutions of (15.1), display an impossibility to merge into
each other. That is the hallmark of its fractal nature. It then follows that there
is an apparent paradox, or self-contradiction. The orbits in the attractor are
open curves of infinite length, but they are enclosed in a limited volume, i.e.
restricted to a finite region in the space of all possible system states; every curve
evolves in a spiraling way over an infinite time horizon, but never intersects itself
(never passes the same point twice) nor stays in the already occupied states.

It is something which seems counter-intuitive, and yet this is not a novelty;
it has notable precedents. Among all the examples available, we shall select two
of them: Torricelli’s acute hyperbolic solid and Peano–Hilbert curve.

15.2.1. Torricelli’s Acute Hyperbolic Solid

Incredibile videri potest, cum solidum hoc infinitam longitudinem habeat, nullam tamen ex illis
superficiebus cylindricis quas nos consideramus, infinitam longitudinem habere; sed unamquamq;
esse terminatam.a

— E. Torricelli [2528, De Solido Hyperbolico Acuto, Scholium, p. 116]

[Ho] goduto [ . . . ] de’ saporitissimi frutti del suo [di Torricelli] ingegno, essendomi riuscito
infinitamente ammirabile quel solido iperbolico infinitamente lungo, et uguale ad un corpo quanto a
tutte e tre le dimensioni finito.b

— B. Cavalieri [2530, pp. 65-66, letter to E. Torricelli, 17 Dec. 1641]

The acute hyperbolic solid, later known as Torricelli’s trumpet was discovered
by E. Torricelli [2528, De Solido Hyperbolico Acuto, pp. 113-135]. It has
infinite extension but finite (and measurable) volume. It is the cubature of the
hyperboloid of revolution, a theorem under which there exists an equivalence
between a certain acute solid of infinite length, generated by rotating one branch
of the hyperbola around an asymptote (as around an axis), and a cylinder of
finite height.

Building a Torricelli’s trumpet is easy. Let the axis of revolution be the axis
of x, for x ⩾ 1. Take a function

я(y) =
1

x
. (15.2)

We call Torricelli’s surface the space that is created through rotation (to wit,
cylinder plus rotated hyperbola), and we indicate by Tor the resulting figure in

a«Incredible though it may seem, this solid has an infinite length, and nevertheless none of the
cylindrical surfaces we looked at has an infinite length but all of them are finite».

b«[I] have enjoyed [ . . . ] the great savory fruits of your [of Torricelli] genius, because I have found
endlessly admirable that infinitely long hyperbolic solid, which is equal to a finite body in all three
dimensions».
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3D. So the Tor-space is the Torricelli’s trumpet we are looking for. It presents a
finite volume,

vol(Tor) =
∫ ∞

1

π[я(y)]2dx = π

∫ ∞

1

dx

x2
=
π(−1)
x

∣∣∣∣∣
∞

1

= −π
x

∣∣∣∞
1

= π · 0− (−1) = π(−1)2 = π(1) = π, (15.3)

and, simultaneously, infinite surface area,

ATor =

∫ ∞

1

2πя(y)
√
1 + [я̇(y)]2dx > 2π

∫ ∞

1

я(y)dx

= 2π

∫ ∞

1

dx

x
= 2π · lim

n→∞

∣∣ ln(x)∣∣n
1
= 2π · ln(∞− 0) =∞. (15.4)

Tor-space is not a fractal, but it likewise expresses the pseudo-paradox of
the coexistence between finite and infinite in the same figure. We are not
giving a graphic representation of it here because it closely resembles Beltrami’s
pseudosphere (Fig. 5.1).

15.2.2. Peano–Hilbert Curve

A continuous curve can fill a portion of space: this is one of the strangest facts in set theory,
the discovery of which we owe to G. Peano.

— F. Hausdorff [1301, p. 369]

Another example is the Peano curve [2039] [2043, Fasc. 1, Figg. (c)-(d), p.
240]; it is a continuous curve but do not has a derivative in the 2-dimensional
plane, which fills an entire flat area, e.g. the surface of a unit square, that is
a curve of infinite length (at least potentially) within a finite area, obtained by
a space-filling construction. Similarly, it may get a Peano curve in 3D. The
Hilbert curve [1350] (Fig. 15.2) is a simplified variant of the Peano curve, with
Hausdorff dimension

Df =
log
(

1
f

)
log 2

= 2, f = 1
4 . (15.5)

15.2.3. Snowflake Curve of von Koch

A further quirk in the abstract world of curves is the Koch curve [1520] [1521,
Figg. 1-2, p. 149], aka Koch snowflake, a continuous but non-differentiable closed
curve in R2 with a finite area bounded by an infinite perimeter.

Take an equilateral triangle, say △

1. Remove the middle third of each side
L, and put three equilateral triangles without the bases in the gaps. One gets a
6-pointed polygon with 12 lines segments, the length of which is ℓ = L

3 , with a
total length

ℓt = 3 · 4 · L
3
. (15.6)
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stage 1 stage 2 stage 3

stage 4 stage 5 stage 6

1

Figure 15.2: The first six steps (or iterations) in the generation of a Hilbert space-filling curve into a
2D area, whose Hausdorff dimension is Df =

log[1/(1/4)]
log 2 = 2

Repeat the process for an unlimited period of time, by—endlessly—adding
smaller and smaller triangles.

Let us draw some iterations of the Koch curve. To make things easier, let us
imagine a line segment; divide it into three equal parts, and remove the middle
part; now, put a triangle without the base in the gap (the unfilled space). The
procedure shall be repeated from the start:
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It comes out a self-similar fractal, so the Koch curve can be written as

Ck = (Ck)∞ = lim
n→∞

(Ck)n. (15.7)

The number of sides, or lines segments, after n-th iterations is Nn = 3 · 4n, for
which

(Ck)n = 3 · 4n · L
3n

= 3L

(
4

3

)n
→∞ as n→∞, (15.8)

and ℓ(Ck) =∞ (infinite length). The Hausdorff dimension of Ck is

Df = lim
L
3n →0

logNn

log
(

1
L
3n

) = lim
n→∞

log 3 · 4n

log(3n)
=

log 4

log 3
=

2 log 2

log 3
= 1.26185950714291 · · ·

(15.9)
And this is what the Koch snowflake looks like after a tot of iterations:

The finite area of Ck is equivalent to 8
5 of the area of △

1.

15.3. Strangeness—Fractal Dimension of the Orbit in the
Phase Space Attractor: Grassberger–Procaccia Algorithm
and Lyapunov–Kaplan–Yorke Dimension

A formula can be very simple and create a universe of bottomless complexity.a
— B. Mandelbrot78

An attractor representing the flow of a viscous fluid is part of an infinite-dimensional space, but
has itself only finite dimension [ . . . ]. According to the modes paradigm, a finite-dimensional space
can describe only a finite number of modes. (Mathematically: a finite-dimensional space can contain
only a finite-dimensional torus). Yet frequency analysis reveals a continuum of frequencies, which
one would interpret as a continuum of modes. Is such a thing possible?

— D. Ruelle [2257, pp. 64-65]

aSee Section 15.3.1.
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An attractor is called strange if it has a fractal dimension, also referred to
as Hausdorff or Hausdorff–Besicovitch dimension [1302] [277], that is, if its
dimension is not integer, as defined by B. Mandelbrot [1747] [1748] [1749].a,79

The term “strange” for the attractor—as it derives from a Hopf bifurcation [2127,
p. 270] of solutions of equations—is due to D. Ruelle and F. Takens [2259] [2260],
in connection with the study on the hydrodynamic turbulence. The fractal
dimension of the strange attractor can be proved on the so-called correlation
dimension, which generally is a measure for the strangeness of attractors, and also
serves to distinguish between deterministic chaos (to which the Lorenz attractor
belongs) and random noise. The correlation dimension is thus intrinsically
related to the fractal dimension, and it can be achieved from a time series of one
or more variables, by introducing the Grassberger–Procaccia algorithm [1191]
[1192] [1190]. Let us look more closely at what it is.

Consider the set {xµ = x(t+µτ) | µ = 1, . . . , N} of N points on the attractor,
in which the (spatial) correlation between points of a time series is expressed,
with an arbitrary time increment τ between successive measurements. This
correlation is measurable through the correlation integral,

C(ρ) = lim
N→∞

1

N2

N∑
µ,ν=1

µ̸=ν

Θ(ρ− ∥xµ − xν∥), (15.10)

where ρ is a threshold distance, for which the distance ∥xµ − xν∥ between all
pairs of points (xµ, xν) is less than ρ, Θ(·) is the Heaviside step function,

Θ(x) =


0 if x < 0
1
2 if x = 0

1 if x > 0

 for some value x, (15.11)

and ∥ · ∥ is the norm on x. The Grassberger–Procaccia technique proves that
C(ρ) is like a power of (ρ) for small (ρ): C(ρ) ∝ ρν. The exponent ν of the power
law dependence of C(ρ) is the correlation dimension:

ν = lim
ρ→0

logC(ρ)
log ρ

. (15.12)

The correlation dimension for the Lorenz attractor is ν = 2.05± 0.01, while its
fractal dimension is Df = 2.06± 0.01.

There are also other tools to approach the problem of determining the
attractor dimensionality. The Lyapunov dimension, or Kaplan–Yorke dimension
[1464] [1031],

DL = k +

∑k
ν=1(λl)ν
|(λl)k+1|

, (15.13)

aThe Cantor set of points [495], or, as Mandelbrot [1747, p. 52] likes to call it, the Cantor dust
[poussière] in its various versions, is an archetype of fractal objects.
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is one of them, where k is the largest integer such that{∑k
ν=1(λl)ν ⩾ 0,∑k+1
ν=1(λl)ν < 0.

(15.14)

It is thus a way to estimate the fractal dimension of an attractor. The Lorenz
attractor exhibits [2687, p. 289] a chaotic nature with these parameter values:
Pr = 16.0, Ra = 45.92, β = 4.0; and its Lyapunov spectrum is: (λl)1 = 2.16,
(λl)2 = 0.00, (λl)3 = −32.4; hence the Lyapunov dimension for the Lorenz
attractor is DL = 2.07. See also [1613]. Now, since, thanks to a Pesin’s theorem
[2080], the sum of positive Lyapunov exponents provides a valid estimate for the
Kolmogorov–Sinai metric entropy (Definition 13.2.2), the dimension DL is an
entropic-like measure, as an indicator of the degree of complexity in the attractor
dynamics, i.e. of disorder (chaos) of the points on the Lorenz or other attractor;
cf. J.-P. Eckmann and D. Ruelle [832].

15.3.1. Mandelbrot Set

Given a complex map, for a complex quadratic polynomial φc,{
φc : C→ C,
φc(z) = z2 + c,

(15.15)

i.e. a quadratic family φc : z 7→ z2 + c, the Mandelbrot set is defined by

MC =
{
c ∈ C | φnc (0)→− ∞ as n→∞

}
. (15.16)

15.4. Strangeness and Chaoticity

The strangeness of an attractor depends on its geometry or shape, if it is
fractal (non-integer dimension, orbits of infinite length within a finite volume
of the phase space). The chaoticity of an attractor depends on its complexity
(instability of the orbits, sensitivity on initial values of the mapping, presence
of a positive Lyapunov exponent), see e.g. [1201]. Generally speaking, this
appears to suggest that chaotic attractors are also strange and strange attractors
are also chaotic; and it is true into a huge variety of species in the safari park
of attractors, except in some cases. There are chaotic attractors that are not
strange, as in [1381], and strange attractors that are not chaotic, as in [1200]
[805].

15.5. Hyperbolicity, Singularity, and srb Measure in the
Attracting Sets

In this Section we want to take a glance at the geometry of Lorenz-like
attractor, and its statistical behavior, as well as at the role of the physical
invariant measure, known as Sinai–Ruelle–Bowen measure, connected with it.
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15.5.1. Singular Hyperbolic Lorenz-like Attractor

The study of geometry of the Lorenz attractor, called geometric (model)
Lorenz flow, begins with V.S. Afraimovich, V.V. Bykov & L.P. Shilnikov [23],
and with J. Guckenheimer & R.F Williams [1233] [2668]. It is known that the
Lorenz attractor is not hyperbolic, since it contains a single equilibrium point of
saddle type at the origin

s= (0, 0, 0), (15.17)

and regular orbits are formed near this point. This singularity prevents a
hyperbolic structure. Nevertheless, the Lorenz(-like) attractor has a weak form
of hyperbolicity, that takes the name of singular hyperbolicity, in compliance
with the discovery made by C.A. Morales, M.J. Pacífico and E.R. Pujals (mpp)
[1853] [1854] [1855], but see before E.A. Sataev [2289]; cf. [112].

Definition 15.5.1 (Hyperbolic and partially hyperbolic invariant set). Let M
be a closed 3-manifold, and X r(M) the space of differentiable vector fields X⃗
on M in the Cr topology, with r ⩾ 1. For X⃗ ∈ X r(M), the flow induced by X⃗
is denoted by φt :M→M, with t ∈ R.

(1) A compact invariant set Λ ⊂ M is hyperbolic, if there is a continuous
(T φt)-invariant splitting

T̊ΛM
ιδ

= E̊sΛ ⊕ E̊
φt

Λ ⊕ E̊
u
Λ , (15.18)

for which the tangent bundle T̊ΛM decomposes in three dφt-invariant subbun-
dles of dimension 1, where E̊sΛ and E̊uΛ are uniformly contracted and expanded,
respectively, by the derivative dφt, with t > 0, and E̊φt

Λ is the direction of the
flow (cf. Scholium 12.3.2).

(2) A compact invariant set Λ of X⃗ ∈ X r(M) is partially hyperbolic if there
is a continuous and dominated splitting

T̊ΛM
ιδ

= E̊sΛ ⊕ E̊cuΛ , (15.19)

and constants c > 0 and 0 < λ < 1, where E̊sΛ is the uniformly contracting
1-dimensional subbundle, and E̊cuΛ is the the 2-dimensional subbundle, called
central unstable direction of T̊ΛM, which is volume expanding and includes the
direction of the flow, such that the following conditions hold:

(i) a dominating state,

∥dxφt | E̊sΛ(x)∥ · ∥dxφ−t | E̊cuΛ (x)∥ < cλt, (15.20)

(ii) a contracting state,

∥dxφt | E̊sΛ(x)∥ ⩽ cλt, (15.21)

for each x ∈ Λ. 3

So let us just skip ahead to the notion of singularity combined with the
second definition above.
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Definition 15.5.2 (Singular hyperbolic set). Let SingX⃗(Λ) be the set of sin-
gularities of X⃗ in Λ. A partially hyperbolic set (as in (2) of Definition 15.5.1)
is singular hyperbolic if any singularity s∈ SingX⃗(Λ) is hyperbolic with volume
expanding central direction. 3

The Morales–Pacífico–Pujals scheme provides the following result.

Theorem 15.5.1 (mpp).
(1) Any C1 robustly transitive set Λ of X⃗ ∈ X 1(M) for a 3-dimensional flow

is a singular hyperbolic attractor for X⃗, or repeller for −X⃗, i.e. Λ s.
(2) The set Λ s is Lorenz-like, for which any set of this type resembles a

geometric Lorenz flow.
(3) If there is no s∈ SingX⃗(Λ), then Λ is a hyperbolic set.
(4) The set Λ is uniformly hyperbolic iff there is no attached s∈ SingX⃗(Λ)

either for X⃗ or −X⃗.

Proof. For the demonstration, we refer to [1853] [1854] [1855]. □

It should be noted that the leaves of the invariant foliation associated with
the attracting sets Λ undergo a contraction by the flow. Robust means that Λ is
not destroyed by arbitrarily small C1 perturbations of the original flow.

Definition 15.5.3 (Lorenz-like singularity). A singularity s∈ SingX⃗(Λ) is
Lorenz-like if its eigenvalues are real and satisfy λ2 < λ3 < 0 < −λ3 < λ1. 3

15.5.2. Sinai–Ruelle–Bowen Measure: Uniformly Hyperbolic Attrac-
tor

One of the most widely used methods to comprehend and manage the
probabilistic, or statistical, aspects of hyperbolic sets is the probability measure
identified by Ya.G. Sinai, D. Ruelle and R. Bowen (srb) [2381] [2255] [403].
Natural applications of the srb measure comprise the uniformly hyperbolic
attractor.

Definition 15.5.4 (srb measure for an attractor of hyperbolic diffeomorphism
and flow).

(1) Let Λ ⊂M be an attractor for a uniformly hyperbolic diffeomorphism
φµ :M → M of class C2 on a compact Riemannian manifold, where µ is an
φµ-invariant (Borel) probability measure on M.

(i) LetWs be an open neighborhood of Λ, or more precisely, an open stable set
containing a neighborhood of Λ. We can represent the attractor as a topological
object,

Λ
viz
= Λtop =

⋂
n⩾0

φµ(Ws). (15.22)

We say that Ws represents the region of initial conditions in the phase space,
better known as attractor’s basin of attraction with positive Lebesgue measure,
denoted by

B(Λ) = {x ∈M | set of µ-points x ⊂ Λ}, (15.23)
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and that B(Λ) is foliated with stable manifolds.
If φµ is topologically transitive, and it has a positive Lyapunov exponent

almost everywhere with respect to µ, then the measure µ for an attractor (15.22)
is called a measure of Sinai–Ruelle–Bowen which satisfies

lim
n→∞

1

n

n−1∑
ν=0

τ
(
φνµ(x)

)
=

∫
Λ⊂M

φµdµ, (15.24)

for any continuous function τ :M→ R and almost all points x ∈ B(Λ) of positive
Lebesgue measure, λ

(
B(Λ)

)
> 0.

(ii) We can also visualize the srb measure in another way, considering Λ as a
union of unstable manifoldsWu, or taking into account the leaves of the unstable
foliations of the attractor. If µ is absolutely continuous (with respect to the
Riemannian measure induced) on the unstable manifolds, i.e. if there is a uniform
absolute continuity of unstable foliations of Λ, then the φµ-invariant (Borel)
probability measure µ is consistent with the measure of Sinai–Ruelle–Bowen,
and φµ has an ergodic Sinai–Ruelle–Bowen measure µ on Λ.

(2) A twinned definition can be adopted for a C2 uniformly hyperbolic
(Anosov) flow {φt}t∈R : R→ R and an attractor

Λ
viz
= Λtop =

⋂
t⩾0

φt(Ws). (15.25)

The Sinai–Ruelle–Bowen measure is such that

lim
t→∞

1

t

∫ t

0

τ
(
φt(x)

)
dt =

∫
Λ
τdµ, (15.26)

for t ⩾ t0, φµ : Λ→ R. 3

15.5.3. Sinai–Ruelle–Bowen Measure: Singular Hyperbolic Attractor

The singular hyperbolic attractor (Λ s), of which the Lorenz-like attractor is
the primary example, is a non-uniformly hyperbolic set, because of the singularity
(see point (4) of Theorem 15.5.1). We can even say that the hyperbolicity here
is discontinuously uniform, in the sense that the origin s= (0, 0, 0) of Λ sis the
point where the uniformity breaks down. But this will not imply the absence of
a Sinai–Ruelle–Bowen measure for it.

We mention some contributions. Ya.B. Pesin [2084] finds an analog of the
srb measure for hyperbolic attractors and investigates on the ergodic properties
of this measure. W. Tucker [2540] [2541] explicitly demonstrates that Lorenz-like
flows admit a unique finite srb measure. J.F. Alves, C. Bonatti and M. Viana
[67] build a srb measure for partially hyperbolic sets in which the tangent bundle
splits into two invariant subbundles, and one of these is uniformly contracting,
whereas the other is non-uniformly expanding. R.J. Metzger [1813] constructs a
srb measure for contracting Lorenz-like flows with eigenvalues at the singularity
satisfying λ1 + λ3 < 0. See also [1715].
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15.6. Margo. What is the Origin of the Complex Systems?

Quantum mechanics has taught us to see in the exponential law of radioactive transformations
an elementary law which cannot be reduced to a simpler causal mechanism. Of course the statistical
laws known in classical mechanics and concerning complex systems, retain their validity according to
quantum mechanics. On the other hand, [quantum mechanics] modifies the rules for the determination
of internal configurations in two different ways, depending on the nature of the physical systems,
giving rise respectively to the statistical theories of Bose[–]Einstein, or Fermi. But the introduction
into physics of a new kind of statistical law, or rather simply [a] probabilistic [law], which is hidden,
instead of the supposed determinism, under the ordinary statistical laws[,] obliges us to reconsider
the foundations of the analogy with the above-stated statistical social laws.80

— E. Majorana [1742, p. 66]

For all we know, Majorana [1742] was the first to conceive and understand
the so-called complex systems, starting from the use of the expression itself.
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Randomness and Stochastic Systems

It may well be that the universe itself is completely deterministic (though this depends on what
the “true” laws of physics are, and also to some extent on certain ontological assumptions about
reality), in which case randomness is simply a mathematical concept, modeled using such abstract
mathematical objects as probability spaces. Nevertheless, the concept of pseudorandomness—objects
which “behave” randomly in various statistical senses—still makes sense in a purely deterministic
setting. A typical example are the digits of π = 3.14159 · · · ; this is a deterministic sequence of digits,
but is widely believed to behave pseudorandomly in various precise senses (e.g. each digit should
asymptotically appear 10% of the time) [this is the Borel-normality conjecture [378] for π]. If a
deterministic system exhibits a sufficient amount of pseudorandomness, then random mathematical
models (e.g. statistical mechanics) can yield accurate predictions of reality, even if the underlying
physics of that reality has no randomness in it.

— T. Tao81

16.1. Pullback and Random Attractors

The lack of long-term predictability in the chaotic dynamics, such as the
Lorenz system, is the property causing the apparent randomness of chaotic orbits.
For this reason, a Lorenz type attractor, that is a strange (fractal) and chaotic
set, seems to be governed by stochastic equations of motion, including a (white)
noise variable; but actually it is a subset of the phase space of a system, the
Lorenzian, which is still deterministic, although it is irregular, or non-periodic,
and non-linear. In this system the growing divergence between of neighboring
orbits is not (more or less) proportional to the number of variables, while in a
stochastic process,a for some random phenomenon, this occurs.

A stochastic system is a system of non-Lorenzian (in the classical sense)
type. However, when a stochastic dynamic is explicitly derived from a Lorenzian
model, it is usually called stochastic Lorenz system. We remember that, in a
classical Lorenz system [1688] [1689] [1690] [1691] [1693], the random element
is present at the moment of perturbation, since the initial conditions, or the
states of the system, can be chosen randomly; in a stochastic Lorenz system,
the random element is increasingly pervasive. Below we will concentrate on
the concept of pullback attractor and then on that of random attractor, even if
historically the second concept precedes the first.

aThe adjective “stochastic” comes from the Gr. στοχαστικός, and means “able to aiming at”,
“skilful in guessing”.
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16.1.1. Pullback Attractor: Process and Skew Product Flow

For the genesis and development of the pullback attractor, the reference
papers are: D.N. Cheban, P.E. Kloeden, and B. Schmalfuß [623] [624], Kloeden
[1507], Kloeden, H. Keller, and Schmalfuß [1508]; see also [1509].

That kind of attractors are part of non-autonomous systems. To begin with,
we give some basic definitions concerning the autonomous systems.

16.1.1.1. Non-autonomous Dynamical Systems

Definition 16.1.1 (Autonomous dynamical system: continuity and discreteness).
Let (X , ρ) be a metric space, and T the time set. More specifically, the set
T = R = R− ∪ {0} ∪ R+ is known as two-sided continuous time, and the set
T = Z = {0,±1,±2,±3, . . .} as two-sided discrete time. Denote by φ viz

= φT the
related dynamical system.

(1) A dynamical system on X is a continuous function φ : T×X → X , with
(i) an initial value condition, φ(0, x0) = x0, for x0 ∈ X ,
(ii) a group property, φ(s+ t, x0) = φ

(
s, φ(t, x0)

)
, for s, t ∈ T and x0 ∈ X .

We have a continuous dynamical system if T = R, and a discrete dynamical
system if T = Z.

(2) A semi-dynamical system on X maintains the same dynamical definition,
except for the time set: φ : T∗×X → X , where T∗ = {0}∪T+ = {t ∈ T | t ⩾ 0}.

3

A non-autonomous dynamical system (nas) can be defined with two formu-
lations, one called the “process”, the other the “skew product flow”. Let us find
them.

Definition 16.1.2 (Process and skew product flow for a nas).
(1) A process, also known as a 2-parameter semigroup, on X is a continuous

mapping (t, t0, x0) 7→ φ(t, t0, x0) ∈ X , for t, t0 ∈ T and x0 ∈ X , t ⩾ t0, with
(i) an initial value condition, φ(t0, t0, x0) = x0, for t0 ∈ T and x0 ∈ X ,
(ii) a 2-parameter semigroup property, φ(t2, t0, x0) = φ

(
t2, t1, φ(t1, t0, x0)

)
,

for t0 ⩽ t1 ⩽ t2 and x0 ∈ X .
(2) Let Q be a base space, and ϑ viz

= ϑT = {ϑt}t∈T a dynamical system on Q,
that is a group of homeomorphisms under composition on Q. A skew product flow
is an autonomous semi-dynamical system π

viz
= πT, corresponding to a product

mapping π : T∗×Q×X → Q×X on the extended phase space (XQ)µ = Q×X ,
where the mapping is given by π

(
t, (q, x)

)
=
(
ϑt(q), φ(t, q, x)

)
, for q, x ∈ Q× X .

3

The skew product flow formulation of a nas emerges from a driving mechanism
of ϑ (which means that with it the temporal change of the vector field of the
system is generated) and a cocycle mapping of φ.

Definition 16.1.3 (Non-autonomous dynamical system via ϑ-driving and
φ-cocycle). Take two metric spaces, (X , ρX ) and (Q, ρQ), where X is the phase
space and Q is the base space, and two dynamical systems, ϑ viz

= ϑT and φ viz
= φT,
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with T = R or T = Z. Consider the autonomous dynamical system ϑ as a driving
mechanism. A non-autonomous dynamical system (ϑ, φ) is the cocycle mapping
φ : T∗ ×Q× X → X on X driven by ϑ on Q. In particular, ϑ and φ are such
that

(1) ϑ0(q) = q, for q ∈ Q, and φ(0, q, x) = x, for (q, x) ∈ Q× X ,
(2) ϑs+t = ϑs

(
ϑt(q)

)
, for s, t ∈ T, and φ(t+ s, q, x) = φ

(
t, ϑs(q), φ(s, q, x)

)
,

for s, t ∈ T∗, (q, x) ∈ Q× X ,
(3) (t, q) 7→ ϑt(q) and (t, q, x) 7→ φ(t, q, x) are continuous. 3

Definition 16.1.4 (Non-autonomous dynamical set).
(1) Let Ǎ = {At}t∈T denote a family of subsets of X , and let A ⊂ (TX )µ =

T×X be a subset induced by Ǎ, where At = {x ∈ X | (t, x) ∈ A} is the t-fiber
of A, and (TX )µ = T×X is the extended phase space caused by a process φ on
X . The subset A = {(t, x) | x ∈ At} of (TX )µ is what we call a non-autonomous
set of a process.

(i) If the t-fiber of A is compact, then A is compact.
(ii) If φ(t, t0, At0) = At, for t ⩾ t0, then A is invariant.
(2) A similar description applies to a skew product flow π = (ϑ, φ), in which

the q-fiber of A, i.e. Aq = {x ∈ X | (q, x) ∈ A}, for q ∈ Q, and the extended
phase space (XQ)µ = Q×X appear. Therefore the subset A ⊂ (XQ)µ = Q×X
is consistent with a non-autonomous set of a skew product flow.

(i) If the q-fiber of A is compact, then A is compact.
(ii) If φ(t, q, Aq) = Aϑt(q), for t ⩾ 0, then A is invariant. 3

So we move on to integrate these definitions with that of pullback attractor.

16.1.1.2. Theorems on the Pullback Attractor for a Process and Skew
Product Flow

Definition 16.1.5 (Pullback and forward attractors for a process). Take a
process φ on a metric space (X , ρ) into account (see (1) in Definition 16.1.2). Let
Λ be a non-empty, compact and invariant non-autonomous set (as in Definition
16.1.4).

(1) First we have to set down the non-autonomous pullback or forward
attractivity of Λ.

(i) We say that Λ is pullback attracting if

lim
t0→−∞

ρX
(
φ(t, t0, x0), Λt

)
= 0, (16.1)

for x0 ∈ X and t ∈ T, while Λ is forward attracting (under the Lyapunov stability
criteria) if

lim
t→+∞

ρX
(
φ(t, t0, x0), Λt

)
= 0, (16.2)

for x0 ∈ X and t0 ∈ T, where ρ = distX .
(ii) We thus specify what a pullback or forward attractor is. We say that

Λ is a pullback/forward attractor of a process φ if Λ pullback/forward attracts
bounded subsets of X .
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(2) Let us try using the concept of family, so the previous point can be made
less ambiguous. A family Λ = {Λt}t∈T of non-empty, compact and φ-invariant
subsets of X is called a pullback attractor for φ with respect to another family
E = {Et}t∈T of bounded subsets of X if

(i) lim
t0→−∞

ρX
(
φ(t, t0, Et0), Λt

)
= 0, for t ∈ T,

(ii) φ(t, t0, Λt0) = Λt, with t ⩾ t0.
The family Λ is called a forward attractor for φ with respect to E = {Et}t∈T if

(i) lim
t→+∞

ρX
(
φ(t, t0, Et0), Λt

)
= 0, for t0 ∈ T,

(ii) φ(t, t0, Λt0) = Λt, with t ⩾ t0. 3

Definition 16.1.6 (Pullback and forward attractors for a skew product flow). Let
π = (ϑ, φ) be a skew product flow on the extended phase space (XQ)µ = Q×X ,
and E a non-empty bounded subset of X . Denote by Λ = {Λq ⊂ X} a non-empty,
compact and invariant non-autonomous set, such that φ(t, q, Λq) = Λ

(
ϑt(q)

)
, for

t ⩾ 0 and q ∈ Q. Then Λ is a pullback attractor of (ϑ, φ) if the convergence

lim
t→∞

ρX
(
φ
(
t, ϑ−t(q), E

)
, Λq

)
= 0 (16.3)

shall apply to any E ⊂ X . The same goes for the forward attractor of (ϑ, φ),
imposing

lim
t→∞

ρX
(
φ(t, q, E), Λϑt(q)

)
= 0. (16.4)

3

Before proceeding to the existence theorems of attractors (we will put the
pullback case), we need to establish the meaning of the absorbing set.

Definition 16.1.7 (On the absorbing set). Let F ⊂ X a non-empty compact
subset.

(1) We call F an absorbing set of a (semi-)dynamical system φ on X if
there is a time τE

viz
= τ(E) ∈ T (or T+, in the case in which the function is

φ : T∗ × X → X , see (2) in Definition 16.1.1), for any bounded subset E ⊂ X ,
so that φ(t, E) ⊂ F , for t ⩾ τ . Furthermore, F is also an attracting set if
φ(t, F ) ⫅ F , i.e. if F is positively invariant.

(2) We call F a pullback absorbing set of a process φ if there is a time
τE(t)

viz
= τ(t, E) > 0, for any bounded subset E ⊂ X and t ∈ T, so that

φ(t, t0, E) ⊂ F , for t0 ∈ T, with t0 ⩽ t− τ .
(3) We call F a pullback absorbing set of a skew product flow (ϑ, φ) if there

is a time τE(q)
viz
= τ(q, E) > 0, for any bounded subset E ⊂ X and q ∈ Q, so

that φ(t, ϑ−t(q), E) ⊂ F , for t ⩾ τ . 3

Theorem 16.1.1 (Pullback attractor for a process). Let φ be a process on a
metric space (X , ρ), and F a compact set which is pullback absorbing for φ, so
that φ(t, t0, F ) ⊂ F , for t ⩾ t0. Then there is a pullback attractor Λ with F -fibers
uniquely defined by

Λt =
⋂
τ⩾0

⋃
t0⩽−τ

φ(t, t0, F ), for t, τ ∈ T. (16.5)
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Proof. We refer to the proof of Theorem 16.1.2, because it works here, too. □

Theorem 16.1.2 (Pullback attractor for a skew product flow). Let (ϑ, φ) be
a skew product flow on a metric space (X , ρ), and F a compact set which is
pullback absorbing for (ϑ, φ), so that φ(t, q, F ) ⊂ F , for t ⩾ 0 and q ∈ Q. Then
follow two results.

(1) There is a pullback attractor Λ with F -fibers uniquely defined by

Λq =
⋂
τ⩾0

⋃
t⩾τ

φ(t, ϑ−t(q), F ), (16.6)

for t, τ ∈ T and q ∈ Q.
(2) Given a compact metric space (Q, ρQ), the limit superior is

lim
t→∞

sup
q∈Q

ρ

φ(t, q, E),
⋃
q∈Q

Λq ⊂ F

 = 0 (16.7)

for any bounded subset E ⊂ X .

Proof. This demonstration is divided into several parts, and embraces the Kloe-
den–Rasmussen’s way [1510, chap. 3, sec. 3].

(1) The first step to do is to prove that limt→∞ ρ
[
φ
(
t, ϑ−t(q), F

)
Λq
]
= 0.

Suppose, by contradiction, we have tk → ∞ and xk ∈ φ
(
tk, ϑ−tk(q), F

)
⊂ F ,

whereby ρ(xk, Λq) > ε, for k ∈ N and a certain value ε. Indicating by k̇ → ∞
the subsequence, with xk̇ → x0, we write xk̇ ∈

⋃
t⩾τ φ

(
t, ϑ−t(q), F

)
, for τ ⩾ 0,

with tk̇ ⩾ τ , from which

x0 ∈
⋃
t⩾τ

φ
(
t, ϑ−t(q), F

)
, (16.8)

for τ ⩾ 0, and thence x0 ∈ Λq, which contradicts the starting assumption.
(2) By φ(t, q, F ) ⊂ F we get
(i) Gτ (q) =

⋃
s⩾τ φ

(
s, ϑ−s(q), F

)
in F , for τ ⩾ 0,

(ii) Λϑ−t(q)
=
⋂
τ⩾0Gτ

(
ϑ−t(q)

)
.

Let xτ ∈ Gτ
(
ϑ−t(q)

)
⊂ F , and x = φ

(
t, ϑ−t(q), x

τ
)
, for τ ⩾ 0. Suppose the point

xϵ is a limit point of the set {xτ | τ ⩾ 0}, and xϵ belongs to
⋂
τ⩾0Gτ

(
ϑ−t(q)

)
.

From the continuity condition of φ
(
t, ϑ−t(q), ·

)
it is clear that x = φ

(
t, ϑ−t(q), x

ϵ
)

and x ∈ φ
[
t, ϑ−t(q),

⋂
τ⩾0Gτ

(
ϑ−t(q)

)]
= φ

(
t, ϑ−t(q), Λϑ−t(q)

)
. The triplet pro-

vided by

(i) φ

t, ϑ−t(q), ⋂
τ⩾0

Gτ
(
ϑ−t(q)

) =
⋂
τ⩾0

φ
(
t, ϑ−t(q), Gτ

(
ϑ−t(q)

))
,

(ii) Gτ
(
ϑ−t(q)

)
, with its compactness,

(iii) and φ
(
t, ϑ−t(q), ·

)
, with its continuity,
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furnishes

φ(·, ·, ·)t =
⋂
τ⩾0

φ
(
t, ϑ−t(q), Gτ

(
ϑ−t(q)

))
⊃
⋂
τ⩾0

φ
(
t, ϑ−t(q), Gτ

(
ϑ−t(q)

))
=
⋂
τ⩾0

⋃
s⩾τ

φ
(
t, ϑ−t(q)

)
, φ
(
s, ϑ−t−s(q), F

)
=
⋂
τ⩾0

⋃
s⩾τ

φ
(
t+ s, ϑ−t−s(q), F

)
=
⋂
τ⩾t

⋃
s⩾τ

φ
(
s, ϑ−s(q), F

)
⊃ Λq, (16.9)

where φ(·, ·, ·)t = φ
(
t, ϑ−t(q), Λϑ−t(q)

)
, hence Λq ⊂ φ

(
t, ϑ−t(q), Λϑ−t(q)

)
, for

t ⩾ 0 and q ∈ Q. Let ΥΛ a neighborhood of Λq. By the cocycle property
x(s + t, q0, x0) = x

(
s, q(t, q0), x(t, q0, x0)

)
, s, t ⩾ 0, and inserting ϑ−τ (q), we

obtain

φ(·, ·, ·)τ ⊂ φ
(
τ, ϑ−τ (q), φ

(
t, ϑ−τ−t(q), Λϑ−τ−t(q)

))
= φ

(
t, ϑ−t(q), φ

(
τ, ϑ−τ−t(q), Λϑ−τ−t(q)

))
⊂ φ

(
t, ϑ−t(q), φ

(
τ, ϑ−τ−t(q), F

))
⊂ φ

(
t, ϑ−t(q), F

)
⊂ ΥΛ, (16.10)

where φ(·, ·, ·)τ = φ
(
τ, ϑ−τ (q), Λϑ−τ(q)

)
. Finally, φ

(
τ, ϑ−τ (q), Λϑ−τ(q)

)
⊂ Λq, for

τ ⩾ 0 and q ∈ Q. To get the φ-invariance of the non-autonomous set Λ = {Λq},
it will be sufficient to put τ = t. We note that Λq ⊂ F , so it is uniformly
bounded, and we deal with a pullback attractor.

(3) Given a positive value ε > 0, a sequence tn →∞, qϵn ∈ Q, and xn ∈ F ,
whereby

ρ

φ(tn, qϵn, xn), ⋃
q∈Q

Λq ⊂ F

 > ε. (16.11)

Letting qn = ϑtn(q
ϵ
n), we outline a subsequence qṅ → q0 ∈ Q, and a dis-

tance ρ
[
φ
(
τ, ϑ−τ (q0), F

)
Λq0
]
< ε

2 . From the cocycle property it follows that
φ
(
tn, ϑ−tn(qn), xn

)
= φ

[
τ, ϑ−τ (qn), φ

(
tn − τ, ϑ−tn(qn), xn

)]
, for tn > τ . Since

F is
(i) a positively invariant set, one has φ

(
tn − τ, ϑ−tn(qn), xn

)
⊂ F ,

(ii) a compact set, one has a subsequence n̈ of ṅ on τ , i.e. sn̈ = φ
(
tn̈ −

τ, ϑ−tn̈(qn̈), xn̈
)
→ s0 ∈ F .

Related to the continuity condition of (ϑ, φ) there is the requirement that
∥φ
(
τ, ϑ−τ (qn̈), sn̈

)
− φ

(
τ, ϑ−τ (q0), s0

)
∥ < ε

2 , if n̈ > n(ε), from which

ε > ρ
[
φ
(
tn̈, ϑ−tn̈(q), xn̈

)
, Λq0

]
= ρ
[
φ
(
tn̈, q

ϵ
n̈, xn̈

)
, Λq0

]
⩾ ρ

φ(tn̈, qϵn̈, xn̈), ⋃
q∈Q

Λq ⊂ F

 . (16.12)

This is in contradiction with the previous inequality ρ
(
φ(tn, q

ϵ
n, xn),

⋃
q∈Q Λq)

)
>

ε, and thereby (16.7) is true.
□
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16.1.2. Random Attractor

We shall treat here the concept of attractor in a random dynamical system
(rds),a the so-called random attractor. Before writing the rigorous Definition
(16.1.8), it is sufficient to report that a random dynamical system is a non-
autonomous dynamical system (Section 16.1.1), which is thought as a skew
product flow in relation to a probability space (see Margo 16.1.1). Below are
some published studies with a focus on it.

(1) F. Ledrappier and L.-S. Young [1595] exhibit a strange attractor with a
random nature and a random version of the Sinai–Ruelle–Bowen. What emerges
is a stochastic framework related to the diffeomorphism considered.

(2) H. Morimoto [1869] looks at the probability measures on the attractor
and the semi-linear stochastic evolution equations with chaotic solutions.

(3) H. Crauel and F. Flandoli [704] establish a guide to detect an attractor
for random dynamical systems with parabolic structure that supports a Markov
invariant measure. It is demonstrated that a stochastic flow related to the
reaction-diffusion equation with additive (white) noise, as well as a stochastic
flow related to the Navier–Stokes equation with multiplicative (white) noise,
both have an attractor of this kind, that is a compact random invariant set.
Here is introduced the notion of “Ω-limit set for rds, cf. Eq. (16.13).

(4) In Crauel [702] it will be shown that a random attractor coincides with
the “Ω-limit set of a compact deterministic (non-random) set with probability
arbitrarily close to 1.

(5) In Flandoli and B. Schmalfuß [1011] the existence of a random attractor
is proven for the stochastic 3D Navier–Stokes equation. See also Schmalfuß
[2303] [2304].

(6) In Crauel, A. Debussche and Flandoli [703] the above applications are
extended to systems with hyperbolic structure, such as the non-linear random
wave equation.

(7) In M.D. Chekroun, E. Simonnet and M. Ghil [626] the geometry of
a (global) random attractor for rds under the influence of non-linear and
stochastic parameters is taken into consideration, by resorting to models both
with a stochastic forcing of the classical Lorenz model, and with a random version
of the Sinai–Ruelle–Bowen measure.

Let us get down to the specifics.

16.1.2.1. Random (Stochastic) Dynamical System

Definition 16.1.8 (Random dynamical system). Let (X , ρ) be a complete metric
space, and ( “Ω,Bσ,µ) a probability space, with a Borel σ-algebra on “Ω, where
“Ω is a non-empty set and µ is a probability measure. Choose two dynamical
systems, ϑ viz

= ϑT and φ
viz
= φT, with T = R or T = Z. A random dynamical

system (ϑ, φ) on “Ω ×X is a metric dynamical system ϑ on “Ω, that is a measure
preserving transformations {ϑt}t∈T : “Ω → “Ω, for which

(1) ϑt ◦ ϑs = ϑt+s, t, s ∈ T, and ϑ0“ω = id“ω, for “ω ∈ “Ω,

aVariant labelling: stochastic dynamical system.
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Figure 16.1: Hazy attractor (α): a type of quasi-random attractor of a stochastic-like Lorenz system.
Here a nebula of multiple pseudo-orbits (up to 18 strokes) sets the tone (cf. Fig. 15.1)

Figure 16.2: Hazy attractor (β): an alternative version of the attractor in Fig. 16.1

(2) (t, “ω) 7→ ϑt(“ω) is measurable and µ-invariant, i.e. µ
(
ϑt(Λ)

)
= µ(Λ), for

Λ ∈ Bσ,
(3) the cocycle mapping φ : T∗ = {0} ∪ T+ × “Ω ×X → X entails that
(i) φ(0, “ω, x0) = x0, for “ω ∈ “Ω and x0 ∈ X ,
(ii) φ(s+ t, “ω, x0) = φ

(
s, ϑt(“ω), φ(t, “ω, x0)

)
, for s, t ∈ T∗, “ω ∈ “Ω and x0 ∈ X ,

(iii) “ω 7→ φ(t, “ω, x0) is Bσ-measurable and (t, x0) 7→ φ(t, “ω, x0) is a continu-
ous map. 3

Margo 16.1.1. Note that (ϑ, φ), which represents a random dynamical system
here, is the same notation that was used for the skew product flow, since both
systems have crossed properties; and in fact a random attractor (an attractor of
a rds) is a pullback attractor formulated as a random set, by making use of the
probability space. L

Definition 16.1.9 (Random set). Let (X , ρ) be a complete and separable metric
space, and ( “Ω,Bσ,µ) a probability space. A random set can be described either
as
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(1) a measurable subset E ⊂ “Ω ×X with respect to the product σ-algebra
on “Ω ×X ,

(2) or as a family E = {E“ω}“ω∈ “Ω of subsets of X , provided that the mapping
“ω 7→ ρ(x,E“ω) is Bσ-measurable, for “ω ∈ “Ω and x ∈ X . A random set E is

(i) closed if E“ω acts as a closed “ω-fiber, for “ω ∈ “Ω,
(ii) compact if E“ω acts as a compact “ω-fiber, for “ω ∈ “Ω,
(iii) tempered if E“ω ⊂ {x ∈ X | ρ(x, x0) ⩽ f(“ω)}, for x0 ∈ X , putting a

random variable f(“ω). 3

The set of all “ω-limit points of E is called “ω-limit set of E and defined by

“ΩE(“ω) =
⋂
τ⩾0

⋃
t⩾τ

φ
(
t, ϑ−t(“ω), Fϑ−t(“ω)

)
. (16.13)

16.1.2.2. On the Random Sets (a Definition and a Theorem)

Definition 16.1.10 (Random attractor). Let UE ∈ X be a universe of tempered
random sets. A random compact set Λ = {Λ“ω}“ω∈ “Ω from UE is a random attractor
of a random dynamical system (ϑ, φ) on “Ω ×X in E if

(1) φ(t, “ω,Λ“ω) = Λϑt(“ω), for t ⩾ 0 and “ω ∈ “Ω, so Λ is strictly φ-invariant,
(2) lim

t→∞
ρ
[
φ
(
t, ϑ−t(“ω), Eϑ−t(“ω)

)
, Λ“ω

]
= 0, for “ω ∈ “Ω and E ∈ UE. 3

Theorem 16.1.3 (On the random attractor). Take
(1) a random dynamical system (ϑ, φ) on “Ω ×X , with a compact mapping

X φ(t,“ω,·)−−−−−→ X , for t > 0 and “ω ∈ “Ω,
(2) a tempered random closed and bounded set F = {F“ω}“ω∈ “Ω, that coincides

with a random type pullback absorbing set,
(3) a value τ(E, “ω) ⩾ 0, where E is a tempered random set,

for which φ
(
t, ϑ−t(“ω), Eϑ−t(“ω)

)
⊂ F“ω with respect to

E = {E“ω}“ω∈ “Ω , (16.14)

for t ⩾ τ(E, “ω). Then there exists a random (pullback) attractor

Λ = {Λ“ω}“ω∈ “Ω , (16.15)

for (ϑ, φ), determined by

Λ“ω =
⋂
s>0

⋃
t⩾s

φ
(
t, ϑ−t(“ω), Fϑ−t(“ω)

)
. (16.16)

Proof. Here again, the demonstration can be carried out by resuming the guide-
lines in the proof of Theorem 16.1.2. □
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16.2. Stochastic Systems: Itô and Stratonovich Calculi

The moods of the waters of the river were always delightful to watch. To me, as a mathematician
and a physicist, they had another meaning as well. How could one bring to a mathematical regularity
the study of the mass of ever shifting ripples and waves, for was not the highest destiny of mathematics
the discovery of order among disorder? [ . . . ] This problem of the waves was clearly one for averaging
and statistics.

— N. Wiener [2662, p. 33]

A random dynamical system can be generated from a stochastic model; what
this means is that a stochastic differential equation (sde), on how it developed in
Itô [1419] [1420] [1421] [1422] or Stratonovich [2424] calculus, can be transformed
into a random differential equation; therefore, it is possible to build, in several
cases, a random attractor from sdes. This rule applies also to the opposite
operation, generating stochastic differential equations from a random dynamical
system. (One of the substantial differences between the stochastic and random
differential equations is that the first ones are treated with white noise, while
the others with real noise).

Here one can understand that the words “stochastic” and “random” are very
close, and are often easily exchanged. Let us give a few examples.

16.2.1. Navier–Stokes Equations in 2D with Noise, and Lorenz Equa-
tions with Wiener Process and Thermal Fluctuations

16.2.1.1. Example I. Stochastically Forced Navier–Stokes Equations
with Additive and Multiplicative Noise

Given a random set E such that

“ω 7→ E“ω

is compact, and another set L on a complete and separable metric space X , for
which E absorbs L, the set

Λ“ω =
⋃

L⊂X

“ΩL(“ω) (16.17)

is called stochastic attractor, when its construction has to do with the stochastic
flow associated e.g. with 2D Navier–Stokes equations with additive (16.18) and
multiplicative (16.19) noise [704],

dv =
{
Aφv +Bφ(v, v) + п

}
dt+

n∑
ν=1

(Gφ)νdwν(t), (16.18)

dv =
{
Aφv +Bφ(v, v) + п

}
dt+

n∑
ν=1

βνv ◦ dwν(t), (16.19)

according to the Stratonovich interpretation, where
· Aφ : D(Aφ) ⊂ H → H is a self-adjoint linear operator (a linear mapping

that is equal to its own adjoint) in a real separable Hilbert space H, and D(Aφ)
is a linear subspace of H, that is the domain of Aφ,
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· Bφ : V⃗ × V⃗ → R is a bilinear mapping, with

V⃗ = D

(
−Aφ

2

)
, ∀v ∈ D(Aφ), (16.20)

· п is a polynomial function on H,
· (Gφ)ν : D→ R, 1 ⩽ ν ⩽ n, (gφ)1, . . . , (gφ)n ∈ H,
· β1, . . . , βn ∈ R.

16.2.1.2. Example II. Stochastically Forced System’s Lorenz Equations
with Wiener Process and Time Dependent Thermal Fluctuations in
Weather Forecasting

A further manner of seeing how a random attractor—or, more generally, the
rds theory—is involved in the sdes lies in the stochastically forced system’s
Lorenz equations (15.1). There follow two models of stochastic Lorenz system.

(1) That is one way [626]:
dx = (−Prx+ Pry)dt+ (Θx)dWt,

dy = (−xz +Rax− y)dt+ (Θy)dWt,

dz = (xy − βz)dz + (Θz)dWt,

(16.21)

in which three stochastic differential equations make their appearance, with a
multiplicative noise, under the Itô criteria. The symbol Θ > 0 designates the
noise intensity, and Wt, with t ⩾ 0, the Wiener process [1999] [1998, chap. IX]
[2660], that is another form of Brownian motion, in terms of continuous time
stochastic (or random) process.

(2) Another result is available directly from Lorenz [1693] [1694], by adding
a time dependent process of the forcing terms in his weather prediction model,

dx
dt = −y2 − z2 − ax+ aδT1

(
ϑt(“ω)

)
,

dy
dt = xy − bxz − y + δT2

(
ϑt(“ω)

)
,

dz
dt = bxy + xz − z,

(16.22)

where
· x is a variable for the intensity or the strength of the westerly wind current

and the equivalent poleward temperature gradient; y and z are the cosine and
sine phases of a chain of superposed waves, i.e. eddies transporting heat poleward;
t is an independent variable representing time;

· a is a coefficient indicating, if a < 1, the damping of the westerly wind
current, which is less rapidly than the waves (eddies), and the coefficient b, if
b > 1, indicates the translation of the wave pattern by the westerly wind current;

· δT1
and δT2

are random forcing terms, as for example the thermal fluc-
tuations, and supposed to be constant; more precisely, aδT1

is the symmetric
thermal forcing and δT2

the asymmetric one, and they vary in time under a
dynamical system {ϑt}t∈T, with T = R.
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16.2.2. Random Attractor and Stochastic Differential Equations Driven
by Noise, plus Ornstein–Uhlenbeck Process

16.2.2.1. Example I, with Additive Noise

The first example concerns the additive noise. We start from an Itô stochastic
differential equation with a Wiener process. Let fµ : R→ R be a drift coefficient
function, and write the sde in the paradigmatic form and in its integral version,

dXt = fµ(Xt)dt+ cdWt, (16.23a)

Xt = X0 +

∫ t

0

fµ(Xs)ds+ cdWt, (16.23b)

with a constant c > 0. The solution paths in (16.23) are continuous but not
differentiable, hence we introduce a difference Xt−Ϙt = X0−Ϙ0+

∫ t
0
[fµ(Xs)+Ϙs]ds,

which has a pathwise differentiability, where

Ϙt = ce−t
∫ t

−∞
esdWs (16.24)

is the Ornstein–Uhlenbeck process [2547]. The equation with the difference
corresponds to d

dt (Xt − Ϙt) = fµ(Xt) + Ϙt. At this stage, denoting by cl > 0 a
constant, we use the Lipschitz condition, so as to achieve

d

dt
|Xt − Ϙt|2 = 2⟨Xt − Ϙt, fµ(Xt)− fµ(Ϙt)⟩+ 2⟨Xt − Ϙt, fµ(Ϙt) + Ϙt⟩

⩽ −2cl|Xt − Ϙt|2 + cl

∣∣∣∣Xt − Ϙt|2 + 4

cl

∣∣∣∣ fµ(Ϙt) + Ϙt|2, (16.25)

and

|Xt − Ϙt|2 ⩽ |Xt0 − Ϙt0 |2e−cl(t−t0) +
4e−clt

cl

∫ t

t0

ecls|fµ(Ϙs) + Ϙs|2ds. (16.26)

Imposing t0 → −∞ in the pullback convergence, one has

|Xt − Ϙt|2 ⩽ ρ2X
(
ϑt(“ω)

)
= 1 +

4e−clt

cl

∫ t

−∞
ecls
∣∣fµ[Ϙs(ϑt(“ω)

)]
+ Ϙs

(
ϑt(“ω)

)∣∣2ds,
(16.27)

for any t ⩾ τ(E, “ω), with a tempered random set E (cf. Theorem 16.1.3), where
ρX is the radius of a family of compact balls B“ω, the centre of which is Ϙ0(“ω). It
follows that

|Xt(“ω)− Ϙt(“ω)| ⩽ ρX
(
ϑt(“ω)

)
(16.28)

and
|Xt(“ω) ⩽ Ϙt|(“ω) + ρX

(
ϑt(“ω)

)
. (16.29)

The family of B“ω is therefore an absorbing family of sets, and this system contains
a random (pullback) attractor Λ = {Λ“ω}“ω∈ “Ω .
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16.2.2.2. Example II, with Multiplicative Noise

The second example concerns the multiplicative noise. It begins with a
Stratonovich stochastic differential equation accompanied by a Wiener process,

dXt = (−Xt + 1)dt+ Xt ◦ dWt, (16.30)

which can be redrafted as a random ordinary differential equation,

ẋ = −x
(
1 + Ϙt(“ω)

)
+ e−Ϙt(“ω), (16.31)

with the Ornstein–Uhlenbeck process (16.24). Since

Ϙτ (“ω)− Ϙ0(“ω) = −
∫ τ

0

Ϙs(“ω)ds+Wτ (“ω), (16.32)∫ t

0

Ϙs(“ω)ds+ Ϙ0 =

∫ t

0

Ϙs(“ω)ds+

∫ 0

−∞
Ϙs(“ω)ds =

∫ t

−∞
Ϙs(“ω)ds, (16.33)

the solution of (16.31) is

x(t, “ω) = [: exp

{
−(t− t0)

(
t− t0 + 1

t− t0

∫ t

t0

Ϙs(“ω)ds

)}
x0 :]

+

∫ t

t0

exp

{
−(t− τ)−

∫ t

τ

Ϙs(“ω)ds− Ϙτ (“ω)

}
dτ, (16.34)

where all that is within the symbols [: and :] is to be repeated, similarly to the
repeat sign in musical notation. Then

x(t, “ω) = [: · · · :]

+ exp

{
−t−

∫ t

0

Ϙs(“ω)ds

}∫ t

t0

exp

{
τ −

∫ 0

τ

Ϙs(“ω)ds− Ϙτ (“ω)

}
dτ

= [: · · · :]

+ exp

{
−t−

∫ t

0

Ϙs(“ω)ds

}∫ t

t0

exp

{
τ +

∫ τ

0

Ϙs(“ω)ds− Ϙτ (“ω)

}
dτ

= [: · · · :] + exp

{
−t−

∫ t

0

Ϙs(“ω)ds− Ϙ0
}∫ t

t0

exp {τ −Wτ (“ω)}dτ

= [: · · · :] + exp

{
−t−

∫ t

−∞
Ϙs(“ω)ds

}∫ t

t0

exp {τ −Wτ (“ω)}dτ. (16.35)

Imposing t0 → −∞, one obtains the existence of pathwise pullback attracting
stationary solution, with

exp

{
−t+

∫ t

−∞
Ϙs(“ω)ds

}∫ t

−∞
exp {τ −Wτ (“ω)}dτ.
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16.3. Excursus: Araujo’s Butterflya Flight Dynamics

There are ways out, of course, but they require that your [theoretical] relation to reality be
altered in one way or the other. Either you consider a mathematical problem analogous to the one
you cannot handle, but easier, and forget about close contact with physical reality. Or you stick
with physical reality but idealize it differently (often at the cost of forgetting about mathematical
rigor or logical consistency).

— D. Ruelle [2257, p. 124]

(1) The existence of some underlying schema, maybe sustained by a geometric
support (e.g. self-similar, repetitive or fractal patterns), with which to single out
one type of predictability (certainly in the short-term) on systems where there
are chaotic solutions, is at the basis of the conception of the Lorenz attractor
and its differential equations. These equations, when parameter values and
initial conditions are set, lead to a specific and unique geometric shape that
identifies the attractor itself. However, for reasons of greater adherence to reality,
deterministic chaos models of dynamical systems may require, if necessary, a
stochastic development, making creative use of stochastic and random differential
equations. We should not forget that the question of chaotic systems comes from
the difficulty of calculating, for certain phenomena, the real orbit (compared to
the mathematical model) or the correct orbit, since there is no way of knowing
exactly the initial conditions and proceeding to the calculation with infinite
precision.

(2) The mathematical description of the flight of a butterfly, when it dancing
and lands on a flower, regarding also the influence of external factors—e.g. a
mild breeze can alter the flight path—is an almost impossible challenge. But
this challenge arouses the dream of mathematics towards Nature, the dream of
enclosing and encapsulating the physical reality in a geometric grid and/or in a
group of mathematical formulæ. The distinction between (deterministic) chaos
and randomness is, in some sense, summed up in this challenge, consisting in
describing and determining the flight, or better, the different possible types of
flight path, of a butterfly.

References and Bibliographic Details

Section 16.1.1
Deepenings for non-autonomous systems, pullback attractors (attractors of processes and of
skew product flows) are in [1510, chapp. 1-3] [573, chapp. 1-2, 16] [516, chapp. 1-3].

Section 16.1.2
On the random attractor, cf. [128, pp. 483-484] [1510, chap. 14] [573, sec. 1.7] [705] [516, sec.
4.2]. See also [1673, chap. VII].

Section 16.2
About the generation of rds’ from sdes and, vice versa, of sdes from rds’, see [128, chapp.
2.3.4-2.3.7].

aIn homage to R. Araujo, Venezuelan architect and illustrator. His works include the graphic
representation of a geometric net, via reconstructive projections, behind the flutter of butterfly
wings. The Araujo’s illustrations are made by hand with classical drawing tools (compass, protractor,
square and rule) and constitute the visual image of what we could call sympathique calculation of
patterns in Nature. See his collection of drawings [111].



17
Galois’ Legacy—Rules over the Calculations: the

Pursuit of Generality

There exists, in fact, for these kinds of equations, a certain order of Metaphysical considerations
[considérations Métaphysiques] which hover over all the calculations [planent sur tous les calculs],
and often make them useless. I will cite, for example, the equations which give the division of
Elliptic functions and which the renowned Abel [9] has solved [ . . . ]. All that creates the beauty and
simultaneously the difficulty of this theory, is that one has ceaselessly to indicate the progress of the
analyses and to predict the results without ever being able to carry them out [prévoir les résultats
sans jamais pouvoir les effectuer ] [1086, p. 22, e.a.].82

There will be found here a general condition [condition générale] which satisfies every equation
that is solvable by radicals, and which reciprocally ensures their solvability [1087, p. 417, e.m.].83

— É. Galois (1830-1831)

The criterion of research so splendidly asserted by Abel [and continued by Galois] “to put
problems in the most general aspect in order to discover their true nature”, designated the direction
of Analysis which aims to break free the knowledge [liberare la conoscenza] of qualitative relations
from the accidental complications of calculations [dalle complicazioni accidentali dei calcoli], that
is precisely that direction of which the geometric theory of equations and algebraic functions is the
maximum implementation.84

— F. Enriques [896, p. x, e.a.]

More than any other science, mathematics seeks generality. This is because
with a general solution it is possible to have control over the individual opera-
tions, avoiding the need for the brute force calculations. Mathematics—especially
pure mathematics, but also, albeit with greater restrictions, applied mathe-
matics—shows a vocation, during its evolution, for the search for absolute and
universal structures, that in Galois go under the name of metaphysical consid-
erations (see epigraph). The case of Galoisian theory, as a branch of abstract
algebra, is emblematic.

17.1. Generality as a Métaphysique Aspiration of Mathe-
matics

It would seem that among all the natural sciences, it is only in mathematics that what I
have called “the dream”, or “the waking dream” [rêve éveillé], is struck by a prohibition [due to
its propensity to rigor and precision]. Other sciences, including sciences that are reported to be
“exact” like physics, the dream is at least tolerated, if not even encouraged [ . . . ] under names more
“respectable” like: “speculations”, “hypotheses” (such as the famous “atomic hypothesis”, resulting
from a dream[-speculation] of Democritus), “theories”, etc. The passage from the status of dream
[ . . . ] to that of “scientific truth” takes place imperceptibly, by a consensus that widens gradually.
[But this is not a prerogative of physics, because even in mathematics it is necessary to embark on a
free reverie]. Which necessarily brings to mind the [mathematical] waking dream of Évariste Galois.

— A. Grothendieck [1227, 6.3. (7) L’héritage de Galois, pp. 14-15 otm]
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17.1.1. Galoisian Algebra on Polynomial (Un)solvability I. Prelimi-
nary Overview

After Paolo Ruffini of Modena had demonstrated the impossibility of solving equations of degree
higher than the fourth in general by radicals, Abel [was] the first [to] propose to determine the
conditions to be verified, so that an equation of any degree was in particular solvable by radicals.
The method he followed in these arduous researches is partially sketched out in a fragment of Memoir
found among his papers [ . . . ]. Almost at the same time as Abel, Galois was meditating on the same
problem, and 17 months after the death of [Abel], he presented a Memoir to the Academy of Sciences
in Paris where he expounded a new and profound theory created by him to solve the problem taken
from a point of view more general.

— E. Betti [281, p. 49, e.a.]

(1) É. Galois’ innovation was the foundation of rules (nouvelles dénominations
and nouveaux caractères), associated with new mathematical objects, which
provides a criterion for determining the solvability of polynomial (or algebraic)
equations by radicals, with coefficients in a certain field. A polynomial e.g.
with numerical coefficients is said to be solvable by radicals if its roots can be
expressed as radical functions of the coefficients. Let us step back, and look at
how we got to the Galois theory.

(2) Solvability of polynomials by radicals includes equations of degree less
than or equal to 4.

(i) The «first solver» of the cubic equation was S. Dal Ferro,85 whose formula
was made public by G. Cardanoa [520, cap. I. De duabus æquationibus in
singulis capitulis, fol. 3; cap. XI. De cubo & rebus æqualibus numero, fol. 29-
ii],86 followed by the controversy with N. Tartaglia [2460, pp. 124-125].87 It is
about an equation of this kind

[: x3 + ax2 + bx+ c :] = 0, (17.1)

involving a polynomial of degree 3 p(x) = [: · · · :] (symbols [: and :] are for a
repeat sign, see Glossary), with arbitrary coefficients a, b, c.

(ii) The quartic equation was solved by L. Ferrari [520, cap. XV. De cubo &
quadratis æqualibus numero, fol. 34-ii; fol. 72-ii], a pupil of Cardano. It is about
an equation of this kind

[: x4 + ax3 + bx2 + cx+ d :] = 0, (17.2)

implying a 4th degree polynomial p(x) = [: · · · :], with arbitrary complex
coefficients a, b, c, d. The solution of (17.2) reduces to a solution of a resolvent
(auxiliary) cubic equation.

(3) Ruffini–Abel theorem [2261] [2262] [7] [8] establishes that there is no
formula, intended as an algebraic solution, or a solution in radicals, for general
polynomial equations of degree 5 or higher,

x5 + ax4 + bx3 + cx2 + dx+ e = 0. (17.3)
aIt should be remembered that in Cardano the presence of square roots of a negative number

degenerates into a «sophistico» case [520, cap. XXXVII. De regula falsum ponendi, fol. 66-ii]. A
decisive step forward, with the implication of complex numbers, will be taken by R. Bombelli [351,
p. 169], by implementing operating rules for the manipulation of what we now call unit imaginary
number and imaginary roots, which, for Cardano, had the status of quantitates sylvestres, see
footnote c, p. 125. Bombelli [351, pp. 293-294] writes: «Et benche à molti parerà questa cosa
stravagante, perche di questa opinione fui ancho [io] già un tempo parendomi più tosto fosse sofistica
[ . . . ], nondimeno tanto cercai, che trovai la dimostratione».
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For instance, quintic equations

x5 − x− 1 = 0, (17.4)

x5 + 20x+ 16 = 0, (17.5)

are a terminus: they cannot be solved algebraically, i.e. in radicals.
(4) From here the Galois’ analysis starts, and the question he answers is:

is there a criterion, or a procedure, for determining whether a general fifth- or
higher- degree polynomial equation can be solved by radicals? Galois writes
[1088, p. 408]:

In the theory of equations, I researched in which cases equations were solvable by radicals, this
has given me the opportunity to deepen this theory, and to describe all possible transformations on
an equation, even when it is not solvable by radicals.

Galois, taking up and enlarging what J.L. Lagrange [1561] had already done,
associates to each polynomial equation a given set of permutations of the roots;
thereby he delineates the concept of permutation group, later called Galois group.
Permutation is a way of ordering in succession certain elements of a particular
set; and a permutation group is a group formed from the set of permutations of
its elements, equipped with an algebraic structure with the symmetry property,
which serves to define how the roots of a polynomial are connected to each other.

The bit where (see epigraph) Galois mentions a «general condition» that
prevails over tous les calculs, he has in mind a modus to manage each permutation
symmetrically; transposed into an equational context, this is equivalent to seeing
the number of polynomial permutations and substitutions (the passage from
one permutation to another),a from which the im/possibility of solvability by
radicals of a polynomial equation can be determined.

Galois theory arrives, in its original statute, at the following upshot (see
Theorem 17.1.2): since the Galois group of a polynomial is isomorphic to a group
of permutations, then a polynomial equation is solvable by radicals iff its Galois
group, or group of permutations of the roots, is a solvable group.

17.1.2. Galoisian Algebra on Polynomial (Un)solvability II. Theorems
for the Quintic, and the Icosahedral Equation

As soon as we enter upon the task of studying the rotations [of a certain space as geometrical
operations] [ . . . ], by which the configurations [ . . . ] are transformed into themselves, we are compelled
to take into account the important and comprehensive theory which has been principally established
by the pioneering works of Galois, and which we term the group-theory [Gruppentheorie]. Originally
sprung from the theory of equations, and having a correspondent relation with the permutations of
any kind of elements, this theory includes [ . . . ] every question with which we are concerned in the
case of a closed manifoldness of any kind of operations. We say of any operations that they form
a group, if any two of the operations, compounded, again produce an operation included amongst
those first given. In this sense we have at the outset the proposition: The rotations which bring
one of the regular solids into coincidence with itself collectively form a group.

— F. Klein [1492, pp. 4-5] = [1493, p. 5]

[The] farewell letter [of Galois] [1088] written to a friend on the eve of his death [ . . . ], if judged
by the novelty and profundity of ideas it contains [about the genesis of a theory that amalgamates
the field theory to the group theory], is perhaps the most substantial piece of writing in the whole
literature of mankind.

— H. Weyl [2641, p. 138]

aSee A.-L. Cauchy [583].
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The first thing is to focus on the concept on which the whole question revolves.
What is meant by solvability referring to a group?

Definition 17.1.1. A group G is said to be solvable if it is non-trivial, and has
a normal series with Abelian factors, namely if there is a chain of subgroupsa

G = H0 ⊃ H1 ⊃ · · · ⊃ Hn−1 ⊃ Hn = {I}, (17.6)

where I is the identity (or neutral) element of G, such that the subgroup H ℓis
normal in H ℓ

−1, and the quotient group H ℓ

−1/H ℓis Abelian, for

ℓ

= 1, . . . , n.
3

Let us get right down to Galois’s thought through a series of theorems.

Theorem 17.1.1 (Solvability and non-solvability of the symmetric group). Let
Sn denote a symmetric group on a finite set of n-elements, consisting of the
permutations performed on the n-elements. Groups S2, S3, and S4 are solvable,
while Sn is non-solvable for n ⩾ 5. Id est: if G = Sn, G, or the symmetric
group on {1, . . . , n}, is solvable for n ⩽ 4, whereas S1 is trivial.

Proof.
(1) Given a field F , and a polynomial p(x) ∈ F [x] of degree n ⩾ 1, we denote

by Ks a splitting field of p(x) over F of degree n, which is the minimal (smallest)
field extension of F in which p(x) splits into linear factors.b The field extension
F ⊂ Ks is, on that account, a pair of fields, where Ks is an extension field of F
and F is a subfield of Ks. Fixing an ordering of the roots к1, . . . , кn of p(x) in
Ks, wee see that

· Ks = F (к1, . . . , кn) contains the roots к ℓ∈ Ks, for

ℓ

= 1, . . . , n,
· Ks = F [x]/{p(x)} is the splitting field of a separable polynomial p(x) ∈

F [x].
Let φ(F ) be a F -automorphism of Ks, and πφ(F ) ∈ Sn a permutation belong-

ing to the symmetric group. The group of all F -automorphisms of Ks, written
GalF (K

s)
viz
= Gal(Ks/F ), is called the Galois group of Ks over F , or the Galois

group of the extension, for which Ks is a finite Galois extension of F . Then we
set an injective homomorphism

Г : GalF (K
s)

Г -homomorphism−−−−−−−−−−−→ Sn, (17.7)

so the Galois group of p(x) is isomorphic to a subgroup Gsub
viz
= H of Sn, i.e.

GalF (K
s) ∼= Gsub

viz
= H = { πφ(F ) | φ(F ) ∈ GalF (K

s)} ⊂ Sn, (17.8)

with φ(F ) 7→ πφ, such that φ(F )(к) = к , for all roots к of p(x), and φ(F ) is the
identity over Ks.

aWe can write the chain in other forms too, of course: G = H0 ⊃ H1 ⊃ · · · ⊃ Hn = {I}, or
{I} = H0 ⊂ H1 ⊂ · · · ⊂ Hn = G, or even {I} = Hn ⊂ Hn−1 ⊂ · · · ⊂ H1 ⊂ H0 = G.

bA field Ks is said to be an extension of the field F if there is an immersion F ↪→ Ks, or an
φ-isomorphism of F in Ks, that is, φ : F → Ks.
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(2) Finally, we have the advantage of Theorem 17.1.2.
□

Scholium 17.1.1. Theorem 17.1.1 implies, inter alia, that any polynomial over a
field of characteristic zero

· is solvable by radicals, for degree 2, 3, and 4,
· is non-solvable by radicals, for degree 5 or higher (with arbitrary coefficients),

as laid down by the Ruffini–Abel theorem [2261] [2262] [7] [8]. ⋄

Scholium 17.1.2 (Polynomial with rational coefficients, and Galois group over
Q). If p(x) ∈ Q[x] is a polynomial with rational coefficients, and G is a finite
Abelian group over Q, we will write a Galois extension in the form Ks/Q, with
GalQ(K

s) ∼= G. It should be noted that GalQ(K
s) is isomorphic to S3. Why?

The splitting field Ks = Q( 3
√
2, к) is generated over Q by three roots, 3

√
2, 3
√
2к ,

and 3
√
2к2, of the polynomial p(x) = x3 − 2 ∈ Q[x], that is to say, x3 − 2 has

three roots in Q( 3
√
2, к) and only one root in Q( 3

√
2), where к = exp(2πi3 ) is a

non-trivial cube root of unity in C, i.e. к3 = 1 and к ̸= 1, satisfying the equation
x2 + x+ 1. Then [Q( 3

√
2, к) : Q] = 6, i.e., we have ξ-six functions,a from which

it appears that the extension Q( 3
√
2, к)/Q is Galois, being that

GalQ

(
Q(

3
√
2, к)

)
viz
= Gal

(
Q(

3
√
2, к)/Q

)
=
[
Q(

3
√
2, к) : Q

]
. (17.9)

Furthermore, Q( 3
√
2, к)/Q has Galois group isomorphic to the symmetric group

of degree 3,

GalQ

(
Q(

3
√
2, к)

)
= GalQ(K

s) ∼= S3, (17.10)

which is glaring if we think about Ks as Q( 3
√
2, 3
√
2к , 3
√
2к2). Wanting to sum-

marize with a lattice-kite diagram, the symbolic representation is

Q( 3
√
2, к)

Q(к) Q( 3
√
2) Q( 3

√
2к) Q( 3

√
2к2)

Q

where the quadratic field Q(к) over Q is in green #03E364, and the three cubic
fields are in magenta #E30382. ⋄

Theorem 17.1.2 (Galois). Let F be a field of zero characteristic; then a polyno-
mial p(x) ∈ F [x] is solvable by radicals iff its Galois group over F is a solvable
group.

a(1st) 3√2 → 3√2, к → к , (2nd) 3√2 → 3√2, к → к2, (3rd) 3√2 → 3√2к , к → к , (4th)
3√2 → 3√2к , к → к2, (5th) 3√2 → 3√2к2, к → к , (6th) 3√2 → 3√2к2, к → к2.
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Proof. Let Ls be an intermediate splitting field of the extension F ⊂ Ks, aka
a subextension of F ⊂ Ks, satisfying F ⊂ Ls ⊂ Ks. We consider the group
GalF (L

s). Let кα denote a primitive n-th root of unity (a number whose n-
th power is equal to 1). We must show that the extension F ⊂ Ls(кα) is
radical. Now, Ls(кα) is a splitting field of p(x) over F (кα), so the extension
F (кα) ⊂ Ls(кα) is Galois, and the map

Г : GalF (кα)

(
Ls(кα)

) Г -homomorphism−−−−−−−−−−−→ GalF (L
s) (17.11)

is an injective homomorphism. Since GalF (кα)

(
Ls(кα)

)
is isomorphic to a

subgroup of GalF (L
s), it is solvable. There is therefore a chain of subgroups

GalF (кα)

(
Ls(кα)

)
= G = H0 ⊃ H1 ⊃ · · · ⊃ Hn−1 ⊃ Hn = {IsK}, (17.12)

such that the subgroupH ℓ= GalF ℓ

(
Ls(кα)

)
is normal inH ℓ

−1 = GalF ℓ

−1

(
Ls(кα)

)
,

and the quotient group

H ℓ

−1/H ℓ= GalF ℓ

−1

(
Ls(кα)

)
/GalF ℓ

(
Ls(кα)

)
(17.13)

is cyclic, for

ℓ

= 1, . . . , n. Note that a group is cyclic if it has single element,
called a generator. Consequently, one has a chain of subfields

F0 = F (кα) ⊂ F1 ⊂ · · · ⊂ F ℓ

−1 ⊂ F ℓ⊂ · · · ⊂ Fn = Ls(кα), (17.14)

under which the extension F ℓ

−1 ⊂ F ℓis Galois, and

GalF ℓ

−1
(F ℓ) = H ℓ

−1/H ℓ (17.15)

is cyclic. The field F ℓ

−1 containing all the n-th roots, contains also all the n ℓ-th
roots of unity, whilst F ℓ is a pure n ℓ-radical extension; ergo F ⊂ Ls(кα) is a
radical extension. □

Let us move to another group, called alternating group of degree n, and
denoted by An. It is a normal subgroup of Sn, and corresponds to the set of
all even permutations; it is generated by 3-cycles (cycles with three elements),
and contains all the 3-cycles of Sn, whereas the latter, the symmetric group, is
generated by 2-cycles (cycles with two elements), or transpositions.

Theorem 17.1.3. Symmetric and alternating groups, Sn and An, are non-
solvable for n ⩾ 5.

Proof. We put G = Sn, or even G = An, indifferently. Let us consider the chain
of subgroups

G = H0 ⊃ H1 ⊃ · · · ⊃ Hn−1 ⊃ Hn, (17.16)

such that the subgroup H ℓis normal in H ℓ

−1, and the quotient group H ℓ

−1/H ℓ

is cyclic, for

ℓ

⩾ 1. If each H ℓon this chain contains all the 3-cycles of Sn, the
chain is not finite, i.e. G ≠ {I}, so G = Sn, or G = An, is non-solvable. If
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G = Sn, or G = An, were solvable, we should have the same result as the Eq.
(17.6).

Let us see the case where H ℓcontains all the 3-cycles. We can write x =
(α, β, γ), y = (γ, δ, ε) ∈ H ℓ

−1, setting {α, β, γ, δ, ε} = {1, 2, 3, 4, 5}. From the
canonical projection

prj : H ℓ

−1 → H ℓ

−1/H ℓ, (17.17)

one obtains prj(x)−1prj(y)−1prj(x)prj(y) = 1, from which

(x−1y−1xy) = (γ, β, α)(ε, δ, γ)(α, β, γ)(γ, δ, ε) = (γ, β, ε) ∈ H ℓ. (17.18)

□

The alternate group A5

· is the smallest non-solvable group;
· is simple, more precisely, is the non-Abelian simple group of smallest order,

which is equal to 60 = 22 · 3 · 5;
· is characterized by these conjugacy classes, in addition to the identity:

5-cycle permutations et 24 elements, 3-cycle permutations et 20 elements, and
2-cycle permutations et 15 elements: 1 + 12 + 12 + 20 + 15 = 60 = |A5| (note
that: since 24 ∤ 60 = |A5|, in A5 the 5-cycles cannot be all conjugate by way of a
permutation, thus the 24 5-cycles split into two conjugacy classes of 5-cycles,
each of which has 12 elements);

· is isomorphic to the isometry group of the icosahedron (Scholium 17.1.3);
· is isomorphic to the rotation group of the dodecahedron (Scholium 17.1.4),

the group of even permutations of five elements; namely it is isomorphic to the
group of even isometries of the dodecahedron.a

· is isomorphic to PSL2(F4), having order 43−4 = 60, and PSL2(F5), having
order 1

2 (5
3 − 5) = 60, which are two projective special linear groups of degree 2,

hence PSL2(F4) ∼= PSL2(F5) ∼= A5.

Scholium 17.1.3 (Icosahedron). We remember that the icosahedron has 20 trian-
gular faces, 30 edges, and 12 vertices (Fig. 17.1), or 60 orientation preserving
symmetries, which correspond exactly to the 60 permutations of A5. Here is
what we have:

· the identity, or the unit element of the rotation group,
· 24 5-cycles of A5 corresponding to the rotations of the icosahedron whose

axis passes through opposite vertices;
· 20 3-cycles of A5 corresponding to the rotations of the icosahedron whose

axis passes through midpoints of opposite faces,
· 15 double 2-cycles corresponding to the rotations of the icosahedron whose

axis passes through midpoints of opposite edges.
Note. A classic reading on the icosahedral polyhedron and 5th degree

equations is the work of F. Klein [1492] = [1493]. ⋄

aThe isometry group, in its entirety, is isomorphic to A5 × Z2
viz
= Z/2Z;
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Figure 17.1: Icosahedron has 60 ori-
entation preserving symmetries, and a
full symmetry group of order 60 × 2 =
120
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Figure 17.2: Dodecahedron has 100 space
diagonals + 60 face diagonals

Scholium 17.1.4 (Dodecahedron). We remember that the dodecahedron has 12
pentagonal faces, 30 edges, and 20 vertices (Fig. 17.2), so its rotations are given
by:

· the identity, or the unit element of the rotation group,
· 5-cycles of order 5 in A5 corresponding to 5×4×3×2

5 = 24 rotations by
multiples of 2π

5 , with 6 axes that join the centers of opposite pentagonal faces,
and 4 non-trivial rotations,

· 3-cycles of order 3 in A5 corresponding to 5×4×3
3 = 20 rotations by multiples

of 2π
3 , with 10 axes that join opposite vertices, and 2 non-trivial rotations,
· (5×4)

2 × 3×2
2 = 30

2 = 15 permutations in A5 corresponding to the rotations by
multiples of π, with 15 axes that join centres of opposite edges, and 1 non-trivial
rotation. ⋄

Margo 17.1.1 (Small historical annotation on icosa- and dodeca-hedron). Be-
fore Galois–Klein’s works on abstract and gruppal algebra, the most important
book, from the time of Academy in Athens, in which (together with other
solids) the icosahedron and the dodecahedron appear, is perhaps the Divina
proportione of L. Pacioli, illustrated by Leonardo da Vinci: see tab. XXI:
εἰκοσάεδρον ἐπίπεδον στερεόν · Icosaedron Epipedon Stereon/Planum Solidum;
and tab. XXVII: δ[ω]δεκάεδρον ἐπίπεδον στερεόν · Dodecaedron Epipedon
[S]tereon/Planum Solidum] in [1986].88 L

17.2. Generality for Algebro-geometric Apparatuses

17.2.1. From Galois–Klein Icosahedron to Arkani-Hamed–Trnka Am-
plituhedron: a Link between Algebraic Geometry and qft

Acquiring a critère métaphysique à la Galois (see above), a general method
thanks to which avoid long and tedious calculations, also interests theoret-
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ical physics. The objective is the same: it is a question of constructing a
synthesis-structure, or an abstract entity which, so to speak, contains in itself
and summarizes a whole series of mathematical operations needed to establish a
certain result.

Among many examples, we choose that of the so-called amplituhedron, a
polyhedron conceived by N. Arkani-Hamed and J. Trnka [123] [124] [125], which
aims to provide a geometric visualization of the perturbative calculation of the
S-matrix (scattering matrix). It is a polytope, and it can be described as a
positive Grassmannian, namely a space equivalent, in such a context, to an
algebraic variety. The amplituhedron, more specifically, is an alternative to
Feynman diagrams [979],89 and it is adopted for the computation of probability
amplitudes, that is, of all factors explaining the propagation of a particle for
scattering events, as well as the various interactions between particles.

Each particle involved in the studied process, occupies a vertex of the am-
plituhedron (as many vertices must be drawn as there are particles scattering),
while the momentum of a particle shall be proportionate to the size of the affected
face. The final value of the probability amplitude is instead equal (corresponds)
to the volume of the amplituhedron, in accordance with symmetry rules.

17.2.2. Twisted-type Cohomology for Multi-Loop Feynman Integrals

Something resembling the Arkani-Hamed–Trnka amplituhedron, but not as
mold-breaking, occurs with the method of synthesis devised by P. Mastrolia and
S. Mizerac [1781] [1040] [1041], reinterpreting the inexhaustible calculations that
derive from multi-loop Feynman integrals in an algebro-geometric structure. It
is about summarizing an almost-infinite computational operation of integrals
in a shape-space scheme, or producing a classification with certain topological
invariants, on an algebraic basis, of possible values of path integrals within a
twisted-type cohomology, compare with the papers of M. Kita & M. Yoshida [1488]
[1489] [2717]. The heart of Mastrolia and Mizerac method is to interpret the
Feynman loop integrals in terms of Aomoto–Gel’fand hypergeometric functions
[104] [1108], in which they are grasped as pairings of twisted cycles [1824] [1825].
As references to hypergeometric functions, see [105] [2716].
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18
Toroidal Fourier Analysis

Et ignem regunt numeri.a
— J.B.J. Fourier [1021, p. 1], quote from Plato

18.1. Exercices de (Fourierian) Style

From Fourier’s metaphysics—his motto “Et ignem regunt numbers” (of Pla-
tonic derivation) is understandably a drool (cf. Section 24.1.3.4)—it is possible
to derive many applications, the engineering result of which is amazing, see e.g.
[2160]; since among the loves of the author of this book there is music, for the
presence of Fourier’s frame in music theory and physics of musical instruments,
see [2487, chap. 12.1] [81] [257, chap. 2, Appendix C].

As purists, we will just give a geometric example among the many available;
for convenience, we will choose one that has been meticulously explored by L.
Grafakos [1188, chap. 3]; additionally it is a fine example.

18.1.1. Summability of Fourier Series in Spherical Bochner–Riesz
Means

Let
Tn = [0, 1]× · · · × [0, 1]︸ ︷︷ ︸

n times

(18.1)

be an n-torus corresponding to a cube [0, 1]n, with (x1, . . . , 0, . . . , xn) and
(x1, . . . , 1, . . . , xn), it being understood that Tn can be defined as the set of
all equivalence classes Rn/Zn, or as a subset of the field of complex numbers, to
wit, Tn ⊂ Cn, with a function π : Rn → Tn, given by

π(x1, . . . , xn) =
{(
e2πix

1

, . . . , e2πix
n
)
∈ Cn

∣∣∣ (x1, . . . , xn) ∈ [0, 1]n
}
. (18.2)

Compare Eq. (18.1) with Eq. (1.81) in which 1-spheres, i.e. circles, S1
appear: Tn ∼= S1 × S1 · · · × S1, for n times. We recall that a degenerate torus is
but a double-covered spherical region.

a«Numbers rule fire».
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Let

Bα−Rφ(x) =
∑
k∈Zn

|k|⩽−R

(
1− |k|

2

−R2

)α
φ̂(k)e2πik·x. (18.3)

be the Bochner–Riesz means [307] [2211] of index (or degree) α = n−1
2 and

−R-th order, where φ is an integrable function on Tn, and x ∈ Tn. Note that −R
designates the −R-th spherical partial sum.

Theorem 18.1.1. There is a φ under which

lim sup
−R→∞

|Bα−Rφ(x)| = lim sup
−R→∞


∑
k∈Zn

|k|⩽−R

(
1− |k|

2

−R2

)n−1
2

φ̂(k)e2πik·x

 =∞, (18.4)

for n > 1, and x ∈ Tn, such that φ lies in arbitrarily small neighborhoods of the
origin.

Proof.
(α) — step I. Preparatory expressions.
(i) Take a set F = {x ∈ Rn}. We say that F presents a full measure

in Rn. Let x ∈ Rn\F , z ∈ Z+, k1, . . . , kz ∈ Z+, qk1 , . . . , qkz ∈ Q under
wich

∑zℓ

=1 qk ℓ|x − k ℓ| = 0. For this equation, we can identify a set Q =
{k1, . . . , kz, qk1 , . . . , qkz} whose Lebesgue measure is 0, so

Rn\F ⊂
∞⋃
z=1

⋃
k1,...

⋃
qk1,...

Q, (18.5)

k1,...
viz
= k1, . . . , kz ∈ Zn,

qk1,...
viz
= qk1 , . . . , qkz ∈ Q,

has Lebesgue measure 0.
(ii) Put Зα−R(x) =

∑
|k|⩽−R

(
1− |k|2

−R2

)α
e2πik·x as a kernel, α = n−1

2 . Then

lim sup
−R→∞

|Зα−R(x)| =∞, (18.6)

for each x ∈ F ∩ Tn⩾2. Thereby we take a Bessel function Jn
2 +α. If we choose

−R ⩾ 1, x /∈ Zn, and α > 0, thena

Jn
2 +α(2π−R|x− k|) =

⌊
e2πi−R|x−k|e−i

π
2 (n

2 +α)−iπ4 + e−2πi−R|x−k|ei
π
2 (n

2 +α)+iπ4

π
√
−R|x− k|

+ ω · 1

(−R|x− k|)
3
2

⌉
, (18.7)

a\Biggl ⌊ floor and \Biggr ⌉ ceiling notations are employed here improperly, viz. as simple
splitters of an equation, when the latter is too long, and does not fit on a single line.
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where ω is a value related to the oscillation, since the Bessel function resembles
an oscillating (sine/cosine) function with a decay.

Thanks to the Poisson summation formula, for any x ∈ Tn\Zn, one has

Зα−R(x) =
Γ(α+ 1)

πα
−R

n
2 −α

∑
k∈Zn

Jn
2 +α(2π−R|x− k|)
|x− k|n2 +α

, (18.8)

where Γ is the gamma function, with a convergence for α > n−1
2 . Averaging over

the −R-th order, a factor of oscillation turns up, under which α = n−1
2 holds for

the Bessel function. Setting x /∈ Zn and τ > 1, we write

1

τ

∫ τ

1

Зα−R(x)e
2πiβ−Rd−R =

Γ(α+ 1)

πα

∑
k∈Zn

e−i
π
2 (n

2 +α)−iπ4

|x− k|n+1
2 +α

⌊
1

τ

∫ τ

1

e2πi−R(β+|x−k|)
(
−R

n−1
2 −α

)
d−R

⌉

+
Γ(α+ 1)

πα

∑
k∈Zn

ei
π
2 (n

2 +α)+iπ4

|x− k|n+1
2 +α

⌊
1

τ

∫ τ

1

e2πi−R(β−|x−k|)
(
−R

n−1
2 −α

)
d−R

⌉

+
Γ(α+ 1)

πα

∑
k∈Zn

ω · 1

|x− k|n+3
2 +α

1

τ

∫ τ

1

(
−R

n+3
2 −α

)
d−R.

(18.9)

For α→ n−1
2 , the previous equation becomes

1

τ

∫ τ

1

З
n−1
2

−R (x)e2πiβ−Rd−R =
Γ(n+1

2 )

π
n−1
2

∑
k∈Zn

e−i
π
2 ( 2n−1

2 )−iπ4

|x− k|n

⌊
1

τ

∫ τ

1

e2πi−R(β+|x−k|)d−R

⌉

+
Γ(n+1

2 )

π
n−1
2

∑
k∈Zn

ei
π
2 ( 2n−1

2 )+iπ4

|x− k|n

⌊
1

τ

∫ τ

1

e2πi−R(β−|x−k|)d−R

⌉

+
Γ(n+1

2 )

π
n−1
2

∑
k∈Zn

ω · 1

|x− k|n+1

1

τ

∫ τ

1

d−R
−R
. (18.10)

The first two sums show a convergence; this is due to the fact there exists a
convergence of (Fourier) series for β > n2+1

n+1 .
By that we have two options:
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· if β > 0, and β ̸= |x − k0|, k0 ∈ Zn, Eq. (18.10) is converging to 0 as
τ →∞, but

· if β > 0, and β = ±|x− k0|, Eq. (18.10) is converging to

Γ(n+1
2 )

π
n−1
2

e±i{
π
2 ( 2n−1

2 )+iπ4 }

|x− k0|n
=
Γ(n+1

2 )

π
n−1
2

e±i
π(n)

2

|x− k0|n
. (18.11)

It follows that, for any point x0 ∈ F ∩ Tn,

· if β = β ℓ, then limτ→∞
1
τ

∫ τ
1

З
n−1
2

t (x0)e
2πiβtdt =

Γ(n+1
2 )

π
n−1
2

ei
π(n)

2

βnℓ ,

· if β = −β ℓ, then limτ→∞
1
τ

∫ τ
1

З
n−1
2

t (x0)e
2πiβtdt =

Γ(n+1
2 )

π
n−1
2

e−i
π(n)

2

βnℓ ,
· if β ̸= ±β ℓ, then 0.
From there we can directly go to

lim
τ→∞

1

τ

∫ τ

1

З
n−1
2

t (x0)

n∏

ℓ

=1

⌊
2 + e−i

π(n)
2 e2πi(β

ℓ)t + ei
π(n)

2 e−2πi(β ℓ)t

2
dt =

Γ(n+1
2 )

π
n−1
2

n∑

ℓ

=1

(β ℓ)−n

⌉
. (18.12)

Let us assume we have sup−R⩾1

∣∣∣З n−1
2

−R (x0)
∣∣∣ ⩽ Qx0

<∞. Subsequently

Γ(n+1
2 )

π
n−1
2

n∑
ℓ

=1

(β ℓ)−n ⩽ Qx0
lim
τ→∞

1

τ

∫ τ

1

n∏
ℓ

=1

⌊
2 + e−i

π(n)
2 e2πi(β

ℓ)t + ei
π(n)

2 e−2πi(β ℓ)t

2
dt = Qx0

⌉
, (18.13)

which excludes
∑∞ℓ

=1(β

ℓ)−n =∞. For that reason it must be

sup
−R⩾1

∣∣∣З n−1
2

−R (x0)
∣∣∣ =∞, (18.14)

for each x0 ∈ F ∩ Tn.
(β) — step II. From Dirac delta to toroidal functions. Letting δ be the

Dirac delta function (Section 26.1.2) for a point-mass at 0, we now rewrite the
Bochner–Riesz means as

B
n−1
2

−R δ0(x), (18.15)

in which there is no convergence for almost x ∈ Tn. We need to find a sequence
of integrable functions on the n-torus in place of the δ-Dirac.

We will start by using a radial function Θρ ∈ C∞ on a Euclidean space Rn,
and putting

θϵ(x) =
∑
k∈Zn

ϵ−nΘ̂ρ

(
x+ k

ϵ

)
=
∑
k∈Zn

Θ(ϵ · k)e2πk·x, (18.16)
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so

sup
x∈Tn

sup
−R>0

∣∣∣B n−1
2

−R θϵ(x)
∣∣∣ ⩽ ∑

k∈Zn

Θ(ϵ · k) ⩽
∑
k∈Zn

ċn
(1 + ϵ|k|)n+1

⩽
(c
ϵ

)n
, (18.17)

representing an estimate, for some constant cn, where Θ(ϵ · k) denotes the k-th
Fourier coefficient. Let T ℓ⊂ Tn a

ℓ

-subset of the n-torus, under which

|T ℓ| ⩾

ℓ

− 1

ℓ , (18.18)

and 0 < −R1 < · · · < −R ℓ. Hence let

sup
−R⩽−R ℓ

∣∣∣∣∣B n−1
2

−R

{ ∞∑
m=1

2−m(θϵm − θδm)

}
(x)

∣∣∣∣∣ ⩾ ℓ

,with ϵ ℓ⩽ δ ℓ, (18.19)

for x ∈ T ℓ.
We adopt these values: −R1 = 1, ϵ1 = δ1 = 1, for 1 ⩽

ℓ

⩽ z− 1 (z > 1). Given
a distribution δz, we proceed by defining the set

Qk = cn · 2−zδ−nz + cn

z−1∑

ℓ

=1

2−

ℓ

(ϵ ℓ+ δ ℓ)−n, (18.20)

which allows us to read Eq. (18.17) in these terms:

sup
x∈Tn

sup
−R>0

∣∣∣∣∣B n−1
2

−R

{
−2−zθδz +

z−1∑

ℓ

=1

2−

ℓ

(θϵ ℓ− θδ ℓ)

}
(x)

∣∣∣∣∣ ⩽ Qk. (18.21)

Applying Fatou’s lemma (13.1.1), we get

lim inf
n→∞

(
sup

0<−R⩽n

∣∣∣B n−1
2

−R δ0(x)
∣∣∣ > Qz + z + 2

)
= 1, x ∈ Tn, (18.22)

where the δ0-Dirac is at the origin on the n-torus. If −Rz > −Rz−1, it follows that

Tz =

(
sup

0<−R⩽−Rz

∣∣∣B n−1
2

−R δ0(x)
∣∣∣ > Qz + z + 2

)
, (18.23)

whose measure is at least z−1
z . Picking out ϵz ⩽ δz, we establish accordingly two

expressions,

sup
x∈Tn

∣∣∣B n−1
2

−R δ0(x)−B
n−1
2

−R θϵz (x)
∣∣∣ ⌊

⩽
∑

|k|⩽−Rz

(
(−Rz − |k|)(|k|+−Rz)

−R2
z

)n−1
2 ∣∣∣1− θ̂ϵz (k)∣∣∣ ⩽ 1

⌉
, (18.24)
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and
inf
x∈Tz

sup
−R⩽−Rz

2−z
∣∣∣B n−1

2
−R θϵz (x)

∣∣∣ ⩾ Qz + z + 1. (18.25)

Letting C be a constant such that |Θρ(x) − Θρ(y)| ⩽ C|x − y|, x, y ∈ Rn,
and fixing Cδz

(∑
|k|⩽−Rz−1

|k| ⩽ 1
)
, we obtain

sup
x∈Tn

sup
−R⩽−Rz−1

∣∣∣B n−1
2

−R (θϵz − θδz ) (x)
∣∣∣ ⩽ ∑

|k|⩽−Rz−1

|Θρ(ϵzk)−Θρ(δzk)|

⩽ C(δz − ϵz)
∑

|k|⩽−Rz−1

|k| ⩽ Cδz
∑

|k|⩽−Rz−1

|k| ⩽ 1.

(18.26)

Eq. (18.19) is now demonstrable for

ℓ

= z. First, we observe that

B
n−1
2

−R

{ ∞∑
m=1

2−m(θϵm − θδm)

}
(x) = B

n−1
2

−R

{
−2−zθδz +

z−1∑
m=1

2−m(θϵm − θδm)

}
(x)

+B
n−1
2

−R
(
2−zθϵz

)
(x)

+B
n−1
2

−R

{ ∞∑
m=z+1

2−m(θϵm − θδm)

}
(x);

(18.27)

next, thanks to (18.21) (18.25) (18.26), we arrive at the supremum

sup
−R⩽−Rz−1

∣∣∣∣∣B n−1
2

−R

{ ∞∑
m=1

2−m(θϵm − θδm)

}
(x)

∣∣∣∣∣ ⩾ z, x ∈ Tz, (18.28)

which indicates the existence of (18.19) under a selection of (

ℓ

= z)-values. After
that, we determine the function

φ =

∞∑
m=1

2−m(θϵm − θδm), (18.29)

where φ maps into a Lebesgue space Lp=1(Tn), i.e. φ is in L1(Tn). Finally, it is
possible to demonstrate that

sup
−R>0

∣∣∣B n−1
2

−R φ(x)
∣∣∣∞, (18.30)

Above we have established the value of ϵ1 at 1; but if we require that ϵ1 is
arbitrarily small, φ will have to lie in arbitrarily small neighborhoods of the
origin and such that the main statement of the theorem is satisfied.

□
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19
Variations on the Same Theme: Minima in the

Calculus

A prejudice that must be eliminated considers mathematics interested only in quantitative
aspects and not in qualitative aspects of things, it is believed that mathematics is the enemy of
fantasy and freedom. Actually, mathematics, if well understood, broadens a person’s grasp of
imagination. For example, we would not have had all the development of modern physics if the
mathematical imagination had not arrived at the idea of infinite-dimensional spaces; likewise the
idea of surface and manifold with various curvatures makes possible the imagination of a curved
space-time.90

— E. De Giorgi [751, p. 723, e.a.]

19.1. Prolegomenon: Geometrical Optics, Solid of Mini-
mum Resistance, and Brachistochrone

In this chapter we will deal with the calculus of variations centered on the
concept of minimum; but first we will say a few words about some variational
problems, which also include the concept of maximum.

By maximum and minimum problems we mean the research for optimality
conditions or optimal approximation, both in the fields of the purely mathematical
and physics sciences, or natural phenomena, always described by mathematics.
These are just a few examples.

(1) The self-synchronization property of a certain number of mechanical
metronomes on a left-right translating table: optimal automatic adjustment in
oscillatory periodic motion with a ending in-phase synchrony (in left-right unison
movement), starting from a non-synchronous condition.

(2) The growth of a plant with a photoautotrophic capacity, i.e. the tendency
to extract the maximum resources available in its terrestrial/aqua environment,
evolving with an exclusive morphology.

(3) The hexagon-shaped cells in honeycombs: a bee’s ability to pursue the
least waste of space together with the greatest saving of wax.a,b

aThe precise geometric comprehension of optimization in the bees’ hexagonal wax cells, with
maximum ratio for area/perimeter, is already in Pappus of Alexandria [2010, Liber quintus, pp. 73
recto and verso, 74 recto]: tum maxime in apibus, a tribus hexagonis, & tribus hexagoni angulis.
Many centuries later, there is a description of J. Kepler [1475, Apum Alveoli, pp. 6-7] on the ordine
sexangulo in honeycombs.

bIn botanical research there are many experiments aimed at identifying geometric minimalities;
from the past, see S. Hales [1260, Experiment XXXII, pp. 94-96]: an iron pot is filled with water
and peas, and later covered with a leaden lid; after the necessary time, these peas end up assuming
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(4) Investigation and experimentation on the most convenient construction
of ship’s hull structures: it is a minimization of water resistance; or on the best
shape of an aircraft: aeroplane design to minimize the effects of drag forces (air
resistance), and have an optimization of airfoils for a maximum value of lift
coefficient.

19.1.1. Fermat’s Principle: Light Propagation

I do not claim nor have I ever claimed [n’ai jamais prétendu] to be in Nature’s secret confidence
[être de la confidence secrète de la Nature]. It has obscure and hidden ways [voies obscures et
cachées] which I have never set out to penetrate; I had only offered a little help in geometry on the
subject of refraction [ . . . ]; I willingly abandon in your favor my pretend conquest in physics, and it
is enough for me that you leave me in possession of my problem of geometry, entirely pure [tout
pur ] and in abstracto, whereby one can find the path of an object in motion which passes by two
different media, and which seeks to complete its motion as soon as possible.91

— P. de Fermat [962, lettre CXV to Clerselier, 21 mai 1662, p. 483]

The principle of least action is closely linked with the principle of stationary
action, but beware, a stationary action does not always coincide with a minimum
of a function. They are both rooted, back in time, in the earliest formulations of
the calculus of variations, at the end of the seventeenth century.

The calculus of variations is used to discover the maximum and minimum
values of a functional, sometimes on the stimulation of responding to problems of
description of certain natural phenomena. A historical example is the formulation
of the laws of refraction, among which P. de Fermat’s studies [963] [964] in
geometrical optics stand out. It is assumed that a ray of light propagates
from one point to another e.g. in homogeneous media, or in non-homogeneous
media, undergoing a continuous variation of speed; after that, a mathematical
elaboration is associated with a different behavior of the phenomenon. Fermat
[964, p. 125] writes:

Our demonstration is based on this single postulate[,] that nature operates by the easiest and
simplest means and routes [ . . . ] and not[,] as we keep saying[,] that nature always operates with the
shortest lines [et non [ . . . ] que la nature opère toujours par les lignes les plus courtes].

19.1.2. Newton’s Problem of Fluid Resistance

Si Globus & Cylindrus æqualibus diametris descripti, in Medio raro & Elastico, secundum
plagam axis Cylindri, æquali cum velocitate celerrime moveantur: erit resistentia Globi duplo
minor quam resistentia Cylindri.a

— I. Newton [1934, Liber II, Prop. XXXV, Theor. XXVIII, pp. 324-327]

Optimization in fluid dynamics is a problem of Newtonian memory—in the
above, reference was made to the naval architecture and hull construction. This is
at the beginning of the variational calculus. Once reported in analytic language,
with a system of orthogonal Cartesian axes, the problem posed by Newton is to
determine a plane curve that joins two points, A and B, and generates a solid of

the shape of quasi-dodecahedra, as they dilated by imbibing the water.
a[1941, Prop. XXXIV, Theor. XXVIII, pp. 117-119]: If in a rare medium, consisting of equal

particles freely disposed at equal distances from each other, a globe and a cylinder described
on equal diameters move with equal velocities, in the direction of the axis of the cylinder: the
resistance of the globe will be but half so great as that of the cylinder.
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revolution about the x-axis (the x-axis coincides with the axis of rotation) in a
homogeneous medium, encountering the smallest resistance.

The solution is to find a curve y = y(x) which minimizes the integral

Fμ = vc

∫ xb

xa

(
yẏ3

1 + ẏ2

)
dx, (19.1)

letting Fμ the resistance of the rotating surface, where vc is a constant depending
on the speed of moving surface, while xa and xb are the abscissas of points A
and B on the curve.

19.1.3. Mechanics in the Shortest Time: the Cycloidal Curve

Problema novum ad cujus solutionem Mathematici invitantur—Datis in plano verticali duobus
punctis A & B assignare Mobili M, viam AMB, per quam gravitate sua descendens & moveri
incipiens a puncto A, brevissimo tempore perveniat ad alterum punctum B.a

— Joh. Bernoulli [270, p. 269]

Another traditional problem of variational analysis is that of the brachis-
tochrone curve, born from the intention to find the shortest path connecting
two points, along which a point mass M moves, or falls (assuming there is no
friction): from a higher point, A, where the speed is zero, and all the M -energy
is potential, to a lower one, B, the end-point, see epigraph of Joh. Bernoulli.
The descent/travel time of M is (with modern formalism)

It[υ] =
1√
2g

∫ x2

x1

√
1 + |υ(i)(x)|2√
y1 − υ(x)

dx, (19.2)

where g is the acceleration of gravity, A = (x1, y1), B = (x2, y2), letting
υ : [x1, x2] → R be a function under which x1 < x2, y2 < y1, υ(x1) = y1,
υ(x2) = y2, υ(x) < y1, for x1 < x ⩽ x2.

The problem of the minimum descent/travel time, for a point-like mass that
slides down an inclined plane, under the graph of υ, thus becomes,

min
υ∈U

It[υ], U =
{
υ ∈ C1[x1, x2], υ(x1) = y1, υ(x2) = y2

}
, (19.3)

where minυ∈U It[υ] is the set of all curves joining A with B. What we are looking
for is the curve of least time in minυ∈U It[υ]. The solution clarifies that the
path AMB is a cycloid, so that a curve with the required temporal-minimality
satisfies an equation of the form

∂

∂υ(i)

(√
1 + |υ(i)(x)|2√
y1 − υ(x)

)
d

dx
− ∂

∂υ

(√
1 + |υ(i)(x)|2√
y1 − υ(x)

)
= 0. (19.4)

This (cycloid) curve was named brachistochrone, from the Gr. βράχιστος-
χρόνος, “shortest time”.

a«Given two points A & B in a vertical plane[,] determine the path AMB along which a moving
[point-like mass, or particle] M , descending due to its gravity & starting at A, reaches the other
point B in the shortest time».
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The problema of Joh. Bernoulli was solved, among the giants, by I. Newton
[1935] [1936], G.W. Leibniz [1605], the Bernoulli brothers, Johann [271] & Jacob
[269], and G.F.A. de L’Hôpital [1398].

But pay attention the two following matters.
(1) The study of the space-path and the shortest traveling time of a moving

point-like mass from the calm is nothing new; it is already in Galileo [1073, p.
150]: «[ . . . ] naturalem motum gravium descendentium continue accelerari [ . . . ],
spatia à mobili descendente ex quiete».

(2) The cycloid, before the puzzle of Bernoulli, was carefully analyzed by
C. Huygens [1408, pp. 12-13, 155-156], under the name of tautochrone (or
isochrone) curve, i.e. ταὐτὸς-, at the “same” (or ἰσο-, in “equal”), -χρόνος, “time”.
The tautochrone is a curve along which a moving point-like mass reaches the
lowest point on the curve always at the same time (assuming there is no friction),
whatever the initial-point (or the starting position) is, for the gravitational
acceleration. An example of tautochronism is the cycloidal pendulum clock.a

19.2. Theory of Minimal Surfaces

19.2.1. Plateau’s Problem: Soap Films and Bubbles

Another evident example of physical laws that translate principles of minimum or maximum is
found in the laws of equilibrium of a weightless liquid, only subjected to molecular forces. As Plateau
has shown experimentally, by introducing olive oil in a mixture of water and alcohol, of equal specific
weight, the weight of the oil is balanced by the buoyancy that, according to Archimedes’ principle, it
receives from the mixture in which it is immersed, and the oil behaves as if it were actually removed
by the action of gravity [ . . . ]. Plateau proved, e.g., that a mass, in the previous and free conditions,
assumes a spherical shape, that is, responding to the solution of the problem, in the Calculus of
Variations, of a surface of minimal area bounding a given volume. And all the many experiences
made by him [ . . . ] show that a minimum or maximum principle is always verified, the one of
the minimum or maximum potential acting forces, corresponding, the minimum, at conditions of
unstable equilibrium, the maximum, at conditions of stable equilibrium. And to this same conclusion
also lead other Plateau’s experiences on the equilibrium figures of very thin liquid films, obtained
through the soap bubbles or by immersing iron wires in soap and water.92

— L. Tonelli [2517, pp. 9-10]

[I]t became apparent that another of the classical extremum problems of analysis and geometry
is intimately connected with Dirichlet’s Principle [see Section 19.2.2.3]. Since the early period of
the calculus of variations, the problem of determining the surfaces of minimal area spanned in
a given curve or subject to other boundary conditions has been attacked by many of the great
mathematicians. Again physical experiments, such as those carried out by the Belgian physicist
Plateau, lead immediately to the intuitive conviction that such problems can be solved. If a closed
contour of wire is dipped into a soap solution, the liquid forms a film which, by virtue of the
laws of surface tension, assumes as position of equilibrium the shape of a minimal surface spanned
in the contour. But empirical evidence can never establish mathematical existence—nor can
the mathematician’s demand for existence proofs be dismissed by the physicist as useless rigor.
(Only a mathematical existence proof can ensure that the mathematical description of a physical
phenomenon is meaningful).

— R. Courant [696, p. 3, e.a.]

Plateau’s problem, already theoretically explored by Lagrange [1558], has
been meticulously treated by J.A.F. Plateau [2116] [2117] [2118], that we can
generalize in the study of the behavior of soap films (with boundary) and soap

aJoh. Bernoulli’s comment [271, p. 210], at the moment of the unexpected coincidence between
(his) brachistochrone and Huygens’ tautochrone, is full of admiration: «Antequam finiam, non
possum, quin iterum admirationem meam prodam, animo revolvens inexpectatam illam identitatem
Tautochronæ Hugenianæ nostræque Brachystochronæ».
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bubbles (without boundary), and their explosion—suggestively called by Plateau
«Théorie de l’explosion des bulles laminaires» [2118, § 428]. This exercise was
found to be an excellent method to visualize surfaces of minimum area.

Prepare a soap-water blend, and a kit of (closed) wire frames with different
shapes (e.g. ring, knot, helical line, Möbius strip, cube, etc.); immerse, one at a
time, each wire in the soapy mixture. When it is pulled up, it is surprising to
discover that soap films form in the portion bounded by the edge of the wire,
each of which assumes a stable equilibrium position,a and has a tendency to
occupy minimum possible area. Following Joh. Bernoulli’s principle of virtual
displacements [272], the potential energy in the surface tension of the soap film
is a minimum.

19.2.1.1. Quick Report on Solutions of Plateau’s Problem

The Plateau Problem consists in showing that the greatest lower bound of the areas of surfaces
with a given boundary is attained. This depends primarily on the meaning we attach to the word
surface.

— E.R. Reifenberg [2190, p. 1, e.a.]

Experimental procedure à la Plateau (water, soap, and wire)—with a view
to reproduce, simulate and determine, at least conceptually, a phenomenon
of nature—guide but do not verify the accuracy of the representation, as in
mathematics, of the physical phenomenon observable with soap films and bubbles.
Plateau’s problem stems from the need to string together a good mathematical
interpretation/understanding of the generation of boundary minimal surfaces
within this experimental guide.

Mathematical solutions to the Plateau problem were presented by various
authors, with several techniques, see [1294]. A roundup to follow.

(1) R. Garnier [1097] gives a demonstration for general polygonal boundary
curves, or rather, for piecewise smooth Jordan curves (which are piecewise smooth
simple closed curves, i.e. loops), in Euclidean 3-space.

(2) T. Radó [2172] [2173]; his proof is in Euclidean 3-space. In [2173, p. 458]
he writes:

Plateau’s problem implies that the minimal surface which we are seeking is of the type of the
circle. There remains therefore the more general problem of determining the minimal surfaces of all
possible topological types bounded by the given curve [ . . . ]. [T]here remains the problem of proving
the existence of a surface, bounded by the given curve, with a minimum area; indeed, a minimal
surface bounded by the given curve is not necessarily the solution of this problem of minimum area.

(3) J. Douglas [814] [815] prepares another demonstration in Euclidean 3-
space. His way is in the use of a functional of this form

Ido[υ] =
1

4π

∫ 2π

0

∫ 2π

0

|υ(θ)− υ(ϕ)|2

4 sin2 1
2 (θ − ϕ)

dθdϕ,

=
1

4π

∫ 2π

0

∫ 2π

0

|υ(eiθ)− υ(eiϕ)|2

|eiθ − eiϕ|2
dθdϕ, (19.5)

aOf the many, one experimentally verifiable property is this: between component surfaces of the
soap film, e.g. three minimal surfaces, the contact angle is 120◦, whilst in a tetrahedral shape, the
angle between lines of intersection (where the singular edges meet) is 109◦28′16′′, an angle whose
cosine is − 1

3 , known as Maraldi’s angle, see D.W. Thompson [2484, e.g. pp. 498, 549, 713].
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eiθ = υ(cos θ, sin θ), videlicet, a function

Ido[υ] : C0
2π(R,R3)→ R, (19.6)

where Ido is called Douglas functional, υ : R→ R3 is some continuous function
2π-periodic whose class is C0

2π(R,R3), such that υ(θ + 2π) = υ(θ), for all θ ∈ R.
(4) The Radó–Douglas’ result is the first fairly general solution of Plateau’s

problem for many special boundary contours, that is, for many special layers of
soapy liquid that span a wire contour, acting as a boundary.

We here summarise it simply, employing a proposition of disks. Let Cj ⊂ R3

be a C1 piecewise smooth Jordan curves; there is a function υ : D ⊂ R2 → R3

under which
(i) υ : ∂D→ Cj is monotone, so the inverse image of a connected set (under

a continuous function) is also connected,
(ii) υ ∈ C0(D) ∩W 1,2(D), and υ ∈ C∞(D),
(iii) the image of υ produces an area minimization among all disks with

boundary contour Cj.
(5) E.R. Reifenberg [2190] [2191] [2192] studies compact subsets with bound-

aries, associated with a minimization process of the Hausdorff measure in di-
mension 2, from which both a generalization of the minimal surface and a
regularization of it are attained. For subsets of higher dimension, the minimiza-
tion process is applied directly on the n-dimensional Hausdorff measure. The
next step is to show that a minimal surface is analytic at points where the surface
density is (near) 1.

(6) C.B. Morrey [1871] [1873] extends Reifenberg’s research inherent in a
surface of minimal area bounded by a Jordan contour in Euclidean space, jumping
to the condition of minimality in Riemannian spaces.

(7) By combining the above works, we have the Reifenberg–Morrey’s result.
Given

· a smooth, and metrically complete, Riemannian space M,
· a compact measurable subset “N

viz
= N ⊂M of dimension k − 1,

· a compact Abelian group G,
we assume that a measurable subset “Q ↪→M is embedded in theM-space, with G
as a surface, and “N as a boundary. Denoting by { “Q} the class of all G-surfaces
with boundary “N , then there exists a minimal surface “Q0 in { “Q} under which
volk( “Q0\ “N). The surface “Q0\ “N is an open and smooth minimal space, i.e.
it is differentiable infinitely many times, except for the set of points “Σ whose
k-dimensional measure is zero. Plus, if the Riemannian M-space is analytic,
the subspace “Q0\( “N ∪ “Σ) is equally analytic.

(8) E. De Giorgi [746] [747] proves that certain minimal boundaries are
analytic, more specifically, it is a case of locally analytic hypersurfaces,a with
regard to area minimizing oriented boundaries, through the theory of perimeters
& Caccioppoli (dimensionally oriented) sets [464] (see [73] as a compendium);
this is followed by the finding of regularity of minimal surfaces, or of local

aA hypersurface is said to be a manifold or algebraic variety in Rn having one less dimension
than that of the ambient (Euclidean) space, that is, n− 1.
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hypersurfaces of class C∞, supplying solutions to the problem of minimum
(n − 1)-area in a Euclidean n-space (see below, Section 19.2.1.2). In [749]
De Giorgi tackles the theory of minimal hypersurfaces embedded in Euclidean
n-space, with n > 3, and restructures the Plateau’s problem in Cartesian form.

(9) F.J. Almgren [61] re-contextualizes the problem of Plateau within the
concept of varifold, which is a differentiable manifold in geometric measure
theory (mainly designed for the calculus of variations) [63], cf. W.K. Allard [58].
In [65] Almgren and L. Simon show that, given a minimal 2-surface S2, and a
uniformly convex open set Ω ⊂ R3, if ∂Ω is a C2 surface with boundary, and
Cj is a rectifiable Jordan curve (a circle, by the way) of class C3 contained in
∂Ω, so that ∂S2 = Cj ⊂ ∂Ω, then S2 turns out to be embedded in Ω, for which
S2 is diffeomorphic to a disk D viz

= D2, i.e., B2, and is area minimizing under a
diffeomorphism φ : D→ φ(D), letting Cj = ∂[φ(D)].

19.2.1.2. Locally Regular Hypersurface in the Caccioppoli–De Giorgi
Theory of Finite Perimeters

Here is a an example of hypersurface having regularity carried out in the
manner of De Giorgi [746] [747], combined, in the end, with a H. Federer’s
elaboration [951].

Definition 19.2.1. A Caccioppoli set “C ⊂ Rn is a set of locally finite perimeter
the boundary of which is measurable. Note. A Caccioppoli set can coincide with
a Borel set “E (cf. point (2) in Section 12.4.3.2); in the latter case, “C = “E iff the
perimeter of “E is finite in any bounded open set Ω ⊂ Rn. 3

Theorem 19.2.1 (Minimal boundary of Caccioppoli set, and regularity of its
reduced boundary). Take an open set Ω ⊂ Rn, and a Caccioppoli set “C ⊂ Rn,
with n ⩾ 2. Let ∂− “C denote the reduced boundary of “C, i.e., the set of points y
satisfying

(i) an integral of the form∫
Ωρ(y)

|Dχ(x, “C)| > 0, (19.7)

where χ(x, “C) is the characteristic function of “C, so that χ will be 1 in “C and 0
in Rn\ “C, and ρ is a positive number,

(ii) a limit

lim
ρ→0

∫
Ωρ(y)

Dχ(x, “C)∫
Ωρ(y)

|Dχ(x, “C)|
= N̂ “C(y), (19.8)

N̂ “C being the (unit) inner normal vector to “C,
(iii) and a condition |N̂ “C(y)| = 1.
If the boundary of “C is minimal on Ω, then ∂− “C ∩ Ω is a locally regular

hypersurface, and it corresponds (Federer’s elaboration) to an analytic (n− 1)-
space.
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Proof. Given a point y ∈ ∂− “C ∩Ω, we denote by Π( “C) the perimeter of “C. It
is possible to find some positive number ρ that meets the following statement:
consider a sequence of Caccioppoli sets { “C ℓ}; when { “C ℓ} satisfies

Π( “C) = limℓ

→∞
Π( “C ℓ), (19.9a)

∞∑

ℓ

=1

∫
Rn

|χ(x, “C)− χ(x, “C ℓ)|dx <∞, (19.9b)

these expressions hold∫
Bτ

|Dχ(x, “C)| = limℓ

→∞

∫
Bτ

|Dχ(x, “C ℓ)|, (19.10a)

φ( “C,Bτ ) = limℓ

→∞
φ( “C ℓ,Bτ ), (19.10b)

for almost every positive number τ , where B is a set of points, φ is a function,
with

limℓ

→∞
Π( “C ℓ∩ Bτ ) = Π( “C ∩ Bτ ), limℓ

→∞
Π( “C ℓ\Bτ ) = Π( “C\Bτ ). (19.11)

(1) We shall indicate by h the Hausdorff measure. If “C is a quasi-regular
domain in Euclidean space Rn, ergo Π( “C) = hn−1(∂ “C), and hn−1(∂ “C\∂− “C) = 0.

(2) Since we assume that ∂ “C ∩ Ω = ∂− “C ∩ Ω, and that the inner normal
vector

N̂ “C(x) =
Dχ(x, “C)

|Dχ(x, “C)|
(19.12)

is continuous in ∂ “C ∩ Ω, one understands that ∂ “C ∩ Ω is a locally regular
hypersurface.

The conclusion of all this is that the set ∂− “C ∩Ω2−nρ(y) is a locally regular
hypersurface. □

19.2.1.3. Min-max Conditions (Almgren–Pitts Theory) for Minimal
Surfaces

Closely related to the theory of minimal surfaces, and Plateau-like problems,
there is the so-called min-max theory for minimal surfaces, also known as
Almgren–Pitts min-max theory. It consists in calculating the existence of minimal
surfaces with minimum points overlapping to maximum points (such as in the
saddle points), so minimum and maximum coincide.

(1) The min-max theory were initially analyzed by G.D. Birkhoff [294] in
2-space—an equatorial curve on a sphere is interpretable as a (closed) geodesic
on a minimal surface, which is, geometrically, a min-max condition; later, it was
widely redefined and extended from 3- to 7-spaces by Almgren and J.T. Pitts
[2104].
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(2) Generalizations of the min-max theory for minimal surfaces are in F.C.
Marques and A. Neves, in collaboration with K. Irie [1411] and A. Song [1775]:
given a closed manifold Mn+1, putting 3 ⩽ (n + 1) ⩽ 7, for almost every
Riemannian metric g of class C∞, such that C∞ is a Baire set [178] on the
(n+ 1)-manifold, it is proven that

· the union of any closed, smooth, embedded minimal hypersurface has the
property of density, with the implication of infinitely many minimal hypersur-
faces—which solves a Yau’s conjecture [2704]a for generic metrics—under the
min-max conditions;

· a collection {Sk}k∈N of closed, smooth, embedded, connected minimal hy-
persurfaces is uniform, or equidistributed, in the (n+ 1)-manifold such that, for
some я ∈ C∞,

lim
r→∞

1∑r
k=1 volg(Sk)

r∑
k=1

∫
Sk

яdSk =
1

volg(Mn+1)

∫
Mn+1

яdMn+1. (19.13)

Note. The volume considered of Mn+1 is a non-decreasing sequence of
numbers {чvol

k (Mn+1)}k∈N, known as Weyl law for the volume spectrum [2626],b
in keeping with a min-max procedure, under which

lim
k→∞

чvol
k (Mn+1)k−

1
n+1 = cч(n)vol(Mn+1)

n
n+1 , (19.14)

setting cч(n) > 0 as a universal constant, where cч(n) = 4π2volume of B− 2
n+1

(ρ=1) ,
B(ρ=1) being the unit ball in Rn+1.

19.2.1.4. Singularity and Radiolaria: a Math-Schema for a Biology

[T]here is a kind of microscopic sea life called Radiolaria which beautifully illustrates part of
the main theorem of this paper. According to Thompson [2484], these animals, when alive, are a
small mass of protoplasm surrounded by a “froth” of cells [vacuoles, or alveoli]. As in soap films, the
fluid in the interfaces of the froth accumulates most in the branchings, and the animal apparently
acquires a skeletal structure by depositing a solid out of the fluid. When the animal dies, everything
dissolves but the skeleton—in effect, the surface disappears, leaving just the singularities behind and
provides a unique picture of singularity structure.

— J.E. Taylor [2465, p. 493]

In a mathematical work, evocatively entitled The structure of singularities in
soap-bubble-like and soap-film-like minimal surfaces, J.E. Taylor [2465] makes a
classification of the local structure of singularities in a broad class of 2-dimensional
minimal surfaces in R3, echoing the sorting of Almgren [62]. But the soapy
singularity is not relegated to pure mathematics; its extension to biology is vast
and suggestive. In support of his classification, Taylor recalls various shapes of
Radiolaria, already meticulously studied in the nineteenth century by E. Haeckel

a[2704, problem № 88, p. 689-690]: Prove that any three-dimensional manifold must contain
an infinite number of immersed minimal surfaces. The complete proof of the Yau conjecture is the
work of A. Song [2405], and it is true for all closed Riemannian manifolds of dimension at least 3
and at most 7.

bConjectured by M.L. Gromov [1214] [1216], it is proved in [1667].
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(zoologist),a and in the twentieth century by D.W. Thompson [2484, pp. 426-452,
673-679, 694-740] (biologist and mathematician).

The Radiolaria are marine protozoa, see Haeckel [1254, pp. 1-4], a class of
the Protista (unicellular organisms), divided by a porous membrane into an
internal or intracapsular part, with nucleus, and an external or extracapsular
part. The central capsule, the inner part of Radiolaria, is composed of

· a central nucleus,
· an intracapsular or inner sarcode (endoplasm), or even a surrounding

internal protoplasm,
· a capsule-membrane, that is, an enveloping porous membrane,
· an internal or intracapsular skeleton,
· intracapsular vacuoles, or alveoli.
The extracapsulum, the outer part of Radiolaria, is composed of
· a thick extracapsular jelly-veil (Calymma), enveloping the whole central

capsule,
· a maternal tissue of the external protoplasm, enveloping the capsule-

membrane,
· pseudopodia, as needle-like protuberances, or filaments of protoplasm,

radiating from the maternal tissue,
· extracapsular vacuoles, or alveoli.
The extracapsulum, with its frothy vacuoles, or alveoli, exhibits an arrange-

ment generating a reticular pattern, under a surface tension proportional to
the area of the capsule-membrane. The radiolarian siliceous skeleton [1254, pp.
lxviii-xcii] frequently has spiny protrusions, while in some cases looks like a
reproduction of regular polyhedra.

19.2.2. Bernstein’s Problem

If a minimal surface S is represented by the equation z = f(x, y)[,] where f admits continuous
derivatives of the first two orders for any real value of (x, y), [then] the surface S reduces to a plan.93

— S. Bernstein [275, p. 44]

In epigraph the Bernstein theorem [275] is exposed in its original version, and
it is solved in two dimensions. We can reformulate it in another way (different
words but same concept):

Theorem 19.2.2 (Bernstein). Given a C2 function υ(x, y) : R2 → R solving
the minimal surface equation in the plane, namely on R2,

∂

∂x

 υx√
1 + υ2x + υ2y

+
∂

∂y

 υy√
1 + υ2x + υ2y

 = 0, (19.15)

it happens that υ(x, y) = c(1)x+ c(2)y + c(3) must be an affine linear function,
for three constants c(1), c(2), c(3) ∈ R, and the graph of υ is a plane.

aA collection of Haeckel’s marvelous drawings of Radiolaria is printed in his Report on the
Radiolaria collected by H.M.S. Challenger during the years 1873-1876, in Report on the Scientific
Results of the Voyage of H.M.S. Challenger. Zoology—Vol. XVIII. Plates, Order of Her Majesty’s
Government, London–Edinburgh–Dublin, 1887.
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Proof. E. Hopf [1392] corrects a gap of topological kind in Bernstein’s primary
demonstration, and E.J. Mickle [1819] works out a simpler version of it. Here we
follow the demonstrative line of J.C.C. Nitsche [1953] because of its elementarity:
it makes use of Liouville’s Theorem for a simple holomorphic (hence analytic)
function of one complex variable.

We replace Eq. (19.15) with

(1 + υ2y)υxx − 2υxυyυxy + (1 + υ2x)υyy = 0. (19.16)

We choose a convex polynomial p(x, y) satisfying pxxpyy − p2xy = 1, with

pxx =
1 + υ2x√

1 + υ2x + υ2y

, pxy =
υxυy√

1 + υ2x + υ2y

, pyy =
1 + υ2y√

1 + υ2x + υ2y

. (19.17)

After that, we set a map (x, y) 7→ (ζ, φ) as a diffeomorphism from R2 onto itself,
where ζ = x+ px(x, y) and φ = y + py(x, y). Putting ϖ = ζ + iφ, we define a
holomorphic function ο, under which ο(ϖ) = x − px(x, y) − i[y − py(x, y)], so
that in the equality

|ο(i)(ϖ)|2 =
pxx + pyy − 2

pxx + pyy + 2
< 1, (19.18)

the function ο(i) is constant by Liouville’s Theorem 12.4.2. But also the second
derivatives

pxx =
|1− ο(i)|2

1− |ο(i)|2
, pyy =

|1 + ο(i)|2

1− |ο(i)|2
(19.19)

are constant, thereby p(x, y) is a quadratic polynomial. □

19.2.2.1. Minimal Surfaces and Singular Minimal Cones

Bernstein’s problem leaps out with the following question.

Problem 19.2.1 (Bernstein’s problem). Besides a C2(R2) Bernstein’s solution,
which is determined on the whole plane, are there other non-trivial solutions?

Here is a rundown of some prominent solutions, or extensions of Bernstein’s
Theorem 19.2.2.

(1) An extension of the theorem to n dimensions, or to hypersurfaces of
any dimension, without using complex functions, is due to W.H. Fleming [1012,
pp. 83-84], within the notion of integral currents by Federer–Fleming [952].
Summarize the main achievements.

(i) The existence of minimal graphsa in Rn involves the existence of singular
minimal boundaries, which we may call cones, in Rn (Fleming conjecture). This
is equivalent to saying that Bernstein’s theorem is valid in connection with the
non-existence of singular minimal cones of dimension n in Rn+1.

aA minimal graphs is understood as a surface locally minimizing a specific perimeter.
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(ii) Fleming’s final result, in a demonstrative key, is the non-existence of
singular minimal cones in R3.

(2) E. De Giorgi [748] proves the Fleming conjecture in the case of hyper-
surfaces in Euclidean 4-space, with such an equation x4 = υ(x1, x2, x3), cf. D.
Triscari [2533, p. 359]. If υ(x1, x2, x3) is a continuous function on R3, with
partial derivatives of any order, and if it verifies Euler–Lagrange equation

3∑

ℓ

=1

∂

∂x ℓ


∂υ
∂x ℓ√

1 +
∑3
m=1

(
∂υ
∂xm

)2
 = 0, (19.20)

υ is a first degree polynomial. Below some of his greatest accomplishment.
(i) The existence of singular minimal cones is fixed (with an improvement of

Fleming’s thesis) in Rn−1.
(ii) The validity of Bernstein’s theorem in dimension n derives from the

non-existence of singular minimal cones of dimension (n− 1) in Rn.
(iii) De Giorgi’s final result: Bernstein’s theorem holds in R4.
(3) F.J. Almgren [60] proves the non-existence of singular minimal cones in

R4. Let us put it in a more complete way: according to De Giorgi–Almgren
result, there are minimal graphs {υ(x) ∈ Rn+1 | x ∈ Rn}, for n ⩽ 4, so the
Bernstein’s theorem is extended to R5.

(4) R. Schoen, L. Simon and S.T. Yau [2307] give a proof of Bernstein’s
theorem in dimension less than or equal to 5, in virtue of a generalization of
Heinz’s estimate [1321], for n ⩽ 5.

(5) J. Simons [2376] proves the non-existence of minimal boundaries in
dimension n in Rn+1, for n ⩽ 6, for which Bernstein’s theorem is still valid for
functions of 7 independent variables, namely up to R7. In other words, there
are regular minimal hypersurfaces, or minimal graphs, in Rn, with n ⩽ 7. But
Simons finds an example of a 7-dimensional cone at least locally stable over
S3 × S3 ⊂ S7 ⊂ R8,

Co7 =
{
x ∈ R8 | x21 + x22 + x23 + x24 < x25 + x26 + x27 + x28

}
, (19.21)

that is, equivalently, a cone of codimension 1 in R2m, for m ⩾ 4.
(6) E. Bombieri, De Giorgi, and E. Giusti [354] prove that Simons’ 7-cone is

a minimal, or rather, it is of locally minimal perimeter, and yet at the origin is
singular, for which the existence of singular minimal boundaries in R8 is also
proven. Moreover, they give non-linear solutions υ : R8 → R. Let us look in
some detail in the next Section.

19.2.2.2. 7-Conicity in Euclidean 8-Space, and Absence of Hyper-
planes in Higher Dimensions: Bombieri–De Giorgi–Giusti Theorem

To follow the major outcomes of Bombieri, De Giorgi, and Giusti [354].
(1) Given a non-parametric minimal surface of codimension 1 having dimen-

sion n, one sees that Bernstein’s theorem is valid for n ⩽ 7 (the minimal surface
equation is affine).
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(2) Confirmation of the existence of Simon’s 7-cone (19.21) in R8, which
falsifies Bernstein’s theorem in 8-space.

(3) Construction of non-trivial solutions of the minimal surface equation in
8 variables, but they are not affine.

(4) Construction of minimal graphs on R8, for n ⩾ 8, which are not hyper-
planes. This places a limit on Bernstein’s theorem, which is no longer valid in 8
or higher-dimensional space.

Example 19.2.1 (Simon’s-like cones). Given a sphere

Smρ = {x21 + · · ·+ x2m = ρ2} ⊂ Rm, (19.22)

where ρ is the radius, and a set

Ω = {x21 + · · ·+ x2m ⩾ x2m+1 + · · ·+ x22m} ⊂ R2m, (19.23)

with an oriented boundary of least area. If m ⩾ 4, there is a cone

Co2mρ =
{
x ∈ R2m | x21 + · · ·+ x2m = x2m+1 + · · ·+ x22m < ρ2

}
(19.24)

of codimension 1 in R2m the boundary of which is Smρ × Smρ ⊂ S2m(
√
2ρ); the

cone Co2mρ is of least area, and it has mean curvature zero at all points but at
its vertex has a singular point. 5

Theorem 19.2.3 (Bombieri–De Giorgi–Giusti). There exist non-linear entire
C2(Rn) solutions of the minimal surface equation

n∑

ℓ

=1

∂

∂x ℓ

(
∂υ
∂x ℓ√

1 + |∇υ|2

)
= 0 (19.25)

in n independent variables, i.e. complete minimal graphs over Rn,a which are
not hyperplanes, for n = 2m ⩾ 8.

Proof (Sketch). Let us get right down to brass tacks.
(1) Relating to (the solvability of) the Dirichlet problem [803, § 32, pp.

127-130] (see Section 19.2.2.3) for an equation of the form

2m∑

ℓ

=1

∂

∂x ℓ

(
∂υ
∂x ℓ√

1 + |∇υ|2

)
= 0, (19.26)

with υ ∈ C2(BR), where BR is a ball (R indicates a radial distance), we exploit to
the purpose a theorem by Bombieri–De Giorgi–Miranda [355] on a local estimate
for the gradient of the solutions of Eq. (19.25).

(2) Take a sequence υ1(x), . . . , υk(x), k = 1, . . . , n.
(3) Let υ1 = max(υ − τc, 0), and υ2 = max(υ, τc), with τc as a real constant.

Write an inequality
|υ1(x)| ⩽ |υR(x)| ⩽ |υ2(x)|, (19.27)

for x ∈ BR, knowing that υR(x) = 0, for x ∈ Co2m ∩ BR.
aυ(x1, . . . xn) being a solution in Rn.
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From the three points above we obtain a new inequality

|∇υk(x)| ⩽ c(1) exp

{
c(2)

1

2j
sup
B2j

|υ2|

}
= c(j), (19.28)

for all k ⩾ j, and x ∈ Bj , where c(1) and c(2) are positive constants. We note
that the right-hand side of (19.28) is independent of k, from which we gain
a subsequence {υkz(x)}, z = 1, . . . , n of the sequence {υk(x)} with a uniform
convergence in the closure of the unit ball Bρ=1 to υ(x). It ensues that the
function υ(x) appears analytic in Bρ=1, which allows a verification of Eq. (19.25).

In second place, by Ascoli–Arzelà theorem [142] [139] [140], it is shown that
the subsequence {υkz (x)} is uniformly convergent in all compact set Ω ⊂ R2m=8.
The function υ(x) is the limit of {υkz (x)}, and is analytic in R2m=8, and here it
provides a verification of the solution of the minimal surface Eq. (19.25), as well
as the inequality |υ1(x)| ⩽ |υ(x)| ⩽ |υ2(x)|, namely |υ(x)| ⩾ |υ(x)1| in R2m=8.
From this fact we infer that

lim sup
|x|→∞

|υ1(x)|/|x|2 ϵ= 1, (19.29)

for a positive constant ϵ> 1. Finally, υ(x) is not a first degree polynomial, and
the graph of υ(x) is not a hyperplane. It follows that Bernstein’s Theorem 19.2.2
is not true in R2m=8. □

19.2.2.3. An Example of Dirichlet’s Assumption for the Minimal
Surface Equation

[H]owever great may be our ignorance about how forces and states of matter vary into the infinitely
small in space and time, we can surely assume that the functions to which Dirichlet’s investigation did
not extend, do not occur in nature [die Functionen, auf welche sich die Dirichlet’sche Untersuchung
nicht erstreckt, in der Natur nicht vorkommen].

— B. Riemann [2206, p. 100]

Dirichlet’s principle [is that inductive procedure] for which, from the existence of a lower
limit values of integration containing an indeterminate function, subject only to given boundary
conditions of the integration field, one should get the existence of a limit function which satisfies
the aforementioned conditions and which, substituted for the indeterminate function, ensures that
the integral under consideration takes precisely the value of that lower limit. [T]he principle not
only retains a particular suggestive force, but a very large value of deductive capacity [in the
construction of functions as solutions of equations, in which, under suitable hypotheses of continuity
and derivability, the minimum conditions are reflected].94

— B. Levi [1621, p. 293]

Dirichle’s minimum principle [ . . . ] is, together with the theory of integral equations, the most
powerful tool, which today’s analysis dispenses to establish the minimum theorems relating to the
so-called boundary problems [ . . . ]. The deduction of existence theorems [ . . . ] from the principle of
minimum makes the calculation of variations much more harmonious and complete.95

— G. Fubini [1059, p. 121]

Dirichlet problem concerns the need to find some function for a partial
differential equation in the interior of a domain on whose boundary the function
assumes certain (boundary) values. Cf. e.g. M. Miranda [1831].

Problem 19.2.2 (A Dirichlet problem). Given an open set Ω ⊂ Rn of a
Euclidean space, with n ⩾ 2, and given a real and continuous function я defined
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on the boundary ∂Ω of Ω, we have to find a real and continuous function υ(x)
defined on Ω ∪∂Ω, so that υ is harmonic in the interior of the domain, verifying

υ(x)|∂Ω = я, (19.30)

υ(x) ∈ C2(Ω), div
∇υ(x)√

1 + |∇υ(x)|2
= 0, (19.31)

fo all x ∈ Ω, where ∇ is the gradient operator.

Dirichlet problem is somehow related to Dirichlet’s principle,96 which is a
criterion, but not the only one, to solve the Dirichlet problem. In the above
condition, the objective is to minimize an integral functional of the form

Id[υ] =

∫
Ω

(√
1 + |∇υ(x)|2

)
dx, (19.32)

known as energy functional, or Dirichlet energy, where ∇υ : Ω → Rn is the
gradient vector field of υ.

Scholium 19.2.1 (Dirichlet’s apparatus: out of nature). Dirichlet’s appara-
tus—problem & principle—does not exist in nature, of course, as instead it
seems to transpire from the words of Riemann (see epigraph); it is only our
way of interpreting in the best way certain natural phenomena that we call
phenomena on the boundary. ⋄

19.3. De Giorgi’s Theorem: Analytic Solutions in Varia-
tional Calculus

Let us go and analyze a bit more closely, in this Section, a memorable question
concerning the calculus of variations. For this purpose we choose a first-rate
problem that has created the need to probe the analytic validity for solutions
of regular variational problems. This is the Hilbert’s 19th problem [1353, pp.
288-289] = [1355, pp. 101-103]. A resolution to this problem was provided by
E. De Giorgi [743] [744] [745] [750] and J.F. Nash [1907] [1908] (see Scholium
19.3.1). We will limit ourselves to giving an account of the first of them.

19.3.1. Hilbert’s XIX Problem: Regularity for Elliptic Partial Differ-
ential Equations with Analytic Coefficients

Are the solutions of regular variational problems always necessarily analytic? One of the
conceptually most remarkable facts in the elements of the theory of analytic functions [is] that there
are partial differential equations, the integrals of which are all of necessity analytic functions of the
independent variables, or, in short, there are [equations] only susceptible of analytic solutions.

— D. Hilbert [1353, p. 288, e.a.] = [1355, p. 101]

As we read in epigraph, Hilbert’s 19th problem asks if in the class of ana-
lytical solutions to elliptic partial differential equations—in the Euler–Lagrange
primary typology, cf. Eqq. (1.70) (1.78), and the already mentioned works [916]
[1558]—there exists a universal character that identifies analytically any solution
function relating to equations of this type.
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19.3.2. On the Ground of Caccioppoli’s Generality

For a complete proof of the existence and uniqueness theorems, it seems to me that it requires,
first of all, a general method of studying existential problems which, by making explicit the
implications of the ancient methods of “extension”, analytical continuation and iterated procedure
of successive approximations, allows to avoid on a case by case the recourse to special artifices,
laborious calculations [evitare il ricorso caso per caso a speciali artifizî, calcoli laboriosi], delicate
demonstrations of convergence, real analytic superstructures masking often fundamentally simple
facts; and then an in-depth treatment of elliptic partial differential equations, which would account
in particular for the regularity properties of solutions depending on the analogous properties of the
coefficients.97,a

— R. Caccioppoli [463, p. 1, e.a.]

A first way of dealing (defining and applying) an analytical character of the
solutions of a class of variational problems is done, in De Giorgi [741] [742],
within the concept of perimeter of a set contained in an n-space, on the ground
of R. Caccioppoli’s study [464] for oriented boundaries, with the involvement of
domains and open sets.

In [743] De Giorgi presents a problem (suggested to him by G. Stampacchia),
the resolution of which exemplifies a condition for an analytic function in a
subset of a Euclidean space.

Example 19.3.1 (Real analytic function in a subset of a Euclidean space). Let
υ(x) = υ(x1, . . . , xn) be a function in Ω ⊂ Rn, such that υ(x) is absolutely con-
tinuous on almost all straight lines segments which are parallel to the coordinate
axes, where the first order partial derivatives are square summable in Ω. Let
φ(y) = φ(y1, . . . , yn) be a real analytic function in Rn, with y ∈ Rn. Given a
vector w = (w1, . . . , wn), and two constants c(1) > 0 and c(2) > 0, one has the
inequalities

c(1)|w|2 ⩽
1,n∑

ℓ

,m

∂2φ

∂y ℓ∂ym
w ℓwm ⩽ c(2)|w|2. (19.33)

Assuming that ῠ(x) is an extremal of the functional

I[υ] =

∫
Ω⊂Rn

φ

(
∂υ

∂x1
, . . . ,

∂υ

∂xn

)
dx1, . . . , dxn, (19.34)

(so I[υ] is an extremum) one should find that ῠ(x) is a real analytic function in
Ω, or that there exists a real analytic function in Ω coincident with ῠ(x) almost
everywhere. 5

19.3.3. De Giorgi’s Extremals with Hölder Continuous First Deriva-
tives: Analyticity of Extremals of Regular Multiple Integrals

In [744] De Giorgi investigates some differential properties of an extremal of
a multiple integral, again with a functional like the one in (19.34). The function
space (in which the extrema of multiple integrals are found) is treated with a
direct methods of the calculus of variations. The result is that, within an open

aAs it is easy to understand, we are not far from that need for generality discussed in Chapter
17 on the Galoisian algebra and algebraic geometry in qft.
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bounded set Ω, a certain function υ(x) is Hölder continuous (cf. Definition
12.3.3).

In the next paper [745], De Giorgi sets out the theorem enunciated in [744].
By examining the extremals of some regular multiple integrals, he shows that
the first order partial derivatives of square summable, whose existence is known
a priori, are Hölder continuous; with this an infinitely differentiability and real
analyticity of extremals is later proven. We will try to retrace the reasoning, in
broad strokes, by dividing it into several steps.

(1) Take a Euclidean n-space Rn, plus an open subset Ω ⊂ Rn, and denote
by C

(2)
dg (Ω) the class of the functions э(x) almost continuous in Ω such that

(i) э(x) is absolutely continuous on almost all segments parallel to the
coordinate axes contained in Ω,

(ii) э(x), and its first partial derivatives, are square summable functions in
any closed and bounded set contained in Ω.

For a number ε > 0, we indicate by Cdg(Ω, ε) the class of functions э(x)
which,a in addition to conditions (i) and (ii), satisfy a third condition:

(iii) given a point y ∈ Ω, of which ρ(y) is the distance from R\Ω, and three
numbers m, ρ1, ρ2, with 0 < ρ1 < ρ2 < ρ(y), we have

ε

(ρ2 − ρ1)2

∫
Ьa(m)∩B(ρ2,y)

[э(x)−m]2dx1, . . . , dxn

⩾
∫
Ьa(m)∩B(ρ1,y)

|∇э|2dx1, . . . , dxn, (19.35)

ε

(ρ2 − ρ1)2

∫
Ьb(m)∩B(ρ2,y)

[э(x)−m]2dx1, . . . , dxn

⩾
∫
Ьb(m)∩B(ρ1,y)

|∇э|2dx1, . . . , dxn, (19.36)

where ∇э = grad э, of course, Ьa(m) and Ьb(m) are the sets of points of Ω (i.e.
Ьa,Ьb ⊂ Ω) under which э(x) > m and э(x) < m, respectively, and B indicates
a ball with center y and radius ρ.

(2) After a series of lemmas, and also after a series of propositions aimed
at understanding problems on elliptic differential equations, a theorem for a
uniformly continuous and even Hölder function (in any compact subset of Ω)
is put forward: every function э(x) ∈ Cdg(Ω, ε) is uniformly hölderian in any
closed and bounded set contained in Ω.

(3) We consider a continuous function φ(p) = φ(p1, . . . , pn) in Rn, with its
first and second order partial derivatives, hence let

φ ℓ

,m(p) =
∂2φ

∂p ℓ∂pm
, φ ℓ(p) =

∂φ

∂p ℓ, (19.37)

for

ℓ

,m = 1, . . . , n. Two numbers α > 0 and β > 0 are chosen, for each point

aThe subscript dg in Cdg is for De Giorgi class, see Section 19.3.3.1.
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p ∈ Rn, and for each vector w = (w1, . . . , wn), so that

α|w|2 ⩽
1,n∑

ℓ

,m

φ ℓ

,m(p)w ℓwm ⩽ β|w|2. (19.38)

Given an open subset Ω ⊂ Rn, and a function ῠ(x) ∈ C
(2)
dg (Ω), we will say that

ῠ(x) is extremal in Ω of the integral functional

I[υ] =

∫
φ

(
∂υ

∂x1
, . . . ,

∂υ

∂xn

)
dx1, . . . , dxn, (19.39)

if, for any closed and bounded (i.e. compact) subset Ьc ⊂ Ω, and for any
continuous function ζ(x) in Ω, with its first derivatives, supposing ζ(x) is
identically zero in (Ω\Ьc), we have

n∑

ℓ

=1

∫
Ω

∂ζ

∂x ℓφ

ℓ

(
∂ῠ

∂x1
, . . . ,

∂ῠ

∂xn

)
dx1, . . . , dxn = 0. (19.40)

Which allows us to state the following.

Theorem 19.3.1 (De Giorgi on the variational analyticity). Every extremal
in Ω of the integral functional I[υ] has first order partial derivatives uniformly
Hölder continuous in any closed and bounded set contained in Ω. If φ(p) is real
analytic in Rn, then every extremal is real analytic in Ω.

Proof. By Eqq. (19.37) and (19.38) one establishes that |φ ℓ(p)| ⩽ β|p|+ c, for

ℓ

= 1, . . . , n, and a constant c > 0, putting |p| as the distance of p from the origin
of the coordinates. Since ῠ(x) ∈ C

(2)
dg (Ω), all functions φ ℓ

(
∂ῠ
∂x1

, . . . , ∂ῠ∂xn

)
, no less

than ῠ(x), will have first order partial derivatives that are square summable in
every closed and bounded set contained in Ω.

Consequently, Eq. (19.40) can be verified if ζ(x) ∈ C
(2)
dg (Ω), and if ζ(x)

vanishes identically outside a closed and bounded set contained in Ω.
Now, let us consider a bounded open set Ьd ⊂ Ω having positive distance

from the boundary of Ω, a number γ > 0 smaller than that distance, a positive
integer z not greater than n, and another positive integer k. So we write

υk(x) = ῠ
(
x1, . . . , xz +

γ

k
, . . . , xn

)
, (19.41)

where υk(x) ∈ C
(2)
dg (Ьd). For every Ьc ⊂ Ьd, and for every function χ(x) ∈

C
(2)
dg (Ьd) vanishing in (Ьd\Ьc), it is clear that

n∑

ℓ

=1

∫
Ьd

φ ℓ∂χ

∂x ℓ

(
∂υk
∂x1

, . . . ,
∂υk
∂xn

)
dx1, . . . , dxn = 0. (19.42)
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If э̆k(x) = υk(x)− ῠ(x), then э̆k(x) ∈ C
(2)
dg (Ьd), for which

φ ℓ

(
∂ῠ

∂x1
, . . . ,

∂ῠ

∂xn

)
− φ ℓ

(
∂υk
∂x1

, . . . ,
∂υk
∂xn

)
+

1,n∑
m

[:
∫ 1

0

φ ℓ

,m

(
∂ῠ

∂x1
+ t · ∂э̆k

∂x1
, . . . ,

∂ῠ

∂x1
+ t · ∂э̆k

∂xn

)
dt :]

∂э̆k
∂xm

= 0.a (19.43)

From this Equation, by (19.38), we get

α|w|2 ⩽
1,n∑

ℓ

,m

[: · · · :]w ℓwm ⩽ β|w|2, (19.44)

whilst by Eqq. (19.40) (19.42), we get
1,n∑

ℓ

,m

∫
Ьd

[: · · · :] ∂э̆k
∂xm

∂χ

∂x ℓdx1, . . . , dxn = 0, (19.45)

and that goes for every function χ(x) ∈ C
(2)
dg (Ьd), which is identically zero

outside a closed subset of Ьd. Finally, э̆k(x) ∈ Cdg(Ьd, ε), with ε = β2

α2 , by
stressing that

эk(x) =
э̆k(x)k
γ

∈ Cdg(Ьd, ε). (19.46)

If the sequence э1(x), . . . , эk(x) converges to ∂ῠ
∂xz

in Ьd, it happens that ∂ῠ
∂xz
∈

Cdg(Ьd, ε). The conclusion is that all the first order prime derivatives of ῠ(x)
belong to Cdg(Ω, ε), and they have a Hölderian continuity due to the theorem
of point (2). If φ(p) is real analytic, ergo ῠ(x) appears to be real analytic,
cf. G. Stampacchia [2413], and C.B. Morrey [1872, p. 204]. The answer to
Hilbert’s 19th question («Are the solutions of regular variational problems always
necessarily analytic?», Section 19.3.1) is positive within the conditions of the
Theorem 19.3.1. □

Scholium 19.3.1 (De Giorgi–Nash–Moser).
· De Giorgi’s result [745] can be summarized by saying that, for it, there is a

Hölderian continuity of weak solutions of linear elliptic differential equations.
· Besides De Giorgi, J.F. Nash [1907] [1908] finds a second and independent

solution to the Hilbert problem, working, in the first article, on proofs of theorems
on a priori continuity of solutions of linear parabolic and elliptic partial differential
equations, stimulated by existence problems for fluid and turbulent flows, and
treating, in the second article, on non-linear partial differential equations (again
related to equations of flow for a viscous, compressible, & heat conducting fluid,
and turbulence phenomena).

· J. Moser [1876] writes, shortly after, an alternative proof to that of De
Giorgi, thanks to the Sobolev embedding theorem (cf. Section 10.4.4.2).

With unified results and efforts (of the three authors), there is sometimes
mention of the De Giorgi–Nash–Moser (dgnm) theorem. ⋄

a[: and :] are for a repeat sign, see Glossary.
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19.3.3.1. De Giorgi Class via Sobolev Space

The De Giorgi class

Cdg(Ω, ε) =
{
[Cdg]

±
p (Ω, ε) = [Cdg]

+
p (Ω, ε) ∩ [Cdg]

−
p (Ω, ε)

}
= C±

dg = C+
dg ∩ C−

dg (19.47)

can be defined, via Sobolev space (see Section 10.4.4.1), as the set (in a subset
of a Euclidean space) of functions almost continuous э(x) ∈W 1,p

loc (Ω),a for p > 1,
which are locally Hölder continuous in Ω. Thus the two belonging-forms

э(x) ∈

{
[Cdg]

±
p (Ω, ε)

W 1,p
loc (Ω)

(19.48)

are equivalent.

19.3.4. De Giorgi’s Exception: Discontinuous Extremals and Weak
Solutions for Elliptic Systems

In [750] De Giorgi returns to the Hilbert problem (Section 19.3.1) elaborating
an example of a weak solution with discontinuous extremals of a uniformly
elliptic system. He replaces a real function э(x)b with a vector function ϝ(x) =(
ϝ1(x), . . . , ϝn(x)

)
having n real components in Rn, and uses the integral

∫ 
 1,n∑

ℓ

,m

b ℓ

m(x)
∂ϝ ℓ

∂xm

2

+

1,n∑

ℓ

,m

(
∂ϝ ℓ

∂xm

)2

 dx, (19.49)

where b(x) is a bounded measurable function. The extremals of the integral
(19.49) are discontinuous. The answer to Hilbert’s 19th question is, within
the conditions of this counterexample (and compared to the Theorem 19.3.1),
negative.

References and Bibliographic Details
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aTheorem 19.3.1 also lays down that ῠ(x) ∈ Cdg(Ω, ε).
bThe extremals of

∫ {(∑nℓ

=1 b ℓ(x) ∂э
∂x ℓ

)2
+

∑nℓ

=1

(
∂э
∂x ℓ

)2
}
dx have a Hölderian continuity.
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[891].

Section 19.3
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· About the De Giorgi classes, see [934] [771].
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Outro—Parva Mathematica: Libera Divagazione

1⁄8

È stato detto [ . . . ] i Matematici esser come gli Amanti, i quali per poco che voi loro accordiate
da principio, se ne sanno così bene approfittare, che insensibilmente là vi conducono, dove non
avreste mai pensato.a

— F. Algarotti [55, p. 28]

20.1. Excursion on Mathematical Objects

One should never forget that the functions, like all mathematical combinations of concepts
[alle mathematischen Begriffszusammensetzungen], are only our own creations [nur unsere eignen
Geschöpfe], and that where the definition with which one begins ceases to make sense, one should
not really ask “What is it”? but “What is convenient to accept”? So that it can be consistent.b

— C.F. Gauss [1101, p. 363, Gauss’ letter to F. Bessel, 21 November 1811]

[L]a science [mathématique] est l’œuvre de l’esprit humain.
— É. Galois [1089, p. 28]

20.1.1. Logical Creativity

[N]umbers are free creations of the human mind [Schöpfungen des menschlichen Geistes]; they
serve as a means of comprehending the difference of things more easily and sharply [ . . . ]. In this
sense, which is well expressed in the paraphrase of a renowned aphorism ἀεὶ ὁ ἄνθρωπος ἀριθμητίζει.

— R. Dedekind [738, pp. vii-viii, x]

Dedekind [738, pp. vii-viii] talks about «arithmetic (algebra, analysis) as a
part of logic», and a «purely logical process of building up the science of numbers
[rein logischen Aufbau der Zahlen-Wissenschaft ]». His notion e.g. of natural
number is based on logical notions, but this certainly does not indicate, with all

a[56, p. 48] «The Mathematicians [ . . . ] are said to resemble Lovers. If what you grant them at
first be ever so little, they know how to make so good an Advantage of it, as to lead you insensibly
farther than you ever imagined».

b But compare with Gauss’ letter to Bessel dated 9 April 1830: [1102, p. 201]: «According to
my deepest belief, the theory of space [Raumlehre] occupies a completely different position with
regard to our knowledge a priori from that of the pure theory of magnitudes [Grössenlehre, i.e. of
numbers]; our knowledge of the former lacks entirely that complete conviction of its necessity (and
therefore of its absolute truth) which belongs to the latter; we must humbly admit that if number
is merely a product of our mind [die Zahl bloss unseres Geistes Product ist], space has a reality
outside of our mind [der Raum auch ausser unserm Geiste eine Realität hat], the laws of which we
cannot fully prescribe a priori».

Please be advised: this is true, apparently, for physical 3-space, and not for mathematical space;
think of the pluri-assorted abstract n-dimensional spaces, which reside in the mind, and are purely
figment of our imagination.
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due respect to Dedekind, that mathematics can be (entirely) founded on purely
logical grounds; we reject logicism, especially the clumsy one (cf. Section 21.7.2).

It should be said nevertheless that, for Dedekind, “logic” means a “creative
faculty” inherent in the mind, to wit, the art of reasoning, or the act of thinking.
If we concede that there is an elementary logic, a natural logic, biologically
congenital, which precedes a cultural logic, formally evolved, then certain basic
arithmetic notions, according to Dedekind, can be anchored to the operations of
this elementary logic. This appears admissible, albeit unsatisfactory. Logic, or
thought, is not a faculty acting separately from arithmetic activity (ἀριθμέω),
as Dedekind seems to believe ingenuously. The clear-cut distinction of two
levels—on the one hand, a science of reasoning, a logic as a foundational activity,
and, on the other, an arithmetic activity—inescapably leads to a caricatural
vision of the mathematical genesis of natural numbers. The shift from logic to
number is not a mechanism with such neatly distinguishable components.

20.1.2. Axioms of Faith

The discovery of mathematical truths and the subsequent grasp of them by the understanding
occurs in a much more “factual” [sachlicher ] way and much less “formal” [ . . . ]. It is merely a
scientific faith [wissenschaftlicher Glaube] that, for example, all pertinent, general, true judgments
about points, lines, and planes are derivable from the geometrical axioms. We are unable to grasp in
genuine insight that this is so or even to “prove” it in a logical way on the basis of the logical laws
themselves.

— H. Weyl [2628, § 3, p. 11] = [2642, § 3, p. 18]

In contrast to logicism an intuitionist method is possible, and this was the
approach taken e.g. by H. Weyl in a phase of his life. He too, like Dedekind,
deals with the problem of the foundation of natural numbers, but he does it in a
completely different way.

We are convinced that the Weylian idea of a logical hole within the Modell
of a rational science (concerning relationships and functions) logically organized
as a deduktive Theorie, the idea of what we might call axioms of faith,98 is a
crucial punctum in the understanding of the workings of mathematics, which is
connected to the mathematico-primitive concepts encountered above (cf. Sections
9.1 and 9.2), and then to some physical concepts (see point (i), p. 453). H. Weyl
[2628, § 3, p. 12] = [2642, § 3, p. 19] continues like this:

The interpretation under consideration proves to be feasible only when one knows that the
axioms are consistent and complete, in the sense that of two “antinomous” pertinent judgments [ . . . ]
always one and only one is a logical consequence of the axioms. But we do not know this (although
we may believe it). And if this faith [Glaube] is one day to be transformed into insight [Einsicht],
then, clearly, since logical inference consists of iterating certain elementary logical inferences, we will
attain this insight only through our intuition [Anschauung] of iteration, i.e., of the infinite repetition
of a procedure. But from this intuition we also directly obtain the fundamental arithmetical insights
into the natural numbers on the basis of which the whole Mathesis pura is logically constructed.

20.1.2.1. A Task for Other Scientists: Proto-mathematics

How to define this insight/intuition, because Weyl never gives a completely
satisfactory definition of it?

This is not the place to analyze the transition from an intuitive nature of
mathematics to its construction as a culture, or symbolic thought. We have also
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to admit honestly that this goes beyond the competence (and daily activity) of
a mathematician, calling other disciplines into play, so we stop here.

What is certain is that such a insight/intuition does not fall from a Platonic
sky (Section 20.1.4), but, in parallel with its bio-evolutive and physiological
origin, arising, shall we say, from some proto-mathematics, it is the product of
historical events, and cultural residues.

As an Enriques already observed at the beginning of the twentieth century, it
is expedient to investigate the physiological root of logic; and equally, in geometry,
we can identify a psycho-genetic ground for abstract spaces, passing from visual,
tactile and muscular origins of a physiological space to a geometric space, whence
it follows that space in geometry is/turns out to be a sort of limit of physical
space. Proto-mathematics surveys are of this type.99

20.1.3. Betwixt 0 and 1, and All the Rest

Intellectus igitur, non reperit, sed facit Numeros.a
— J. Caramuel [517, p. xliv]

[T]he respective interpretations of the symbols 0 and 1 in the system of Logic are Nothing and
Universe.

— G. Boole [368, p. 48]

Nos cogita numero, ergo numero es.
— G. Peano [2042, p. 365]

Nature does not count nor do integers occur in nature. Man made them all, integers and all the
rest, Krone[c]ker to the contrary notwithstanding.

— P.W. Bridgman [417, p. 100]

(1) Mathematics is mainly the science of numbers and measure(ment), that
is, of space and spatial figures (geometry).

(2) The only numbers that may—mathematically—exist are 0 and 1, namely:
0 and 1 are, if you like, the only form (εἶδος) of mathematics; but also for these
two numbers it is necessary to talk about primary ideas, because even the base-2
numeral system,b with 0s and 1s, is a product of human culture, or a medley

aIt may be curious to read, in this perspective, a part of the Stagiriticus tradition, in which the
mental creation of numbers is a very common act. See e.g. J. Caramuel, which already thinks in a
set key [517, pp. xliii-xliv]: «A guy was talking in his sleep, & when the clock struck four, he said:
“One, one, one, one. This clock is crazy: it has struck one four times over”. The guy had counted a
hit four times, & not four hits. He had in mind the one four times in place of four. The counting is
one thing, the considering several things together is another. If I had four clocks in my Studio, & if
they all struck one, I will not say that they struck four but one four times. Four times one is not the
same as four [that is, they are different]. And this difference is not a property of things, it is not
independent of the operations of the mind: if anything, it depends on the mind of the person who
is counting [Hæc differentia non est in rebus, à mentis operatione independens: ergo pendet à
mente numerantis]. Intellect, therefore, does not find but makes numbers [Intellectus igitur, non
reperit, sed facit Numeros]; it consider several things, as each distinct [ut discreta] in itself, & as
intentionally united by thought [ut intentionaliter unita cogitando]».

bThe contours of binary calculus are expressly outlined by G.W. Leibniz [1606] (see also his
earlier writing De organo sive arte magna cogitandi, 1679), but its seeds were sown by the ancient
Chinese culture of Fuxi (伏羲), here called “Fohy” [1606, pp. 87-88]: «What is surprising in this
calculus is that this Arithmetic by 0 & 1 is found to contain the mystery of the lines of an ancient
King & Philosopher named Fohy, who is believed to have lived more than four thousand years
ago [ . . . ]. There are several Linear Figures attributed to him. All [of which] are found in this
Arithmetic, but it is sufficient to show here the Figures of the Eight Cova, as they are called, which
are considered fundamental, & to join to them the manifest explanation, provided that primarily a
whole line —— means unity or 1, and later that a broken line — — means zero or 0. The Chinese
lost the meaning of the Cova or Lineations of Fohy, perhaps more than a millennium; & they have
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of primitive concepts, anyway connected to the evolution/experience, and fixed
formally along it.

(3) The remaining numbers, and all number types, are systems evolving from
the branches of mathematics, in line with the dictates of powerful creation.

(4) Numbers are our instrument (but let us safely call it filter) to get to
know the world. This is perhaps the primigenial meaning—or at least we like
to perceive it that way—of the fragment attributed to Pythagorean Philolaus
(Testimonia, Part 2, D7 (B4), Stob. 1.21.7b):

All the things that are known have a number, and we cannot think and know anything without
it [καὶ πάντα γα μὰν τὰ γιγνωσκόμενα ἀριθμὸν ἔχοντι. οὐ γὰρ ὁτιῶν 〈οἷόν〉 τε οὐδὲν οὔτε νοηθῆμεν
οὔτε γνωσθῆμεν ἄνευ τούτου].

Everything that is known is also enumerated; this is because the very act
of thought (νοεῖν) has ἀριθμόν: all things are known by numbers, and without
number (ἀριθμόν) there is no knowledge (πάντα τὰ γιγνωσκόμενα); cf. [899,
pp. 30-33] [2733, pp. 25-26, 34-35]. The number is ultimately our ability to
distinguish things, see [1501, chap. 6, and p. 64].

20.1.4. Logomachy of Mathematicians, and Cock-and-Bull Stories

There really is no such thing as [Mathematics]. There are only [mathematicians].
— Modified sentence of E.H. Gombrich [1177, p. 5]a

«Existence», for the objects of mathematics, shall be understood in a broad
sense, and not ideally à la Hermite–É. Borel–Gödel–Thom–Manin (naïf realism),
or à la Hardy–Connes–Penrose–Conway (descriptive realism), and nor à la
Grothendieck (constructive realism), with the appropriate distinction among the
various authors.

(1) C. Hermite [1332, lettre 410, p. 398]:
I believe that numbers and functions of analysis are not the arbitrary product of our mind [ne

sont pas le produit arbitraire de notre esprit]; I think that they exist outside of us [ils existent
en dehors de nous] with the same character of necessity as the things of objective reality [les
choses de la réalité objective], and that we encounter or discover them [nous les rencontrons ou les
découvrons], and that we study them, like physicists, chemists and zoologists [comme les physiciens,
les chimistes et les zoologistes].

(2) É. Borel [1030, p. 33]:
My method [ . . . ] is a constant attention to study mathematical entities in themselves [êtres

mathématiques en eux-mêmes], as the biologist studies living beings [comme le biologiste étudie
les êtres vivants], to familiarize myself with them [ . . . ]. This working method led me to a realistic
conception of mathematics [conception réaliste des mathématiques] which distinguishes mathematical
entities that can be effectively defined from those whose existence is purely hypothetical.100

(3) K. Gödel [1171, p. 128]:
Classes [as collections of sets] and concepts [of formal logic as the properties and relations of

things existing independently of our definitions and constructions] may, however, also be conceived
as real objects.

written commentaries on them in which they have sought I know not what hidden meanings. The
true explanation now has to come from Europeans».

aGombrich is an art historian, so I replaced, in his phrase, the words “Art” and “artists” with
“Mathematics” and “mathematicians”. The replacement of these words (and their interchangeabil-
ity)—as it will be looked at later—is a painless operation.
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(4) R. Thom [2482, p. 100, it is an interview]:
R. Thom: «Mathematical ideas are produced in our brains as long as we think of them. But

since they exist [even] when we do not think about them, then they exist somewhere [quelque part],
and not only in our memory: they exist, I would say, elsewhere [également ailleurs]».

E. Noël: «Then do [mathematical ideas] already exist before they are discovered?».
R. Thom: «Certainly! And they are realized [se réalisent] [ . . . ] in this or that case, with this or

that suitable material [matériau approprié]. It is the old idea of participation in Plato[’s dialogues]».

(5) Yu.I. Manin [1758, p. 4]:
[T]here is a noble vision of the great Castle of Mathematics, towering somewhere in the Platonic

World of Ideas, which we humbly and devotedly discover (rather than invent). The greatest
mathematicians manage to grasp outlines of the Grand Design, but even those to whom only a
pattern on a small kitchen tile is revealed, can be blissfully happy. Alternatively, if one is inclined to
use a semiotic metaphor, Mathematics is a proto-text whose existence is only postulated but which
nevertheless underlies all corrupted and fragmentary copies we are bound to deal with.

(6) G.H. Hardy:
[1288, p. 18] I have myself always thought of a mathematician as in the first instance an observer,

a man who gazes at a distant range of mountains and notes down his observations. His object is
simply to distinguish clearly and notify to others as many different peaks as he can.

[1289, § 24, p. 130] 317 is a prime, not because we think so, or because our minds are shaped in
one way rather than another, but because it is so, because mathematical reality is built that way.

(7) A. Connes [619, pp. 28, 40, 49]:
I think I am quite close to the realist point of view. For me, the sequence of prime numbers, for

example, has a more stable reality than the material reality that surrounds us. We can compare the
mathematician at work to an explorer discovering the world [ . . . ]. Let us compare mathematical
reality [réalité mathématique] to the material world around us. What proves the reality of this
material world in addition to the perception that our brain has of it? Mainly, the coherence of our
perceptions, and their permanence. More precisely, the coherence of touch and sight for one and
the same individual. And the coherence between the [various] perceptions of several individuals.
Mathematical reality is of the same nature [ . . . ]. I think mathematician develops a “sense”, irreducible
to sight, hearing and touch, which allows him to perceive a constraining reality as it happens with
physical reality but much more stable, because it is not localizable in space-time.

(8) R. Penrose, whose position is recoverable in a few of his popular books,
says this, summing up: the «existence» of mathematical objects is but the
«objectivity of mathematical truth». For Penrose, “objectivity” means the
presence of an «external standard» that is independent of our «individual
opinions» and «particular culture»:

[2061, p. 112] [O]ne can argue under the heading of ‘Platonism’ whether the objects of mathe-
matical thought have any kind of actual ‘existence’ or whether it is just the concept of mathematical
‘truth’ which is absolute [ . . . ]. In my own mind, the absoluteness of mathematical truth and the
Platonic existence of mathematical concepts are essentially the same thing. The ‘existence’ that
must be attributed to the Mandelbrot set, for example, is a feature of its ‘absolute’ nature. Whether
a point of the Argand plane does, or does not, belong to the Mandelbrot set is an absolute question,
independent of which mathematician, or which computer, is examining it. It is the Mandelbrot set’s
‘mathematician-independence’ that gives it its Platonic existence.101 Moreover, its finest details lie
beyond what is accessible to us by use of computers. Those devices can yield only approximations
to a structure that has a deeper and ‘computer-independent’ existence of its own.a

[2063, pp. 13-17] What I mean by this ‘existence’ is really just the objectivity of mathematical
truth. Platonic existence, as I see it, refers to the existence of an objective external standard that is
not dependent upon our individual opinions nor upon our particular culture. Such ‘existence’ could
also refer to things other than mathematics, such as to morality or aesthetics [ . . . ]. Now, do we
take the view that Fermat’s assertion was always true, long before Fermat actually made it, or is its

aCompare with R. Penrose [2071, p. 97]: «One of [my prejudices] is that the entire physical world
can, in principle, be described in terms of mathematics. I am not saying that all of mathematics can
be used to describe physics. What I am saying is that, if you choose the right bits of mathematics,
these describe the physical world very accurately and so the physical world behaves according to
mathematics. Thus, there is a small part of the Platonic world which encompasses our physical
world».
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validity a purely cultural matter, dependent upon whatever might be the subjective standards of
the community of human mathematicians? [ . . . ] The Mandelbrot set was certainly no invention of
any human mind [ . . . ]. If it has meaning to assign an actual existence to the Mandelbrot set, then
that existence is not within our minds, for no one can fully comprehend the set’s endless variety and
unlimited complication.

(9) J.H. Conway [1290, p. 14]:
I’m perennially fascinated by mathematics, by how we can apprehend this amazing world that

appears to be there, this mathematical world. How it comes about is not really physical anyway, it’s
not like these concrete buildings or the trees. No mathematician believes that the mathematical
world is invented. We all [sic] believe it’s discovered. That implies a certain Platonism, implies a
feeling that there is an ideal world. I don’t really believe that.102

(10) A. Grothendieck [1227, 2.5. Les héritiers et le bâtisseur, p. 27 otm]:
The structure of a [mathematical] object [chose] is not in any manner something that we can

“invent”. We can only patiently bring it to the daylight, humbly making it known, “discovering” it.a
[Nevertheless] there is inventiveness in this work, and [ . . . ] we happen to perform as a blacksmith
[forgeron] or a tenacious builder [bâtisseur ] [ . . . ]. It is to express, as faithfully as we can, these
objects that we are at the core of discovery [ . . . ]. Thus we are lead to constantly “invent” the
language capable of expressing, ever more finely, the intimate structure of the mathematical object,
and to “construct”, with the help of this language, progressively and one step at a time, the “theories”
which are supposed to account for what has been apprehended and seen. There is a continual,
uninterrupted back-and-forth movement between the apprehension of objects and the expression of
what has been apprehended, by a language that is [repeatedly] refined and re-created.

We believe that all the above-mentioned opinions—one of which even falls
into a ludicrously divine pose—are to be put in the Big Book of cock-and-bull
stories, with the exception of Grothendieck, when he refers to an inventive step
(«constamment “inventer ” le langage apte à exprimer de plus en plus finement
la structure intime de la chose mathématique, et à “construire” à l’aide de ce
langage [ . . . ] les “théories”»), and, partly, of Penrose (Section 20.1.4.3).

Questions about the concept of “existence” or “reality” in mathematics are a
verbosa disputatio [1069, between p. 16 and 17, under the Pleiadum Constellatio
drawing] (a «wordy dispute», although fascinating), a logomachy (λογομαχία), a
vain and inconclusive dispute: depending on the meaning we give to this concept,
the position taken can change.

20.1.4.1. The Road to Consensus

The dispute can be closed specifying which terms representing what we
call objectivity, or what we think to be true in mathematics, under a certain
consensus, in accordance with an organamentob (“organization”, “coordination”)
that localizes and encodes—in time and space—our traces of a language of
quantities, an imaginary language,c thanks to which it is possible to identify

a The border between invention/creation and discovery, in mathematics, is also blurred in the
etymological suggestion; the La. inven̄ıre (from which invent̆ıo, inventiones) can be translated as
“finding or discovering by investigating, or by construction”. For Grothendieck, inventiveness seems
to coincide with a construction. A brief enquiry into the potpourri of words, with the interchange
between “invention” and “discovery”, is in W.T. Gowers [1187].

bIn this context, the quote from T. Landolfi [1574, p. 48], with the short story Dialogo dei
massimi sistemi, which talks about language, is an irresistibly pleasure: his irreverent sarcasm,
dropped into a grotesque reconstruction, and enriched by a language full of pirouettes, is a stroke of
genius.

cImagination, in mathematics, is, neither more nor less, a representation of an object through
the medium of a symbolic strumentario, from the La. imago, which signifies “image”, “appearance”,
“likeness”, “representation”, “imitation” (cf. μῖμος), “thought”, “conception”.
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certain attributes of shared reality. And so A. Borel’s [372, pp. 13-14, e.a.]
attitude seems much more genuine to us:

Many do [ . . . ] have a vague feeling that mathematics exists somewhere, even though, when they
think about it, they cannot escape the conclusion that mathematics is exclusively a human creation.
Such questions can be asked of many other concepts such as state, moral values, religion, etc. [ . . . ]
we tend to posit existence on all those things which belong to a civilization or culture in that we share
them with other people and can exchange thoughts about them. Something becomes objective (as
opposed to “subjective”) as soon as we are convinced that it exists in the minds of others in the same
form as it does in ours, and that we can think about it and discuss it together. Because the language
of mathematics is so precise, it is ideally suited to defining concepts for which such a consensus
exists. In my opinion, that is sufficient to provide us with a feeling of an objective existence, of a
reality of mathematics similar to that mentioned by Hardy and Hermite above, regardless of whether
it has another origin, as Hardy and Hermite maintain.

Margo 20.1.1 (And in theoretical physics?). In theoretical physics one has the
same thing. Here too there is the expectation of reaching a «consensus», an
«agreement», or a «general mental attitude». Cf. W. Pauli [2030, p. 94]:

Man will have without exception the spontaneous experience of a reality [Erfahrung einer
Wirklichkeit] and will describe it in words that seem appropriate to him. However, he can recognize
judgments on the being [Seinsurteile] [of things] as conditioned [alsbedingt] by the efforts, hopes,
desires, in short, by the general mental attitude [allgemeine seelische Einstellung] of the individual
or the group which make these statements.

Read Pauli [2029, pp. 30-31, e.a.] again, where he talks about how quantum
mechanics has gradually taken its shape (cf. footnote d, p. 454):

After a brief period of spiritual and human confusion, caused by a provisional restriction
to “Anschaulichkeit” [intuitive comprehension], a general agreement was reached following the
substitution of abstract mathematical symbols, as for instance psi [ψ], for concrete pictures.
Especially the concrete picture of rotation has been replaced by mathematical characteristics of the
representations of the group of rotations in three[-]dimensional [Euclidean] space. This group was
soon amplified to the Lorentz group in the work of Dirac [see Section 3.4.2.2].

I believe [ . . . ] that a rigorous mathematical formalism and epistemological analysis are both
indispensable in physics [ . . . ]. While I try to use the former to connect all mentioned features of the
theory with help of a richer “fulness” of plus and minus signs in an increasing “clarity”, the latter
makes me aware that the final “truth” on the subject is still “dwelling in the abyss”. I refer here to
Bohr’s favourite verses of Schiller:103 “Nur die Fülle führt zur Klarheit / Und im Abgrund wohnt
die Wahrheit” [Only fullness leads to clarity / and truth lies in the abyss]. L

20.1.4.2. Atiyah’s No-counting Jellyfish

In the magazine article by M.F. Atiyah [151] there are several points of
contact with my mathematical Weltanschauung (together with some phrases
with which I disagree). The article is a direct response to Connes, to boot,
in the above-mentioned conversation [619] with J.-P. Changeux, biologist and
neurophysiologist. It is a bit long, but it deserves all the attention (e.a.):

Does mathematics have an existence independent of our physical world? Do mathematicians
discover theorems, rather than invent them? [ . . . ] Any mathematician must sympathise with Connes.
We all feel that the integers, or circles, really exist in some abstract sense and the Platonist view is
extremely seductive. But can we really defend it? Had the universe been one-dimensional or even
discrete it is difficult to see how geometry could have evolved. It might seem that with the integers
we are on firmer ground, and that counting is really a primordial notion.

But let us imagine that intelligence had resided, not in mankind, but in some vast solitary and
isolated jellyfish, deep in the depths of the Pacific. It would have no experience of individual objects,
only with the surrounding water. Motion, temperature and pressure would provide its basic sensory
data. In such a pure continuum the discrete would not arise and there would be nothing to count.

The jellyfish is the characterization of a symbolic being who lives in per-
fect continuity, immersed in a sort of ideal sea without discreteness; but we
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know—cf. point (3) in Section 9.2.1.1—that (numerical) mathematics exists due
to discreteness.

Even more fundamentally, in a purely static universe without the notion of time, causality would
disappear and with it that of logical implication and of mathematical proof [ . . . ]. It may be argued
that such “gedanken universes” are not to be taken seriously. Our actual universe is a given datum
and the inevitable background of all intelligent discussion. But this is tantamount to conceding that
mathematics has evolved from the human experience. Man has created mathematics by idealising
or abstracting elements of the physical world.

For a Platonist like Connes mathematics lives in some ideal world. I find this a difficult notion
to grasp and prefer to say, more pragmatically, that mathematics lives in the collective consciousness
of mankind [ . . . ]: there are two essential components of mathematics. In the first place it deals with
concepts and abstract processes which live in the conscious mind of the individual mathematician.
Second, it must be communicable to other mathematicians.

[ . . . ] Where does this point of view leave the dichotomy between creation and discovery
in mathematics? By resisting the embrace of the Platonic world have we lost the possibility of
making “discoveries”? Is every theorem man-made? Not at all [ . . . ]. [M]an creates the concepts of
mathematics but he discovers the subsequent connections between them. The reason he can have it
both ways is that mathematics is firmly rooted in the real world.

[ . . . ] In his dialogue with Connes, Changeux keeps hitting the Platonist rock. As a hard-headed
experimental scientist Changeux wants to identify mathematics with what actually goes on in the
brain. For him this is the only reality and the only place where mathematics exists. Connes disputes
this extreme attitude and prefers to say that mathematical reality (which exists elsewhere) is reflected
in the neurological processes of the brain. To confuse the two is like identifying a piece of literature
or music with the ink and paper on which it is recorded. It is hard to disagree, but fascinating
questions remain.

A poem or a song is not what is written on the paper, of course; but is what
is written in our mind/heart. So we can rest assured: there is no a Platonic
world in which the Poetry of a Zanzotto or the Music of the GY!BE hovers &
lives, also at the larval stage, and from which it descends; there is no a cosmos,
in the Borgesian style, in which letters and notes floating in the air await to
be captured by gifted writers and musicians. The same remark is replicable
for mathematicians, who are not a privileged or «divine» race, as Dedekind
mistakenly judges. Atiyah’s article goes on like this:

Man has been the ultimate winner of the evolutionary process and his brain has the structure
needed to produce mathematics. Would a different neurological solution have led to a different kind
of mathematics, or does mathematics depend only on the functional capacity of the brain, not on its
biological mechanism?

If one views the brain in its evolutionary context then the mysterious success of mathematics
in the physical sciences is at least partially explained. The brain evolved in order to deal with the
physical world, so it should not be too surprising that it has developed a language, mathematics,
that is well suited for the purpose.

We will cover this subject-matter a bit more in Section 22.1.6.3.

20.1.4.3. Many Truths I. Triangle with Two Line Segments

Σχήματα εὐθύγραμμά ἐστι τὰ ὑπὸ εὐθειῶν περιεχόμενα, τρίπλευρα μὲν τὰ ὑπὸ τριῶν.a
— Euclid [909, ῞Οροι, ιθ΄v, Στοιχείων α΄v, Book I, p. 6]

A triangle is a rectilinear figure included by three sides.
— O. Byrne [460, Book I, Euclid of Byrne, Def. XXI, p. xx]

We ask a trivial question: is it possible to construct a polygon with three
edges and three vertices having available two sides, or two line segments? No, that
cannot be. The same occurs with numbers: if we say e.g. that a prime number

a«Rectilinear figures are those contained by straight lines: trilateral figures being those contained
by three [straight lines]».
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is a number n ∈ N+, greater than 1, that cannot be obtained by multiplying two
smaller natural numbers, then 5 or 317 are prime numbers, whether we like it or
not (cf. Hardy, point (6) above).

By doing it this way, then, the triangle, and the numbers 5 or 317, exist
in Penrose’s sense, and Penrose is right to identify the “existence” of an object
of mathematical thought with some «objectivity of mathematical truth» that
«transcends» mere opinion. But this is not the heart of the matter. Let us not
be infatuated/misled with/by certain words, such as “existence”, “(transcendent)
reality”, or “truth”.

It goes without saying that, in mathematics, a system of fundamental
rules—let us call them like that—is needed to go beyond individual or ma-
jority standpoints, or certain ideas which are «agreed by all», speaking of which,
Penrose [2063, p. 13] stresses faultlessly a problematic circularity: «Do we mean
‘agreed by all’, for example, or ‘agreed by those who are in their right minds’, or
‘agreed by all those who have a Ph.D. in mathematics’ (not much use in Plato’s
day) and who have a right to venture an ‘authoritative’ opinion?».

And yet, in mathematics, in its historical growth, there is a river of consensus,
carrying every thought, and imposing an evolution in the objectivity of the rules,
so that the latter are pushed towards new horizons and perspectives, by enlarging
them, or, on the contrary, by reducing them (Section 21.5). Not only that. There
are rules, in a lot of mathematics, which are altogether arbitrary (Section 21.7).

E. Frenkel, a specialist in the Langlands programa [1042] [1043, chapp. 1, 10]
[1046], who reveals himself [1045, p. 234] to be a Platonist à la Penrose, writes
[1044, p. 8] e.g. that

In mathematics there is only one truth, and only one path to reach that truth. My mathematical
work is perceived and interpreted in essentially the same way by everybody who reads it. Not so
[ . . . ] in the arts in general. First, there isn’t a single truth, and second, there are so many different
paths to express the truth. And the viewer is always part of an artistic project: at the end of the
day, it’s all in the eye of the beholder.

This is not correct. Just take a look at the history (Section 21.4). What
does “one truth” mean? Could it mean that a triangle (every triangle) has three
sides and three angles, and 5 is a prime, now and always? There again, we are
facing a trivialis necessity inherent in mathematics. But even in mathematics
there are many truths, just as there are many paths to reach them. Fortunately,
Frenkel thinks (ibid.) that «Doing mathematics is a creative pursuit that requires
passion, just like painting, music, and poetry» (cf. Section 21.7.1).

20.1.4.4. Many Truths II. The Normality of π

This question raises difficulties for those who are too ready to identify truth and provability. If
you look at actual mathematical practice, and in particular at how mathematical beliefs are formed,
you find that mathematicians have opinions long before they have formal proofs.

— W.T. Gowers [1186, p. 194, e.a.]

Such a multi-truth also surfaces, in its own way, in number theory; see the
case mentioned by W.T. Gowers, about the sequences of digits that occur with

aThe start of the Langlands program goes back to R. Langlands’ letter [1576] to A. Weil, with
the appearance of the LG group, or L-group of G, the Langlands dual group of a reductive algebraic
group G, see [1881] [1882] [1883, part IV, various authors, pp. 109-400].
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the right frequencies forming numbers called normal. The normality of π is,
supposedly, an unsolved problem and, at the same time, an unproven theorem.
The difficulty lies in finding and proving that the expansion of π contains a
million sevens in a row, for instance. But here is Gowers’s comment [1186, ivi]:

So what, then, is the status of the reasonable-sounding heuristic argument that π contains a
million sevens in a row, an argument that convinces me and many others? This question raises
difficulties for those who are too ready to identify truth and provability. If you look at actual
mathematical practice, and in particular at how mathematical beliefs are formed, you find that
mathematicians have opinions long before they have formal proofs. When I say that I think π almost
certainly has a million sevens somewhere in its decimal expansion, I am not saying that I think there
is almost certainly a (feasibly short) proof of this assertion—perhaps there is and perhaps there
isn’t. So it begins to look as though I am committed to some sort of Platonism.

Let us put it in other words: provability and truth take different roads;
sometimes they are parallel, and other times they are crossed; but the road is
never the same. This is how D.R. Hofstadter [1371, p. 19] recaps (referring
to Gödel’s revolution, cf. Section 21.7.2): «Gödel showed that provability is
a weaker notion than truth, no matter what axiomatic system is involved».
But just be cautious: such a phrase, prima facie, can instill the nefarious idea
that truth is something monolithic; it is a wrong impression. The concept of
mathematical truth is something prismatic, multifaceted.
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21.1. Naturæ Mæandri and Filum Ariadneum: a Botanical
Comparison

Nomina si nescis, perit & cognitio rerum [1665, VII, § 210, p. 158].a
Nomina respondeant Methodo Systematicæ [ . . . ]. Scientia Naturæ innititur Cognitioni Natu-

ralium Methodicæ & Nomenclaturæ Systematicæ tamquam filo ariadneo, fecundum quod Naturæ
mæandros unice tutoque permeare liceat [1666, pp. 7-8].b

— C. von Linné

In their research, mathematicians study the facts of mathematics with a taxonomic zeal similar
to a botanist studying the properties of some rare plant.c

— G.-C. Rota [2232, p. 89, e.a.]

The naturæ mæandros of Linnaeus bring to mind the oscuro laberinto of
Galilean nature (universe) [1071, p. 25], in the celebrated piece in which instead
of «names» there are «characters» belonging to the language of mathematics,
that is, «triangles, circles, & other Geometric figures» (see Section 27.1.2).

In the natural sciences (from physics to botany), there are «things» (facts,

a«If you do not know the names of things, the knowledge of them is lost too».
b«Names respond to a systematic method. Science of nature rests on the method of knowledge

[that we have] of it and on the systematic nomenclature, which is like an Ariadne’s thread, only
thanks to which it is possible to safely flow through the meanders of nature».

cThis passage is taken from [2232, The Double Life of Mathematics, pp. 89-90, e.a.] that
deserves to be fully read: «Are mathematical ideas invented or discovered? [ . . . ] [M]athematics
has been leading a double life. In the first of its lives mathematics deals with facts, like any other
science. It is a fact that the altitudes of a triangle meet at a point; it is a fact that there are only
seventeen kinds of symmetry in the plane; it is a fact that there are only five non-linear differential
equations with fixed singularities; it is a fact that every finite group of odd order is solvable [ . . . ].
In its second life, mathematics deals with proofs. A mathematical theory begins with definitions
and derives its results from clearly agreed-upon rules of inference. Every fact of mathematics must
be ensconced in an axiomatic theory and formally proved if it is to be accepted as true. Axiomatic
exposition is indispensable in mathematics because the facts of mathematics, unlike the facts of
physics, are not amenable to experimental verification. The axiomatic method of mathematics is
one of the great achievements of our culture. However, it is only a method. Whereas the facts of
mathematics once discovered will never change, the method by which these facts are verified has
changed many times in the past, and it would be foolhardy to expect that changes will not occur
again at some future date».

Yeah, well, certainly, mathematics—as B. de Finetti [997, p. 7] pointed out—must take care not
to harbour «inveterate rationalistic illusions», considering itself as a complexus of «absolute truths»
that are extraneous to the historical relativism of its evolution. But watch out: a mathematical
fact, in the sense of Rota, may very well be an artefact (conceptual construct) of the mind whose
process of discovery is just the role-playing in the process of creation, cf. Section 25.1.1. Between a
fact of mathematics and a plant it does open up a whole reality.



406 21. Outro—Parva Mathematica: Libera Divagazione 2⁄8

events, organisms, and everything that presents itself to our eyes), but also
«names» to identify them. Mathematics, because contains within itself a
phytological-like propensity, does something similar to what Linnaeus’ names
do in botany: in the service of physics, identifing, fixing a nomenclature, and
describing the labyrinths/meanders of nature.a

Margo 21.1.1 (Botanical nomenclature & demon of order: a uniting thread for
mathematics and morality). To understand the closeness between botany and
mathematics, or of its sense of order, and the familiarity with other disciplines,
such as morality, we can recall an article by C. Magris [1729, p. 117, e.a.]:

1735 is the year in which [Linnaeus] publishes the first edition of Systema Naturæ [1666], the
great classification that will make him a ruler and a symbol of the natural sciences, a writer from
whom Rousseau said, referring especially to his Philosophia Botanica [1665], to have drawn more
profit than any book on morality. The great moralists, capable of thoroughly probing life and its
anarchy, are pressed by the demon of order, by the passion to catalog, to define; this passion for the
totality is doomed to defeat, because no system completely harnesses the unpredictable irregularity
of existence, but only the lucid and geometric love in the system allows us to truly understand the
originality of life, its deviation from the law.

It is the encyclopedia, with its rigorous alphabetical order and its cadastre, that evokes the
chaotic and proliferating image of reality; whoever flirts with disorder and shows off in confused
poses, scattering the cards over the table to give himself a touch of ingenious recklessness, is a
harmless and well-intentioned rhetorician, like one who exhibits his distraction or his own madcap
youth and will hardly understand the demonicity of existence.

Rousseau was right to see in the great Swedish botanist a master of morality, viz. of conceptual
procedures that educate [our ] thought to penetrate the ambiguous and treacherous multiplicity of
the world.105

It is as if physics («the chaotic and proliferating image of reality») emerged
only from an encyclopedic assemblage—think about the ordering assemblage of
mathematics. L

21.2. Rigorousness and Circularity

The theorems of mathematics motivate the definitions as much as the definitions motivate the
theorems. A good definition is “justified” by the theorems that can be proved with it, just as the
proof of the theorem is “justified” by appealing to a previously given definition. There is, thus,
a hidden circularity in formal mathematical exposition. The theorems are proved starting with
definitions; but the definitions themselves are motivated by the theorems that we have previously
decided ought to be correct.

— G.-C. Rota [2232, p. 97, e.a.]

Often one is led to confuse the axiomatic exposition of mathematics—which
can erroneously translate into a lack of invention in the selection of adequate
definitions—with the logicus strictus rigor (see Section 21.7.2, and footnote c
on p. 430); but on closer inspection, a circular schema, dictated by the need to
adjust definitions and theorems, appears in the genesis of mathematics, so that
both go hand in hand. Far from being a lack of arbitrariness, the mathematical
circularity is the affirmation of personal whim, within the limits, assuredly, of
random choices that historically lead to this or that result.

aBut as soon as we skip from the Republic of pure mathematics to the mathematical physics, or
to a mathematics with phenomenal velleities, the judgment changes promptly. In the 2nd book of
his Exposition (entitled Des mouvemens réels des corps célestes), P.-S. de Laplace [1582, p. 94]
writes: «If man were confined to collecting facts [recueillir des faits], the sciences were but a sterile
nomenclature [nomenclature stérile], and he would never have known the great laws of nature».104
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21.3. Grainy Music and Chance

I think one clearly discerns the internal grounds of the coincidence or parallelism [ . . . ] between
the mathematical and musical ἔθος. May not Music be described as the Mathematic of sense,
Mathematic as Music of the reason? [ . . . ] Thus the musician feels Mathematic, the mathematician
thinks Music,—Music the dream, Mathematic the working life—each to receive its consummation
from the other.

— J.J. Sylvester [2443, p. 613]106

[W]hen scientific and mathematical thought serve music, or any human creative activity, it
should amalgamate dialectically with intuition. Man is one, indivisible, and total. He thinks with
his belly and feels with his mind.

— I. Xenakis [2700, p. 181]

Scientific thought often proceeds ambiguously, and a background of ambi-
guity,107 marked by a creative agency, is, and remains, irremovable even with
the completion of a theorem, or even a theory. Rarely an idea, related to a
mathematical or mathematico-physical concepts, is born in a clear way, exactly
as we see it today, but it is the result of multiple minds which have succeeded
one another, as e.g. G.V. Schiaparelli [2299, p. 11]a reminds us; that is, it is
the—uncontrolled—result of a cross-stratifying sediment, and of a reorganization
by adventurous, if not fortuitous, actions (cf. Section 21.7.1). Certain solutions
appear and then disappear, like a karst river, only to reappear in other places
where they are needed. In brief, the advancement of scientific thought, along
its shapes and nervaturæ, is a blind concrescence, not teleologically determined,
through deviations and variations that are Darwinianly accidental or spontaneous
[726, pp. 94, 213] [727, p. 205].

According to this analogy, theorems of mathematics and statements of physics
(expressed in mathematical language) evolve a bit like a musical composition by I.
Xenakis [2700, chapp. II-III, V]b [2553]: the evolutionary process is retrospectively
predictable in its entirety, but the individual events, which contribute to forming
it, are wholly random. Xenakis says [2553, pp. 73, 76, e.a.]:

I felt that I could solve the slow change in the large masses of sound events only with the help
of probability [theory] [ . . . ]. I, in trying to control mass events, naturally reached determinism and
indeterminism. In determinism the same cause always has the same effect. There’s no deviation, no
exception. The opposite of this is that the effect is always different, the chain never repeats itself.
In this way we reach absolute chance—that is, indeterminism.c

a«If today, for us who are the last grandchildren of [ . . . ] illustrious masters, by making the most
of their mistakes and their discoveries, and climbing to the top of the building erected by them, we
were able to embrace a wider horizon with our eyes, it would be a dolt haughtiness to believe for
this that we have a longer and sharper view compared to them. All our merit lies in having come
into the world later [stolta superbia nostra sarebbe il credere per questo d’aver noi vista più lunga
e più acuta di loro. Tutto il nostro merito sta nell’esser venuti al mondo più tardi]».

bI. Markovian Stochastic Music—Theory, II. Markovian Stochastic Music—Applications, V. Free
Stochastic Music by Computer.

cXenakis later explains [2553, pp. 84-85, e.a.] that: «In order for me to write Herma [2699] I
had to do logical operations with the sets. The basic operations are intersection, union and negation
[ . . . ]. Naturally I had to place it all into time because so far I was only working theoretically, with
an outside-time structure (the logical functions) [ . . . ]. Time, then, is a means for us to unfold the
outside time structure of the piece. How can we demonstrate the sounds of a set on the piano?
By playing them one after the other. In what order? If we played them chromatically, upwards or
downwards, we would be observing too strict a rule. If we want to be free the sounds should follow
without any melodic law, independently of one another. So we have to play them at random. In
other words, to demonstrate the elements of a set we have to use the stochastic method [ . . . ]. Let
us say, as an example, that I have an A set and a B set. What can I do with them? I can combine
them in a logical way. One such way, as I said, is their union—in other words I take all the notes of
the two sets. Then I can take the sounds the two sets have in common. And finally I can take the
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21.4. History and Mathematics

[T]he nervous system is based on two types of communications: those which do not involve
arithmetical formalisms, and those which do, i.e. communications of orders (logical ones) and
communications of numbers (arithmetical ones). The former may be described as language proper,
the latter as mathematics. It is only proper to realize that language is largely a historical accident.
The basic human languages are traditionally transmitted to us in various forms, but their very
multiplicity proves that there is nothing absolute and necessary about them. Just as languages like
Greek or Sanskrit are historical facts and not absolute logical necessities, it is only reasonable to
assume that logics and mathematics are similarly historical, accidental forms of expression.a

— J. von Neumann [1927, pp. 81-82, e.a.]

Mathematics is nothing if not a historical subject par excellence.
— G.-C. Rota [2232, p. 100]

(1) Mathematics, we said, grows without a method of control, grain by
grain, and varies by a relentless rearrangement. This is because, as Rota says,
mathematics is a historical subject-matter in an especially representative way.b
It is enough to reveal the human-inventive aspect of mathematics, which has
no intrinsic relationship with nature. Nature has no history : it is just about
events. History, by contrast, is narrative activity on the part of man, that is, is
a critical interpretation (judgment) or representation (investigation) of events,
which takes shape as a «display of a [personal] inquiry» (ἱστορίης ἀπόδεξις).c

(2) The history of mathematics can be understood as a fortuitous/uncon-
trolled evolution of thought, which cannot be traced back to a univocal growth,
or to the aseptic development. The history of mathematical thought (like any
story) is conditioned by contingent stimuli and despondencies, which have little
to do with scientific rationality, psychological neutrality, or organic methodology
(artificially reconstructed a posteriori).

sounds that the two sets don’t have in common. There are, of course, other, more complex logical
functions. In each case I get a new set. How can I demonstrate the elements of the sets? By playing
them. But in order to remain neutral I have to play them at random. I emphasize: only the sounds
that I play at random demonstrate the logical functions of the sets, nothing else. The set can
be amorphous as in Herma or it may occur that its elements are connected in some way. In other
words the sets may have an internal structure. That’s what led me to group structures».

aIt becomes thought-provoking to ask oneself if—since the language of modern humans (from
homininian/australopith ancestors) has been guided by historical fortuity—a different mathematical
language, with a totally different linguistic evolution, can fatally lead to a different mathematical
understanding of reality, videlicet, to a different physics. It is the debated controversia sinking
into the Sapir–Whorf hypothesis. B. Lee Whorf [1599, pp. 212-213, e.a.] points out that: «It
was found that the background linguistic system (in other words, the grammar) of each language
is not merely a reproducing instrument for voicing ideas but rather is itself the shaper of ideas,
the program and guide for the individual’s mental activity, for his analysis of impressions, for his
synthesis of his mental stock in trade. Formulation of ideas is not an independent process, strictly
rational in the old sense, but is part of a particular grammar, and differs, from slightly to greatly,
between different grammars. We dissect nature along lines laid down by our native languages. The
categories and types that we isolate from the world of phenomena we do not find there because
they stare every observer in the face; on the contrary, the world is presented in a kaleidoscopic flux
of impressions which has to be organized by our minds—and this means largely by the linguistic
systems in our minds. We cut nature up, organize it into concepts, and ascribe significances as we
do, largely because we are parties to an agreement to organize it in this way—an agreement that
holds throughout our speech community and is codified in the patterns of our language».

b[2232, p. 99]: «In short, no mathematician will ever dream of attacking a substantial mathe-
matical problem without first becoming acquainted with the history of the problem, be it the real
history or an ideal history reconstructed by the gifted mathematician».

c Herodotus [1333, A 1, p. 2]. An unbiased distinction between history as res gestæ and history
as rerum gestarum narratio tastes like the typical academic fluff. The two are united.
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21.5. Mathematical Evolutionism: What is a proof?

Le verità matematiche non sono come un continente che si va a mano a mano scoprendo. Le
scoperte matematiche sono conseguenza di particolari creazioni della mente, varie e mutevoli nella
diuturna, affannosa indagine che tien dietro all’incessante evolversi ed affinarsi dell’intelligenza. È
per questo che la Matematica, la più luminosa fra tutte le Scienze, è com’esse un perpetuo divenire.a

— M. Cipolla [658, p. 29, e.a.]

We often hear that mathematics consists mainly in “proving theorems”. Is a writer’s job mainly
that of “writing sentences”? A mathematician’s work is mostly a tangle of guesswork, analogy, wishful
thinking and frustration, and proof, far from being the core of discovery, is more often than not a
way of making sure that our minds are not playing tricks.

— G.-C. Rota [2229, p. xviii]

The salient issue is that mathematics is not something fixed, but it evolves,
from age to age and from culture to culture, so there is no external and universal
archetype, with the exclusion of the fundamental rules (see Penrose, point (8),
on p. 399, and Section 20.1.4.3). In the course of time, interests and questions
mutate and adapt within the mathematical debate. The same concepts of
definition or proof are historically conditioned,b and suffer a (inter)subjective
selection criterion,c or reveal some kind of social acceptance.d There is no
method of absolute validity, but many responsive practices extending throughout
hypotheses (see Section 26.1.6.3), presumptions, presuppositions, postulates,
specifically chosen, or selected ad hoc. D. Hilbert’s [1360, p. 85] persuasion that
«mathematics is a presuppositionless science [voraussetzungslose Wissenschaft ]»
must be largely turned down.

We do not have a mathematical truth that is crystallized, out of a historical
epoch: what is valid, rigorous, or true is only a procedure that is shared
by some members of the mathematical, or physico-mathematical, community,
with personal judgments, linked to mental schemata, and aesthetic sensitivities
(Section 27.1), with subjective evaluation.e

a«Mathematical truths are not like a continent that is bit by bit being discovered. The mathe-
matical discoveries are the consequence of particular creations of the mind, varied and changeable
in the daytime, frantic survey keeping up with the incessant evolution and refinement of intelligence.
This is why Mathematics, the most luminous of all the Sciences, is like a perpetual becoming».

bWe consider a bit of malarkey to say that the proof of a conjecture implies that the (conjectural)
proposition has always been true—in the Platonic acceptation—even when the proof, in the past, was
not yet in fermentation among the mathematicians’ intuitions; one thinks of Fermat’s last theorem,
in its centuries-old history, proved by A. Wiles [2666], with the support of R. Taylor [2466].

cG.-C. Rota [2230, pp. 189-190, e.a.] does not beat about the bush: «G.H. Hardy wrote that
every mathematical proof is a form of debunking [of the fakery that lies concealed underneath every
logically correct proof]. We propose to change one word in Hardy’s sentence, as follows: Every
mathematical proof is a form of pretending. Nowhere in the sciences does one find as wide a gap
as that between the written version of a mathematical result and the discourse that is required in
order to understand the same result. The axiomatic method of presentation of mathematics has
reached in our time the zenith of fanaticism. A piece of mathematics, as it is written today, cannot
be understood and appreciated without additional strenuous effort [ . . . ]. Do not get me wrong. I
am not condemning the axiomatic method. There is at present no viable alternative to axiomatic
presentation».

dCf. e.g. W.P. Thurston [2498, § 4. What is a proof?, pp. 168-169, e.a.]: «Within any field,
there are certain theorems and certain techniques that are generally known and generally accepted.
When you write a paper, you refer to these without proof [ . . . ]. At first I was highly suspicious of
this process. I would doubt whether a certain idea was really established [ . . . ]. [But then I realized
that] mathematical knowledge and understanding were embedded in the minds and in the social
fabric of the community of people thinking about a particular topic. This knowledge was supported
by written documents, but the written documents were not really primary».

eNowadays, an uproarious example of how difficult it is to reach a harmony, a consensus, on
what proof means in mathematics, is given by S. Mochizuki’s Inter-universal Teichmüller theory
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21.6. The Role of Analogy

L’Analogia [commune à tutte le scienze mathematiche] è una conuenienza (per dir cos[ì]) di
alcune proportioni [ . . . ]. adunque se faremo comparatione di alcune cose fra loro, poniam caso, di
due grandezze, esse saranno chiamate termini, & il passaggio dall’una all’altra si dir[à] distanza. ma
la comparatione è una conuenienza, che gli antichi nominorono proportione. & la comparatione,
ò vero conuenienza di questa proportione con un’altra proportione secondo una certa somiglianza
chiamasi analogia.a

— F. Commandino [676, p. 61 verso, e.a.]

[ . . . ] Per accentuare certi movimenti e indicare le loro direzioni, s’impiegheranno i segni della
matematica: + − × : =><, e i segni musicali [ . . . ]. V’è in ciò una gradazione di analogie sempre
più vaste, vi sono dei rapporti sempre più profondi e solidi, quantunque lontanissimi. L’analogia non
è altro che l’amore profondo che collega le cose distanti, apparentemente diverse ed ostili. Solo per
mezzo di analogie vastissime uno stile orchestrale, ad un tempo policromo, polifonico e polimorfo,
può abbracciare la vita della materia.b

— F.T. Marinetti [1771, 1st page]

(1) Let us face it: the mention of Marinetti is a literary amusement, a
pleasant break; but what one uncovers in mathematics, and in all math-friendly
physics techniques, is not that different. One of the guiding criterion, if not the
main one, in mathematical science, since the dawn of history, is the analogy
(ἀριθμητική or γεωμετρικὴ ἀναλογία), see e.g. index graecitatis [2011, p. 71] in
the collection that contains some works of Pappus of Alexandria. It is the concept
of relational equality (ἰσότης λόγων), of correspondence, or proportionality, and
the notion of similarity relationship of two elements.

(2) In mathematical physics, see e.g. J.C. Maxwell [1787, p. 156, e.a.]:
In order to obtain physical ideas without adopting [prejudicially] a physical theory we must

make ourselves familiar with the existence of physical analogies. By a physical analogy I mean that
partial similarity between the laws of one science and those of another which makes each of them
illustrate the other. Thus all the mathematical sciences are founded on relations between physical
laws and laws of numbers, so that the aim of exact science is to reduce the problems of nature to
the determination of quantities by operations with numbers.

It should be noticed the jauntiness with which Maxwell passes from analogy
to partial similarity, and leapfrogs to the (so-called) exact science.

(3) Examples abound in theoretical physics, as a matter of fact.
(i) One can read E. Fermi’s words [967, pp. 72, 75-77, e.a.]:
The most natural hypothesis that one is induced to make, when faced with something unknown,

is that its behavior is analogous to that of similar, and already known, things.
[For example] Schr[ö]dinger [ . . . ] built [his] new [wave] mechanics based on a formal analogy

between classical mechanics and geometrical optics [ . . . ]. A very close analogy can be established
between geometrical optics and mechanics, by matching the path of a ray of light to the trajectory
of a material point.108 If the material point moves without forces acting on it, that is, if it crosses a

[1841] [1842] [1843] [1844] [1845], which, for Mochizuki, implies the proof of the abc conjecture, or
Oesterlé–Masser conjecture [1964] [1780], but not in the line of conviction coming from P. Scholze
and J. Stix [2311].

a«Analogy [common to all mathematical sciences] is a convenience (so to speak) of some
proportions [ . . . ]. therefore if we make a comparison of some things among themselves, say, of
two quantities, they will be called terms, & the passage from one [quantity] to another will be
called distance. but the comparison is a convenience, which the ancients defined proportion. & the
comparison, or the convenience of this proportion with another proportion according to a certain
similarity, is called analogy».

b«[ . . . ] To accentuate certain movements and indicate their directions, mathematical [symbols]
+ − × : =>< and musical [notation] will be employed [ . . . ]. There is in this a gradation of ever
wider analogies, there are ever deeper and more solid relationships, though very distant. The
analogy is nothing more than the deep love that connects distant, apparently different and hostile
things. Only by means of vast analogies an orchestral style, at once polychrome, polyphonic and
polymorphic, can embrace the life of matter».
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region of space in which the potential is constant, its trajectory is a straight line: similarly a ray of
light that crosses a region with a constant refractive index, follows a straight path. Therefore to a
region in which the potential is constant corresponds, in the optical comparison, to a region in which
the refractive index is constant. In a region of space where the potential is variable, a material point
describes a curved trajectory; and similarly in a region of space where the refractive index varies from
point to point, the rays of light follow curved paths (think e.g. of the phenomenon of the mirage).
Given any distribution of potential, one can always imagine that, in a region of space, the refractive
index varies from point to point in such a way that the path traveled by light is identical to that
traveled by a material point under the action of the potential [ . . . ]. Now Schr[ö]dinger observes that
classical mechanics also fails when one tries to apply it to very small systems, such as atoms; in this
case, in fact, the peculiar phenomena of quantum theory occur. He therefore tries to push beyond
the analogy [ . . . ] between mechanics and optics and he comes to build the so-called wave mechanics,
analogous to wave optics instead of geometrical optics [ . . . ]. The idea of considering mechanical
facts as a manifestation of an undulatory phenomenon may perhaps seem very strange. The same
idea, however, can also be suggested by another type of phenomena [ . . . ]. In fact the theory of light
quanta, for the explanation of a certain group of phenomena, was induced to postulate a kind of
corpuscular nature of light, or, at some level, to bring the phenomena of optics back to those of a
swarm of corpuscles; this fact also certainly served to suggest that the analogy between mechanical
and wave phenomena is deeper than it seems at first sight.

(ii) We can look back on a bit of Yang–Mills theory. C.N. Yang and R. L.
Mills [2710, p. 192, e.a.]

define isotopic gauge as an arbitrary way of choosing the orientation of the isotopic spin axes at
all space-time points, in analogy with the electromagnetic gauge which represents an arbitrary way
of choosing the complex phase factor of a charged field at all space-time points. We then propose
that all physical processes (not involving the electromagnetic field) be invariant under an isotopic
gauge transformation, ψ → ψ′, ψ′ = S−1ψ, where S represents a space-time dependent isotopic spin
rotation [and ψ is a 2-component wave function for a field with isotopic spin 1

2 ].

It is a bet on creating a theory «[i]n analogy to the procedure of obtaining
gauge invariant field strengths in the electromagnetic case», with the existence of
a field, which has «the same relation to the isotopic spin that the electromagnetic
field has to the electric charge». With this goal, they use − 1

4FµνF
µν as a

Lagrangian density, where

Fµν = ∂µAν − ∂νAµ + [AµAν ] (21.1)

is a Maxwell–Lorentz-type tensor, i.e. a strength tensor of the non-Abelian gauge
field Aµ, coming from the electromagnetic field A(γ)

µ . The analog of the Maxwell
Lagrangian is

Lym = − 1
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µν) = − 1
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α , (21.2)

in which FµνFµν are invariant under global and local Lorentz transformations,
and

Fαµν = ∂µA
α
ν − ∂νAαµ + fαβγA

β
µA

γ
ν (21.3)

may be called Yang–Mills strength tensor, having fαβγ as structure constants of
the gauge group (cf. point (vi), p. 140).

(iii) We can then revamp the Nambu–Jona-Lasinio program. Y. Nambu and
G. Jona-Lasinio [1901] [1902] base their model of strong interactions on an analogy
with the Bardeen–Cooper–Schrieffer–Bogoliubov theory of superconductivity.
They consider [1901, p. 345, e.a.] a representation for a nucleon field ψ of
non-linear, point-like, chirally 4-fermion interaction allowing a γ5-gauge group
(cf. Section 3.5.2.1), so as to put

an analogy between the properties of Dirac particles and the quasi-particle excitations that
appear in the theory of superconductivity.
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The Nambu–Jona-Lasinio-type Lagrangian density is something like this:

Lnjl = ψ̄(i/∂ −m)ψ + в(g)d

(
(ψ̄ψ)2 + (ψ̄iγ5σ⃗ψ)2

)
, (21.4)

where /∂ is the partial derivative in Feynman’s slash notation, m a nucleon
mass, в(g)d

a dimensionful coupling constant, and σ⃗ = (σ1,σ2,σ3) are the Pauli
matrices in isospin spaces.

(4) Pure mathematics, mathematical physics, and theoretical physics: three
distinct disciplines that draw from the same “well” of analogy. As it is easy to
comprise, many examples of knowledge proceed by analogy, jumping from one
position to another.a But this is what gives «plaisir au chercheur», as A. Weil
[2618, p. 408] reminds us:

Nothing is more fruitful [fécond], every mathematician knows it, than these obscure analogies
[obscures analogies], these troublesome [troubles reflets] reflections of one theory into another, these
furtive caresses, these inexplicable quarrels [brouilleries inexplicables]; nothing also gives more
pleasure to the researcher.

(5) The essence of mathematics, and—in different “measures”—of all math-
based fields of study (such as mathematical physics, and theoretical physics), is
not in logic (λογική) but in the comprehension “upon” or “on” (ἀνά) logic: here
is the importance of analogy. The difference between us and a computer’s logic,
or any digital ai, lies completely in that ἀνά.

A computer, with a high level of performance, reaches hundreds of millions
of billions of operations in a fraction of a second, whereas the human mind, after
a little bit of repeated multiplication and division, normally encounters great
difficulties. As S. Dehaene writes [754, p. 119]:

The Homo sapiens brain is to [logical-]formal calculation what the wing of the prehistoric bird
Archaeopteryx was to flying: a clumsy organ, functional but far from optimal.

That is why the project of reproducing an analog mode in ai is a captivate
challenge to those who study the most complex mental processes via computer;
see D.R. Hofstadter [1372].

21.7. Math-Inventiveness: Arbitrariness and Imaginative
Endeavor

21.7.1. Fluvial- and Æolian-like Processes

The imagination acts no less in a geometer who creates than in a poet who invents. It is true
that they operate differently on their object: the first shears it down and analyzes it, the second
puts it together and embellishes it [ . . . ]. Of all the great men of antiquity, Archimedes is perhaps
the one who most deserves to be placed beside Homer.109

— J. le R. d’Alembert [48, p. 65, e.a.]

It is like this. A mathematician proceeds in the same way as a poet, albeit
aE.g. analogies between Riemannian curvature and Cartan space (Section 1.5.2), between spinor

maps and other connections (Section 3.5.1), between magnetic force and gravitational force (Sections
4.1.4 and 4.1.4.1), between (Regge) simplicial decompositions and ordinary polyhedra (Section 6.1.1),
between micro- and macro-scopic world (Section 7.4.1.1), between equations of gravity and laws of
thermo- and hydro-dynamics (Section 7.4.1.2), between Ricci flow and heat-like equation (Section
10.1.2).
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in different ways.a,110 Pace G. Peano [2040, p. 67]b and P.A.M. Dirac [1979, p.
21],c there are not a few concealed ties and oblique intersections between the two
disciplines.d One of the common points between a statement in mathematics,
e.g. a conjecture, or a theorem, and a composition in verse, as a poem, is that
both of them start to exist as an eminently individual act; they are the result
of a completely partial and chance-generated view, and only then they become
(if they become) a collective heritage, which is a mishmash of partial views and
personal bias.

This notwithstanding, there are marked differences between literary composi-
tion and mathematics. A work of mathematics, as opposed to a poem or a novel,
is not closed in on itself. In poetry, the form is given once and for all, whilst
what changes is the interpretation, which is dispersed in the infinite underlying
meanings. In science, things are slightly different. Scientific production is a
mingling of fluvial- and æolian-like processes, with sediments transport, erosions,
and formations of new rock strata,e or something that looks like a Surtseyan

aCf. W. Wordsworth [2697, Book II, 397-405, p. 31]: «The exercise [ . . . ] whose character [is]
poetic as resembling more / Creative agency. I mean to speak / Of that interminable building rear’d
/ By observation of affinities / In objects where no brotherhood exists / To common minds» (e.a.).
The observation, by a poet, of affinities among objects of nature corresponds to the study, by a
mathematician, of uncommon relations built through mathematical objects.

bAs Peano said, a mathematician «can make the hypotheses he likes best»; but once the
hypotheses have been selected/chosen, «it is up to mathematics» to deduce the consequences
rigorously; this is why, in lively controversy with C. Segre, Peano declared [2040, p. 67] that
«Whoever states consequences that are not contained in the premises, will be able to make poetry,
but not mathematics [Chi enuncia delle conseguenze che non sono contenute nelle premesse, potrà
fare della poesia, ma non della matematica]». This sentence it is just a quip against Segre. Peano
was under the chimera that the «perfected logic» which, according to him, is the telltale sign of
mathematics, was sufficient to distinguish it from poetic literature. He was mistaken. Mind you:
this does not mean that the celebrated and glorified «absolute rigor» of mathematics is removed or
obscured. The “poetic” part of mathematics (cf. Intro, p. xxxiii & p. xxxviii, Section 21.7.4, 27.1.6,
or p. 497) is before and after the choice of hypotheses. It is a consubstantial quality.

cJ.R. Oppenheimer writes: «One evening more than 20 years ago Dirac, who was in Göttingen
working on his quantum theory of radiation, took me to task with characteristic gentleness. “I
understand”, he said, “that you are writing poetry as well as working at physics. I do not see how you
can do both. In science one tries to say something that no one knew before in a way that everyone
can understand. Whereas in poetry . . . ”» [one tries to say something that everybody knows already
in words that nobody can understand].

dThe opinion of G. Leopardi [1616, 3242, pp. 267-268] that poetry and mathematics are
unconnected activities, with no intersecting elements, is an emeritus silliness: «Pure [sic] or simple
reason and mathematics never were and never will be able to discover anything poetic. Because
all that is poetic [in nature] is felt rather than known and understood [ . . . ]. But pure reason and
mathematics have no sensorium whatsoever. It is up to the imagination and sensitivity to discover
or understand» the nature’s spirit. That is not true. Mathematics is imagination, is an act of the
creative faculty. Reason (the «cold» [sic] and «simple light of exact and geometric» rationality)
and sensitivity are not distinctly separate as the fumesophers (Section 23.1) want. However, the
motive which drives Leopardi [1615, 586, p. 77] to this judgment is correct: «[T]he plan, the system,
the machine of nature, is composed and organized in another way than that of reason and does not
respond to mathematical exactness».

In [1614, 48, pp. 153-154] Leopardi goes as far as to declare: «[T]here is nothing more enemy
of nature than arid geometry, which takes away all the naturalness [with its “cold” and “bony”
language] and the naïveté [ . . . ] (where beauty is born), and the gracefulness». There is a bit of
confusion here: geometry does not conflict with nature. If so, poetry would be too. And the contrast
between the “dryness” of geometry (or of all of mathematics) and the “fertility” of poetry is an old
cliché—mathematics also has a qualitative side, joined with an imaginative aptitude. It would be
more suitable to speak of inadequacy, just in case: mathematics and poetry are both, in their own
way, inadequate languages to describe nature’s quiddity, cf. Section 22.2.2.

eWe could sum it up like this, with a Latin slogan: mı̆ttĕre, tŏllere, restruĕre, which means
putting, removing, restructuring.
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activity ;a it is about continuously re-writing processes, the form (formalism) of
which, together with the interpretation (the meaning), varies grain by grain,
and moulds itself from one generation, or even from one person, to another.

Mathematics is only one of the (many) possible expressions of λόγος, and
it is not outside of it; that is, mathematics is a human language (see Section
22.1.6); and like any constructed language, incertitude factors are involved: there
is no strictly univocal correspondence between expression (symbolic notations)
and content, in the awareness that the consensus on the meaning of symbolic
notations is constantly evolving, and many of the notations undergo never-
ending adjustments, under the urging of new interpretations. So, long story
short, mathematics is an open opus.

21.7.2. Extra-logical Objects, and Gödelian Suggestions

[T]he logical correctness of the reasonings that lead from axioms to theorems is not the only
thing we had to worry about. Do the rules of perfect logic exhaust the whole of mathematics? [Les
règles de la parfaite logique sont-elles toute la mathématique? ]

[I]t is by logic that we demonstrate, [but] it is by intuition that we invent [c’est par la logique
qu’on démontre, c’est par l’intuition qu’on invente].

— H. Poincaré [2140, II, chap. III, pp. 158, and chap. II, p. 137]111

Mathematics, as each of the other sciences, cannot be founded upon logic alone; rather, as a
prerequisite for the use of logical inferences [ . . . ], something must already be given to us in the
imagination [Vorstellung]: certain extra-logical concrete objects [gewisse außer-logische konkrete
Objekte] that are present as immediate experience before any thought.

— D. Hilbert [1360, p. 65]

(1) Mathematics does not entirely end in the rigor of the rules of logic—take
the renowned Gödel’s paper [1167] = [1172], together with that of A.M. Turing
[2544], as a watershed (to be read in conjunction with the failure of logico-
phagocytizing plans à la Whitehead–Russell): Gödel’s incompleteness theorems
state,b among other things, that a succession of natural numbers, when treated
axiomatically, in every system including arithmetic brings out formally unde-
cidable (arithmetic) propositions.112,113 Mathematics is broader than logic (cf.
Margo 21.7.1 and footnote c on p. 430); it is something much more than a sum
of tautological truths (ταὐτο-λογίαι).c

aSurtsey is a volcanic island, with an ever-evolving and chronic morphology, located in the
Vestmannaeyjaklasanum, off the south coast of Iceland.

bGödelian incompleteness theorems are divided into two:
(1) the first theorem says that: in any mathematical system MS containing (basic) arithmetic,

there is a formula Fmt such that, if MS is consistent, then neither Fmt nor ¬Fmt is demonstrable in
MS, whilst

(2) the second theorem says that: in any mathematical system MS containing (basic) arithmetic,
if MS is consistent, it is not possible to prove the consistency of MS within MS.

cThis brings us to the completeness theorem in first-order logic; to put it with a catchword, here
is the theorem: “All logical truths whatsoever are demonstrable”, when an equivalence between “logical
truths” and “tautologies” is prescribed, and the two terms shall be considered to be synonymous: in
this case, a “logical truth” is true solely as a result of its logical components.

(α) For propositional logic, the completeness theorem was proved by E.L. Post [2155], with reference
to the Principia Mathematica by N.A. Whitehead and B. Russell, so that all of Whitehead–Russell’s
theorems under logical rules of deduction, are tautologies that can be verified through specific tables,
called “truth-tables” [2155, pp. 166-168]; in [2155, p. 164, e.a.] one reads: «Our [ . . . ] theorem gives a
uniform method for testing the truth of any proposition of the system; and by means of this theorem
it becomes possible to exhibit certain general relations which exist between these propositions. These
relations definitely show that the postulates of ‘Principia’ are capable of developing the complete
system of the logic of propositions without ever introducing results extraneous to that system».
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(2) There is in fact a seeming contradiction of mathematics, icastically
espoused by Poincaré [2138, pp. 9-10]: if mathematics is not deductive, where
does its logicus strictus rigor come from? If, on the contrary, all the propositions
which it enunciates may be derived from each other, deductively, through the
rules of formal logic, how is it that mathematics is not reduced to an immense
tautologie, for which all the theorems represent indirect ways of affirming that
A = A? The tautological semblance fades, or even dissipates, when we consider
mathematics as a product of the imagination, a faculty of intuition.

Margo 21.7.1 (Gödelian suggestions). Earlier I accentuated the vastness of
mathematics, when it is dissected with the “clinical” tools of logic. We could,
equally, talk about the inexhaustibility of mathematics, with the auspicious
addition—against all theories of everything—that something similar can be
replicated in the physical realm. Believing in an ultimate theory is like being
under the illusion that the genius of mathematics can be locked up forever in a
lamp. See e.g. F.J. Dyson [827, p. 449]:

Gödel proved [ . . . ] that the world of pure mathematics is inexhaustible; no finite set of axioms
and rules of inference can ever encompass the whole of mathematics; given any finite set of axioms,
we can find meaningful mathematical questions which the axioms leave unanswered. I hope that
an analogous situation exists in the physical world [ . . . ]. [I]t means that the world of physics and
astronomy is also inexhaustible; no matter how far we go into the future, there will always be new
things happening, new information coming in, new worlds to explore, a constantly expanding domain
of life, consciousness, and memory.

Another weird but cogent manner of illustrating the pillar of Gödel’s theore-
matic block is to combine it with the insuperable hurdle that each one of us, as
an individual, is not able to get away from himself. P.W. Bridgman [417, pp.
6-7, e.a.] observes:

The insight that we can never get away from ourselves is an insight which the human race
through its long history has been deliberately, one is tempted to say wilfully, refusing to admit. But
the ostensibly timeless absolutes are formulated and apprehended by us, and the vision which the
mystic says is revealed by the direct intervention of God is still a vision apprehended by him. When
we talk about getting away from ourselves it is we who are talking. All this is so obvious [ . . . ]. It is
exceedingly suggestive to see in Gödel’s theorem an application to our present problem, the problem
of discovering the consequences of not being able to get away from ourselves. It is, of course, not a
question of any formal and rigorous application of the theorem, but only of something qualitative
and suggestive. The essence of the situation presented by Gödel’s theorem seems to be that we are
here concerned with a system dealing with itself—mathematics attempting to prove something about
mathematics. [This theorem states that it is impossible to prove that a logical system, at least as
complicated as arithmetic, contains no concealed contradictions by using only theorems which are
derivable within the system]. It is tempting to generalize Gödel’s theorem to read that whenever we
have a system dealing with itself we may expect to encounter maladjustments and infelicities, if not
downright paradox. The insight that we can never get away from ourselves obviously presents us
with a situation of this sort. The brain that tries to understand is itself part of the world that it is
trying to understand. It seems that the situation cannot be dealt with satisfactorily in its entirety;
the best, and well nigh all, we can do is to operate by successive approximations at different levels,
isolating for treatment this or that group of phenomena.

All of this could qualify as a psychological trouble, very far from the practice
of physics; but it is the same difficulty that we saw in the Wheeler–DeWitt
universe wave function, cf. footnote a on p. 130. L

The system of elementary propositions of Principia is therefor consistent.
(β) For the predicate logic, the completeness theorem was proved by K. Gödel [1166].
There is no such “completeness” condition—in (α)-(β) Post–Gödel-style (deductive) systems—for

mathematical truths.
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21.7.3. «Metaphysical Belief» and «Convenient Illusion»

Bourbaki sets off [ . . . ] from [ . . . ] an unprovable metaphysical belief we willingly admit. It is
that mathematics is fundamentally simple and that for each mathematical question there is, among
all the possible ways of dealing with it, a best way, an optimal way. We can give examples where
this is true and examples where we cannot say, because up to now we have not found the optimal
method.a

[ . . . ] On foundations we believe in the reality of mathematics, but of course when philosophers
[or fumesophers? (see Section 23.1)] attack us with their paradoxes we rush to hide behind formalism
and say: “Mathematics is just a combination of meaningless symbols” [ . . . ]. Finally we are left in
peace [ . . . ] with the feeling each mathematician has that he is working with something real. This
sensation is probably an illusion, but is very convenient.

— J.A.[E.] Dieudonné [776, p. 145, e.a.]

Directly linked to what we have seen above (Section 21.7.2), one of the
enticing dilemmas of the underlying structure(s)—λογική (τέχνη/τέχναι), and the
axiomatic method—of mathematics, is this: is the logic of (used by) mathematics
a logical formalism (the logic itself) or a grammaticalism whose formalism is but
the syntax of (a) math-language? Namely, what is it that makes mathematics,
or its language, so intelligible? Or, what is the nature (and the burden) of
mathematical formalism (in science)?

A mathematical logicians is more inclined towards the the first solution,
whilst a (Bourbakist) mathematician (such as Dieudonné), with a rigor purposely
created for the occasion, towards the second one.

What Dieudonné means by «metaphysical belief» is a way to plant, say,
stakes (as reported by the miscellaneous prescriptions of the axiomatic method),
and from which to start to do mathematics, without getting entangled in the
foundations of mathematics—for this is the task, according to him, of the
mathematical logician.

Concerning the «sensation» that mathematics is connected with reality («the
feeling each mathematician has that he is working with something real»), whereas
this is nothing more than a «convenient illusion», that is why a mathematician
is said, not without mordancy, to be Platonic from Monday to Saturday, but
not on Sunday, or when he/she takes a break from his/her research topics.

21.7.4. Figments of Imagination—Mathematics as a «Fictional Ac-
tivity» & «Invention of Possible Worlds»

With regard to the conception of logical rigor [ . . . ] it is not a question for us of placing Science
on a firmer basis, but simply of recognizing how fragile this basis is. We can make everything perfectly
logical by keeping silent about our subjective judgments and replacing them with hypotheses, but
these hypotheses have no value except as they derive from subjective judgments, and that is what
we need to be talking about, as a crucial fact.

We must invent the world to frame our sensations, but we must never consider it as a rigid
and static schema, as a definitive construction: it is only the provisional result of an effort aimed at
synthesis. Our sensations, our fundamental concepts, starting with those of time and space, will
never be the protagonists of a finished comedy.

— B. de Finetti [996, p. 124, e.a.]

Mathematical theories constitute fictional [imaginative] universes.
— C. Bartocci [208, p. xiii]

aAnd then he goes on: «I cited, for example, group theory and analytical number theory [ . . . ].
In both one has a quantity of methods, each one more clever than the last [ . . . ] but we are sure that
this is not the final way to deal with the question [ . . . ] but in the end, little by little, we manage to
find one way which is better than the others. This is only a belief, I repeat, a metaphysical belief».
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Mathematics has its own self-consistency, or logical core, which becomes
explicit both through a logico-deductive modus and an intuitive ploy, inductively,
with—let us say—experimental operations (cf. footnote b on p. 453), or step-by-
step enumerations. And yet there is, in mathematics, a prevalent component of
arbitrariness, that is something more pregnant than Cantorian Freiheit [495, p.
564].114 Cf. P. Valéry [2549, p. 42]:

Mathematics [ . . . ] teaches the determination against consequences, and the rigor of a route of
[our] choice arbitrarily taken [rigueur de la route une fois choisie arbitrairement]. It is thus the
model of arbitrariness [le modèle de l’arbitraire].

The well-known logicus strictus rigor Mathematicæ, or rather, the rules for
operating on the symbolic apparatus, come only after the inventive uplift, the
human activity of finding by the imagination or ingenuity,a when particular rules
are imposed, together with logical and convention procedures. Mathematical
objects are, finally, a kind of figmenti dell’immaginazione.b

So, when Hilbert [1361, p. 14] says:
Mathematics is not like a game [Spiel] the tasks of which are determined by arbitrarily [willkür-

lich] devised rules, but a conceptual system with an inner necessity [innerer Notwendigkeit] that
can only be so and not in any other way,

well, we consider this to be sort of sweetened Hermitianity (point (1), p. 398),
or the umpteenth recurrence of trivialis necessity (Section 20.1.4.3) pertaining
to the foundations of mathematics.

a
Λογγῖνος (Longinus) [710, XXXV, 3-4, p. 67]: «[Τ]ῇ θεωρίᾳ καὶ διανοίᾳ τῆς ἀνθρωπίνης

ἐπιβολῆς οὐδ΄ ὁ σύμπας κόσμος ἀρκεῖ ([T]he whole universe is not large enough [to contain] the
impetus of human viewing and thought)». But, then again, as G.P.F. Freiherr von Hardenberg
(Novalis) realizes [1287, p. 147], «Ohne Enthusiasmus [ἔνθεος] keine Mathematik».

bIt is Bartocci again: Mathematics is a «fictional activity of our brain» [208, p. xiv] consisting
mainly in the «invention of possible worlds» [208, p. xii].

It would be awesome to review the greatest fictional monsters of mathematics (cf. footnote c,
p. 125), but that would require a special book. Let us settle here for recalling a hitting example
throughout the history of mathematical thought, that of Leibniz, when, in a letter to B. Des
Bosses (11 March 1706) [1609, p. 32], he defines the infinitesimal quantities as fictions of the
mind: «I do not believe [statuo] in infinitely small magnitudes [magnitudines infinite parvas] than
infinitely large ones [infinite magnas], that is, no more infinitesimals [infinitesimas] than infinituples
[infinituplas]. For I hold both to be fictions of the mind [mentis fictionibus] due to abbreviated
ways of speaking, which are adapted to calculation, as imaginary roots in Algebra are too. In the
meantime, I have demonstrated that these expressions are highly useful for abbreviating thinking,
and thus for discovery [inventionem]».
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22.1. Mathematics in the Physical Sciences, and Nature of
Reality I

[T]he word “reality”, understood as the name of everything that exists in nature independently
from observers, should take into account the fact that each species only analyzes those external and
internal stimuli that its sensors are able to capture. The reality of a bee differs, in this respect,
from the one that is being debated by members of Homo sapiens sapiens. Only the latter write
books on what bees or bats do, but this is surely not a decisive reason to believe that [what we
call] reality, mutably described by humans, is the “objective” reality, and that, as a consequence,
human descriptions of what is there evolve chasing the aim of getting closer to the “truth”, i.e. to
the labels that should be hung on real entities[,] which would be independent of the anatomies of
living organisms.

— E. Bellone [243, pp. 121-122]

Perhaps the best way to probe into the relationship between mathematics
and physics is to declare in no uncertain terms that our understanding of the
nature of reality is the result of our manner of seeing and understanding; so it is
not advisable to start from of the external world, outside of us, and unwarily to
entrust to mathematics the arduous task of analyzing it “objectively”. It is more
honest to keep the focus on mathematics, and its resilient definitions crashing
inevitably onto the description of the world: we are aware that the nature of
reality is irreducible to mathematics, cf. [238, p. 17].

22.1.1. Anthropoid Ways Ia. Regularity and Formal Relations

We do not need to know the intimate causes of the phenomena that Nature keeps hidden from
us, but their relations [that is, mathematics].

— G. Veronese [2571, p. 23]

Habit sometimes leads us to forget that what we study and classify are never the perceptions as
such, the objects and their properties (that of being red, e.g.) but always exclusively the relations of
our perceptions from each other. All our cognitions, although derived from experience, concerns
exclusively their formal structure as a whole.

— M. Ageno [24, § 5, p. 35]

Similarly, we do not have access to an intrinsic mathematical character of
nature, because it does not even exist. We must not confuse the regularity (or
uniformity) and repetitiveness of nature with the ingenium geometricum (i.e.
with the regularity e.g. of a polyhedron, of a curve, or of a function), or with the
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mensura numeri (correspondence between physical phenomenon and numerical
sequence),a that are anthropoid ways of studying (μαθήματα) and describing the
Naturæ regulæ. On this, subtle considerations are in M. Ageno [25, preface, secc.
1.1-2 + relative endnotes].

Our knowledge relating to nature, even if it comes from an experiential
ground, it regards not the intimate causes of the phenomena, but their relations,
which then, for us, are mathematical relations, namely formal entities that are
inherent in our intuitive and intellectual processes.b

Margo 22.1.1. The etymology of number insinuates an origin of the word in the
practical and concrete life, something close to what M. Pasch [2021, Vorwort,
p. iii] calls empirischen Kern, about the primeval stage of a geometric object
that precedes the stage of künstlichen Begriffen. It comes from the Gr. νέμω,
“dispense”, “distribute”, “assign” e.g. food, bliss, or anything else.c L

22.1.2. Anthropoid Ways Ib. Symmetry and Invariance in Physics:
the Impact of Group Theory

Die Principien der Mechanik haben einen gruppentheoretischen Ursprung.d
— M.S. Lie [1659, p. vii]

The principles of symmetry—the definition of which is prominently given with
the principles of invariance, in keeping with a specific group of transformations
(a principle of invariance, in turn, shall define a conservation law, for instance
of a form, of a relation, of a physical quantity)—are our mode of interpreting
and summarizing the regularity of nature, or of what we call the “regularity of
the physical world”, and, thereupon, the “regularity of the laws of nature”. But
we must not confuse the symmetry groups with nature: a symmetry group is
an algebro-geometric object expressing a kind of regularity (if there is actually a
regularity).

Let do some inane examples. The gauge group of electromagnetic interactions
(Sections 1.7.5), the groupable synopsis & the spinorial representation (Section
2.8), or the group of Lorentz transformations (Section 3.4.2.2), are one thing,
their physical occurrences are something else. The crystal lattices and the

aOne of the most spectacular episodes of effectiveness of mathematics was U. Le Verrier’s [1618]
[1619] prediction of the existence of Neptune115 from unexplained anomalies in the motion of Uranus.
He made use only of calculations and astronomical observations, according to Newton’s laws of
gravity. His was a triumph of numerical analysis. At a later date, with the same numerical method,
Le Verrier succumbed to presumption of the existence of Vulcan, a new hypothetical planet, intending
to give an account of some anomalies in the motion of Mercury; but its existence has never been
confirmed. Vulcan does not exist. The anomalous rate of secular precession of Mercury’s perihelion
will become exhaustively intelligible, as it is known, within the relativistic paradigm [855, § 14, p.
804] = [875, § 14, p. 145], that is, with the creation of novel mathematics, going beyond, where
needed, Newton–Le Verrier’s laws of motion & numerical mathematics.

bSo we can nimbly return to pure mathematics; cf. e.g. E. Papperitz [2009, p. 36]: «The
subject-matter of pure mathematics consists of the relations [Beziehungen], which can be established
between objects of thought [gedachten Elementen], by considering them as contained in an ordered
manifold; the law of order of this manifold must be dependent on our choice [Wahl]».

cSee Homer, Odyssey, XIII, 50: «μέθυ νεῖμον» («serve out wine»), XIV, 436: «τὰς δ᾿ ἄλλας
νεῖμεν ἑκάστῳ» («he distributed the rest [of the pieces of meat] to each»).

d«The principles of mechanics have a group-theoretic origin». Note. Group structures are
combined by Lie (ivi) with: Kinematik, geodätischen Curven, allgemeine Aequivalenzproblem in
der Theorie der Differentialgleichungen, Optik, and mathematische Physik.
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crystallographic/Fedorov space groups, which dispense a representation of the
symmetry of the crystals,116 are one thing (see e.g. epigraph under Section
2.2.2), a snowflake,a a diamond, or the sodium chloride framework, with their
manifestation of a uniform (ordered) distribution of elements, are something
else; cf. H. Weyl [2641].

When, in the treatises on physics, we find written, with a quasi-Biblical tone,
that «The principles of symmetry determine the form of the laws of nature»,
that «The laws of nature [or rather, of physics] derive from symmetry (instead of
the other way around)», that «It is an intrinsic symmetry, hierarchically distinct,
that dictates the electromagnetic, weak, and strong interactions», or even that
«The principles of symmetry, in fundamental physics, coincide with the particles
themselves (as there is an intrinsic symmetry property of subatomic particles)»,
each of these expressions means that the operations—by and large Noetherian
[1955]—of symmetry identify those properties both of individual configurations
or states of a system and of the relations among them, that are consistent with
a repetitive structure, say, a group structure, in time and space, for which they
remain unchanged. And yet, all this is an algebro-geometric or algebro-topological
principle; a principle of invariance with respect to some transformation.

In the lack of understanding of the above-mentioned distinction resides the
danger of believing that nature emanates—moreover “mysteriously” (Section
22.1.6.3), almost “divinely”—from Mathematics; and we look like gullible.

22.1.3. Anthropoid Ways Ic. Tangrams of Non-periodic Tiling: the
Natural Quasi-crystals

The history of quasi-crystals begins with the revelation, in mathematics, of
non-periodic tilings, so-called because its pattern does not repeat itself exactly,
of which the best known is the Penrose’s pentaplexity tiling [2058], with a 5-fold
symmetry, and previously deemed prohibited.b The 5-plexity is built with a
combination of kites and darts, and has the property of covering the entire plane:

· a kite is a quadrilateral having ∠i 72
◦+72◦+72◦+144◦, which is composed

of two Robinson triangles,c each with ∠i 36
◦ + 72◦ + 72◦, whilst

· a dart is a non-convex quadrilateral having ∠i 36
◦+36◦+72◦+216◦, which

is composed of two Robinson triangles, each with ∠i 36
◦ + 36◦ + 108◦.

Another Penrose tiling is the rhombus covering, with two pieces:
· a thin rhomb, or simply rhomb, having ∠i 36

◦ + 36◦ + 144◦ + 144◦, which is
composed of two acute Robinson triangles, and

· a thick rhomb, or simply Rhomb, having ∠i 72
◦ + 72◦ + 108◦ + 108◦, which

is composed of two obtuse Robinson triangles.

aThe first and paramount illustrated work on the snow crystals is the reference book with
selected photographs of W.A. Bentley [2485, chap. IV. Mysteries and Beauties of the Snow, pp.
97-168].

bA preparation of the non-periodic tiling in toto coinciding with that of Penrose in [2058, p. 19
(1978)], made up of pentagons, thin rhombuses, half-stars (≈ 3

5 of pentagrams, or 5-pointed stars),
and pentagrams, is in J. Kepler [1476, third Fig. marked with “Aa”, in the second table of figures
placed after p. 58].

cA paper by R.M. Robinson on tilings of the plane that is worth to mention is [2219].
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In Figg. 22.1, 22.2, and 22.3, there are three examples with three different
combinations of pieces.

The two pieces—that cause a non-periodic tile—are in a golden ratio (cf.
Section 22.1.4.1) to each other, anyway. This is undoubtedly more evident in
Fig. 22.3, where more (star) pentagonal shapes emerge, to which, traditionally,
one of the definitions of the golden ratio is traced back.

Figure 22.1: Arrangement № 1 of rhomboid tiling à la Penrose in 2-space,
with 346 rhombs and 560 Rhombs

Figure 22.2: Arrangement № 2 of rhomboid tiling à la Penrose in 2-space,
with 348 rhombs and 560 Rhombs
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Figure 22.3: Arrangement № 3 of rhomboid tiling à la Penrose in 2-space,
with 1458 rhombs and 2356 Rhombs

At a later time, physical structures were found in nature imitating the Penrose
tilings, or other non-periodic tiles. These structures are called quasi-crystals,
and they are materials whose atoms are deterministically but not repetitively
ordered, so they can be said to be non-periodic, or better, quasi-periodic (do
not form a regular lattice), but, compared to (regular) periodic crystals, have
forbidden symmetries, such as a 5-symmetry in the plane (5-fold symmetry in
2-space), or an icosahedral symmetry in 3-space.a

The pseudo-conundrum is that the discovery of quasi-crystals is routinely

aA quick recap of the most important articles:
(1) D. Shechtman, I. Blech, D. Gratias, and J.W. Cahn [2368]: observation of a metallic solid,

Al with 10-14 at.% Mn, Fe, or Cr with long-range orientational order, and icosahedral point group
symmetry, inconsistent with lattice translations; D. Shechtman and I.A. Blech [2367]: study of a
microstructure exhibiting icosahedral symmetry in electron diffraction patterns with 5-fold symmetry.

(2) D. Levine and P.J. Steinhardt [1640]: classification of ideal 2- and 3-dimensional icosahedral
quasi-crystals under their symmetry rotation, and comparison with an observed electron-diffraction
pattern of an aluminum-manganese alloy.

(3) P. Gummelt [1240]: motivated by the arrangement of quasi-crystals, Gummelt (who is a
mathematician) brings forth, geometrically, a tiling à la Penrose with overlaps for the regular
decagon controlling non-periodic coverings of the Euclidean plane.

(4) P.J. Lu, K. Deffeyes, P.J. Steinhardt, and N. Yao [1707]: presentation of a scheme to identify
quasi-crystals contingent on powder diffraction patterns with a standardized indexing; see also [1708].

(5) The search for natural quasi-periodic mineral starts with the study in 2009 of some grains
of icosahedrite, Al63Cu24Fe13, the first specimen of natural quasi-crystal, having an icosahedral
symmetry together with six distinct 5-fold symmetry axes, found in the collection of the Museo
di Storia Naturale of the Università degli Studi di Firenze (catalog number 46407/G); this alloy
of aluminum, copper and iron appears as micrometer-sized grains set in a piece of khatyrkite,
(Cu, Zn)Al2, so-called because it comes from the Khatyrka river in the Koryak Mountains, along the
northern half of Kamchatka Peninsula: see L. Bindi, P.J. Steinhardt, N. Yao, P.J. Lu [291] [292].

A spunky expedition (18 July-13 Aug 2011) to the Russian Far East [2416] takes off, intended
for finding other pieces of natural quasi-crystalline pattern. The exploration has brought the
discovery of other icosahedral quasi-crystalline grains [290], plus—associated with steinhardtite
(Al38Ni32Fe30), Fe-poor steinhardtite (Al50Ni40Fe10), Al-bearing trevorite (NiFe2O4), and Al-
bearing taenite (FeNi)—a natural quasi-crystal, whose composition is Al71Ni24Fe5, with decagonal
symmetry comprising quasi-periodic atomic arrangements with 10-fold symmetry [293].
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accompanied by these kinds of questions: «How is it possible that mathematicians
have anticipated the subsequent discoveries by physicists?», or «How can this be
happening, that the explanation of the formation of natural quasi-crystals relies
on the golden ratio, which was envisioned by Euclid for purely mathematical
aims?».

Similar questions are (rhetorically) tendentious and, most of all, wrong,
because they mask the mathematical work with a shamanistic halo, portraying
mathematicians as “oracles”, or “soothsayers”, capable of reading the hidden
traces of nature before the factual confirmation by physicists, chemists, and
geologists. All this is a good illustration of how man is misled by both periodic
symmetry (cf. Section 22.1.2) and non- or quasi-periodic symmetry, the latter
present in the quasi-crystals. Nature is so vast that many tangramsa in it have
a chance to form and to evolve (and who knows how many of these puzzles are
still unknown to us). And since man is within such a evolution, he is part of
nature, there is no mathematical “epiphany” (see Section 22.1.6).

22.1.4. Anthropoid Ways II. Two Examples

We should mention two debated topics: phyllotaxis and inverse-square laws.

22.1.4.1. Phyllotaxis: From Helianthus Annuus to Muscari Comosum

L’arrangement, le nombre, la force, & les proportions des Folioles offrent bien des variétés & des
bizarreries, non seulement dans le même Individu, mais encore dans la même Feuille.b

— C. Bonnet [365, p. 193]

The word phyllotaxis comes from the Gr. φυλλίς, “leaf”, and τάξις, “arrange-
ment”, “order”. The third Mémoire of the Bonnet’s book [365, pp. 159-190],
entitled De l’Arrangement des Feuilles sur les Tiges, & sur les Branches, & de
celui qu’on observe dans quelques autres parties des Plantes, is entirely dedicated
to explain this botanical manifestation. Some mathematically detailed studies
on phyllotaxis: [2484, chap. XIV] [2641, pp. 72-73] [2169, chap. 4] [2048, sec.
5.9] [2411, sec. 1.10].

The highly symmetric order characterizing the arrangement of leaves and
flowers indicates that e.g. a sunflower (Helianthus annuus), a pineapple (Ananas
comosus), or a Romanesco broccoli (specimen of Brassica oleracea) know geometry
of phyllotactic patterns, that they adopt the Fibonacci sequence [986, foglio 134
verso] [987, p. 404],c

Fib0 = 0,Fib1 = 1,Fibn = Fibn−1 + Fibn−2, n ⩾ 3, (22.1)

aThe tangram is a game of Chinese origin (七巧板), whose basic version consists of a square-
container containing 7 pieces of colored wood (5 triangles, 1 square, and 1 parallelogram), which can
be combined in various ways to create different shapes, each time.

b«Arrangement, number, strength, & proportions of the Leaflets offer many varieties & oddities,
not only in the same Individual, but also in the same Leaf».

cThe paragraph of interest to us is entitled Quot paria coniculorum in uno anno ex uno pario
germinantur («How many pairs of rabbits are created by one pair in one year»), where the Fibonacci
sequence for the first time makes its appearance: «parium 1, primus 2, secundus 3, tercius 5, quartus
8, quintus 13, sextus 21, septimus 34, octavus 55, nonus 89, decimus 144, undecimus 233, duodecimus
377».
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satisfying a recurrence relation? Eq. (22.1) gives 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .,
from which the identity

Fibn−1Fibn+1 − Fib2n = (−1)n. (22.2)

Helianthus’s florets are magnificently sorted in a Fibn-sequence, with 34
clockwise and 55 counter-clockwise spirals, or vice versa: reversing the counting
pattern, one has 55 clockwise and 34 spirals counter-clockwise; furthermore, in
the outermost part of the pseudanthium there are other 21 counter-clockwise
spirals.

By “florets” we mean “flower-heads” (capolini fiorali), while the pseudanthium
(aka capitulum) is the big flower head in which all mini flower-heads are grouped
together to generate a floral configuration. Figg. 22.4 and 22.5 are abstractions:
it is assumed that the number of florets is equal to a Fibonacci number, which
is an idealization, and florets are represented as button-like (circles), which is a
further idealization.

The spiral marking of florets (or leaves) are called parastichy (from the Gr.
παρά, “beside”, “near”, and στίχος, “row”, “file”, “line”), since florets (or leaves)
are sorted in a spiraling pattern, one next to the other one. Parastichy numbers
are always Fibonacci numbers. An Helianthus, as we said earlier, has (34, 55)-
and 21-parastichies.

Figure 22.4: Helianthus-like phyllotaxis:
spiral parastichy lines with Fibn = 610 circles, viz. florets,

via "proportio aurea" (1 + sqrt(5)) command

Fibonaccian spirality, with different numbers, can be admire in many other
plants, fruits, and vegetable organs.

Cota tinctoria’s flower-heads put together 13 clockwise and 21 counter-
clockwise spirals, whilst other daisies of the family Asteraceae present a (21, 34)-
parastichy.
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Figure 22.5: Helianthus-like phyllotaxis:
spiral parastichy lines with Fibn = 4181 circles, viz. florets,

via "proportio aurea" (1 + sqrt(5)) command

Strobilus in Pinaceae conifers exhibits 8 clockwise and 13 counter-clockwise
spirals, plus 21 clockwise spirals emerging farther from the central axis; which is
equivalent to 8, 13- and 21-parastichies.

Same parastichy numbers, 8, 13, and 21, are present in the Ananas comosus
along its helical tessellations.

A (8, 13)-parastichy is found in the pointed shape of the Romanesco broccoli.
Other styles of orderly alignment are in bulbous plants: by way of example,

the tassel hyacinth, or lampascione in It., its scientific name is Muscari comosum,
also known as Leopoldia comosa, has violet-turning-blue flowers proportionally
exhibited on the stem, so as to form an astonishing multi-candelabrum.

All this symmetric order indicates that Nature follows an arrangement under
the golden angle? Let us remember that, in a plant, a golden angle is the angle
between the radial directions of two consecutive flowering stems or leaves; cf. L.
and A. Bravais [407, pp. 67, 74]: their calculated botanical golden angle may
vary, in the diversity of species, between 137.06◦ and 137.47◦.

As we know, since Kepler on, the Fibonacci numbers, and the Fibonacci
sequence, are related with the golden number (proportio aurea)a

φ =
1

2
(1 +

√
5) = 1.6180339887498948 · · · (22.3)

It is possible approximate in various manners. A very basic way is due to R.
Simson’s ancient intuition [2378], under which the successive convergents of a

aL. Pacioli [1986, pars prima, p. 4 recto] describes it thus: «questa [ . . . ] proportione non se
po mai per numero intendibile asegnare ne per quantita alcuna rationale exprimere: ma sempre fia
occulta e secreta e dali Mathematici chiamata irrationale».
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continued fraction for φ are numerically quasi-coincident with the Fibn-sequence:

lim
n→∞

{
Fibn

Fibn−1

}
aprx
== φ, e.g.

102334155

63245986
= 1.6180339887498947 · · · , (22.4)

where Fibn=40 (numerator) and Fibn=39 (denominator). For the same reason,
from the Fibonacci sequence we can derive an approximation of the golden spiral,
called Fibonacci spiral. The recursion relation is also satisfied by the golden
ratio, so

φ
n = Fibnφ+ Fibn−1. (22.5)

Answer to previous questions: No, I do not think so at all (cf. Section
25.1.1.1). What our eyes see as “mathematics” or “laws of symmetry”, for nature
is simply an adaptive occupation of space, with different purposes depending
largely on the surrounding environment, not to mention the principle, devised
by P. Curie [708],a that asymmetry is the kingpin of physics on which the origin
of life rests.b,117

But botanical phyllotaxis is not alone. Phyllotactic arrangements can also be
proved analytically, and even reproduced experimentally in inorganic chemistry.

(1) L.S. Levitov [1641] [1642] shows that, studying the geometry of a flux lat-
tice, i.e. of a soft-lattice, pinned by superconducting layers, we can witness—under
variation of a magnetic field—an infinite sequence of continuous transitions of
the lattice; these transactions are different manners of selection of shortest
distances: that which is created, via analytic solution, is a hierarchical structure
of quasi-bifurcations, replicating in all respects the phyllotactic organization (e.g.
with pairs of consecutive Fibonacci numbers). The phyllotaxis thus seems a
general phenomenon, occurring in any dynamically accessible lattice subjected
to strong deformations, where in addition a symmetry group SL2(Z) ⊗ Z2 is
involved [1642, § 4]. An experimental demonstration of the Levitov’s model is in
[1952].

(2) S. Douady and Y. Couder [813] bring us a laboratory evidence: if we
slide some drops of ferrofluid at the center of a silicone oil-filled dish, they

a[708, pp. 393, 400]: «I think it would be advantageous to introduce in the study of physical
phenomena considerations on symmetry familiar to crystallographers. An isotropic body, for example,
can be animated by a rectilinear or rotational movement; a liquid one can be the seat of vortex
movements; a solid one can be compressed or twisted; it can be found in an electric or magnetic
field; it can be crossed by an electric or heat current; it can be traversed by a ray of natural light or
[a ray] polarized rectilinearly, circularly, elliptically, etc. [But] in any case, a certain characteristic
asymmetry is necessary at each point of the body [ . . . ]. In other words, certain elements of symmetry
can coexist with certain phenomena, but they are not necessary. What is necessary is that certain
elements of symmetry do not exist. It is the asymmetry that creates the phenomenon [C’est la
dissymétrie qui crée le phénomène]».

bWith Curie, the regularity of natural phenomena originates from a symmetry breaking: a
pattern is not a “total” or “full” symmetry, which is something indistinguishable or unintelligible; it
is a partial symmetry. Stunning examples are the Chladni figures [640, Pl. 3-7] = [641, App. C].

E.F.F. Chladni (1756-1827) is responsible for devising a method demonstrating that there are
several modes of vibration of a mechanical surface, whether regular or irregular, covered with sand.
His technique consists in observing the vibrations of glass (or metal) plates, having different forms
(circles, ellipses, triangles, squares, rectangles, hexagons), produced by the friction of a violin bow
along the edge of the plate, so that the grains of sand move away from the areas of greatest vibration,
grouping together in lignes nodales, and composing the above-named figures, which are patterns of
vibration: the nodal lines are points of virtually zero vibration amplitude. For the Chladni figures,
see also M. Somerville [2404, Plate II-III].
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acquire a familiar disposition, and form leaf-like patterns, e.g. distichous vs.
spiral/alternate arrangements, see [813, Fig. 2, p. 2099]. The experiment
consists of a horizontal dish placed in a vertical magnetic field created by two
Helmholtz coils. The drops, resulting polarized, behave like small magnetic
dipoles, generating a Fibonacci-type of series, with a convergence of the golden
angle e.g. from 180◦ to 137.47◦, very close to the golden section

Φ = 2π(1− τ) ≈ 137.5◦, τ =
1

2
(−1 +

√
5) = 0.6180339887498948 · · · (22.6)

recognizing that τ = 1
φ
. In any case, the phyllotactic disposition appears to vary

with the inserting speed of each drop.
The inorganic pseudo-philotaxis emerges consequently from a self-organization

throughout iterative processes: it has emergent properties very similar to those
that permit the origination of fractal motifs in snowflakes.

22.1.4.2. Inverse-square Laws

There is a substance, which I call the electric fluid, the particles of which repel each other and
attract the particles of all other matter, with a force inversely as some less power of the distance
than the cube: the particles of all other matter also, repel each other; and attract those of the
electric fluid, with a force varying according to the same power of the distances.

— H. Cavendish [588, p. 585]

The distance between charges (Coulomb’s law) [695, pp. 107-318] and masses
(Newton’s law of gravitation) is 1

r2 . Does this mean that 2, and precisely 2, is
the (pre)chosen number by nature for electric and gravitational fields? It is clear
that no. The number 2 is plainly due to the fact that these two laws, restricted
to a space of three dimensions, are formulated with a proportionality so that
the intensity of radiation, or the force, varies inversely with the square of the
distance from the source (cf. Question 6.2.4, p. 137). There is no Pythagorean
mysticism in our number 2, it is there because it is provided by equations of the
Coulombian and Newtonian type acting over the distance.

22.1.5. Anthropoid Ways III. Laws of Nature

[N]ature certainly existed before man existed, but if nature existed before man, it is not the
same as the natural sciences. For example, the concept of “the law of nature” cannot be completely
objective, the word “law” being a purely human principle.

— W. Heisenberg [1324, p. 35, e.a.]

(1) What we have defined above as an anthropoid way of describing the laws of
nature does not detract from the physiological possibility of some correspondence,
or tuning, between world (external reality, environment around us) and mind,
the latter having co-evolutionarily adapted to the world of which it is a part, to
register, more or less reliably, information on the external order/regularity, or
on the (truest) nature of phenomena.

(2) Reflect on the belief in a universe-program, now such a fashionable
term—but the same can be said on the conviction of a geometric universe,
when it shows geometrizable properties, or on the image of a universe as a
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thermodynamic machine.a Does the fact that the world is computable, and some
of its information compressible, mean that the world is mathematical, or that
reveals and intrinsic mathematical facet (since computability and compressibility
are handled by mathematical logic)? No, because the “computability” of nature,
or rather, a part of it, i.e. the chance of applying to a phenomenal area an
algorithm that calculates a specific function, for each possible set of values of
the independent variable, does not lie in the regularity of nature, but in our way
of reading some (computable) results in relation to that regularity.

(3) Let us make two hypotheses. We say, first of all, that the laws of
nature are what constrain their computable character, so that computability is a
consequence of the laws of nature; alternatively, we say that the laws of nature
are constrained by some rules of computation, for which the laws of nature derive
from computability. In both cases, we arrive at the same evaluation: in the
second case, and a fortiori in the first hypothesis, it is pretentious and, at once,
faulty to assert that mathematics is a peculiar part of the external world, or is
about real objects.

22.1.6. Math-Language and its Reasonably Effectiveness

We will tackle below the pseudo-problem of the «unreasonable effectiveness»
of mathematics in the physical sciences, under the well-known expression of E.
Wigner [2664], and some kindred issues.

22.1.6.1. The «Miracle» of Mathematics: the Wignerian Ignis Fatuus

These are the—preposterous—words of Wigner [2664, pp. 7, 14]:
It is difficult to avoid the impression that a miracle confronts us here, quite comparable in

its striking nature to the miracle that the human mind can string a thousand arguments together
without getting itself into contradictions or to the two miracles of the existence of laws of nature
and of the human mind’s capacity to divine them [ . . . ]. The miracle of the appropriateness of the
language of mathematics for the formulation of the laws of physics is a wonderful gift which we
neither understand nor deserve.

Compare it to what Einstein had declared seven years earlier (letter to M.
Solovine, 30 March 1952), see footnote a on p. 481.

22.1.6.2. In the Bridgman’s Furrow

We share the P.W. Bridgman’s vision [413, pp. 60-62, e.a.] without reserve:
It is the merest truism [ . . . ] that mathematics is a human invention. Furthermore, the

mathematics in which the physicist is interested was developed for the explicit purpose of describing
the behavior of the external world [nature], so that it is certainly no accident that there is a
correspondence between mathematics and nature [ . . . ]. There is no longer any basis for the

a Cf. e.g. [417, p. 133]: «The picture of the nature of the world which we have evolved is
heavily colored [scilicet: conditioned] by our experience with tools or instruments. We supplement
and extend the evidence presented to us by our senses by the use of instruments, so that the very
meaning of some of our most important concepts can be defined only in terms of operations with
instruments».

We see the nature of the world on the strength of the technology that we are capable of building,
down the centuries. There is—in the history of science—the “universe-order” (κόσμος), the “geometric
universe”, the “clock-universe”, the “thermodynamic universe”, the “program-universe” (it from bit),
the “holographic universe”. All these “universes” reflect the changing fashions of the age.
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idealization of mathematics, and for the view that our imperfect knowledge of nature is responsible
for failure to find in nature the precise relations of mathematics. It is the mathematics made by
us which is imperfect and not our knowledge of nature. [From the operational point of view it is
meaningless to attempt to separate “nature” from “knowledge of nature”].

Nature, or better, an experimental side of it (its empirical content), is not
mysteriously (pre)adapted to the concepts of mathematics. The opposite is
true: the concepts of mathematics are our creations adapted to better fit natural
phenomena. In the next Section, we will zoom in on this regard.

22.1.6.3. Selection, Colors, and Understanding

The evolution of mathematics is a fact. Science historians have recorded its slow rise, through
trial and error, to greater efficiency. It may not be necessary, then, to postulate that the universe
was designed to conform to mathematical laws. Isn’t it rather our mathematical laws, and the
organizing principles of our brain before them, that were selected according to how closely they
fit the structure of the universe? The miracle of the effectiveness of mathematics, dear to Eugene
Wigner, could then be accounted for by selective evolution, just like the miracle of the adaptation
of the eye to sight [ . . . ]. Numbers, like other mathematical objects, are mental constructions whose
roots are to be found in the adaptation of the human brain to the regularities of the universe [ . . . ].
The brain is not a [purely] logical, universal, and optimal machine. While evolution has endowed it
with a special sensitivity to certain parameters useful to science, such as number, it has also made it
particularly restive and inefficient in logic and in long series of calculations [see Chapter 17]. It has
biased it, finally, to project onto physical phenomena an anthropocentric framework that causes all
of us to see evidence for design where only evolution and randomness are at work. Is the universe
really “written in mathematical language”, as Galileo contended? I am inclined to think instead that
this is the only language with which we can try to read it.

— S. Dehaene [754, pp. 232-233, e.a.]

(1) Mathematics is a language, a specialized code of communication,a in
agreement with cognitive circuits,b which is why it is (more or less) effective,
like, to differing extents, any other language;c for example, the cat’s meow too is
effective, so s/he gets all the attention. This explains the so-called usefulness of
mathematics in physics,d which is not a «miracle», or something «mysterious»,

aWe establish, once and for all, that by mathematical language we do not mean, reductively,
the counterpart, in mathematics, of the common system of signs suitable for communication in our
daily life. Language, in mathematics, can also mean—if it is not better identifiable—a welter of
«more or less clear images», a clutter of «psychological entities» freely combined [1253, p. 142].

bWe leave to others, each with its own expertise, the burden of analyzing the mode in which
this—(neuro)bio- and anthropo-logically—happens. If, however, the result of such an investigation is
like the one in the book of G. Lakoff and R.E. Núñez (Where Mathematics Comes From: How the
Embodied Mind Brings Mathematics into Being, Basic Book, New York, 2000), then it is best to
forget the whole thing. It is ludicrous to identify the conceptualization of mathematics—the manner
in which mathematical objects are conceptualized (by mathematicians)—with the cognitive science
of mathematics (under a cognitive linguist, and a psychologist), as if such a reduction process were
fair. This kind of studies is suffering from self-referentiality: it is litterature (Carroll’s pun), rubbish.
To paraphrase a memorable saying: the cognitive science of mathematics, set forth by Lakoff–Núñez,
is as useful to mathematicians as ornithology is to birds. For a harsh criticism, see e.g. the free
online papers by G. Lolli [1679] [1680].

c R.P. Feynman [980, p. 40] seems to disagree: «[M]athematics is not just another language.
Mathematics is a language plus reasoning; it is like a language plus logic. Mathematics is a tool for
reasoning». But that is not the situation. Other non-mathematical languages are also supported by
reasoning, so much so that logic is not mathematics, and mathematics is not a simple manifestation
of logic, although mathematics is, in part, logical. If reasoning, in a broader sense, does not belong
exclusively to mathematics, then mathematics does not have something more than other languages,
but rather something different, just as each language adopts, in its own way, a type of organized
reasoning, cf. Section 21.7.2.

dIt is an old story: cf. e.g. L. Belleri, In Geometrica problemata Simonis Stevinii, in [2418, first
page]: «Vere igitur Diuam veteres dixêre Mathesin, / Cuius ab arte labor superas cognoscere sedes,
/ Terrarum, pelagi[que] vias, & operta tenebris / Natura secreta dedit: coramque tuers», whose
translation is: «The ancients quite rightly named the Mathesis ‘Divine’, which with the application
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as Wigner [2664, pp. 2-3, 7, 14] seems to believe, but it is completely reasonable
(within the limits of reason).118

In response to the Wignerian credo, M. Fabbrichesi [931, p. 46] makes an
apt comparison between mathematics and music:

But is this effectiveness of mathematics in grasping and explaining the world so surprising? Our
brain was forged by natural selection and so it was for that piece of software, which our brain uses in
deciphering the outside world, which we call mathematics. Why then should this [mathematics] not
be perfectly suited to describing the same natural world that shaped it? The opposite would perhaps
be even more surprising: how would a formal system have developed, a system that is understandable
to us but with no relation to the environment in which we live? [ . . . ] A similar example [ . . . ] is the
music. Its ability to reflect in giving voice to our deepest emotions seems sometimes supernatural
and inexplicable [ . . . ]. Why does a series of notes and chords—air compression wave [propagating]
in a concert hall—make us cry or comfort us, or both things at once? It must be because our
emotional world finds its roots in the same ground where these sounds are processed and brought to
our understanding. They evolved together, forged, maybe just randomly, by the same evolutionary
pressure. The result is that a complex system of musical rules—in itself independent—shows a
[precise] association and reflects with startling accuracy the same territory traced by our emotions.
Mathematics looks like some kind of music of the mind and it does, for the territory of physical
reality and of the objects that surround us, what music does for the territory of emotions.

G. Israel [1417, pp. 130-131], to play against all the baloney and ignes fatui
tied to the «miracle» of mathematics, remarks upon a simple issue:

The truth is that, for us, it is neither a miracle nor a mystery because any known mathematics
from the seventeenth century onwards was created to study physical phenomena [ . . . ]. [T]he
effectiveness of modern mathematics in physics is [ . . . ] a fact deriving from the appropriate way
in which it arose from the context of the analysis of physical phenomena: its close bond with
these phenomena provides a convincing and “reasonable” [razionale] explanation of its success.
[ . . . ] [P]hysics has abandoned the Aristotelian-style qualitative approach to adopt an essentially
quantitative approach, and mathematics, in turn, has bowed to the description of physical phenomena,
facing the problem of the representation of infinitesimal and infinite processes head-on. A new
mathematics—that of the infinitesimal calculus or “calcolo sublime”—was created under the impulse
of the ambition to quantitatively describe physical phenomena. But the subsequent axiomatic
mathematics also had its roots firmly planted in earlier developments [ . . . ]: as Bourbaki has well-
observed,a in the axiomatic method, a mathematician chooses axioms on which his theory is built,
under the incitement of real problems.

One could ask why the world is, or rather, appears mathematical, but this
does not differ from asking why the flower of zucchini is, or rather, appears,
yellow-orange, whilst the Camellia sinensis’ flower becomes visible, to please
our eyes, visible as a white surface (but who knows what colors the bumblebee
sees . . . ).b What we call a color is a small portion, for a human observer, of the
electromagnetic spectrum. If the color sensation is not independent from our

of its technique allowed to learn the supreme places, the roads of the Earth, and the sea, and to
unlock the secrets of Nature from darkness». Mathesis is for Maths, transliterated from the Gr.
Μάθησις, “the act of learning”, or “of knowledge”.

aBut cf. N. Bourbaki [395, pp. 46-47]: «In the axiomatic conception, mathematics appears in
short as a reservoir of abstract forms—mathematical structures; and it is found—even though we
do not really know why—that certain aspects of experimental reality are molded into some of these
forms, as through a kind of pre-adaptation [certains aspects de la réalité expérimentale viennent se
mouler en certaines de ces formes, comme par une sorte de préadaptation]. It cannot be denied,
of course, that most of these forms originally had a well-defined intuitive content; but precisely
with a voluntary emptying of this content, we could give [these forms] all the effectiveness that
they potentially carry, making them susceptible to receive new interpretations». Visibly, Bourbaki
abandons himself to a foolery, too: all aspects of reality are not pre-adapted to the mathematical
forms; the contrary one is worth: all mathematical forms are pre-adapted to the aspects of reality.

bWhat is the electromagnetic theory of a bumblebee (given that its perception of electromagnetic
waves is different than ours)? Without doubt, we cannot envisage, or foresee, the “Maxwellian”
interaction of a bumblebee. A Socratic Maxwell [1793, p. 245] suggests to us that: «[The] state of
thoroughly conscious ignorance [ . . . ] is the prelude to every real advance in knowledge».
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eyes,a,b so likewise the disposition toward mathematics is not independent from
our brain.

(2) When we effectively describe certain aspects of nature of reality (external
world) with mathematics, this does not indicate that nature is intrinsically math-
ematical. This must be reversed: all details of nature that we can mathematically
describe are the only ones that we can understand, by virtue of the fabrication of
mathematical tools, which are diversified, as the need arises, depending on the
type of reality facing us, similar to how a screwdriver is different from a hammer.
Substantially, we do not discover how nature is made; but, with mathematics,
we figure out, and build, a way to interpret our experience with it.

Nature of reality, the external world, for its part, has its own regularity (e.g.
the constant number of spatial dimensions, at least in the macroscopic regime),
along with random arrangements (see Chapters 14 and 16); and the regularity
part is sufficient to grant a certain intelligibility. This regularity is captured by
mathematics, because it is the most convenient language that we have developed
(cf. Section 22.2.1), starting from a biological substratum, and later we have
enriched with layers of inventiveness.

(3) A notation of symbols and indices bears no relation to nature’s events
more than a series of letters and characters, such as flower, ἄνθος, цветок , or
花, has to do with an actual flower. Who would be doltish enough to confuse a
word with the object designated by it?c

(4) A physics without mathematics—with no mathematical creativity &
paraphernalia of math-symbols, I mean—is equivalent to nature (φυσική, in the
literal sense, “caused by nature”), which is a condition, for humans, devoid of
representation: a nature that can be symbolically mute, or rather, mathematically
indescribable, is, for us, physically incomprehensible (cf. Section 22.2.2).

Mathematical symbols (the aforementioned Galilean «characters» in Section
21.1), having conventional roots and a formation in the mind of man, are part
of culture and not of nature—it makes no difference if their origin is a mélange
between a cultural-like artifact and a bio-makeup of our brain (a biological
complement): they are representative functions of reality (observable facts,
external events, etc.), and share accordingly their own restrictions of infidelity
and distortion in the various defining and descriptive stages, that pave the bridge
between the combination of symbols (mathematical significance) and the content
of reality (natural phenomena).

aSee e.g. I. Newton [1937]: Book I, Part II, p. 90: «For the rays to speak properly are not
coloured. In them there is nothing else then a certain power and disposition to stir up a sensation of
this or that Colour»; Book III, Qu[estion] 12, p. 134: «Do not the rays of Light in falling up on the
bottom of the Eye excite vibrations in the Tunica retina? Which vibrations, being propagated along
the solid fibres of the optick Nerves into the Brain, cause the sense of seeing»; Book III, Qu[estion]
13, p. 135: «Do not several sort of rays make vibrations of several bignesses, which according to
their bignesses excite sensations of several Colours, much after the manner that the vibrations of the
Air, according to their several bignesses excite sensations of several sounds?».

bAbout the nature of colors and the relationship between colors and light, before the Newtonian
systematization, F.M. Grimaldi’s survey [1209, I-LX propp.] not infrequently shows subtleness and
penetration, albeit with some inaccuracies, situated in its historical context; see e.g. the Sexaginta
Propositiones listed in the five-page Index Propositionum Primi Libri.

cThe language, whether it is at the common stage or at the formal (symbolic) stage, is forged, is
molded, by its use; because of this it changes, it is in unceasing flux. So the meaning of a word, or
of a symbol, depends on how and by whom it is used.
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(5) While studying the principles of physics, we see that mathematics
· is not a (crude) translation into formulas—into a rigorous language—of

empirical laws deriving from observation, or a transposition into symbols of a
trove of knowledge, and of statements about facts given by experimental physics;

· is not a logical, moreover neutral, procedure of deduction from phenomena
that «takes nothing away and adds nothing», as a Poisson [2145, p. 5] believes,119
to the assumptions previously gained from experience/analogy;

· is not a ready-made code, to wit, a static and external code with respect to
the practice of physical theory, but takes shape—from time to time—along its
application; mathematics is more similar to an activity of reformulation, a living
language of reinterpretation of facts and phenomena.

(6) There is no «miracle» or «mystery», à la Wigner, concerning the effec-
tiveness of mathematics in physics. Mathematics and physics fit together well, as
they say, because mathematicians, and mathematical physicists, choose problems
that, under an evolutionary predisposition, they are capable of mathematically
conceiving, and rule out the rest.a Thence it is theatrically rhetorical to ask
questions like this, from R. Hersh [1335, p. 66]: «Is there some arcane psycho-
logical principle by which the most original and creative mathematicians find
interesting or attractive just those directions in which Nature herself wants to
go?». Nature for sure does not go where mathematicians go. It happens, much
more simply, that mathematicians typically and mostly study—and apply to
physics—those problems of nature that they can understand via mathematica,
so they labour under the illusion that mathematics is a miracle.

The affirmation [1335, p. 71] that a mathematical structure truly «captures»
a «fundamental feature of nature» is equivalent to saying that a mathematical
structure truly captures fundamental feature of the mathematical structure itself.
But does that make sense?

22.1.6.4. Seeing and Looking for: Elastic Lenses

We see what we look for [and we look for what we see]. No one is surprised if after putting on
blue tinted glasses the world appears bluish [ . . . ]. [If ] the original phenomenon arises from the
mathematical tools we use and not from the real world, I am ready to strongly suggest that a lot
of what we see comes from the glasses we put on.

— R.W. Hamming [1285, pp. 87-88, e.a.]

The comparison with the glasses, evoked by Hamming, is unhappy because
it may suggest the misconception that our way of mathematically seeing the
world is somehow static or rigid, as a fumesopher (Section 23.1) thought,120
mistakenly believing that mathematics was a synthetic judgment a priori (see
Section 22.2.3); mathematics is free or, if you prefer, elastic as the mind, and
co-evolves with the “pliability” of the imagination. But such a comparison has
the merit of being clear, and it has the goodness to illustrate immediately that
physics passes through the introspective lenses of (our) mathematics, anyhow.
Luckily, Hamming (ivi) gives a series of examples that clarifie what he means by
“glasses”:

aCf. G. Vallortigara, N. Panciera [2550, pp. 135-137].
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Not too long ago I was trying to put myself in Galileo’s shoes, as it were, so that I might feel
how he came to discover the law of falling bodies [ . . . ]. Since falling bodies do something, the only
possible thing is that they all fall at the same speed—unless interfered with by other forces. There
is nothing else they can do [ . . . ]. Galileo found his law not by experimenting but by simple, plain
thinking, by scholastic reasoning.

I know that the textbooks often present the falling body law [and the inverse-square law] as an
experimental observation; I am claiming that it is a logical law, a consequence of how we tend to
think [ . . . ]. [I]f you believe in anything like the conservation of energy and think that we live in
a three-dimensional Euclidean space, then how else could a symmetric central-force field fall off?
Measurements of the exponent by doing experiments are to a great extent attempts to find out if we
live in a Euclidean space, and not a test of the inverse square law at all [cf. Section 22.1.4.2].

Another example follows, relating to the uncertainty principle:
When you use the eigenfunctions [of the translation operator] you are naturally led to representing

various functions, first as a countable number and then as a non-countable number of them—namely,
the Fourier series and the Fourier integral. Well, it is a theorem in the theory of Fourier integrals
that the variability of the function multiplied by the variability of its transform exceeds a fixed
constant, in one notation 1

2π . This says to me that in any linear, time invariant system you must
find an uncertainty principle. The size of Planck’s constant is a matter of the detailed identification
of the variables with integrals, but the inequality must occur.

Then the discussion drops on physical constants:
As another example of what has often been thought to be a physical discovery but which turns

out to have been put in there by ourselves, I turn to the well-known fact that the distribution of
physical constants is not uniform; rather the probability of a random physical constant having a
leading digit of 1, 2, or 3 is approximately 60%, and of course the leading digits of 5, 6, 7, 8, and
9 occur in total only about 40% of the time. This distribution applies to many types of numbers,
including the distribution of the coefficients of a power series having only one singularity on the
circle of convergence. A close examination of this phenomenon shows that it is mainly an artifact of
the way we use numbers.

At a glance [1285, pp. 88-89], we can say that «we approach [mathematically]
the situations with an intellectual apparatus so that we can only find what we
do in many cases».

Another explanation for why mathematics is effective is that, as we have
already said above (point (6), p. 433), «we select the kind of mathematics
to use».a In conclusion, and inescapably, the effect of biological selection is
underscored by Hamming:

Just as there are odors that dogs can smell and we cannot, as well as sounds that dogs can hear
and we cannot, so too there are wave lengths of light we cannot see and flavors we cannot taste.
Why then, given our brains wired the way they are, does the remark, “Perhaps there are thoughts
we cannot think”, surprise you? Evolution, so far, may possibly have blocked us from being able to
think in some directions; there could be unthinkable thought.

22.2. Three Scholia (pro Exhibendis Contextis Physicis et
Mathematicis)

Some issues dealt with in the previous two Sections (22.1.6.3 and 22.1.6.4)
may be complemented by further remarks. We will present three supporting
Scholia below.

aWhich gives its historical status away. It is a platitude, but it is something that needs to
be said: the postulates are chosen by us; and if these are not consistent with other parts of the
mathematical architecture, it is appropriate to modify them [1285, pp. 86-87]: «Mathematics has
been made by man and therefore is apt to be altered rather continuously by him [ . . . ]. The idea
that theorems follow from the postulates does not correspond to [the facts]. If the Pythagorean
theorem were found to not follow from the postulates, we would again search for a way to alter the
postulates until it was true».
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22.2.1. Contextus I. Elements of Brachylogy—the Reverie of a Perfect
Language, with a Margo on Music and Mathematics

One of the peculiarities of mathematical language is the brachylogy. P.-
S. de Laplace, in his lectures (1795) Sur la numération et les opérations de
l’arithmétique [1581, p. 15], tells us that

[T]he [ . . . ] most perfect language would be the one in which one could express the greatest
number of ideas by the smallest number of words possible [le plus-grand nombre d’idées par le plus
petit nombre de mots possible]. Arithmetic is a particular language [which is somehow able to have
this peculiarity].

L. Sinisgalli, poet, art critic but, as a mathematician and electronic engineer
by training, in [2385, Calcolatrici ] annotates that:

In each mathematical sign there is an indication of a movement, but of a movement shortened
[movimento abbreviato] to such an extent that it already contains in itself, so to speak, the result.
The effort of mathematicians perhaps consisted in this: [the effort] to have built the most formidable
system of abbreviations. Mathematicians have enclosed a concept and an operation in a sign.

E. Pound [2157, p. 28], poet and critic, says that
Great literature is simply language charged with meaning to the utmost possible degree.

Something of the kind can be repeated for the grammar and musical syntax
(with its ingredients: melody, harmony, rhythm, and counterpoint). Herein one
rediscovers the far-famed assertion by G.W. Leibniz [1607, IV, p. 437]:

Musica est exercitium arithmeticæ occultum nescientis se numerare animi.

The pith of the sentence is that exercitium occultum: «Music is a secret
exercise [in] arithmetic of the soul [mind], unaware that it is counting».

Of that there is no doubt: mathematics, poetry, and music, are, evenly, but
each with its own modality, the three brachylogical languages having the greatest
concentration of meaning, or of ideas, simultaneously with the smallest number
of terms possible. It is the power of βραχυλογία.

Before closing this Section, we add additional annotations about music.

Margo 22.2.1 (Music and mathematics). A piece of music is, say, a sound
illustration of fractional expressions, as parts of arithmetic; more appropriately,
musical fractions are “element” of the time in which a piece of music is played.
Such an ancestral union—between music and mathematics—appears explicitly
with the Pythagorean tuning; take the following frequency ratios for a major
scale on D/Re, for instance:

non-tempered scale



G/Sol 4/3, perfect 4th (P4), or diatessaron: 2
3 · 2,

D/Re 1/1, unison, or prime (P1), with 0 size,
A/La 3/2, perfect 5th (P5), or diapente: 3

2 ,

E/Mi 9/8, major 2nd (M2), or whole tone/step:
(
3
2

)2 · 12 ,
B/Si 27/16, major 6th (M6):

(
3
2

)3 · 12 ,
F♯/Fa♯ 81/64, major 3rd (M3):

(
3
2

)4 ( 1
2

)2
,

C♯/Do♯ 243/128, major 7th (M7):
(
3
2

)5 ( 1
2

)2
,

G♯/Sol♯ 729/512, augmented 4th (A4):
(
3
2

)6 ( 1
2

)3
.
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The intervals of the minor scale, which we do not report here, also have their
frequency ratios, of course—e.g. on the opposite side from A4, there is the

diminished 5th (d5) A♭/La♭ 1024/729, whose formula is
(
2

3

)6

· 24.

It is known that, in the Pythagorean tuning, the circle of fifths, after 12
tones/steps, does not close exactly with the starting note: it is an increasing and
endless spiral; and it is a non-tempered scale, for that matter.

In the reform of the construction of the musical scale, it should be remembered,
for its importance, the Zarlino scale [2721], to which the system of 5-limit tuning
is connected, proposing an enlargement of the Pythagorean τετρακτύς, where
one finds a division of music in «Theorica, o Speculativa» & in «Prattica».

The fundamental revision is with the so-called temperament of the musical
scale, aimed at making adjustments, in “circumventing” the Pythagorean problem,
through a systematic tuning instruments, by dividing the octave into 12 equal
semitones, or half-steps, comprehensively elaborated by Zhu Zaiyu (朱載堉)a
and S. Stevin;b this is the case of the equal-tempered scales, or 12-tone equal
temperament,c whose ratio is

12
√
2 = 1.0594630943592952 · · ·

One way or another, all intervals of intonations and changes in tonality are
correlated with a skeletally mathematical, or quasi-mathematical, modulations;
idem for dodecaphonic compositions, when every degree of the chromatic scale
is used, see e.g. A. Schönberg [2310, XI, pp. 202-206]. I. Xenakis [2700, p. 170],
a distinctly formal composer, combines algebra and granular synthesis (a “cloud”
of atomic sounds colliding with each other); getting to the nub of the matter,
this is what he says:

We have noted [ . . . ] three kinds of algebras:
1. The algebra of the components of a sonic event, with its vector language, independent of the

procession of time, therefore an algebra outside-time.
2. A temporal algebra, which the sonic events create on the axis of metric time, and which is

independent of the vector space.
3. An algebra in-time, issuing from the correspondences and functional relations between the

elements of the set of vectors X and of the set of metric time, T , independent of the set of X.

J. Cross in [950, Composing with numbers: sets, rows and magic squares, p.
146] paints a portrait of the Xenakisian music:

Xenakis [ . . . ] [used] many mathematical models as well as computers to assist him in his
pre-compositional calculations. He soon became interested in probability theory as a way of handling
mass sound phenomena, and from this grew what he described as ‘large number’ or ‘stochastic’
music, where the operation of individual elements is unpredictable but the shape of the whole can
be determined. For example, Pithoprakta, the next work after Metastaseis, drew (the composer
claimed) on Maxwell–Boltzmann’s kinetic theory of gases; Achorripsis employed Poisson’s law; and
Duel and Stratégie used game theory—each work employed two conductors who ‘compete’ with one
another. More recently, Xenakis developed what he called ‘symbolic music’ which drew on principles

aSee his monumental work: 朱載堉 (1536-1611), 乐律全书 [The Complete Book of Music], 商务印
书馆, Shanghai, 1931.

bStevin’s manuscript is entitled Vande Spiegheling der Singconst (circa 1605-1608), see [671].
cCompare with the wohltemperierte Stimmung (well temperament scheme), from J.S. Bach.
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of symbolic logic. P. Griffiths has observed that “Xenakis’s symbolic music has . . . the nature of a
translation into sound of theorems of set theory”, first evident in Herma for piano of 1960-1.

This may suggest that Xenakis’s music is completely abstract and sterile. Not at all. His music,
like the man, is all too human and he always asserted the primacy of music over mathematics—music,
he believed, is never reducible to mathematics, even though they have many elements in common
[ . . . ]. As another commentator has put it, “he gives us something only an artist can give—a dynamic
picture of the universe informed by the science of today”.

Although Xenakis’s use of a variety of mathematical models may have been undertaken in a
more consistent and thoroughgoing manner than almost any other composer, it does not make his
music any less exciting, challenging, creative [ . . . ]. Mathematics is a means to an end, not the end
in itself. Composers today are as aware as have been thinkers of the past that music is inherently
mathematical, but this does not mean to say that it is mathematics. Composing with numbers is
not an admission of compositional failure, a substitute for ‘inspiration’ or ‘musicality’, whatever
those concepts may mean. Composers have composed with numbers as one way of generating new
musical ideas, as a means of stimulating their creativity [ . . . ]. In Xenakis’s words, this represents:
“the effort to make ‘art’ while ‘geometrizing’ ”.

This comment is helpful in stating that music and mathematics, even in an
osmotic compound, or close to each other, are separate. The Russian composer
I.F. Stravinsky [700, 1. About Composing and Compositions] clarifies, in his
appraisal, that

[Musical form] is far closer to mathematics than to literature—not perhaps to mathematics
itself, but certainly to something like mathematical thinking and mathematical relationships [ . . . ]. I
am not saying that composers think in equations or charts of numbers, nor are those things more
able to symbolize music. But the way composers think—the way I think—is, it seems to me, not
very different from mathematical thinking [ . . . ]. Musical form is mathematical because it is ideal,
and form is always ideal [ . . . ]. But though it may be mathematical, the composer must not seek
mathematical formulæ.

P. Schaeffer [2293, 7.3] = [2294, p. 97], avant-gardist composer (in electronic
and experimental music) and musicologist, father of musique concrète, does not
fail to reiterate that

[W]e should note that the analysis of music into abstract structures—that is, into terms that
are meaningful to the intellect and not to perception—has tempted many a mind. Contemporary
experiments show that it is possible to go a long way down that road, to the point of looking to
mathematical functions or chance theories for the organizational rules of musical language. These
attempts are scientific only a posteriori: insofar as they are “experiments just to hear”. It is clear,
however, that they are not of the first importance for us, since we wish to hear before understanding
and in order to understand [nous voulons entendre avant et afin de comprendre]. We take it as
read that, even if the Art of the Fugue can be completely reduced to a numbers game, the meaning
of this game is in its manifestation in sound, because ultimately it is entirely based on criteria of
musical perception, which arithmetic may represent [traduit] but certainly does not determine.

Then, he reports [2293, 10.3] = [2294, p. 134] a passage from Helmholtz
[1329, p. 58, e.a.]:

Fourier’s theorem, shown here, demonstrates first that it is mathematically possible to consider
a musical sound as a sum of simple sounds, in the sense we have given to these words, and, indeed,
mathematicians have found it convenient to base their acoustical research on this way of analyzing
vibrations. But it certainly does not follow from this that we are obliged to look at things in this
way. Rather we should be asking: do these partial components of musical sound, demonstrated by
mathematical theory and perceived by the ear, really exist in the mass of air outside the ear? Surely
this method of analyzing vibrations, stipulated and made possible by Fourier’s theorem, is simply a
mathematical fiction [bloss eine mathematische Fiction], good for helping with calculations, but
not necessarily having any real meaning [reellen Sinn] for things themselves?

And here we return to Leibniz’s quote («exercitium arithmeticæ occultum»)
given above. Neural circuits of the cerebral cortex process all molecular vibrations
in air, turning a sequence of sound punctualities, which could be cacophonous,
into an amalgam of non-informative sounds full of aesthetic content, nay of
meaning. In constructing coherent states, or “structured” sequences of sounds,
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music is blatantly a product of the brain. Cf. footnote h on p. xxxvii.
In conclusion, mathematics, towards music, is a complex of organizational

formulæ (based on a substratum of unawareness), which, as such, do not explain
what music is, physiologically and emotionally [2293, 36.13] = [2294, p. 529]:

[W]hy should Pythagoras’s thinking not still be relevant today? The entire harmonic scale,
which replicates the series of whole numbers, still presents the same enigma. What unacknowledged
motives would turn away a whole physics- and mathematics-obsessed age from this fundamental
thinking? The musical object, the most disembodied [désincarné], the most abstract of all objects
it is given to us to perceive, has, in fact, the virtue of being both the most mathematical and the
most sensory [le plus mathématique et le plus sensible] [ . . . ]. So the mystery of music and its
dualism cannot, fortunately, be resolved [ . . . ]. Sound objects and musical structures, when they
are authentic, have no informative mission [n’ont plus de mission de renseignement]: they turn
away from the descriptive world [s’écartent du monde descriptif ] with a sort of reticence in order to
speak all the better about it to the senses, the heart and mind, to the whole being, ultimately about
himself.

The fascination of the ambiguity of musical structures comes from here. Now,
we may effortlessly reminisce about the standpoint of an esteemed conductor
and composer, L. Bernstein [274, pp. 43, 39, e.a.]:

[ . . . ] Ambiguity [in music is] the combination of [ . . . ] two contradictory forces, chromaticism
and diatonicism, operating at the same time, that makes [a] passage so expressive [ . . . ]. But
ambiguity has always inhabited musical art (indeed, all the arts), because it is one of art’s most
potent aesthetic functions. The more ambiguous, the more expressive, up to a certain point. L

22.2.2. Contextus II. Autobiographical Note

(1) When I was twenty—the age at which everything is taken to the extreme,
the age of ardor, pulled along by fatuous exaggerations—I delighted in writing
classical metrics and verses in prose. One of these compositions went like
this: Per quasi flutti incanutiti candido spumeggia, & ne’ clivi pruinosi presto
rameggia, il sol poeta che rapito all’affannoso scriver non s’attenta, ma lascia,
cheto, gl’impeti ondosi reliqui a levarsi, e sonori a gonfiarsi, & gli ontàni a
stormir, verberati dall’aere ventoso (the adjective reliqui comes from the La.
rĕlinquo, “leave [behind]”, “let go”).

Something vaguely similar, if you will, is in G. Papini [2007, pp. 181-182]
= [2008, pp. 200-202, partially modified translation]—although he has quite
another ambition in mind—when he asserts that

[ . . . ] it is not enough to write [the] names [of things] in books; it is not enough to classify them
and to find their genealogy [non basta avere i nomi 〈delle cose〉 scritti nei libri; non basta averle
classificate e genealogizzate]; it is not enough to reduce them to general ideas and these generals
to universal concepts, establishing the causative relations between the various groups of concepts
[non basta averle ridotte a idee generali e le idee generali in concetti universali e aver formulati i
rapporti di causa tra i diversi gruppi dei concetti]. It is not enough to exhibit them in show-cases
[vetrine], each show-case labeled with the (inviolable?) law illustrated. To change reality, it is not
enough to know its exteriors and through the categories of the reasoning intellect and the symbols of
language [non basta conoscere 〈la realtà, la natura delle cose〉 dal di fuori e attraverso le forme
dell’intelletto ragionante e i simboli del dizionario].

So, let us sum it up thus: nature cannot be fully represented, because
language, of any kind, is a faculty bringing into being differentiations, so that it
prevents us from grasping, say, the unity of nature: a theme agreeingly loved by
physicists,a notably by the pursuers of the guts (grand unified theories) and of

aCf. e.g. D. Bohm [314, chap. 1, e.m.], who mixes together scientific creativity and discovery, in
search of the archetypal “unity” in nature, the cosmic ἀρχέτυπον (model, imago) of the “oneness”,
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the elusory theory of everything.
We must get inside [of the nature of reality]—Papini continues—[and] insert ourselves into

it, become parts of it [Occorre entrarci dentro, inserirsi in essa, diventar parte di lei], each
of us an atom of its mass, a moment of its existence, a spark of its flame, a drop of its current
[atomo della sua massa, momento della sua durata, scintilla della sua fiamma, gocciola della
sua corrente]. We must come in contact with all its aspects (even the most recondite, the most
transitory, the least perceptible); blend ourselves with its fullness; abandon ourselves to its flow; lose
ourselves in its immensity; become living realities in a living reality [Occorre entrare in contatto
con tutti i suoi aspetti (anche i più nascosti, i più transitori, i meno visibili); fondersi nella sua
pienezza; abbandonarsi al suo corso; perdersi nella sua immensità; farsi realtà viva nella viva
realtà]. We should not just stand in its presence like a thinking mechanism, a microscope reticle, a
nomenclator and a [ratio] meter [Non già restare al suo cospetto come un meccanismo cerebrale,
come una lente reticolata, come un nomenclatore e un misuratore], rather we should dive into it
headlong, penetrate into it and be penetrated by it; feel within our own selves the eternal multicolor,
multisound, and multisavor of its flux, putting its pulse in rhythm with the pulsation of our blood,
with our own heartbeat. Ensuring that it becomes wholly of us and that we all become [part] of it.a

Nobody aspires and tends to this mystical oneness [Nessuno aspira e tende a questa mistica
immedesimazione]. Not even the artists: they too, though they give expression to the particular,
select, choose, eliminate, impoverish [scelgono, scartano, impoveriscono]. There are sides, phases,
flashes, of things which no one sees, which no one is trying to see [Vi son attimi e lati delle cose
che nessuno vede, che nessuno cerca] [ . . . ]. Philosophers could much better apply themselves
to this patient excavation of the concrete particular than continue playing [gingillarsi] with such
kindergarten toys [giuochi froebeliani] as a priori definitions and symmetrical systems [ . . . ].

If man, instead of detaching himself from reality, considering it merely as something to be
measured and judged by him, were so to melt, so to dissolve himself, into the real as to feel its every
atom and appearance kin of his kin, then his limited body would be absorbed into the immense body
of the universe [Quando l’uomo, invece di separarsi dal reale, come qualcosa a sé che lo giudica e
lo misura, si disfacesse nel reale in modo da sentir fratello ogni atomo e sorella ogni apparenza,
allora il corpo limitato dell’uomo sparirebbe nel corpo smisurato dell’universo]; his microcosm
would become the very macrocosm [il microcosmo sarebbe effettualmente il macrocosmo], and every
part of the world would be as a part of him.

I am afraid that the same—impassable—limitations, which in literature
provoke a poignant afflatus pushing towards a pancosmic mirage, can be cogently
laid bare, mutatis mutandis, in physics: mathematical language is the key for
a coherent description of reality; but, concurrently, mathematical language,
inexorably, is the extent of our imperfect representation of the (ultimate) nature
of reality, because a perfect representation is equivalent to the very nature of
reality, that is, without mathematics.

Hæc fabula docet that literature, physics & mathematics are on equal footing:
they are all flawed or inadequate representations, albeit to varying degrees, of
the things “out there”.

“totality”, or “wholeness”, comparing the activity of a physicist to that of an artist, an architect,
and a musician: «[What the scientist seeks is] a hitherto unknown lawfulness in the order of nature,
which exhibits unity in a broad range of phenomena. Thus, he wishes to find in the reality in which
he lives a certain oneness and totality, or wholeness, constituting a kind of harmony that is felt
to be beautiful. In this respect, the scientist is perhaps not basically different from the artist, the
architect, the musical composer, etc., who all want to create this sort of thing in their work.

To be sure, the scientist emphasizes the aspect of discovering oneness and totality in nature. For
this reason, the fact that his work can also be creative is often overlooked. But in order to discover
oneness and totality, the scientist has to create the new overall structures of ideas which are needed
to express the harmony and beauty that can be found in nature».

aIn the same year in which Papini published this “intellectual autobiography” (1913), the lyrical
fragments of C. Rebora came out, in “Libreria della Voce” (the same Florentine book publisher
of Papini). Similar Papinian feelings can also be discovered in Rebora’s lyrics; which is readily
explained: these are crosswise themes. See e.g. [2185, xlvii, pp. 89-90]: «Se come foglia in turbin
si mulina / Volger potessi nella mia fatica, / Se come per ruscello all’acqua è moto / Fosse al mio
ingegno eguale la sua china [ . . . ], Voce a un coro, stelo a un fiore / Trave a un palco, ghiaia al
fango: / Esser qualcosa di adatto»; and [2185, xxv, p. 55]: «O realtà, essere in te vorrei: / Ma in
un concreto e alterno / Svarïar perdo il senso / Del tuo vortice eterno. / Da te nascendo vano sfumo
via».
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(2) In the opposite direction, at least partly, goes the F. de Grisogono’s
crazy project (a sort of Faustian Anstoß), a solitary and weirdo scientist, artfully
described by his grandson, C. Magris [1728, Lagoons, pp. 79-81]. This is the
project of harnessing the power of chance in a gargantuan grid of pluri-knowledge,
i.e. in a classification & cataloguing system (just mention the Linnaean Cognitioni
Naturalium Methodicæ & Nomenclaturæ Systematicæ, which serve as an Ariadne’s
thread, in order not to get lost in the Naturæ mæandri, see Section 21.1), of
putting a bridle on the random fury of events in the natural world, which are
multiple and allegedly blind:

Francesco de Grisogono [ . . . ] passing on to his grandson the nostalgia and the hybris associated
with the business of enclosing the world in a cage of signs and words [la hybris di racchiudere il
mondo in una gabbia di segni e di parole].

[ . . . ] Above all else he worked at the fundamental dream of his life, the “conceptual calculus”,
an ars combinatoria based on rigorous mathematical foundations and capable of producing all the
operations, the discoveries and the intuition of genius.

Francesco de Grisogono sought to free human creativity from the whims of chance and from the
injustice of fate [liberare la creatività umana dai capricci del caso e dall’ingiustizia della sorte]
which, as he well knew, conditioned it and clipped its wings. To this task he brought a titanic
impetus compounded with a genuine scientific rigour, a prophetic intuition, outdated impedimenta
and a naïvety that was unavoidable in an isolated provincial. And if genius is inevitably subject
to hazard, then conceptual calculus, with its machinery providing every possible operation, and
imposing on them its inflexible logic, floats free of the randomness in which men, even geniuses, are
ensnared.

The most interesting aspect of this Promethean design is the arrangement of the tables [stesura
delle tabelle] that the writer composes in his Seeds of a New Science,a to catalogue the infinite variety
of the world [schedare l’infinita varietà del mondo], in such a way as to organize the material for
those combinations that will extract from reality all possible inventions and discoveries [in maniera da
sistemare il materiale di quelle combinazioni che dovranno estrarre dalla realtà tutte le invenzioni
e le scoperte possibili]. It classifies types and subtypes of elements (unentwineable: bacillary, arched,
contorted, “circuent”), the 36 determinations of a “ponderal” or the 21 determinations of an event, the
locutions and the translocational operations, the “electriferous” instruments and the “sonifers”, the 17
parts of the “alteragifers”, the 143 modalities of an action, the 28 physiological phenomena and the
same number of psychic phenomena, [the divers substances]—the friable, foliaceous, mucilaginous,
foamy, mouth-puckering . . . . It suggests scientific research ranging from the brilliant to the hare-
brained, enquiries into the influence of a vacuum on the variations in the electric resistance of
selenium, through the effects of light or experiments to verify whether the given X(2)n contains
properties that will arrest the decomposition of corpses.

Among those tables, those calculi and those mathematical signs, pigeon-holed and untouchable,
sit the seduction and the prolixity of the world, the immensity of the celestial vaults and the chasms
of the heart [Fra quelle tabelle, quei calcoli e quei segni matematici si affacciano, incasellate e
inafferrabili, la seduzione e la prolissità del mondo, l’immensità degli spazi celesti e gli abissi del
cuore]. That all-encompassing hybris, which toys with omnipotence, exposes the individual in his
smallness and helplessness, lost as he is amid the infinite and even more so amid the enigmas of
finite things, overwhelmed by love for life; all of this he tries to capture like a fisherman who seeks
to capture the sea in his net [Quella hybris totalizzante, che maneggia l’onnipotenza, mette a nudo
l’indifesa piccolezza dell’individuo sperduto tra gli infiniti e ancor più fra le enigmatiche cose
finite, il suo struggente amore per la vita, ch’egli cerca di afferrare come un pescatore che voglia
catturare il mare con la sua rete]. Only plain mathematics, with its signs as abstruse to the layman
as hieroglyphics, can elicit the mysterious and terrible grace of living [Solo la nuda matematica,
con i suoi segni astrusi per un profano come geroglifici, può far emergere la grazia misteriosa e
terribile del vivere]; here we have the glum, positivist, nineteenth-century honesty, with its rigour
and its ingenuous faith in being able to eliminate metaphysics, which authenticates the sense of
mystery—unstated and indeed doggedly banished like an error in a computation.

One has the dream of embracing life at every stage, as a whole, in its present,
past, and future form. One more time. Papini and de Grisogono: different paths,
which then intersect each other.

aF. de Grisogono, Germi di scienze nuove, Voll. I-II, Guanda, Modena, 1944; Edizioni lint,
Trieste, 19782ed.
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22.2.3. Contextus III. Helmholtz’s Space-intuition, Poincaré’s Inner
3-Dimensionality, and Grid Cells

Take the notion of space: it has a relationship with experience, as H. von
Helmholtz already argued [1330, p. 31]: space-intuition is

an intuition of the kind an artist has [eine solche Art der Anschauung] of the objects to be
portrayed; [this intuition is an] empirical knowledge gained by the accumulation and reinforcement
of similar recurring impressions in our memory, and not a transcendental form given before any
experience [keine transcendentale und vor aller Erfahrung gegebene Anschauungsform].

In brief, our intuition of space is not a rigid cognitive faculty imposing a
pre-established harmony between (a priori) form and reality.

See also H. Poincaré [2140, II. chap. I,121 p. 121]:
[G]eometry [ . . . ] is a science born in connection with experience, we have created the space

[nous avons créé l’espace] that it studies, but adapting it to the world in which we live. We have
chosen the most convenient [commode] space, but it is experience that has guided our choice.

Poincaré argues [2140, pp. 117-119] that the 3-dimensionality of space is
«an internal property [propriété interne] of human intelligence», although it is
inextricably linked with an adaptive strategy; it is the «translation of a set of
external facts»: «in nature there exist solid bodies». But the simple destruction
of some associations of ideas, in his opinion, would be enough to acquire a
different perceptual-cognitive picture, with the emergence of a space with two or
four dimensions; such distorted physics would be «the same as ours», since it
would be «the description of the same world in another language».

The experiential quality of space shall not preclude the existence of a innate
or neurobiological space-knowledge starting from the chemico-physiological dis-
position; indeed, experience works precisely on a biological substrate. In this
matter, see the works of E.I. & M.-B. Moser [977] [1255], to whom we owe the
discovery that the neuronal pattern (in rats, mice, monkeys, humans, and other
animals) is geometrically shaped. In the entorhinal cortex there are special nerve
cells, called grid cells, which—along arbitrary/random trajectories—contribute
to the determination and understanding of the location, distance, and direction
in the surrounding space (there are also speed cells for measuring the speed
of movement); such a mapping takes place via local triangulations, which, in
succession, generate pentagonal tessellations. More recently, several studies have
been done on the 3D grid cells, see [1206] [1149].
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23.1. Interludio Giocoso. Against the Fumesophers, or the
Tragicomic Smoke-sellers

Et ie m’esbahis grandement d’un tas de fols Philosophes [ . . . ], & mieux leur vaudroit s’aller
frotter le cul au panicaut,a que de perdre ainsi le temps à disputer de ce dont ils ne sçavent l’origine.b

— F. Rabelais [2171, Livre II, chap. XXXIII, p. 319]

If the hypoteposis of Geometric intuition, by prostergandering the prologomena of subconscious-
ness, were able to reintegrate its own subjectivism to the genesis of concominances, then the Ego
would represent the self-phrasing of contemporary Mathematics, which would be nothing more than
the exopolomaniacal transmification.122

— Paraphrase of a monologue by E. Petrolini (1884-1936) interpreting Gastone

Fumesophy is a smoky and muddled thought activity, a hotchpotch of wooly
ideas, a fluff-study (in It. one would say filosofume, or fuffa). A fumesopher
is someone practicing fumesophy. The majority of fumesophers, or smoke-
sellers—paired with lifrelofres of F. Rabelais [2171, Livre II, chap. II, p. 186]—
strut around with their imbecillæ adsensiones.c And yet, borrowing a scathing
banter from G. Prezzolini [2166, § 29, p. 184], they are like politicians, or lawyers:

To say nothing in many words has always been the first quality of [fumesophers]; and if they
have merged [the ability] to say nothing with [the ability] to speak flowery, they have reached [the
peaks of] perfection.d,e

aPanicaut is a perennial herbaceous plant of the genus Eryngium, belonging to the Apiaceae
family. There are various species; here are some of them: Eryngium maritimum, E. campestre, E.
bourgatii, E. spina-alba. The leaves are predominantly tough, the basal leaves are pinnately lobed
and stiffly spiny, with a broad stalk.

b«And I am greatly amazed at a rabble of foolish Philosophers [ . . . ], & better were it for them
to rub their ass against [the thorns of] Eryngium than to waste away their time in disputing of that
whereof they know not the origin».

cCf. M.T. Cicero, Tusculanarum disputationum [656, liber IV, 7, 15, p. 171].
dPrezzolini’s phrase—in which I replace the term “politicians” with the term “fumesophers”—is

this: «Il dire niente in molte parole è stata sempre la prima qualità dei [fumosofi]; che se hanno
sommato il dire niente al parlare fiorito, hanno raggiunto la perfezione».

eCompare with P.W. Bridgman [417, p. 30]: philosophy, like logic, is a verbal activity, but «logic
is subject to a control that philosophy is not, the control of “truth”»; and so «it seems to me that
[philosopher] sometimes tempted to treat verbal activity as a self-contained activity, worth pursuing
for its own sake. It seems to me that he is inclined to hope that there must be some meaning in
any grammatical combination of words, particularly when they deal with abstractions, and that
he regards it as one of his problems to discover what this meaning may be». That is how the odd
person (etymologically: persōna, “theatrical mask”, “false face”) of the fumesopher springs up.



444 23. Outro—Parva Mathematica: Libera Divagazione 4⁄8

In the vivid words of D. Giuliotti & G. Papini [1154, p. 61], they are a gang
of merchant of «merda caramellata».

Shall we name a few? B. Croce,a G. Gentile, M. Heidegger,b J. Lacan, K.
Popper, T. Kuhn,c I. Lakatos, P. Feyerabend, G. Deleuze, P.-M. Foucaultd:
a small gallery of freaks, each with his clout, his faults, and his «intellectual
dishonesty», throughout the twentieth century. Against that background, see the
book of A. Sokal & J. Bricmont [2402] = [2403],e and the pamphlet by E. Bellone
[242, parte II]; from the latter author, see also the essay [239] on the complicated
theory vs. experiment relationship, and on the misunderstandings of the history
of physics and mathematical physics on the part of some fumesophical 20th
century schools.

About the history of Italian thought, Enriques’ controversy with the Crocian
and Gentilian prattle is a milestone:f see [1237, pp. 47-65] [1911, pp. 842-843]
[242, p. 6, and cap. 3] [1238, pp. 27-28, 125-147] [2271, pp. 359-366]. Echoes
of this quarrel are still to be found in F. Rasetti’s memory [1179, pp. 307-308],
who was one of the via Panisperna boys; his judgment (in an interview of 1982)
is sharp:

When I try to read something about the work of some [fumesophers], I have the impression that
a [fumesophers] stands for this principle: that you have to discover the meaning of a word. That
in a word there is something intrinsic, so to speak, which is different from the use of it—which of
course is nonsense. As if words [ . . . ] have a sort of mystic content in themselves and you have to
study what this meaning is. But words are only what they are used for, and there is nothing else
in words [ . . . ]. We in the physics group in Rome had the deepest contempt for [fumesophy], and
especially for Gentile. We had equal contempt for Gentile, who was a Fascist, and for Croce, who
was an anti-Fascist, because we had a very poor opinion of [fumesophers] regardless of their political
opinions.

The gallery of freaks can be fleshed out with ease. Just to give some examples,
pungent observations on the fumesophy and bilge-thinking are in

aA foretaste of chronic sequelae of Crocian disease is in [1416, cap. 3. (§ 1) Croce e la scienza:
una eredità ingombrante].

bBut, alas, there is not only this despicable fumesopher; but also his miserable epigones, with
their lace knits. The burlesque continues via computer graphics: rummage through the internet, and
find the drawing entitled Viola del pensiero debole (2001) by T. Regge, sardonically dedicated to
the notorious “weakened” Turinese.

cWhen Kuhn is a historian of science, what he writes may be fine: his books on the thermal
electromagnetic radiation emitted by a black body and the ultraviolet catastrophe (which mark
the birth of quantum mechanics)—Black-Body Theory and the Quantum Discontinuity 1894-1912
(1978), reprinted with a new Afterword, The Univ. of Chicago Press, Chicago and London, 1987—is
a readable book; but when he is a theorist of science, the cogs of “garbage out” are operating. P.L.
Galison [1078] justifiably argues that the two Kuhns, one in the guise of a historian, the other in
the guise of a theorist, are two sides of the same coin. But no historian makes history without
walking on the tracks of some idea; the challenge is to resist the factiousness of fumesophy, without
degenerating beyond the bounds of decency.

dSee e.g. J.-M. Mandosio, Longévité d’une imposture: Michel Foucault, suivi de Foucaultphiles
et foucaulâtres, éditions de l’Encyclopédie des Nuisances, Paris, 20102r.e.

eThe survey by Sokal & Bricmont is brilliant, and the clownesque parade of fumesophers is
chiefly hilarious; but, once in a while, in the two authors’ outlook on the methodology and history of
physics a bit of crudeness, or even of viridity, transpires. We are far from the subtlety of a Bellone,
or of an Acerbi, who, with M. Ugaglia, took care of the It. translation of this book [2402] (Garzanti,
Milano, 1999). It should, however, be added that their goal is to unmask the ludicrousness—tons of
ideological and terminological guano—of clowns’ fumesophy, and not to enter into historical and
methodological (mis)interpretations of physics/mathematics.

fAfter 1918 the duo Croce–Gentile is loosened, and Gentile will be characterized by an increasing
readiness for a close cooperation with the mathematical/scientific side, see [1237, pp. 66-104]. Should
not forget that his son, G. Gentile, Jr., was a talented physicist.
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· L. Boltzmann [342, p. 385]: the butt of his mockery is Schopenhauer, a
«nonsense-spreader» (Unsinn schmierender) with a «hollow verbiage» (hohlen
Wortkram), expressions already employed by the latter against another fumeso-
pher, Hegel, see [341, p. 378]; Boltzmann [343, 642, pp. II 384-385] is even more
abrasive when he writes to F. Brentano:

Should not the irresistible desire to philosophize be compared to the vomiting caused by migraine,
as [in each of these cases] there is something that is struggling to get out, even though there is
nothing inside [dem Brechreiz bei Migräne zu vergleichen, der dort noch etwas herauswürgen will,
wo gar nichts mehr drinn ist]?

· R.P. Feynman [984, p. 195], who makes fun of Spinoza, because of laughable
«pomposity», and for a «meaningless chewing around»;

· M. Born [384, p. 54], who laconically remarks that fumesophers are like
half-witted adventurers «blissfully unaware of the dangers» hidden in their
argumentations.

Sardonic glosses coming from men of letters are not absent. See, for instance:
· C.E. Gadda [1064, XIV. Impossibile chiusura di un sistema, p. 178, lines

10-25]:
Every philosophical system, or every cognitive effort which integrates reality [ogni sforzo

conoscitivo integratore della realtà], has a malignant point or defective point, where the chickens
come home to roost [ . . . ]. Only science does not seem to suffer from contradictions [here Gadda is
childishly optimistic]: because it never constitutes a total system, but a plurality of positions (the
various disciplines or sciences), each of which stands on its own (in the same fashion as Spanish
fortresses in the Caribbean kingdom), while leaning, for that aspiration, on external positions: in
the manner in which a new house | leans against the wall of the neighboring [house], already built.
And each science sets its own terms, [which are] beautiful, neat, certain, finished, well combed,
indisputable, without perplexity, without anguish [again, there is a bit too much Gaddian gullibility],
without philosophical [fumesophical] cloud mass [nuvolaglie].

· R. Musil [1889, p. 272]:
Philosophers [viz. fumesophers] are violent criminals [Gewalttäter ] who have no armies to

command, so they subject the world [to their tyranny] by locking it up in a system [in ein System
sperren] [of thought].a

aI must open a parenthesis. The convoluted mechanisms of fumesophy try to enclose nature &
ephemeral life, within a system. This is where the complaint about Musil’s fumesophical tyranny is
razor-sharp.

A system corresponds, in addition to an interconnected structure (σύστημα), to a method of
organization, which is certainly serviceable, but does not give access to the (datum) particulare, or
to the τόδε τι, according to the Stagyritic vocabulary. This is because the objects of study, even
where they are highly regular and symmetrically interacting, often exhibit random behaviors. The
peculiarity of a phenomenon is something elusive, while the frantic and slippery multifariousness
of life remains voiceless. The only solution is silence (cf. point (1) in Section 22.2.2), since
uniqueness is unspeakable and the individual is ineffable («individuum ineffabilis est»)—wise and
lyrical ruminations are in C. Magris [1726, see Io sono indicibile and Le monete della vita]. What
characterizes the individual is not inside any σύστημα. It is systemless.

A system, which is an instrument for knowledge, stands up to the vain hope of englobing things,
(natural) phenomena and events within the length of a chain of elements, together with a conglomerate
of laws, which enjoy some kind of generality. The englobation is usually expressed through a general
predicate, so that each systematology, which passes through language, does not grasp the wide variety
and sophisticated multiplicity that is hidden behind the datum particulare. There is a pleasantly
sparkling German motto: Alle Sprache ist nur eine schlechte Übersetzung, «All language is but a
poor translation». Translation of what? Of the multiplicity of reality.

Already in Aristotle this ambiguity is blatant. In his works, a quarrel is generated between
language (λόγος), with systematic ambitions, and scientific knowledge (ἐπιστήμη), intentionally
aimed at learning something concrete, tangible; it is easy to see that knowledge-ἐπιστήμη soon slips
into the inability to provide an exposition of the particulare, of the τόδε τι, which ends up as rarefied,
stripped of its ground of individuality, and solidified in the abstraction of a general category or
species.

The substratum of everything, the ossified ὑποκείμενον, oscillates in an equivocal way, from
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· E. Canetti [486, p. 141, e.m.]:
What repels me most about the [fumesophers] is the process of evacuation [Entleerungsprozess]

of their thinking. The more frequently and skillfully they use their fundamental terms, the less of
the world around them remains. They are like barbarians in a noble and vast palace full of gorgeous
works. They [ . . . ] throw everything out the window, methodically and steadfastly: armchairs,
pictures, plates, animals, children, until there is nothing left but empty rooms. Sometimes even the
doors and windows are thrown away. [So] what remains is the bare house. They believe that these
devastations have led to an improvement [Sie bilden sich ein, dass es um die Verwüstungen besser
steht].

· C. Magris [1729, p. 122] tells us of a
Goethe [ . . . ] who mocks the philosophers locked in their rooms to rack their brains about

“quibbles” [almanaccare gli “arzigogoli” del loro cervello] without looking out of the window.

· G. Ceronetti [602, p. 106]:
What can [fumesophers] understand . . . Two colored clothes drying in an alley fluttering in

the wind are enough to give an idea of the inadequacy, the powerlessness to tighten up, of their
doctrines.a

Same suspicion is already in [601, p. 101]:
The most civilized of philosophers wields the club of the pure barbarian when he sentences [ . . . ]:

Spinoza geometries the infernal [geometrifica l’infernale],

and reiterated with more clarity in [605, § 1]:
Inexhaustible walk [immersed] in the beauty of the Chiossone Museum [ . . . ]. Always a divine

emotion, in front of the vision of the streets and houses of Edo at night [ . . . ]. For centuries, in a
similar figurative samsaric tangle, one has to probe into the life that passes in a dream, the ineffable
repetition of the immutable motif, [all] trades, lamps, [and] women . . . How dim is [Com’è fioca]
Spinoza’s Ethics in comparison [al paragone], which wants to encircle and capture the whole of life
[che vuole accerchiare e acchiappare l’intera vita] . . . b

Compare with [604, § 79]:
The challenge of science to [fumesophy] is this: “Be my servant if you want to survive”. To

remain free and not have to humiliate itself, [fumesophy] retreats into the shadows and waits for the
pre-Socratic thinkers to come back as its future.

Now, let us get back to what mathematicians and physicists say.
In sum, as R. Courant and H. Robbins [697, intro, last page] reassert, the

answer to the question What is mathematics? is not to be sought in the doctrine

Aristotle onwards, between the experience of the singularity of the τόδε τι, understood as its
character of unrepeatability and uniqueness, and the form by means of the εἶδος (“form”, “shape”,
“class”, “kind”, “species”, for the classification of each individual), or of the σχῆμα (“form”,“figure”).

I take a description from an old Diary of mine, when I was a teenager: «[ . . . ] 19 May, 17:46, 1993.
In the lower part of the longest branch, which points to the right, a Pyrrhocoris apterus is moving
quickly. The bright red of the firebug contrasts with the silvery-gray bark of the old twisted fig tree.
From the window a whiff of camphor is perceived of passing with tangling clarity, etc.». The λόγος,
when it is a systematic language, shows its service in the classification of the fig tree, and facilitates
its identification (it is a fig and not a Citrus sinensis); but, in addition to its symbolic value, the
λόγος describes, via εἶδος or σχῆμα, the life of a generic fig, rather than a specific tree (that fig,
from 19 September, at 17:46, in 1993).

The form & the system are inadequate for the evaluation of life; they are not commensurate with
the size of the problems and the understanding of nature. In every form & system the reality of the
particulare, that is, the concreteness of the τόδε τι, disappears and is definitively lost.

But compare with footnote a on p. 494 in mathematical acceptation: there is a liberator revenge.
aCeronetti’s terse quip deserves to be reported in the original language: «Cosa mai possono

capire i filosofi . . . Bastano due panni colorati che asciugano in un vicolo agitati dal vento a dare
un’idea dell’inadeguatezza, dell’impotenza a stringere, delle loro dottrine».

bEinstein was an admirer of Spinoza for his pantheistic vision, but also for his more geometrico
deterministic σύστημα. But Ceronetti is right. This time a man of letters beats a scientist on how
the world—or even the physical aspect of nature—goes round.
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of fumesophers but in an «active experience in mathematics itself». Mutatis
mutandis, the same goes for physics; A. Einstein [869, p. 349] expresses it well:

[T]he physicist cannot simply surrender to the [fumesopher] the critical contemplation of the
theoretical foundations; for, he himself knows best, and feels more surely where the shoe pinches.

See also Einstein [880, p. 1], who here pushes on the empirical relevance:
I am convinced that the [fumesophers] have had a harmful effect upon the progress of scientific

thinking in removing certain fundamental concepts from the domain of empiricism, where they are
under our control, to the intangible heights of the a priori. For even if it should appear that the
universe of ideas cannot be deduced from experience by logical means, but is, in a sense, a creation
of the human mind, without which no science is possible, nevertheless this universe of ideas is just
as little independent of the nature of our experiences as clothes are of the form of the human body.
This is particularly true of our concepts of time and space, which physicists have been obliged by
the facts to bring down from the Olympus of the a priori in order to adjust them and put them in a
serviceable condition.a

Miserably, when philosophy goes into the hands of fumesophers, it happens
that it does not lead to any good reflection/solution, and instead of acting as a
guide in favor of physics (which is what every good natural philosophy should
do), it turns out to be a blathering crowd on scientific discoveries; so that Dirac
[800] is right to give this verdict:

I feel that philosophy will never lead to important discoveries. It’s just a way of talking about
discoveries which have already been made.

The bitter critic is that, as noted by J.A. Wheeler [1833, p. 44],
Philosophy is too important to be left to the philosophers [scilicet: fumesophers].

In that vein, S. Weinberg [2622, chap. VII. Against philosophy ] points
out that every physicist carries around with him a «working philosophy», and
that physics continues to be troubled by epistemological «biases», personal
«preconceptions», «social» influences, or even «metaphysical presuppositions»,
which, taken together, sometimes guide and other times hinder the path of
science. But all this is one of the characteristics of man, and does not go with
fumesophy & its load of codswallop. It is an open secret that «observation can
never be freed of theory»; those who do science, know well «how theory-laden
are all experimental data»: it is part of the game out there.

aWhich tallies with a classical source, the EPR paper [884, p. 777]: «The elements of the
physical reality cannot be determined by a priori philosophical considerations, but must be found
by an appeal to results of experiments and measurements. A comprehensive definition of reality is,
however, unnecessary for our purpose».
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24.1. Mathematics in the Physical Sciences, and Nature of
Reality II

E di Serva divenni io già Padrona.a
— Libretto by G.A. Federico, music by G.B. Pergolesi [2076, penultimate p. not numbered]

We next consider the vexata quæstio on the relationship between mathematics
and physics: which is mistress and which is the servant? E. Bellone [239, pp. 35,
61] writes:

Is mathematics the servant or the mistress of physics and experimental investigation? If physics
knows the world thanks to the painstaking and repeated observation of facts, and if mathematics
comes after observation [or follows the discovery made inductively] and is reduced to rules for writing
out the laws—already known—in rigorous form, then are we not forced to admit that mathematics
is a mere tool of [physical] thought [working in the study of things]? And, on the other hand, is it
not a justifiable claim that no facts of experience [experiment] can be devised without recourse to
already mathematized theories [so that mathematics is also able to give shape to the facts and plays
not only an instrumental role]?

In the next Sections, we will try to make things clearer, yet, if we are in the
midst of the fray, it will seem difficult at first to escape the tangle that A.G.
Bierce was able to glimpse at the bottom of a marriage.b To paraphrase him,
we could say that we are facing a condition consisting of two mistress and two
servants, making in all, two.

24.1.1. Factiveness of the Formal Structure

The problem is that facts per se do not constitute science: this last one derives its reality, its
life, from an activity of the spirit [i.e. from the imagination]. The facts are interpreted, connected,
rethought in an entirely new unity. What we currently call “facts” are usually very complicated
mental elaborates in which the sensory and experience data are combined in an exceedingly complex
way with largely arbitrary mental elements. And the description of the facts is joined by increasingly
restrictive needs of logical chaining and operational significance, that is, of the effective possibility
of acting in a determinate manner.123

— M. Ageno [24, § 2.7, p. 20, e.a.]

Ageno’s observation is enlightened. We will take it as a cue for our reflection.

a«And from Servant I have become a Mistress».
bA.G. Bierce [289, p. 213]: «Marriage. The state or condition of a community consisting of a

master, a mistress and two slaves, making in all, two».
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(1) To supplement what has been said above, it turns out that we do not
record facts, we create them; we do not collect data, we interpret them in a
recombination of pieces that is our knowledge. The world is a suppellettile of
the biology of the mind.a

Here is an illustrative excerpt by A. Einstein [869, pp. 350-351]:
I believe that the first step in the setting of a “real external world” [realen Aussenwelt] is

the formation [Bildung] of the concept of bodily objects [ . . . ]. Out of the multitude of our sense
experiences we take, mentally and arbitrarily, certain repeatedly occurring complexes of sense
impression [ . . . ], and we attribute to them a meaning [Begriff ]—the meaning of the bodily object.
Considered logically this concept is not identical with the totality of sense impressions referred to;
but it is an arbitrary creation of the human (or animal) mind [freie Schöpfung des menschlichen
(oder tierischen) Geistes] [ . . . ].

The second step is to be found in the fact that, in our thinking (which determines our expectation),
we attribute to this concept of the bodily object a significance [Bedeutung], which is to a high degree
independent of the sense impression which originally gives rise to it. This is what we mean when we
attribute to the bodily object “a real existence”. The justification of such a setting rests exclusively
on that fact that, by means of such concepts and mental relations between them, we are able to
orient ourselves in the labyrinth of sense impressions. These notions and relations, although free
statements of our thoughts, appear to us as stronger and more unalterable than the individual sense
experience itself [ . . . ]. On the other hand, these concepts and relations, and indeed the setting of
real objects and, generally speaking, the existence of “the real world” [realen Welt], have justification
only in so far as they are connected with sense impressions between which they form a mental
connection.

(2) Interestingly, in the nineteenth century a mechanical approach was still
prevalent for the investigation of the phenomena of nature. For example, in
H. Hertz, at the beginning of the Introduction to his Prinzipien [1340], the
thought-nature relationship (or observer-phenomenon relationship), is presented
as a complex of organs, assuming an interlocking between the parties; he speaks
of «conformity», that is, of congruence, as if they were gears:

[1340, pp. 1-2] = [1341, pp. 1-2] We form for ourselves images or symbols of external objects; and
the form which we give them is such that the necessary [scilicet: logical] consequents [denknotwendi-
gen Folgen] of the images in thought are always the images of the necessary [sic] consequents in
nature of the things pictured. In order that this requirement may be satisfied, there must be a
certain conformity [Übereinstimmungen] between nature and our thought [Geiste]. Experience
teaches us that the requirement can be satisfied [ . . . ]. The images which we here speak of are our
conceptions of things. With the things themselves they are in conformity in one important respect,
namely, in satisfying the above-mentioned requirement [ . . . ]. As a matter of fact, we do not know,
nor have we any means of knowing, whether our conceptions of things are in conformity with them
in any other than this one fundamental respect. The images which we may form of things are not
determined without ambiguity [Eindeutig . . . noch nicht bestimmt] by the requirement that the
[logical] consequents of the images must be the images of the consequents [in nature]. Various images
of the same objects are possible, and these images may differ in various respects.b

Except that the process of elaboration of the nature of reality, which belongs
ultimately to the mathematical system, is not rigidly mechanical; it has, if
anything, an elastic-evolutionary organicity, dynamically dispersed in fragmented
ever-changing streams of spiritual creativity.

(3) To be honest, a thought-nature relationship does not have a guarantee
of a λογικός type connection. From our direct experience of the world to some

aA study on the «creation» referring to an external world of facts, and «reconstruction» of
reality by the brain together with the sensory aggregate, is deepened by E. Bellone in several of his
popular works [241] [244] [245], with special attention to physical theories.

b Which is congruous with this observation in his Preface [1340, p. xxii] = [1341, p. xxi]: «All
physicists agree that the problem of physics consists in tracing the phenomena of nature back to the
simple laws of mechanics. But there is not the same agreement as to what these simple laws are
[ . . . ]. [W]e have here no certainty as to what is simple and permissible, and what is not» (e.a.).
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formal definition (that is, to some system with axioms and statements) there
is no logical route. The passage from the facts of experience to any theory, it
is a connection-procedure, as Einstein notes [873, letter to M. Solovine, 7 May
1952],a,124 that is inherent to an extra-logical (intuitive, or psychological) range.
And it is in this extra-logical womb where mathematics is conceived.

24.1.2. Bohrism in a Right Perspective

There is no quantum [or spatio-temporal] world. There is only an abstract quantum [or spatio-
temporal] physical description. It is wrong to think that the task of physics is to find out how nature
is. Physics concerns what we can say about nature [by means of some language, including first of all
the math-language].

— N. Bohr [2089, p. 12]

(1) As far as I am concerned, the phrase of Bohr should not be taken in an
idealistic motive as he does elsewhere, see e.g. [316, p. 485] in which Bohr says
that a «strict separation [Trennung ] between object and subject» cannot be
maintained.125 The focus is this: a physical theory that wants to connect some
clues about the structure of nature, can only do by means of a math-language,
so what one has, at the end of the fair, is but an image of reality, an image
constructed by a math-language, for which what is called reality, in physics, is
a “manifestation”, “appearance”, “occurrence”, or “emergence” of something, a
phenomenon (φαινόμενον), precisely.

Needless to say, the Moon exists even if a mouse (or any other being) does
not observe it; see H. Everett III [930, p. 116]: «[Einstein] could not believe that
a mouse could bring about drastic changes in the universe simply by looking at
it», and A. Pais [1992, pp. 5-6].

(2) Compare it with the exposition of C.S. Bertuglia and F. Vaio [276, p.
240, e.a.]:

To describe, interpret and predict phenomena of the environment (or of the world, the universe
or whatever we wish to call it) in which we are immersed, we generally use models, where the
meaning of the term “model”, in a very general context, is a mental representation that, in a certain
sense, replaces the environment (the world, the universe). In other words, since we have no means of
going beyond the restricted window that our senses provide of reality, the latter is too complicated
and substantially inaccessible to complete knowledge. All that we can do is to limit ourselves to
constructing a representation of reality based on information gained from experience. In this vision,
therefore, our knowledge is always relative to a perspective and is conditioned by a point of view, a
product of the human mind, and not something inherent to the order of things. Science, therefore,
does not study the physical world per se, but rather our way of depicting some regularities selected
from our experience, that can be observed in certain conditions and from a particular perspective.
The models that we form of the world are not authentic copies of the latter [ . . . ]; in any event, their

aHis «epistemological» schema [1544, p. 166] = [873, p. 272] is as follows.
(α) Firstly, there are our «direct experiences [Erlebnisse]».
(β) Then come the «axioms [Axiome]» from which «we draw our conclusions [Folgerungen]».

«Psychologically» the axioms rest on the experiences. But «there is no logical route [es gibt keinen
logischen Weg]» leading from the experiences to the axioms, but only an «intuitive (psychological)
connection [einen intuitiven (psychologischen) Zusammenhang]».

(γ) «From the axioms, by a logical route [auf logischem Wege], are deduced individual assertions
[Einzel-Aussagen . . . abgeleitet]» that can lay claim to exactness.

(δ) The assertions are connected to the experiences «(verification through experience [Prüfung
an der Erfahrung])». At a closer look, «this procedure also belongs to the extra-logical (intuitive)
sphere [extra-logischen (intuitiven) Sphäre]», because the relation between the concepts occurring
in any assertion and the experiences «are not of a logical nature [nicht logischer Natur sind]». But
this relation between the assertions and the experiences is «(pragmatically) much less uncertain»
than the relation between the axioms and the experiences.



452 24. Outro—Parva Mathematica: Libera Divagazione 5⁄8

correspondence with a “real world”, that can only be known by means of representations, can never
be verified. The best we can do is to assess our model-representations of the world on a pragmatic
level, judging whether they guide our understanding in a useful way towards the objective of an
effective description of the observed phenomenology [cf. Section 25.1.1.3].

24.1.3. Physics is (Not) Mathematics

Physics is mathematical, not because we know so much about the physical world, but because
we know so little; it is only its mathematical properties that we can discover. For the rest, our
knowledge is negative. In places where there are no eyes or ears or brains there are no colours or
sounds, but there are events having certain characteristics which lead them to cause colours and
sounds in places where there are eyes and ears and brains. We cannot find out what the world looks
like from a place where there is nobody [ . . . ]; the attempt is as hopeless as trying to jump on one’s
own shadow.

— B. Russell [2265, pp. 163-164, e.a.]

Russell’s position, bluntly declared in the above passage, goes well with ours,
and it blends harmoniously with the thesis presented here. Let us consider, in
the following Sections, some related arguments.

24.1.3.1. Galilean Heritage

[I] nomi, e gl’attributi si deuono accomodare all’essenza delle cose, e non l’essenza à i nomi;
perch[é] prima furon le cose, e poi i nomi [ . . . ]; ricordandoci, che la Natura sorda, & inesorabile à
nostri preghi.a

— G. Galilei [1070, pp. 12, 131]

The above-mentioned Galilean excerpt seems to contradict the Linnean
passage [1666] reported in Section 21.1. But this apparent reversal is part of the
physicist’s cultural heritage,b and certainly it is not a problem for those who
believe in some kind of equality between nature and mathematics. Physicist is
usually reluctant to subordinate «things» to «names» (which catalog and define
«things»): he, in fact, does the opposite. And where does mathematics fit in all
this? Let us try to see better this relationship, thanks to a series of stories that
treat these issues.

24.1.3.2. Facts, Experiences, and Formulæ

The contradiction does not exist in reality [La contradiction n’est pas dans la réalité], which is
always in agreement with itself [toujours d’accord avec elle-même]; it is lies in the theories [adopted]
to express this reality.126

— P. Duhem [823, p. 261]

(1) We often hear it said that «The development of a physics theory needs
experimental data for guidance», or «Physics is not mathematics, and mathe-
matics is not physics»—a quote from Feynman [980, p. 55]. Physics, without

a«Names and attributes must be accommodated to the essence of things, and not the essence to
the names, since things come first, and names afterwards [ . . . ]; reminding us that the Nature [is]
deaf and inexorable to our prayers».

bA modern example of a mindset in the Galilean mold is offered by E. Segrè [2349, p. 419]: «It
is the subtle play [gioco sottile] between theory and experiment that brings forward physics [ . . . ].
We proceed by giving one knock on the hoop and another on the barrel. Physics wants to describe
nature and predict phenomena. It is impossible to do this starting with a priori theories; we would
stop after a few steps and every error would move us further away from the goal. On the other
hand, using only experiments, after a few experiences we would find ourselves immersed in a wood
[selva] of disconnected facts with no hope for escape. It is the combination of experiment and theory,
mediated by [our] mathematics, that permits the marvelous progress [of physics]».
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the «necessary foothold in facts», as M. Born says [382, p. 90], does not take a
single step forward.a Claims of this kind are true; but a clarification must be
made.

(i) Physics is not mathematics (and vice versa), if by physics we mean a
heuristic procedure that «pays but little attention to the precise [mathematical]
reasoning from fixed axioms» [980, p. 54], or that does not rigidly accept the
hypothetical-deductive method. Feynman, unlike an Einstein [873],127 or a
Dirac [802], does not give too much credit to an axiomatic physics, under the
rules of Euclidean mathematics,128 but prefers an empirical method, under a
mathematics called «Babylonian», working from the ground, inductively,b or
phenomenologically, with particular cases;129 but also inductive physics is full of
axioms of faith or belief,c of principles that are considered to be (more or less)

aThe Anglo-Saxon physics tradition, in the nineteenth century, is the modern cradle of this
conception of science; by way of example, see:

(1) J.F.W. Herschel [1336, §§ 66-67, pp. 75-76]: «Into abstract science [mathematics] [ . . . ] the
notion of cause does not enter. The truths [in mathematics] it is conversant with are necessary ones,
and exist independent of cause. There may be no such real thing as a right-lined triangle marked
out in space; but the moment we conceive one in our minds, we cannot refuse to admit the sum
of its three angles to be equal to two right angles [ . . . ]. To assert the contrary, would not be to
rebel against a power, but to deny our own words. But in natural science cause and effect are the
ultimate relations we contemplate; and laws, whether imposed or maintained, which, for aught we
can perceive, might have been other than they are. This distinction is very important. A clever man,
shut up alone and allowed unlimited time, might reason out for himself all the truths of mathematics,
by proceeding from those simple notions of space and number of which he cannot divest himself
without ceasing to think. But he could never tell, by any effort of reasoning, what would become of
a lump of sugar if immersed in water, or what impression would be produced on his eye by mixing
the colours yellow and blue. We have thus pointed out to us, as the great, and indeed only ultimate
source of our knowledge of nature and its laws, experience».

(2) P.G. Tait [2450, pp. 6, 25]: «There is nothing physical to be learned a priori [ . . . ]. We
have to face the question, where to draw the line between that which is physical and that which
is utterly beyond physics [i.e. that which is mathematical abstraction]. And, again, our answer
is—Experience alone can tell us; for experience is our only possible guide».

The sin of this conception is its virtue: let us call it “guilelessness”.
b Inductive techniques in mathematics are common; see e.g. Summarium, pp. 19-20, to L.

Euler [919]: «It does not seem a little paradox to ascribe a great weight to observations [multum
observationibus tribui] even in that part of mathematics which is usually called pure, since people
think that observations are restricted to external objects impressing our senses. As numbers in
themselves must refer to the pure intellect alone, we can hardly understand the value of observations
and quasi-experiments [quasi experimenta] in the investigation of the nature of numbers. Yet, in
fact [ . . . ], the properties of the numbers known to us have been mostly discovered by observation,
long before their truth has been confirmed by strict proofs [rigidis demostrationibus] [ . . . ]. Such
knowledge which is supported only by observations, in case a proof is lacking, must be carefully
distinguished from the truth, and gained only by induction. There is no lack of examples in which
induction alone led to error [ . . . ]. Nevertheless, we can use this inductive method as an opportunity
to investigate more accurately a [certain] property [of numbers], and to ascertain its truth or falsity».
This excerpt is presented as a manifesto by G. Pólya [2148, p. 3].

c This sentence of Planck [2112, p. 214] is happily blatant on this behalf: «Anybody who has
been seriously engaged in scientific work of any kind realizes that over the entrance to the gates of
the temple of science are written the words: Ye must have faith», cf. Intro, p. xxxiii. See also R.
Penrose [2065, chap. 2]. To follow are two examples of physico-mathematical faith or belief.

(1) Any form of invariance, such as conservation laws (e.g. of energy, of linear/angular momen-
tum, etc.), and gauge theories, or, more generally, laws of symmetry relating to the conservation
laws.

(2) The awkward concept of chance, or causality. The distinction e.g. between random and
pseudo-random strings encompasses a previous knowledge of what is (defined as) random. To this
end, the calculation of probability is not helpful, because the latter is—presumed—founded on the
concept of randomness (chance, causality), whereby a circular viciousness is created. In spite of that,
it is possible to appeal to efficacious definitions (escamotage), such as the ones used in information
theory (cf. C. Shannon in Section 7.4.1.4), from which we derive this: if the information content
(self-information) of a string has a length equal to that of the string, then the string is random;
otherwise, the string is non-random, which is reflected in the practice of compressing (abbreviating)
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self-evident,a or with a deep-seated plausibility, of non-experimental hypotheses,b
of prejudices,c or even of swindles.d,131 Besides, all first principles are selected
not on a celestial decree but, humanly, in relation to what is thought/deemed
fit, as the very word ἀξίωμα (der. from ἄξιος, cf. endnote 98) suggests.

(ii) In terms of science, or knowledge, physics is still (a form of) mathematics,
which from within turns its gaze outside itself, toward the so-called laws of nature.
Physics of nature, to wit, nature itself, is not mathematics, which is obvious;
but our physics, what we know as “physics”, is mathematics, in the sense
that, through mathematics, we construct physical theories, and interpret and
reproduce experimental results.

(iii) At the root of it all, as L. Boltzmann [339, p. 222] reminds us (mentioning
Goethe), lies the fact that «only half of our experience is ever experience»,132 since
any experimental observation is full of theory ; which was steadily emphasized by
P. Duhem [823, II, chapp. IV-V]:e no fact of experience (or sensata esperienza

its information (e.g. M. Gell-Mann [1115, p. 16] asserts that: «A bit string that is incompressible
has no [ . . . ] regularities and is defined as “random”»)—we can call the second case squeezing or
compressibility theorem. Discernibly, this is not an absolute method to define what is random
and what is pseudo-random, or non-random; it is only an anthropomorphic operational parameter.
We do not get to know the probability distributions, which serve to set the concept of probability,
together with the notions of random variables, and stochastic processes; we do not know what the
randomness is in nature, because we have no idea what the rules of nature are at the bottom.130

And this is why any theory on the deterministic or indeterministic character of nature is limited
to the theory itself, and not to nature, see e.g. G. ’t Hooft’s papers [1374] [1376], where he sketches
a determinist theory for quantum mechanics.

aCf. H. Poincaré [2138, p. 24]: «Induction applied to the physical sciences is always uncertain,
because it rests on the belief [croyance] in a general order of the Universe [ordre général de
l’Univers], an order outside of us [ordre qui est en dehors de nous]. Mathematical induction,
namely demonstration by recurrence, on the contrary, imposes itself necessarily because it is only
the affirmation of a property of the mind itself [propriété de l’esprit lui-même]».

bSee G. Israel [1415, pp. 112-113] [1418, pp. 98-99] in outspoken polemic with V.I. Arnold
[131, chap. I] on some «metaphysical hypotheses»—homogeneity and isotropy properties of
space-time, principle of determinism (translated, wholly, into the existence and uniqueness theo-
rems)—masquerading as «experimental facts».

cFeynman himself [984, pp. 199-200] states in an interview (1979) in Omni magazine: «Forget
what you hear about science without prejudice. Here, in an interview, talking about the Big Bang, I
have no prejudices—but when I’m working, I have a lot of them. — Omni: Prejudices in favor of
. . . what? Symmetry, simplicity . . . ? — Feynman: In favor of my mood of the day. One day I’ll be
convinced there’s a certain type of symmetry that everybody believes in, the next day I’ll try to
figure out the consequences if it’s not, and everybody’s crazy but me».

d It is not uncommon for a theory, when it is in its infancy, to be brought up with physico-
mathematical subterfuges and swindles. The foundation of quantum mechanics is an impressive
example. Read this postcard by W. Heisenberg to W. Pauli, sent from København on 15 December
1924 [2028, (76) pp. 192-193, e.m.]: «Dear Pauli! Today I have read your new paper [2026] [it
contains the Pauli exclusion principle] and sure enough I am the person who most of all brightens
up about it, not only because you have pushed the swindle to a previously unexpected height [weil
Sie den Schwindel auf eine bisher ungeahnte], by breaking all antecedent records, for which you
used to insult me ([e.g.] for the introduction of single electrons with 4 degrees of freedom), but
especially I am jubilant over the fact that you too (et tu, Brute!) are returned with a bowed head to
the land of formalism philistines; but do not be sad, you will be welcomed with open arms. And if
you think that you have written something against the previous sorts of swindle, that is of course
a misunderstanding; swindle × swindle gives nothing correct and thereby two swindles can never
contradict each other. So my congratulations».

eP. Duhem [823, pp. 245-246]: «Between an abstract symbol and a concrete fact there can be a
correspondence, not complete parity; the abstract symbol cannot be the adequate representation
of the concrete fact, the concrete fact cannot be the exact realization of the abstract symbol [ . . . ].
This disparity between the practical fact, really observed, and the theoretical fact, or the symbolic
and abstract formula stated by the [mathematical] physicist [leads to this]: an infinity of distinct
practical facts can correspond to the same theoretical fact [ . . . ], and: an infinity of logically
incompatible theoretical facts can correspond to the same practical fact».
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[1072, p. 24], we might say), no experiment, is naked, and speaks for itself,
but—so that it can have a physical significance—it is always charged with an
interprétation théorique.a The skein of réalité concrète becomes a part of the
study of physics when it is covered with abstrait et symbolique representations,
which are but mathematical relations (under varying degrees of abstraction).

(2) We quote one passage of C.N. Yang [2707, p. 97]:
Reflecting on how the concepts basic to gauge fields were formulated by physicists, we see

that at every step, the development was tied to the problem of the conceptual description of the
physical world. Firstly, Maxwell equations [that give life to an elementary example of Abelian
gauge field] originated with the four fundamental experimental laws of electricity and magnetism
and with Faraday’s introduction of the concepts of field and flux. Maxwell’s equations and the
principles of quantum mechanics led to the idea of gauge invariance. Attempts to generalize this
idea, motivated by physical concepts of phases, symmetry, and conservation laws, led to the theory
of non-Abelian gauge fields [which are inherently non-linear]. That non-Abelian gauge fields are
conceptually identical to ideas in the beautiful theory of fiber bundles, developed by mathematicians
without reference to the physical world, was a great marvel to me.

Identity between gauge fields and connections on fiber bundles should not be a
source of marvel. What physicists know—and so what they call physics—does not
go beyond what they know with mathematics: the two are in all fused together.
The «conceptual description of the physical world» is not anything other than
the description of the physical world by mathematical concepts/formulæ.

24.1.3.3. Bell’s Bafflement

It is when arbitrary mathematical possibilities are given equal status in this way that it becomes
obscure to me that any physical interpretation has either emerged from, or been imposed on, the
mathematics.

— J.S. Bell [234, pp. 137-138]

Bell’s bafflement is not rare for those who make theoretical physics, both in
micro (quantum mechanics) and in macro (cosmology): is there a clear dividing
line between imposition of mathematics (see Sections and 26.1 and 27.1) on
reality and reality more or less accurately disclosed by mathematics, sharply
separating them?

24.1.3.4. Upside Down Fourier’s Judgment

In-depth study of nature is the most fertile source of mathematical discoveries [ . . . ]. Mathemat-
ical analysis has therefore necessary relations with sensible phenomena; its object is not created by
human intelligence [son objet n’est point créé par l’intelligence de l’homme], it is a pre-existing
element of the universal order [élément préexistant de l’ordre universel], and has nothing of contin-
gent and fortuitous; it is imprinted in all nature [il est empreint dans toute la nature] [1021, pp.
xiij, 17]133

The differential equation expresses a relationship between functions of one or several variables,
and fluxions of different orders taken in accordance with some of these variables. It is recognised
that these relationships do not belong exclusively to the abstract science of calculus [ces relations
n’appartiennent pas seulement à la science abstraite du calcul]: they exist in the properties of
curves and surfaces, in the motions of solids and fluids, in the distribution of heat, and in many
other natural phenomena. The most general laws of the physical world are expressed by differential
equations [1022, pp. 20-21].134

— J.B.J. Fourier

aThe physiological bottom of this condition is articulated in H. von Helmholtz [1331, p. 168]:
«Even the most elementary representations [elementaren Vorstellungen] contain a mental element
[in sich ein Denken] and occur according to the laws of thought. Everything that is added, in
intuition [Anschauung], to the raw materials of sensation can be regarded as a mental process».
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Fourier’s judgment, as mentioned in epigraph, is exemplary, cf. [240, pp.
145-147]. It is diametrically opposite to what we claim. Mathematics, for us,

· is a human creation,a
· does not pre-exist to the universal order, because the mathematical order is

our ideation,
· is not found in nature, making a proper distinction between τέχνη (artifice,

invention, technique) and φύσις (nature of things, world, universe, or even
outward form),

· has a contingent and fortuitous character, in the sense that it is historically
(scilicet: randomly) determined.

Fourier’s credo [1021, p. xiv] is that «mathematical analysis is as extensive as
nature itself [l’analyse mathématique est aussi étendue que la nature elle-même]».
But the opposite is true: nature—at least for us—is as extensive as mathematical
analysis, viz. within the extension of a model.b

It may seem paradoxical, but from a judgment like that of Fourier comes out
the obsessive and highfalutin idea that nature “speaks” in the human language
of (our) numbers, although Nature mysteriously (!) precedes our math-language;
except that the overall nature of the universe had the kindness to wait billions
of years until the appearance of Homo mathematicus.c

This whimsical idea is also deeply ingrained in many contemporary theoretical
and mathematical physicists; see e.g. F.J. Dyson [828, p. 213]:

One of the most profound jokes of nature is the square root of minus one that the physicist
Erwin Schrödinger put into his wave equation when he invented wave mechanics in 1926 [ . . . ].
Starting from wave optics as a model, he wrote down a differential equation for a mechanical particle,
but the equation made no sense. The equation looked like the equation of conduction of heat in
a continuous medium [ . . . ]. Schrödinger’s idea seemed to be going nowhere. But then came the
surprise. Schrödinger put the square root of minus one into the equation, and suddenly it made
sense. Suddenly it became a wave equation instead of a heat conduction equation [ . . . ].

All through the nineteenth century, mathematicians from Abel to Riemann and Weierstrass had
been creating a magnificent theory of functions of complex variables [ . . . ]. But they always thought
of complex numbers as an artificial construction, invented by human mathematicians as a useful and
elegant abstraction from real life. It never entered their heads that this artificial number system
that they had invented was in fact the ground on which atoms move. They never imagined that
nature had got there first.

Of course, we do not share such a pompously anthropocentric opinion. May
the reader permit us to make a witty remark: what does nature know about the
square root of −1? What does an atom know of complex numbers, or complex
analysis? The illiterate atom should be educated on elliptic functions (Legendre,
Gauss, Abel, Jacobi), Cauchy’s analysis, geometric and analytic function theories,
by Riemann and Weierstrass, respectively, and much more.

aBefore hearing the cries of the Boeotians: it is a δόξα (judgement), not a θεώρεμα (theorem),
so there is no a testing ground.

bBy model I mean here an “image” of reality, a “representation” of ideas (a knowledge) of any
phenomenon.

cThis is reminiscent of a stinging thrust of J.S. Bell [234, p. 117]: «Was the world wave function
waiting to jump for thousands of millions of years until a single-celled living creature appeared? Or
did it have to wait a little longer for some more highly qualified measurer — with a Ph.D.?». Let us
push the provocation even further: the measurement of a quantum wave function, when it comes to
mathematics, depends, for all intents and purposes, on the observational/reasoning equipment of
Homo physico-mathematicus.
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25.1. Mathematics in the Physical Sciences, and Nature of
Reality III

῾Η περὶ τῶν μαθηματῶν εἴδων τέχνη · The technique of mathematical forms.a
— Phrase created ad hoc

25.1.1. Mathematics as a Technical Tool

[I]l est indispensable de distinguer entre la mathématique en tant qu’instrument [ . . . ], et l’étude
de la nature, qui est une fin pour laquelle est forgé cet instrument. Le miracle de la science, c’est
qu’on puisse édifier une mathématique abstraite, capable de s’appliquer ensuite avec efficacité aux
lois de la nature. C’est guidé par les phénomènes naturels que le mathématicien, en fin de compte,
choisit les axiomes qui donneront naissance à une théorie efficace.b

— H. Cartan [565, p. 11]

Mathematics is not the daughter of nature, but of art [τέχνη].c

— E. Giusti [1158, p. 26]d

aCf. footnote a on p. 494.
b«[I]t is essential to distinguish the mathematics as a tool [instrument] [ . . . ] from the study

of nature, which is a purpose for which this tool is forged. The miracle of science consists of the
possibility of building [édifier ] an abstract mathematics, which can then be effectively applied to the
laws of nature. It is thanks to the guidance of natural phenomena that the mathematician, after all,
chooses the axioms which could give rise to a powerful theory».

c
Τέχνη, which means “art”, is to be understood as a “set of rules”, “system/method of doing”

something.
dMore extensively Giusti notes [1158, pp. 26-27]: «Mathematical objects come not from the

abstraction of real objects [ . . . ] but from a process of objectification of procedures. They do not
derive from an external reality, independent of man, of which they would represent the essence
purged of material impurities, but formalize human activity». It is always «a process of abstraction
[ . . . ] in a few invariable bits of the infinite variety of operations actually carried out; but the
abstraction occurs not starting from the data of reality, but from the operations of techniques», that
is, of technology as a knowledge of techniques and collection of procedures. «The same mechanism
could include numbers, not abstractions from objects that do not exist [ . . . ] but objectifications of
the activity of counting».

From here, he continues [1158, p. 75, e.a.], «it also emerges in what sense one can speak of
“discovery”, and not of “creation” or “invention” of mathematical objects [ . . . ]. They are first
invented as demonstrative procedures, and then later discovered as objects mathematicians». Let
us put it another way: discovery, in mathematics, is a re-elaboration of inventions in procedures of
measuring and counting, which are typical of human activity, always under the influence of historical
circumstances, and occasional vicissitudes.
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25.1.1.1. How is it Possible?

[I]t is tempting, if the only tool you have is a hammer, to treat everything as if it were a nail.
— A.H. Maslow [1777, p. 15]135

Mathematics explains little, and laboriously, about biology, except in the case
of biological systems with a certain regularity, see the aforementioned (Section
15.1.2) Lotka–Volterra equations [1695] [1696] [2596] [2597] [2598] [2601]. For this
purpose, we can recall, by way of example, the daring essay by the astronomer
G.V. Schiaparelli [2298], which ventures a comparison between «natural organic
forms» and «pure geometric forms», between biological individuals and geometric
(algebraic) curves,a see [1037].

There is certainly a mathematics of biology, which studies living organisms,
and builds models of organic structures; a notable example are the researches on
the entrancing formation flight of large and cohesive flocks of starlings (sturni
vulgares), conducted by G. Parisi’s team [180] [181] [586] [2167]: it is, for me, a
breathtaking dance. But a model is not an aberration-free mirror of reality (see
below, Section 25.1.1.3), i.e., in the case of biological systems, of some organisms
(there is no one-to-one correspondence between a behavior of a living organism
and its bio-mathematical model). R.[M.] May [1796, p. 216, e.a.] candidly
affirms that

The models of biological communities [ . . . ] are caricatures of reality. Just as a good caricature
catches the essential truth behind the thing it is trying to depict but is forgivably vague about
the unimportant details, so the most we can expect of the equations of population biology is that
they capture the key points of the situation they are describing. So, for biologists studying animal
populations, their equations are cartoons of reality, not the perfect mirror images sought by
physicists.

A model is not a representation deduced from reality. This is because, in
general, mathematics does not explain reality (see below, Section 25.1.2), but
only what, in the knowledge, goes through technical tools (straightedge and
compass, telescope, microscope, steam engine, computer, etc.). Let us not forget

aSchiaparelli’s reductionism in biology appears paroxysmal today, as it seems inadequate to
reconstruct the full complexity of the primitive situation; even so, in addition to the honesty with
which he presents, hat in hand, his «scientific hypothesis», he does no more, in principle, than some
current biomedical modeling does; and there is no need to mention what happens in physics (and in
mathematical physics), where reductionism is prevailing. Either way, it must not be forgotten that
reductionism, even in the face of emergent phenomena, still maintains a profitable heuristic value.
Read his presentation dedicated to T. Vignoli (director of the Museo Civico di Storia Naturale in
Milano), who gave Schiaparelli the incentive to write this comparative opusculo. In it he speaks
[2298, pp. 269-270] to us of a «persuasion that living matter could originally be ordered only
in [ . . . ] four forms; just as mineral substances cannot crystallize in more than seven systems of
polyhedral figures», and «the cause of such a division is to be sought in the necessary relationships
of living matter with definite geometric forms of structure». «I had come to conjecture relationships
between organic structures and that Geometry, which all informs the Cosmos, both in the large
and in the small [congetturare relazioni fra le strutture organiche e quella Geometria, che tutto
informa il Cosmo, così nel grande come nel piccolo]. Considering the systematic ordering that
reigns everywhere in the field of living beings, and the manifest correlations and connections that
reveal themselves in every part, I was led to assimilate the set of organic forms to a system of
pure geometric forms [assimilare l’insieme delle forme organiche ad un sistema di forme pure
geometriche] [A geometric form is said to be pure when all its points derive from the same law, id
est, from the same construction method, see ivi p. 273]. [J]ust as in a system of geometric forms
the infinite variety of these [forms] derives from the variation of the parameters (or discriminatory
elements) of one and the same fundamental form, so the organic types of nature (or at least of a
kingdom of it) can all derive from the variations of a certain number of discriminatory elements
according to a single formula or law; so that all common characters are due to the formula, all
special and individual characters to the diversity of the above-named elements».
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that mathematical knowledge itself is a technical tool: it is a technology, i.e. an
art of reasoning.a

We know that algebra and geometry are a coherent apparatus of arbitrary
symbols and notions, and that, by means of a phenomenological criterion (obser-
vation, induction, deduction, and empirical test, known as cimento),b or of a
construction of adequate and plausible models of our sense perception (what we
see, hear, etc.),c they can be applied to real objects, so as to have some coherent
results on the way nature (the real world) operates.

Why it happens? How is it possible? This applicability is not a mystery; this
is possible because abstract numbers and postulates involving the properties of
space (intuitively, or within a more formal axiomatic system) are our technical
tools, which, in addition to being used for the solution of practical problems,
also provide at the same time the theoretical framework for understanding that
solution. So, au fond, mathematics is effective because it is about technology,
the development of which is based on mathematical theories, being themselves a
technology (or, better yet, the first technology). A Euclid, or even a Mandelbrot,
are of little use in phyllotaxis (see Section 22.1.4.1) because a plant is not a
creation—a technology—of ours, but of nature, and it is much more complex, or
much less elementary, than a photon, or an electron.

aIf we wanted to adopt a noun to define the “mathematical object”, probably the choice would
be χρῆμα (cf. the vb. χράομαι), which means a “thing” that one “needs”, something to “use”, or a
“tool” for a wide range of applications.

bThis is a precept whose source is Galilean, then inherited from the Newtonian tradition; it has
a large following, see e.g. A.-M. Ampère [83, p. 176], according to which the recipe of mathematical
physics consists of inducing general laws from phenomena and, subsequently, deducing mathematical
formulæ: «Observe the facts first, while varying their circumstances as much as possible, accompany
this first task with precise measurements to deduce general laws, based solely upon experience, and
deduce from these laws, independently of any hypothesis on the nature of the forces that produce
the phenomena, the mathematical value of these forces, namely, the formula that represents them
[déduire de ces lois 〈fondées sur l’expérience〉 la valeur mathématique de ces forces, c’est-à-dire
la formule qui les représente], such is the course followed by Newton». By distinguishing coarsely
physics from mathematics, the Newton–Ampère approach

(1) identifies the fact with a phenomenon; but a phenomenon is not a fact, as the Greeks knew,
it is only the result of the interaction between the observer and the observed;

(2) identifies the hypothesis with
(i) a formulation that in itself is empirically not testable as a fact, and that must be rejected

aprioristically, see the famous Newton’s assertion «Hypotheses non fingo» [1939, Scholium generale,
p. 484],

(ii) or a statement without factual truth, or even awaiting confirmation.
Conversely, the hypothesis is, originally, in Greco-Hellenistic science,

(1) a postulate, i.e. a premise of a hypothetical-deductive system (see Section 26.1.6.3),
(2) a principle, or a statement that is taken to be true/self-evident, or is chosen heuristically

as a starting point, wherefore a simple supposition serving as a foundation, literally (ὑπόθεσις,
from ὑποτίθημι), whose beginning point lies in the perceptive sphere, for every possible theoretical
argument, from which a deductive chain follows. (A hypothesis is valid if it is possible to derive the
observed phenomena from it). For more on this topic, see L. Russo [2269, cap. XIV].

cSee e.g. J. von Neumann [1926, p. 492]: «[T]he sciences do not try to explain, they hardly even
try to interpret, they mainly make models. By a model is meant a mathematical construct which,
with the addition of certain verbal interpretations, describes observed phenomena. The justification
of such a mathematical construct is solely and precisely that it is expected to work—that is, correctly
to describe phenomena from a reasonably wide area. Furthermore, it must satisfy certain esthetic
criteria—that is, in relation to how much it describes, it must be rather simple. I think it is worth
while insisting on these vague terms—for instance, on the use of the word rather. One cannot tell
exactly how “simple” simple is» (cf. Hertz in footnote b, p. 450, for a same pronouncement). This is
because “simple” is not an absolute concept but a relative one, and such vagueness is reflected in the
construction of a model.
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25.1.1.2. Degree of Objectivity of Mathematics

There is a way to summarize the above, by saying that the degree of objectivity
of mathematics is much lower than that of botany : no flower is born from the
head of a botanist, like Athena was born from the head of Jupiter, whilst this
turns up for a proof of a theorem, because mathematics is our figment, whereas
a flower is not.a

The same applies to everything else: it is much easier to solve the Poincaré
conjecture (Section 10.3.1) than to predict the behavior of a butterfly—in front
of me, hic et nunc, on a blossoming apricot branch—in the next five minutes.

As J.T. Schwartz [2329, pp. 21-22, e.a.] (who happens to be a mathematician)
picks out:

Mathematics [one of whose distinguishing features is its single-mindedness] is able to deal
successfully only with the simplest of situations, more precisely, with a complex situation only to
the extent that rare good fortune makes this complex situation hinge upon a few dominant simple
factors. Beyond the well-traversed path, mathematics loses its bearings in a jungle of unnamed
special functions and impenetrable combinatorial particularities. Thus, the mathematical technique
can only reach far if it starts from a point close to the simple essentials of a problem which has
simple essentials. That form of wisdom which is the opposite of single-mindedness, the ability to
keep many threads in hand, to draw for an argument from many disparate sources, is quite foreign
to mathematics.

The old theme of the “obscure wood” is back, and of the “right path”,b which
can be swiftly lost.

25.1.1.3. Math-Model in the Perseus Mythology: No Aberration-free
Mirror of Reality

Let us indulge in the Perseus mythology, at the suggestion of G. Lolli [1681,
pp. 68-70], on the stimulus of a re-reading of I. Calvino’s Six Memos for the
Next Millennium [480, pp. 4-7]. This is a genuinely inspiring μῦθος (“myth”,
“story”, “fiction”). We cannot face reality, or be there vis-à-vis with the world;
similarly to Medusa, the hideous and monstrous Gorgon with the anguiferumque
caput, the reality of physical entities/quantities, the world out there, is a mutable
complex that petrifies, is chaos (χάος, “infinite abyss”). Perseus does not turn his
gaze on the face of Medusa but only on her image reflected in the bronze shield.
Mathematics does the same: it works through an indirect vision. The reflecting
shield is a metaphor for the (mathematical) representation of the external reality.
Mathematics is an indirect thought of the world. This is why it is said to be a
model (cf. point (2) in Section 24.1.2). To put it jokingly, there are no magic
formulæ, in the mathematical field, to break the spell of petrification.

In so doing, we may mention a name of Antiquity, on the back of the
Perseusian mythology: Geminus of Rhodes [1120, cap. I, § 23, p. 12], in his

aCompare with P.W. Bridgman [417, p. 78]: «[T]he matter of proof bulks so large for me
in the enterprise of mathematics, and proof is so completely a personal matter, which cannot be
communicated, that I would put mathematics on a level of lower “objectivity” than physics or
chemistry. Mathematics is peculiarly and exclusively a human enterprise [ . . . ]. Logic is in much the
same situation as mathematics [ . . . ]. The biological sciences may perhaps be put on the next level
beyond classical physics, chemistry, and so forth».

bIf this Schwartz’s argumentation is taken to the extreme, we can go even further, and assert
that there is no real method (from the Gr. μέθοδος, composed of μετα-, incorporating the idea of
“pursuing”, of “seeking”, and ὁδός, “path”) in mathematics.
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Εἰσαγωγὴ, makes a clear distinction between physical reality of celestial motions,
which belongs to the investigations of physicists, and mathematical model/artifice,
which belongs to astronomers-mathematicians.

On the contrary, whoever embraces a Platonic-Galilean scheme, under which
Nature is written in (a) mathematical language (cf. Section 27.1.2), this distinc-
tion is bogus; see Galileo [1074, p. 49]:

Here I expect a terrible rebuff from some of the adversaries; and I already seem to hear intoning
in my ears that it is one thing to deal with things physically but quite another mathematically, and
that geometers must remain among their windmills, and not join together with the philosophical
subject-matters [of nature], whose truths are different from mathematical truths; almost as if the
truth could be more than one; almost as if geometry in our days prejudices the acquisition of true
philosophy [of nature], as if it were impossible to be [simultaneously] a geometer and a philosopher [of
nature, that is, a physicist], so that by a necessary consequence it is inferred that who knows geometry
cannot know physics, nor can he discuss and deal with physical subject-matters physically.136

25.1.1.4. What Myth Does Mathematics Tell Us? The Example of
the Stefan Problem (Ice-Water Phase-boundary)

There are more things in heaven and earth [ . . . ] / Than are dreamt of in your [mathematics].a,b

— W. Shakespeare’s amended sentence [2360, Hamlet, Act I, Sc. V, p. 504]

(1) The key thing that must be understood is that when mathematics at-
tempts to investigate natural phenomena, in the physical world, it does not
explain the nature of them, but explains to itself —with an artificial language,
invented ad hoc—how it is possible to arrive at a coherent description of this or
that real phenomenon.

(2) Take the Stefan problem [2415], which is a free boundary problem between
the phases transitions of a substance having a phase change: ice melting to water
is the most common case, where the ice is immersed in the water contained in
a beaker. Thence one has a function of space and time (unknown evolutionary
datum), coinciding with the temperature distribution of the water, and the
moving boundary, i.e. the ice-water interface (other unknown datum): two
spatial regions occupy two different physical states of matter of water, liquid
and solid.

Let us proceed with some illustrations.

aIn the original Hamletian tragedy, the word “philosophy” appears instead of “mathematics”.
bA petty curiosity. G. Toraldo di Francia in [2525, p. 7] overturns Hamlet’s assertion, and he

writes: «There are fewer things in heaven and earth than are dreamt of in your philosophy». I cannot
but reject Toraldo di Francia’s position; but I can excuse him, cf. footnote a, p. 417. The mind of a
physicist, who copes mostly with—highly schematized—elementary laws, is much simpler than that
of a mathematician or, a fortiori, of a plant & animal biologist.

Let me be clear: Toraldo di Francia’s cogitations make a lot of sense, and many of his arguments
are worthy of support, such as the survey on the “possible worlds” of the scientific imagination,
on the “virtualities” of the human fancy, which lay upon the “objective” factuality of the event.137
What I cannot accept is the association of the mechanisms of nature with a «simple childish game».
Nature is not within our imagination, or in any mechanism ad formam hominis. If, in the biological
field, the “instruction book” of life contains simple instructions [2525, pp. 111-122], or if there is
an imposition of the same solutions for the same problems, does this mean that the universe itself
is «strangely simple»? Nope. And yet he is well-aware of all this; read what he writes here [2524,
p. 57]: «It is not easy to say what simpler means [ . . . ]. The reference to the simplicity of the
calculation is a gross anthropomorphism; nature makes no calculations» (cf. ivi, p. 62), or here
[2524, p. 533, where the original Hamletian assertion appears]: «The universe is something much
deeper to study and understand than a simple set of particles moving according to certain laws».
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The 2-phase Stefan problem, for a linear parabolic equation, is written as

(υ1)xx + ϵ21(x, t)(υ1)x + ϵ31(x, t)υ1 − ϵ11(x, t)(υ1)t = 0, −∞ < x < y(t), (25.1a)

(υ2)xx + ϵ22(x, t)(υ2)x + ϵ32(x, t)υ2 − ϵ12(x, t)(υ2)t = 0, y(t) < x < +∞, (25.1b)
υ1(x, 0) = φ1(x), −∞ < x < 0, (25.1c)
υ2(x, 0) = φ2(x), 0 < x < +∞, (25.1d)

υ1
(
y(t), t

)
= υ2

(
y(t), t

)
= 0, (25.1e)

with ϵ-constants, for t > 0. The expression ẏ(t) is equal to

(υ1)x
(
y(t), t

)
− (υ2)x

(
y(t), t

)
, (25.2)

and
y(0) = 0.a (25.3)

The study of the regularity of the free boundary problems, and thus the
formation of singularities, videlicet, of icy cuspidate points, in a block of ice
along its progressive melting at 0 ℃,b are conventional part of research in the
Stefan problem; see L.A. Caffarelli [465] [466], and C. & A. Friedman [468]. Icy
singularities are interlinked through the so-called parabolic obstacle problem.

Let
υ[T] = υ[T](x, t) (25.5)

be a function of the temperature distribution of the water in which a block of
ice is immersed, at some point x ∈ Ω ⊂ Rn and at time t ∈ R+. If υ[T] ⩾ 0 in
R+ ×Ω, then

{υ[T] = 0} is the ice region,
{υ[T] > 0} is the water region.

Given
· an initial condition υ[T](x, 0) ⩾ 0, at an initial time t = 0,
· a boundary condition υ[T] = υ[T](x, t) ⩾ 0, for x ∈ ∂Ω and t ⩾ 0,

the temperature evolution of the water follows the heat equation (cf. Chapter
10)

∂tυ = △ υ, (25.6a)
∂tυ −△ υ = 0, (25.6b)

aIf we place υ(x, t) and y(t), by setting 0 < x < y(t), for t > 0, the 2-phase Stefan problem
becomes [2248, sup. III]

∂2υ

∂x2
=
∂υ

∂t
, (25.4a)

υ|x=0 = −1, υ|t=0 = 4
(
x− y(0)

)
, υ|x=y(t) = 0, (25.4b)

where υ = ∂
∂xυ

(
y(t), t

)
is the temperature, and the value of υ at the boundary x = 0 is equal to −1,

as the expression ẏ(t) is equal to υ(t).
bAttention: the freezing point depends on the pressure level; at atmospheric pressure, water

freezes at 0 ℃. But under 20 000 atmospheres, water freezes at 75 ℃.
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in {υ[T] > 0}. The moving boundary, or the ice-water interface, fulfills the
condition

ẋ(t) = −∇υ
(
x(t), t

)
, (25.7)

for any x(t) ∈ ∂{υ(t) > 0}, ∂{υ(t) > 0} being the free boundary, and ∇υ the
gradient of υ(t). Putting

υ(x, t) =

∫ t

0

υ(x, y)dy (25.8)

as a Baiocchi–Duvaut transformation [176] [825] [177], and denoting by χ a
characteristic function, the parabolic obstacle problem—which is locally equivalent
to the Stefan problem—is

∂tυ = △ υ− χ{υ>0}, (25.9a)

υ ⩾ 0, (25.9b)
∂tυ ⩾ 0, (25.9c)

admitting a function
υ : R+ ×Ω → R. (25.10)

As Caffarelli demonstrated in the above-mentioned papers,{
C0,1 in time,
C1,1 in space,

are solutions to the parabolic obstacle, thereby showing that there is a regularity,
at least in this L∞

loc-scenario, of the free boundary for the Stefan problem.
Subsequently, the existence of complete regularities, conforming to the ap-

pearance and the sudden disappearance of icy singularities, was proved by A.
Figalli, X. Ros-Oton, and J. Serra [991], by digging out the Almgren-type branch
sets [64] for singularities in area minimizing surfaces, with these results:

· the parabolic Hausdorff dimension of a singular set is Df
atmo
== n− 1,

· there exists a C∞-type regularity for a υ-like function (under the Baioc-
chi–Duvaut transformation), or an expansion of C∞ at all singular points, anent
a set of parabolic Hausdorff dimension Df

atmo
== n− 2,

· the free boundary ∂{υ(t) > 0}, the region of separation between ice and
water, in R3 is smooth for almost every time t, where a set of singular times has
Hausdorff dimension Df

atmo
== 1

2 .
(3) Let us go back to the considerations at the opening of this Section. The

mathematical demonstration does not touch physical reality, but concerns only
the internal fidelity of the equations (logical consistency) as compared to what
we see with our eyes, and process with our mind, in the world outside us. That
is to say: what mathematics proves is not the physical melting behavior of the
ice into water. Maybe the opposite is true, in the sense that mathematics is
limited to demonstrating, internally, that the behavior of ice can be consistent
within a set of equations, whilst the ice behavior has no special relationship to
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these equations, any more than it does to a fictional or poetic description of the
physical world.

I find it staggering that a bunch of mathematicians could seriously believe
that some string of abstract symbols actually have to do with the chemico-
physical behavior of a piece of ice floating in the water. If there is an actuality,
it is all in our head, in the mathematical μῦθος (see Section 25.1.1.3) that we
tell ourselves, not in the ice-water phase transition.

25.1.1.5. Gromov Conjecture on C1,α= 1
2C1,α= 1
2C1,α= 1
2 (Flexibility and Rigidity)

The terrain of isometric embeddings and the fields surrounding this terrain are vast and craggy
with valleys separated by ridges of unreachable mountains; people cultivating their personal gardens
in these “valleys” only vaguely aware of what happens away from their domains and the authors of
general accounts on isometric embeddings have a limited acquaintance with the original papers.

— M.[L.] Gromov [1217, p. 173]

The above problem (Section 25.1.1.4) does not arise in the territory of pure
mathematics, at least as long as it remains pure, because there is no need for a
comparison with reality, which slaps any theory. I choose one example among
many: Gromov conjecture on C1, 12 (criticality of the exponent 1

2 ) [1217].

Conjecture 25.1.1 (Gromov conjecture). We are in the field of Nashian iso-
metric embeddings (cf. Section 5.3). Suppose we add curves to a sphere, and
assume that it is possible to add an infinite number of twists—Nash embeddings
twisted [1906] [1909], to be fair—to these curves. To what extent is it possi-
ble to crumple a sphere down to an n-ball without creasing or tearing it? Or:
what is the C-solution, as a numerical limit, between flatness/smoothness and
twistedness/tortuosity, under which a sphere can be crumpled, without losing the
preservation of its lengths?

The Gromov threshold, according to a procedure called convex integration, is
estimated to be C1,α, for α = 1

2 .

The conjecture 25.1.1 was corroborated by C. De Lellis and D. Inauen [1397],
who note that, for α > 1

2 , the Levi-Civita connection (Section 1.3.5) of all
isometric immersions is induced by the Euclidean connection, whilst, for any
α < 1

2 , a standard 2-sphere does not retain this property. Shortly thereafter, the
conjecture was generalized by W. Cao and D. Inauen [509]. The Hölder space (cf.
Section 12.3.2) C1,α= 1

2 is actually the critical value under which a topological
space in RN begin to crease; to wit, we are talking about the quantity between
flexibility and rigidity of C1, 12 isometric extensions.

Here the decisive intuition consists in making use of the physico-mathematical
theory of turbulence, or the mathematical fluid dynamics, to verify where the
flow in the manifold becomes turbulent; in such a case, the topological space is
led to deform. This is related to Onsager’s conjecture [1977] (see Margo 25.1.1),
proved by P. Isett [1412] and T. Buckmaster, De Lellis, L. Székelyhidi Jr., & V.
Vicol [447].

Read, in parallel, the almost lyrical language in Gromov’s epigraph, to
underline that, even when one works in the abstract, the references to the
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physicality of the images (“vast and craggy terrain”, “valleys” separated by
“ridges” of “mountains”) are inevitable.

Margo 25.1.1 (Onsager’s conjecture). This conjecture [1977] is about the statis-
tical hydrodynamics: the threshold for the validity of the energy conservation of
a weak solutions of incompressible Euler equations,{

∂tυ + υ · ∇υ +∇P = 0,

div υ = 0,
(25.11)

in the periodic setting
T3 = R3\Z3,

corresponds to the exponent α = 1
3 , where υ is a vector field symbolizing the

velocity of the fluid, viz. is a Hölder-continuous weak solution (to the Euler
equations in which both viscosity and compressibility in the fluid tend to zero),
and P is the pressure. L

25.1.1.6. The Unabating Tension: Mathematics vs. Nature

In Section 25.1.1.1 we had the opportunity to invoke the so-called law of the
instrument (“If the only tool you have—in your hand—is a hammer, everything
will seem like a nail”), and to talk about mathematics as a τέχνημα. In Section
25.1.1.2 we stressed the simplification techniques typical of the mathematical
language. In Section 25.1.1.3 we compared the technique of mathematics to a
distorting mirror. In Section 25.1.1.4 we saw the mythos behind all this at work.
There are two paragraphs from E. Giusti [1157, pp. 36-37, e.a.] that deserve to
be read in full, as they give a synthesis of each of these distinctive traits:

The choice of a mathematical language [ . . . ] is not without consequences in the description of
the world, and in the very image forming in the scientist’s mind, with the concepts used: to the
teeming multiplicity of real bodies that move, weigh, and balance each other, the mathematical
physicist replaces a crystallized universe of invariable figures, quantities, motions, in which the
infinite variety of things is replaced by a systematic game of simple relations. And if it is true
that the physicist chooses one or another mathematical theory in relation to their adherence to
reality that should be studied [ . . . ], it is no less true that, once a decision has been made, [a
mathematical theory] substantially influences [condiziona] the understanding of the phenomena [ . . . ].
[W]hen [a] theory [ . . . ] has been chosen for the description of physical phenomena, the only possible
relationships between natural bodies are those that the theory foresees between abstract quantities,
and it is on these [quantities] that our images of nature must be modeled, with all possible resulting
distortions. The aphorism “translator, traitor” does not apply only in literature.

If physics [our description of nature] is in a certain sense crystallized by the underlying mathe-
matical structure (but, for the avoidance of doubt, we repeat that this is the only way to get out of
the [sense of] “wonder” [θαυμασιότης] and move towards the understanding of natural phenomena),
and it becomes, so to speak, a “model” of the mathematical theory adopted, however, it does not
remain inert, and it does not fail to submit its needs, especially when the simplifications introduced
prevent an adequate understanding of the phenomena being considered. At this point we observe a
symmetrical action of the physical world on the language that describes it. If mathematics had
claimed to freeze the universe in a simple game of abstract concepts, by excluding everything that
was not attributable to relationships between [such concepts], there are natheless some questions,
which indispensably are calling for an answer, and which cannot be circumvented only because they
are not formulated in the chosen language. The same mathematical concepts on which the basic
theory was founded are thus brought to a ceaseless tension, in an attempt to force the interpretative
framework, and to assume a broader one, in which to pose and possibly solve the problems whose
enunciation in the previous [framework] was prevented. And when a more general theory is not
available, the [physicist] becomes a mathematician, and engages with the rigidity of his method.
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25.1.2. Physico-mathematical Reality

᾿Εζητεῖτο δὲ καὶ παρὰ τοῖς γεωμέτραις, τίνα ἄν τις τρόπον τὸ δοθὲν στερεὸν διαμένον ἐν τῷ αὐτῷ

σχήματι διπλασιάσειεν.a
— Eutocius of Ascalon [927, p. 104, 6-8]

Eadem mutata resurgo.b
— Jac. Bernoulli’s tomb inscription in the Minster of Basel

If mathematics is the study of ideal constructions, together with the imagina-
tion of geometric shapes, and the understanding of numerical relations, then its
study coincides with the pursuit of invariance, to wit, of identity (equality), and
of a permanent character along the transformations of such forms and relations.
The same type of pursuit is, in consequence, poured into the study of natural
phenomena (when it expresses its results through mathematics).

A mathematician, for his part, has a lot of fun provoking the physics commu-
nity. See e.g. G.H. Hardy’s [1289, § 24, pp. 128-129] annotation:

[I]t is the physicist who deals with the subject-matter usually described as “real”; but a very
little reflection is enough to show that the physicist’s reality, whatever it may be, has few or none of
the attributes which common sense ascribes instinctively to reality. A chair may be a collection of
whirling electrons [but this definition does not conform] at all closely to the suggestions of common
sense. [No physicist has] ever given any convincing account of what “physical reality” is, or of how the
physicist passes, from the confused mass of fact or sensation with which he starts, to the construction
of the objects which he calls “real”. Thus we cannot be said to know what the subject-matter of
physics is.138

This is not new, and it should not be surprising; this has distant roots, in
the famous Galilean action of defalcating the impediments of matter [1072, it is
required that the scientist-geometer «difalchi gli impedimenti della materia», p.
202],139 of removing accessory data («ostacoli accidentarÿ») [1072, p. 139], that
is, the «defects» of real objects, with the intent to consider only certain «perfect»
(ideal) qualities, under constant characters (conservation laws) and invariance
principles. The real object is replaced with its mathematical abstraction. E.
Torricelli [2529, lettera a M. Ricci, 10 Febbraio 1646, p. 20] abridges in a few
lines, and in a fetching manner, the master’s thought, the one on the opportunity
to “remove” (difalcare) the obstacles:

I care very little [a me importa pochissimo] if the principles of the doctrine de motu are true or
false. For if they are not true, let us pretend that that they are true [fingasi che sian veri] according
to what we have supposed, and then take all the other speculations derived from these principles,
not [only] with a mixed practice but also with a geometric practice. I pretend or suppose [Io fingo o
suppongo] that some body or point moves downwards and upwards with a known proportion and
horizontally with equal motion. When this is the case, I say that everything Galileo said, and what
I [said] in addition [to his words], will come as a consequence. And if the lead, iron and stone balls
do not observe that supposed proportion, with their damage, we will say that we are not talking
about them [diremo che non parliamo di esse].140

Besides, the Torricellian letter has the merit of alluding to the recurring but
highly variable motifs, proper to the class of figments (which we have already
encountered in Section 21.7.4), in the—relatively—free production of hypotheses.

a«In what manner one might double a given solid, [the solid] keeping the same shape, it became
a subject of investigation among geometers».

b«I rise the same, though changed», with reference to the logarithmic spiral (spira mirabilis);
except that the engraver has carved an Archimedean spiral [117, see e.g. ιβ΄v, ιϛ΄v, ιζ΄v, κα΄v, κε΄v].
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Scholium 25.1.1 (Before Galileo, there were the Greeks). But beware: Galileo
was not the first to introduce the technique of “removing”, or “subtracting”, which
is the wellspring of mathematical modeling; the concept of model is already fully
elaborated in many different nuances and ductilely adopted in ancient Greek
science, and this is because mathematics is the privileged reference to which to
reduce observable facts (phenomena), see F. Acerbi [13].

And there is more. It is mathematics, consciously for scientists of the Greco-
Hellenistic culture, that defines the structure of a model, that determines what
can be formalized and expressed in a model, and what instead is destined to end
up in the limbo of the negligible/non-essential aspects. Let us put it differently:
what is not mathematizable—what we are unable to insert into the model—moves
away from the sphere of knowability. ⋄

With the deliberate use of models in the theories of classical physics, the
modeling construct acquires, or reacquires, a new, full, awareness; e.g. L.
Boltzmann [340, p. 324] writes:

Our ideas of things are never identical with their essence [Wesen]. They are mere images [bloße
Bilder ], or rather, signs [Zeichen] for them, which necessarily represent what has been designated
one-sidedly, so much so that they cannot choice but imitate certain kinds of connections in them,
whereby the essence remains completely unaffected.

The following two passages are worthy of being reported on this topic, namely
on the disappearance of reality that occurs in physics, in favor of a formal reality
via mathematics. The first is by H. Weyl, taken from the 3rd edition of his
Raum-Zeit-Materie [2632, § 35, pp. 262-263]:

The more physics develops, the more it becomes clear that the relations between the phenomena
of reality that each of us lives and those objective entities [objektiven Wesenheiten] operating in
physics through mathematical symbols are not as simple as it appears in an ingenuous conception,
and that fundamentally nothing of the content of reality directly experienced goes in the physical
world [ . . . ]. In the end all physical reality appears as a mere form [ganze physikalische Realität
doch als eine bloße Form]; it is not geometry that has become physics, but physics has become
geometry [ . . . ]; the entire physical world has become a form [die gesamte physische Welt ist zur
Form geworden] the content of which grows from completely different areas than those of the physical
world. Physics has no further significance for reality than formal logic has for the realm of truth.
What formal logic teaches is surely based on the essence of truth, and no truth violates its laws. But
whether a statement is true or not, it teaches absolutely nothing about it, it leaves entirely indefinite
the content of truth [ . . . ]. I think that the description of physics is very similar [to that of logic],
that is, it corresponds to a formal construction of reality [formale Verfassung der Wirklichkeit]. Its
laws are never actually violated, just as there are no truths inconsistent with logic [ . . . ]; the Grund
of reality is not grasped by them.a

a In the 4th edition this bit was removed. And the book stops at a more triumphalist mood of
mathematical physics (anyway, such a mood is already present in the 3rd edition). In the 4th edition
[2633, p. 284] = [2634, pp. 311-312] we read: «Whoever looks back over the ground that has been
traversed, leading from the Euclidean metrical structure to the mobile metrical field which depends
on matter, and which includes the field phenomena of gravitation and electromagnetism; whoever
endeavours to get a complete survey of what could be represented only successively and fitted into
an articulate manifold, must be overwhelmed by a feeling of freedom [Gefühl Freiheit] won [ . . . ]. He
must feel imbued with the conviction that reason is not only a human, a too human, makeshift in
the struggle for existence, but that, in spite of all disappointments and errors, the λογική structure
that permeates the world [Weltvernunft] has increased, and that the consciousness of each one of us
is the centre at which the One Light and Life of Truth comprehends itself in Phenomena. Our ears
have caught a few of the fundamental chords from that harmony of the spheres of which Pythagoras
and Kepler once dreamed [Ein paar Grundakkorde jener Harmonie der Sphären sind in unser Ohr
gefallen, von der Pythagoras und Kepler träumten]».

A comment is needed without delay: if man is the center of truth, then there is no Truth with
a capital T—and this is but the Pythagorean dream, later transfused into the Galilean–Keplerian
project (cf. Section 27.1.2). Au contraire, man is the place where the light of Truth (whatever is



468 25. Outro—Parva Mathematica: Libera Divagazione 6⁄8

The other passage is by A.S. Eddington [833, pp. 198-199, e.a.]:
Mind filters out matter from the meaningless jumble of qualities, as the prism filters out the

colours of the rainbow from the chaotic pulsations of white light. Mind exalts the permanent and
ignores the transitory; and it appears from the mathematical study of relations that the only way
in which mind can achieve her object is by picking out one particular quality as the permanent
substance of the perceptual world, partitioning a perceptual time and space for it to be permanent
in, and, as a necessary consequence of this Hobson’s choice, the laws of gravitation and mechanics
and geometry have to be obeyed. Is it too much to say that mind’s search for permanence has
created the world of physics? So that the world we perceive around us could scarcely have been
other than it is?

[ . . . ] Are there then no genuine laws in the external world? Laws inherent in the substratum of
events, which break through into the phenomena otherwise regulated by the despotism of the mind?

In Weyl and Eddington, for the historical course of scientific thought, there
is no trace of Galileo’s naturalism, and their mathematics is free from the
heavy burden of analyzing reality through a naive correspondence between
natural objects and mathematical objects (which, in Galileo, are abstraction
of natural ones); but, nevertheless, they maintain the idea of a description and
understanding of the world through a network of abstract entities (formularies,
schemes, models), with a formal construction, i.e. through a creation of the
mind in search of identities (equalities) and of permanent shapes (structures) of
the world.

25.1.3. Dissolution of the Objective World: the Clamorous Incident
of the Wave Function. An Authentic Story of Aesopian Fables and
Theater of the Absurd

[T]he Schrödinger wave-function bears to (the unknowable) physical reality the same relationship
that a weather forecast bears to the weather.

— J.A. Wheeler in the recollection of G. Preparata [2158, p. 2]

C’est ainsi que nous voyons le monde: nous le voyons à l’extérieur de nous-mêmes, et cependant
nous n’en avons qu’une représentation en nous.a

— R. Magritte [1732, p. 184]

(1) Our musings in the above Section 25.1.2, together with the previous
Sections, propelled us into a burning issue: the dissolution of reality, or a
part of reality, in the mental trickles of the observer. Wheeler’s salacious joke,
in epigraph, makes us think back to the experience—hidden in the work of
mathematicians and mathematical physicists—of finitude in the approximation,
disappearance and reinvention of the objective world. The state of the atmosphere
is one thing, the prediction of the conditions of the atmosphere is quite another.
Lorenz knew something about it (cf. Sections 14.2, 15.1, and 16.2.1.2). It is a
good and ironic way to close this Chapter.

(2) Physico-mathematical production is not a “replication” of the objective
(physical) world, out there; it is a process of (re)construction and elaboration of
it, which ordinarily introduces “alterations”, like a distorting mirror (cf. Section
25.1.1.3); as written by F. Bacon, intellectus humanus instar speculi inaequalis
(«the human understanding resembles an uneven mirror»), see endnote 131.

meant by this heavy word) is shattered, reduced to powder, and dissolves into our mind.
a«Which is how we see the world: we see it as being outside ourselves, and yet we have only a

representation of it within us».
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This refers, albeit with the necessary differences, to both the micro- and macro-
representation.

(3) Scientific activity is tied to the condition of finitude of the scientist or,
expanding the field further, to the Condition humaine, to quote R. Magritte
[1732, p. 184], see also [1733, pp. 65-66]:

[An object, a “piece” of reality] for the observer [spectateur ], exists, simultaneously, in his mind
[par la pensée], as inside the room in the painting, and outside in the real landscape.

Which also applies when we admire a “realistic” paintings, or even “hyperre-
alistic” images.

(4) It is desirable to clarify that Preparata reports that expression from
Wheeler with a critical spirit, because he has a “realistic” slant in quantum
physics. Au contraire, I espouse the Wheelerian attitude, descending from Bohr’s
school of thought (cf. Section 24.1.2). Realism is a noble impulse, but it can
sometimes err through ingenuousness; see, however, below, point (iv). Let us
repeat a lesson from L. Boltzmann [338, p. 179], entitled Über die Frage nach
der objektiven Existenz der Vorgänge in der unbelebten Natur (On the question
of the objective existence of processes in inanimate nature):

Our target will not be to establish the truth or falsity of one or the other world picture [ . . . ]
in order to represent the objective world picture [Darstellung des objektiven Weltbildes], but we
will wonder whether either [of these picture] is usefulness [Zweckmäßigkeit] for this or that purpose
[ . . . ].a We give the most easily comprehensible rules for constructing this world picture without
bothering how we subjectively [subjektiv ] arrived at these rules: its justification lies solely in the
correspondence [Übereinstimmung] between the world picture and the facts.

It is the old adæquatio, which recurs with a modern twist, between “world”,
out there, and “picture”, or “representation”, of it. In spite of this, I am agree
with Preparata [2158, pp. 63-64] [2159, pp. 199-200] toto cœlo upon the following
facts.

(i) Quantum mechanics is not a «complete» and «self-consistent» theory
of reality—one only need look at the Bohrian «invention» of the wave-particle
complementarity, aimed at fulfilling two irreconcilable aspects of physics, with
a double appearance, the undulatory one and the punctiform one: particle
behaves “intermittently” as a particle and as a wave (the behavior of a particle
is subordinate to the kind of measurements we perform upon it).

Here there is the mistake of believing that phenomena—be they at the
micro- or macro-scale(s)—that are described by the same mathematics must,
perforce, belong to the same physical nature. We mulishly insist on calling
“undulatory” and “corpuscular” the behavior of an electron, just because some
sort of mathematical equation, initially created/adopted for macroscopic studies,
is sufficiently satisfactory for the description of microscopical observations. This
happens because our mathematics was formed, along the phylogenetic and
ontogenetic path, on the macroscopic world; and the laws of macrophysics,

aPay heed: “truth” or “falsity” are not criteria or rules required by modern physics; what counts
are “usefulness” and “fruitfulness”. Cf. e.g. O.M. Corbino [689, p. 26]: «It is very fortunate that
physicists have become accustomed to lose interest for the definitive or provisional quality of their
theoretical constructions, persuaded that these [constructions] do not cease to function as powerful
instruments of progress [ . . . ]. They no longer ask themselves [ . . . ] whether the theories are true or
not; they only require that these [theories] be fruitful, allowing for a certain economy of thought in
the coordination [of the external world] of facts».
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voluntarily or otherwise, constitute our point of departure towards microscopic
depths. The wave-particle paradox is not in nature, but in ourselves.a Actually,
the wave-particle paradox is one of the many-sided marks of the ambiguusb extent
of human creativity, which pervades, with a variable profit, any production, in
the scientific and artistic domain (cf. Sections 21.3 and 22.2.1).

What is the fabulæ moralis? Once again, the storyc shows that (ὁ μῦθος
δηλοῖ ὅτι) we are faced with one of the picturesque examples where mathematics
is misrepresented, i.e., is wrongly understood as the executive “code” of nature,
or as an indistinct and pervasive “medulla” of the totality of natural phenomena.
Note. With the fabulous/mythical μῦθος [22, p. xviii], the reference to Sections
25.1.1.3 and 25.1.1.4 is plain; in this regard, my slogan could be: Aesopian fables
also exist in (mathematical and physical) sciences.

Not surprisingly one has, as a loophole, the construct of quantum field,
that seeks to rectify the quantum complementarity: one imagines that it is a
continuous quantity (distributed everywhere in space) but also granularized in
its particle version, so that “continuous” and “point-like” are two apparently
contradictory aspects of the same reality, as the Bohr motto reads, in his coat
of arms, featuring a taijitu (太極圖): Contraria sunt complementa. I am sorry
to say, but, in a mathematical key, the whole thing is not so simply resolved
(calculated), quite the contrary.

The secret is to cross from one aspect to the other, more or less surreptitiously,
by depicting a framework in which the particle is a punctual “condensation”,
an energetic “knot” of the field, and the field is a continuous “flow” of the
point-charge. Weyl’s [2640, p. 171, e.a.] verbal portrayal is cogent:

According to the [field theory of matter] a material particle such as an electron is merely a
small domain of the electrical field within which the field strength assumes enormously high values,
indicating that a comparatively huge field energy is concentrated in a very small space. Such an
energy knot, which by no means is clearly delineated against the remaining field, propagates through
empty space like a water wave across the surface of a lake [ . . . ]. According to this view, there exists
but one kind of natural law, namely, field laws of the same transparent nature as Maxwell had
established for the electromagnetic field. The obscure problem of laws of interaction between matter
and field does not arise. This conception of the world can hardly be described as dynamical any
more, since the field is neither generated by nor acting upon an agent separate from the field, but
following its own laws is in a quiet continuous flow.

(ii) In the theoretical subsoil of quantum mechanics
the objective world [whatever the word “objective” may mean] dissolves into a more manageable

subjective world, to which the [wave function] ψ belongs [2159, p. 199].

The «subjectivism» permeating the Copenhagen interpretation of quantum

aDirac [801, p. 49] gives us gems, where he pontificates: «Instead of working with a picture of
the photons as particles, one can use instead the components of the electromagnetic field. One thus
gets a complete harmonizing [sic] of the wave and corpuscular theories of light. One can treat light as
composed of electromagnetic waves, each wave to be treated like an oscillator; alternatively, one can
treat light as composed of photons, the photons being bosons and each photon state corresponding
to one of the oscillators of the electromagnetic field. One then has the reconciliation [sic] of the wave
and corpuscular theories of light. They are just two mathematical descriptions of the same physical
reality». The kink is squarely this: it is “mathematics” and not “physical reality”, or “nature”. These
Diracian words are so diplomatic, that one ends up recognizing their math-hooey.

bThe La. adjective ambiguus is for “having ‘double’, ‘equivocal’, ‘shifting’, ‘interchangeable’
meaning”.

cIt is assumed that there is no difference between “story” (fiction) and “history” (historic truth),
cf. footnote c on p. 408.
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mechanics,a in the footsteps of Bohr and Heisenberg, can actually lead, in the
paroxysm, to the

disaster of a skepticism in which reality dissolves [into our mind], science becomes a social game,
and every sort of sect and church can claim its piece of “truth”, even [in the] scientific [literature]
[2159, p. 200].

I will not go into details with respect to some delicate impasses, because it is
easy to get caught up in the minutiæ; e.g. the sectarianism that blazes up in
the debate about the “collapse” of the wave function often falls into ridiculous
blunders.

Not only that. As a consequence, one of the performances at the Theater
of the Absurd can go on stage, with the identification of contradictions and
paradoxes, or at least of seemingly contradictory and paradoxical concepts. This
situation is historically well-documented in the evolution of quantum mechanics.
See, for example, W. Heisenberg [1323, p. 42]:

[ . . . ] [A]n intensive study of all questions concerning the interpretation of quantum theory in
Copenhagen finally led to a complete [ . . . ]. I remember discussions with Bohr which went through
many hours till very late at night and ended almost in despair; and when at the end of the discussion
I went alone for a walk in the neighboring park I repeated to myself again and again the question:
Can nature possibly be as absurd as it seemed to us in these atomic experiments?

The speech of R. Feynman [981, p. 10] is even clearer:
The theory of quantum electrodynamics describes Nature as absurd from the point of view

of common sense. And it agrees fully with experiment. So I hope you can accept Nature as She
is—absurd [ . . . ]. Please don’t turn yourself off because you can’t believe Nature is so strange.

In this, science appears to be stuck in the catchline of the credo quia absur-
dum.b But how do we know if Nature is truly absurd? Well, we do not know
that (yet), because there are no diriment experiments (experimenta crucis), but
a progression of experimental procedures along that direction, starting from T.
Young’s [2718] double-slit experiment (the publication of which goes back to
1804). And then “absurd” compared to what? To common sense? Can we take
the “common sense” (τῆς κοινῆς αἰσθήσεως πάθος, in the ancient culture) as a
universal yardstick?

It may be that the core of Nature is absurd, or that reality is paradoxical;
but if it is, such an absurdity, or paradoxicality, is seen in relation to us, to
our experience of it. What we define as “absurd”, “logically contradictory”, or
“paradoxical”, in reference to certain aspects of reality, especially at the subatomic
scales, is directly dependent on our common sense, logic, or intellect, and finally
on our language; so this is about human affairs. Saying that “absurdities”,
“contradictions”, or “paradoxes”, belong to the «intrinsic structure» of subatomic
nature is an act of conceit, of comical haughtiness. Assertions like this are

aAnyone who wants to learn more about the “Copenhagen interpretation”, at its birth, with the
lectures of M. Born and N. Bohr from the Volta Conference, held at Lake Como, Pavia and Roma,
11-27 September 1927, can consult S. Boffi [308]. For a historical reconstruction, some quarrels and
heartbreaking misapprehensions that accompanied the inception of quantum mechanics are narrated
in Lindley’s book [1664].

bThe phrase is attributed to Tertullian, but it is a misquotation. He never wrote it; he wrote,
however, something similar (in his De Carne Christi): «prorsus credibile [est], quia ineptum est» (it
is immediately credible, because it is inconvenient), and «certum est, quia impossibile [est]» (it is
certain, because it is impossible».

I discover that L. Russo [2267, pp. 52-53] holds a viewpoint close to mine.



472 25. Outro—Parva Mathematica: Libera Divagazione 6⁄8

aprioristic judgments that emanate from believing that our way of thinking are
realities of nature. It is not correct to turn our “shape” of thought into a property
of all nature.

The pristine wisdom of Laozi [1580, lxxi, p. 159], on a humble ignorance,
seems lost: «To know one’s ignorance is the best part of knowledge», namely,
“知之为知之, 不知为不知, 是知也”. That reminds me of an excerpt from a letter
by L. Euler [924, lettre XXVIII, 15 Juillet 1760, p. 108]:

[À] entendre parler les savans, on s’imagine qu’ils poss[è]dent les plus profonds myst[è]res [de la
nature], quoiqu’ils n’en sachent pas plus que le païsan, & peut-être encore moins. V.[otre] A.[ltesse]
reconnaîtra aisément, que ces apparentes subtilités ne sont que des chicanes.a

(iii) Additionally, Preparata’s disapproval [2158, pp. 5, 19-20, 39] towards
the “quantum particle” as a Newtonian point-mass, and as a «truly metaphysical
object», is correct, and I am of the same opinion (cf. Section 14.4.3 and 14.4.6).

(iv) A “realistic” description is the ambition of physics, surely.b It must
attempt to reveal, in its own way, the laws of nature, right? Against this
background, J.S. Bell’s reflection [233, pp. 687-688] is commendable:

It would be foolish to expect that the next basic development in theoretical physics will yield
an accurate and final theory. But it is interesting to speculate on the possibility that a future theory
will not be intrinsically ambiguous and approximate. Such a theory could not be fundamentally
about ‘measurements’, for that would again imply incompleteness of the system and unanalyzed
interventions from outside. Rather it should again become possible to say of a system not that
such and such may be observed to be so but that such and such be so. The theory would not
be about ‘observables’ but about ‘beables’. These beables need not of course resemble those of,
say, classical electron theory; but at least they should, on the macroscopic level, yield an image
of the everyday classical world, for [as Bohr says] ‘it is decisive to recognize that, however far the
phenomena transcend the scope of classical physical explanation, the account of all evidence must
be expressed in classical terms’.

The universe—echoing the words of F. Bacon—is not to be narrowed down to
the limits of our understanding; but rather the understanding must be stretched,
enlarged,c to take in the picture, in the image, of the universe, as it is discovered.

aThere is a gleaming eighteenth-century It. transl. of these Eulerian words [926, p. 145]: «[A]
sentir parlare i dotti su di quello punto voi credereste che abbiano penetrato ne’ misterj più ascosi
della Natura, e pure essi non ne sanno più de’ contadini, e forse anche meno. Ma V. A. può facilmente
conoscere che tai sottigliezze apparenti non sono altro che sofismi».

bBut it does not have to be that for everybody. In certain physicists, viscerally forged by a sort
of imprinting of mathematizing the theory of nature (“Think καλῶς” could be their dictum), such as
Dirac, there is a tasty paroxysm: he, not being interested in the objective reality of the external
world, once declared that «the question of whether the wave [functions] ψ were real or [fictitious]»
was not a cause for concern for him, as he considered it a «metaphysical problem», cf. Boffi [309, pp.
13-14].

cThe widening of our knowledge is a critical topic. The snag is that this widening is accompanied
by a reductio ad ordinem; for example, N. Bohr [317, p. 1] writes that: «The task of science is both
to extend the range of our experience and to reduce it to order». Turning to the notion of order, it
is a recurring obsession in mathematics and in physics (cf. Chapters 14, 15, 16).



26
Outro—Parva Mathematica: Libera Divagazione

7⁄8

26.1. Mathematics by Mathematicians vs. Mathematics by
Physicists

Usually I do not trust physicists until I find my own proof or, at least, an explanation of their
results. For this reason, a big part of theoretical physics remains outside my understanding [ . . . ].
[T]he worlds of mathematicians and physicists are quite different and there is a boundary which
separates them. This boundary is very individual, and everybody chooses it for himself.

— Ya.G. Sinai [2382, p. 565]141

In the following Sections we will examine the relationship between mathemat-
ics and physics, or rather, between mathematics made by mathematicians and
mathematics done by physicists, and we will see that, depending on a personal
taste, they may be far apart from and close to each other, or melted into one.

26.1.1. Proof vs. Empirical Datum

In mathematics there is an empty canvas before you which can be filled without reference to
external reality [ . . . ]. The only value of mathematics lies in its internal structure, [whilst] physics is
basically an empirical science [ . . . ].

Soon after coming to Princeton I became aware that my work on the Lorentz group was based
on somewhat shaky arguments. I had naively manipulated unbounded operators without paying any
attention to their domains of definition. I once complained to Dirac about the fact that my proofs
were not rigorous and he replied, “I am not interested in proofs but only in what nature does”. This
remark confirmed my growing conviction that I did not have the mysterious sixth sense which one
needs in order to succeed in physics and I soon decided to move over to mathematics.

— Harish-Chandra in the recollection of R.P. Langlands [1577, pp. 202, 205]

Mathematics for physicists is not the same as that of mathematicians (or
even of mathematicians interested in theoretical physics). Physicists sometimes
do a sophisticated-type mathematics; but more often they do an uncouth-type
mathematics suffering from a lack of rigor. Hence the not rare misunderstanding
between mathematicians and physicists.

A physicist does not aim at the accuracy of theorems and their proof; it is
a priority, for him, to mathematically encapsulate the experimental knowledge
of a phenomenon of nature, or to sew certain laws on the body of nature, by
adopting and adapting some theorems at his convenience. Mathematical rigor,
for a physicist, thus becomes secondary; which, for a (pure) mathematician, is
hardly acceptable.
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Be careful though: someone, from this speech, might jump to the wrong
conclusion. Rigor is a consubstantial feature of mathematics, but, at the same
time, is also an ancillary trait of it. Mathematics is more than its rigor, as we
saw in Sections 22.1, 24.1 and 25.1.

26.1.2. Procrustean Bed: the Example of the Dirac Delta Function

To get a picture of δ(x), take a function of the real variable x which vanishes everywhere except
inside a small domain, of length ϵ say, surrounding the origin x = 0, and which is so large inside this
domain that its integral over this domain is unity [ . . . ]. Then in the limit ϵ → 0 this function will
go over into δ(x).

— P.A.M. Dirac [795, p. 58]

It is been more than 50 years that the engineer Heaviside [1311] [1312] has introduced his rules
of symbolic calculus, in a daring report where a mathematical calculus [in many cases] not at all
justified was used for the solution of physical problems [ . . . ]. Engineers are using it in a systematic
way, everyone with his own personal conception, with a more or less tranquil conscience; it has
become a technique “which is not rigorous but rather successful”. Since the famous function δ(x)
it was introduced by Dirac [782], which is zero everywhere except at x = 0 and infinite at x = 0

so that
∫ +∞
−∞ δ(x)dx = +1, the formulas of symbolic calculus have become even more unacceptable

under the rigor of mathematicians. Writing that the Heaviside [step] function Y (x) equal to 0
for x < 0 and to 1 for x ⩾ 0[,] has as [its] derivative the Dirac function δ(x)a whose definition
is mathematically contradictory [la définition même est mathématiquement contradictoire], and
talking about derivatives δ′(x), δ′′(x), . . . of this function devoid of real existence [dénuée d’existence
réelle], it is to exceed the prescribed limits.

— L. Schwartz [2331, p. 3]

An example of mathematics at the service of physics is the Dirac δ function
[782, p. 625] [795, § 15]. For a well-behaved continuous function φ(x) of x, there
is a function δ(x) such that∫ +∞

−∞
δ(x− x0)φ(x)dx = φ(x0), (26.1)

which transforms φ(x) into φ(x0). Delta function is defined by{
δ(x) = 0, when x ̸= 0,∫ +∞
−∞ δ(x)dx = 1,

(26.2)

and thereby it is a quantity equal to zero everywhere except at a single point,
x = 0, and in that zero-point it is infinitely large, whilst the integral over the
real line is 1. However, if δ(x) is null everywhere except for x = 0, the integral
of δ(x) cannot be other than 0; and yet, for Dirac, it has integral 1 (with a finite
value). This is a brutal contradiction to which Schwartz (in epigraph) refers.
Stricto sensu, δ(x) is not a function but a functional; a corrective way is to
interpret δ(x) as a limit of a sequence of functions that produces a sequence of
numbers, e.g.

δ ℓ(x) =


0, for x < − 1

2

ℓ,

ℓ

, for − 1
2

ℓ< x < 1
2

ℓ,

0, for x > 1
2

ℓ.

(26.3)

aThe derivative of the Heaviside step function—cf. Eq. (15.11)—is the Dirac delta function.
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26.1.3. Straitjacket for Feynman Path Integrals

[T]o form the differential equations, one would need to know not only the one [the solution
of which] is realized in nature [réalisée dans la nature], but all those that are [infinitely] possible
[toutes celles qui sont possibles].

— H. Poincaré [2139, p. 44]

In quantum mechanics the probability of an event which can happen in several different ways is
the absolute square of a sum of complex contributions, one from each alternative way [ . . . ] within a
region of space[-]time [978, p. 367]

The game I play is a very interesting one. It’s imagination, in a tight straitjacket, which is this:
that it has to agree with the known laws of physics [2441, p. 98].

— R.P. Feynman

The Feynman path integral is the mathematicians’ pons asinorum.a Attempts to put it on a
sound footing have generated more mathematics than any subject in physics since the hydrogen
atom. To no avail. The mystery remains, and it will stay with us for a long time.142

The Feynman integral, one of the most useful ideas in physics, stands as a challenge to
mathematicians. While formally similar to Brownian motion [see Section 14.3 and Margo 26.1.1],
and while admitting some of the same manipulations as the ones that were made rigorous long ago
for Brownian motion, it has withstood all attempts at rigor. Behind the Feynman integral there
lurks an even more enticing (and even less rigorous) concept: that of an amplitude which is meant
to be the quantum-mechanical analog of probability (one gets probabilities by taking the absolute
values of amplitudes and squaring them: hence the slogan “quantum mechanics is the imaginary
square root of probability theory”).

— G.-C. Rota [2232, p. 229]

The task of a physicist, generally, is to reproduce certain experimental results
in a regular (invariant) way, or to find a coincidence between measurement
data and theoretical predictions.b Physicists, even when they possess dissimilar
mental predispositions, go in this same direction, like J. Schwinger [2342] [2343]
[2344], always in search of mathematical rigor, and R.P. Feynman [978] [985],
little inclined to mathematical systematization, but attracted to the intuitive
aspect of theories.

Feynman’s original definition of the path integral, in its early days, before
a better rigorization and refinement (still underway) for work of F.J. Dyson
[826], C. Morette [1857] [766] [1858], S. Albeverio et al. [36] [37] [33] [35] [38]
[34], was unanimously considered to be a physically coherent technique (or even
extraordinarily explanatory) but mathematically inconsistent. The path integral
approach is an example of how the physical view, drawing from intuitive images
of common experience, initially forces and forges some mathematical kit to
explain particle phenomena.

Example 26.1.1 (Probability amplitude functional as sum over histories). Two
postulates summarize the Feynman’s formulation [978, sec. 3].

aIt is the isosceles triangle theorem in Euclid [909, Proposition ε΄v, Στοιχείων α΄v, Book I, p.
20]: «In isosceles triangles the angles at the base are equal to one another, and if the equal sides
are prolonged [under the base] then the angles under the base will be equal to one another (Τῶν
ἰσοσκελῶν τριγώνων αἱ πρὸς τῇ βάσει γωνίαι ἴσαι ἀλλήλαις εἰσίν, καὶ προσεκβληθεισῶν τῶν ἴσων

εὐθειῶν αἱ ὑπὸ τὴν βάσιν γωνίαι ἴσαι ἀλλήλαις ἔσονται)».
bCf. e.g. S.W. Hawking in [1307, chap. 7, p. 121]: «I don’t demand that a theory correspond to

reality because I don’t know what it is. Reality is not a quality you can test with litmus paper. All
I’m concerned with is that the theory should predict the results of measurements».

Hawking’s mental line is the fastest road (and also it is got the least amount of dust); but there
are other roads, with more tortuous curves. The debate between Hawking and Penrose is engrossing
(ibid.): «These lectures have shown very clearly the difference between Roger [Penrose] and me. He’s
a Platonist and I’m a positivist. He’s worried that Schrödinger’s cat [2318, p. 812] is in a quantum
state, where it is half alive and half dead. He feels that can’t correspond to reality [for Penrose the
problem of ontology is imperative in quantum mechanics]. But that doesn’t bother me».
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(1) Postulate I. The probability that a particle make a path in a region of
space-time is given by the absolute square of a sum of complex contributions.

Suppose we have a particle which can have several values at x. Let xj be
the result of the measurement of the coordinate x at time τj . The probability
of a path, for successive values, x1, x2, x3, . . ., at successive times, τ1, τ2, τ3, . . .,
with a limit ϵ → 0 (where ϵ is the interval separating all subsequent position
measurements), is a function of x1, . . . , xj , and let P(x1, . . . , xj , xj+1, . . . , x ℓ)
be this probability. Let α and β be two results of two distinct measurements.
Hence the probability that a path lies in a region k ⊂ R4

1,3 of space-time, say
between αj and βj , for xj , and between αj+1 and βj+1, for xj+1, etc., is∫ β1,...,βj

α1,...,αj

∫ βj+1,...,β ℓ

αj+1,...,β ℓ

P[: · · · :] =
∫
k⊂R4

1,3

P[: · · · :],

setting P[: (x1, . . . , xj , xj+1, . . . , x ℓ)dx1, . . . , dxjdxj+1, . . . , dx ℓ:], (26.4)

where the symbols [: and :] are for a repeat sign, see Glossary. For a measurement
that allows to avoid possible uncertainties in the system (an ideal measurement),
the path integral becomes

чC(k) = lim
ϵ→0

∫
k⊂R4

1,3

Ч C(x1, . . . , xj , xj+1, . . . , x ℓ)dx1, . . . , dxjdxj+1, . . . , dx ℓ,

(26.5)
where чC and Ч C are complex numbers; specifically, чC designates a probability
amplitude for k ⊂ R4

1,3, and Ч C is the probability amplitude functional of xj
defining the entire path xτ . Here

· a path is determined by the positions xj , or rather by a succession of points
xj , through which it passes at successive times τj , i.e. at a sequence of equally
spaced times

τj = τj−1 + ϵ→ 0, (26.6)

· the probability that a particle is found to be in k ⊂ R4
1,3 with a measurement

plus integral (26.5) is the square of |чC|2.
(2) Postulate II. Each path in the region contributes in equal way in magni-

tude, and the phase of any contribution is the Lagrangian action expressed in
units of ℏ.

The contribution Ч C(xτ ) from a certain path is proportional to exp ( iℏ )S(xτ ),
in which the action

S(xτ ) =

∫
L(ẋτ , xτ )dτ (26.7)

is the time integral of the Lagrangian L(ẋ, x) along the path, cf. Dirac [789].
A path here is determined by at all points, not just at xj as above, so it is
necessary to assume that the function of xτ is the path of a classical particle,
with L, between τj and τj+1, starting from xj at τj and reaching xj+1 at τj+1.
Being that, under the classical path the action is a minimum, we can put

S =
∑
j

(
S(xj+1, xj) = min

∫ τj+1

τj

L(ẋτ , xτ )dτ(xj+1, xj)

)
. (26.8)
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Since the sum, in this equation, is infinite, even if ϵ is finite, we must limit the
operation to a finite time interval, albeit arbitrarily long. Lastly, what can be
inferred from the two postulates is

чC(k) = lim
ϵ→0

∫
k⊂R4

1,3

exp

 i

ℏ
∑
j

S(xj+1, xj)

dxj+1

cð

(
dxj
cð

)
, (26.9)

for a value
cð = (2πℏi/p0)

n
2 ð−

1
2 , (26.10)

where p0 is a constant in the number of particles dp
p0

that have a given component
of momentum in dp, and n degrees of freedom in spatio-temporal coordinates
xj+1 at τj+1. 5

Example 26.1.2 (Hamiltonian path integral—phase space formulation). A gener-
alization of the Feynman’s formulation is possible writing the amplitude as a
product of integrals by recourse to phase spaces,

⟨x ℓ

+1|Û(τ ℓ+1, τ0)|x0⟩ = [:

ℓ∏
j=1

(∫ +∞

−∞
dxj

) ℓ

+1∏
j=1

(∫ +∞

−∞

dpj
2πℏ

)
:]

× exp

 i

ℏ

ℓ

+1∑
j=1

(
pj(xj − xj−1)− ϵH(pj , xj , τj)

), (26.11)

with
ϵ = τj − τj−1 =

τ ℓ+1 − τ0

ℓ

+ 1
> 0, (26.12)

where Û(τ ℓ+1, τ0) is the time evolution operator (propagator), pj is a momentum
variable, ϵ is an infinitesimal time interval, H is the classical Hamiltonian, and
Ч is a functional integral (that is, an integration over all paths), for j = 1, . . . ,

ℓ

.
The limiting process will be

limℓ

→∞
[: · · · :] =

∫ x(τ ℓ

+1)=x ℓ

+1

x(τ0)=x0

Ч (i)x

∫
Ч p

2πℏ
. (26.13)

By combining both equations, the amplitude becomes

⟨x ℓ

+1|Û(τ ℓ+1, τ0)|x0⟩ =
∫ x(τ ℓ

+1)=x ℓ

+1

x(τ0)=x0

Ч (i)x

∫
Ч p

2πℏ
exp

{
iS(p, x)/ℏ

}
, (26.14)

and that is all. 5

Margo 26.1.1. We are all quite clear that the Feynman’s formulation is but a
functional integration, the mathematical construction of which was inaugurated
by P.J. Daniell [722], and by N. Wiener [2654] [2655] [2656] [2657] [2658] for the
treatment of the Brownian motion within the the analytic functional. L



478 26. Outro—Parva Mathematica: Libera Divagazione 7⁄8

26.1.4. Ends and Means for Metric Functions

The point to remember is that when we prove a result without understanding it—when it drops
unforeseen out of a maze of mathematical formulae—we have no ground for hoping that it will apply
except when the mathematical premises are rigorously fulfilled—that is to say, never [ . . . ]. But
when we obtain by mathematical analysis an understanding of a result—when we discern which
of the conditions are essentially contributing to it and which are relatively unimportant—we have
obtained knowledge adapted to the fluid premises of a natural physical problem [ . . . ]. [W]hereas for
the mathematician insight is one of the tools and proof the finished product, for the physicist proof
is one of the tools and insight the finished product.

— A.S. Eddington [836, p. 103]

Ends and means. For a physicist, nature (φύσις) is the end of his own research,
but it does not necessarily have to be for a mathematician. For a physicist,
mathematics is a means, a tool.a For a mathematician, this—working—tool
is primarily used as an end in itself, when (pure) mathematics creates its own
abstract structures; thence, end and means become the same thing.

Set out below (Sections 26.1.4.1 and 26.1.4.2) are some minute considerations
that broaden the above-stated topic a little.

26.1.4.1. Schwarzschild, Gödel and Kerr Metrics

When all thermonuclear sources of energy are exhausted a sufficiently heavy star will collapse
[ . . . ], this contraction will continue indefinitely [ . . . ]. The star thus tends to close itself off from any
communication with a distant observer; only its gravitational field persists.

— J.R. Oppenheimer and H.[S.] Snyder [1981, pp. 455-456]143

[A]fter a certain critical condition has been fulfilled, deviations from spherically symmetry
cannot prevent space-time singularities from arising.

— R. Penrose [2051, p. 58]

If gravitational collapse is [ . . . ] inescapable in a star [ . . . ] [w]hat was once the core of a star is
no longer visible. The [collapsing] core like the Cheshire cat fades from view. One leaves behind only
its grin, the other, only its gravitational attraction [ . . . ]. [L]ight and particles incident from outside
emerge and go down the black hole only to add to its mass and increase its gravitational attraction.

— J.A. Wheeler [2645, pp. 8-9]

There are also cases, contrary to what Eddington (in epigraph) says, in
which mathematics leads to apparently incomprehensible results, whose physical
sensibleness emerges only with the passing of the years and the advance of
technology: a suggestive example is the Schwarzschild metric [2340] [2341],

g
viz
= gs =

{
ds2 = −

(
1− 2mGn

ρ

)
dt2 +

dρ2

1− 2mGn
ρ

+ ρ2
(
dθ2 + sin2 θdϕ2

)}
,

(26.15)
specifying that ρ is the radial coordinate of a spherical surface around a body of
mass m, θ denotes the polar angle (colatitude), and ϕ is the longitude on the
spherical surface. The Eq. (26.15) provides examples of black holes [3] [4] [929],
and the occurrence of singularities at ρ = 2mGn.

aFermi’s mindset is an Occamian paragon of parsimony. He was a theoretical physicist, and yet
he liked to shun every redundancy—or superfluous refinement—of abstract mathematics. Here is a
direct evidence from Telegdi [2470, p. 97]: «Although endowed with remarkable analytic powers,
Fermi often affected an aversion to abstract mathematics. [An] anecdot[e] may serve to illustrate his
attitude: Once a notice appeared on the bulletin board announcing a course on the fundamentals of
quantum mechanics. This notice read, “Students should be familiar with the mathematics of Hilbert
spaces and Banach spaces.” Fermi commented, “Unfortunately I cannot learn about the fundamentals
of quantum mechanics; I know about Hilbert spaces but not about Banach spaces”».
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Conversely, there are models where the mathematical propositions are rigor-
ously and fully satisfied but the physical sense is absent, and this is the case of
the Gödel metric [1170],

g
viz
= gg =

{
ds2 = ω2

v

(
dx2 +

1

2
e2xdy2 + dz2 − (exdy + dt)2

)}
, (26.16)

with its closed time-like curves generating a rotating universe, where ωv > 0
is a constant indicating the magnitude of the vorticity, and (t, x, y, z) are the
cylindrical coordinates, see [1306, sec. 5.7].

In the midst of these two geometries, there is e.g. the Kerr metric [1477],

g
viz
= gke =



ds2 =−
(
1− 2mρ

ρ2 + α2 cos2 θ

)
dt2

− 4mρα
sin2 θ

ρ2 + α2 cos2 θ
dtdϕ

+
ρ2 + α2 cos2 θ

ρ2 − 2mρ+ α2
dρ2 + (ρ2 + α2 cos2 θ)dθ2

+

(
ρ2 + α2 +

2mρα2 sin2 θ

ρ2 + α2 cos2 θ

)
sin2 θdϕ2


, (26.17)

expressed in Boyer–Lindquist coordinates [405], for a parameter α = J
m , where

J is the angular momentum. The Eq. (26.17) is above all an algebraic solution,
and it does not guarantee a realistic process for the external field of a rotating
collapsing star [2492, p. 260], but shows, as B. Carter [567] [568] had guessed,
an asymptotic value for the formation of a rotating black hole: for α > m, the
Kerr metric is unrealistic, for α = m, it represents an extremal.

The Schwarzschild, Gödel and Kerr metrics (26.15) (26.16) (26.17) are three
exact solutions of the Einstein field equations, so they are mathematically coequal,
but they have different physical implications.

26.1.4.2. Dirac’s Prediction of Anti-matter from Klein–Gordon Equa-
tion

[T]he mathematician plays a game in which he himself invents the rules while the physicist plays
a game in which the rules are provided by Nature.a

— P.A.M. Dirac [796, p. 124]

The Dirac model of the anti-matter is another resounding case that starts
from a mathematically provable but physically incomprehensible result. And
it is a further evidence of how complicated the attempt is to «interpret the
mathematics physically» [783, p. 243], that is, to «interpret the new [pure]
mathematical features in terms of physical entities» [788, p. 60], combined
with the attempt to interpret nature mathematically, that is, to «formulate the

aWe do not agree, in any way (for the reasons already exposed), with the continuation of
Dirac’s sentence: «but as time goes on it becomes increasingly evident that the rules which the
mathematician finds interesting are the same as those which Nature has chosen».
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experimental data in mathematical terms» [788, ivi]. For Dirac, the departure
reasoning is the Klein–Gordon equation [1503] [1184],(

1

c2
∂2

∂t2
−∇2 +

m2c2

ℏ2

)
ψ = 0, (26.18a)

□+m2ψ = 0, (26.18b)

where ∇2 is the Laplacian, and

□ =
1

c2
∂2

∂t2
−∇2 (26.19)

is the d’Alembertian, which constitutes the basement for his Eq. (3.105). The
Eq. (26.18) refers «equally well» to an electron with charge −e and as to one
with charge [+]e [785, p. 612], but the second type appears to have no physical
meaning (it having never been observed in practice).

Dirac’s solution, as is well-known, comes from the proposal of the “holes” or
“vacant (unoccupied) states” in the negative energy distribution [786, 787], which
then gave rise, at the suggestion of J.R. Oppenheimer [1978], to the conjecture
about the existence of an anti-matter particle, with the same mass but opposite
charge to an electron, called «anti-electron» [788, p. 61].a

26.1.5. What is Out There? Inside the Head of a Mathematician

26.1.5.1. Imagery-generated Spaces

In nature, we actually know only the motion [В природе мы познаем собственно только
движение], without which sensory impressions are impossible. As a result, all other concepts, e.g.
those relating to geometry [понятия . . . Геометрические], are artificially produced by our mind
[произведены нашим умом искусственно], once they are drawn from the properties of motion;
that would explain why the space in itself, [taken] separately, does not exist [пространство, само
собой, отдельно, для нас не существует]. After which there can be no contradiction in our
mind, if we assume that some forces in nature follow a geometry, others [follow] their own particular
geometry [ . . . ].

In nature there are neither straight nor curved lines, there are neither planes nor curved surfaces
[в природе нет ни прямых, ни кривых линий, нет плоскостей и кривых поверхностей]: we
find only bodies [тела] in it, so that everything else, created by our imagination, exists in theory
alone [все прочее, созданное нашим воображением, существует в одной теории].

— N.I. Lobačevskij [1674, pp. 64, 69]

If to the intuitive space, that is, to the order of our sensitivity [ordine della nostra sensibilità],
corresponds an order of external things [ordine delle cose esterne], i.e. a real space for which the
postulates express real properties, it is an issue closely linked with the problem of knowledge, which
transcends the field of Geometry [ . . . ]. It is indifferent [ . . . ] that the issue is resolved in a skeptical
(or idealistic) sense [ . . . ] or that instead, by attributing to space an objective reality, as Helmholtz
[1330] [says], the value of postulates considered as physical truths is discussed. From these matters
nothing can arise that destroys the logical value of Geometry, and that changes our concept of
intuitive space; therefore not only the possibility but also the mathematical importance of Geometry
itself are independent of such issues.b

— F. Enriques [893, pp. 3-4]

aThe discovery of the anti-electron, renamed «positron», follows with the experiments of C.D.
Anderson [85] [86], and P.M.S. Blackett & G.P.S. Occhialini [303]. See the summary [795, § 73].

bCf. the letter of Enriques to Castelnuovo [898, № 292, 12 maggio 1896, pp. 266-267]: «[there
are very] few [works on space] that deserve some consideration; the more ones mope around the
eternal question whether or not space is given a priori, and do not understand that space can be
understood in two ways, “subjective space” [intuitive space, from our sensitivity] and “objective” [or
real space]».
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(1) From a narrowly mathematical perspective, the issue of the consideration
of phenomenal reality does not exist, or it does not exist as a problem of
ordering of experimental data. That is why a mathematician—see Enriques
in epigraph—can allow himself to think about the space, for example, without
heeding the implications of the physical world; he enjoys the opportunity of
conceiving the space as a mental network of connections without reference to an
external ordered collection of matter,a from corpuscles to celestial bodies.b

(2) Alternatively, a mathematician—see Lobačevskij in epigraph—can specify
the existence of bodies in nature and their motion (our experience with the
surrounding world), but this does not affect the imaginative construction in his
mind about spatial relations, which are all artificial, or about representation in
space, and interpretation of space, because the space in itself does not exist.

26.1.5.2. No One, One, and One Hundred Thousand Spaces

If mathematicians, instead of talking about “space of n dimensions”, had said, e.g., “continuum
of n coordinates”, nobody would have dealt with their novelty. But in this way, however, all the help
that hyperspaces can give in the representation of those facts—even on the mechanical or physical
side—would have been lacking, [and such facts], depending on multiple elements of variability, are
not easily schematized in ordinary space [ . . . ]. Hyperspaces provide an appropriate and suggestive
language that brings together apparently disparate facts, arousing analogies and hence fruitful
inductions.144

— F. Severi [2357, pp. 9-10]

Another difference that disconnects a mathematical space from a fiscal one
is the freedom of the dimensional number, which dates back, historically, to the
explicitly abstract works of J. Plücker [2119] and, mainly, of A. Cayley [589]
and H. Grassmann [1194] [1195];c wherefore many of the unified theoretical

a The physicist, unlike the mathematician, feels the urge of giving prominence to the existence
of a (self-)ordered reality. Iconic is the opinion of Einstein, which is much more unbalanced than
that of Enriques. Einstein [872, letter to M. Solovine, 30 March 1952] writes: «You find it strange
that I consider the comprehensibility of the world (to the extent that we are authorized to speak of
such) as a miracle [Wunder ] or as an eternal mystery [ewiges Geheimnis]. Well, a priori one should
expect a chaotic world that is in no way comprehensible by thought. One could (yes one should)
expect the world to be subjected to law only to the extent that we order it through our intelligence.
Ordering of this kind would be like the alphabetical ordering of the words of a language. By contrast,
the kind of order created, for instance by Newton’s theory of gravitation, is wholly different. Even if
the axioms of the theory are proposed by man, the success of such a project presupposes a high
degree of ordering of the objective world, which one has absolutely no right to expect a priori. So
here lies the “miracle” which is being constantly reinforced as our knowledge expands».

As we have seen above (Sections 22.1.1, 22.1.2 and 22.1.5), there is a regularity of nature, or
ἁρμονία of the physical world. And this is conceivably what Einstein is talking about in that letter.
But the way in which Einstein expresses himself is unacceptable to me. Frankly, I find it difficult to
approve such a “mysterious” and “miraculous” degree of ordering of the «objective world», which is
independent from experience:

· to be right, there is no a priori in nature, but only in the minds of men: “a priori/a posteriori”
are human terms, to wit, fumesophy;

· and then, why should the “mystery” of an ordered world be more astounding than that of a
chaotic system? Why should a chaotic world be any less “miraculous”? Based on what we know, the
physical world is stratiform or stratum-shaped (emergence, levels of organization, complex systems,
etc.);

· due to this, in nature there is no axiology that puts an ordered system in the first place, as the
pinnacle of evolution of the universe, and a chaotic one on the sidelines. Seemingly, order and chaos
go hand in hand.

bCompare with V. Benci and P. Freguglia [254, cap. 1].
cH. Grassmann [1195, pp. 277-278]: «My theory of extension [Ausdehnungslehre] sets up the

abstract foundation of the theory of space (geometry), i.e. it is a purely mathematical science,
detached from all spatial intuition [ . . . ]. The theory of space, since it is somehow connected
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framework of physics in a multi-dimensional geometry, all descendants of the
Kaluza–Klein theory [1461] [1502], see e.g. E. Witten [2677], are cataloged,
for now (on the edge of our current understanding), by a host of physicists as
mathematical (scilicet: non-physical) theories, namely—to borrow from Veltman
[2564, p. 308]—as figments of the theoretical mind. Trenchant criticisms of string
theory are in R. Penrose [2065, secc. 1.9-1.16], cf. Margo 26.1.2.

Margo 26.1.2 (Margarita credulitatis). The following judgment of the mathe-
matician R. Thomas—email message in the early 2000s reported by R. Penrose
[2065, p. 90, see also pp. 92-93]—is a pearl of credulousness. Thomas talks about
the mirror symmetry [1204] [485] that permits to find an equivalence between
two geometrically different Calabi–Yau manifolds, by counting the number of
rational curves on such topological spaces (cf. Chapter 11). It is a familiar story
for insiders, so I shall refrain from revealing all the hidden details of this affair;
additionally, the story is already narrated by B. Greene, in his best-seller,a and
by S.-T. Yau & S. Nadis.b R. Thomas writes:

I can’t emphasise enough how deep some of these dualities are, they constantly surprise us
with new predictions. They show up structure never thought possible. Mathematicians confidently
predicted several times that these things weren’t possible, but [physicists] like [P.] Candelas, [X.C. De
La Ossa, P.S. Green, L. Parkes] [484] have shown this to be wrong. Every prediction made, suitably
interpreted mathematically [when compared with the result of mathematicians G. Ellingsrud and
S.A. Strømme, who employed more rigorous techniques, but not related to the mirror symmetry
technique], has turned out to be correct. And not for any conceptual maths reason so far—we
have no idea why they’re true, we just compute both sides independently and indeed find the same
structures, symmetries and answers on both sides. To a mathematician these things cannot be
coincidence, they must come from a higher reason [sic]. And that reason is the assumption that this
big mathematical theory [he is referring to the string theory] describes nature . . . .

I beg your pardon? How can people be so guileless? What does the math-
ematics of the moduli spaces for a Calabi–Yau manifold and its mirror have
to do with nature? It is an extraordinary mathematical tool, which made it
possible, in the previously mentioned case, to count the exact number of degree
3 curves (k = 3) on CP4[5], a hypersurface of degree 5 and dimension 3, with a
real 6-dimensionality, viz. a quintic Calabi–Yau 3-fold in a projective 4-space
P4. This number, incidentally, corresponds to 317 206 375 [484, p. 60, Table 4].
Well, nature has nothing to do with this.

To learn more about the quintic 3-fold, see D.A. Cox, S. Katz [699, chap. 2].
Some mathematical demonstrations of mirror symmetry—under the physical
suggestion revealed by Candelas et al., and the subsequent its reformulation (in
conjecturable terms of homological algebra of mirror symmetry) by M. Kontsevich
[1534]—are due to A. Givental [1162] and B.H. Lian, K. Liu & S.-T. Yau [1648]
[1649] [1650] [1651]. L

to something given in nature, that is, to the [three-dimensional] space, is not a branch of pure
mathematics, but an application of it to nature [ . . . ]. The propositions of the theory of extension
are not mere translations of geometric propositions into an abstract language, but have a much more
general meaning; for while the theory of [ordinary] space remains bound to the three dimensions of
space, the abstract science [abstrakte Wissenschaft] is free of these limits».

aB. Greene, The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the
Ultimate Theory, Vintage Books, New York, 2000, pp. 259-262.

bS.-T. Yau and S. Nadis, The Shape of Inner Space: String Theory and the Geometry of the
Universe’s Hidden Dimensions, Basic Books, New York, 2010, pp. 163-173.
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26.1.6. Intersections and Grafts

The above contrast (Sections 26.1.1, 26.1.2, 26.1.3, 26.1.4, and 26.1.5) be-
tween mathematics of mathematicians and mathematics for physicists, is easily
overcome in special cases. There are higher intellects, with their transversal
work, at the top of the three disciplines, more or less separated from each other:
mathematics (in its pure aspiration), mathematical physics, and theoretical
physics.

Scholium 26.1.1 (Disciplinary clarification). Let us try to get some clarification.
· Mathematics, including its pure domain, and physics in the Greco-Hellenistic

period belong together, they are not distinct.
· Mathematical physics, as opposed to experimental physics, was born in

France, between 1800 and 1820.
· The so-called pure mathematics, as a discipline in its own right, appears

only in the nineteenth century (beginning with Abel, Jacobi, and Galois); in
the previous centuries, the distinction between pure mathematics and applied
mathematics existed but it was occasional and not disciplinary.

· Theoretical physics, as separate from mathematical physics, was born in the
German-speaking areas, between 1870 and 1890. Estimating the date of birth
of a discipline is never a clean operation. Be that as it may, this distinction is
already clear in E. Mach [1721] [1722] (1883-1889).

These dates are only indicative, and can not be taken too rigidly. A variegated
reconstruction of the nascent relationship between pure mathematics and physical
researches in the nineteenth century is in [1677, cap. I, pp. 13-48]. ⋄

Here some names.
· The Euclidean corpus. Alongside the Elements, it should be remembered

his works on optics and catoptrics [908] [912].
· Archimedes of Syracuse, in whose work mathematics and physics are all

one (see Sections 26.1.6.2 and 26.1.6.3). The same can be said, relatively to the
unity of mathematics & physics, of Apollonius of Perga [106] [107].

· Galileo, «nato per le Mattematiche» [2591, p. lxv] (but actually he is not a
mathematician in a very real sense), and E. Torricelli, with his mathematical
Cavalieri’s principle (method of indivisibles), have developed many applications
in the natural sciences; and, indeed, this is the origination of the geometrization of
physical quantities, the description of a physical reality as/through a geometrical
concept [1157, cap. 2.2].

· I. Newton, whose productions have ranged from infinitesimal calculus145 to
celestial mechanics.

· The fab Bernoullis the pure inclination of which acted as a bank for natural
sciences.

· L. Euler, who touched all branches of (pure) mathematics available at the
time, going even into engineering field-work.

· J. le Rond d’Alembert, J.-L. Lagrange, P.-S. de Laplace, J.-.B.J. Fourier,
J.C.F. Gauss, W.R. Hamilton, B. Riemann, E. Beltrami, F. Klein, G. Ricci
Curbastro, H. Poincaré, D. Hilbert, V. Volterra, É. Cartan, F. Enriques, T.
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Levi-Civita, H. Weyl, A.N. Kolmogorov, J. von Neumann, and V.I. Arnold, all
trained as mathematicians but repeatedly stimulated by physical problems; e.g.
Levi-Civita is primarily a mathematician, and also a mathematical physicist
(since he mentioned a lively interest in physics, with typical themes of subsequent
theoretical physics).

· N.H. Abel, although his name is rooted in the unsolvability of the general
quintic by radicals; there is no shortage of contributions to physical theories.

· É. Galois, whose abstract algebra represents the conceptual beginning for
the group theory, which plays a vital role in physics (e.g. classical and quantum
mechanics, theory of relativity, high energy physics, gauge theory) coming from
his magic pithos. The other two prominent mathematicians in group theory are
F. Klein and the ubiquitous M.S. Lie.

· J.C. Maxwell, L. Boltzmann, both of them, albeit in different manners, with
a strong propensity to mathematize physics (the latter was accused by Kelvin
and P.G. Tait of not doing physics but only mathematics, or, say, an abstract
theory with no relation to experimental observations).

· G. Cantor, with his hierarchy of infinites, leads us to reflect on which order
type of mathematical infinity is more suitable for representing the laws of nature:
continuous (real) infinity, or discontinuous?

· E. Majorana, a theoretical physicist but with a natural vocation to mathe-
matical calculation.

· Dau’s school, viz. L.D. Landau & collaborators, who in their encyclopedic
Course of Theoretical Physics exhibit an indissoluble amalgam between physics
and mathematics.a

· S. Ramanujan, a pure mathematician, whose intuitions have had an impact
on physics. It is the case of mock modular forms, dating back to the Ramanujan’s
papers [2177] [92], reinterpreted to compute [711] the black hole entropy [230]
[231] [1303] [1304].

· R. Caccioppoli and E. De Giorgi: it is known that the calculus of variations
switches easily from analysis to applications.

· R.P. Feynman: there are those who make a reckless use of mathematics, as
a non-mathematician: Feynman [982, A Different Box of Tools] is one of them.
One thinks of the path integral formulation and, in the main, the monomials of

aHere is what M.I. Kaganov [1457, p. 351] = [1458, p. 292] says about this mammoth work:
«[T]he Course is by no means just a handbook of mathematical methods. The whole exposition is
based on physical concepts, either general ones (such as conservation laws) or model ones (ideal gas,
collisionless plasma, a strictly periodic crystal, etc.). However, in reading the Course there arises (or
is enhanced) the understanding of the fact that there is no theoretical physics, and that there cannot
be any, without a rigorous mathematical apparatus [теоретической физики нет и не может
быть без строгого математического аппарата]. Estimates, suggestive arguments are needed
specifically as suggestive arguments, utilizing which one can construct a rigorous theory whose result
must necessarily be a formula (or a curve) relating physical quantities. If in the initial formulations
the authors have indulged in a certain deliberate haste (in any event: essentially, the fundamental
equations of any physical theory cannot be derived, they are a mathematical distillation of our
experience [основные уравнения любой физической теории не могут быть выведены, они —
математическая концентрация нашего опыта]), then later in going on to the development
of the theory the authors are rigorous and very punctilious, although nowhere (over the whole
Course) do they indulge in purely mathematical ‘epsilontics’ taking the point of view (with perfect
justification) that the aim of theoretical physics is not to prove existence theorems for solutions, but
to obtain the solutions directly».
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non-commutative algebra, reworked by G.-C. Rota in combinatorics previously
associated with the invariant theory, see e.g. [2228], and then subsumed under
the letterplace algebra and superalgebra, see e.g. [1224].

· R. Thom and B. Mandelbrot: the first mathematician (a topologist), starting
from the Bourbakist structuralism, lays the foundation for the catastrophe theory
[2483] [2481], devoted an interpretation of natural phenomena, especially in
biology; Mandelbrot, as it is well known, with its fractal geometry [1747] [1749]
[1750] [1751], gave birth to a steady dialogue in the most disparate areas of
application.

· A. Grothendieck: even in his work, nestled in the deepest abstractions, it is
possible to detect some solutions that are adaptable in natural sciences. This is
even more true for other Bourbakist, e.g. just think about the (direct or indirect)
contributions from L. Schwartz and A. Connes to qft.

· J.F. Nash, Jr., although his contributions mostly concern differential geom-
etry, and partial differential equations, in some of his pages the focus is paid to
game theory.

· M.F. Atiyah: the Atiyah–Singer index theorem (Section 26.1.6.1), and his
papers [150] on the gauge field theory (with particular attention to the Yang–Mills
theory, see e.g. [152] [148]), show various facets of the link between, on the
one hand, topology, geometry and analysis, and, on the other, its theoretical
correspondent in physics.a

· R. Penrose’s studies shuffle between mathematics and theoretical physics;
· S.-T. Yau’s several researches in pure mathematics are applied in some pieces

of fundamental physics; suffice it to mention E. Witten’s works on Calabi–Yau
manifolds, as well as Yau & collaborators’ studies [2308] [2610] [629] [630] on
the quasilocal mass and angular momentum in general relativity.

· G. Perelman, whose articles in geometry and topology intermingle with
matters of physics.

26.1.6.1. Margo. Atiyah–Singer Index Theorem

The index theorem [154] [155] [153] [156] [157] [158] blooms from the need
to find the Riemannian version of the Dirac equation in a context of algebraic
geometry, cf. [147, p. 1]. It makes use of a Dirac-type operator of a spin manifold,
and verifies that this operator coincides with an elliptic differential operator of
first order on spinor fields, or rather, between spaces of spinorial field equations;
so the index of the Dirac-type operator, aka Dirac–Atiyah–Singer operator [156,
sec. 5],

Ddas : Γς

(
P̊+

ß

)
→ Γς

(
P̊−

ß

)
(26.20)

aAs an example of versatility, the Atiyah–Singer theorem has the quality of being valid along
multiple demonstrations: e.g. J.-M. Bismut [301] gave a couple of fine proofs of the index theorem
via the heat equation, for a family of Dirac operators; see also [299] [300], where the Atiyah–Singer
theorem—with Lefschetz fixed point formulæ—is proved for classical elliptic complexes by exploiting
probabilistic methods.
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is but a topological invariant, lettingM be a spin manifold with a spinor bundle
(cf. Section 3.5.1)

P̊ß = P̊Spin ×Spin(n) U
n
(C), π : P̊Spin →M, (26.21)

where
P̊Spin

π−→M

denotes a Spin(n)-principal bundle, and

Un(C)
viz
= C2m = C2 ⊗ . . .⊗ C2︸ ︷︷ ︸

m times

, n = 2m, 2m+ 1, (26.22)

is the vector space of n-spinors. Otherwise expressed, the spinor bundle P̊ß is a
complex vector bundle ς : P̊ß →M. Note that a spinor field is a section ς

(
P̊±

ß

)
of P̊ß.

This permits us to answer one of the questions that turned up crucial to the
birth of the index theorem. Recalling that the number

Â(M) = ĉ(M)[M], (26.23)

called the Hirzebruch Â-genus, with a characteristic class ĉ, is the Â-genus of
M [154, p. 428] [156, p. 571], one must pause to consider why the Â-genus of
a spin manifolds is an integer rather than a rational number (as is usually the
case), in accordance with the proof in A. Borel and F. Hirzebruch [373] [374,
chap. VII, § 25] [375]. Well, the index theorem gives a response on the integrality
of the Â-genus of certain homogeneous spaces: the Hirzebruch Â-genus of a
spin manifold is identical to the index of its Dirac-type (Dirac–Atiyah–Singer)
operator,

index(Ddas) =
{
Â(M) = ĉ(M)[M]

}
. (26.24)

26.1.6.2. Two Exemplary Evidences

I felt it opportune to write out [ . . . ] the peculiarity of a certain method [ . . . ] to start an
investigation by mechanics of certain problems in mathematics [ἐν τοῖς μαθήμασι θεωρεῖν διὰ τῶν
μηχανικῶν]. I am convinced that this method is likewise helpful for the demonstration of the
theorems themselves [εἰς τὴν ἀπόδειξιν αὐτῶν τῶν θεωρημάτων]. Some things first became [clear]
to me by mechanics, although they had later to be proved geometrically [ὕστερον γεωμετρικῶς
ἀπεδείχθη διὰ τὸ χωρὶς ἀποδείξεως] due to the fact that an investigation with this method does not
equate to actual proof; but it is easier to provide a demonstration when some knowledge of the things
sought has been acquired with this method rather than to seek it with no preliminary knowledge
[μηδενὸς ἐγνωσμένου ζητεῖν].

— Archimedes of Syracuse [119, letter to Eratosthenes (Ἀρχιμήδους Περὶ τῶν μηχανικῶν
θεωρημάτων πρὸς ᾿Ερατοσθένη ἔφοδος), p. 386]

In epigraph reference is made to a description of the famed mechanical method
(ἔφοδος) of Archimedes for geometric theorems [119] [120]: it is an exceptional
testimony about the harmonious combination of mathematics and physics in the
ancient Greek science. About the Method, see [14].

One of the traits of the Archimedean genius is the fusion of geometry, physics
& mathematics, and mechanics: three in one. To use G. Montanari’s [1849, p.
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81] phrase: his proofs turn out to be true, geometrically, physico-mathematically,
mechanically («[le sue] Dimostrazioni esser vere, Geometricamente, Fisicomatem-
aticamente, Mecanicamente»).

Something similar to what Archimedes tells Eratosthenes can be found in B.
Riemann’s activity. There is an introduction, written R. Courant and H. Robbins
[697, pp. 385-386], about the experimental solutions of minimum problems (soap
film experiments & Plateau’s problem, see Section 19.2.1), for the calculus of
variations, where a persuasive narration is given, and it seems to proceed on this
track:

It is usually very difficult, and sometimes impossible, to solve variational problems explicitly in
terms of formulas or geometrical constructions involving known simple elements [ . . . ]. In many cases,
when [ . . . ] an existence proof turns out to be more or less difficult, it is stimulating to realize the
mathematical conditions of the problem by corresponding physical devices, or rather, to consider the
mathematical problem as an interpretation of a physical phenomenon. The existence of the physical
phenomenon then represents the solution of the mathematical problem. Of course, this is only a
plausibility consideration and not a mathematical proof, since the question still remains whether
the mathematical interpretation of the physical event is adequate in a strict sense, or whether it
gives only an inadequate image of physical reality. Sometimes such experiments, even if performed
only in the imagination, are convincing even to mathematicians. In the nineteenth century many
of the fundamental theorems of function theory were discovered by Riemann by thinking of simple
experiments concerning the flow of electricity in thin metallic sheets.

Under a comparative reading, this excerpt and the Archimedes’ letter are
not that far away.

26.1.6.3. Scholium: Greco-Hellenistic Scientific Modus Operandi (the
Origin of Hypotheses)

[Σ]τέλεχος· αὕτη γὰρ οἷον ὑπόθεσις καὶ φύσις δένδρων · [T]runk [down to the roots]: is but the
foundation [hypothesis]a and the very nature of trees.

— Theophrastus [2475, IV, xiii, 4, p. 129] = [2476, pp. 388-389]b

The unity of the Greco-Hellenistic scientific method consists in developing a
mathematical theory based on hypotheses (ὑπόθεσις), i.e. «foundation», «(theo-
retical) basis», or rather, «postulate», «principle».c A mathematical theory of
this kind aims to save the phenomena (σῴζειν τὰ φαινόμενα), which constitute
the heuristic initiation of the modus operandi of classical antiquity. And when a
mathematical theory of the phenomena of the exterior world is correctly cali-
brated on the observable phenomena, the phenomena are subsequently deducible
from the hypotheses (postulates). Note that

(1) «hypothesis» means “being (placing) under” (ὑποτίθημι); that is why
Theophrastus calls the trunk, also including the roots, of trees hypotheses
(ὑπόθεσις [ . . . ] δένδρων);

(2) «phenomenon» (φαινόμενον) does not indicate a “fact” (an objective
occurrence), but an “appearance” (an observed occurrence, with interaction
between observer and object).

aLiterally “a placing (thesis) under (hypo-)”, i.e. “base”, “ground”.
bThe reference edition is Θεοφράστου, Περί Φυτών Ιστορίας το βιβλίον Α΄ έως και το Ι΄, Περί

Φυτών Αιτιών το βιβλίον Α΄ έως και το Ζ΄, published by ΄Α.τ. Μανουτίου [A.P. Manutius], Εν Ενετίαις
[in Venezia], 1495.

cCf. L. Russo [2268, chap. 6.2].
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27.1. Beauty of Mathematics vs. Mathematics of Beauty

27.1.1. A Roundup of Physicists’ Accounts

The interlacing of beauty and mathematics in physics is long-standing. As
to mention some names of the recent past:

(1) A. Einstein, printed obituary for E. Noether (The New York Times, May
4, 1935):

Pure mathematics is, in its way, the poetry of logical ideas. One seeks the most general ideas of
operation which will bring together in simple, logical and unified form the largest possible circle of
formal relationships. In this effort toward logical beauty spiritual formulas are discovered necessary
for the deeper penetration into the laws of nature.

(2) P.A.M. Dirac:
(i) [796, pp. 122, 124] The physicist, in his study of natural phenomena, has two methods of

making progress: [α] the method of experiment and observation, and [β] the method of mathematical
reasoning. The former is just the collection of selected data; the latter enables one to infer results
about experiments that have not been performed. There is no logical reason why the second method
should be possible at all, but one has found in practice that it does work and meets with remarkable
success. This must be ascribed to some mathematical quality in Nature [ . . . ].a

One might describe the mathematical quality in Nature by saying that the universe is so
constituted that mathematics is a useful tool in its description. However, recent advances in physical
science show that this statement of the case is too trivial. The connection between mathematics and
the description of the universe goes far deeper than this.a

[ . . . ] The research worker, in his efforts to express the fundamental laws of Nature in math-
ematical form, should strive mainly for mathematical beauty [ . . . ]. [T]he mathematician plays a
game in which he himself invents the rules while the physicist plays a game in which the rules are
provided by Nature, but as time goes on it becomes increasingly evident that the rules which the
mathematician finds interesting are the same as those which Nature has chosen. It is difficult to
predict what the result of all this will be. Possibly, the two subjects will ultimately unify.b

(ii) Physical law should have mathematical beauty.c
(iii) [799, pp. 652-653] Most physicists [ . . . ] say that all that a physicist needs is to have some

theory giving results in agreement with observation. I say, that is not all that a physicist needs. A
physicist needs that his equations should be mathematically sound [ . . . ]. The only feature of the
new theory which one can be sure of is that it must be based on sound and beautiful mathematics.

a From where I stand, the expression “mathematical quality in Nature” is parolame-ciarpame.
bThe tautological viciousness present in this Diracian reasoning is noticeable: physics can only

see nature with the τέχνη of mathematics (see Sections 25.1.1 and 25.1.1.1).
cАвтографы мелом на стенах комнаты 4-59 · Phrase written on the chalkboard at Moscow

State University, 3 October 1956.



490 27. Outro—Parva Mathematica: Libera Divagazione 8⁄8

(3) C.N. Yang [2706, pp. 237-238]:a

Nature seems to take advantage of the simple mathematical representations of the symmetry
laws. When one pauses to consider the elegance and the beautiful perfection of the mathematical
reasoning involved and contrast it with the complex and far-reaching physical consequences, a deep
sense of respect for the power of the symmetry laws never fails to develop.

(4) W. Heisenberg [1327, p. 183]:
[I]n exact science, no less than in the arts, [beauty] is the most important source of illumination

and clarity.

(5) W.E. Baylis and G. Jones [224, p. 129]:
Beauty in physics is less subjective than in art, because physicists agree on some objective

criteria. A beautiful physical theory
· displays and exploits the inherent symmetry,
· allows many results to be derived from a few assumptions and minimal labor, and
· avoids unnecessary mathematical baggage and doesn’t predict phenomena which are not

realized physically.

(6) For further discussion on the theme of beauty in science, see S. Chan-
drasekhar [615] [616].146

27.1.2. In the Bliss of Goddess Geometry: Space-Universe in the
Galilean–Keplerian Shadow,b and the Poincaré–Weber–Seifert Dodec-
ahedral Space Topology

The exploration of topological spaces is the exploration of the last great frontier—the human
mind. These spaces have been created by humans for the purpose of understanding the world
in which we live. But ultimately they lead to an understanding of our mind, for it can only be
understood in terms of its creations. Topological space[s], then, are at once a form of art and a
form of science, and as such they reflect our deepest intellect.

— J.S. Carter [569, p. x, e.a.]

The above examples may suffice. Be forewarned: the beauty of mathematics
is one thing, the mathematics of beauty is another. In the second case, the
chances—for applications (as in physics)—of goof-ups are high. The first striking
example is offered by Kepler’s belief [1474, tabula III, between p. 24 and 25],
where a Solar System is presented under a geometric schematization of the five
Platonic solids (octahedron, icosahedron, dodecahedron, tetrahedron, and cube).c
The distance of the six then known planets (Mercury, Venus, Earth, Mars, Jupiter,

aA treatment on beauty and physics in the work of Yang is in [2371].
bThe “Galilean–Keplerian” wording is a (loutish) simplification. Galileo and Kepler had con-

siderably distant mentalities, starting with the aesthetic judgments in science. On the differences
between these two protagonists of modernity, see M. Bucciantini [445], who is a historian.

cThe polyhedra, whose faces all have congruent regular polygons, known as the Platonic solids,
are only 5 as a consequence of Proposition 21 of Book XI of Euclid’s Elements [911, κα΄v, Στοιχείων
ια΄v, Book XI, p. 54]: «Any solid angle is contained by plane angles whose sum is less than four right
angles (῞Απασα στερεὰ γωνία ὑπὸ ἐλασσόνων [ἢ] τεσσάρων ὀρθῶν γωνιῶν ἐπιπέδων περιέχεται)»; the
sum of the interior angles at each vertex is less than 360◦, otherwise at 360◦ the resulting shape is
flat:

· tetrahedron has 3 triangles at each vertex, for 3 × 60◦ = 180◦,
· octahedron has 4 triangles at each vertex, for 4 × 60◦ = 240◦,
· cube has 3 squares at each vertex, for 3 × 90◦ = 270◦,
· icosahedron has 5 triangles at each vertex, for 5 × 60◦ = 300◦,
· dodecahedron has 3 pentagons at each vertex, for 3 × 108◦ = 324◦.
Let us now imagine a polyhedron composed of n hexagonal faces; for a regular 6-gon, each interior

angle has a measure of 120◦. If we say that in this polyhedron 3 6-gons at each vertex meet, it
comes out that 3 × 120◦ = 360◦.



27.1. Beauty of Mathematics vs. Mathematics of Beauty 491

and Saturn) reflects the distance obtained by inscribing and circumscribing each
of the regular convex polyhedrons by celestial spheres, according to a nesting
σχῆμα, placing one solid inside another.a It is a pleasant and symmetric scheme;
nevertheless, as Kepler himself later realized, it is not a good transposition of
experimentally detected quantities.

How far have we gone, nowadays, from the Keplerian theory of beauty [1476,
pp. 194, 222, 241], under which the Geometrica pulchritudo coincides with the
pulchritudo Mundi, and serves as the Archetypo Mundi? Or from the Galilean
Geometry of nature? I am referring to the celeberrimo piece [1071, p. 25]:

Philosophy [of nature] is written in this grand book, which stands continually open before our
eyes (I say the universe), but it cannot be understood if one does not first learn to understand
the language, and know the characters, in which it is written. It is written in the mathematical
language, and the characters are triangles, circles, & other Geometric figures [Egli è scritto in
lingua matematica, e i caratteri son triangoli, cerchi, & altre figure Geometriche], without which
[without these means] it is impossible to humanly understand a word of it [senza i quali mezi è
impossibile à intenderne umanamente parola]; without these it is a vain wandering through a dark
labyrinth [senza questi è un’aggirarsi vanamente per un’oscuro laberinto]».147

Galileo is one of the great minds I admire (his genius spans the centuries);
and yet this depiction is a load of bunkum. Math-language is a product of
mankind, and nature knows nothing of “triangles”, “circles”, or, in algebraic
terms, of equations. How can we have the arrogance—a risible revisitation
of the mythological ὕβρις—of putting a language (of geometric-, algebraic-, or
analytic-type) of our own invention into the mouth of nature?b

We are still there; we are still stuck in this Platonic–Galilean–Keplerian
ideology.148 It is all part of it. Terribly evincive is this verdict of Heisenberg
[1325, p. 32]:

I think that modern physics has definitely decided in favour of Plato. These smallest units of
matter are not in fact physical objects in the ordinary sense; they are forms, ideas which can be
expressed unambiguously only in mathematical language.

Take a recent example. In the first half of the twenty-first century, J.-P.
Luminet & collaborators [1714] worked on a model of a finite universe, built
via the Poincaré dodecahedron space, primarily known as Poincaré homology
3-sphere [2135].

We can quickly remember that
· a 3-sphere S3 is a set of nested 2-spheres, that is, a 3-dimensional surface of

a 4-dimensional ball,
· a homology 3-sphere is a closed oriented 3-manifold whose homology—to

be more precise, it is a Z-homology—is the same as that of S3 ∼= SU2(C),

S3H
{
H1(X 3,Z) = 0

}
, (27.1)

aAt the center of the cosmos the Sun dominates; then there is Mercury with its circumsolar
rotation. The celestial sphere containing the orbit of Mercury is inscribed in an octahedron, to
which the orbit of Venus is circumscribed. It continues with the icosahedron, for the Earth, the
dodecahedron, for Mars, the tetrahedron, for Jupiter. The orbit of Jupiter is inscribed in a cube, to
which the celestial sphere corresponding to the orbit of Saturn is circumscribed.

bAnd yet Galileo (in another work), under the guise of Sagredo is far from any ὕβρις. In fact,
elsewhere [1072, p. 94], we find lucidly written that: «It always seems to me extreme temerity on the
part of some when they want to make human capacity the measure of what nature can do [Estrema
temerità mi è parsa sempre quella di coloro, che voglion far la capacità umana misura di quanto
possa, e sappia operar la natura]».
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where H is the homology group, and X 3 is a topological 3-space. Let Ic be the
group of isometries leaving invariant a regular icosahedron, or a dodecahedron,
in R3. The fundamental group of the Poincaré homology sphere is the binary
icosahedral group Ĩc having order 120. Note that Ĩc is obtained by lifting Ic to
SU2(C). The covering morphisms

SU2(C)→ SO3(R)

(see Section 2.8.3.1) is directly linked to the map

S3 → RP3 ∼= SO3(R). (27.2)

And so the Poincaré homology 3-sphere is isomorphic to S3/Ĩc,

S3H ∼= S3/Ĩc. (27.3)

The rigorousness of a dodecahedral structure in the homological Poincaré
sphere occurs later, with C. Weber and H. Seifert [2614]. The Poincaré ho-
mology sphere, as a spherical dodecahedral space (optionally, we can call it
Poincaré–Weber–Seifert space), is a dodecahedral block of space having opposite
faces glued together. What does it look like? Imagine having a set of 120
spherical dodecahedra, each of which is a dodecahedral tile of the surface of S3.
All spherical dodecahedra fit together, since their edge angles are 120◦. (Bear in
mind that the spherical dodecahedral space and S3 maintain the same homology
groups).

Living in a positively curved space-universe of this kind is enough, for a
Keplerian spirit, to rejoice in the bliss of Goddess Geometry.a

27.1.3. von Neumann’s Warning

Aesthetic inclination is connate to science; but geometry is not of nature; it
is of man, or other geometrizing beings.

In this regard, we can read J. von Neumann’s remark [1925, pp. 8-9, e.a.]:
The mathematician has a wide variety of fields to which he may turn, and he enjoys a very

considerable freedom in what he does with them [ . . . ]: I think that it is correct to say that his criteria
of selection, and also those of success, are mainly aesthetical [ . . . ]. [T]he aesthetical character is
even more prominent [ . . . ] in the case of theoretical physics. One expects a mathematical theorem
or a mathematical theory not only to describe and to classify in a simple and elegant way numerous
and a priori disparate special cases. One also expects “elegance” in its “architectural”, structural
makeup [ . . . ]. Also, if the deductions are lengthy or complicated, there should be some simple
general principle involved, which “explains” the complications and detours, reduces the apparent
arbitrariness to a few simple guiding motivations, etc. These criteria are clearly those of any creative
art, and the existence of some underlying empirical, worldly motif in the background—often in a

aLuminet’s proposal, beyond its physical validity, has kindled a bit of curiosity for topology in
astronomy/cosmology. (To notice the role of adventurer assigned to Riemann in [1714, p. 5, arXiv
vr.]: «In 1854 Georg [B.] Riemann cut the Gordian knot by proposing the hypersphere as a model of
a finite universe with no troublesome boundary»). Cf. Luminet [1712, p. 81]: «General relativity
does not allow one to specify the topology of space, leaving the possibility that space is multiply
rather than simply connected»; and [1713, p. 15]: «What is the shape of the Universe? Is it finite or
infinite? Is space multi-connected to create ghost images of faraway cosmic sources? After a “dark
age” period, the field of cosmic topology has now become one of the major concerns in astronomy
and cosmology, not only from theorists but also from observational astronomers».
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very remote background—overgrown by “aestheticizing” developments and followed into a multitude
of labyrinthine variants—all this is much more akin to the atmosphere of art pure and simple than
to that of the empirical sciences.

But a little further down (ibid.), he warns against possible involutions that
skulk behind such a mentality:

I think that it is a relatively good approximation to truth [ . . . ] that mathematical ideas
originate in empirics, although the genealogy is sometimes long and obscure. But, once they are so
conceived, the subject begins to live a peculiar life of its own and is better compared to a creative
one, governed by almost entirely aesthetical motivations, than to anything else and, in particular,
to an empirical science [ . . . ]. As a mathematical discipline travels far from its empirical source,
or still more, if it is a second and third generation only indirectly inspired by ideas coming from
“reality”, it is beset with very grave dangers. It becomes more and more purely aestheticizing, more
and more purely l’art pour l’art. This need not be bad, if the field is surrounded by correlated
subjects, which still have closer empirical connections [ . . . ]. But there is a grave danger that the
subject will develop along the line of least resistance, that the stream, so far from its source, will
separate into a multitude of insignificant branches.

27.1.4. Math-art: Prigioni of the Mind: a Suggestion by Weil

Non ha l’ottimo artista alcun concetto / Ch’un marmo solo in se non circoscriva / Col suo
soverchio,a e solo a quello arriva / La man che obbedisce all’intelletto.b

— Michelangelo [448, p. 1]

Mathematics [ . . . ] is nothing other than an art; a kind of sculpture [une espèce de sculpture]
in an extremely hard and resistant material (like certain porphyries used sometimes, I believe, by
sculptors). Michelangelo expressed, in the first quatrain of an admirable sonnet, this idea (which I
imagine to be more or less Platonic) that the block of marble contains, at the exit of the quarry, the
hand-sculpted work, and that the artist’s work consists in removing what is too much [ . . . ]. The
mathematician is so subject to the grain, and cross-grain,149 to any curvature and even accidents of
the subject-matter he is working on, that it gives his work a kind of objectivity. But the work being
done [ . . . ] is a work of art [œuvre d’art], thereby inexplicable (in it alone lies its own explanation).

— A. Weil [2617, p. 255]

The danger of aestheticization to which von Neumann refers (see above)
is more present in the physical realm, but in pure mathematics this is not
necessarily a peril. Indeed, this is the beauty of the freedom of pure thought.
Weil’s association between mathematics and sculpture is redolent: just as the
artist’s task is to remove the excess circumscribing an artwork, ideally already
enclosed in the marble, for liberating—beneath the chisel—the shape from the
prison of rock, so the mission of the mathematician-sculptor is to bring out
from his head the many forms of mathematics, for liberating abstract objects
thanks to the imaginative and, at the same time, conceptualizing capability of
thought.c Ça va sans dire, our interpretation of the mathematician-sculptor is
not Platonico-realistic at all (cf. Section 20.1.4).

The combination of mathematics-art is taken up by E. Bombieri [353, pp.
xi-xii] in his preface to the It. edition of Weil’s book on number theory [2619]:

aFrom the La. supercŭlus, and it means what is “too much”, “excess”, “superfluous”, “surplus”.
b«The excellent artists never has a concept / That a single marble does not contain in itself /

With its excess, and to it attains only / [if] Hand obeys the intellect [thought]». Here the etymological
hint holds: from the La. intellectus, composed by intŭs, “within”, “inside” (or intĕr, “in the midst”),
and lĕgĕre, “to read”, “to gather”.

cThere is no contrast between logical rigor and mathematical imagination: the creative power
of the mathematician is accomplished under an intuitive impulse, and this is evident e.g. in the
conception of new postulates; and yet this act of creation—let us say fantasy—is not disconnected
from an abstractive force, which provides rigor to the flash of intuition.
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mathematics, like art, is beyond explanation, because its foundation and justifi-
cation reside in itself.

27.1.5. Inexplicability and Ideality of Forms: in the Homeland of the
Dream

[A]s for anything else, so for a mathematical theory—beauty can be perceived, but not explained.
— A. Cayley [594, p. 449]

If mathematics is inexplicable, since «elle seule est à elle-même son explica-
tion», this sort of self-foundation makes it compatible with an intuition of an
artistic kind, and, most importantly, turns it into a lively thought of seeing,
through its technique, an ideal projection—what we call a dream—of the world.a
See e.g. what G.-C. Rota [2231, p. 13, originally p. 182] writes on this matter:

Talk of mathematical beauty is a cop-out to [ . . . ] keep our description of mathematics as close
as possible to the description of a mechanism. This cop-out is one step in a cherished activity of
mathematicians, that of building a perfect world immune to the messiness of the ordinary world,
a world where what we think should be true turns out to be true, a world that is free from the
disappointments, ambiguities,b and failures of that other world in which we live.

He thus concludes his paper. We could not agree more. Mathematician-artist
is graced with an imaginative foresight.

27.1.6. The World is Not Mathematical

[A] mathematician who is not somewhat of a poet, will never be a perfect mathematician.150
— K. Weierstrass [2616, letter to S. Kovalevskaya, 27 August 1883, p. 149] quoted by M.G.

Mittag-Leffler

le matematiche come arte · [T]he object of mathematics—immanent order in Nature—is
revealed to the mind through a process of abstraction; that is why [the various kinds of] mathematics
are not only science, representation of that object, but also art, that is, expression of the person
who constructs them, according to its intimate laws. The profound sense of order, proportion and
measure is expressed precisely in it, [and] it will make a cosmos from the chaos of phenomena.151

— F. Enriques [897, § 40, p. 155]

The world is not mathematical; but mathematics is, say, worldly, viz. of this
world (τοῦ κόσμου τούτου). Mathematics, like art, is an act of poetic imagination,
an art of doing (ποιέω), of producing thoughts, ideas (ἰδέαι), about the world.
And every idea is part of the art of dreaming; and, back at the dim beginnings of
Myth, this art is musical (μουσική), as it falls under the protection of the Muse.

Margo 27.1.1. The art of the Muses (Μοῦσαι), in an all-encompassing sense:
every art & science. Some etymologists derive the name Μοῦσαι from Μόνσαι,
whose root is to be found in μεν- (or μεν, μαν), consider e.g. the word mens
(mind); if so, the Muses are “those who meditate”, “those who create through
their imagination” (but cf. p. 497, where the sirens come after, with their
enchanting and often δαιμονικός chant). L

a We know that, ideas are forms of vision, ideal forms (idealizations) of concrete objects, from
the Gr. ἰδέαι, which comes, in turn, from ἰδεῖν, inf. of ὁράω, “to see”, “to look”. And mathematics
consists of ἰδέαι, and nothing else. (The mind, for its part, is somehow directed towards ideal
perfection). From this one can also facilely infer that a form theory (θεωρία τῶν ἰδεῶν), in the sense
just illustrated, in which mathematical ideas reign, is but an old wording for the current set theory.

bBut compare with the Lolli’s essay [1683], already mentioned in endnote 107.
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References and Bibliographic Details from 1⁄8 to 8⁄8

Sections 21.5 and 21.7.1
For an accessible account of the magmatic movement about the notion of proof in mathematics
and, inevitably, of the magma-movement of mathematics itself, see [1684].

Section 21.7.2
· Decidability/undecidability in Gödel and Turing, incompleteness, logic & foundations of
mathematics, are discussed in [1677, capp. IX-X, pp. 259-314].
· On the bickering between mathematics and logic interspersed with the theme of infinity, see
[1678].

Sections 22, 24, 25
Further stimuli on the relationship between mathematics and natural sciences are in [362].

Section 22.1.4.2
A report on the inverse-square law and the Coulomb’s law is in [240, pp. 113-120].

Section 22.1.6.3
Another book edited by S. Dehaene, which investigates, according to mental processes, the roots
of mathematical thought, is this [755].

Section 22.2.1
A book that probes the relationship between music and mathematics is [950].

Sections 25.1.1.1
A book in which there is an intersection of mathematics (geometry and topology) and biology
plus various branches of natural sciences is [318], edited by L. Boi.

Section 26.1.3
On the Feynman path integrals, here are some insights:
· in the field of mathematics (vast but systematizing approach) [38],
· in functional analysis [1147],
· in quantum mechanics [2225] [2742],
· in quantum statistical mechanics [39],
· in probability theory, stochastic and physical random process [608] [609]
· in curved space-time [215],
· in geometry and topology [2445] [1220],
· wide-ranging reading [1221] [1441] [1505].

Section 26.1.6
· Here are some monographic works on Euclid [12], Archimedes [1310, pp. xv-clxxxvi] [779], post-
Apollonian theory (i.e. rediscovery of the theory of conic sections in the seventeenth century)
[1736], Galileo & Torricelli [1157], Euler [406], Gauss [824], Riemann [1587] [209, cap. 7], Galois
[2488], Maxwell [482], Beltrami [2468], Boltzmann [598], Ricci Curbastro [2519], Poincaré [2566],
Volterra [1239], Levi-Civita [1912] [513], Kolmogorov [212, pp. 117-121], von Neumann [2548],
Majorana [69] [1235] [2186] [2187] [907], Landau [1481], Caccioppoli [1236, cap. 4.2] [2292]
[212, pp. 97-107], Schwartz [2332] = [2333], Thom (applications of catastrophe theory) [2696],
Mandelbrot (and much more) [2048], De Giorgi [75] [212, pp. 147-155], Grothendieck [212, pp.
171-180], Nash [1910] [212, pp. 137-146], Atiyah [212, pp. 197-208], Arnold [212, pp. 209-211].

Section 26.1.6.1
About the Dirac operator, Dirac–Atiyah–Singer operator (on spin manifolds), and Index theo-
rem(s), see [267, chapp. 3-6] [369, sec. 6] [906, chapp. 1-3] [1054, chap. 3] [1032].

Section 27.1.2
For the homology 3-sphere(s), see [2291, chap. 1].





Ulterius Elementum in Cauda

siren’s song:
no-return to ithaca

Hereunder are transcribed—after adjustment of some Greek words in the
classical spelling—two Greek elegiac couplets that, together with the drawing of
a two-tailed siren,a appear on the title page of several Venetian sixteenth-century
editions, printed by the publisher G. Varisco:b
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ος ἐν σελ
ίσιν

It should be read in a clockwise direction, starting at 12 o’clock;c of which the
aInitially, in Greek mythology, the sirens were typified as birds, or bird-like beings, with a

woman’s head; the iconographic mutation into marine creatures, as women-fish, is later.
bSee e.g. Isocratis Orationes tres, cum interpretatione latina, ad verbum addita, ad discentium

utilitatem. Ad Demonicum, de moribus adolescentium. Ad Nicoclem Cypri regẽ, de principũ
institutione. Nicocles, de principum & subditorum officio, Venetiis apud Ioannem Variscum, &
socios, mdlxvii (1567).

c
«Οὐ βλάπτει, αὐτάρ τούς ναυτίλλοντας ἐγείρει / σειρήν ἡμετέραις ἔυστομος ἐν σελίσιν / τῷ καί

ἄνευ δεσμῶν καὶ πάσης κηροῦ ἀλοιφής / τῆς σοφίας πέρασεν θαρσαλέως πελάγη».
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translation is: «A siren [σειρήν] with a beautiful voice [ἔυστομος]a in our pages
[ἡμετέραις ἐν σελίσιν] does not harm [οὐ βλάπτει], on the contrary [αὐτάρ] she
incites sailors [τούς ναυτίλλοντας ἐγείρει], for the one who [τῷ], without ropes [καὶ
ἄνευ δεσμῶν] and [without] all the wax ointment [καὶ πάσης κηροῦ ἀλοιφής], has
bravely [θαρσαλέως] crossed [πέρασεν] the seas of wisdom [τῆς σοφίας πελάγη]».

In other books of the Variscan editions, there is also a Latin version, which
differs considerably from the Greek one:

Non nocet hec nautis: verum excitat, & regit ipsos,
Siren, quæ in nostris conspicitur tabulis.

Non vinclis opus est Ithacis, non unguine ceræ:
virtutis per eam (nam potes) arripe iter.

Odysseus’ encounter with the sirens is here reinterpreted in an alternative
way, reversing the Homeric tale.b The two poetic compositions (in the two
ancient languages), commanding my admiration, give me the opportunity to
reiterate that, when I am talking about mathematics as a τέχνη or τέχνημα
(Section 25.1.1), actually, I consider mathematics as culture, to wit, as a sublimec

art of knowledge (such is the cognitive value of mathematics), or, if one prefers,
as a tempestuous odyssey, an adventurous challenge of the mind & a perilous
rapture of the heart; and not, inanely, as a blind-cocooned technical know-how
(cf. Intro, p. xxxv), in an aberrant mercantile key, similar to what occurs in
many Institutions.d

The image of mathematics, as an art that designedly chooses the magic of
perdition in the beauty of the song (canto dalle argute labbra), and breaks the
bonds of the chained will, is the best way to remember the union of the “two
cultures”—I am referring to C.P. Snow’s essay [2398].e

This is to lay stress on the fact that the τέχνη of mathematics is on the border
of the «incomprehensible» (unerfaßlich) and «unutterable» (unaussprechbar),
and aims, such as poetry,f at a word/concept, at a λόγος, which is beyond that

a
῎Ευστομος literally means “with a beautiful mouth”.

bThese are the Homeric verses of the Odyssey [1373, XII, 39-54, pp. 435-437]: «[The] queenly
Circe spoke to me [Odysseus] and said: “[ . . . ] To the Sirens first shalt thou come, who beguile all
men whosoever comes to them. Whoso in ignorance draws near to them and hears the Sirens’ voice,
he nevermore returns [ . . . ], the Sirens beguile him with their clear-toned song [ . . . ]. But do thou
row past them, and anoint the ears of thy comrades with sweet wax, which thou hast kneaded, lest
any of the rest may hear. But if thou thyself hast a will to listen, let them bind thee in the swift
ship hand and foot upright in the step of the mast, and let the ropes be made fast at the ends to
the mast itself, that with delight thou mayest listen to the voice of the two Sirens. And if thou shalt
implore and bid thy comrades to loose thee, then let them bind thee with yet more bonds”».

For lovers of the It. language, there is the tantalizing translation (1822) by I. Pindemonte [1974,
libro duodecimo, pp. 333-334]: «Le Sirene [ . . . ] / Mandano un canto dalle argute labbra, / Che
alletta il passeggier [ . . . ]. Tu veloce oltrepassa, e con moll[ì]ta / Cera de’ tuoi così l’orecchio tura,
/ Che non vi possa penetrar la voce. / Odila tu, se vuoi; sol che diritto / Te della nave all’albero
i compagni / Leghino, e i piedi str[ì]nganti, e le mani: / Perchè il diletto di sentir la voce / Delle
Sirene tu non perda».

cLiterally: “lofty”, “borne aloft”, “uplifted”.
dAs a general principle, when science is incorporated singly as a mere practical value, pure

idiocy is now firmly at the helm of the socio-economic degeneracy, and the extravagant dictates of
bibliometrics (cf. footnote b, p. xxix) accrete as teratological outgrowths.

eCf. footnote b on p. xliv.
fIt is even possible paroxysmally to say that mathematics is an epiphany, an emanation, of

poetry; compare e.g. with P.B. Shelley [2369, p. 38, vv. 16-21], who speaks generically of science:
«Poetry is [ . . . ] at once the centre and circumference of knowledge; it is that which comprehends all
science, and that to which all science must be referred. It is at the same time the root and blossom
of all other systems of thought».
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border, i.e. jenseits der Sprache, «beyond language», as H. Broch subtly wrote
[425, p. 533], for his dying Virgil.a

a (mathematical) odyssey of infinite possibilities

This wandering Odysseus seems to be able to reverse Horace’s monitus [1399,
Lib. I, XI, 27, p. 267]: Caelum non animum mutant qui trans mare currunt
(«Those who cross the sea change the sky [over their heads] but not their souls
[minds]»); his traveling challenge overseas is not the way to reach a goal, but
a means to reach oneself. The voyage of mathematics—the roamings of the
mind—does approximately the same thing. In the perilous (mathematical)
journey there is an unremitting change of mind.

Now, we can lustily reconnects us to the Intro on p. xxxviii: doing math-
ematics is like embarking on an Odyssean journey into the kaleidoscopic and
proteiform recesses of the unconscious.

There is a paragraph by C. Magris [1731, pref., § 5, pp. 10-11, transl. slightly
modified], which sums up well what is contained in the concept of traveling, and
of our wandering Odysseus. Let us read it in full; it is worth the effort:

Utopia and disillusionment. Many things are lost, when traveling: certainties, values, feelings,
expectations fallen by the wayside—the road is harsh, but it is also a good teacher. Other things,
other values and feelings are encountered, gathered, picked up along the way. Like traveling, writing
also involves disassembling, rearranging, putting back together; one moves through reality as in a
theater of prose, shifting the curtains, opening new passages, getting lost in blind alleys and blocked
by fake doors painted on the wall.

Reality, so often impenetrable, suddenly gives way, crumbles; the traveler, Cees Noteboom says,
feels “the draft blowing through the cracks in the structure of causality”. What is real proves to be
probabilistic, indeterministic, subject to sudden quantum collapses which cause some of its elements
to vanish, swallowed up, sucked into spatio-temporal vortices, whirlpools of the mortality of all
things, but also of the unforeseeable emergence of new life.

Traveling is a Musilian experience, committed to the sense of possibility rather than to the
reality principle. One discovers, as in an archaeological dig, different strata of reality, concrete
possibilities which were not materially realized but which existed and survived as shards forgotten
in the rush of time, in still unlock opening, in still fluctuating states. Traveling entails coming to
terms with reality but also with its alternatives, its gaps; with History and with a different history
or other histories precluded and deterred by it, but not entirely stamped out.

Since the Odyssey, travel and literature have appeared closely related;b an analogous exploration,
deconstruction, and recognition of the world and of the I. Writing continues the relocation, it packs
and unpacks, rearranges things, shifts plenums and voids, discovers—invents? finds?—elements that
escaped the list, and even the perception of what is real, almost as though putting them under a
magnifying glass.152

aBroch [425, ibid.]: «[T]he word [floating] beyond the expressible [Ausdrückbarem] and the
inexpressible [Nicht-Aus-drückbarem] [ . . . ] into the flooding sound [ . . . ], a floating sea, sea-heavy,
sea-light».

bWe are closing off this Chapter with a warning, and so we can annularly connect us to what we
denounced in the Intro, pp. xxxi and xxxv. The task of the intellectual (πολυμαθής, as we used to
say once), unique figure who clasps scientific and classical disciplines, is to make people understand
that science and literature are like a train, with many (and different) wagons, traveling on the same
rail. C. Magris [1729, pp. 25-26, e.a.] points out that: «Writers such as Musil, Joyce, Proust, Kafka,
Svevo, Mann, Broch, Faulkner and others have asked [the realm of] fiction [a] knowledge of the
world that precisely the enormous development of the sciences did not allow to entrust to the latter,
because they—with their extreme specialization that made each [field of study] inaccessible to lovers
of all other [fields] and even more to the average man—had shattered any sense of unity of the
world [ . . . ]. Today, literature has a new challenge, which arises from the gap with respect to science
[one should think of quantum mechanics] and from the gap between scientific knowledge and any
possibility [of this knowledge] of becoming part of the common cultural heritage [ . . . ]. The universe
does not necessarily have to be organized under the laws corresponding to the structures of the
mind and human perception; transforming the increasingly abstract knowledge of an indeterministic
nature [one should think of present-day mathematical physics] into a poetic metaphor is the arduous
cultural challenge that is posed to literature today».
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Which is flawlessly suited to the writing of mathematics; this last word
comes from the Gr. noun μάθημα, “that which is learned”, and so “that which
has never a conclusion”, being an infinite process, scattered into countless
possibilities—concisely, mathematics as a science, viz. an art, of possibilities
rather than of reality.

fantasy and invention: the art of the possible
(on some verses of galileo)

Galileo, in his spare time, was also a poet; in [1075, Contro il portar la Toga,a
11-13, pp. 213-214] he writes:

A chi vuol una cosa ritrovare,
Bisogna adoperar la fantasia,

E giocar d’invenzione, e ’ndovinare.

In translation: «Whoever wants to find something / must use [his] fantasy,
/ play with invention, and he has to guess». They are prodigious verses that
sum up the spirit of many previous Chapters, in which the role of fantasy and
invention, in mathematical and physical research, is stoutly exalted. Indeed: the
art of the possible,b on which mathematics—and any mathematical structure in
physics—feeds, passes through the doors of fantasy and invention.

aAgainst the donning of the Gown (1590), where the academic gown, or rather, all those
academics who wear it, are despised in no uncertain terms [1075, 298-301, p. 223]: «[Quegli
accademici] ch’han quelle veste delicate, / Se tu gli tasti, o son pieni di vento, / O di belletti o
d’acque profumate, / O son fiascacci da pisciarvi drento». Not unexpectedly, it follows that the
academic cosmetics, here symbolized by the gown, for Galileo (but also for me), is the enemy of
fantasy and invention.

bIt is not accurate, therefore, to define the fantasy as the faculty of imagining impossible things.



Endnotes

1 «Mathematical rigor is very simple», Peano writes [2044, p. 275]: «It consists in affirming true
statements and in not affirming what we know is not true. It does not consist in affirming every
truth possible. Science, or truth, is infinite; we know only a finite, and [an] infinitesimal part of
it compared to the whole». The problem then becomes this: what is a “true statement”, in the
restriction of mathematical rigor? Have a look at Section 9.1.1.

2 This aphorism by Einstein is written in the diary of Adriana Enriques, daughter of Federigo, in
memory of their meeting. It was Adriana who welcomed Einstein at the Bologna railway station,
on the occasion of the Bolognese lectures (22, 24 and 26 October 1921) by the scientist from
Ulm, cf. point (5) in endnote 34. The original sentence appearing in her diary is this:

“Das Studium und allgemein das Streben nach Wahrheit und Schönheit ist ein Gebiet, auf
dem wir das ganze Leben lang Kinder bleiben dürfen.

Adriana Enriques zum Andenken an die Bekanntschaft von Oktober 1921
Albert Einstein”.

3 Original It. version: «[L]’originalità irripetibile della natura [di G. Peano] era ancora in questo:
che il rigore della mente si accompagnava a un’altra peculiarità altrettanto rara: la fantasia.

I poeti sono uomini che non hanno perso la facoltà di meravigliarsi [che è] propria dell’infanzia;
ebbene, anche gli scienziati veri — creatori — godono di questo privilegio. Infatti la scienza
nasce dalla meraviglia come l’arte. Albert Einstein ha scritto: “Lo studio e la ricerca della verità
e della bellezza rappresentano una sfera di attività in cui è permesso di rimanere bambini per
tutta la vita”.

Questi ricercatori detti platonicamente “della verità e della bellezza” hanno qualcosa che
li apparenta ai bambini: una disponibilità, anzi una passione per il gioco. Perché lo spirito
creativo è leggero.

Peano possedeva questa dote meravigliosa: un’affinità con i bambini che lo portava a capirli.
Cosa negata in genere ai vari pedagoghi, retori, sadico-sentimentali. Lui sapeva giocare davvero
con un bambino. Faceva allegre gare di velocità correndo giù dallo scalone del palazzo, con un
bambino che abitava nelle soffitte sopra il suo alloggio del quarto piano».

4 This chap., entitled L’avenir des Mathématiques, is a redrafting of a lecture held in Roma, 10
aprile (Atti del IV Congresso Internazionale dei Matematici, Roma, 6-11 Aprile 1908, Vol. I,
Parte I—Relazione sul congresso, per cura di G. Castelnuovo, pp. 167-182), and subsequently
published in various journals.

5 Extended original Fr. version: «[A]border par mes propres lumières les choses que je veux
connaître, plutôt que de me fier aux idées et aux consensus, exprimés ou tacites, qui me
viendraient d’un groupe plus ou moins étendu dont je me sentirais un membre, ou qui pour
toute autre raison serait investi pour moi d’autorité. Des consensus muets m’avaient dit, au
lycée comme à l’université, qu’il n’y avait pas lieu de se poser de question sur la notion même
de “volume”, présentée comme “bien connue”, “évidente”, “sans problème”. J’avais passé outre,
comme chose allant de soi—tout comme Lebesgue, quelques décennies plus tôt, avait dû passer
outre. C’est dans cet acte de “passer outre”, d’être soi-même en somme et non pas simplement
l’expression des consensus qui font loi, de ne pas rester enfermé à l’intérieur du cercle impératif
qu’ils nous fixent—c’est avant tout dans cet acte solitaire que se trouve “la création”».

6 There is a little piece by Miłosz [1823, p. 39], entitled Pursuing a goal, which sums up nicely
the spirit that animated my intent throughout the meditation and writing of this work: «In
order to accomplish something, one must dedicate oneself to it totally, so much that our fellow
men cannot even imagine such an exclusivity. And that does not mean at all the amount of time
consumed. There are also the innumerable emotional subterfuges practiced toward oneself, slow
transformations of personality, as if one supreme goal, beyond one’s will and knowledge, pulled
in a single direction and organized destiny».

7 My favorite combined formulistic ritual, other than mathematics & music, is mathematics &
tea (see Sections 14.1 and 14.3). And since mathematics is a human activity—a complex of
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techniques and cognitive experiences—in view of a specific understanding, I find Ceronetti’s
[603, pp. 9-10] (daily) story close to my way of being. Tea and mathematics, as I see it, have
this in common, they are a fight against the “darkness” of the unknown. And since his Italian is
highly gratifying, I opted not to scar (disfigure) it by translating it into English (I am sorry):
«Due volte al giorno [ . . . ] tazza ripetuta di Tè verde della Cina arriva con la sua infallibile virtù
unitiva, confirmativa, risuscitativa, a disincagliarmi e a preservarmi da ogni specie d’inerzia,
d’inebetimento, di abbattimento [ . . . ].

Non sono un Orientale. Ma di Oriente orientante mi resta la fiducia che nell’uscire in giusta
misura da se stessi, e abitualmente, non c’è nulla di pericoloso, e che vedere, sentire e incontrare
spiriti non è inquietante.

Lo Spirito del Tè comincia appena disceso ad operare. Leggere pressioni interne, agopunture
invisibili, scatti tempestivi del sensorio, sampàn di lumettini, coloriture improvvise di silenzi, un
susseguirsi puntuale di eccitamenti che vanno dall’occhio interno (che forse è un orecchio o una
mano) lungo le disirrigidite vertebre, al coccige resurrecturo. Allora nel buio molte finestrine
tornano vive, e le parole faticano meno a ritrovare il loro principio negli spazi lontani. Pace del
massaggio, radice del suono [ . . . ]. Guardare da una pausa di connessione quel che è sconnesso e
lacerato, è un momento senza morte. Fare arretrare di appena un poco il margine del finito, per
molte ore rischiara.

Nel combattimento per contrastare mentalmente quel che nel tempo è verificabile come
aggressione materialmente incontrastata della tenebra, da làmine liberatrici che il Tè aiuta a
ritrovare e a decifrare, imparo a non aborrire in eccesso le tenebre, per non distruggere le poche
possibilità di penetrarne il segreto [ . . . ].

[Con il Tè] I pensieri non miei diventano miei con molta facilità; quelli miei chiunque se vuole
può farli proprii, qualunque sia il suo eccitante, senza bisogno di nome: il pensiero non pronuncia
né Tuo né Mio».

8 This chap., entitled L’invention mathématique, is a transcript, with slight variations, of a
Conférence held in Paris, at the Institut général psychologique, on 23 May 1908, and subsequently
published in various journals.

9 Historical and philological note. The word photon (φῶς, φωτός) was coined by G.N. Lewis
[1644, p. 874] in 1926, but by “photon” he understands something different from what Einstein
had imagined in 1905 [848, pp. 144-145], with his Lichtquant (literally “light quantum”, in the
sense of a “corpuscle/particle of light”).

10 Unchanged text and same page number in the second edition from 1579.

11 Original Fr. version: «L’algorithme [de dérivation covariante] du Calcul différentiel absolu, c’est
à dire l’instrument matériel des méthodes [ . . . ] se trouve tout entier [mais encore in nuce] dans
une remarque due a M. Christoffel».

12 Original It. version: «Il trasporto per parallelismo, lungo un cammino qualsiasi, di due direzioni
concorrenti ne conserva l’angolo. Con ciò si vuol dire evidentemente che l’angolo formato da due
generiche direzioni uscenti da un medesimo punto è anche l’angolo formato dalle loro parallele
in un altro punto qualunque».

13 Original Fr. version: «C’est M. Levi-Civita qui le premier, par sa définition du parallélisme,
réussit à faire des faux espaces métriques de Riemann, non pas de vrais espaces euclidiens, ce
qui est impossible, mais du moins des espaces à connexion euclidienne, considérés comme des
collections de petits morceaux d’espaces euclidiens, orientés de proche en proche les uns par
rapport aux autres».

14 Original Fr. version: «[U]n espace de Riemann est, au fond, formé d’une infinité de petits
morceaux d’espaces euclidiens».

15 Original It. version: «[I]l concetto di parallelismo fra direzioni, entro una varietà Vn, a metrica
qualsiasi, introdotto con felice idea dal Collega [Levi-Civita], poteva presentarsi sotto una forma
geometrica affatto indipendente dallo spazio euclideo [ambiente] SN in cui la Vn è immersa,
restando così a priori manifesto il carattere intrinseco di quel concetto, rispetto alla data varietà;
cosa che al Levi-Civita risulta a posteriori dalle equazioni differenziali, che esprimon il modo di
variare di una direzione parallela ad una data, lungo un assegnato cammino».

16 Original Fr. version: «[C]’est la notion de parallélisme qui doue la surface d’une connexion
euclidienne, pour employer un terme dû à M. H. Weyl [ . . . ]. En fait, ce qu’il y a d’essentiel
dans l’idée de M. Levi-Civita, c’est qu’elle donne un moyen pour raccorder entre eux deux petits
morceaux infiniment voisins d’une variété, et c’est cette idée de raccord qui est féconde. On
conçoit dès lors, en développant cette idée, la possibilité d’arriver à une théorie générale des
variétés à connexion affine, conforme, projective, etc.».

17 Full original Gr. text: «ἐὰν μὴ δώσωμεν πρὸς ἴσας γωνίας γίνεσθαι τὴν ἀνάκλασιν, πρὸς ἀνίσους
ματαιοπονεῖ ἡ φύσις, καὶ ἀντὶ τοῦ διὰ βραχείας περιόδου φθάσαι τὸ ὁρώμενον τὴν ὄψιν, διὰ μακρᾶς

περιόδου τοῦτο φανήσεται καταλαμβάνουσα».

18 Original It. version: «Lungo una medesima geodetica, le direzioni delle tangenti sono parallele,
ciò che generalizza un’ovvia caratteristica della retta negli spazi euclidei».
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19 Original Fr. version: «Maintenant voici une méthode qui ne demande qu’un usage fort simple
des principes du Calcul différentiel et intégral».

20 Original It. version: «La geometria ha la sua origine nell’osservazione diretta degli oggetti
del mondo esteriore, che è lo spazio fisico, e dall’intuizione di essi trae le sue prime verità
indimostrabili e necessarie al suo svolgimento teoretico, che sono gli assiomi [ . . . ]. Eppure,
per essere esatta, la geometria deve rappresentare gli oggetti forniti dall’osservazione per
mezzo di forme pure astratte e gli assiomi con ipotesi bene determinate, rese cioè indipendenti
dell’intuizione, cosicchè la geometria diventi parte della matematica pura [ . . . ]. [È] necessario
distinguere lo spazio fisico dallo spazio intuitivo, e questo dallo spazio geometrico [ . . . ]. Lo spazio
geometrico è appunto quella parte dell’estensione pura nella quale è rappresentato lo spazio
fisico e intuitivo, ma che a sua volta non ha per tutte le sue forme una rappresentazione nel
mondo reale. E mentre lo spazio fisico e quello intuitivo non possono essere definiti, può essere
invece definito lo spazio geometrico [ . . . ]. Le tre geometrie [quella euclidea, quella ellittica e
quella iperbolica] in un campo piccolissimo dànno con grande approssimazione gli stessi risultati
[ . . . ]. Può darsi che, estendendo il campo delle nostre osservazioni esteriori, o con nuovi mezzi
più precisi di misura delle grandezze eguali, si trovi che lo spazio fisico corrisponda ad una
delle geometrie non euclidee [ . . . ]. Se un osservatore coll’intuizione euclidea entrasse in uno
spazio pseudosferico o sferico, avrebbe l’impressione, movendosi, che gli oggetti si spostano in
determinati modi, e in determinate direzioni si dilatano e si restringono, nello stesso modo che
noi, secondo che ci moviamo, vediamo cambiare la grandezza degli oggetti, e non avremmo modo
di decidere se tale fatto è apparente o reale, se non conoscessimo per altre vie le leggi della
prospettiva».

21 Original It. version: «Se si considerano le superficie come flessibili ma inestendibili, a guisa direi
quasi di veli, e s’immaginano le forme differenti che ognuna può assumere in siffatte condizioni,
si è condotti a distinguere le proprietà in due classi. A distinguere cioè le proprietà che non
subiscono alterazione per qualsiasi cambiamento di forma della superficie cui si riferiscono e
che si ponno chiamare assolute, da quelle che dipendono invece dalle singole forme sotto le
quali la superficie può essere concepita e che si ponno chiamare relative [ . . . ]. Mezzi per lo
studio delle superficie indipendentemente dalle forme nelle quali, colle condizioni di flessibilità
ed inestendibilità, ponno essere immaginate, sono offerti dall’uso di coordinate curvilinee, per le
quali le superficie vengano considerate in se stesse e non riferite ad enti estranei (come per gli
ordinari piani coordinati) che non cambiano necessariamente con esse di posizione e di forma».

22 The sixth postulate is nowadays expunged; it nevertheless survived for centuries, see e.g. Gli
elementi di Euclide, per cura di E. Betti e F. Brioschi [282, p. 5].

23 About the young János Bolyai, Gauss in a letter to C.L. Gerling, dated 14 February 1832, puts
it like this [1103]: «These days I have received a short work from Hungary on non-Euclidean
geometry, in which I find all my own ideas and results, developed with great elegance [ . . . ]. The
author is a very young Austrian officer, the son of a childhood friend of mine, with whom I often
discussed about the subject in 1798, although my ideas, at that time, were still very far from
the elaborateness and maturity they have achieved through this boy’s own thinking. I consider
this young geometer v. Bolyai a genius of the first magnitude [ein Genie erster Grösse]».

To János’ father, Farkas (also known as “Wolfgang”), Gauss, in a letter of 6 March 1832, writes
[1104, pp. 220-221]: «Now something about your son’s work. If I start by saying “that I am
unable to praise it”, you will probably be shocked for a moment: but I cannot do otherwise; to
praise it, would be to praise myself: the entire content of the work, the path that your son has
taken and the results to which he has been led, coincide almost always with my own meditations,
some of which have occupied me in part for 30-35 years. In fact, I am extremely surprised by
this». On non-Euclidean geometry in Gauss, see [1263].

24 Original It. version: «Le sole superficie suscettibili di essere rappresentate sopra un piano, in
modo che [ . . . ] ad ogni linea geodetica [corrisponda] una linea retta, sono quelle la cui curvatura
è dovunque costante (positiva, negativa o nulla). Quando questa curvatura costante è nulla, la
legge di corrispondenza non differisce dall’ordinaria omografia».

25 Exhibition panels originally written in It..

26 «And if a straight line falling across two straight lines makes interior angles on the same side
less than two right angles, [then] the two straight lines, being produced boundlessly [infinitely],
meet on that side on which the [sum of the interior] angles [is] less than two right angles».
Compare with [913, p. 155].

27 It’s the Brougham [Broome] Bridge formula for quaternion multiplication in a «flash of genius»
discovered, dating back to October 16 1843, as inscribed on the plaque attached to the bridge;
see Hamilton’s account [1197, pp. 434-435] in the letter of August 5 1865 to his son Archibald
H. (cf. epigraph in this Section).

28 Original Fr. version: «[ . . . ] J’ai dit plus haut qu’il n’étoit pas possible de concevoir plus de trois
dimensions. Un homme d’esprit de ma connoissance croit qu’on pourroit cependant regarder la
durée comme une quatrieme dimension».
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29 Original It. version: «[D]esignerò col nome di calcolo differenziale assoluto [calcolo tensoriale]
l’insieme di metodi da me detti altra volta di derivazione covariante e controvariante, in quanto
essi sono applicabili per ogni forma fondamentale indipendentemente dalla scelta delle variabili
indipendenti ed esigono anzi che queste siano affatto generali ed arbitrarie».

30 Original It. version: «Nelle questioni di Analisi, che per loro natura non sono collegate colla
scelta delle variabili indipendenti, io mi valgo da molto tempo di uno strumento, che chiamo
Calcolo Differenziale assoluto, il quale conduce a formule ed equazioni, che si presentano sempre
sotto la identica forma per qualunque sistema di variabili».

31 This [2197] is the work where the notion of tensor, in the Ricci sense, emerges explicitly.

32 «Riemann’s general metric and a formula of Christoffel constitute the premises of the absolute
differential calculus. Its development as a systematic branch of mathematics was a later process,
the credit for which is due to Ricci, who during the ten years 1887-1896 elaborated the theory
and worked out the elegant and comprehensive notation which enables it to be easily adapted to
a wide variety of questions of analysis, geometry, and physics».

33 Cf. [1529, p. 278]: «[Einstein] dit un jour: “Grossmann, Du mußt mir helfen, sonst werd’ ich
verrückt!”».

34 To Ricci and his pupil Levi-Civita [2205] [1626] [1631] [1634] are also due applications of
tensor calculus to many problems of differential geometry and mathematical physics. Here are
some testimonies that underlines the importance of their contribution in Einstein’s theory of
gravitation:

(1) Einstein’s letter [852, 5 March 1915] in Ge. addressed to Levi-Civita: «When I saw
that you [Levi-Civita] had to object on the most important demonstration of the theory [of
gravitation], which made me pour rivers of sweat, I was frightened not a little, since I know that
you master these mathematical things much better than I [Als ich sah, dass Sie Ihren Angriff
gegen den wichtigsten, mit Strömen von Schweiss erkauften Beweis der Theorie richten,
erschrak ich nicht wenig, zumal ich weiss, dass Sie diese mathematischen Dinge weit besser
beherrschen als ich]».

(2) Theory of (general) relativity, Einstein writes [853, p. 779] (4 November 1915), «represents
an authentic triumph [wahren Triumph] of the method of absolute differential calculus, founded
by Gauss, Riemann, Christoffel, Ricci and Levi-Civita».

(3) Recollection of Einstein, from a lecture given in Kyoto on 14 December 1922 [874, p. 47]:
«[T]he idea [of E. Mach] that systems that have acceleration with respect to each other are
equivalent [ . . . ] contradicts Euclidean geometry, since in the frame of reference with acceleration
[or where there is the influence of the gravitational force] Euclidean geometry cannot be applied.
Describing the physical laws without reference to geometry is similar to describing our thought
without words. We need words in order to express ourselves. What should we look for to describe
our problem? This problem was unsolved until 1912, when I hit upon the idea that the surface
theory of Karl Friedrich Gauss might be the key to this mystery [ . . . ]. Until then I did not
know that Bernhard Riemann [who was a student of Gauss’] had discussed the foundation of
geometry deeply. I happened to remember the lecture on geometry in my student years [in
Zürich] by Carl Friedrich Geiser who discussed the Gauss theory. I found that the foundations of
geometry had deep physical meaning in this problem. When I came back to Zürich from Prague,
my friend the mathematician Marcel Grossman was waiting for me. He had helped me before
in supplying me with mathematical literature when I was working at the patent office in Bern
and had some difficulties in obtaining mathematical articles. First he taught me the work of
Curbastro Gregorio Ricci and later the work of Riemann».

(4) Einstein’s foreword (Vorwort des Autors zur Tschechischen Ausgabe) to Theorie relativity
speciální i obecná. Lehce srozumitelný výklad. Se zvláštní předmluvou autorovou k českému
vydání, Nakladatel Fr. Borový v Praze, 1923, p. 7: «[T]he decisive idea of the analogy between
the mathematical formulation of the theory [of gravitation] and the Gaussian theory of surfaces
came to me only in 1912 after my return to Zürich, without being aware at that time of the
work of Riemann, Ricci, and Levi-Civita. This was first brought to my attention by my friend
Grossmann when I posed to him the problem of looking for generally covariant tensors whose
components depend only on derivatives of the coefficients of the quadratic fundamental invariant»,
i.e. components of the metric tensor. Text available in [288, p. 42].

(5) Remarkable was the encounter between Einstein and Ricci, see e.g. this clipping from
“Corriere della Sera”, 28 ottobre 1921: «Il prof. Einstein a Padova, 27 ottobre. Nell’Aula
Magna della nostra Università Alberto Einstein ha tenuto oggi l’annunziata conferenza. L’aula è
affollatissima. Il prof. Ricci-Curbastro, della Facoltà fisico-matematica, presenta il prof. Einstein
con elevate parole ricordando anche come tre secoli or sono, in questa stessa aula, Galileo Galilei
abbia insegnato la allora nuova dottrina della meccanica. Il prof. Einstein, che parla italiano,
esprime anzitutto il suo compiacimento nel parlare nella città dove insegna il prof. Ricci al
quale si deve il calcolo infinitesimale assoluto, ch’è l’arma matematica necessaria ad esprimere la
teoria della relatività generale. Poscia espone in riassunto, nell’ordine tenuto nelle conferenze di
Bologna, i tratti essenziali di questa teoria». The conferences at Bologna, upon the invitation of
F. Enriques, are held on 22, 24 and 26 October in the Stabat Mater Hall of the Archiginnasio.
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(6) Einstein’s letter [870, 25 April 1949] in En. addressed to L. Ricci Curbastro (daughter of
Gregorio): «The important investigations of your father together with Levi-Civita have helped
me considerably in my work concerning the general theory of relativity».

(7) Einstein’s letter [877, 15 December 1952] in Ge. addressed to J. Poato (Ricci’s former
student): «The theory of relativity is an amazing example of how mathematics provides a
theoretical tool to a physical theory, without the problem of physics being decisive for the
corresponding creations in mathematics. The names of Gauss, Riemann, Ricci, Levi-Civita,
together with their works, would belong to the fundamental contributions of Western thought
even if they had not implied the overcoming of inertial systems».

35 The Bianchi identities were first discovered by Ricci [2197], and immediately commented,
without demonstration, by E. Padova, who writes [1990, postilla, p. 176]: «The prof. Ricci
points out to me that in [2197, § 5] [ . . . ] he has drawn up equations [ . . . ] from which [the
equations] of this Note can be deduced, warning that the coefficients [ . . . ] are identically null».
Neither of them, however, is inspired by a full consciousness of the importance of the physical
meaning of such relations, even though they are both concerned with the applicative character
of their formulations.

Bianchi [284, pp. 5, 7] mentions Ricci twice, but he does only to specify a «denomination»,
and misses the advantage of the equalities in a physical context. Bianchi’s consideration, about
the identities, was focused solely on proving (with an analytic and geometric solution) the
Schur’s theorem [2327].

Ricci returns to the subject in [2203], recalling that the identities link the Riemann’s formulæ,
in the transformation of quadratic differential forms, to the Christoffel symbols.

36 Original It. version: «Si dimostra la possibilità di pervenire a una piena simmetrizzazione
formale della teoria quantistica dell’elettrone e del positrone facendo uso di un nuovo processo
di quantizzazione. Il significato delle equazioni di Dirac ne risulta alquanto modificato e non
vi è più luogo a parlare di stati di energia negativa; nè a presumere per ogni altro tipo di
particelle, particolarmente neutre, l’esistenza di “antiparticelle” corrispondenti ai “vuoti” di
energia negativa».

37 Majorana’s further studies on the spinor representation of the Lorentz group are in his unpub-
lished Quaderno 1, pp. 14-, 26-, 37-, and Quaderno 3, p. 71-, as reported in [1741, pp. 180,
183], Appendice. Catalogo degli scritti di Ettore Majorana–Manoscritti scientifici inediti, a
cura di M. Baldo, R. Mignani, E. Recami.

38 Original It. version: «L’ulteriore svolgimento della teoria dei mezzi elastici negli spazii
curvi permetterà forse di rispondere alla domanda di Clifford: se non potrebbe darsi che
noi consideriamo come variazioni fisiche certi effetti realmente dovuti a cambiamenti della
curvatura del nostro spazio; in altre parole, se alcune delle cause, che noi chiamiamo fisiche,
e forse tutte, non fossero per avventura dovute alla costituzione geometrica dello spazio nel
quale viviamo».

39 Original It. version: «Il calcolo vettoriale (o, in generale, geometrico) deve porre il matematico
in condizione di poter risolvere direttamente una qualsiasi questione di geometria, di meccanica,
di fisica, sotto forma assoluta, cioè indipendente da qualsiasi sistema di riferimento (con zero
coordinate)».

40 Original It. version: «[U]na conseguenza assai notabile che si deduce dalla espressione ds =

R

√
dη2+dη2

1+···+dη2
n−1

η è che lo spazio ad n− 1 dimensioni η = cost. ha la sua curvatura nulla

in ogni punto, poiché il suo elemento lineare ha la forma ds = cost.
√
dη21 + dη22 + · · · + dη2n−1

[ . . . ] donde si conclude [ . . . ] che lo spazio ad n− 1 dimensioni η = cost. non è altro che una
delle trajettorie ortogonali di tutte le geodetiche convergenti verso uno stesso punto all’infinito,
cioè di un sistema di geodetiche parallele fra loro».

41 Originally written in It. The end of Schläfli’s Note [2301, pp. 192-193] is intriguing: «Se si
comincia una volta dal muover dubbio contro le ordinarie nozioni dello spazio, in quanto esso,
insieme col tempo, è parte essenziale della serie dei fenomeni attuali, non capisco, perché si
debba arrestarsi all’ipotesi che una porzione dello spazio, mediante un trasporto, sia suscettibile
della congruenza con un’altra porzione dello stesso spazio. La forma di un corpo solido è il
risultato istantaneo delle forze e delle velocità relative onde le sue molecole sono animate; e
gli errori inerenti alla ipotesi che un tal corpo, dopo avvenuto un trasporto rispetto ad altri
corpi che riputiamo in riposo, abbia serbato la sua forma, non sono in estremo grado minori di
quelli inerenti alla presente astronomia pratica in connessione colle nozioni geometriche, anzi
possono riguardarsi dello stess’ordine di piccolezza. E di quest’ordine, od almeno di un ordine
comparabile con esso, sarebbe, parmi, anche la curvatura dello spazio, s’esso avesse, giusta la
presunzione che il celeberrimo Riemann [2207] sembra far tralucere, una tessitura di curvatura
costante 1

a2 ovvero − 1
a2 . Ma poiché una porzione infinitesima d’ogni tessuto a tre dimensioni

intorno ad un punto preso ad arbitrio s’avvicina sotto tutti i rapporti allo spazio geometrico
con un errore relativo anche infinitesimo, non vi sarebbe bisogno d’una curvatura costante
talmente piccola da farne scendere una parte degli errori dell’astronomia moderna; anche un
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tessuto qualunque a grandissima unità lineare farebbe all’uopo, e nella sua formola definitrice i
sei coefficienti [in the expression of an n-dimensional space] potrebbero essere funzioni sì del
tempo che delle tre coordinate. Riflettendo poi che lo spazio della meccanica non è uno spazio
assoluto, tale cioè che possa dirsi in riposo piuttosto che in istato di moto uniforme e rettilineo,
si comprende che una nuova definizione dello spazio deve accommodarsi anzitutto a questa
relatività fisica; ma allora chi ci dirà, che cosa dovremo sostituire alle espressioni della forma
∂2x
∂t2

, x′ − x, mm′
r2

, quando avremo delle coordinate molto più accidentali di quelle dello spazio
finora riputato il vero? Se, per es., la curvatura non fosse nulla, ma costante, e se per r s’intende
la distanza geodetica di due molecole, dovremo, nella correzione della formola mm′

r2
, sostituire

alla r primitiva 2a sin r
2a o 2a sinh r

2a , a seconda della qualità positiva o negativa della curvatura,
ovvero la distanza geodetica stessa?».

42 This is the inscription placed on the short side of the tomb, under the heading «Stelle di xvi
grandezza». On the long side, under the heading «Stelle di ix grandezza», there is another
inscription, unfortunately illegible: «[×] grandezza e tanto sono lontane che solo nel [×] loro
raggio arriva a noi pur correndo la lu[ce] [×] [chilom]tri al secondo. L’orbita annuale della Ter[ra]
attorno il S[ole] [×] orbita di ccxvi milioni di chilometri, vinta da quelle stel[le] [appa]rirebbe
un punto e noi, uomini, atomi di questo punto [dell’]universo, ci vantiamo di essere!».

The conclusion of the sentence brings to mind the popular—and dear to me—comment of C.
Sagan [2278, pp. 6-7] on the Pale Blue Dot (photograph of Earth, February 14, 1990, by the
Voyager 1). Let us listen to his words.

«Look again at that dot. That’s here. That’s home. That’s us. On it everyone you love,
everyone you know, everyone you ever heard of, every human being who ever was, lived out
their lives. The aggregate of our joy and suffering, thousands of confident religions, ideologies,
and economic doctrines, every hunter and forager, every hero and coward, every creator and
destroyer of civilization, every king and peasant, every young couple in love, every mother and
father, hopeful child, inventor and explorer, every teacher of morals, every corrupt politician,
every “superstar”, every “supreme leader”, every saint and sinner in the history of our species
lived there—on a mote of dust suspended in a sunbeam.

The Earth is a very small stage in a vast cosmic arena. Think of the rivers of blood spilled by
all those generals and emperors so that, in glory and triumph, they could become the momentary
masters of a fraction of a dot. Think of the endless cruelties visited by the inhabitants of one
corner of this pixel on the scarcely distinguishable inhabitants of some other corner, how frequent
their misunderstandings, how eager they are to kill one another, how fervent their hatreds.

Our posturings, our imagined self-importance, the delusion that we have some privileged
position in the Universe, are challenged by this point of pale light. Our planet is a lonely speck
in the great enveloping cosmic dark. In our obscurity, in all this vastness, there is no hint that
help will come from elsewhere to save us from ourselves [ . . . ].

It has been said that astronomy is a humbling and character-building experience. There is
perhaps no better demonstration of the folly of human conceits than this distant image of our
tiny world».

43 Originally written in It. (Riassunto).
44 Interview by N. Wolchover, “A Physicist’s Physicist Ponders the Nature of Reality”, Quanta

Magazine, November 28, 2017.
45 Original Ge. version: «[E]s möglich ist [ . . . ] Im Rahmen der speziellen Relativitätstheorie

(d. h. wenn das raumzeitliche Kontinuum ein „Euklidisches“ ist) eine durchaus konsequente
Quantentheorie der Gravitation aufzubauen. Im Gebiet der allgemeinen Relativitätstheorie, wo
die Abweichungen von der „Euklidizität“ beliebig gross sein können, steht aber die Sache ganz
anders».

46 Cf. Einstein [881, § 28, pp. 65-66]: «This non-rigid reference-body [nichtstarre Bezugskörper ],
which might rightly be called a “reference-mollusc” [„Bezugsmolluske“], is essentially equivalent
to any Gaussian 4-dimensional coordinate system. That which gives the “mollusc” [„Molluske“]
a certain comprehensibility, as compared to the Gaussian coordinate system, is the (really unjus-
tified) formal preservation of the separate existence of the space coordinates as opposed to the
time coordinate [formale Wahrung der Sonderexistenz der räumlichen Koordinaten gegenüber
der Zeitkoordinate]. Every point on the mollusc is treated as a space-point [Raumpunkt], and
every material point which is at rest relatively to it is at rest, so long as the mollusc is considered
as reference-body. The general principle of relativity demands that all these molluscs can be
used as reference-bodies with equal rights and equal success in formulating the general laws of
nature; the laws must be entirely independent of the choice of mollusc».

The abuse of Einstein’s theory under the hands of improvisers is a cabaret show. For example,
you can see how moronic economists are by reading what G. Palomba (an economist, 1908-1986)
writes on p. 179, in Le grandezze fondamentali dell’economica corporativa, Giornale degli
Economisti e Annali di Economia, Nuova Ser., Anno 2, № 3-4, 1940, pp. 168-181. I do not
translate the text into En., because in It. his delirium shines even better: «[ . . . ] Cotesto stato
di cose mi aveva fatto, in un primo momento, intravedere la possibilità di ricondurre il nostro
problema entro il quadro della relatività einsteiniana. E precisamente: il caso dell’equilibrio
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stazionario pensavo di inquadrarlo nei confini della relatività speciale, cercando qualcosa di
analogo alla trasformazione del Lorentz per poter passare da un punto all’altro di questo mondo
economico analogo al mondo fisico del Minkowsky [sic! ]; il caso, invece, dell’equilibrio dinamico
[economico] pensavo di inquadrarlo nei confini della relatività generale, cercando qualcosa di
analogo alla suggestiva piovra di riferimento dell’Einstein stesso [the “reference-mollusc”]
conducente ad un continuo addirittura non[-]euclideo». Mamma mia, I am impressed . . . .

47 Original It. version: «I concetti primitivi o indecomposti, intorno a cui versano tutti i postulati
[ . . . ] sono come la materia prima d’ogni proposizione [ . . . ]. Carattere principalissimo degli enti
primitivi d’un qualsivoglia sistema ipotetico-deduttivo è l’esser questi capaci d’interpetrazioni
arbitrarie, dentro certi confini assegnati dalle proposizioni primitive (assiomi o postulati)».

48 Original It. version: «Il sistema, che or si offre al giudizio del pubblico, non ammette che due
sole idee prime: il punto ed il moto; quest’ultimo inteso come rappresentazione dei punti in punti,
e lungi da ogni qualunque significato meccanico [ . . . ]. [O]gni moto è rappresentazione della
classe “punto” [ . . . ], ed agisce sopra ogni punto (opera in tutto lo spazio). Il “moto” è pertanto
individuo della categoria che va sotto i nomi di “funzione”, “rappresentazione”, “trasformazione”,
ecc.».

49 The text of the interview with N. Arkani-Hamed has been adapted for editorial purposes by N.
Wolchover, “A Different Kind of Theory of Everything. Physicists used to search for the smallest
components of the universe. What if that’s not the point?”, The New Yorker, February 19, 2019.

50 Original It. version: «[H]o espresso il concetto che, per varie ricerche d’analisi, è opportuno
considerare la totalità delle funzioni analitiche di una variabile x o — per meglio fissare le idee
— la totalità delle serie di potenze intere positive di x, come una varietà o spazio di cui ogni
singola serie costituisce un elemento. Ad una tale varietà, evidentemente ad un numero infinito
di dimensioni, si può dare il nome di spazio funzionale; ogni serie di potenze di x sarà un punto
di questo spazio ed i coefficienti della serie si potranno riguardare come le coordinate del punto».

51 Original It. version: «Ricordiamo che una operazione [ . . . ] la quale applicata alle funzioni
analitiche, dà origine a funzioni pure analitiche [ . . . ], dà pertanto una trasformazione dello
spazio funzionale la quale, per ogni varietà lineare d’ordine finito di questo spazio, si riduce ad
una omografia. Una tale operazione può essere continua per tutto lo spazio funzionale o per
una parte [ . . . ] di esso».

52 Because of that, in its auroral phase, in some thinkers, mathematics is, or pretends to be,
with-no-words; but, sooner or later, it must pass from no-words to words; see e.g. R. Penrose
[2061, pp. 424-425, 427]: «Almost all my mathematical thinking is done visually [geometrically]
and in terms of non-verbal concepts [ . . . ]. Often the reason is that there simply are not the
words available to express the concepts that are required. In fact I often calculate using specially
designed diagrams which constitute a shorthand for certain types of algebraic expression [ . . . ].
This is not to say that I do not sometimes think in words, it is just that I find words almost
useless for mathematical thinking [ . . . ].

I always had particular trouble with comprehending a verbal description of a formula, while
many of my colleagues seemed to experience no such difficulty.

A common experience, when some colleague would try to explain some piece of mathematics
to me, would be that I should listen attentively, but almost totally uncomprehending of the
logical connections between one set of words and the next. However, some guessed image would
form in my mind as to the ideas that he was trying to convey—formed entirely on my own terms
and seemingly with very little connection with the mental images that had been the basis of my
colleague’s own understanding [ . . . ]. It would be clear, at the end of it, that some genuine and
positive communication had taken place. Yet the actual sentences that each one of us would
utter seemed only very infrequently to be actually understood!».

53 Original It. version: «[I]ngegnose ipotesi [ . . . ] sono state proposte per spiegare luce, calore,
magnetismo, ecc., considerandone i fenomeni come prodotti da una reazione che lo spazio oppor-
rebbe alla variabilità della propria curvatura nel tempo. E qui importa osservare che il termine
addizionale BΦ

∇ nella parte efficace [ . . . ] del potenziale elastico si può considerare appunto come
l’espressione dell’energia delle reazioni che lo spazio, rigido nella propria costituzione geometrica,
oppone alla materia elastica che lo riempie, supponendo questa inerte nel senso che, obbligata a
deformarsi nel detto spazio, essa tende a farlo come se lo spazio stesso fosse euclideo».

54 Looking back through the history, the word χάος peeks out into Hesiod’s epic poetry [1342, p.
12, v. 116]: «First of all Χάος came to be (ἤτοι μὲν πρώτιστα Χάος γένετ΄)», but, quite rightly,
G.W. Most translates “Χάος” as “Chasm” («gap», «opening») and not as “Chaos” («jumble of
disordered matter»).

55 A further question then turns up: at what level the dividing border between the natural process
(reality of the world) and the process of knowledge (rooted in the subjective perception) should
be drawn. A text by von Neumann [1928, pp. 272-273] acts as a reference: «We wish to measure
the temperature. If we want, we can proceed numerically by looking to the mercury column in a
thermometer, and then say: “This is the temperature as measured by the thermometer”. But we
can carry the process further, and from the properties of mercury (which can be explained in
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kinetic and molecular terms) we can calculate its heating, expansion, and the resultant length of
the mercury column, and then say: “This length is seen by the observer”. Going still further, and
taking the light source into consideration, we could find out the reflection of the light quanta
on the opaque mercury column, and the path taken by the reflected light quanta into the eye
of the observer, their refraction in the eye lens, and the formation of an image on the retina,
and then we would say: “This image is registered by the retina of the observer”. And were our
physiological knowledge greater than it is today, we could go still further, tracing the chemical
reactions which produce the impression of this image on the retina, and in the optic nerve and
in the brain, and then in the end say: “These chemical changes of his brain cells are perceived by
the observer”. But in any case, no matter how far we proceed—from the thermometer scale, to
the mercury, to the retina, or into the brain—at some point we must say: “And this is perceived
by the observer”. That is, we are obliged always to divide the world into two parts, the one being
the observed system, the other the observer [ . . . ]. The boundary between the two is arbitrary to
a very large extent. In particular, we saw [ . . . ] that the “observer” [ . . . ] need not be identified
with the body of the actual observer: in one instance we included even the thermometer in it,
while in another instance even the eyes and optic nerve were not included. That this boundary
can be pushed arbitrarily far into the interior of the body of the actual observer is the content
of the principle of psycho-physical parallelism».

A similar thought comes from J.S. Bell [233, p. 687]: «The subject-object distinction is
indeed at the very root of the unease that many people still feel in connection with quantum
mechanics. Some such distinction is dictated by the postulates of the theory, but exactly where
or when to make it is not prescribed [ . . . ]. [T]he theory is fundamentally about the results of
‘measurements’, and therefore presupposes in addition to the ‘system’ (or object) a ‘measurer’ (or
subject). Now must this subject include a person? Or was there already some such subject-object
distinction before the appearance of life in the universe? [ . . . ]. Whenever necessary a little more
of the world can be incorporated into the object. In extremis the subject-object division can be
put somewhere at the ‘macroscopic’ level».

Undeniably, the subject-observer cannot be excluded from the measurement procedure. If
this happened, there would be no information. E. Schrödinger’s [2321, p. 162, e.a.] comment is
lapidary: «The observer is never entirely replaced by instruments; for if he were, he could
obviously obtain no knowledge whatsoever [ . . . ]. [A]ll information [of a certain measurement]
goes back ultimately to the sense perceptions of some living person or persons [ . . . ]. The
observer’s senses have to step in eventually. The most careful record, when not inspected, tells
us nothing». Attention: the same can be said for mathematics; a contribution by our mind is
unavoidable (see Sections 22.1, 24.1 and 25.1).

56 Original It. version: «Quali fra gli enti geometrici si possono definire, e quali occorre assumere
senza definizione? E fra le proprietà, sperimentalmente vere, di questi enti, quali bisogna
assumere senza dimostrazione, e quali si possono dedurre in conseguenza? [ . . . ] [P]artendo dai
concetti non definiti di punto e retta limitata, si possono definire la retta illimitata, il piano e le
sue parti, come pure le parti dello spazio. Riesce pure possibile riconoscere, fra le proposizioni,
quelle (assiomi) che esprimono le più semplici proprietà degli enti considerati, e quelle (teoremi)
che si possono dedurre da altre più semplici».

57 Original It. version: «Dato un ordine alle idee d’una scienza, non tutte si possono definire.
Non si può definire la prima idea, che non ha precedenti; non si può definire il segno =, che
figura in ogni definizione. Si dice che una idea è primitiva, relativamente a un dato ordine, se,
in quest’ordine delle idee, essa non si sa definire. Perciò l’essere una idea primitiva, non è un
carattere assoluto, ma solo relativo [al gruppo di idee che si suppongono note]. La questione
“l’idea di punto è essa stessa primitiva, o si può definire?”, non ha senso preciso, se noi non
prefissiamo quali idee si suppongono note [ . . . ]. Il Pieri pervenne a[d] esprimere tutte le idee di
Geometria [ . . . ] mediante due sole idee primitive: “punto, e distanza fra due punti” [2098]».

58 I have removed here the notion of a priori, as it can mislead Enriques’ thought, in order to
homogenise the two texts, [893] and [894].

59 Original It. version: «[A]lcuni elementi debbono essere introdotti come elementi primi o
fondamentali della Geometria, senza definizione, giacché non si potrebbe dare una definizione
(logica) di tutti senza cadere in un circolo vizioso. La scelta degli elementi fondamentali della
Geometria non è a priori determinata; si scelgono come tali gli elementi più semplici rispetto
alla intuizione psicologica, cioè quelli di cui la nozione si trova formata nella nostra mente
come contenuto del concetto di spazio: tali sono p. e. il punto, la retta e il piano [ . . . ].
Comunque però si sieno scelti gli elementi geometrici fondamentali in modo arbitrario ed in
numero sovrabbondante, ogni altro ente geometrico successivamente introdotto dovrà essere
definito logicamente mediante gli elementi fondamentali [ . . . ]. [N]on è possibile dimostrare
tutte le proprietà che si assumono come postulati senza cadere in un circolo vizioso. È dunque
necessario porre in principio della Geometria alcuni postulati; questi si scelgono fra le proprietà
che hanno maggiore evidenza intuitiva, ma la loro scelta non è a priori determinata».

60 Original It. version: «Se per definizione s’intenda una pura e semplice imposizione di nomi
a cose già note od acquisite al sistema, le idee primitive saranno i concetti non definiti [ . . . ]:
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perciò diremo che i concetti primitivi non sian definiti “altrimenti che per postulati”. Questi
ultimi invero attribuiscono a quelli talune proprietà sufficienti a qualificarli, in ordine ai fini
deduttivi che si voglion raggiungere. E per cansare ogni equivoco si userà il termine “definizione
in senso stretto”, o “definizione nominale”, quando si voglia escluder la definizione “reale”, o “di
cosa”».

61 An unabridged En. transl. of [736] is in [739, pp. 1-27].
62 A primal intuition of the paradoxicality of infinite sets in comparison is in G. Galilei [1073, p.

32]: «Quì nasce subito il dubbio, che mi pare insolubile; & è che sendo noi sicuri trovarsi linee
una maggior dell’altra, tutta volta che amendue contenghino punti infiniti, bisogna confessare
trovarsi nel medesimo genere una cosa maggior dell’infinito; perch[é] la infinità de i punti della
linea maggiore eccederà l’infinità de i punti della minore. Ora questo darsi un infinito maggior
dell’infinito mi par concetto da non poter’ esser capito in verun modo». Transl. into En. reads
like this: «Here the doubt arises immediately, which seems to me insoluble; since we are sure of
finding lines one [of which] greater than another, both containing infinite points, we must confess
that, within the same class, there is something greater than infinity; because the infinity of
points in the major line will exceed the infinity of points in the minor [line]. Now this assigning
to an infinity a [quantity] greater than infinity seems to me a concept that cannot be understood
in any way».

Another name to make, on this issue, is B. Bolzano [349, § 20, pp. 28-29] = [350, § 20, p. 96]:
«Let us choose any two abstract quantities, say 5 and 12. Then the set of all quantities between
zero and 5 [ . . . ] is clearly infinite, as also the set of all quantities less than 12», so the closed
interval [0, 5], as a set of real numbers, has “as many” points as does the closed interval [0, 12].
But «the latter set [is] greater than the former, seeing that the former constitutes a mere part
of the latter». Now, let x be an arbitrary quantity between 0 and 5, and write the equation
5y = 12x, then y is a quantity between 0 and 12; conversely, if y lies between 0 and 12, then x
lies between 0 and 5. This implies that to any value of x corresponds a single value of y, and
conversely. Thus: to any quantity x, in the set between 0 and 5, there corresponds a quantity y,
in the set between 0 and 12, such that «no constituent of either set remains uncoupled», and
«none appears in two or more of the couples».

63 Original It. version: «[I ]l problema della misura dei gruppi di punti di una retta è impossibile
[ . . . ]: la possibilità del problema della misura dei gruppi di punti di una retta e quella di bene
ordinare il continuo non possono coesistere» (emphasis and bold modified).

64 Extended original It. version: «G. Cantor, Dedekind [ . . . ] dicono che è arbitraria la corrispon-
denza univoca a partire da un punto della retta fra i punti della retta stessa e i numeri reali
che costituiscono il continuo numerico ottenuto mediante una serie di definizioni astratte di
segni, per quanto possibili arbitrarie sempre [ . . . ]. Secondo Dedekind per chiarire [ . . . ] la
rappresentazione del continuo dello spazio occorre il continuo numerico [ . . . ]. Secondo me invece
è il continuo intuitivo rettilineo mediante l’idea di punto senza parti rispetto al continuo stesso
che serve a darci le definizioni astratte del continuo, di cui quello numerico non è che un caso
particolare. In questo modo le definizioni non appariscono come uno sforzo della mente nostra,
ma trovano la loro piena giustificazione nella rappresentazione sensibile dei continuo [ . . . ]. E
d’altronde sarebbe veramente meraviglioso che una forma astratta cosi complessa qual’è [sic] il
continuo numerico ottenuto non solo senza la guida di quello intuitivo, ma come si fa oggi da
alcuni autori, da pure definizioni di segni si trovasse poi d’accordo con una rappresentazione così
semplice e primitiva qual’è quella del continuo rettilineo [ . . . ]. Il continuo rettilineo non è mai
composto dai suoi punti ma dai tratti che li congiungono due a due e che sono pur essi continui.
In questo modo il mistero della continuità viene ricacciato da una parte data e costante della
retta ad una parte indeterminata quanto piccola si vuole, che è pur sempre continua, e dentro
alla quale non ci è permesso di entrare più oltre colla nostra rappresentazione».

65 Original Fr. version: p. 110: «Est-il possible que le groupe fondamental de V se réduise à la
substitution identique, et que pourtant V ne soit pas simplement connexe?», p. 46: «simplement
connexe au sens propre du mot, c’est-à-dire homéomorphe à l’hypersphère».

66 «[T]o compute something on a lower energy scale one has to average the contributions of
the degrees of freedom, corresponding to the higher energy scale» (ibid.). Perelman [2072, p.
12] then goes on to identify a statistical analogy, which is «related to the description of the
renormalization group flow»; in one case «one obtains various quantities by averaging over higher
energy states», whereas in the other «those states are suppressed by the exponential factor [ . . . ].
The interplay of statistical physics and (pseudo)-[R]iemannian geometry occurs in the subject of
Black Hole Thermodynamics, developed by Hawking et al.» (cf. Section 7.4.1.2).

67 F. Dyson [828, p. 212, e.a.] writes: «Some mathematicians are birds, others are frogs. Birds fly
high in the air and survey broad vistas of mathematics out to the far horizon. They delight in
concepts that unify our thinking and bring together diverse problems from different parts of
the landscape. Frogs live in the mud below and see only the flowers that grow nearby. They
delight in the details of particular objects, and they solve problems one at a time. I happen
to be a frog, but many of my best friends are birds [ . . . ]. Mathematics needs both birds and
frogs. Mathematics is rich and beautiful because birds give it broad visions and frogs give it
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intricate details. Mathematics is both great art and important science, because it combines
generality of concepts with depth of structures. It is stupid to claim that birds are better than
frogs because they see farther, or that frogs are better than birds because they see deeper. The
world of mathematics is both broad and deep, and we need birds and frogs working together to
explore it».

Such a distinction is somehow re-echoed, in physics, by L. Smolin [2397, chap. 18], who tells
the difference between «seers» (great visionaries-philosophers of thought) and «craftspeople»
(highly skilled people in math-techniques but suffering from myopia in wide-ranging visions); he
dwells on the first category. The seers are dreamers (à la H. Poincaré, A. Einstein, N. Bohr,
E. Schrödinger, W. Heisenberg, J.A. Wheeler, J.S. Bell, D. Finkelstein, R. Penrose, and, more
recently, H.B. Nielsen, G. ’t Hooft and T. Jacobson, just to mention a few), some of which on
the margins of the academic community, but active in a work of redeeming isolation; they are
people who are asking themselves questions on what they are doing when it comes to dealing
with formulæ, rather than moving up with their heads down in the furrow of the “shut up
and calculate” dictate. The seers forge a handrail for the rise of both the humanistic-cultural
understanding of the ongoing scientific operation and the more specialized understanding of the
object/phenomenon/event to which this operation is aimed.

68 This Euler’s study continues and develops in two other papers: Sectio secunda de principiis
motus fluidorum (1770) and Sectio tertia de motu fluidorum lineari potissimum aquae (1771)
divided into five Chapters (chap. I. De principiis motus linearis fluidorum, chap. II. De motu
aquae in tubis aequaliter ubique amplis, chap. III. De motu aquae in tubis inaequaliter amplis,
chap. IV. De elevatione aquae antliarum ope, chap. V. De motu aquae per tubos diverso
caloris gradu infectos). They were presented to the St. Petersburg Academy on March 17, 1766.

69 Below are excerpts from some works by M. Planck:
(1) Planck [2107, p. 238]: «Since the entropy of a resonator is determined by the way in which

the energy is simultaneously distributed over many resonators, I assumed that this quantity could
be evaluated through the introduction of probability considerations [Wahrscheinlichkeitsbetra-
chtungen], the importance of which for the second law of thermodynamics was first discovered
by Mr. Boltzmann [330] in the electromagnetic radiation theory».

(2) Planck [2108, p. 556]: «We now set the entropy SN of the system, within an arbitrary
additive constant, proportional to the logarithm of the probability W [Entropie des Systems
[ . . . ] proportional dem Logarithmus der Wahrscheinlichkeit], so that the N resonators all
together have the energy UN , therefore: SN = k[b] logW + const.».

(3) Planck [2109] = [2110], §§ 119-120: «The logarithmic connection between entropy and
probability was first stated by L. Boltzmann [335, § 6] in his kinetic theory of gases. Nevertheless
our equation [S = k[b] logW ] differs in its meaning from the corresponding one of Boltzmann in
two essential points. Firstly, Boltzmann’s equation lacks the factor k[b], which is due to the fact
that Boltzmann always used gram-molecules, not the molecules themselves, in his calculations.
Secondly, and this is of greater consequence, Boltzmann leaves an additive constant undetermined
in the entropy S as is done in the whole of classical thermodynamics, and accordingly there is a
constant factor of proportionality, which remains undetermined in the value of the probability
W . In contrast with this we assign a definite absolute value to the entropy S. This is a step of
fundamental importance, [since it] leads necessarily to the “hypothesis of quanta” and moreover
it also leads, as regards radiant heat, to a definite law of distribution of energy of black radiation
[ . . . ]. We shall designate the quantity W thus defined as the “thermodynamic probability”, in
contrast to the “mathematical probability”, to which it is proportional but not equal. For, while
the mathematical probability is a proper fraction, the thermodynamic probability is [ . . . ] always
an integer».

(4) Planck [2114, p. 412]: «This constant [k[b]] is often referred to as Boltzmann’s constant,
although, to my knowledge, Boltzmann himself never introduced it—a peculiar state of affairs,
which can be explained by the fact that Boltzmann, as appears from his occasional utterances,
never gave thought to the possibility of carrying out an exact measurement of the constant».

(5) Planck [2113, pp. 41-42]: about the thermal electromagnetic «radiation formula», «I began
to devote myself to the task of investing it with a true physical meaning. This quest automatically
led me to study the interrelation of entropy and probability—in other words, to pursue the line
of thought inaugurated by Boltzmann. Since the entropy S is an additive magnitude but the
probability W is a multiplicative one, I simply postulated that S = k[b] · logW , where k[b] is
a universal constant; and I investigated whether the formula for W , which is obtained when
S is replaced by its value corresponding to the above radiation law, could be interpreted as a
measure of probability».

70 The “probability”—of an event—is not something unconditionally divorced from a deterministic,
or pseudo-deterministic, context. M. Born [381, p. 84]: «The movement of particles follows a
probability law, but the probability [Wahrscheinlichkeit] itself evolves in accordance with the
law of causality [Kausalgesetz ] [to wit], a [complete] knowledge of a state, at a certain instant,
determines the distribution of the state for all later times».

71 Original It. version: «Ebbene, io penso che il moto di danza delle particelle solide estremamente
minute entro un liquido, possa attribuirsi alle differenti velocità che esser devono ad una medesima
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temperatura, sia in codeste particelle solide, sia nelle molecole del liquido che le urtano d’ogni
banda [ . . . ]. E di tal modo il moto browniano, cosi dichiarato, ci fornisce una delle più belle e
dirette dimostrazioni sperimentali dei fondamentali principii della teoria meccanica del calore,
manifestando quell’assiduo stato vibratorio che esser deve e nei liquidi e nei solidi ancor quando
non si muta in essi la temperatura».

72 Original Fr. version: «A proprement parler, il n’y a point de science qui n’ait sa métaphysique,
si on entend par ce mot les principes généraux sur lesquels une science est appuyée».

73 In the 1653 edition this sentence is on p. 483.

74 Let us stop—literary interruption/integration—in the deceptively clapped-out prose of C.E.
Gadda [1064, XI. L’atomo e l’infinito, pp. 149-150, lines 63-123, e.a.], which has the enjoyment
of a fumesophical-like parody (cf. Section 23.1). I leave his text wilfully without En. translation,
because, as A. Arbasino underlines [115, see Genius Loci (1977)], the Gaddian language is
an implacable foisonnement of idiolects, so rich as to appear viscerally composite, intricately
interwoven, and effusively Pantagruelian; a language that, somehow, is a reflected image of the
complexity of the world, referred to as a “muddle” («garbuglio»), “ball of wool” («gomitolo»,
or «gnommero», in Romanesco), “filament of lumps” («filamento di grumi»), or “infinite tangle
of relationships” («groviglio infinito di relazioni»), pertaining to the knotty «multiplicity of
meanings of reality». Here is the jocular Gaddian excerpt: «[L]’umana conoscenza pone a sé
medesima a dover spiegare relazioni sempre più ‘entrelacées’ integrandosi: e questa necessità, per
quel che pertiene al sempre più piccolo, la spinse a dividere le molecole in atomi e gli atomi in
joni [ . . . ]. Questa barocca idea del tagliare [ . . . ] è un’idea grossamente simbolistica che pur nel
palese suo valore di simbolo ha ancora forza di prender la mano al guidatore, come un cattivo
cavallo. Certe tendenze grosse, antropomorfiche del pensiero greco sono come quei fiori spinosi
a forma di pallottola che s’attaccano alle vesti lungo il sentiero, e uno non se ne libera più.

Ancor oggi il ‘témno’ [τέμνω, “cut”] infierisce, e l’atomo e l’jone sono concepiti quantitati-
vamente come frantumi o nuclei ultimi: e sta bene. Ma non si è voluto vedere il senso che la
particola supposta attualmente infima (non dico atomo per ripicco) è soltanto ‘l’ultimo termine
d’un sistema di giustificazioni attualmente noto’ e che questo termine è removibile, col deformarsi
del sistema. Particola supposta infima o atomo è ciò al di là del quale non possiamo o non ci
occorre attualmente di andare per la giustificazione della realtà, nel sistema che di essa ci
siamo fatti.

Insisto su questo: l’espressione prende la mano al pensiero: e il barocco e il pleistocenico
témno, se era degno di Anassimandro, non è degno di Lord Kelvin [Anaximander, or rather,
Democritus, and Kelvin, are all under the same chains of mental turmoil, and Gadda knows it
well, actually: in science, problems change, but they do not disappear].

Atomo è dunque un esempio caratteristico [ . . . ] di quei termini removibili che il sistema
della conoscenza gradualmente rimuove o riscatta, decomponendoli. L’atomo può definirsi
con una analogia infinitesimale. Come l’infinitesimo quantitativo non è un granulo o chicco
piccolissimo (ché allora sarebbe pur sempre un finito) ma è definito in matematica come la
quantità evanescente | ossia più piccola di ogni quantità finita, per quanto piccola; e cioè
l’inconoscibile nella direzione del quantum, e caratteristica sua è quella di non essere misurabile
su un metro o misura finita; così l’atomo è l’evanescente logico, cioè quel così piccolo logico
che permane integro o vergine e non ulteriormente decomposto rispetto al sistema di relazioni
costituente la realtà nota [ . . . ].

Il critico: “Ma l’elettrone?”
Rispondo: “Ci vuol pazienza con voi! Avrete ben capito che ho finito (per vivacità storica)

a chiamar atomo quello che avevo con giusta testardaggine chiamato: ‘particola supposta
attualmente infima’. Cioè ho chiamato atomo la molecola dei fisici, l’atomo dei fisici, l’elettrone
dei fisici, in somma il limite semovente del sistema razionale totale semovente”».

75 Full original Gr. text: «τὸ γὰρ εὖ παρὰ μικρὸν διὰ πολλῶν ἀριθμῶν ἔφη γίνεσθαι. τὸν αὐτὸν
δὴ τρόπον καὶ ἐπὶ ταύτης τῆς τέχνης συμβαίνει διὰ πολλῶν ἀριθμῶν συντελουμένων τῶν ἔργων

μικρὰν ἐν τοῖς κατὰ μέρος παρέκβασιν ποιησαμένους μέγα συγκεφαλαιοῦν ἐπὶ πέρας ἁμάρτημα».

76 This chap. is a reproduction of the article Le hasard, appeared on La Revue du Mois, Vol. III,
1907, pp. 257-276.

77 Let us assume that the final-core of nature is governed by determinism—to be sure, we repeat
it again: it is a speculation, cf. footnote c, p. 453. Then [1584, pp. 3-4]: «We ought to consider
the present state of the universe as the effect of its anterior state, and as the cause of the one
which is to follow. An intelligence which, for an instant, could comprehend all the forces by
which nature is animated, and the respective situation of the beings who compose it, [and] if
[this intelligence] were vast enough to submit these data to analysis, it would embrace in the
same formula the movements of the greatest bodies of the universe and those of the lightest atom
[embrasserait dans la même formule, les mouvemens des plus grands corps de l’univers et
ceux du plus léger atome]: nothing would be uncertain for it, and the future, as the past, would
be present to its eyes [rien ne serait incertain pour elle, et l’avenir comme le passé, serait
présent à ses yeux ]. The human mind [esprit] offers [ . . . ] a faint sketch [faible esquisse] of this
[supreme] intelligence [ . . . ]. All [our] efforts in the search for truth tend to bring [our mind]
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closer to [such] a intelligence, but from which it will always remain infinitely distant [toujours
infiniment éloigné]».

78 From the short documentary by E. Morris, Big Brains. Small Films. Benoît Mandelbrot, The
Father of Fractals. The conversation dates back to September 2010.

79 The fortune and applicative extensibility of fractals is well known, and is often invoked as
a crocevia of synthesis for criteria of unity between theories in (apparent) contrast, such as
relativity and quantum mechanics, or between theories of macroscopic level and theories of
microscopic level; see, in this direction, L. Nottale [1960], and Nottale & Lehner [1961].

80 Original It. version: «La meccanica quantistica ci ha insegnato a vedere nella legge esponenziale
delle trasformazioni radioattive una legge elementare non riducibile ad un più semplice meccan-
ismo causale. Naturalmente anche le leggi statistiche note alla meccanica classica e riguardanti
sistemi complessi, conservano la loro validità secondo la meccanica quantistica. Questa modifica
peraltro le regole per la determinazione delle configurazioni interne, e in due modi diversi, a
seconda della natura dei sistemi fisici, dando luogo rispettivamente alle teorie statistiche di
Bose-Einstein, o di Fermi. Ma l’introduzione nella fisica di un nuovo tipo di legge statistica, o
meglio semplicemente probabilistica, che si nasconde, in luogo del supposto determinismo, sotto
le leggi statistiche ordinarie obbliga a rivedere le basi dell’analogia che abbiamo stabilita più
sopra con le leggi statistiche sociali».

81 T. Tao, Comment, 9 Oct., 2007, in Simons Lecture I: Structure and randomness in Fourier
analysis and number theory = [2456, pp. 155-164], from What’s new [weblog]. Updates on my
research and expository papers, discussion of open problems, and other maths-related topics,
by T. Tao.

82 Original Fr. version: «Il existe, en effet, pour ces sortes d’équations, un certain ordre de
considérations Métaphysiques qui planent sur tous les calculs, et qui souvent les rendent inutiles.
Je citerai, par exemple, les équations qui donnent la division des fonctions Elliptiques et que le
célèbre Abel a résolues [ . . . ]. Tout ce qui fait la beauté et à la fois la difficulté de cette théorie,
c’est qu’on a sans cesse à indiquer l’[analyse] des calculs et à prévoir les résultats sans jamais
pouvoir les effectuer».

83 Original Fr. version: «On trouvera ici une condition générale à laquelle satisfait toute équation
soluble par radicaux, et qui réciproquement assure leur résolubilité».

84 Original It. version: «Il criterio di ricerca così splendidamente fatto valere da Abel “porre i
problemi nell’aspetto più generale per scoprirne la vera natura”, designava l’indirizzo dell’Analisi
che vuol liberare la conoscenza dei rapporti qualitativi dalle complicazioni accidentali dei calcoli,
cioè appunto quell’indirizzo di cui è massima attuazione la teoria geometrica delle equazioni e
delle funzioni algebriche».

85 A small marble commemorative plaque reports exactly this, Scipione Dal Ferro «primo solutore
dell’equazione cubica. Lettore nello Studio dal 1496 al 1525». It can be found affixed to his
paternal home in Bologna, in via S. Petronio Vecchio near the intersection of via Guerrazzi.

86 Fol. 3: «Scipione Dal Ferro of Bologna has solved the case of the cubic equation [capitulum
cubi, “capitulum” is for a family of equations], excellent and admirable accomplishment; such
an art surpasses all human subtlety [ . . . ]. In emulation of him, my friend Niccolò Tartaglia of
Brescia, wanting not to be outdone, was able to solve the same case when he showed it in a
challenge with his [Dal Ferro’s] pupil, Antonio Maria Del Fiore and, pushed by my numerous
entreaties, [Tartaglia] gave it to me»; fol. 29-ii: «Scipione Dal Ferro of Bologna almost thirty
years ago discovered this rule and handed it on to Venetian Antonio Maria Del Fiore, whose
challenge with Niccolò Tartaglia of Brescia was the occasion for Niccolò to discover it; and he
[Tartaglia], in response to my entreaties, gave it to me, but kept the proof to himself. With
the support of this assistance, I found the demonstration in multiple forms, which was very
difficult».

87 Within these pages is the Tartaglia’s short composition in verse with a sibylline solution of the
cubic: «Quando chel cubo con le cose apresso / Se aguaglia à qualche numero discreto / Trouan
dui altri differenti in esso / Dapoi terrai questo per consueto / Ch’el lor produtto sempre sia
eguale / Al terzo cubo delle cose neto / El residuo poi suo generale / Delli lor lati cubi ben
sottratti / Varra la tua cosa principale».

88 In the 1509 printed edition, both smooth breathing and acute accent are absent.

89 This is the first document in which Feynman diagrams appear.

90 Original It. version: «Un pregiudizio che va eliminato ritiene la matematica interessata solo agli
aspetti quantitativi e non agli aspetti qualitativi delle cose, pensa che la matematica sia nemica
della fantasia e della libertà. In realtà la matematica, se ben compresa, allarga le capacità di
immaginazione di una persona. Per esempio non avremmo avuto tutto lo sviluppo della fisica
moderna se l’immaginazione matematica non fosse arrivata all’idea di spazio a infinite dimensioni;
parimenti l’idea di superficie e varietà con diverse curvature rende possibile l’immaginazione di
uno spazio-tempo curvo».
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91 Original Fr. version: «[J]e ne prétends ni n’ai jamais prétendu être de la confidence secrète
de la Nature. Elle a des voies obscures et cachées que je n’ai jamais entrepris de pénétrer; je
lui avois seulement offert un petit secours de géométrie au sujet de la réfraction [ . . . ]; je vous
abandonne de bon cœur ma prétendue conquête de physique, et il me suffit que vous me laissiez
en possession de mon problème de géométrie tout pur et in abstracto, par le moyen duquel on
peut trouver la route d’un mobile qui passe par deux milieux différents et qui cherche d’achever
son mouvement le plus tôt qu’il pourra».

92 Original It. version: «Un altro esempio evidente di leggi fisiche che traducono principî di minimo
o massimo si ha nelle leggi dell’equilibrio di un liquido senza peso, sottomesso soltanto alle forze
molecolari. Come Plateau ha dimostrato sperimentalmente, introducendo dell’olio d’oliva in
una miscela di acqua ed alcool, di ugual peso specifico, il peso dell’olio viene equilibrato dalla
spinta che, secondo il principio di Archimede, esso riceve dalla miscela in cui è immerso, e l’olio
si comporta come se fosse realmente sottratto all’azione della gravità [ . . . ]. Plateau provò, ad
esempio, che una massa, nelle condizioni precedenti e libera, assume la forma sferica, rispondente
cioè alla soluzione del problema, di Calcolo delle Variazioni, della superficie di area minima
che racchiude un dato volume. E tutte le molteplici esperienze da lui fatte [ . . . ] mostrano che
sempre risulta verificato un principio di minimo o massimo, quello del minimo o massimo del
potenziale delle forze agenti, corrispondenti, il minimo, a condizioni di equilibrio instabile, il
massimo, a condizioni di equilibrio stabile. Ed a questa medesima conclusione conducono anche
altre esperienze, dello stesso Plateau, sulle figure di equilibrio delle lamine liquide sottilissime,
ottenute mediante le bolle di sapone o immergendo in acqua e sapone dei supporti di fil di ferro».

93 Original Fr. version: «Si une surface minima S est représentée par l’équation z = f(x, y) où
f admet des dérivées continues des deux premiers ordres pour toute valeur réelle de (x, y), la
surface S se réduit à un plan».

94 Extended original It. version: «È merito recente del signor Hilbert [1352] di aver richiamata
l’attenzione dei matematici sul procedimento induttivo che, sull’esempio del Riemann [2206],
si usa ricordare col nome di principio di Dirichlet; principio pel quale, dall’esistenza di un
limite inferiore dei valori di un integrale contenente una funzione indeterminata, soggetta solo
a date condizioni al contorno del campo di integrazione, dovrebbe concludersi l’esistenza di
una funzione limite la quale soddisfaccia alle nominate condizioni e che, sostituita alla funzione
indeterminata, faccia assumere all’integrale considerato precisamente il valore di quel limite
inferiore. L’insufficienza del principio fu rilevata con particolare evidenza dal Weierstrass [2615],
e dopo d’allora gli sforzi dei matematici rimpetto ai problemi che esso era destinato a risolvere
si rivolsero a costruire le funzioni richieste come soluzioni di equazioni, in cui, sotto convenienti
ipotesi di continuità e di derivabilità, si traducevano le condizioni di minimo. Eppure il principio
non solo conserva una particolare forza suggestiva, ma un larghissimo valore di capacità deduttiva
non si potrà disconoscergli per le dimostrazioni d’esistenza, ove appena si rifletta che in esso si
assume come fondamento l’intuizione a priori dell’aggregato di tutte le funzioni».

95 Extended original It. version [1059, pp. 121, 125]: «[Il] principio di minimo di Dirichlet [ . . . ]
è, insieme alla teoria delle equazioni integrali, il più potente strumento, che l’analisi odierna
fornisca per stabilire i teoremi di minimo relativi ai cosid[d]etti problemi al contorno [ . . . ]. Il
dedurre poi i teoremi di esistenza [ . . . ] dal principio di minimo rende assai più armonico e
completo il calcolo delle variazioni [ . . . ]. Per completare il nostro studio la parte essenziale è
quella di dimostrare che la nostra funzione quasi-limite [cioè una funzione continua coincidente
nei punti non eccezionali con la funzione limite di partenza, che è integrabile secondo Lebesgue
(anziché secondo Riemann)] possiede derivate ed è armonica, e che essa sul contorno soddisfa alle
condizioni imposte [ . . . ]. Per un tale studio i metodi finora applicati sono veramente deficienti,
in quanto che ricorrono a vie indirette, girando, piuttosto che superando la difficoltà. Esse si
basano in sostanza su certe proprietà integrali delle funzioni armoniche, da cui scenda come
conseguenza la proprietà differenziale che la somma delle loro due derivate seconde non miste è
uguale a zero. Tra le proprietà integrali che hanno servito a tale scopo noi ricorderemo p. es. la
formola di Green, il teorema della media di Gauss o più generalmente la formola di Poisson per
campi circolari [ . . . ]. Ma questi metodi, pure essendo sufficienti per i problemi di minimo che
conducono a funzioni armoniche, e pure potendosi facilmente generalizzare a molte equazioni
differenziali lineari, questi metodi, dico, sono insufficienti per casi più generali, p. es. per il
problema di Plateau».

96 When it was established, Dirichlet’s principle was taken into consideration by B. Riemann. K.
Weierstrass [2615] is among the first to blame the principle, asserting that its proof (in Riemann’s
original formulation) is mathematically unsatisfactory. At the end of the nineteenth century,
and at the beginning of the following century, Dirichlet’s principle, after a re-elaboration with
direct methods, is consolidated, and has a new life.

The renewed attention of scientific opinion on the principle is attracted by Hilbert, who
mentions it in his list of 23 mathematical problems from International Congress of Mathematicians
of 1900 in Paris, see [212, pp. 1-10]. This is the problem № XX [1353, p. 289] = [1355, pp.
103-104]. The first to launch the technique of direct methods, building upon the Dirichlet
problem, is C. Arzelà [141]; then there are D. Hilbert [1352] [1356], J. Hadamard [1252], B. Levi
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[1621] [1622], G. Fubini [1057] [1059], H. Lebesgue [1589]. A story that mixes intuition and a
search for rigor.

97 Original It. version: «Per una dimostrazione completa dei teoremi di esistenza e di unicità
occorrevano, invero, mi sembra, innanzi tutto un metodo generale di studio dei problemi esisten-
ziali che, esplicitando i sottintesi degli antichi metodi di “prolungamento”, prosecuzione analitica
e procedimento iterato di approssimazioni successive, permettesse di evitare il ricorso caso per
caso a speciali artifizî, calcoli laboriosi, dimostrazioni delicate di convergenza, vere soprastrutture
analitiche mascheranti spesso fatti fondamentalmente semplici; e poi una trattazione approfon-
dita delle equazioni ellittiche a derivate parziali, che rendesse conto in particolare delle proprietà
di regolarità delle soluzioni in dipendenza dalle analoghe proprietà dei coefficienti».

98 Note the subtleness: the word axiom comes from the Gr. ἄξιος, “worthy” of “consideration”,
“trust”, “belief”, or “faith”.

99 The works of G. Vallortigara, a neuroscientist, can give some hints on this. We point out,
among many others, his popular book [2550], from which the following observation is taken on
p. 18: «[O]ur symbolic knowledge of number rests on something more ancient and deeper, a
pre-verbal and pre-symbolic, analogical and approximate representation that we share with other
animal species and that is present in children before they can speak or have received any formal
mathematical education. It would therefore seem that the “sense of number”, [a] non-verbal and
non-symbolic [sense], is really a numerical competence, and not a perceptive-sensorial capacity
of another nature».

S. Dehaene, a cognitive neuroscientist active in the field of mathematics, is also mentioned
throughout the book (see Section 22.1.6.3); he provides further food for thought.

100 The following consideration from Borel via Fréchet [1030, pp. 25-26] is less fanatic and
historically more prudent, so it is more acceptable: «“I try to show that Mathematics is not a
purely abstract game of the mind [un jeu purement abstrait de l’esprit], but, on the contrary,
is in close connection with concrete reality [étroite connexion avec la réalité concrète]”.

It was the study of physical phenomena that suggested the notions of “continuity”, “derivative”,
“integral”, “differential equation”, “vector” and “vector calculus”. And these notions, by a fair
return, are part of the scientific baggage necessary for any physicist; through [these notions]
he is capable of interpreting the results of his experiments [ . . . ]. If new physical phenomena
suggest new mathematical models, mathematicians will have to devote themselves to the study of
these new models and their generalizations with the legitimate hope that the new mathematical
theories, thus constituted, will prove fruitful, by providing in turn to physicists useful forms
of thought. In other words, the evolution of Physics must correspond to an evolution of
Mathematics [à l’évolution de la Physique doit correspondre une évolution des Mathématiques]
which, without of course abandoning the study of classic and proven theories, have to develop
taking into account the results of experience.

It is always in contact with Nature that mathematical Analysis has renewed itself [C’est
toujours au contact de la Nature que l’Analyse mathématique s’est renouvelée]; it is only
thanks to this permanent contact that it [mathematical Analysis] was able to escape the danger
of becoming a pure symbolism that turns circularly on itself [un pur symbolisme, tournant en
rond sur lui-même]».

101 Penrose’s belief is the one that will be replicated by Mandelbrot himself [1751, chap. 25,
A Turning Point in Mathematics]: «I don’t feel I “invented” the Mandelbrot set: like all of
mathematics, it has always been there, but a peculiar life orbit made me the right person at
the right place at the right time to be the first to inspect this object, to begin to ask many
questions about it, and to conjecture many answers. Though it had not been seen before, I had
a very strong feeling that it existed but remained hidden because nobody had the insight to
identify it».

102 It seems kooky that the man who wrote these words was that Conway [687], who built his fame
pre-eminently as a wizard-inventor of numbers. See e.g. chapp. 0 (All Numbers Great and
Small) and 3 (The Structure of the General Surreal Number) in [687], where the construction
of the surreal numbers is uncovered.

103 From the poem Spruch des Konfucius.

104 Here is the Laplacian passage [1582, p. 94] in full: «Si l’homme s’étoit borné à recueillir des
faits; les sciences ne seroient qu’une nomenclature stérile, et jamais il n’eût connu les grandes loix
de la nature. C’est en comparant entr’eux les phénomènes, en cherchant à saisir leurs rapports;
qu’il est parvenu à découvrir ces loix toujours empreintes dans leurs effets les plus variés». It is
through the comparison between (variegated) phenomena, trying to capture their relationships,
that, according to Laplace, we are led to the laws of nature.

105 Extended original It. version: «Nel 1735 Linneo, visitando un giardino ad Amburgo, annota sul
suo taccuino l’epigrafe scritta sull’ingresso: “Non fare alcun male e non ne verrà alcuno a te, così
come l’eco ti rimanda il tuo stesso grido nel bosco”. È l’anno in cui egli pubblica la prima edizione
del Systema Naturæ, la grande classificazione che farà di lui un sovrano e un simbolo delle scienze
naturali, uno scrittore dal quale Rousseau diceva, riferendosi specialmente alla sua Philosophia
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Botanica, di aver tratto più profitto che da qualsiasi libro di morale. I grandi moralisti, capaci
di scandagliare a fondo la vita e la sua anarchia, sono incalzati dal demone dell’ordine, dalla
passione di catalogare, definire; questa passione di totalità è votata alla sconfitta, perché nessun
sistema imbriglia completamente l’imprevedibile irregolarità dell’esistenza, ma soltanto il lucido
e geometrico amore del sistema permette di capire veramente l’originalità della vita, il suo scarto
rispetto alla legge.

È l’enciclopedia, col suo rigoroso ordine alfabetico e col suo catasto, che evoca l’immagine caot-
ica e proliferante della realtà; chi civetta col disordine e si atteggia in pose confuse, sparpagliando
le carte sul suo tavolo per darsi un tocco di sregolatezza geniale, è un retore innocuo e beninten-
zionato, come chi esibisce la propria distrazione o la propria giovinezza scapestrata e difficilmente
potrà comprendere la demonicità dell’esistenza.

Rousseau aveva ragione di scorgere nel grande botanico svedese un maestro di morale ossia di
procedure concettuali che educano il pensiero a penetrare l’ambigua e infida molteplicità del
mondo».

106 An explicit reference to Sylvester is found in the English edition of J.A.E. Dieudonné’s work
Pour l’honneur de l’esprit humain. Les mathématiques aujourd’hui (Hachette, Paris, 1987),
transl. by H.G. and J.C. Dales as Mathematics – The Music of Reason (Springer-Verlag, Berlin,
Heidelberg, 19982c.pr), just to recollect the close and universal relationship between mathematics
and music.

107 An essay that tries to break into the unconfined empire of ambiguity in mathematics, but also,
parallelly, in literature, is [1683, see capp. VIII-XII, pp. 77-209].

108 The same analogy is already in a 1926 paper [974] dedicated to the adiabatic principle and the
vis viva in the wave mechanics, co-written with E. Persico.

109 Original Fr. version: «L’imagination dans un géomètre qui crée, n’agit pas moins que dans un
poète qui invente. Il est vrai qu’ils opèrent différemment sur leur objet: le premier le dépouille
et l’analyse, le second le compose et l’embellit [ . . . ]. De tous les grands hommes de l’antiquité,
Archimède est peut-être celui qui mérite le plus d’être placé à côté d’Homère».

110 Almost by osmosis, there are poetic styles full of jocose mathematics, see, for instance, the
Oulipian group with its constraints of writing.

111 The first part of the passage cited is taken from a chap. entitled Les Mathématiques et la
Logique, whose source material is the article published in Rev. métaphys. et mor., Tome XIII,
№ 6, 1905, pp. 815-835. The second passage is taken from a chap. entitled Les définitions
mathématiques et l’Enseignement, whose source material dates back to a Poincaré’s Conférences
du Musée Pédagogique (1904), under the title Les définitions générales en mathématiques, and
then published in L’Enseignement des sciences mathématiques et des sciences physiques, par
H. Poincaré, G. Lippmann, L. Poincaré, P. Langevin, É. Borel, F. Marotte, Imprimerie nationale,
Paris, 1904, pp. 1-28; secondly it appeared in Enseign. Math., Tome VI, 1904, pp. 257-283.

112 One area in which Gödel’s incompleteness theorems offer a vast service is the study of computa-
tional complexity. See on this J. von Neumann and H.H. Goldstine [1929] [1930] [1931]. The
two authors investigate the problem of the inevitable transmission of errors in the arithmetical
operations elaborated by an electronic computing machine, or “computer”. The appearance of
truncated or rounded results, is imposed by the approximation of irrationals, with a deviation
from a “true” numerical solution, as well as an increasing accumulation of inaccurate processes
(a computer manages an immense amount of data better/faster than the human brain, but it
performs operations by making use of numbers with finite decimal expansions). Other sources of
error concerning current computers are:

· the translation of the mathematical continuum, of the field R of real numbers, into an
arithmetico-computable discretuum (this is why any continuous analytic R-value is finitized, and
any irrational number is, at some “point”, truncated),

· the replacement of non-linear partial differential equations with linear algebraic equations.

113 In light of the endnote 112, J.A.E. Dieudonné’s comment [777, pp. 27-28], although it dates
back to 1981, on Gödel’s results is perhaps too hasty, and it runs the risk of appearing superficial,
even if the core of what Dieudonné says is partially true: «We can admire the acuteness and
depth of the research that led to Gödel’s, P. Cohen’s [ . . . ] metamathematical theorems [ . . . ]
but they did not have any influence (neither positive nor negative) on the solution of the vast
majority of the problems, which are of interest to mathematicians».

114 This is the line in question [495, p. 564]: «The essence of mathematics lies precisely in its
freedom (das Wesen der Mathematik liegt gerade in ihrer Freiheit)», and it dates back to 1883.
We note in passing that Cantor also embraced another position (although without betraying the
profound sense of freedom in mathematics), which is perhaps more Platonic; read the following
La. phrases, in his papers:
· [491, p. 62, Theses III, from 1869]: «Numeros integros simili modo atque corpora coelestia
totum quoddam legibus et relationibus compositum efficere», i.e., «Integers with their laws and
relations constitute a totality in the same way as the celestial bodies».
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· [498, p. 481, from 1895]: «Neque enim leges intellectui aut rebus damus ad arbitrium nostrum,
sed tanquam scribae fideles ab ipsius naturae voce latas et prolatas excipimus et describimus»,
i.e., «We do not make the laws of thought and things at [our] discretion, but, as faithful scribes,
we receive and describe those [laws] established and transmitted by the voice of nature itself».

115 C.T. Kowal & S. Drake [1539] have historically reconstructed that the pre-discovery (first
recorded observation) of Neptune belongs to Galileo; he indicates Neptune by the letter b in his
notebook, on 27 December 1612, hour 15:46, mistaking it for a stella fissa.

116 Cf. Intro, p. xxxi.
117 An early—if not the first mathematically accurate—example of symmetry breaking was provided

by C.G.J. Jacobi [1430].
118 See the article of F.E. Browder [432], who deserves credit for filling seven and a half pages in

three columns without saying anything relevant about the question that opens his article (Does
pure mathematics have a relation to the sciences?). He writes (p. 548): «Because of its origins
and its nature, mathematics is not unreasonably effective [à la Wigner] in the physical sciences:
it is simply (though surprisingly) effective». Right, and then?

119 S.D. Poisson [2145, p. 5]: «En lui donnant le titre de Théorie mathématique de la chaleur, j’ai
voulu indiquer qu’il s’agira de déduire, par un calcul rigoureux, toutes les conséquences d’une
hypothèse générale sur la communication de la chaleur, fondée sur l’expérience et l’analogie. Ces
conséquences seront alors une transformation de l’hypothèse même, à laquelle le calcul n’ôle et
n’ajoute rien».

120 I refer to Mr. K. (it is clear, is not it?). The a priori notion of space, in K.’s sense, went
in crisis with the introduction of all non-Euclidean geometries (cf. Gauss in footnote b on p.
395). A demolishment of the a priori notion of time, in K.’s sense, is in G. Cantor [496, p.
403]: «[I]n my opinion, the introduction of the notion of time or the idea of time should not
serve to explain the much more primitive and more general notion of the continuum; time, in
my opinion, is an idea that presupposes, in order to be clearly explained, the notion of the
continuity, independent of that of time, and that, even with such a notion of continuity, [time]
can neither be conceived objectively as a substance, nor subjectively as a necessary [and] a
priori idea; this idea of time is only an auxiliary and relative idea, as serving to establish the
relationship between the various movements occurring in nature and that we perceive. Thus
there is nothing in nature resembling an objective or absolute time, and consequently one cannot
take [the notion of] time as a measure of movement, but on the contrary one could consider [the
notion of] movement as a measurement of time [le mouvement comme mesure du temps]».

121 This chap. is a reproduction, with minor changes, of the article La Relativité de l’Espace,
appeared on L’Année psychologique, Tome XIII, 1906, pp. 1-17.

122 Original and not modified It. Petrolini’s monologue: «Non fermarsi alla superficie, ascoltare
bene quello che c’è dentro, quello che c’è sotto. È il mio motto: sempre più dentro, sempre
più sotto . . . : “Se l’ipoteposi del sentimento personale, prostergando i prologomeni della sub-
coscienza, fosse capace di reintegrare il proprio subiettivismo alla genesi delle concominanze,
allora io rappresenterei l’autofrasi della sintomatica contemporanea, che non sarebbe altro che
la trasmificazione esopolomaniaca . . . ” Che ve ne pare, eh?» (original audio recording; place and
date of the show: unknown).

123 Original It. version: «Il problema è che i fatti da soli non costituiscono scienza: questa trae
la sua realtà, la sua vita, da una attività dello spirito. I fatti vengono interpretati, collegati,
ripensati in una unità affatto nuova. Quelli che noi chiamiamo correntemente “fatti” sono di
solito elaborati mentali complicatissimi in cui il dato sensoriale e dell’esperienza è combinato in
modo estremamente complesso con elementi mentali in gran parte arbitrari. E alla descrizione
dei fatti si aggiungono esigenze sempre più vincolanti di concatenazione logica e di significatività
operativa, cioè di effettiva possibilità di agire in un determinato modo».

124 Compare the above-mentioned letter with A. Einstein [879, p. 684]: «The scientist [ . . . ] must
appear to the systematic epistemologist as a type of unscrupulous opportunist: he appears as
realist insofar as he seeks to describe a world independent of the acts of perception; as idealist
insofar as he looks upon the concepts and theories as the free inventions of the human spirit
(not logically derivable from what is empirically given); as positivist insofar as he considers his
concepts and theories justified only to the extent to which they furnish a logical representation
of relations among sensory experiences».

125 The Ge. version [316, pp. 484-485] is: «[D]er Unmöglichkeit einer strengen Trennung von
Phänomen und Beobachtungsmittel [ . . . ]; keine strenge Trennung zwischen Objekt und Subjekt
aufrecht zu erhalten ist, da ja auch der letztere Begriff dem Gedankeninhalt angehört». His credo
is: we are dealing with «the impossibility of a strict separation of phenomenon and instrument
for observation [ . . . ]; no strict separation between object and subject can be maintained», since
everything «belongs to the thought content».

126 Duhem’s sentence has been a little modified, but the meaning of what he says has not been
betrayed. The original sentence is this: «Que de discussions scientifiques où chacun des deux
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tenants prétend écraser son adversaire sous le témoignage irrécusable des faits! On s’oppose l’un
à l’autre des observations contradictoires. La contradiction n’est pas dans la réalité, toujours
d’accord avec elle-même; elle est entre les théories par lesquelles chacun des deux champions
exprime cette réalité». A thought like that, even if in a completely different context, echoes
in a more recent statement by Feynman, about the Space Shuttle Challenger disaster (1986):
«[R]eality must take precedence over public relations, for nature cannot be fooled» (Personal
Observations on Reliability of Shuttle, in Report of the Presidential Commission on the Space
Shuttle Challenger Accident, Vol. 2, Appendix F).

127 A. Einstein in W. Heisenberg [1326, p. 63]: «[I]t may be heuristically useful to keep in mind
what one has actually observed. But on principle, it is quite wrong to try founding a theory
on observable magnitudes alone. In reality the very opposite happens. It is the theory which
decides what we can observe».

We are at the polar opposite of a phenomenological physics of Fermi. He did not have theoretical
preset schemes, but convenient reasonings, or flexible models (guidelines, not strict rules), which
are able, from time to time, to adapt plastically, and pragmatically, to the experiments (observable
magnitudes); see V. Barone [199, pp. xxxiv-xxxix]. The art of “shaping”—πλαστική (τέχνη)—is
ancient.

128 Nihil sub sole novum. As J.F.W. Herschel [1336, § 108, p. 100] already wrote: the «radical
error» of the Greek thought it was «to imagine that the same method which proved so eminently
successful in mathematical, would be equally so in physical, enquiries, and that, by setting out
from a few simple and almost self-evident notions, or axioms, every thing could be reasoned out».
Actually, this is only partly true, because the variegated richness of Hellenistic science (with its
peaks of excellence, in the pre-Imperial age) gets forgotten: reading e.g. Euclid—all Euclid, not
only the “geometric” one—exclusively with the lens of the axiomatic method, disconnected from
the observed phenomena, is nothing short of reductive.

129 This distinction within the community of theoretical physicists is already patent in mathematical
physics. See e.g. V. Volterra [2594, pp. 912-913]: «There are two kinds of mathematical physics
[ . . . ]. In most cases the people who are greatly interested in one despise somewhat the other.
The first kind [of mathematical physics] consists in a difficult and subtle analysis connected with
physical questions. Its scope is to solve in a complete and exact manner the problems which
it presents to us. It endeavors also to demonstrate by rigorous methods statements which are
fundamental from mathematical and logical points of view [ . . . ]. The other kind of mathematical
physics has a less analytical character, but forms a subject inseparable from any consideration
of phenomena. We could expect no progress in their study without the aid which this brings
them».

130 We are still stuck where E. Fermi was, in 1929 [966, p. 41, Barone’s Ed.]: «In the physics of
macroscopic phenomena, all future states of a system subtracted from any external perturbation
are univocally determined by the knowledge of the initial state of the system itself (determinism).
Instead, there are various reasons that seem to indicate that such a deterministic principle is
not valid in the microscopic world of atoms. The apparent macroscopic determinism would be
solely the result of the fact that, in [our] macroscopic observations, only averages of numerous
phenomena[,] occurring in the atoms constituting the different bodies[,] are observed. No one
will escape the enormous importance of this question and the profound change that would take
place in our views on natural phenomena, the day we were actually forced to realize that physical
determinism is only a property of average, no longer valid when one operates over a single atom.
It is precisely from a profound study of elementary phenomena that the answer to this exciting
problem can be obtained; that is, it will be possible to see whether the apparent indeterminism
of elementary phenomena derives from the fact that the observation of some cause has been
omitted, or whether it represents one of the fundamental laws of the atomic world».

131 Let us pause a moment, and widen our vision. Prejudices—biases, illusions, misapprehensions,
false impressions, chimeras, dogmas, linguistic swindles, etc.—are acutely categorized by F.
Bacon as idols [169, Lib. I, XXXIX, p. 213]. Mathematics & physics, and all the sciences fall
into this idolatrous chasm. Four types of idols are outlined in the Baconian classification.

· Idola tribus [169, Lib. I, XLI, pp. 214-216]: «The idols of the tribe are founded in human
nature itself and in the very tribe or race of mankind. The assertion that the human senses
are the measure of things is false [Falso enim asseritur sensum humanum esse mensuram
rerum]; on the contrary, all perceptions, both of sense and the mind, are on a human scale,
and not on a scale of the universe [omnes perceptiones, tam sensus quam mentis, sunt ex
analogia hominis, non ex analogia universi]. The human understanding resembles an uneven
mirror [intellectus humanus instar speculi inaequalis] receiving rays [irregularly] from things
and merging its own nature with the nature of things, which [resultantly] distorts and corrupts
it [distorquet et inficit]».

· Idola specus [169, Lib. I, XLII, pp. 216-217]: «The idols of the cave are the misconceptions
of the individual man. Every single one of us (in addition to the aberrations of human nature
in general) has a kind of individual cave or cavern [specum sive cavernam] which fragments
and corrupts the light of nature [quae lumen naturae frangit et corrumpit]: either from the
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unique and particular (pre)disposition of each one; or from his education and the company
with others; or from his reading of books, and the authority of those whom he cultivates and
admires; or from the different impressions encountered on the mind, [be the mind] preoccupied
and prejudiced, or calm and distant, and so forth: so that the human spirit [spiritus humanus]
(under the dispositions of individual men) is a variable thing, and quite irregular, and almost
haphazard [res varia, et omnino perturbata, et quasi fortuita]».

· Idola fori [169, Lib. I, XLIII, p. 217]: «There are also illusions that are being born from
[interpersonal] intercourse and human association, which we call idols of the market, because of
the trade and the community between men. Mankind, in fact, associates through conversation;
words are chosen with the purpose of being understood by the common people. And thus a bad
and inept application of words obstructs the intellect in admirable ways [mala et inepta verborum
impositio miris modis intellectum obsidet]. Neither the definitions nor the explanations, with
which learned men are wont to defend and somehow protect themselves, are able to restore [the
situation]. Plainly words do violence to the understanding, and perturb everything [verba plane
vim faciunt intellectui, et omnia turbant]; and lead men into stupid and innumerable disputes
and spaciousnesses [inanes et innumeras controversias et commenta]».

· Idola theatri [169, Lib. I, XLIV, p. 218]: «To finish off, there are idols, which have crept into
men’s minds from the various dogmas of philosophies [ex diversis dogmatibus philosophiarum],
and even from the perverted rules of demonstration [ex perversis legibus demonstrationum];
these we call idols of the theatre; for all the philosophies received or invented [receptae aut
inventae] are, for us, so many fables [tot fabulas] produced and performed, which have created
fictitious and scenic worlds [mundos effecerunt fictitios et scenicos] [ . . . ]. And we are referring
not only to the general [systems of] philosophy, but also to the numerous principles and axioms
of the sciences [sed etiam de principiis et axiomatibus compluribus scientiarum], which exhibit
a vigorous growth from tradition, belief and negligence [quae ex traditione et fide et neglectu
invaluerunt]».

132 The exact phrase of Goethe is: «die Erfahrung nur die Hälfte der Erfahrung ist», in [1175, p.
262].

133 Original Fr. version: «L’étude approfondie de la nature est la source la plus féconde des
découvertes mathématiques [ . . . ]. L’analyse mathématique a donc des rapports nécessaires avec
les phénomènes sensibles; son objet n’est point créé par l’intelligence de l’homme, il est un
élément préexistant de l’ordre universel, et n’a rien de contingent et de fortuit; il est empreint
dans toute la nature». It is telling that the motto of this work [1021, p. 1] is Et ignem regunt
numeri.

134 Original Fr. version: «L’équation différentielle est celle qui exprime une relation entre les
fonctions d’une ou de plusieurs variables, et les fluxions de divers ordres prises par rapport à
certaines de ces variables. On a reconnu que ces relations n’appartiennent pas seulement à la
science abstraite du calcul: elles existent dans les propriétés des courbes et des surfaces, dans
les mouvements des solides et des fluides, dans la distribution de la chaleur, et dans la plupart
des phénomènes naturels. Les lois les plus générales du monde physique sont exprimées par des
équations différentielles».

135 It is a popular proverb, aka law of the instrument, which can be a real device/tool or a state of
mind. Before Maslow, it was formulated by other authors; but its purport is about the same. It
reads as follows: “If the only tool you have (in your hand) is a hammer, everything will seem
like a nail”.

136 Original It. version: «Qua io m’aspetto un rabbuffo terribile da qualcuno de gli avversarii;
e già parmi di sentire intonar negli orecchi che altro è il trattar le cose fisicamente ed altro
matematicamente, e che i geometri doveriano restar tra le lor girandole, e non affratellarsi con le
materie filosofiche [della natura], le cui verità sono diverse dalle verità matematiche; quasi che
il vero possa esser più di uno; quasi che la geometria a i nostri tempi progiudichi all’aqquisto
della vera filosofia [della natura], quasi che sia impossibile esser geometra e filosofo [della natura,
ossia fisico], sì che per necessaria conseguenz[a] si inferisca che chi sa geometria non possa saper
fisica, nè possa discorrere e trattar delle materie fisiche fisicamente».

137 Personal note. His description [2525, pp. 48-56] of the imagination, always ready to run wild,
while the gaze is turned out of the window during a train journey, corresponds to my experience.
The contemplation of the landscape—when I travel alone by train—is my second, copious, fount
of inspiration; the first one is the Morpheusian trip in the state of half-sleep (cf. Intro, p.
xxxviii).

138 In light of this, the Tagore–Einstein conversation [2449, pp. 42-43] on the nature of reality is
riveting, especially in the context of the quantum measurement problem:

A. Einstein: «There are two different conceptions about the nature of the Universe: (1) The
world as a unity dependent on humanity, (2) the world as a reality independent of the human
factor».

R. Tagore: «This world is a human world—the scientific view of it is also that of the scientific
man. Therefore, the world apart from us does not exist; it is a relative world, depending for its
reality upon our consciousness».
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A. Einstein: «If there is a reality independent of man, there is also a truth relative to this
reality; and in the same way the negation of the first engenders a negation of the existence of the
latter [ . . . ]. [I]n our everyday life we feel compelled to ascribe a reality independent of man to
the objects we use. We do this to connect the experiences of our senses in a reasonable way. For
instance, if nobody is in this house, yet that table remains where it is [ . . . ]. If nobody would be
in the house the table would exist all the same».

R. Tagore: «Science has proved that the table as a solid object is an appearance and therefore
that which the human mind perceives as a table would not exist if that mind were naught. At
the same time it must be admitted that the fact that the ultimate physical reality is nothing
but a multitude of separate revolving centres of electric force, also belongs to the human mind
[ . . . ]. There is the reality of paper, infinitely different from the reality of literature. For the
kind of mind possessed by the moth that eats that paper, literature is absolutely non-existent,
yet for Man’s mind, literature has a greater value of truth than the paper itself. In a similar
manner, if there be some truth which has no sensuous or rational relation to human mind, it
will ever remain as nothing so long as we remain human beings».

A. Einstein: «Then I am more religious than you are!».
The same stance is presented by Einstein in [878, p. 274, e.a.]: «If it is true that the axiomatic

basis of theoretical physics cannot be extracted from experience but must be freely invented,
can we ever hope to find the right way? Nay, more, has this right way any existence outside our
illusions? [ . . . ]. I answer without hesitation that there is, in my opinion, a right way, and that
we are capable of finding it. Our experience hitherto justifies us in believing that nature is the
realization of the simplest conceivable mathematical ideas. I am convinced that we can discover
by means of purely mathematical constructions the concepts and the laws connecting them with
each other, which furnish the key to the understanding of natural phenomena [ . . . ]. Experience
remains, of course, the sole criterion of the physical utility of a mathematical construction. But
the creative principle resides in mathematics. In a certain sense, therefore, I hold it true that
pure thought can grasp reality».

We agree with the viewpoint that mathematics is a creative principle, but we reject the
persuasion that mathematics, or pure thought, can grasp reality, if this means “reality in its
entirety”, wherefore we reject, as a sort of idolatry (cf. endnote 131), the conviction that nature
is the «realization» of (the simplest conceivable) mathematical ideas. No, it is just the opposite:
(the simplest conceivable) mathematical ideas “realize”—in the sense that they represent, or
reproduce, with all the limitations that this involves—the idea of nature, or rather, of small
pieces of nature.

139 The passage [1072, pp. 198-203] containing the before-mentioned phrase is of capital importance;
for this, we have an obligation, blended with pleasure (in the opinion of I. Calvino, Galileo is the
greatest Italian prose writer), to recopy it in a large part, by attempting to make a translation,
under the requirement to remain, as closely as possible, faithful to the original text.

Simp.: «[ . . . ] perchè finalmente queste sottigliezze mattematiche Sign. Salv.[iati] son vere in
astratto, ma applicate alla materia sensibile, e fisica, non rispondono; perchè dimostrerranno
ben’i mattematici con i lor principij, per esempio, che Sphęra tangit planum in puncto [ . . . ];
ma come si viene alla materia, le cose vanno per un’altro verso; e così voglio dire di quest’angoli
del contatto, e di queste proporzioni; che tutte poi vanno a monte, quando si viene alle cose
materiali, e sensibili».

Simp.: «[ . . . ] because finally these mathematical subtleties Sig. Salv.[iati] are true in the
abstract, but applied to sensible, and physical, matter, they do not [cor]respond; because
mathematicians will well demonstrate with their principles, for example, that Sphęra tangit
planum in puncto [ . . . ]; but as soon as one comes to the matter, things go in another way; and
so I may say of these angles of contact, and of these proportions; that everything goes awry,
when you have to deal with material, and sensible things».

Salv.: «[ . . . ] Hor per mostrarvi quanto sia grande l’error di coloro, che dicono, che una
sfera v.g. di brŏzo non tocca un piano v.g. d’acciaio in un punto; Ditemi qual concetto voi vi
formeresti di uno, che dicesse, e costantemente asseverasse, che la sfera non fusse veramente
sfera?».

Salv.: «[ . . . ] Now to show you how great is the error of those, who say that v.g. a bronze
sphere does not touch v.g. a steel plane at a [single] point; Tell me what [idea] you would have
of one, who should say, and constantly assert, that the sphere is not truly a sphere?».

Simp.: «Lo stimerei per privo di discorso affatto».
Simp.: «I would esteem him completely devoid of [reason]».
Salv.: «In questo stato è colui, che dice, che la sfera materiale non tocca un piano, pur

materiale, in un punto, perchè il dir questo è l’istesso, che dire, che la sfera non è sfera. E che
ciò sia vero, ditemi in quello, che voi costituite l’essenza della sfera, cioè, che cosa è quella, che
fà differir la sfera da tutti gli altri corpi solidi».

Salv.: «This is the state of the one who says, that the material sphere does not touch a plane,
even if it is material, at a [single] point, for to say this is the same, as to say, that the sphere is
not a sphere. And [if] this is true, tell me what [in your opinion] constitutes the essence of the
sphere, that is, what is it that [sphere], what it is that makes the sphere differ from all other
solid bodies».
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Simp.: «Questa dimostrazione cŏclude delle sfere in astratto, e non delle materiali [ . . . ]. Le
sfere materiali son soggette a molti accidenti, a i quali non soggiacciono le immateriali; E perchè
non può esser, che posandosi una sfera di metallo sopra un piano, il proprio peso non calchi in
modo, che il piano ceda qualche poco, ò vero, che l’istessa sfera nel contatto si ammacchi? In
oltre, quel piano difficilmente potrà esser perfetto, quando non per altro, almeno per esser la
materia porosa; e forse non sarà men difficile il trovare una sfera così perfetta, che abbia tutte le
linee dal centro alla superficie egualissime per l’appunto».

Simp.: «This demonstration holds for spheres in the abstract, and not for materials [ . . . ].
The material spheres are subject to many accidents, [whilst] the immaterial ones are not subject;
And why should it not be, that by placing a metal sphere on a plane, its own weight should not
cause a dip in the plane, or that the sphere itself should not bruise in the contact? In addition,
that plane can hardly be perfect, if for nothing else, yet at least [due to the fact] that matter is
porous; and perhaps it will be no less difficult to find such a perfect sphere, which has all the
lines from the center to the surface exactly equal».

Salv.: «Oh tutte queste cose ve le concedo io facilmente, ma elle sono assai fuor di proposito;
perchè mentre voi volete mostrarmi, che una sfera materiale non tocca un piano materiale in
un punto, voi vi servite d’una sfera, che non è sfera, e d’un piano, che non è piano, poichè, per
vostro detto, ò queste cose non si trovano al mondo, ò se si trovano si guastano nell’applicarsi
a far l’effetto [ . . . ]. Adunque tuttavolta che in concreto voi applicate una sfera materiale a
un piano materiale, voi applicate una sfera nŏ perfetta a un piano non perfetto; e questi dite,
che non si toccano in un punto. Ma io vi dico, che anco in astratto una sfera immateriale, che
non sia sfera perfetta può toccare un piano immateriale, che non sia piano perfetto, non in un
punto, ma con parte della sua superficie, talchè sin quì quello, che accade in concreto, accade
nell’istesso modo in astratto [ . . . ]. Sì come a voler, che i calcoli tornino sopra i Zuccheri, le
Sete, e le Lane, bisogna, che il computista faccia le sue tare di casse, invoglie, & altre bagaglie:
Così, quando il filosofo Geometra vuol riconoscere in concreto gli effetti dimostrati in astratto,
bisogna che, difalchi gli impedimenti della materia [ . . . ]. Però, quando voi haveste una sfera, &
un piano perfetti, benchè materiali, nŏ habbiate dubbio, che si toccherebbero in un punto. E se
questo era, & è impossibile ad haversi, molto fuor di proposito fu il dire, che Sphęra ænea non
tangit in puncto».

Salv.: «Oh all these things I grant you easily, but they are far beyond [our] purpose; because
while you want to show me that, a material sphere does not touch a material plane at a [single]
point, you are using a sphere, that is not a sphere, and a plane, that is not plane, whereas,
according to you, these things are not found in the world, or if they are found, they fail in
applying themselves to have the effect [ . . . ]. Therefore whenever you concretely apply a material
sphere to a material plane, you apply a non-perfect sphere to a non-perfect plane; and these you
say, do not touch [each other] in one [sole] point. But I tell you, that even in the abstract an
immaterial sphere, that should not be a perfect sphere may touch an immaterial plane, that is
not a perfect plane, not in a [single] point, but with [a] part of its surface, so that what happens
in the concrete, it happens in the the same way in the abstract [ . . . ]. Just like the reckoner has
to calculate an amount of tare on the chests, casings, & other baggage, to make the numbers
work for Sugars, Silks, and Wools: So, when the philosopher of Geometry wants to recognize in
concrete the effects demonstrated in the abstract, he must defalcate the impediments of matter
[ . . . ]. Hence, if you had a perfect sphere and plane, even though they were material, you need
not doubt, that they would touch in one point. And if [such a condition] was, & is impossible to
have, it was much besides the purpose to say, that Sphęra ænea non tangit in puncto».

140 Original It. version: «Che i principii della dottrina de motu siano veri o falsi a me importa
pochissimo. Poichè se non son veri, fingasi che sian veri conforme abbiamo supposto, e poi
prendansi tutte le altre specolazioni derivate da essi principii, non come così miste, ma pure
geometriche. Io fingo o suppongo che qualche corpo o punto si muova all’ingiù et all’insù con la
nota proporzione et orizzontalmente con moto equabile. Quando questo sia io dico che seguirà
tutto quello che ha detto il Galileo et io ancora. Se poi le palle di piombo, di ferro, di pietra
non osservano quella supposta proporzione, suo danno, noi diremo che non parliamo di esse».

141 From the same author, see also [2383].

142 There are also interpretations of the Feynman path integral in terms of reality, see e.g. R.D.
Sorkin [2407]. As far as we know, we are on a slippery slope here, on the fringe of a mix-up
with mathematics and reality.

143 Historical note. This astrophysical investigation by Oppenheimer and Snyder is preceded by
two other papers, on the nature of stellar neutron cores (each co-written with two different
collaborators, R. Serber and G.M. Volkoff), which are inspired by a terse article on the origin of
stellar energy [1572], by L. Landau.

144 Original It. version: «[S]e i matematici invece di parlare di “spazio ad n dimensioni”, avessero
detto, per es., “continuo ad n coordinate”, nessuno si sarebbe occupato delle loro novità. Ma in
tal modo però sarebbe mancato tutto l’aiuto che possono dare gl’iperspazi nella rappresentazione
di quei fatti — anche meccanici o fisici — i quali, dipendendo da molteplici elementi di variabilità,
non sono facilmente schematizzabili nello spazio ordinario [ . . . ]. [G]l’iperspazî forniscono un
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linguaggio opportuno e suggestivo che ravvicina fatti apparentemente disparati, suscitando
analogie e quindi induzioni feconde».

145 The attribution of the invention of infinitesimal calculus is an exciting topic among historians
of mathematics: in addition to the works of I. Barrow and the Leibniz–Newton controversy,
if there is anybody to mention, that is P. de Fermat: he pushed right up to the gates of
differential/integral calculus; see e.g. [470] [1156] [1160, pp. 30-52] [1161]. Yet there is a but:
the presence of highly refined infinitesimal methods is undoubtedly already in Archimedes,
see in particular [117] [118]. The truth is that the concept of infinity is not rejected by Greek
culture, as some historiography would like us to believe; e.g. the infinite sequence of additions
is strongly present in Archimedean reasoning. He uses both the actual infinity (in his Method
[119] [120]), to meet heuristic needs, and the potential infinity (in the rest of his works), to
meet the requirements of rigor, in accordance with the modern analysis. Integration theory and
differential geometry, we can say, were born by generalizing Archimedes’ techniques [117], cf.
[2268, pp. 55, 387-388] [2270, cap. 8].

146 For those who are interested, other pages devoted to capture some “sympathies” that tie together
(i) sense of beauty, (ii) ability to produce verbal compositions in verse (poetry) and (iii) ability
to produce formal equivalences (mathematics), are in [945, pp. ix-xvi].

147 Original It. version: «La Filosofia [della natura] è scritta in questo grandissimo libro, che
continuamente ci stà aperto innanzi à gli occhi (io dico l’universo), ma non si può intendere se
prima non s’impara à intender la lingua, e conoscer i caratteri, ne’ quali è scritto. Egli è scritto
in lingua matematica, e i caratteri son triangoli, cerchi, & altre figure Geometriche, senza i quali
mezi è impossibile à intenderne umanamente parola; senza questi è un’aggirarsi vanamente per
un’oscuro laberinto».

148 Cf. G. Toraldo di Francia [2524, pp. 16-20], who seems to have a different opinion; but he does
not address the issue (p. 20), and cautiously does not comment on this.

149 We use to say “grain” (fil) and “cross-grain” (contrefil) for the woodworking.
150 Original Ge. version: «[E]in Mathematiker, der nicht etwas Poet ist, wird nimmer ein vol-

lkommener Mathematiker sein».
151 Original It. version: «[L]’oggetto delle matematiche — ordine immanente nella Natura — si

discopre alla mente traverso un processo d’astrazione; appunto per ciò le matematiche non sono
soltanto scienza, rappresentazione di quell’oggetto, sì anche arte, cioè espressione del soggetto che
le costruisce, secondo le sue intime leggi. Si esprime proprio in essa il senso profondo dell’ordine,
della proporzione e della misura, che farà un cosmo del caos dei fenomeni».

152 Original It. version [1730, pref., § 5]: «Utopia e disincanto. Molte cose cadono, quando si
viaggia; certezze, valori, sentimenti, aspettative che si perdono per strada — la strada è una
dura, ma anche buona maestra. Altre cose, altri valori e sentimenti si trovano, s’incontrano, si
raccattano per via. Come viaggiare, pure scrivere significa smontare, riassestare, ricombinare; si
viaggia nella realtà come in un teatro di prosa, spostando le quinte, aprendo nuovi passaggi,
perdendosi in vicoli ciechi e bloccandosi davanti a false porte disegnate sul muro.

La realtà, così spesso impenetrabile, d’improvviso cede, si sfalda; il viaggiatore, dice Cees
Noteboom, sente “gli spifferi dalle fessure dell’edificio causale”. Il reale si rivela probabilistico,
indeterministico, soggetto a improvvisi collassi quantici che fanno sparire alcuni suoi elementi,
inghiottiti, risucchiati in vortici dello spazio-tempo, mulinelli della mortalità di tutte le cose, ma
anche dell’imprevedibile emergere di nuova vita.

Viaggiare è un’esperienza musiliana, affidata al senso delle possibilità piuttosto che al principio
di realtà. Si scoprono, come in uno scavo archeologico, altri strati del reale, le possibilità concrete
che non si sono materialmente realizzate ma esistevano e sopravvivono in brandelli dimenticati
dalla corsa del tempo, in varchi ancora aperti, in stati ancora fluttuanti. Viaggiare significa
fare i conti con la realtà ma anche con le sue alternative, con i suoi vuoti; con la Storia e con
un’altra storia o con altre storie da essa impedite e rimosse, ma non del tutto cancellate.

Fin dall’Odissea, viaggio e letteratura appaiono strettamente legati; un’analoga esplorazione,
decostruzione e ricognizione del mondo e dell’io. La scrittura continua il trasloco, impacca e disfa,
aggiusta, sposta i vuoti e i pieni, scopre — inventa? trova? — elementi sfuggiti all’inventario e
perfino alla percezione del reale, quasi li ponesse sotto una lente d’ingrandimento».
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Math. Sem. Rep., Vol. 21, № 2, 1969, pp. 226-232.
[1182] W.M. Goldman, Complex Hyperbolic Geometry, Clarendon Press · Oxford, New

York, 1999.
[1183] J. Goldstone, Field Theories with «Superconductor» Solutions, Nuovo Cimento,

Vol. XIX, № 1, 1961, pp. 154-164.
[1184] W. Gordon, Der Comptoneffekt nach der Schrödingerschen Theorie, Z. Phys. A,

Vol. 40, № 1-2, 1926, pp. 117-133.
[1185] É. Gourgoulhon, 3+1 Formalism in General Relativity: Bases of Numerical

Relativity, Springer-Verlag, Berlin, Heidelberg, 2012.
[1186] W.T. Gowers, Does Mathematics Need a Philosophy?, in R. Hersh (Ed.), 18

Unconventional Essays on the Nature of Mathematics, Springer Science+Business
Media, 2006, New York, pp. 182-200.

[1187] ——, Is mathematics discovered or invented?, in J. Polkinghorne (Ed.), Meaning
in Mathematics, Oxford Univ. Press, New York, 2011, pp. 3-12.

[1188] L. Grafakos, Classical Fourier Analysis, Springer Science+Business Media, New
York, 20082ed.



588 Bibliography

[1189] W.T. Grandy, Jr., Entropy and the Time Evolution of Macroscopic Systems,
Oxford Univ. Press, New York, 2008.

[1190] P. Grassberger, Generalized dimensions of strange attractors, Phys. Lett. A, Vol.
97, № 6, 1983, pp. 227-230.

[1191] P. Grassberger and I. Procaccia, Characterization of Strange Attractors, Phys.
Rev. Lett., Vol. 50, № 5, 1983, pp. 346-349.

[1192] ——, Measuring the strangeness of strange attractors, Phys. D, Vol. 9, № 1-2,
1983, pp. 189-208.

[1193] A. Grassi and M. Rossi, Large N dualities and transitions in geometry, in U.
Bruzzo, V. Gorini, U. Moschella (Eds.), Geometry and Physics of Branes, iop
Publishing, Bristol and Philadelphia, 2003, pp. 210-278.

[1194] H. Grassmann, Die lineale Ausdehnungslehre, ein neuer Zweig der Mathematik,
Verlag von O. Wigand, Leipzig, 1844.

[1195] ——, Anhang III (1877), Kurze Uebersicht über das Wesen der Aus-
dehnungslehre, In Folge einer Aufforderung Grunerts in dessen Archiv Bd. VI (1845)
veröffentlicht vom Verfasser, in H. Grassmann, Die Lineale Ausdehnungslehre, ein
neuer Zweig der Mathematik, Verlag von O. Wigand, Leipzig, 1878, pp. 277-293.

[1196] J.T. Graves, On a Connection between the General Theory of Normal Couples
and the Theory of Complete Quadratic Functions of Two Variables, Phil. Mag. (3),
Vol. XXVI, № CLXXIII, Art. XLVI, 1845, pp. 315-320.

[1197] R.P. Graves, Life of Sir William Rowan Hamilton, including selections from his
poems, correspondence, and miscellaneous writings, Vol. II, Dublin Univ. Press,
Hodges, Figgis, & Co., Dublin, Longmans, Green, & Co., London, 1885.

[1198] A. Gray, A note on manifolds whose holonomy group is a subgroup of Sp(n) ·
Sp(1), Michigan Math. J., Vol. 16, № 2, 1969, pp. 125-128.

[1199] ——, Tubes, Birkhäuser Verlag, Basel, 20042ed.
[1200] C. Grebogi, E. Otta, S. Pelik, and J.A. Yorked, Strange attractors that are not

chaotic, Phys. D, Vol. 13, № 1-2, 1984, pp. 261-268.
[1201] C. Grebogi, E. Ott and J.A. Yorke, Chaos, Strange Attractors, and Fractal

Basin Boundaries in Nonlinear Dynamics, Science, Vol. 238, № 4827, 1987, pp.
632-638.

[1202] G. Green, An Essay on the Application of Mathematical Analysis to the Theories
of Electricity and Magnetism, Nottingham, T. Wheelhouse, 1828.

[1203] M.B. Green, J.H. Schwarz, E. Witten, Superstring Theory, Vol. 2: Loop Ampli-
tudes, Anomalies and Phenomenology, 25th Anniversary Edition, Cambridge Univ.
Press, New York, 2012.

[1204] B.R. Greene, M.R. Plesser, Duality in Calabi–Yau moduli space, Nuclear Phys.
B, Vol. 338, № 1, 1990, pp. 15-37.

[1205] R.E. Greene, S.G. Krantz, Function Theory of One Complex Variable, American
Mathematical Society (ams), Providence (ri), 20063ed.

[1206] R.M. Grieves, S. Jedidi-Ayoub, K. Mishchanchuk, A. Liu, S. Renaudineau,
É. Duvelle and K.J. Jeffery, Irregular distribution of grid cell firing fields in rats
exploring a 3D volumetric space, Nat. Neurosci., 11 August 2021.

[1207] J.B. Griffiths, J. Podolský, Exact Space-Times in Einstein’s General Relativity,
Cambridge Univ. Press, New York, 2009.

[1208] P. Griffiths, On Cartan’s method of Lie groups and moving frames as applied to
uniqueness and existence questions in differential geometry, Duke Math. J., Vol. 41,
№ 4, 1974, pp. 775-814.

[1209] F.M. Grimaldi, Physico-mathesis de lumine, coloribus, et iride, aliisque adnexis
Libri duo In quorum Primo afferuntur Nova Experimenta, & Rationes ab ijs



Bibliography 589

deductæ pro Substantialitate Luminis. In Secundo autem dissolvuntur Argumenta
in Primo adducta, & probabiliter sustineri posse docetur Sententia Peripatetica de
Accidentalitate Luminis, Ex Typographia Hæredis V. Benatij, Bononiæ, mdclxv
(1665).

[1210] V.Z. Grines, T.V. Medvedev, O.V. Pochinka, Dynamical Systems on 2- and
3-Manifolds, Springer International Publishing, Cham, 2016.

[1211] D. Gromoll, G. Walschap, Metric Foliations and Curvature, Birkhäuser Verlag,
Basel, 2009.

[1212] M.[L.] Gromov, Isometric immersions of Riemannian manifolds, Astérisque ·
Soc. Math. France, Tome S131 · Élie Cartan et les mathématiques d’aujourd’hui,
Lyon, 25-29 juin 1984, 1985, pp. 129-133.

[1213] ——, Partial Differential Relations, Springer-Verlag, Berlin, Heidelberg, 1986.
[1214] ——, Dimension, non-linear spectra and width, in J. Lindenstrauss, V.D. Milman

(Eds.), Geometric Aspects of Functional Analysis, Israel Seminar (gafa) 1986-87,
Springer-Verlag, Berlin, Heidelberg, 1988, pp 132-184.

[1215] ——, Spaces and questions, in N. Alon, J. Bourgain, A. Connes, M.[L.] Gromov,
V. Milman (Eds.), Visions in Mathematics gafa 2000 Special Volume, Part I,
Reprint of the 2000 Edition, Birkhäuser · Springer Basel ag, Basel, 2011, pp.
118-161.

[1216] ——, Isoperimetry of waists and concentration of maps, Geom. Funct. Anal.,
Vol. 13, № 1, 2003, pp. 178-215. Erratum, Geom. Funct. Anal., Vol. 18, № 5, 2009,
p. 1786.

[1217] ——, Geometric, algebraic, and analytic descendants of Nash isometric embed-
ding theorems, Bull. Amer. Math. Soc., Vol. 54, № 2, 2017, pp. 173-245.

[1218] Ø. Grøn, Lecture Notes on the General Theory of Relativity: From New-
ton’s Attractive Gravity to the Repulsive Gravity of Vacuum Energy, Springer
Science+Business Media, New York, 2009.

[1219] Ø. Grøn, S. Hervik, Einstein’s General Theory of Relativity: With Modern
Applications in Cosmology, Springer Science+Business Media, New York, 2007.

[1220] C. Grosche, Path Integrals, Hyperbolic Spaces and Selberg Trace Formulae, World
Scientific, Singapore, 20132ed.

[1221] C. Grosche, F. Steiner, Handbook of Feynman Path Integrals, Springer-Verlag,
Berlin, Heidelberg, 1998.

[1222] L. Gross, Logarithmic Sobolev Inequalities, Amer. J. Math., Vol. 97, № 4, 1975,
pp. 1061-1083.

[1223] M. Gross, D. Huybrechts, D. Joyce, Calabi–Yau Manifolds and Related Geome-
tries, Lectures at a Summer School in Nordfjordeid, Norway, June 2001, Springer-
Verlag, Berlin, Heidelberg, 2003.

[1224] F.D. Grosshans, G.-C. Rota, J.A. Stein, Invariant Theory and Superalgebras,
Expository Lectures from the cbms Regional Conference, held at West Chester
University, August 19-23, 1985, Supported by the National Science Foundation,
published by the American Mathematical Society (ams), Providence (ri), 1987.

[1225] A. Grothendieck, Sur les espaces (F) et (DF), Summa Bras. Math., Vol. 3, №
6, 1954, pp. 57-123. Fr. version is not found; version consulted: Ru. transl. by D.A.
Raikov, Matematika, Vol. 2, № 3, 1958, pp. 81-127.

[1226] ——, Esquisse d’un Programme (1984 manuscript), published in [2306, pp. 5-48],
with an En. transl. [2306, Sketch of a Programme, pp. 243-283].

[1227] ——, Récoltes et Semailles. Réflexions et témoignage sur un passé de mathé-
maticien [Juin 1983-Avril 1986], text in a free, online version: the number of pages
refers to the page numbering of the manuscript (otm = of the manuscript).



590 Bibliography

[1228] A. Grothendieck, M. Raynaud, Revêtements étales et groupe fondamental (SGA
1), Séminaire de Géométrie Algébrique du Bois Marie 1960-1961, dirigé par A.
Grothendieck, augmenté de deux exposés de M. Raynaud, Édition recomposée
et annotée du volume 224 des Lecture Notes in Mathematics publié en 1971 par
Springer-Verlag, arXiv:math/0206203 [math.AG], 2004 [v2].

[1229] K. Grove and K. Shiohama, A Generalized Sphere Theorem, Ann. of Math. (2),
Vol. 106, № 1, 1977, pp. 201-211.

[1230] I. Guareschi, Nota sulla storia del movimento browniano, Isis, Vol. 1, № 1, 1913,
pp. 47-52.

[1231] J. Guckenheimer, The Birth of Chaos, in A. Johann, H.-P. Kruse, F. Rupp, S.
Schmitz (Eds.), Recent Trends in Dynamical Systems. Proceedings of a Conference
in Honor of J. Scheurle, Springer Basel, Basel, 2013, pp. 3-24.

[1232] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bi-
furcations of Vector Fields, Springer Science+Business Media, New York, 20027c.pr.

[1233] J. Guckenheimer, R.F Williams, Structural stability of Lorenz attractors, Publ.
Math. Inst. Hautes Études Sci., Vol. 50, № 1, 1979, pp. 59-72.

[1234] F. Guerra, Broken Replica Symmetry Bounds in the Mean Field Spin Glass
Model, Commun. Math. Phys., Vol. 233, № 1, 2003, pp. 1-12.

[1235] F. Guerra, N. Robotti, Ettore Majorana: Aspects of his Scientific and Academic
Activity, Edizioni della Normale, Pisa, 2008.

[1236] A. Guerraggio, L’Analisi, in [804, pp. 1-158].
[1237] A. Guerraggio e P. Nastasi, Matematica, cultura e potere nell’Italia postunitaria,

in Gentile e i matematici italiani. Lettere 1907-1943, a cura di A. Guerraggio e P.
Nastasi, Bollati Boringhieri, Torino 1993, pp. 11-104.a

[1238] ——, Italian Mathematics Between the Two World Wars, Birkhäuser Verlag,
Basel, 2006.

[1239] A. Guerraggio, G. Paoloni, Vito Volterra, Transl. by K. Williams, Springer-
Verlag, Berlin Heidelberg, 2013.

[1240] P. Gummelt, Penrose Tilings as Coverings of Congruent Decagons, Geom.
Dedicata, Vol. 62, № 1, 1996, pp. 1-17.

[1241] M. Günther, Isometric Embeddings of Riemannian Manifolds, Proc. Int. Congr.
Mathematicians, August 21-29, 1990, Kyoto, Japan, 1990, Vol. II, Math. Soc. Japan
· Springer-Verlag, Hong Kong, 1991, pp. 1137-1143.

[1242] S. Guo, J. Wu, Bifurcation Theory of Functional Differential Equations, Springer
Science+Business Media, New York, 2013.

[1243] G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, Global Conservation Laws and
Massless Particles, Phys. Rev. Lett., Vol. 13, № 20, pp. 585-587.

[1244] B. Gurevich, Entropy Theory of Dynamical Systems, in H. Holden, R. Piene
(Eds.), The Abel Prize 2013-2017, Springer Nature, Cham, 2019, pp. 221-242.

[1245] C.E. Gutiérrez, The Monge-Ampère Equation, Birkhäuser · Springer Interna-
tional Publishing, Switzerland, 20162ed.

[1246] R. Haag, N.M. Hugenholtz and M. Winnink, On The Equilibrium States In
Quantum Statistical Mechanics, Commun. Math. Phys., Vol. 5, № 3, 1967, pp.
215-236.

[1247] F. Haake, S. Gnutzmann, M. Kuś, Quantum Signatures of Chaos, Springer
Nature, Cham, 20184ed.

aIn the second part of the book, pp. 105-256, some letters addressed to Gentile by various
mathematicians and physicists (U. Amaldi, L. Bianchi, G. Castelnuovo, L. Ces[à]ri, F. Enriques, G.
Fubini, G. Giorgi, T. Levi-Civita, B. Manià, M. Picone, G. Scorza, F. Severi, L. Tonelli, G. Vacca)
are presented.

https://arxiv.org/abs/math/0206203


Bibliography 591

[1248] W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer-Verlag,
Berlin, Heidelberg, 2012.

[1249] J. Hadamard, Les surfaces à courbures opposées et leurs lignes géodésiques, J.
Math. Pures Appl. (5), Tome IV, 1898, pp. 27-73.

[1250] ——, Notice sur les travaux scientifiques, Gauthier-Villars, Imprimeur-Libraire,
Paris, 1901.

[1251] ——, Sur les éléments linéaires à plusieurs dimensions, Bull. Sci. Math., Deux-
ième Sér., Tome XXV, Première Partie, 1901, pp. 37-40.

[1252] ——, Sur le principe de Dirichlet, Bull. Soc. Math. France, Tome 34, 1906, pp.
135-138.

[1253] ——, The Psychology of Invention in the Mathematical Field, Dover Publications,
New York, 1954, unaltered and unabridged reprint of the enlarged 1949 edition.

[1254] E. Haeckel, Report on the Radiolaria collected by H.M.S. Challenger during the
years 1873-1876, in Report on the Scientific Results of the Voyage of H.M.S. Chal-
lenger. Zoology—Vol. XVIII. First Part—Porulosa. (Spumellaria and Acantharia),
Order of Her Majesty’s Government, London–Edinburgh–Dublin, 1887.

[1255] T. Hafting, M. Fyhn, S. Molden, M.-B. & E.I. Moser, Microstructure of a spatial
map in the entorhinal cortex, Nature, Vol. 436, № 7052, 2005, pp. 801-806.

[1256] Y. Hagihara, Tullio Levi-Civita’s Works in Celestial Mechanics, in [1639, pp.
205-240].

[1257] F. Hahn and Y. Katznelson, On the Entropy of Uniquely Ergodic Transforma-
tions, Trans. Amer. Math. Soc., Vol. 126, № 2, 1967, pp. 335-360.

[1258] R. Haiduc, Horseshoes in the forced van der Pol system, Nonlinearity, Vol. 22,
№ 1, 2009, pp. 213-237.

[1259] W. Haken, Theorie der Normalflächen: Ein Isotopiekriterium für den
Kreisknoten, Acta Math., Vol. 105, № 3-4, 1961, pp. 245-375.

[1260] S. Hales, Vegetable Staticks: Or, An Account of some Statical Experiments on
the Sap in Vegetables: Being an Essay towards a Natural History of Vegetation. Also,
a Specimen of An Attempt to Analyse the Air, by a great Variety of Chymio-Statical
Experiments, London, mdccxxvii (1727).

[1261] B.C. Hall, Quantum Theory for Mathematicians, Springer Science+Business
Media, New York, 2013.

[1262] G.S. Hall, Symmetries and Curvature Structure in General Relativity, World
Scientific, Singapore, 2004.

[1263] G.B. Halsted, Gauss and the Non-Euclidean Geometry, Amer. Math. Monthly,
Vol. 7, № 11, 1900, pp. 247-252.

[1264] H.W. Hamber, Simplicial Quantum Gravity, Les Houches Lecture Notes 1984,
November 1984, pp. 1-44.

[1265] ——, Simplicial Quantum Gravity from Two to Four Dimensions, in P.H.
Damgaard, H. Hüffel and A. Rosenblum (Eds.), Probabilistic Methods in Quantum
Field Theory and Quantum Gravity, Proceedings of a nato Advanced Research
Workshop, held August 21-27, 1989, in Cargèse, France, Springer Science+Business
Media, New York, 1990, pp. 243-257.

[1266] ——, Quantum Gravitation: The Feynman Path Integral Approach, Springer-
Verlag, Berlin, Heidelberg, 2009.

[1267] H.W. Hamber and G. Kagel, Exact Bianchi identity in Regge gravity, Class.
Quantum Grav., Vol. 21, № 24, 2004, pp. 5915-5947; arXiv:gr-qc/0107031, 2004
[v2].

[1268] H.W. Hamber and R.M. Williams, Discrete Wheeler-DeWitt equation, Phys.
Rev. D, Vol. 84, № 10, 2011, pp. 104033-1-22; arXiv:1109.2530 [hep-th], 2011 [v3].

https://arxiv.org/abs/gr-qc/0107031
https://arxiv.org/abs/1109.2530


592 Bibliography

[1269] R.S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential
Geom., Vol. 17, № 2, 1982, pp. 255-306.

[1270] ——, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc.,
Vol. 7, № 1, 1982, pp. 65-222.

[1271] ——, Four-manifolds with positive curvature operator, J. Differential Geom.,
Vol. 24, № 2, 1986, pp. 153-179.

[1272] ——, The Ricci Flow on Surfaces, in J.A. Isenberg (Ed.), Mathematics and
General Relativity, Proceedings of the ams-ims-siam Joint Summer Research Con-
ference, held June 22-28, 1986 with support from the National Science Foundation,
American Mathematical Society (ams), Providence (ri), 1988, pp. 237-262.

[1273] ——, Matrix Harnack estimate for the heat equation, Comm. Anal. Geom., Vol.
1, № 1, 1993, pp. 113-126.

[1274] ——, The Harnack estimate for the Ricci flow, J. Differential Geom., Vol. 37,
№ 1, 1993, pp. 225-243.

[1275] ——, The Formation of Singularities in the Ricci Flow, in C.C. Hsiung, S.-T. Yau
(Eds.), Surveys in Differential Geometry, Vol. II, Proceedings of the conference on
geometry and topology held at Harvard University, April 23-25, 1993, International
Press, Boston (ma), 1995, pp. 7-136.

[1276] ——, Four-Manifolds with Positive Isotropic Curvature, Comm. Anal. Geom.,
Vol. 5, № 1, 1997, pp. 1-92.

[1277] ——, Non-singular solutions of the Ricci flow on three-manifolds, Comm. Anal.
Geom., Vol. 7, № 4, 1999, pp. 695-729.

[1278] W.R. Hamilton, On a general Method of expressing the Paths of Light, and of
the Planets, by the Coefficients of a Characteristic Function, from the Dublin Univ.
Review for October, P. Dixon Hardy, Dublin, 1833.

[1279] ——, On a General Method in Dynamics; by which the Study of the Motions
of all free Systems of attracting or repelling Points is reduced to the Search and
Differentiation of one central Relation, or characteristic Function, Philos. Trans.
Roy. Soc., Vol. 124, 1834, pp. 247-308.

[1280] ——, On the Application to Dynamics of a General Mathematical Method
previously Applied to Optics, Rep. 4th Meeting British Assoc. Adv. Sci., 1835, pp.
513-518.

[1281] ——, Second Essay on a General Method in Dynamics, Philos. Trans. Roy. Soc.,
Vol. 125, 1835, pp. 95-144.

[1282] ——, On Quaternions; or on a new System of Imaginaries in Algebra, Phil.
Mag. (3), series of articles appeared in Voll. XXV-XXXVI, July 1844-April 1850.

[1283] ——, Note [ . . . ] respecting the Researches of John T. Graves, in J.R. Young,
On an Extension of a Theorem of Euler, with a Determination of the Limit beyond
which it fails, Trans. R. Ir. Acad., Vol. XXI, Art. XI, mdcccxlviii (1848), pp.
338-341.

[1284] ——, Elements of Quaternions, Longmans, Green & Co., London, 1866.
[1285] R.W. Hamming, The Unreasonable Effectiveness of Mathematics, Amer. Math.

Monthly, Vol. 87, № 2, 1980, pp. 81-90.
[1286] J.-I. Hano and H. Ozeki, On the holonomy groups of linear connections, Nagoya

Math. J., Vol. 10, 1956, pp. 97-100.
[1287] G.P.F. Freiherr von Hardenberg, Novalis Schriften, Zweiter Theil, Verlag von

G. Reimer, Berlin, 18375ed.
[1288] G.H. Hardy, I.—Mathematical Proof [Rouse Ball Lecture in Cambridge , 1928],

Mind, Vol. XXXVIII, № 149, 1929, pp. 1-25.



Bibliography 593

[1289] ——, A Mathematician’s Apology, with a Foreword By C.P. Snow, Cambridge
Univ. Press, New York, 1967re (first edition 1940).

[1290] I. Hargittai, John Conway—Mathematician of Symmetry and Everything Else,
Math. Intelligencer, Vol. 23, № 2, 2001, pp. 6-14.

[1291] P. Harjulehto, P. Hästö, Orlicz Spaces and Generalized Orlicz Spaces, Springer
Nature, Cham, 2019.

[1292] [C.-G.] A. Harnack, Die Grundlagen der Theorie des logarithmischen Potentiales
und der eindeutigen Potentialfunktion in der Ebene, Verlag von B.G. Teubner,
Leipzig, 1887.

[1293] D.D. Haroske, H. Triebel, Distributions, Sobolev Spaces, Elliptic Equations,
European Mathematical Society (ems), Zürich, 2008.

[1294] J. Harrison, Soap Film Solutions to Plateau’s Problem, J. Geom. Anal., Vol. 24,
№ 1, 2014, pp. 271-297; arXiv:1106.5839 [math.DG], 2012 [v4].

[1295] J. Harrison and H. Pugh, Plateau’s Problem, in J.F. Nash, Jr., M.Th. Ras-
sias (Eds.), Open Problems in Mathematics, Springer International Publishing,
Switzerland, 2016, pp. 273-302.

[1296] J.B. Hartle, Simplicial minisuperspace I. General discussion, J. Math. Phys.,
Vol. 26, № 4, 1985, pp. 804-814.

[1297] ——, Simplicial minisuperspace. II. Some classical solutions on simple triangu-
lations, J. Math. Phys., Vol. 27, № 1, 1986, pp. 287-295.

[1298] J.B. Hartle, S.W. Hawking, Wave function of the universe, Phys. Rev. D, Vol.
28, № 12, 1983, pp. 2960-2975.

[1299] H. Hashimoto and M. Ohashi, Realizations of subgroups of G2, Spin(7) and their
applications, in T. Adachi, H. Hashimoto, M.J. Hristov (Eds.), Recent Progress in
Differential Geometry and its Related Fields, Proceedings of the 2nd International
Colloquium on Differential Geometry and Its Related Fields, Veliko Tarnovo,
Bulgaria, 6-10 September 2010, World Scientific, Singapore, 2012, pp. 159-176.

[1300] B. Hasselblatt, Regularity of the Anosov splitting and of horospheric foliations,
Ergodic Theory Dynam. Systems, Vol. 14, № 4, 1994, pp. 645-666.

[1301] F. Hausdorff, Grundzüge der Mengenlehre, Verlag von Veit & Comp., Leipzig,
1914.

[1302] ——, Dimension und äußeres Maß, Math. Ann., Vol. 79, № 1-2, 1918, pp.
157-179.

[1303] S.W. Hawking, Gravitational Radiation from Colliding Black Holes, Phys. Rev.
Lett., Vol. 26, № 21, 1971, pp. 1344-1346.

[1304] ——, Black hole explosions?, Nature, Vol. 248, № 5443, 1974, pp. 30-31.
[1305] ——, Particle Creation by Black Holes, Comm. Math. Phys., Vol. 43, № 3, 1975,

pp. 199-220.
[1306] S.W. Hawking & G.F.R. Ellis, The large scale structure of space-time, Cambridge

Univ. Press, New York, 1973, 1994re.
[1307] S.W. Hawking and R. Penrose, The Nature of Space and Time, Princeton Univ.

Press, Princeton (nj) and Oxford, 1996.
[1308] S. Hayashi, Connecting Invariant Manifolds and the Solution of the C1 Stability

and Ω-Stability Conjectures for Flows, Ann. of Math. (2), Vol. 145, № 1, 1997, pp.
81-137 + Correction, Ann. of Math. (2), Vol. 150, № 1, 1999, pp. 353-356.

[1309] T.L. Heath, A History of Greek Mathematics, Vol. I: From Thales to Euclid,
Oxford at the Clarendon Press, 1921.

[1310] ——, The Works of Archimedes, Edited in Modern Notation with Introductory
Chapters, Cambridge Univ. Press, New York, 2010re (first edition 1897).

https://arxiv.org/abs/1106.5839


594 Bibliography

[1311] O. Heaviside, On Operators in Physical Mathematics. Part I, Proc. Roy. Soc.
London, Vol. 52, 1892-1893, pp. 504-529.

[1312] ——, On Operators in Physical Mathematics. Part II, Proc. Roy. Soc. London,
Vol. 54, 1893, pp. 105-143 .

[1313] ——, A Gravitational and Electromagnetic Analogy, in [1314, App. B, pp.
455-466].

[1314] ——, Electromagnetic Theory, Vol. I, The Electrician Printing and Publication
Co. Limited, London, 1893.

[1315] ——, Electrical Papers, Vol. II, Macmillan and Co., London, 1894.
[1316] E. Hebey, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities,

American Mathematical Society (ams), Providence (ri), 1999.
[1317] J.J. Heckman and H. Verlinde, Instantons, Twistors, and Emergent Gravity ;

arXiv:1112.5210 [hep-th], 2012 [v2].
[1318] G.A. Hedlund, The dynamics of geodesic flows, Bull. Amer. Math. Soc., Vol. 45,

№ 4, 1939, pp. 241-260.
[1319] J. Heinonen, Lectures on Analysis on Metric Spaces, Springer Science+Business

Media, New York, 2001.
[1320] J. Heinonen, P. Koskela, N. Shanmugalingam, J.T. Tyson, Sobolev Spaces on

Metric Measure Spaces: An Approach Based on Upper Gradients, Cambridge Univ.
Press, Cambridge, 2015.

[1321] E. Heinz, Über die Lösungen der Minimalflächengleichung, Nachr. Ges. Wiss.
Göttingen, Math.-Phys. Kl., H. 2, 1952, pp. 51-56.

[1322] W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kine-
matik und Mechanik, Z. Phys., Vol. 43, № 3-4, 1927, pp. 172-198.

[1323] ——, Physics and Philosophy. The Revolution in Modern Science, Harper &
Brothers Publishers, New York, 1958.

[1324] ——, Discussion of the Lecture of Werner Heisenberg, in W. Heisenberg, E.
Schrödinger, M. Born, P. Auger, On Modern Physics, Collier Books, New York,
1962; this is an En. transl. by M. Goodman and J.W. Binns from It. edition, with
the title Discussione sulla fisica moderna, Quattro conferenze organizzate dalla
Rencontres internationales de Genève, P. Boringhieri, Torino, 1959.

[1325] ——, Natural Law and the Structure of Matter, Rebel Press, London, 1970.
[1326] ——, Physics and Beyond. Encounters and Conversations, Harper & Row,

Publishers, New York, 1971.
[1327] ——, The Meaning of Beauty in the Exact Sciences, in W. Heisenberg, Across

the Frontiers, Transl. from the Ge. by P. Heath, Harper & Row, New York, 1974,
XIII, pp. 166-183.

[1328] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Aca-
demic Press, San Diego, 1978, American Mathematical Society (ams), Providence
(ri), 2001c.re.

[1329] H. von Helmholtz, Die Lehre von den Tonempfindungen als physiologische
Grundlage für die Theorie der Musik, Druck und Verlag von F. Vieweg und Sohn,
Braunschweig, 1863.

[1330] ——, Ueber den Ursprung und die Bedeutung der geometrischen Axiome, Vortrag
gehalten im Docentenverein zu Heidelberg 1870, in H. von Helmholtz, Vorträge und
Reden, Zweiter Band, Druck und Verlag von F. Vieweg und Sohn, Braunschweig,
19035ed, pp. 1-31.

[1331] ——, Die Tatsachen in der Wahrnehmung (1878), in H. von Helmholtz, Schriften
zur Erkenntnistheorie, Springer-Verlag, Wien, 1998, pp. 147-175.

https://arxiv.org/abs/1112.5210


Bibliography 595

[1332] C. Hermite, Correspondance d’Hermite et de Stieltjes, Tome II (18 octobre
1889-15 décembre 1894), Gauthier-Villars, Imprimeur-Libraire, Paris, 1905.

[1333] Herodotus, (Ηροδότου) ῾Ιστορίαι · Histories in four Volumes, Vol. I, Books I and
II, transl. by A.D. Godley, Loeb Classical Library, Harvard Univ. Press, Cambridge
(ma), W. Heinemann, London, 1975r.re.

[1334] Heron of Alexandria, ῞Ηρωνος ὅροι τῶν γεωμετρίας ὀνομάτων · Heronis defini-
tiones · Herons Definitionen geometrischer Benennungen, in Heronis Alexandrini
opera quae supersunt omnia, Vol. IV: Heronis definitiones cum variis collectionibus.
Heronis quae feruntur geometrica, edited by J.L. Heiberg, Stutgardiae in aedibus
B.G. Teubneri, mcmlxxvi (1976), pp. 1-169.

[1335] R. Hersh, Inner Vision, Outer Truth, in R.E. Mickens (Ed.), Mathematics and
Science, World Scientific, Singapore, 1990, pp. 64-72.

[1336] J.F.W. Herschel, A Preliminary Discourse on the Study of Natural Philosophy,
Longman, Rees, Orme, Brown, Green, & Longman, and J. Taylor, London, 1831.

[1337] ——, A Treatise on Astronomy, Longman, Rees, Orme, Brown, Green, &
Longman, and J. Taylor, London, 1833.

[1338] ——, Results of astronomical observations made during the years 1834, 5, 6,
7, 8, at the Cape of Good Hope; being the completion of a telescopic survey of the
whole surface of the visible heavens, commenced in 1825, Smith, Elder, and Co.,
Cornhill, London, 1847.

[1339] ——, Catalogue of one thousand new nebulæ and clusters of stars, Philos. Trans.
Roy. Soc., Vol. 76, XXVII, 1786, pp. 457-499.

[1340] H. Hertz, Die Prinzipien der Mechanik in neuen Zusammenhange dargestellt,
J.A. Barth, Leipzig, 1894.

[1341] ——, The Principles of Mechanics Presented in a New Form, transl. of [1340]
by D.E. Jones and J.T. Walley, Macmillan and Co., London, 1899.

[1342] Hesiod, Θεογονία · Theogony, in Id., Theogony, Works and Days, Testimonia,
Edited and Transl. By G.W. Most, Loeb Classical Library, Harvard Univ. Press,
Cambridge (ma), London, England, 2006, pp. 2-85.

[1343] L.O. Hesse, Über die Elimination der Variabeln aus drei algebraischen Gleichun-
gen vom zweiten Grade mit zwei Variabein, J. Reine Angew. Math., Bd. 28, 1844,
pp. 68-96.

[1344] D. Hestenes, Real Spinor Fields, J. Math. Phys., Vol. 8, № 4, 1967, pp. 798-808.
[1345] ——, Spacetime physics with geometric algebra, Amer. J. Phys., Vol. 71, № 7,

2003, pp. 691-714.
[1346] ——, Space-Time Algebra, Birkhäuser, Foreword by A. Lasenby, Springer Inter-

national Publishing, Switzerland, 20152ed.
[1347] P.W. Higgs, Broken Symmetries, Massless Particles and Gauge Fields, Phys.

Lett., Vol. 12, № 2, 1964, pp. 132-133.
[1348] ——, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett.,

Vol. 13, № 16, 1964, pp. 508-509.
[1349] ——, Spontaneous Symmetry Breakdown without Massless Bosons, Phys. Rev.,

Vol. 145, № 4, 1966, pp. 1156-1163.
[1350] D. Hilbert, Ueber die stetige Abbildung einer Linie auf ein Flächenstück, Math.

Ann., Vol. 38, № 3, 1891, pp. 459-460.
[1351] ——, Grundlagen der Geometrie, Verlag von B.G. Teubner, Leipzig, 1899.
[1352] ——, Über das Dirichletsche Prinzip, Jahresber. Dtsch. Math.-Ver., Vol. 8, 1900,

pp. 184-187.



596 Bibliography

[1353] ——, Mathematische Probleme, Vortrag, gehalten auf dem internationalen
Mathematiker-Kongreß zu Paris 1900, Nachr. Ges. Wiss. Göttingen, Math.-Phys.
Kl., H. 3, 1900, pp. 253-297.

[1354] ——, Ueber Flächen von Constanter Gaussscher Krümmung, Trans. Amer.
Math. Soc., Vol. 2, № 1, 1901, pp. 87-99.

[1355] ——, Sur les problèmes futurs des Mathématiques, transl. of [1353] by L. Laugel,
C. R. du Deuxième Congrès International des Mathématiciens, tenu à Paris du 6
au 12 août 1900. Procès-Verbaux et Communications, Gauthier-Villars, Imprimeur-
Libraire du Bureau des Longitudes, de l’Ecole Polytechnique, Paris, 1902, pp.
58-114.

[1356] ——, Über das Dirichletsche Prinzip, Math. Ann., Vol. 59, № 1-2, 1904, pp.
161-186.

[1357] ——, Die Grundlagen der Physik. (Erste Mitteilung), Nachr. Ges. Wiss. Göttin-
gen, Math.-Phys. Kl., H. 3, Vorgelegt in der Sitzung vom 20 November 1915, 1916,
pp. 395-407. But be careful: the printer’s stamp bears the date 6 December 1915,
see [691, p. 1271].

[1358] ——, Die Grundlagen der Physik. (Zweite Mitteilung), Nachr. Ges. Wiss. Göt-
tingen, Math.-Phys. Kl., H. 1, 1917, pp. 53-76.

[1359] ——, Über das Unendliche, Math. Ann., Vol. 95, №, 1, 1926, pp. 161-190.
[1360] ——, Die Grundlagen der Mathematik, Vortrag, gehalten auf Einladung des

Mathematischen Seminars im Juli 1927 in Hamburg, Abh. Math. Semin. Univ.
Hambg., Vol. 6, № 1, 1928, pp. 65-85.

[1361] ——, Natur und mathematisches Erkennen, Erster Teil, Die übliche Auffassung
von der Mathematik und ihre Widerlegung, Vorlesungen von David Hilbert, gehalten
1919-1920 in Göttingen, Herausgegeben von D.E. Rowe, Springer Basel ag, Basel,
1992.

[1362] D. Hilbert, J. von Neumann und L. Nordheim, Über die Grundlagen der Quan-
tenmechanik, Math. Ann., Vol. 98, № 1, 1928, pp. 1-30.

[1363] S. Hildebrandt, Boundary Value Problems for Minimal Surfaces, in R. Osserman
(Ed.), Geometry V, Minimal Surfaces, Springer-Verlag, Berlin, Heidelberg, 1997,
pp. 153-237.

[1364] S. Hildebrandt, A. Tromba, The Parsimonious Universe: Shape and Form in
the Natural World, Copernicus · Springer-Verlag, New York, 1996.

[1365] M.W. Hirsch & C.C. Pugh, Smoothness of horocycle foliations, J. Differential
Geom., Vol. 10, № 2, 1975, pp. 225-238.

[1366] N.[J.] Hitchin, Hyperkähler manifolds, Séminaire Bourbaki, 44ème année, 1991-
92, № 748, Novembre 1991.

[1367] ——, Riemann surfaces and integrable systems, in N.J. Hitchin, G.B. Segal,
R.S. Ward, Integrable Systems: Twistors, Loop Groups, and Riemann Surfaces,
Clarendon Press · Oxford, New York, 1999, pp. 1-52.

[1368] ——, Generalized Calabi–Yau manifolds, Q. J. Math., Vol. 54, № 3, 2003, pp.
281-308; arXiv:math/0209099 [math.DG], 2002 [v1].

[1369] J. Hladik, Spinors in Physics, transl. by J.M. Cole, Springer Science+Business
Media, New York, 1999.

[1370] H. Hofer, E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Reprint
of the 1994 Edition, Birkhäuser Verlag, Springer Basel ag, 2011.

[1371] D.R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid. A metaphorical
fugue on minds and machines in the spirit of Lewis Carroll, Basic Books, New
York, 1979, 20th-anniversary Edition: With a new preface by the author, 1999.

[1372] ——, Fluid Concepts & Creative Analogies, Basic Books, New York, 1995.

https://arxiv.org/abs/math/0209099


Bibliography 597

[1373] Homer, The Odyssey, Vol. I (Books I-XII), Transl. by A.T. Murray, Loeb
Classical Library, Harvard Univ. Press, Cambridge (ma), W. Heinemann, London,
mcmxlv (1945).

[1374] G. ’t Hooft, A mathematical theory for deterministic quantum mechanics, J.
Phys.: Conf. Ser., Vol. 67, 012015, pp. 1-15, in Third International Workshop
Dice2006—Quantum Mechanics Between Decoherence and Determinism: New
Aspects From Particle Physics To Cosmology, 11-15 September 2006, Castello
Di Piombino, Tuscany, Italy, iop Publishing, Bristol and Philadelphia, 2007;
arXiv:quant-ph/0604008, 2006 [v2] (under the title The mathematical basis for
deterministic quantum mechanics).

[1375] ——, Dimensional Reduction in Quantum Gravity, arXiv:gr-qc/9310026, 2009
[v2].

[1376] ——, Entangled quantum states in a local deterministic theory, arXiv:0908.3408
[quant-ph], 2009 [v1].

[1377] ——, Classical cellular automata and quantum field theory, in H. Fritzsch, K.K.
Phua (Eds.), Proceedings of the Conference in Honour of Murray Gell-Mann’s 80th
Birthday: Quantum Mechanics, Elementary Particles, Quantum Cosmology and
Complexity, Nanyang Technological University, Singapore, 24-26 February 2010,
World Scientific, Singapore, 2011, pp. 397-408; also issued in Internat. J. Modern
Phys. A, Vol. 25, № 23, 2010, pp. 4385-4396.

[1378] ——, The Cellular Automaton Interpretation of Quantum Mechanics, Springer
Open, ebook published open access, 2016.

[1379] G. ’t Hooft, K. Isler and S. Kalitzin, Quantum field theoretic behavior of a
deterministic cellular automaton, Nuclear Phys. B, Vol. 386, 1992, pp. 495-519.

[1380] G. ’t Hooft and M. Veltman, Diagrammar, cern 73-09, Laboratory I, Theoretical
Studies Division, 3 September 1973, Geneva, 1973.

[1381] A.V. Holden and M.A. Muhamad, A graphical zoo of strange and peculiar
attractors, in A.V. Holden (Ed.), Chaos, Princeton Univ. Press, Princeton (nj),
1986, pp. 15-35.

[1382] O. Hölder, Ueber einen Mittelwertsatz, Nachr. Ges. Wiss. Georg-Augusts-Univ.,
№ 2, 1889, pp. 38-47.

[1383] P. Holmes, A nonlinear oscillator with a strange attractor, Philos. Trans. Roy.
Soc. A, Vol. 292, № 1394, 1979, pp. 419-448.

[1384] P.J. Holmes and D.A. Rand, Bifurcations of the forced van der Pol oscillator,
Quart. Appl. Math., Vol. 35, № 4, 1978, pp. 495-509.

[1385] G. Holton, The Scientific Imagination: Case Studies, Cambridge Univ. Press,
New York, 1978.

[1386] ——, On the Art of Scientific Imagination, Daedalus, Vol. 125, № 2, 1996, pp.
183-208.

[1387] J. Honerkamp, Chiral multi-loops, Nuclear Phys. B, Vol. 36, № 1, 1972, pp.
130-140.

[1388] E. Hopf, Fuchsian groups and ergodic theory, Trans. Amer. Math. Soc., Vol. 39,
№ 2, 1936, pp. 299-314.

[1389] ——, Ergodentheorie, Springer-Verlag, Berlin, Heidelberg, New York, 1970,
reprint from J. Springer, Berlin, 1937ed.

[1390] ——, Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krüm-
mung, Ber. Verh. Sächs. Akad. Wiss. Leipzig, Vol. 91, 1939, pp. 261-304.

[1391] ——, Statistik der Lösungen geodätischer Probleme vom unstabilen Typus. II,
Math. Ann., Vol. 117, № 1, 1940, pp 590-608.

https://arxiv.org/abs/quant-ph/0604008
https://arxiv.org/abs/gr-qc/9310026
https://arxiv.org/abs/0908.3408


598 Bibliography

[1392] ——, On S. Bernstein’s Theorem on Surfaces z(x, y) of Nonpositive Curvature,
Proc. Amer. Math. Soc., Vol. 1, № 1, 1950, pp. 80-85.

[1393] ——, Ergodic Theory and the Geodesic Flow on Surfaces of Constant Negative
Curvature, Bull. Amer. Math. Soc., Vol. 77, № 6, 1971, pp. 863-877.

[1394] H. Hopf, Zum Clifford-Kleinschen Raumproblem, Math. Ann., Vol. 95, № 1,
1926, pp. 313-339.

[1395] ——, Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche,
Math. Ann., Vol. 104, № 1, 1931, pp. 637-665.

[1396] ——, Selecta Heinz Hopf: Herausgegeben zu seinem 70. Geburtstag von der Eid-
genössischen Technischen Hochschule Zürich, Springer-Verlag, Berlin, Heidelberg,
1964.

[1397] C. De Lellis, D. Inauen, C1,α Isometric Embeddings of Polar Caps,
arXiv:1809.04161 [math.AP], 2019 [v2].

[1398] G.F.A. de L’Hôpital, Solutio Problematis de Linea celerrimi Descensus, in Acta
Eruditorum, Typis J. Georgii, Lipsiæ, mdcxcvii (1697), Mensis Maji, pp. 217-220.

[1399] Q. Horatii Flacci, Epistularum, in Id., Opera Omnia. The Works Of Horace, Vol.
II: The Satires, Epistles, and De Arte Poetica, With a commentary by C. Wickham,
Oxford at the Clarendon Press, 1891, pp. 207-381.

[1400] L. Horwitz, Y.B. Zion, M. Lewkowicz, M. Schiffer, and J. Levitan, Geometry
of Hamiltonian Chaos, Phys. Rev. Lett., Vol. 98, № 23, 2007, pp. 234301-234301;
arXiv:physics/0701212 [physics.class-ph], 2007 [v2].

[1401] P.-C. Hu and C.-C. Yang, Differentiable and Complex Dynamics of Several
Variables, Springer Science+Business Media, Dordrecht, 1999.

[1402] J.H. Hubbard and R.L. Miller, Equidistribution of Horocyclic Flows on Complete
Hyperbolic Surfaces of Finite Area, in M. Bonk, J. Gilman, H. Masur, Y. Minsky,
M. Wolf (Eds.), In the Tradition of Ahlfors–Bers, V, The Triennial Ahlfors–Bers
Colloquium, May 8-11, 2008, Rutgers University Newark, New Jersey, American
Mathematical Society (ams), Providence (ri), 2010, pp. 129-150.

[1403] S. Hurder, Classifying foliations, in N.C. Saldanha, L. Conlon, R. Langevin, T.
Tsuboi, P. Walczak (Eds.), Foliations, Geometry, and Topology: Paul Schweitzer
Festschrift, Conference in Honor of the 70th Birthday of Paul Schweitzer, S.J.,
August 6-10, 2007 puc-Rio, Rio de Janeiro, Brazil, American Mathematical Society
(ams), Providence (ri), 2009, pp. 1-65.

[1404] N.E. Hurt, Quantum Chaos and Mesoscopic Systems: Mathematical Methods in
the Quantum Signatures of Chaos, Springer Science+Business Media, Dordrecht,
1997.

[1405] D. Husem[ö]ller, Fibre Bundles, Springer-Verlag, New York, 19943ed.
[1406] ——, Elliptic Curves, With Appendices by O. Forster, R. Lawrence, and S.

Theisen, Springer-Verlag, New York, 20042ed.
[1407] D. Huybrechts, Complex Geometry: An Introduction, Springer-Verlag, Berlin,

Heidelberg, 2005.
[1408] C. Huygens [C. Hugenii Zulichemii, Const. F.], Horologium oscillatorium, sive

De motu pendulorum ad horologia aptato demonstrationes geometricæ, apud F.
Muguet, Regis & Illustrissimi Archiepiscopi Typographum, Parisiis, mdclxxiii
(1673).

[1409] B.Z. Iliev, Handbook of Normal Frames and Coordinates, Birkhäuser Verlag,
Basel, 2006.

[1410] A. Inoue, Tomita-Takesaki Theory in Algebras of Unbounded Operators, Springer-
Verlag, Berlin, Heidelberg, 1998.

arxiv.org/abs/1809.04161
https://arxiv.org/abs/physics/0701212


Bibliography 599

[1411] K. Irie, F.C. Marques, and A. Neves, Density of minimal hypersurfaces for
generic metrics, Ann. of Math., Vol. 187, № 3, 2018, pp. 963-972; arXiv:1710.10752
[math.DG], 2018 [v2].

[1412] P. Isett, A proof of Onsager’s conjecture, Ann. of Math., Vol. 188, № 3, 2018,
pp. 871-963; arXiv:1608.08301 [math.AP], 2016 [v1].

[1413] C.J. Isham, A. Salam, and J. Strathdee, Infinity Suppression in Gravity-Modified
Electrodynamics – II, IC/71/14, International Centre for Theoretical Physics,
Miramare, Trieste, August 1971, typewritten copy to be submitted for publication.
The article published (in Phys. Rev. D, Vol. 5, № 10, 1972, pp. 2548-2565) presents
some changes.

[1414] G. Israel, Volterra, D’Ancona e la biologia matematica, in V. Volterra, U.
D’Ancona, Le associazioni biologiche studiate dal punto di vista matematico, a cura
di G. Israel, Edizioni Teknos, Roma, 1995, pp. vii-li.

[1415] ——, La visione matematica della realtà. Introduzione ai temi e alla storia della
modellistica matematica, Laterza, Roma-Bari, 20124ed.

[1416] ——, Chi sono i nemici della scienza? Riflessioni su un disastro educativo
e culturale e un campionario di malascienza, 2013, revised and updated digital
version, eBook Kindle.

[1417] ——, La matematica e la realtà. Capire il mondo con i numeri, Carocci editore,
Roma, 2015.

[1418] ——, Meccanicismo. Trionfi e miserie della visione meccanica del mondo,
Zanichelli, Bologna, 2015.

[1419] K. Itô, Stochastic Integral, Proc. Imp. Acad., Vol. 20, № 8, 1944, pp. 519-524.
[1420] ——, On a Stochastic Integral Equation, Proc. Japan Acad. A, Vol. 22, № 2,

1946, pp. 32-35.
[1421] ——, On a Formula Concerning Stochastic Differentials, Nagoya Math. J., Vol.

3, 1951, pp. 55-65.
[1422] ——, Stochastic Differential Equations in a Differentiable Manifold, Nagoya

Math. J., Vol. 1, 1950, pp. 35-47.
[1423] V.G. Ivancevic, T.T. Ivancevic, Applied Differential Geometry: A Modern

Introduction, World Scientific, Singapore, 2007.
[1424] T. Ivey, New examples of complete Ricci solitons, Proc. Amer. Math. Soc., Vol.

122, № 1, 1994, pp. 241-245.
[1425] H. Iwaniec, Spectral Methods of Automorphic Forms, American Mathematical

Society (ams), Providence (ri), 20022ed.
[1426] H.L. Jackson, Presentation of the Concept of Mass to Beginning Physics Students,

Amer. J. Phys., Vol. 27, № 4, 1959, pp. 278-280.
[1427] W.H. Jaco and P.B. Shalen, A new decomposition theorem for irreducible

sufficiently-large 3-manifolds, in R.J. Milgram (Ed.), Algebraic and Geometric
Topology, Proceedings of Symposia in Pure Mathematics, Vol. XXXII, Part 2, held
at Stanford University, California, August 2-21, 1976, American Mathematical
Society (ams), Providence (ri), 1978, pp. 71-84.

[1428] ——, Seifert fibered spaces in 3-manifolds, American Mathematical Society
(ams), Providence (ri), 1979.

[1429] U. Jacob and T. Piran, Lorentz-violation-induced arrival delays of cosmological
particles, J. Cosmol. Astropart. Phys., Vol. 2008, January 2008 (001-031), pp. 1-4;
arXiv:0712.2170 [astro-ph], 2008 [v3].

[1430] C.G.J. Jacobi, Ueber die Figur des Gleichgewich, Ann. Phys. Chem., Vol.
XXXIII, № 15, 1834, pp. 229-233.

https://arxiv.org/abs/1710.10752
https://arxiv.org/abs/1608.08301
https://arxiv.org/abs/0712.2170


600 Bibliography

[1431] ——, Lettre sur quelques points d’analyse mathématique and Sur l’intégration
d’une classe de fonctions différentielles (Extrait), C. R. Acad. Sci. Paris, 1836, 2e

Semestre, Tome III, Séance du 18 juillet 1836, pp. 59-61 and 536; reprinted in
C.G.J. Jacobi, Gesammelte Werke, Vierter Bd., pp. 37-38, with the title Sur le
mouvement d’un point et sur un cas particulier du problème des trois corps.

[1432] ——, De Determinantibus functionalibus, J. Reine Angew. Math., Bd. 22, 1841,
pp. 319-359; reprinted in C.G.J. Jacobi, Gesammelte Werke, Dritter Bd., pp.
393-438.

[1433] ——, Vorlesungen über Dynamik, in C.G.J. Jacobi’s Gesammelte Werke, Sup-
plementband, Herausgegeben von E. Lottner, Druck und Verlag von G. Reimer,
Berlin, 1884.

[1434] T. Jacobson, Thermodynamics of Spacetime: The Einstein Equation of State,
Phys. Rev. Lett., Vol. 75, № 7, 1995, pp. 1260-1263.

[1435] ——, Entanglement Equilibrium and the Einstein Equation, Phys. Rev. Lett.,
Vol. 116, № 20, 2016, pp. 201101-1-6.

[1436] O. Janssen, J.J. Halliwell, and T. Hertog, No-boundary proposal in biaxial
Bianchi IX minisuperspace, Phys. Rev. D, Vol. 99, № 12, 2019, pp. 123531-1-34;
arXiv:1904.11602 [gr-qc], 2019 [v1].

[1437] D.-Q. Jiang, M. Qian, M.-P. Qian, Mathematical Theory of Nonequilibrium
Steady States: On the Frontier of Probability and Dynamical Systems, Springer-
Verlag, Berlin, Heidelberg, 2004.

[1438] S. Johannesen, Smooth Manifolds and Fibre Bundles with Applications to Theo-
retical Physics, crc Press, Taylor & Francis Group, Boca Raton (fl), 2017.

[1439] K. Johannson, Homotopy Equivalences of 3-Manifolds with Boundaries, Springer-
Verlag, Berlin, Heidelberg, 1979.

[1440] D.L. Johnson & L.B. Whitt, Totally geodesic foliations, J. Differential Geom.,
Vol. 15, № 2, 1980, pp. 225-235.

[1441] G.W. Johnson, M.L. Lapidus, The Feynman Integral and Feynman’s Operational
Calculus, Clarendon Press · Oxford, New York, 2000.

[1442] G.A. Jones and D. Singerman, Complex Functions: An Algebraic and Geometric
Viewpoint, Cambridge Univ. Press, Cambridge, 1997re.

[1443] C. Jordan, Traité des substitutions et des équations algébriques, Gauthier-Villars,
Paris, 1870.

[1444] T. Jørgensen, On Discrete Groups of Möbius Transformations, Amer. J. Math.,
Vol. 98, № 3, 1976, pp. 739-749.

[1445] P.S. Joshi, Elements of Group Theory for Physicists, J. Wiley & Sons, New
Delhi, 19883ed, 4re.

[1446] ——, Global Aspects in Gravitation and Cosmology, Clarendon Press · Oxford,
New York, 1993.

[1447] ——, Gravitational Collapse and Spacetime Singularities, Cambridge Univ.
Press, New York, 2007.

[1448] J. Jost, Compact Riemann Surfaces, Springer-Verlag, Berlin, Heidelberg,
20063ed.

[1449] ——, Riemannian Geometry and Geometric Analysis, Springer International
Publishing, Cham, 20177ed.

[1450] D.D. Joyce, Compact Riemannian 7-manifolds with holonomy G2. I, J. Differen-
tial Geom., Vol. 43, № 2, 1996, pp. 291-328.

[1451] ——, Compact Riemannian 7-manifolds with holonomy G2. II, J. Differential
Geom., Vol. 43, № 2, 1996, pp. 329-375.

https://arxiv.org/abs/1904.11602


Bibliography 601

[1452] ——, A new construction of compact 8-manifolds with holonomy Spin(7), J.
Differential Geom., Vol. 53, № 1, 1999, pp. 89-130.

[1453] ——, Compact Manifolds with Special Holonomy, Oxford Univ. Press, New
York, 2000.

[1454] ——, Constructing compact manifolds with exceptional holonomy, in M. Douglas,
J. Gauntlett, M. Gross (Eds.), Strings and Geometry, Proceedings of the Clay
Mathematics Institute 2002 Summer School on Strings and Geometry, Isaac Newton
Institute Cambridge, United Kingdom, March 24-April 20, 2002, American Mathe-
matical Society (ams), Providence (ri), Clay Mathematics Institute, Cambridge
(ma), 2004, pp. 177-191.

[1455] ——, Riemannian Holonomy Groups and Calibrated Geometry, Oxford Univ.
Press, New York, 2007.

[1456] M. Kac, On the notion of recurrence in discrete stochastic processes, Bull. Amer.
Math. Soc., Vol. 53, № 10, 1947, pp. 1002-1010.

[1457] M.I. Kaganov, Энциклопедия теоретической физики, Uspekhi Mat. Nauk,
Vol. 145, № 2, 1985, pp. 349-354.

[1458] ——, Encyclopaedia of theoretical physics, transl. of [1457] by G.M. Volkoff, in
[1481, pp. 290-297].

[1459] E. Kähler, Über eine bemerkenswerte Hermitesche Metrik, Abh. Math. Semin.
Univ. Hambg., Vol. 9, № 1. 1933, pp. 173-186.

[1460] V.A. Kaimanovich, SAT Actions and Ergodic Properties of the Horosphere
Foliation, in M. Burger, A. Iozzi (Eds.), Rigidity in Dynamics and Geometry,
Contributions from the Programme Ergodic Theory, Geometric Rigidity and Number
Theory, Isaac Newton Institute for the Mathematical Sciences Cambridge, United
Kingdom, 5 January-7 July 2000, Springer-Verlag, Berlin, Heidelberg, 2002, pp.
261-282.

[1461] T. Kaluza, Zum Unitätsproblem in der Physik, Sitz. Preuss. Akad. Wiss. Berlin,
phys.-math. Kl., № LIV, 1921, pp. 949-972.

[1462] A. Kanamori, The Mathematical Development of Set Theory from Cantor to
Cohen, Bull. Symb. Log., Vol. 2, № 1, 1996, pp. 1-71.

[1463] ——, The Higher Infinite: Large Cardinals in Set Theory from Their Beginnings,
Springer-Verlag, Berlin, Heidelberg, 20092ed.

[1464] J.L. Kaplan and J.A. Yorke, Chaotic behavior of multidimensional difference
equations, in H.-O. Peitgen, H.-O. Walther (Eds.), Functional Differential Equations
and Approximation of Fixed Points, Proceedings, Bonn, July 1978, Springer-Verlag,
Berlin, Heidelberg, 1979, pp. 204-227.

[1465] V. Kaplunovsky and M. Weinstein, Space-time: Arena or illusion?, Phys. Rev.
D, Vol. 31, № 8, 1985, pp. 1879-1898.

[1466] M. Kapovich, Hyperbolic Manifolds and Discrete Groups, Reprint of the 2001
Edition, Birkhäuser, Boston, 2009.

[1467] S. Katok, Closed geodesics, periods and arithmetic of modular forms, Invent.
Math., Vol. 80, № 3, pp. 469-480, 1985.

[1468] ——, Fuchsian Groups, The Univ. of Chicago Press, Chicago and London, 1992.
[1469] ——, Fuchsian groups, geodesic flows on surfaces of constant negative curvature

and symbolic coding of geodesics, in M.L. Einsiedler, D.A. Ellwood, A. Eskin, D.
Kleinbock, E. Lindenstrauss, G. Margulis, S. Marmi, J.-C. Yoccoz (Eds.), Homoge-
neous Flows, Moduli Spaces and Arithmetic, Proceedings of the Clay Mathematics
Institute Summer School, Centro di Recerca Matematica Ennio De Giorgi, Pisa,
Italy, June 11-July 6, 2007, American Mathematical Society (ams), Providence
(ri), Clay Mathematics Institute, Cambridge (ma), 2010, pp. 243-320.



602 Bibliography

[1470] A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical
Systems, Cambridge Univ. Press, New York, 1995, 1999re.

[1471] J. Keats, The Poetical Works, Given from his own Editions and other authentic
sources and collated with many manuscripts, Edited with Notes and Appendices
by H. Buxton Forman, Complete Edition, T.Y. Crowell & Co., New York, 1895.

[1472] E.H. Kennard, Zur Quantenmechanik einfacher Bewegungstypen, Z. Phys., Vol.
44, № 4-5, 1927, pp. 326-352.

[1473] H.C. Kennedy, Peano. Storia di un matematico, Presentazione di L. Romano
(pp. 7-12), Trad. di P. Pagli, Bollati Boringhieri, Torino, 1983.a

[1474] J. Kepler, Prodromus dissertationum cosmographicarum, continens mysterium
cosmographicum, De admirabili proportione orbium coelestium, de que causis coelo-
rum numeri, magnitudinis, motuumque periodicorum genuinis & proprijs, demon-
stratum, per quinque regularia corpora Geometrica, G. Gruppenbachius, Tubingæ,
mdxcvi (1596).

[1475] ——, Strena Seu De Nive Sexangula, Apud G. Tampach, Francofurti, mdcxi
(1611).

[1476] ——, Ioannis Keppleri Harmonices Mundi Libri V, Lincii Austriæ, G. Tampachii
Bibl. Francof., Excudebat I. Plancus, mdcxix (1619).

[1477] R.P. Kerr, Gravitational Field of a Spinning Mass as an Example of Algebraically
Special Metrics, Phys. Rev. Lett., Vol. 11, № 5, 1963, pp. 237-238.

[1478] R. Kesseler & M. Harley, Pollen: The Hidden Sexuality of Flowers, Papadakis,
London, 2004.

[1479] R. Kesseler & W. Stuppy, Seeds: Time Capsules of Life, Papadakis, London,
2006.

[1480] M. Keynes, The Personality of Isaac Newton, Notes and Rec. of the Roy. Soc.
London, Vol. 49, № 1, 1995, pp. 1-56.

[1481] I.M. Khalatnikov (Ed.), Landau: The Physicist and the Man. Recollections of
L.D. Landau, Transl. from Ru. by J.B. Sykes, Pergamon Press, Printed in Great
Britain, 1989.

[1482] A.I. Khinchin, Mathematical Foundations of Statistical Mechanics, transl. from
the Ru. by G. Gamow, Dover Publications, New York, 1949.

[1483] A. Khovanskii, Galois Theory, Coverings, and Riemann Surfaces, Springer-
Verlag, Berlin, Heidelberg, 2013.

[1484] T.W.B. Kibble, F.H. Berkshire, Classical Mechanics, Imperial College Press,
London, 20045ed.

[1485] W. Killing, Ueber die Clifford–Klein’schen Raumformen, Math. Ann., Vol. 39,
№ 2, 1891, pp. 257-278.

[1486] H. Kim and P. Tondeur, Riemannian foliations on manifolds with non-negative
curvature, Manuscripta Math., Vol. 74, № 1, pp. 39-45.

[1487] V.V. Kisil, Geometry of Möbius Transformations: Elliptic, Parabolic and Hy-
perbolic Actions of SL2(R), Imperial College Press, London, 2012.

[1488] M. Kita and M. Yoshida, Intersection Theory for Twisted Cycles, Math. Nachr.,
Vol. 166, № 1, 1994, pp. 287-304.

[1489] ——, Intersection Theory for Twisted Cycles II — Degenerate Arrangements,
Math. Nachr., Vol. 168, № 1, 1994, pp. 171-190.

[1490] K. Kiyohara, Two Classes of Riemannian Manifolds Whose Geodesic Flows Are
Integrable, American Mathematical Society (ams), Providence (ri), 1997.

aThe original work is: H.C. Kennedy, Peano: Life and Works of Giuseppe Peano, D. Reidel
Publishing Co., Dordrecht, 1980. Romano’s presentation is absent here.



Bibliography 603

[1491] F. Klein, Über Riemann’s Theorie der Algebraischen Functionen und ihrer
Integrale, Druck und Verlag von B.G. Teubner, Leipzig, 1882.

[1492] ——, Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom
fünften Grade, Druck und Verlag von B.G. Teubner, Leipzig, 1884.

[1493] ——, Lectures on the Ikosahedron and the Solution of Equations of the Fifth
Degree, transl. of [1492] by G.G. Morrice, Trübner & Co, Ludgate Hill, London,
1888.

[1494] ——, Sur la géométrie dite non euclidienne, Bull. Sci. Math. Astronom., Tome
Deuxième, 1871, pp. 341-351.

[1495] ——, Ueber die sogenannte Nicht-Euklidische Geometrie, Math. Ann., Vol. 4,
№ 4, 1871, pp. 573-625.

[1496] ——, Ueber die sogenannte Nicht-Euklidische Geometrie (Zweiter Aufsatz.),
Math. Ann., Vol. 6, № 2, 1873, pp. 112-145.

[1497] ——, Considerazioni comparative intorno a ricerche geometriche recenti, transl.
of [1498], transl. by G. Fano, Ann. Mat. Pura Appl., Ser. II, Tomo 17, 1890, pp.
307-343.

[1498] ——, Vergleichende Betrachtungen über neuere geometrische Forschungen [Er-
langer Programm, 1872], Math. Ann., Vol. 43, № 1, 1893, pp. 63-100.

[1499] ——, On Riemann’s Theory of Algebraic Functions and Their Integrals, transl.
of [1491] from the Ge., with the author’s permission by F. Hardcastle, Macmillan
and Bowes, Cambridge, 1893.

[1500] ——, A Comparative Review of Recent Researches in Geometry, transl. of [1498],
transl. by M.W. Haskell, Bull. New York Math. Soc., Vol. II, 1893, pp. 215-249;
retyped electronic version based on print version: arXiv:0807.3161 [math.HO], 2008
[v1].

[1501] J. Klein, Greek Mathematical Thought and the Origin of Algebra, Transl. by E.
Brann, Dover Publications, New York, 1992.

[1502] O. Klein, Quantentheorie und fünfdimensionale Relativitätstheorie, Z. Phys.,
Vol. 37, № 12, 1926, pp. 895-906.

[1503] ——, Elektrodynamik und Wellenmechanik vom Standpunkt des Korresponden-
zprinzips, Z. Phys. A, Vol. 41, № 6-7, 1927, pp. 407-442.

[1504] B. Kleiner and J. Lott, Notes on Perelman’s papers, Geom. Topol., Vol. 12, №
5, 2008, pp. 2587-2858; arXiv:math/0605667 [math.DG], 2013 [v5].

[1505] H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics,
and Financial Markets, World Scientific, Singapore, 20095ed.

[1506] W. Klingenberg, Über Riemannsche Mannigfaltigkeiten mit nach oben beschränk-
ter Krümmung, Ann. Mat. Pura Appl., Tomo 60, 1962, pp. 49-59.

[1507] P.E. Kloeden, Pullback Attractors in Nonautonomous Difference Equations, J.
Difference Equ. Appl., Vol. 6, № 1, 2000, pp. 33-52.

[1508] P.E. Kloeden, H. Keller, and B. Schmalfuß, Towards a Theory of Random
Numerical Dynamics, in H. Crauel, M. Gundlach (Eds.), Stochastic Dynamics,
Springer-Verlag, New York, 1999, pp. 259-282.

[1509] P.E. Kloeden, C. Pötzsche, and M. Rasmussen, Discrete-Time Nonautonomous
Dynamical Systems, in A. Capietto, P.[E.] Kloeden, J. Mawhin, S. Novo, R. Ortega
· Editors: R. Johnson, M.P. Pera, Stability and Bifurcation Theory for Non-
Autonomous Differential Equations, Cetraro, Italy 2011, Springer-Verlag, Berlin,
Heidelberg, 2013, pp. 35-102.

[1510] P.E. Kloeden, M. Rasmussen, Nonautonomous Dynamical Systems, American
Mathematical Society (ams), Providence (ri), 2011.

https://arxiv.org/abs/0807.3161
https://arxiv.org/abs/math/0605667


604 Bibliography

[1511] M.S. Knebelman, Spaces of Relative Parallelism, Ann. of Math. (2), Vol. 53, №
3, 1951, pp. 387-399.

[1512] H. Kneser, Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten,
Jahresber. Dtsch. Math.-Ver., Vol. 38, 1929, pp. 248-260.

[1513] G. Knieper & H. Weiss, A surface with positive curvature and positive topological
entropy, J. Differential Geom., Vol. 39, № 2, 1994, pp. 229-249.

[1514] D.E. Knuth, Foreword to M. Petkovšek, H.S. Wilf, D. Zeilberger, A = B, crc
Press, Taylor & Francis Group, Boca Raton (fl), 1996.

[1515] M. Kobayashi, T. Maskawa, CP-Violation in the Renormalizable Theory of
Weak Interaction, Progr. Theor. Phys., Vol. 49, № 2, 1973, pp. 652-657.

[1516] S. Kobayashi, Theory of Connections, Ann. Mat. Pura Appl., Ser. IV, Tomo 43,
1957, pp. 119-194.

[1517] ——, Differential Geometry of Complex Vector Bundles, Iwanami Shoten, Pub-
lishers, and Princeton Univ. Press, Princeton (nj), 1987.

[1518] ——, Transformation Groups in Differential Geometry, Reprint of the 1972
Edition, Springer-Verlag, Berlin, Heidelberg, 1995.

[1519] S. Kobayashi & K. Nomizu, Foundations of Differential Geometry, Vol. I,
Wiley-Interscience Publischers, New York, 1963.

[1520] H. von Koch, Sur une courbe continue sans tangente, obtenue par une con-
struction géométrique élémentaire, Ark. Mat. Astron. Fys., Band 1, 1904, pp.
681-702.

[1521] ——, Une méthode géométrique élémentaire pour l’étude de certaines questions
de la théorie des courbes planes, Acta Math., Vol. 30, № 1, 1906, pp. 145-174.

[1522] K. Kodaira, A Theorem of Completeness of Characteristic Systems for Analytic
Families of Compact Submanifolds of Complex Manifolds, Ann. of Math. (2), Vol.
75, № 1, 1962, pp. 146-162.

[1523] ——, On Stability of Compact Submanifolds of Complex Manifolds, Amer. J.
Math., Vol. 85, № 1, 1963, pp. 79-94.

[1524] E. Koinberg, Herbarium Amoris / Floral Romance, Essays by H. Mankell and
T. Frängsmyr, Taschen, Cologne, 2009.

[1525] N. Koiso, On Rotationally Symmetric Hamilton’s Equation for Kähler–Einstein
Metrics, in T. Ochiai (Ed.), Recent Topics in Differential and Analytic Geometry,
Adv. Stud. Pure Math., Vol. 18-I, Kinokuniya Co. Ltd., Tokyo, Academic Press,
San Diego, printed in Japan by Kokusai Bunken Insatsusha, 1990, pp. 327-337.

[1526] S. Kojima, Thurston’s Theory of 3-Manifolds, in K. Ohshika, A. Papadopoulos
(Eds.), In the Tradition of Thurston: Geometry and Topology, Springer Nature
Switzerland, Cham, 2020, pp. 161-171.

[1527] D. Koks, Explorations in Mathematical Physics: The Concepts Behind an Elegant
Language, Springer Science+Business Media, New York, 2006.

[1528] I. Kolář, P. Michor, J. Slovák, Natural Operations in Differential Geometry,
ebook; originally published by Springer-Verlag, Berlin, Heidelberg, 1993.

[1529] L. Kollros, Albert Einstein en Suisse: Souvenirs, Helv. Phys. Acta, Vol. XXIX,
Suppl. IV, 1956, pp. 271-281.

[1530] A.N. Kolmogorov, Preservation of Conditionally Periodic Movements with
Small Change in the Hamilton Function, transl. into En. in G. Casati and J.
Ford (Eds.), Stochastic Behavior in Classical and Quantum Hamiltonian Systems,
Volta Memorial Conference, Como, 1977, Springer-Verlag, Berlin, Heidelberg, 1979,
pp. 51-56; originally published in Ru. under the title О сохранении условно-
периодических движений при малом изменении функции Гамильтона, in Dokl.
Akad. Nauk, Vol. 98, № 4, 1954, pp. 527-530.



Bibliography 605

[1531] ——, Новый метрический инвариант транзитивных динамических систем
и автоморфизмов пространств Лебега, Докл. АН cccp, Том 119, номер 5,
1958, pp. 861-864. En. version [A new metric invariant of transient dynamical
systems and automorphisms in Lebesgue spaces] not available.

[1532] ——, Об энтропии на единицу времени как метрическом инварианта
автоморфизмов, Докл. АН cccp, Том 124, номер 4, 1959, pp. 754-755. En.
version [On entropy per unit time as a metric invariant of automorphisms] not
available.

[1533] A. Kontorovich, Applications of Thin Orbits, in D. Badziahin, A. Gorodnik,
N. Peyerimhoff (Eds.), Dynamics and Analytic Number Theory, Cambridge Univ.
Press, Cambridge, 2016, pp. 289-317.

[1534] M. Kontsevich, Homological Algebra of Mirror Symmetry, in S.D. Chatterji
(Ed.), Proceedings of the International Congress of Mathematicians, August 3-11,
1994 Zürich, Switzerland, Vol. 1, Birkhäuser Verlag, Basel, 1995, pp. 120-139;
arXiv:alg-geom/9411018, 1994 [v1].

[1535] D.J. Korteweg and G. de Vries, On the Change of Form of Long Waves advancing
in a Rectangular Canal, and on a New Type of Long Stationary Waves, Phil. Mag.
(5), Vol. XXXIX, № 240, Art. XLI, 1895, pp. 422-443.

[1536] Y. Kosmann-Schwarzbach, The Noether Theorems: Invariance and Conser-
vation Laws in the Twentieth Century, Transl. by B.E. Schwarzbach, Springer
Science+Business Media, New York, 2011.

[1537] J.-L. Koszul, Homologie et cohomologie des algèbres de Lie, Bull. Soc. Math.
France, Tome 78, 1950, pp. 65-127.

[1538] J.-L. Koszul, Y.M. Zou, Introduction to Symplectic Geometry, Springer Nature,
Singapore, and Science Press, Beijing, 2019, based on the lecture held by J.-L.
Koszul at Nankai University in the spring of 1983, translated and written (with
minor modifications) by Y.-M. Zou; originally published in Zh. under the title J.柯
歇尔, 邹异明, 辛几何引论, by 科学出版社, 第1版, 1986.

[1539] C.T. Kowal & S. Drake, Galileo’s observations of Neptune, Nature, Vol. 287, №
5780, 1980, pp. 311-313.

[1540] K. Krasnov, Formulations of General Relativity: Gravity, Spinors and Differen-
tial Forms, Cambridge Univ. Press, Cambridge, 2020.

[1541] E. Kretschmann, Über den physikalischen Sinn der Relativitätspostulate, A.
Einsteins neue und seine ursprüngliche Relativitätstheorie, Ann. Phys., Vol. 53, №
16, 1917, pp. 575-614.

[1542] E. Kreyszig, Differential Geometry, Dover Publications, New York, 1991
(unabridged republication of the 1963 printing of the work first published by
The Univ. of Toronto Press, in 1959 as № 11 in their series).

[1543] M. Kriele, Spacetime. Foundations of General Relativity and Differential Geom-
etry, Springer-Verlag, Berlin, Heidelberg, 20012c.pr.

[1544] F. Krull, Albert Einstein in seinen erkenntnistheoretischen Äußerungen, Sudhoffs
Archiv, Bd. 78, H. 2, 1994, pp. 154-170.

[1545] N.V. Krylov, Lectures on Elliptic and Parabolic Equations in Sobolev Spaces,
American Mathematical Society (ams), Providence (ri), 2008.

[1546] R. Kubo, Statistical-Mechanical Theory of Irreversible Processes. I. General
Theory and Simple Applications to Magnetic and Conduction Problems, J. Phys.
Soc. Japan, Vol. 12, № 6, 1957, pp. 570-586.

[1547] C.S. Kubrusly, Essentials of Measure Theory, Springer International Publishing,
Cham, 2015.

https://arxiv.org/abs/alg-geom/9411018


606 Bibliography

[1548] N.H. Kuiper, On Conformally-Flat Spaces in the Large, Ann. of Math. (2), Vol.
50, № 4, 1949, pp. 916-924.

[1549] ——, On Compact Conformally Euclidean Spaces of Dimension > 2, Ann. of
Math. (2), Vol. 52, № 2, 1950, pp. 478-490.

[1550] ——, On C1-isometric imbeddings. I, Indag. Math., Vol. 58, № 1, 1955, pp.
545-556.

[1551] ——, On C1-isometric imbeddings. II, Indag. Math., Vol. 58, № 1, 1955, pp.
683-689.

[1552] R.S. Kulkarni, Curvature structures and conformal transformations, J. Differen-
tial Geom., Vol. 4, № 4, 1970, pp. 425-451.

[1553] ——, On the Bianchi identities, Math. Ann., Vol. 199, № 4, 1972, pp. 175-204.
[1554] D.N. Kupeli, Singular Semi-Riemannian Geometry, Springer Science+Business

Media, Dordrecht, 1996.
[1555] C. Kuratowski et W. Sierpiński, Le théorème de Borel-Lebesgue dans la théorie

des ensembles abstraits, Fundamenta Mathematicae, Vol. 2 № 1, 1921, pp. 172-178.
[1556] Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer-Verlag, New

York, 20043ed.
[1557] O.A. Ladyzhenskaya and N.N. Ural’tseva, Linear and Quasilinear Elliptic Equa-

tions (1964), transl. by Scripta Technica, Inc., Academic Press, New York and
London, 1968.

[1558] J.L. Lagrange, Essai d’une nouvelle méthode pour déterminer les maxima et
les minima des formules intégrales indéfinies, Miscel. Taur., Tomo II, 1760-1761
(1762); reprinted in Œuvers de Lagrange, Tome Premier, publiées par les soins de
M.J.-A. Serret, Gauthier-Villars, Paris, mdccclxvii (1867), pp. 335-362.

[1559] ——, Sur la méthode des variations, Miscel. Taur., Tomo IV, 1766-1769;
reprinted in Œuvers de Lagrange, Tome Deuxième, publiées par les soins de M.J.-A.
Serret, Gauthier-Villars, Paris, mdccclxviii (1868), pp. 37-63.

[1560] ——, Nouvelle méthode pour résoudre les équations littérales par le moyen des
séries, Hist. Acad. Roy. Sci. et Belles-Lett. Berlin, Tome XXIV, mdcclxx (1770),
pp. 251-326; reprinted in Œuvers de Lagrange, Tome Troisième, publiées par les
soins de M.J.-A. Serret, Gauthier-Villars, Paris, mdccclxix (1869), pp. 5-73.

[1561] ——, Reflexions sur la résolution algébrique des equations, Nouv. Mem. Acad.
Roy. Sci. et Belles-Lett. Berlin, 1770-1771; reprinted in Œuvers de Lagrange,
Tome Troisième, publiées par les soins de M.J.-A. Serret, Gauthier-Villars, Paris,
mdccclxix (1869), pp. 205-421.

[1562] ——, Théorie des fonctions analytiques, contenant les principes du calcul dif-
férentiel, dégagés de toute considération d’infiniment petits ou d’évanouissants, de
limites ou de fluxions, et réduits à l’analyse algébrique des quantités finies, De
l’Imprimerie de la République, Paris, an V, 1797.

[1563] ——, Mécanique analytique, Nouvelle édition, revue et augmentée par l’auteur.
Tome premier, MmeVe Courcier, Imprimeur-Libraire pour les Mathématiques, Paris,
1811.

[1564] ——, Mécanique analytique, Nouvelle édition, revue et augmentée par l’auteur.
Tome second, MmeVe Courcier, Imprimeur-Libraire pour les Mathématiques, Paris,
1815.

[1565] M. Lakshmanan, S. Rajasekar, Nonlinear Dynamics: Integrability, Chaos, and
Patterns, Springer-Verlag, Berlin, Heidelberg, 2003.

[1566] Y. Lam, Totally Asymmetric Torsion on Riemann–Cartan Manifold, arXiv:gr-
qc/0211009, 2002 [v1].

https://arxiv.org/abs/gr-qc/0211009
https://arxiv.org/abs/gr-qc/0211009


Bibliography 607

[1567] C. Lambert and V. Suneeta, Stability analysis of the Witten black hole (cigar
soliton) under world-sheet renormalization group flow, Phys. Rev. D, Vol. 86, №. 8,
2012, pp. 084041-1-7; arXiv:1205.3043 [hep-th], 2012 [v2].

[1568] J.H. Lambert, Theorie der Parallellinien (1766), Leipziger Mag. reine angew.
Math., Bd. I, pp. 137-164 (§§ 1-26), pp. 325-358 (§§ 27-88), 1786.

[1569] A. Lampo, M.Á.G. March, M. Lewenstein, Quantum Brownian Motion Revisited:
Extensions and Applications, Springer International Publishing, Cham, 2019.

[1570] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Erster Bd.,
Druck und Verlag von B.G. Teubner, Leipzig und Berlin, 1909.

[1571] ——, Handbuch der Lehre von der Verteilung der Primzahlen, Zweiter Bd.,
Druck und Verlag von B.G. Teubner, Leipzig und Berlin, 1909.

[1572] L.[D.] Landau, Origin of Stellar Energy, Nature, Vol. 141, № 3564, 1938, pp.
333-334.

[1573] L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields: Course of
Theoretical Physics, Vol. 2, Transl. from the Ru. by M. Hamermesh, Butter-
worth–Heinemann, Oxford, 19874r.ed.

[1574] T. Landolfi, Dialogo dei massimi sistemi, F.lli Parenti Editori, Firenze, 1937,
republished in T. Landolfi, Opere I: 1937-1959, a cura di I. Landolfi, Rizzoli, Milano,
1991, pp. 43-55.

[1575] N.P. Landsman, Mathematical Topics Between Classical and Quantum Mechan-
ics, Springer-Verlag, New York, 1998.

[1576] R. Langlands, Letter to Prof. A. Weil, January of 1967, free online text ver-
sion available on the website of Institute for Advanced Study (ias) in Princeton:
handwritten copy plus typed copy.

[1577] ——, Harish-Chandra: 11 October 1923-16 October 1983, Biogr. Mem. Fell.
Roy. Soc., Vol. 31, 1985, pp. 198-225.

[1578] ——, Is there beauty in mathematical theories?, Univ. of Notre Dame, Jan. 2010,
free online text version available on the website of Institute for Advanced Study
(ias) in Princeton.

[1579] W.E. Langlois, M.O. Deville, Slow Viscous Flow, Springer International Pub-
lishing, Cham, 20142ed.

[1580] Laotze [Laozi], The Book of The Simple Way, With Introduction and Commen-
tary by W. Gorn Old, P. Wellby, London, 1904.

[1581] P.-S. de Laplace, Première séance. Programme. Sur la numération et les opéra-
tions de l’arithmétique, from Leçons de Mathématiques données à l’École Normale
en 1795, in Œuvres complètes de Laplace, Tome 14, publiées sous les auspices
de l’Académie des sciences, par MM. les secrétaires perpétuels, Gauthier-Villars,
Imprimeur-Libraire, Paris, mcmxii (1912), pp. 10-22.

[1582] ——, Exposition du système du monde, Seconde édition, revue et augmentée
par l’auteur, Chez J.B.M. Duprat, Libraire pour les Mathématiques, an VII, 1799.a

[1583] ——, Mémoire sur divers points d’analyse, J. Éc. polytech. [Math.], XVe Cahier,
Tome VIII, 1809, pp. 229-265.

[1584] ——, Essai philosophique sur les Probabilités, Seconde édition, revue et aug-
mentée par l’auteur, MmeVe Courcier, Imprimeur-Libraire pour les Mathématiques,
Paris, 1814.

aThe original edition dates back to 1796, divided into two books, De l’Imprimerie du Cercle-Social,
Paris (an IV de la Republique Française).

https://arxiv.org/abs/1205.3043


608 Bibliography

[1585] N. Lashkari, M.B. McDermott and M. Van Raamsdonk, Gravitational dynamics
from entanglement “thermodynamics”, J. High Energy Phys., Vol. 2014, № , Article
№ 195, 2014, pp. 1-15; arXiv:1308.3716 [hep-th], 2013 [v2].

[1586] J. Laskar, A numerical experiment on the chaotic behaviour of the Solar System,
Nature, Vol. 338, № 6212, pp. 237-238, 1989.

[1587] D. Laugwitz, Bernhard Riemann 1826-1866: Turning Points in the Conception
of Mathematics, Transl. by A. Shenitzer, With the Editorial Assistance of the
Author, H. Grant, and S. Shenitzer, Birkhäiuser, Boston, 2008re.

[1588] H.B. Lawson Jr. and M.-L. Michelsohn, Spin Geometry, Princeton Univ. Press,
Princeton (nj), 1989.

[1589] H. Lebesgue, Sur le problème de Dirichlet, Circ. Mat. Palermo, Serie I, Tomo
XXIV, 1907 (Adunanza del 18 agosto 1907), pp. 371-402.

[1590] ——, Sur la méthode de M. Goursat pour la résolution de l’équation de Fredholm,
Bull. Soc. Math. France, Tome 36, 1908, pp. 3-19.

[1591] J.L. Lebowitz, From time-symmetric microscopic dynamics to time-asymmetric
macroscopic behavior: an overview, in G. Gallavotti, W.L. Reiter, J. Yngvason
(Eds.), Boltzmann’s Legacy, European Mathematical Society (ems), Zürich, 2008,
pp. 63-87.

[1592] K. Lechner, Radiation reaction and 4-momentum conservation for point-like
dyons, J. Phys. A: Math. Gen., Vol. 39, № 37, 2006, pp. 11647-11655; arXiv:hep-
th/0606097, 2006 [v2].

[1593] ——, Classical Electrodynamics: A Modern Perspective, Springer International
Publishing, Cham, 2018.

[1594] K. Lechner, P.A. Marchetti, Variational principle and energy–momentum tensor
for relativistic electrodynamics of point charges, Ann. Physics, Vol. 322, № 5, 2007,
pp. 1162-1190; arXiv:hep-th/0602224, 2006 [v2].

[1595] F. Ledrappier and L.-S. Young, Entropy Formula for Random Transformations,
Probab. Theory Related Fields, Vol. 80, № 2, 1980, pp. 217-240.

[1596] J.M. Lee, Riemannian Manifolds: An Introduction to Curvature, Springer-Verlag,
New York, 1997.

[1597] ——, Manifolds and Differential Geometry, American Mathematical Society
(ams), Providence (ri), 2009.

[1598] ——, Introduction to Smooth Manifolds, Springer Science+Business Media, New
York, 20132ed.

[1599] B. Lee Whorf, Science and Linguistics, in Id., Language, Thought, and Reality,
Edited and with an introduction by J.B. Carroll, Foreword by S. Chase, The mit
Press, Massachusetts Institute of Technology, Cambridge (ma), 1956, pp. 207-219.

[1600] T. Lee, M. Leok, N.H. McClamroch, Global Formulations of Lagrangian and
Hamiltonian Dynamics on Manifolds. A Geometric Approach to Modeling and
Analysis, Springer International Publishing, Cham, 2018.

[1601] K.B. Lee, F. Raymond, Seifert Fiberings, American Mathematical Society (ams),
Providence (ri), 2010.

[1602] A.-M. Legendre, Éléments de géométrie, avec des notes, F. Didot, Paris, mdc-
cxciv (1794).

[1603] O. Lehto, Univalent Functions and Teichmüller Spaces, Springer-Verlag, New
York, 1987.

[1604] T. Lei, Local properties of the Mandelbrot set at parabolic points, in T. Lei (Ed.),
The Mandelbrot Set, Theme and Variations, Cambridge Univ. Press, New York,
2000, pp. 133-160.

https://arxiv.org/abs/1308.3716
https://arxiv.org/abs/hep-th/0606097
https://arxiv.org/abs/hep-th/0606097
https://arxiv.org/abs/hep-th/0602224


Bibliography 609

[1605] G.W. Leibniz, Communicatio suæ pariter, duarumque alienarum ad edendum
sibi primum a Dn. Jo. Bernoullio [ . . . ], in Acta Eruditorum, Typis J. Georgii,
Lipsiæ, mdcxcvii (1697), Mensis Maji, pp. 201-205.

[1606] ——, Explication de l’Arithmétique Binaire, Qui Se Sert des Seuls caractères
0 & I; avec des Remarques Sur Son utilité, & Sur ce qu’elle donne le Sens des
anciennes figures Chinoises de Fohy, Hist. Acad. R. Sci., Avec Mém. Math. & Phys.
pour la même Année, Paris, mdcciii (1703), pp. 58-63, pp. 85-89 (Mém.).

[1607] ——, № LXXIX, Epistola II ad C. Goldbachium, in G.G. Leibnitii, Opera omnia,
Nunc primum collecta, in Classes distributa, præfationibus & indicibus exornata,
studio L. Dutens, Tomus Tertius, Continens Opera Mathematica, Genevæ, Apud
Fratres de Tournes, mdcclxviii (1768), pp. 437-438.

[1608] G.W. Leibniz and S. Clarke: Correspondence, Edited, with Introduction, by R.
Ariew, Hackett Publishing Company, Indianapolis/Cambridge, 2000.

[1609] The Leibniz–Des Bosses Correspondence, Translated, Edited, and with an
Introduction by B.C. Look and D. Rutherford, Yale Univ. Press, New Haven and
London, 2007.

[1610] J. Leite Lopes, A model of the universal Fermi interaction, Nuclear Phys., Vol.
8, 1958, pp. 234-236.

[1611] G. Lemaître, Un Univers homogène de masse constante et de rayon croissant
rendant compte de la vitesse radiale des nébuleuses extra-galactiques, Ann. Soc.
Sci. Bruxelles, Tome XLVII, Sér. A, 1927, pp. 49-59. En. transl.: A Homogeneous
Universe of Constant Mass and Increasing Radius accounting for the Radial Velocity
of Extra-galactic Nebulæ, Monthly Not. Roy. Astronom. Soc., Vol. 91, № 5, 1931,
pp. 483-490.

[1612] F. Lenz, Topological Concepts in Gauge Theories, in E. Bick, F.D. Steffen (Eds.),
Topology and Geometry in Physics, Springer-Verlag, Berlin, Heidelberg, 2005, pp.
7-98.

[1613] G.A. Leonov, N.V. Kuznetsov, N.A. Korzhemanova, D.V. Kusakin, Lyapunov
dimension formula for the global attractor of the Lorenz system, Commun. Nonlinear
Sci. Numer. Simul., Vol. 41, 2016, pp. 84-103; arXiv:1508.07498 [math.DS], 2015
[v1].

[1614] G. Leopardi, Pensieri, Vol. Primo, Successori Le Monnier, Firenze, 1898.
[1615] ——, Pensieri, Vol. Secondo, Successori Le Monnier, Firenze, 1898.
[1616] ——, Pensieri, Vol. Quinto, Successori Le Monnier, Firenze, 1900.
[1617] N.C. Leung, Geometric Structures on Riemannian Manifolds, in L. Ji, P. Li, R.

Schoen, L. Simon (Eds.), Handbook of Geometric Analysis, Vol. III · 几何分析手册
(第 III 卷), Higher Education Press, Beijing, International Press, Somerville (ma),
published by Higher Education Press, Beijing, 2010, pp. 129-229.

[1618] U. Le Verrier, Recherches sur les mouvements d’Uranus, C. R. Acad. Sci. Paris,
1846, 1er Semestre, Tome XXII, № 22, Séance du 1er juin 1846, pp. 907-918.

[1619] ——, Recherches sur les mouvements de la planète Herschel (dite Uranus),
Bachelier, Paris, 1846.

[1620] B. Levi, Sopra l’integrazione delle serie, Rend. R. Ist. Lombardo, Ser. II, Vol.
XXXIX, 1906, pp. 775-780.

[1621] ——, Sul principio di Dirichlet. Memoria, Circ. Mat. Palermo, Serie I, Tomo
XXII, 1906 (Adunanza del 24 giugno 1906), pp. 293-359.

[1622] ——, Sul principio di Dirichlet. Nota, Circ. Mat. Palermo, Serie I, Tomo XXII,
1906 (Adunanza dell’11 novembre 1906), pp. 387-394.

[1623] E.E. Levi, Sulle condizioni sufficienti per il minimo nel calcolo delle variazioni
(Gli integrali sotto forma non parametrica), Atti R. Accad. Lincei, Rend. Cl. Sci.

https://arxiv.org/abs/1508.07498


610 Bibliography

fis. mat. e natur., Ser. Quinta, Vol. XX, 2º Sem., Fasc. 8º e 9º, 1911, Nota I, pp.
425-431, Nota II, pp. 466-469.

[1624] ——, Sui criterii sufficienti per il massimo e per il minimo nel Calcolo delle
Variazioni, Ann. Mat. Pura Appl., Ser. III, Tomo 21, № 1, 1913, pp. 173-218.

[1625] T. Levi-Civita, Sugli infiniti ed infinitesimi attuali quali elementi analitici, Atti
R. Ist. Veneto, Tomo LI, Ser. settima – Tomo quarto, Dispensa sesta, 1892-1893,
pubb. il 27 maggio 1893, pp. 1765-1815; reprinted in [1637, pp. 1-39].

[1626] ——, Nozioni di parallelismo in una varietà qualunque e conseguente specifi-
cazione geometrica della curvatura riemanniana, Rend. Circ. Mat. Palermo, Ser.
I, Tomo XLII, 1917 (Adunanza del 24 dicembre 1916), pp. 173-204; reprinted in
[1638, pp. 1-39].

[1627] ——, Sulla espressione analitica spettante al tensore gravitazionale nella teoria
di Einstein, Atti R. Accad. Lincei, Rend. Cl. Sci. fis. mat. e natur., Ser. Quinta,
Vol. XXVI, Fasc. 7º, 1º Sem., 1917, pp. 381-391; reprinted in [1638, pp. 47-58].

[1628] ——, Realtà fisica di alcuni spazi normali del Bianchi, Atti R. Accad. Lincei,
Rend. Cl. Sci. fis. mat. e natur., Ser. Quinta, Vol. XXVI, Fasc. 10º, 1º Sem., 1917,
pp. 519-531; reprinted in [1638, pp. 75-88].

[1629] ——, ds2 einsteiniani in campi newtoniani. I-IX:
· ds2 einsteiniani in campi newtoniani. I: Generalità e prima approssimazione, Atti
R. Accad. Lincei, Rend. Cl. Sci. fis. mat. e natur., Ser. Quinta, Vol. XXVI, 2º Sem.,
1917, pp. 307-317; reprinted in [1638, pp. 89-99];
· ds2 einsteiniani in campi newtoniani. II: Condizioni di integrabilità e comporta-
mento geometrico spaziale, Atti R. Accad. Lincei, Rend. Cl. Sci. fis. mat. e natur.,
Ser. Quinta, Vol. XXVII, 1º Sem., 1918, p. 3-12; reprinted in [1638, pp. 100-110];
· ds2 einsteiniani in campi newtoniani. III: Formule ausiliarie, Atti R. Accad.
Lincei, Rend. Cl. Sci. fis. mat. e natur., Ser. Quinta, Vol. XXVII, 2º Sem., 1918,
pp. 183-191; reprinted in [1638, pp. 111-121];
· ds2 einsteiniani in campi newtoniani. IV: Il sottocaso B2): Riduzione delle
equazioni differenziali, Atti R. Accad. Lincei, Rend. Cl. Sci. fis. mat. e natur., Ser.
Quinta, Vol. XXVII, 2º Sem., 1918, pp. 220-229; reprinted in [1638, pp. 122-133];
· ds2 einsteiniani in campi newtoniani. V: Il sottocaso B2): Soluzioni longitudinali
(ξ = 0), Atti R. Accad. Lincei, Rend. Cl. Sci. fis. mat. e natur., Ser. Quinta, Vol.
XXVII, 2º Sem., 1918, pp. 240-248; reprinted in [1638, pp. 134-143];
· ds2 einsteiniani in campi newtoniani. VI: Il sottocaso B2[)]: Soluzioni quadrantali
(η = 0), Atti R. Accad. Lincei, Rend. Cl. Sci. fis. mat. e natur., Ser. Quinta, Vol.
XXVII, 2º Sem., 1918, pp. 283-292; reprinted in [1638, pp. 144-155];
· ds2 einsteiniani in campi newtoniani. VII: Il sottocaso B2): Soluzioni oblique,
Atti R. Accad. Lincei, Rend. Cl. Sci. fis. mat. e natur., Ser. Quinta, Vol. XXVII, 2º
Sem., 1918, pp. 343-351; reprinted in [1638, pp. 156-165];
· ds2 einsteiniani in campi newtoniani. VIII: Soluzioni binarie di Weyl, Atti R.
Accad. Lincei, Rend. Cl. Sci. fis. mat. e natur., Ser. Quinta, Vol. XXVIII, 1º Sem.,
1919, pp. 3-13; reprinted in [1638, pp. 166-176];
· ds2 einsteiniani in campi newtoniani. IX: L’analogo del potenziale logaritmico,
Atti R. Accad. Lincei, Rend. Cl. Sci. fis. mat. e natur., Ser. Quinta, Vol. XXVIII,
1º Sem., 1919, pp. 101-109; reprinted in [1638, pp. 177-186].

[1630] ——, Questioni di meccanica classica e relativistica, N. Zanichelli, Bologna,
1924.

[1631] ——, Lezioni di calcolo differenziale assoluto, Raccolte e compilate dal Dott. E.
Persico, A. Stock, Roma, mcmxxv (1925).



Bibliography 611

[1632] ——, Sullo scostamento geodetico, Boll. Unione Mat. Ital., Vol. V, 1926, pp.
60-64.

[1633] ——, The Absolute Differential Calculus (Calculus of Tensors), transl. of [1631]
by Miss M. Long, Blackie & Son, Glasgow, 1927.

[1634] ——, Fondamenti di meccanica relativistica, Redatti dal Prof. E. Persico, N.
Zanichelli, Bologna, mcmxxviii (1928).

[1635] ——, Sur l’écart géodésique, Math. Ann., Vol. 97, № 1, 1927, pp. 291-320;
reprinted in [1638, pp. 433-464].

[1636] ——, Le Problème des n corps en relativité générale, Mém. Sci. Math., Fasc.
CXVI, 1950, pp. 1-111.

[1637] ——, Opere matematiche, Vol. primo 1893-1900, a cura dell’Accademia
Nazionale dei Lincei, N. Zanichelli, Bologna, 1954.

[1638] ——, Opere Matematiche. Memorie e Note, Vol. quarto 1917-1928, a cura
dell’Accademia Nazionale dei Lincei, N. Zanichelli, Bologna, 1960.

[1639] Tullio Levi-Civita. Convegno internazionale celebrativo del centenario della
nascita, Roma, 17-19 dicembre 1973 (Comitato ordinatore: B. Segre, C. Cattaneo,
E. Bompiani, G. Colombo, B. Finzi, D. Graffi, L.[A.] Radicati di Brozolo, F.G.
Tricomi), Atti dei Convegni Lincei, № 8, 1975.

[1640] D. Levine and P.J. Steinhardt, Quasicrystals: A New Class of Ordered Structures,
Phys. Rev. Lett., Vol. 53, № 26, 1984, pp. 2477-2480.

[1641] L.S. Levitov, Phyllotaxis of Flux Lattices in Layered Superconductors, Phys. Rev.
Lett., Vol. 66, № 2, 1991, pp. 224-227.

[1642] ——, Energetic Approach to Phyllotaxis, Europhys. Lett., Vol. 14, № 6, 1991,
pp. 533-539.

[1643] H. Levy, Ricci’s coefficients of rotation, Bull. Amer. Math. Soc., Vol. 31, № 3-4,
1925, pp. 142-145.

[1644] G.N. Lewis, The Conservation of Photons, Nature, Vol. 118, № 2981, 1926, pp.
874-875.

[1645] P. Li, Geometric Analysis, Cambridge Univ. Press, New York, 2012.
[1646] P. Li and S.-T. Yau, On the parabolic kernel of the Schrödinger operator, Acta

Math., Vol. 156, № 1, 1986, pp. 153-201.
[1647] T.-Y. Li, J.A. Yorke, Period Three Implies Chaos, Amer. Math. Monthly, Vol.

82, № 10, 1975, pp. 985-992.
[1648] B.H. Lian, K. Liu and S.-T. Yau, Mirror principle I, Asian J. Math., Vol. 1, №

4, 1997, pp. 729-763; arXiv:alg-geom/9712011, 1997 [v1].
[1649] ——, Mirror principle II, Asian J. Math., Vol. 3, № 1, 1999, pp. 109-146;

arXiv:math/9905006 [math.AG], 1999 [v1].
[1650] ——, Mirror principle III, Asian J. Math., Vol. 3, № 4, 1999, pp. 771-800;

arXiv:math/9912038 [math.AG], 1999 [v1].
[1651] ——, Mirror principle IV, Surv. Differ. Geom., Vol. VII, 2002, pp. 475-496;

arXiv:math/0007104 [math.AG], 2001 [v2].
[1652] S. Liberati and L. Maccione, Astrophysical Constraints on Planck Scale Dis-

sipative Phenomena, Phys. Rev. Lett., Vol. 112, № 15, 2014, pp. 151301-1-5;
arXiv:1309.7296 [gr-qc], 2014 [v2].

[1653] P. Libermann and C.-M. Marle, Symplectic Geometry and Analytical Mechanics,
Transl. by B.E. Schwarzbach, D. Reidel Publishing Co., Dordrecht, 1987.

[1654] A. Lichnerowicz, Propagateurs et commutateurs en relativité générale, Publ.
Math. Inst. Hautes Études Sci., Vol. 10, № 1, 1961, pp. 5-56.

[1655] ——, La relativité générale et les ondes, in Aspetti matematici della teoria della
relatività, Convegno Internazionale, Roma, 5-6 giugno 1980 (Comitato ordinatore:

https://arxiv.org/abs/alg-geom/9712011
https://arxiv.org/abs/math/9905006
https://arxiv.org/abs/math/9912038
https://arxiv.org/abs/math/0007104
https://arxiv.org/abs/1309.7296


612 Bibliography

A. Carrelli, E. Amaldi, P. Caldirola, C. Cattaneo, D. Galletto, A. Lichnerowicz,
L.[A.] Radicati di Brozolo), Atti dei Convegni Lincei, № 57, 1983, pp. 43-57.

[1656] ——, Le problème des n corps en relativité générale et Tullio Levi-Civita, in
[1639, pp. 127-136].

[1657] A.J. Lichtenberg, R. Livi, M. Pettini and S. Ruffo, Dynamics of Oscillator
Chains, in G. Gallavotti (Ed.), The Fermi-Pasta-Ulam Problem: A Status Report,
Springer-Verlag, Berlin, Heidelberg, 2008, pp. 21-121.

[1658] M.S. Lie, Theorie der transformationsgruppen, Erste Abschnitt, unter
Mitwirkung von Dr. F. Engel, Druck und Verlag von B.G. Teubner, Leipzig,
1888.

[1659] ——, Theorie der transformationsgruppen, Dritter und Letzter Abschnitt, unter
Mitwirkung von Prof. Dr. F. Engel, Druck und Verlag von B.G. Teubner, Leipzig,
1893.

[1660] ——, Theory of Transformation Groups I: General Properties of Continuous
Transformation Groups. A Contemporary Approach and Translation, edited by J.
Merker, Springer-Verlag, Berlin, Heidelberg, 2015.

[1661] A. Liénard, Champ électrique et magnétique produit par une charge électrique
concentrée en un point et animée d’un mouvement quelconque, L’Éclairage Élec-
trique, Tome XVI, 1898, № 27, pp. 5-14 (2 juillet), № 28, pp. 53-59 (9 juillet), №
29, pp. 106-112 (16 juillet).

[1662] [E.]L. Lindelöf, Leçons de calcul des variations, Mallet-Bachelier, Imprimeur-
Libraire, Paris, 1861.

[1663] ——, Sur quelques points de la théorie des ensembles, C. R. Acad. Sci. Paris,
1903, Tome CXXXVII, № 18, Séance du 2 Novembre 1903, pp. 697-700.

[1664] D. Lindley, Uncertainty: Einstein, Heisenberg, Bohr, and the Struggle for the
Soul of Science, Anchor Books, New York, 2008.

[1665] C. Linnæus, Philosophia Botanica in qua explicantur Fundamenta Botanica
cum Definitionibus Partium, Exemplis Terminorum, Observationibus Rariorum,
Stockholmiæ, apud G. Kiesewetter, 1751.

[1666] ——, Systema Naturæ Per Regna Tria Naturæ, Secundum Classes, Ordines,
Genera, Species, Cum Characteribus, Differentiis, Synonymis, Locis, Holmiæ,
Impensis Direct. L. Salvii, 1758, Ed. Decima, Reformata.

[1667] Y. Liokumovich, F.C. Marques, and A. Neves, Weyl law for the volume spectrum,
Ann. of Math., Vol. 187, № 3, 2018, pp. 933-961; arXiv:1607.08721 [math.DG], 2018
[v2].

[1668] J. Liouville, Note sur la Théorie de la Variation des constantes arbitraires, J.
Math. Pures Appl. (1), Tome III, 1838, pp. 342-349.

[1669] R. Lipschitz, Untersuchungen in Betreff der ganzen homogenen Functionen von
n Differentialen, J. Reine Angew. Math., Bd. 70, 1869, pp. 71-102.

[1670] J.B. Listing, der Census räumlicher Complexe, oder Verallgemeinerung des
Euler’schen Satzes von den Polyädern, Abh. Königl. Ges. Wiss. Göttingen, Bd. 10
(1861-1862), Math. Cl., 1862, pp. 97-182 + Table I of Figures.

[1671] J.E. Littlewood, On non-linear differential equations of the second order: III.
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