
HAL Id: hal-04362883
https://hal.science/hal-04362883

Submitted on 23 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synchronized Deliveries with a Bike and a Self-Driving
Robot

Yanlu Zhao, Diego Cattaruzza, Ningxuan Kang, Roberto Roberti

To cite this version:
Yanlu Zhao, Diego Cattaruzza, Ningxuan Kang, Roberto Roberti. Synchronized Deliveries with a Bike
and a Self-Driving Robot. Transportation Science, In press, �10.1287/trsc.2023.0169�. �hal-04362883�

https://hal.science/hal-04362883
https://hal.archives-ouvertes.fr

Submitted to Transportation Science
manuscript TS-2023-0169.R1

Synchronized Deliveries with
a Bike and a Self-Driving Robot

Yanlu Zhao
Durham University Business School, Durham University, Durham, UK

yanlu.zhao@durham.ac.uk

Diego Cattaruzza
Univ. Lille, CNRS, Centrale Lille, Inria UMR 9189 - CRIStAL Centre de Recherche en Informatique Signal et Automatique

de Lille, F-59000 Lille, France
diego.cattaruzza@centralelille.fr

Ningxuan Kang
Department of Intelligent Supply Chain Y, JD.com, Beijing, China

kangningxuan@jd.com

Roberto Roberti
Department of Information Engineering, University of Padova, Padova, Italy

roberto.roberti@unipd.it

Online e-commerce giants are continuously investigating innovative ways to improve their practices in

last-mile deliveries. Inspired by the current practices at JD.com (the largest online retailer by revenue in

China), we investigate a delivery problem that we call Traveling Salesman Problem with Bike-and-Robot

(TSPBR) where a cargo bike is aided by a self-driving robot to deliver parcels to customers in urban areas. We

present two mixed-integer linear programming models and describe a set of valid inequalities to strengthen

their linear relaxation. We show that these models can yield optimal solutions of TSPBR instances with up

to 60 nodes. To efficiently find heuristic solutions, we also present a genetic algorithm based on a dynamic

programming recursion that efficiently explores large neighborhoods. We computationally assess this genetic

algorithm on instances provided by JD.com and show that high-quality solutions can be found in a few

minutes of computing time. Finally, we provide some managerial insights to assess the impact of deploying

the bike-and-robot tandem to deliver parcels in the TSPBR setting.

Key words : self-driving robots; bike delivery; synchronization; mixed-integer linear programming; genetic

algorithm; last-mile delivery

History : Submitted: May 16, 2023; Revised: September 12, 2023; Accepted: October 27, 2023

1. Introduction

The growing number of Internet users and the opportunity to easily order their preferred products

through mobile devices, such as tablets and phones, are boosting e-commerce sales. Indeed, online

retailing sales in the three major e-commerce global markets (i.e., the U.S., China, and Europe)

are estimated to increase at an annual rate of over 6% in the next three years (Statista 2021a).

1

Zhao et al.: Synchronized Bike-and-Robot Deliveries
2 Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1

Moreover, a recent survey about customers’ expectations on e-commerce markets (Statista 2021b)

indicates that almost half of online shoppers expect to benefit from speedy deliveries and delivery

cost reductions in the coming years. The growth rate of e-commerce sales combined with such high

customer expectations calls for smarter ways to run e-commerce businesses.

Planning last-mile delivery operations is one of the most crucial tasks faced by e-commerce

companies (Archetti and Bertazzi 2021). If last-mile delivery is carefully designed, not only can

customers’ expectations be fulfilled, but also important related issues such as urban congestion

and toxic emissions can be addressed. However, smart planning of last-mile delivery operations is

particularly challenging because e-commerce companies can rely on razor-thin marginal profits.

To tackle all these challenges posed by e-commerce markets, e-commerce giants, such as Amazon

or JD.com, are investigating new paradigms to run last-mile deliveries. One of the most promising

ways to improve the current practices in last-mile delivery is to adopt Unmanned Autonomous

Vehicles (UAV), such as drones or Self-Driving Robots (SDR), to complement or replace conventional

vehicles. Deliveries with UAVs can allow companies to decrease delivery costs and represent an

environmentally-friendly transport mode.

In this paper, we investigate a last-mile delivery problem faced by JD.com, which is the largest

(in terms of revenue) Chinese business-to-consumer online retailer company, headquartered in

Beijing, with about 550,000 employees (as of 2022) and a total annual revenue of about 151.7 billion

dollars in 2022. Given the lack of professional truck drivers and strict regulations, imposed by local

authorities, to reduce noise and carbon emissions in urban areas, JD.com is already using a mixed

delivery force of conventional vehicles and cargo bikes (see the left panel of Figure 1) in last-mile

delivery operations. JD.com is also considering the adoption of SDRs (such as the one displayed in

the right panel of Figure 1) to use in combination with cargo bikes (which we refer to as bikes in

the following) to deliver parcels to customers.

In particular, JD.com would like to gain insights on the economic feasibility and overall impact

of associating a robot with a bike in the following setting. A set of customers must be served with

a bike and its robot within a given planning horizon. At the beginning of the planning horizon,

the bike and its robot are located at a depot, where all parcels to deliver are also stored. The bike

has enough capacity to store all these parcels at once whereas the robot has limited capacity: it

can carry just a subset of the parcels at the same time because it features a limited number of

containers (of various volumes) to store the parcels. The customers can be served by one of the two

vehicles that travel through two different routes, which start and end at the depot. Whenever the

robot is empty along its route, it can join the bike at a customer, where some parcels that are on

the bike can be moved to the robot for further deliveries. The costs to serve a customer with the

bike or the robot are known. The goal of the problem is to find a distribution plan for the bike

Zhao et al.: Synchronized Bike-and-Robot Deliveries
Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1 3

and the robot so that all customers are served within the given planning horizon and the total

distribution costs are minimized. In the following, we refer to this decision-making problem as the

Traveling Salesman Problem with Bike-and-Robot (TSPBR), which, to the best of our knowledge,

has not been studied in the literature so far.

Figure 1 A cargo bike (in the left panel) and a self-driving robot (in the right panel)

The main contributions of this paper are the following:

• We formally describe and formulate the TSPBR with two Mixed-Integer Linear Programming

(MILP) models. The first model is a compact MILP featuring a polynomial number of variables

and constraints. The second MILP builds upon the first model but features an exponential

number of constraints. We also propose a set of valid inequalities to tighten the linear relaxation

of these MILP models and embed these cuts into branch-and-cut algorithms.

• We present a genetic algorithm, based on dynamic programming recursions to explore a large

neighborhood of TSPBR solutions, to find high-quality primal solutions to the problem.

• We test the proposed branch-and-cut and the genetic algorithms on real-life instances provided

by JD.com. We show that the branch-and-cut methods can find optimal solutions for most of

the TSPBR instances with up to 60 nodes and the genetic algorithm can find high-quality

solutions in a few minutes of computing time.

• We assess the economic impact of performing last-mile deliveries with the bike and the robot

operating in tandem. We show that deploying the robot can attain significant cost reductions

and time savings to fulfill all customer requests.

The remainder of the paper is organized as follows. Section 2 reviews the literature related to our

problem. Section 3 formally defines the TSPBR. In Section 4, we present two MILP formulations for

the TSPBR and a family of valid inequalities to tighten their linear relaxations. Section 5 presents a

genetic algorithm to find heuristic solutions to the TSPBR. In Section 6, we report on the results of

computational experiments to assess the performance of the mathematical models and the genetic

Zhao et al.: Synchronized Bike-and-Robot Deliveries
4 Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1

algorithm. In Section 7, we draw some conclusions from our study and discuss future research

directions.

2. Literature Review

The interest of the community in routing problems with UAVs has recently significantly increased.

This is mainly motivated by last-mile delivery applications, where UAVs integrate the delivery

system in use. Indeed, deliveries with UAVs can help achieve quick deliveries and reduce vehicle

traffic and emission (Srinivas, Ramachandiran, and Rajendran 2022).

The literature dealing with routing problems with UAVs considers fleets made up of UAVs

only or conventional vehicles (trucks or vans) teamed up with drones or robots. The number of

scientific papers dealing with such problems is large, so an exhaustive review is out of reach in

this paper. Thus, we limit our review to papers that consider deliveries with SDRs (also called

autonomous delivery robots in the literature) teamed up with other vehicles, as in our problem,

and papers that investigate deliveries with drones as these problems present similarities with ours.

For comprehensive reviews on these two classes of problems, we refer the reader to the survey of

Srinivas, Ramachandiran, and Rajendran (2022) on autonomous robot-driven deliveries and the

surveys of Otto et al. (2018) and Macrina et al. (2020) about routing problems with drones.

2.1. Deliveries with Self-Driving Robots

Srinivas, Ramachandiran, and Rajendran (2022) classify routing problems with SDRs in three

categories: two-tier models, mothership models, and platoon models. We use this classification to

review the main contributions from the literature.

2.1.1. Two-tier models. In two-tier models, parcels are first delivered by a conventional truck

from a central depot to hubs from where SDRs operate deliveries to final customers. For example,

Bakach, Campbell, and Ehmke (2021) and Alfandari, Ljubić, and da Silva (2022) study problems in

this category.

Bakach, Campbell, and Ehmke (2021) investigate a two-tier robots-based urban delivery network.

First, they solve a facility location problem for minimum open robot depot locations. Then, they

solve a p-median problem to further minimize the operational cost of robot deliveries.

Alfandari, Ljubić, and da Silva (2022) investigate a problem setting where a single truck carries

parcels from a central depot to a set of facilities. At the facilities, SDRs are launched to deliver

parcels to final customers assigned to the facility. Each robot delivers a single parcel. Customers

are associated with a delivery deadline, and the objective is to serve all customers while minimizing

total tardiness.

Zhao et al.: Synchronized Bike-and-Robot Deliveries
Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1 5

2.1.2. Mothership models. Mothership models feature vehicles, called motherships, that

carry SDRs and the required parcels. Motherships travel to dedicated locations with parking

possibilities where SDRs leave the mothership to reach their delivery destination.

Boysen, Schwerdfeger, and Weidinger (2018) study a problem where the truck leaves a central

depot loaded with a number of SDRs and all the parcels to deliver. The truck then stops at a

drop-off point and launches a set of SDRs that perform single-parcel deliveries. After the deliveries,

SDRs go to a dedicated depot. In the meantime, the truck moves to another drop-off point or a

robot depot where it can load robots to use for the next deliveries. The objective is to minimize total

tardiness. Ostermeier, Heimfarth, and Hübner (2022) study a similar problem where each customer

is associated with a soft time window. Early and late arrivals are penalized in the objective function,

which also accounts for routing costs calculated as a linear function of the traveling distance and

travel time of the mothership and the robots.

The problem addressed by Yu, Puchinger, and Sun (2020) features SDRs that are dropped off

at rendezvous nodes. Each SDR then performs several deliveries before being collected at another

rendezvous node by the same mothership. The objective is to minimize the total delivery cost.

Simoni, Kutanoglu, and Claudel (2020) deal with a single mothership that collaborates with a

single SDR to deliver packages to a set of customers. The SDR can be dropped off or picked up at

each customer location and can serve several customers subsequently. The objective is to minimize

the total time needed to complete deliveries.

Yu, Puchinger, and Sun (2021) address a problem where vans (possibly with robots onboard)

leave a central depot, serve customers, or drop off/pick up, and replenish or swap robots’ batteries

at parking nodes. Robots then handle customer services along open routes: they are not obliged to

return to parking nodes from where they set out. A service at a customer location can be either a

delivery or a parcel pick-up. The objective is to minimize the total delivery cost.

Finally, Chen et al. (2021) and Chen, Demir, and Huang (2021) consider the setting in which

vans carry several robots equipped with a single compartment. Vans visit customers in order to

serve them as well as to drop off robots. Robots then perform deliveries and go back to the drop-off

point where the van waits for them before starting its route again. Customers are associated with

hard time windows. The objective is to minimize the total delivery time.

2.1.3. Platoon models. In platoon models, SDRs are only allowed to autonomously drive

inside dedicated zones. Whenever they need to exit one of these zones to reach another one, they

need to be guided by trucks in platoons. A truck can guide a maximum number of SDRs at a time.

Scherr et al. (2019) study an example of a platoon model, where the goal is to determine the size

and mix of the fleet as well as the routing of vehicles and goods on a given network in order to

minimize the total cost of the system.

Zhao et al.: Synchronized Bike-and-Robot Deliveries
6 Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1

2.2. Deliveries with Drones

The problem setting we investigate in this paper has similarities with two well-studied problems in

the literature about deliveries with drones, namely, the Flying Sidekick Traveling Salesman Problem

(FSTSP) and the Traveling Salesman Problem with Drone (TSP-D).

2.2.1. The flying sidekick traveling salesman problem. The FSTSP is the first routing

problem with drones studied in the literature (Murray and Chu 2015). A single truck is aided by a

drone to serve customers. While the truck is following its route, the drone can be launched from the

truck at a location (depot or customer location) and rejoin the truck at another location. The drone

is allowed to carry a single parcel at a time and can serve compatible customers only. Accessibility

restrictions are imposed on customers that can be served by the drone for several reasons: the parcel

may be too heavy, a signature from the customer may be required, or the customer’s location may

not allow a safe landing. Moreover, battery capacity restrictions limit the flying range of the drone.

The FSTSP aims at minimizing the completion time to serve all customers and return to the depot,

including potential waiting times for the truck and the drone for their synchronization.

Murray and Chu (2015) propose the first MILP model and a heuristic for the FSTSP. de Freitas

and Penna (2020) present a variable neighborhood search. Liu, Li, and Khojandi (2022) describe a

reinforcement learning approach. A fairly wide range of exact methods, all based on MILP models

of the problem, are available to solve the FSTSP to optimality, e.g., column-and-row generation

(Boccia et al. 2021), branch-and-bound (Dell’Amico, Montemanni, and Novellani 2021, 2022), and

branch-and-price (Roberti and Ruthmair 2021).

2.2.2. The traveling salesman problem with drone. Even though the literature defines

the TSP-D in a broad sense and different papers consider different features of the problem, the

TSP-D can be briefly described as follows. A truck equipped with a single drone is located at

a depot, where parcels to deliver are stored. The truck-and-drone tandem must serve a set of

customers. Along its route, the truck can launch the drone to serve a single customer (i.e., deliver a

single parcel) before retrieving the drone at a subsequent location. The goal is to minimize the time

that the two vehicles return to the depot after serving all customers. Features such as customer

incompatibility to drone delivery, limited drone flying range, possible revisits to locations, and

take-off and landing at non-customer locations (to mention a few) have all been studied in the

literature. All in all, the TSP-D can be seen as a class of delivery problems with drones, more than

a specific problem, and, depending on its definition, can be a special case or a generalization of the

FSTSP.

A wide variety of methodologies have been developed to solve the TSP-D both in a heuristic way

and to optimality. Examples of heuristic methods are the dynamic-programming-based approach of

Zhao et al.: Synchronized Bike-and-Robot Deliveries
Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1 7

Agatz, Bouman, and Schmidt (2018), the optimization-based method of Es Yurek and Ozmutlu

(2018), and the hybrid genetic algorithm of Ha et al. (2020). The main exact methods for the

TSP-D are the dynamic programming recursions of Bouman, Agatz, and Schmidt (2018), the

branch-and-bound algorithm of Poikonen, Golden, and Wasil (2019), the branch-and-cut algorithms

of Schermer, Moeini, and Wendt (2020) and El-Adle, Ghoniem, and Haouari (2021), the Benders-like

decomposition method of Vásquez, Angulo, and Klapp (2021), and the branch-and-price algorithm

of Roberti and Ruthmair (2021).

It is worth mentioning that, despite all the efforts to develop efficient solution algorithms to solve

the TSP-D to optimality, the algorithms currently available allow us to consistently find optimal

solutions to instances with up to 30-35 customers.

3. Problem Definition

In this section, we formally describe the TSPBR. Let G = (V,A) be a directed graph with vertex

set V and arc set A. The vertex set V is defined as V = N ∪ {0,0′}, where N represents a set

of n customers to serve within a given planning horizon and the vertices 0 and 0′ represent two

copies of the depot (the initial and final vertex of the bike and robot routes). In the following, we

also use the notation N0 =N ∪{0} and N0′ =N ∪{0′} to refer to the set of customers plus the

initial depot and the set of customers plus the final depot, respectively. The arc set A is defined as

A= {(0, j) | j ∈N}∪{(i, j) | i, j ∈N : i 6= j}∪ {(i,0′) | i∈N}. The volume of the parcel to deliver to

customer i∈N is represented by vi ∈R+, and the service time to serve i∈N is denoted as si ∈R+.

At the beginning of the planning horizon, a bike and a robot are available at the depot and are

used to deliver all parcels to the customers of the set N . The length of the planning horizon is

represented by ζ (expressed in some units of time), which also represents the maximum working

time of each of the two vehicles. The bike can serve all customers whereas the robot may not be

able to serve some of the customers because of geographical restrictions or excessive volume of the

parcels to deliver. A binary parameter ri indicates if customer i∈N can be served with the robot

(in this case, ri = 1) or not (ri = 0). The parameter ri allows us to define the subgraph Gr = (Vr,Ar)

that represents the set of nodes the robot can visit and the set of arcs it can travel through. In

particular, the node set Vr ⊆V is defined as Vr =N r ∪{0,0′}, where N r = {i∈N | ri = 1}, and the

arc set Ar ⊆A as Ar = {(0, j) | j ∈N r} ∪ {(i, j) | i, j ∈N r : i 6= j} ∪ {(i,0′) | i ∈N r}. Customers of

the set N r are called robot customers in the following. We also denote by N b =N \N r the set of

customers that must be served by the bike – we call these customers bike customers.

As the bike and the robot travel at different speeds, we denote by tbij ∈Z+ the bike travel time

through arc (i, j)∈A and trij ∈Z+ the robot travel time through arc (i, j)∈Ar. The cost for serving

a customer with the bike is denoted by cb and corresponds, for example, to the biker’s fixed delivery

Zhao et al.: Synchronized Bike-and-Robot Deliveries
8 Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1

service fee; the cost for serving a customer with the robot is denoted by cr and corresponds, for

example, to average battery charging fees. Operational practices indicate that it is cheaper to serve

a customer with the robot than with the bike, so we assume, throughout the paper, that cb > cr.

Note that these costs are customer-independent.

While the bike has enough carrying capacity to load all parcels to deliver at the same time, the

robot can accommodate Qr parcels in Qr independent containers (at most one parcel can be stored

in a container). Based on the features of the robots currently available on the market, we assume

that these Qr containers are of at most three different volumes (large, medium, and small), and

we denote by Ql, Qm, and Qs the number of large, medium, and small containers, resp., where

Qr =Ql +Qm +Qs. Despite this assumption that containers are of at most three different volumes,

the models and algorithms presented throughout the paper can easily be adapted if the robot

features containers of more than three different volumes.

As the robot has a limited number of containers, it may not be possible to load all the parcels

to deliver upon leaving the depot. Therefore, whenever the robot does not have any parcels on

board, it can rejoin the bike at a customer of the set N r served by the bike to take other parcels

to deliver afterward. These replenishment operations can take place at customer locations only to

avoid, for example, parking issues and bike detours. A customer where a replenishment takes place

is called rendezvous customer. Each replenishment requires the temporal synchronization of the

two vehicles (i.e., parcels can be moved from the bike to the robot only if both vehicles are at the

location where the replenishment takes place). We assume that each replenishment takes η units of

time, regardless of the number of packages to move.

The TSPBR calls for the definition of two routes (one for the bike and one for the robot) such

that: (a) each route starts from the depot, visits a set of customers each at most once, ends at the

depot, and does not take longer than ζ units of time; (b) each customer of the set N b is served by

the bike exactly once, and each customer of the set N r is served by either the bike or the robot

exactly once; (c) replenishment operations take place when the robot is empty at customers of the

set N r that are served by the bike; (d) parcels loaded on the robot at each replenishment operation

can be feasibly stored in the containers; (e) the total cost to serve the customers is minimized.

Notice that, unlike other variants of the TSP, where the total cost is defined as the sum of the

costs of the arcs traversed, in the TSPBR, the total cost is given by the number of customers

served by the bike times the cost of serving a customer with the bike (i.e., cb) plus the number of

customers served by the robot times the cost of serving a customer with the robot (i.e., cr). This

objective function is motivated by two main reasons: (i) JD.com cannot assess the cost to traverse

an arc with a vehicle but can only estimate the cost of serving a customer with a vehicle, and (ii)

the TSPBR can be applied to last-mile deliveries in urban areas where distances are limited and

Zhao et al.: Synchronized Bike-and-Robot Deliveries
Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1 9

0

1

2

3 5

6

4

7

9

8

10

11

14

16

15

12

13

Replenishment

Replenishment

Figure 2 A feasible solution of a TSPBR instance with 16 customers

travel times between pairs of different locations have small deviations. The algorithms presented in

this paper can easily be adjusted to tackle variants of the TSPBR where a cost to traverse an arc

with one of the two vehicles is incurred and can be estimated.

Given the assumption that cb > cr, we can observe that minimizing the total cost to serve all

customers is equivalent to minimizing the number of customers delivered by the bike.

To better clarify the definition of the TSPBR, Figure 2 illustrates a feasible solution of a TSPBR

instance with 16 customers (represented with circles). For ease of presentation, all service times

are equal to zero except for customers 8 and 14, i.e., s8 > 0 and s14 > 0. The bike leaves the

depot (represented with a rectangle) to serve customers 1, 2, and 8 while the robot leaves the

depot to serve customers 4, 5, 7, and 9. At customer 8, the two vehicles must be synchronized,

and the robot is replenished with the parcels destined for customers 3 and 6. The bike serves

customer 8 either before or after replenishing the robot (this is a decision to make); let us

assume that the service takes place prior to the robot’s replenishment. Depending on the travel

times along the paths 0→ 1→ 2→ 8 and 0→ 4→ 5→ 7→ 9→ 8, either the bike waits for the

robot (if tb0,1 + tb1,2 + tb2,8 + s8 < tr0,4 + tr4,5 + tr5,7 + tr7,9 + tr9,8) or the robot waits for the bike (if

tb0,1 + tb1,2 + tb2,8 + s8 > t
r
0,4 + tr4,5 + tr5,7 + tr7,9 + tr9,8). After the replenishment, the bike serves customers

10, 11, and 14 while the robot serves customers 6 and 3. Another replenishment takes place at

customer 14 where we assume that the replenishment occurs before serving the customer. Afterward,

Zhao et al.: Synchronized Bike-and-Robot Deliveries
10 Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1

the bike serves customers 16 and 15, and the robot serves customers 12 and 13. Finally, the two

vehicles return to the depot. The working time of this solution is

t = η+ max{tb0,1 + tb1,2 + tb2,8 + s8, t
r
0,4 + tr4,5 + tr5,7 + tr7,9 + tr9,8}+

η+ max{tb8,10 + tb10,11 + tb11,14, t
r
8,6 + tr6,3 + tr3,14}+

η+ max{s14 + tb14,16 + tb16,15 + tb15,0′ , t
r
14,12 + tr12,13 + tr13,0′}

To be feasible, the solution must satisfy t≤ ζ, and the parcels loaded on the robot at the depot,

at customer 8, and at customer 14 should be feasibly accommodated in the robot’s containers.

In the remainder of the paper, we use the following terminology. We call leg a directed path that

starts and ends with two replenishment operations. A bike leg (robot leg, resp.) is a leg traversed by

the bike (robot, resp.). The bike leg corresponding to a given robot leg is the bike leg having the same

start and end nodes as the given robot leg (and vice versa). A bike leg and the corresponding robot leg

constitute an operation. For example, the solution illustrated in Figure 2 consists of three operations

and six legs: three bike legs (i.e., 0→ 1→ 2→ 8, 8→ 10→ 11→ 14, and 14→ 16→ 15→ 0′) and

three robot legs (i.e., 0→ 4→ 5→ 7→ 9→ 8, 8→ 6→ 3→ 14, and 14→ 12→ 13→ 0′). The

robot leg corresponding to the bike leg 0→ 1→ 2→ 8 is 0→ 4→ 5→ 7→ 9→ 8. The bike leg

corresponding to the robot leg 8→ 6→ 3→ 14 is 8→ 10→ 11→ 14.

Notice the TSPBR does not fall in any of the three categories of problems (two-tier, mothership,

and platoon models) proposed in Srinivas, Ramachandiran, and Rajendran (2022) to classify delivery

problems with SDRs. Indeed, the TSPBR is not a two-tier model as it considers a one-tier delivery

system. Moreover, it does not feature a mothership vehicle carrying SDRs to dedicated locations; on

the contrary, in the TSPBR, the robot starts and ends its route at the depot. Finally, the TSPBR

does not consider dedicated zones where the robot is allowed to autonomously drive and other

zones in which it is not; consequently, the SDR does not need to be guided by another vehicle to

move among dedicated zones as it happens in platoon models. Therefore, the TSPBR is a new

decision-making problem in the literature about deliveries with SDRs.

Notice, also, that the TSPBR is significantly different from the FSTSP and the TSP-D, whose

features are representative of the main features investigated in the literature of deliveries with

drones. Indeed, while the FSTSP and the TSP-D aim at minimizing the makespan to serve all

customers, the TSPBR features a cost-minimization objective function. In terms of constraints,

the capacity of the robot allows for serving multiple customers between replenishment operations

whereas the drone can serve a single customer in each leg in the FSTSP and the TSP-D. Hence,

to the best of our knowledge, the TSPBR is different from all the other problems studied in the

literature about deliveries with drones.

Zhao et al.: Synchronized Bike-and-Robot Deliveries
Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1 11

In general terms, we observe that the TSPBR falls in the broad category of routing problems with

synchronization aspects. Following both the classifications proposed in Drexl (2012) and Soares et al.

(2023), the TSPBR is characterized by the synchronization of operations due to the requirement

of having both the bike and the robot at the same location at the same time for replenishment

purposes. Moreover, with respect to the scheme proposed in Soares et al. (2023), the local aspects

of the TSPBR are the capacity constraints of the robot and the maximum working time imposed

on the routes of the two vehicles.

4. Mathematical Formulations

In this section, we first provide a compact formulation, F1, of the TSPBR (see Section 4.1) and, then,

build upon it we derive another formulation, F2, featuring an exponential number of constraints

(see Section 4.2). Finally, we present a set of valid inequalities to tighten the linear relaxation of

both formulations (Section 4.3).

4.1. Formulation F1

The first mathematical formulation, F1, uses the following sets of binary variables

• xbij = 1 if the bike traverses arc (i, j)∈A (0 o/w);

• xrij = 1 if the robot traverses arc (i, j)∈Ar (0 o/w);

• ybi = 1 if node i∈N is served by the bike and no replenishment takes place at i (0 o/w);

• yri = 1 if node i∈N r is served by the robot (0 o/w);

• ysi = 1 if a replenishment takes place at node i∈N r and i is served by the bike (0 o/w);

• αi (βi, resp.) = 1 if a replenishment takes place at customer i∈N r and the bike serves i before

(after, resp.) the replenishment (0 o/w);

• zli, z
m
i , z

s
i = 1 if the parcel of customer i∈N r is stored in a large, medium, or small container,

resp. (0 o/w).

Furthermore, formulation F1 features four sets of auxiliary non-negative real variables, namely

• f lij, f
m
ij , f

s
ij ∈R+ representing the number of parcels stored in large, medium, and small con-

tainers, resp., when the robot traverses arc (i, j)∈Ar;

• ai ∈ R+ representing the arrival time of the vehicle at node i ∈ V (if i is visited by either

the bike or the robot) or the time at which the replenishment starts at node i ∈ V (if i is a

rendezvous customer).

Moreover, for ease of presentation, we introduce binary parameters C l
i ,C

m
i ,C

s
i indicating if the

parcel of customer i∈N r fits a large, medium, and small robot’s container, resp.

Given these decision variables and parameters, the TSPBR can be formulated as

[F1] min
∑
i∈N

(ybi + ysi) (1a)

Zhao et al.: Synchronized Bike-and-Robot Deliveries
12 Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1

s.t.
∑

(0,j)∈A

xb0j =
∑

(i,0′)∈A

xbi0′ = 1 (1b)

∑
(i,j)∈A

xbij =
∑

(j,i)∈A

xbji = ybi + ysi i∈N (1c)

∑
(0,j)∈Ar

xr0j =
∑

(i,0′)∈Ar

xri0′ = 1 (1d)

∑
(i,j)∈Ar

xrij =
∑

(j,i)∈Ar

xrji = yri + ysi i∈N r (1e)

ybi + yri + ysi = 1 i∈N (1f)∑
(i,j)∈A

(si + tbij)x
b
ij +

∑
i∈N

ηysi ≤ ζ (1g)

∑
(i,j)∈Ar

trijx
r
ij +

∑
i∈Nr

(siy
r
i + ηysi)≤ ζ (1h)

ysi = αi +βi i∈N r (1i)

tb0ix
b
0i + tr0ix

r
0i + η≤ ai +M(1−xb0i−xr0i) i∈N r (1j)

tb0ix
b
0i + η≤ ai +M(1−xb0i) i∈N \N r (1k)

ai + ηysi + siy
r
i + trijx

r
ij ≤ aj +M(1−xrij) (i, j)∈Ar : i 6= 0, j 6= 0′ (1l)

ai + ηysi + siy
b
i + siβi + tbijx

b
ij + sjαj ≤ aj +M(1−xbij) (i, j)∈A : i 6= 0, j 6= 0′ (1m)

ai + ηysi + siy
r
i + tri0′xri0′ ≤ ζ +M(1−xri0′) i∈N r (1n)

ai + ηysi + siy
b
i + siβi + tbi0′xbi0′ ≤ ζ +M(1−xbi0′) i∈N (1o)

Cl
iz
l
i +Cm

i z
m
i +Cs

i z
s
i = yri i∈N r (1p)∑

(j,i)∈Ar

f lji−
∑

(i,j)∈Ar

f lij ≥Cl
iz
l
i −Ql(1− yri) i∈N r (1q)

∑
(j,i)∈Ar

fmji −
∑

(i,j)∈Ar

fmij ≥Cm
i z

m
i −Qm(1− yri) i∈N r (1r)

∑
(j,i)∈Ar

f sji−
∑

(i,j)∈Ar

f sij ≥Cs
i z
s
i −Qs(1− yri) i∈N r (1s)

f lij ≤Qlxrij fmij ≤Qmxrij f sij ≤Qsxrij (i, j)∈Ar (1t)∑
(i,j)∈Ar

f lij ≥Qlysi
∑

(i,j)∈Ar

fmij ≥Qmysi
∑

(i,j)∈Ar

f sij ≥Qsysi i∈N r (1u)

xbij ∈ {0,1} (i, j)∈A (1v)

xrij ∈ {0,1} f lij , f
m
ij , f

s
ij ∈R+ (i, j)∈Ar (1w)

ybi ∈ {0,1} i∈N (1x)

yri , y
s
i , αi, βi, z

s
i , z

m
i , z

l
i ∈ {0,1} i∈N r (1y)

aj ≥ 0 j ∈ V (1z)

The objective function (1a) aims at minimizing the number of customers served by the bike.

Constraints (1b) ensure that the bike leaves and returns to the depot once. Constraints (1c) are flow

conservation constraints of the bike and link variables xb with variables yb and ys. Constraints (1d)–

(1e) are the counterpart of constraints (1b)–(1c) for the robot. Constraints (1f) ensure that each

Zhao et al.: Synchronized Bike-and-Robot Deliveries
Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1 13

customer is served exactly once. Constraints (1g)–(1h) guarantee that the total working time of each

of the two vehicles does not exceed ζ; notice that these two constraints are not necessary for the

completeness of the formulation but are included because they can tighten the linear relaxation of

the model. Constraints (1i) indicate that if a node is selected for a replenishment, either its service

is scheduled before the replenishment or vice versa. Constraints (1j)–(1k) set the arrival times

at the first customer visited by the two vehicles. Constraints (1l)–(1m) are sub-tour elimination

constraints in the Miller-Tucker-Zemlin form and act as synchronization constraints to align the

arrival times of the bike and the robot at each node; note that the value of M can be set as

M = ζ−mini∈N{tr0i, tb0i}−mini∈N{tri0′ , tbi0′}. Constraints (1n)–(1o) ensure that the bike and the robot

return to the depot by the end of the planning horizon. Constraints (1p) ensure that if a customer

is served by a robot, the corresponding parcel is stored in a container. Constraints (1q)–(1s) are

commodity-flow constraints to manage the different sizes of the robot’s containers. Constraints (1t)

impose the maximum value to variables f l, fm, and f s. Constraints (1u) reset the robot capacity

after each synchronization replenishment. Constraints (1v)–(1z) define the variable domains.

4.2. Formulation F2

In formulation F1, the role of (1j)–(1o) is twofold: they act as sub-tour elimination constraints, and

they synchronize the bike and the robot in order not to exceed the maximum working time. It is

well known that this type of constraint deteriorates the quality of the linear relaxation of MILP

formulations, which turns in poor computational performance of the model when solved with a

branch-and-bound solution method. To partly address this issue, we propose replacing constraints

(1j)–(1o) as follows.

As said, constraints (1j)–(1o) are needed to eliminate sub-tours. However, sub-tours can be ruled

out also by using the following sets of constraints

ai + 1≤ aj + (n+ 1)(1−xbij −xrij) (i, j)∈Ar (2a)

ai + 1≤ aj + (n+ 1)(1−xbij) (i, j)∈A\Ar (2b)

ai ≤ n i∈N (2c)

a0 = 0, a0′ = n+ 1 (2d)

where variable ai, i∈ V, now represents the position of node i in the bike or robot tour.

If we simply replace constraints (1j)–(1o) with constraints (2a)–(2d), the resulting MILP may

admit infeasible solutions because there is no guarantee that the constraint on the maximum

working time is satisfied when considering synchronization between the bike and the robot.

Zhao et al.: Synchronized Bike-and-Robot Deliveries
14 Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1

To overcome this issue, the following no-good cuts (i.e., cuts that cut off a single solution at a

time) are necessary for the correctness of the formulation F2∑
(i,j)∈Ab(ξ)

xbij +
∑

(i,j)∈Ar(ξ)

xrij ≤ |Ab(ξ)|+ |Ar(ξ)| − 1 ξ ∈Ω (3)

Here Ω is the set of solutions that satisfy (1b)–(1i), (1p)–(1z), and (2a)–(2d) but violate the

working time restriction, and Ab(ξ) (resp. Ar(ξ)) is a set containing some of the arcs used by the

bike (the robot, resp.) in solution ξ. The exact composition of Ab(ξ) and Ar(ξ) depends on the

solution ξ as explained in the following.

First, let us define, for each solution ξ = (x,y,a,z,f ,α,β) ∈Ω, Abl (ξ) as the set of arcs that

belong to bike legs lasting at least as long as the corresponding robot leg. Similarly, let Arl (ξ) be

the set of arcs that belong to robot legs lasting strictly more than the corresponding bike leg. In

addition, let N s(ξ) represent the set of synchronization nodes and T s(ξ) the total time of ξ. Then,

let us calculate the following value

T̃ s(ξ) =
∑

(i,j)∈Ab
l
(ξ)

(si + tbij) ·xbij +
∑

(i,j)∈Ar
l
(ξ)

(si + trij) ·xrij +
∑

i∈Ns(ξ)

(η− si) · ysi (4)

Note that T̃ s(ξ) represents the time that the solution would have when the service time at rendezvous

nodes is not taken into account, and it considers the longer leg associated with each operation.

The value T̃ s(ξ) clearly is a lower bound on the exact total working time, T s(ξ), of the solution

under consideration (i.e., ξ) since incorporating the service time at rendezvous nodes can only delay

operations.

Consequently, two cases can appear after obtaining the value of T̃ s(ξ): (i) if T̃ s(ξ) > ζ, the

solution ξ is clearly infeasible and setting Ab(ξ) =Abl (ξ) and Ar(ξ) =Arl (ξ) allows to determine a

no-good cut that eliminates the current solution ξ; (ii) otherwise (i.e., if T̃ s(ξ)≤ ζ < T s(ξ)), Ab(ξ)

and Ar(ξ) contain all the arcs involved in the operations of ξ.

4.2.1. Separation of no-good cuts (3). The separation of constraints (3) is achieved by

applying a two-step procedure. Firstly, the value of T̃ s(ξ) is calculated. If T̃ s(ξ)> ζ, the sets Abl (ξ)

and Arl (ξ) are acquired by leg-wise comparison in each operation, and the corresponding cut is

determined accordingly. Otherwise, if T̃ s(ξ)≤ ζ, we construct a multi-partite acyclic support graph

Gs(ξ) = (Vs(ξ),As(ξ)), where Vs(ξ) contains nodes {0,0′} and two nodes for each synchronization

node i∈N s(ξ), represented by iα and iβ, where iα indicates that the service at node i takes place

before the replenishment and iβ vice versa. Moreover, let us order nodes in N s(ξ) in such a way

that j < k if and only if ij is visited by the robot and the bike before ik in ξ, 1≤ j < k≤ r= |N s(ξ)|.

Moreover, As(ξ) contains the following combined arcs:

Zhao et al.: Synchronized Bike-and-Robot Deliveries
Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1 15

• (0, iα1), (0, iβ1), (iαr ,0
′), (iβr ,0

′);

• (iαk , i
α
k+1), (i

α
k , i

β
k+1), (i

β
k , i

α
k+1), (i

β
k , i

β
k+1), for each k= 1, . . . , r− 1.

The cost of each combined arc corresponds to the maximum duration between the corresponding

bike leg’s duration and the robot leg’s duration, where the services and replenishment at the

synchronization nodes are scheduled according to the meaning of the nodes iα and iβ. We then

calculate the shortest path between 0 and 0′ on Gs(ξ) whose value corresponds to T s(ξ). If T s(ξ)> ζ,

the solution ξ is infeasible, and the corresponding no-good cut with Ab(ξ) and Ar(ξ) containing all

the arcs involved in the bike and robot legs is added.

The separation of cuts (3) can be performed in polynomial time as described with the following

illustrative example.

4.2.2. Illustrative example of no-good cuts (3). We further explain the no-good cuts (3)

and their separation through Figures 3–7, which depict different solutions of a toy instance with

seven customers. Bike legs are represented by solid lines, while robot legs by dotted lines. For

the sake of simplicity, we suppose that replenishment operations take zero units of time and that

the service at each customer takes one unit of time. Traveling times are reported next to the

corresponding arcs. The maximum working time ζ equals 15. We also assume that all customers

require a small parcel and can be visited by the robot. Finally, we suppose that the robot has two

compartments.

3 4 7

0 1 2 5 6 0'
2 2

2

2

2

2 2 2

22

Figure 3 A solution with two operations and T̃ s(ξ) = 16

Figure 3 represents a solution consisting of two operations. In the first operation, the robot takes

eight units of time to reach the rendezvous customer 2 while the bike only takes five units of time.

In the second operation, the bike and the robot take eight and five units of time, resp., to reach the

final depot after leaving the rendezvous customer 2. Thus, the value of T̃ s(ξ) is 16 and the solution

is infeasible as T̃ s(ξ)> ζ. The following inequality cuts off this infeasible solution

xb25 +xb56 +xb60′ +xr03 +xr34 +xr42 ≤ 5

Figure 4 represents another solution consisting of two operations. In the first operation, the robot

takes seven units of time to reach the rendezvous customer 2 while the bike only takes 5 units

Zhao et al.: Synchronized Bike-and-Robot Deliveries
16 Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1

2 2 2 2 2

1 2 22

2

4 3 7

0 1 2 5 6 0'

Figure 4 A solution with two operations and T̃ s(ξ) = 15

of time. In the second operation, the bike takes eight units of time to reach the final depot after

leaving the rendezvous customer 2 and the bike just five units of time. Thus, the value of T̃ s(ξ)

is 15 in this case. Since T̃ s(ξ)≤ ζ, we construct the support graph associated with this solution

as depicted in Figure 5, and we compute the shortest path from 0 to 0′ with a value of 15 (i.e.,

0→ 2α→ 0′), indicating the solution to be feasible.

Note that the cost associated with arc (0,2α) is 7. In this case the service at 2 takes place before

the replenishment. Thus, when the bike arrives at node 2 at time 5, it serves the customer and is

ready for replenishment at 6. Replenishment operations start as soon as the robot arrives at 7, time

at which both vehicles are ready to leave the node since η= 0 in the example. The cost associated

with arc (0,2β) is again 7. But in this case the operation time does not consider the service at 2,

since this takes place after the replenishment. Thus, the cost of arc (2β,0′) is 9, as the bike takes 6

units of travel time to reach 0′, plus 3 units of time to serve 2, 5 and 6. The corresponding robot

leg takes 5 units of time. Finally, the cost of arc (2α,0′) is 8, as the bike takes 6 units of time of

travel time, plus 2 units to serve customers 5 and 6.

7

7

9

8

0 0’

2β

2α

Figure 5 The solution with T s(ξ) = 15 is feasible

Finally, in the example of Figure 6, the robot takes five units of time to reach the rendezvous

customer 2 while the bike takes seven units of time. In the second operation, the bike takes 8 units

of time to reach the final depot after leaving the rendezvous customer 2 while the robot only takes

five units of time. Thus, the value of T̃ s(ξ) is 15. Since T̃ s(ξ)≤ ζ, we construct the support graph

associated with this solution as depicted in Figure 7, and we compute the shortest path from 0 to

Zhao et al.: Synchronized Bike-and-Robot Deliveries
Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1 17

1 2 2 2 22

2222

1

3

7

0 4 2 5 6 0'

Figure 6 A solution with two operations and T̃ s(ξ) = 15

0′ with a value of 16, which proves the solution to be infeasible and has to be cut off. The following

inequality cuts off this infeasible solution

xb04 +xb43 +xb32 +xb25 +xb56 +xb60′ +xr01 +xr12 +xr27 +xr70′ ≤ 9

7

8

9

8

0 0’

2β

2α

Figure 7 The solution with T s(ξ) = 16 is infeasible

To summarize, formulation F2 features objective function (1a) and constraints (1b)–(1i), (1p)–(1z),

(2a)–(2d), and (3). Constraints (3) are exponentially many, so they cannot be enumerated upfront.

However, formulation F2 can be solved with a general-purpose MILP solver by starting with F2

without any constraints (3) and then separate constraints (3) (as lazy cuts) on the integer solutions

found in the search tree that violate the maximum working time constraint.

4.3. Valid Inequalities for F1 and F2

The linear relaxation of both formulations F1 and F2 can be tightened by adding the following

two sets of valid inequalities, which build upon the well-known Generalized Subtour Elimination

Constraints (GSEC), see, e.g., Fischetti, Salazar González, and Toth (1998)∑
(i,j)∈A : i∈S, j∈V\S

xbij ≥ ybk + ysk S ⊆N : |S| ≥ 2, k ∈ S (5a)∑
(i,j)∈Ar : i∈S, j∈Vr\S

xrij ≥ yrk + ysk S ⊆N r : |S| ≥ 2, k ∈ S (5b)

Constraints (5a) state that, for each subset of customers S ⊆N of cardinality at least two and each

customer k ∈ S, if the bike serves customer k (i.e., ybk + ysk equals 1), then the bike must traverse

at least one of the arcs emanating from S and terminating at V \S. Constraints (5b) are similar

Zhao et al.: Synchronized Bike-and-Robot Deliveries
18 Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1

to constraints (5a) but apply to the customers visited by the robot. In the following, we refer to

constraints (5a)–(5b) as GSECs.

Separation of GSECs (5). The number of GSECs (5) is exponential in the size of N , so it is

impossible to enumerate all of them for TSPBR instances of medium or even small size. Nevertheless,

we can dynamically separate them in a branch-and-bound tree. Violated inequalities can be identified

by solving a Max-Flow Problem (MFP).

Let ξ denote an optimal solution of the linear relaxation of one of the two formulations F1 or F2.

To separate constraints (5a), we create an auxiliary graph G(ξ) = (V,A(ξ)) induced by solution ξ.

Arc (i, j) belongs to A(ξ) if xbij > 0, and xbij represents the capacity of arc (i, j) in the MFP. For

each customer i∈N , we solve a MFP on graph G, where 0 is the source and i is the sink of the flow.

Then, we consider the partition (S,V \ S) induced by the min-cut corresponding to the optimal

max-flow, such that 0∈ V \S and i∈ S. If the value of such min-cut is less than ybk + ysk, for some

k ∈ S, then a violated GSEC has been identified. Constraints (5b) can be separated similarly.

5. Heuristic Solutions for the TSPBR

In this section, we present a Genetic Algorithm (GA) to obtain high-quality solutions of the

TSPBR. GAs are adaptive methods inspired by the natural evolution of biological organisms. An

initial population of individuals, also called chromosomes, evolves through generations until a

termination criterion is reached. The termination criterion can be based on quality and can be set

as a maximum number of iterations or a time limit. New individuals (children) are generated from

individuals belonging to the current generation (parents) by means of genetic operators (crossover

and mutation). The principles of the genetic procedures were firstly formalized by Holland (1975)

and have been successfully used in different contexts (Moscato and Cotta 2010). In the following,

we present the different components of our GA.

5.1. Main Components of the GA Algorithm

5.1.1. Individual representation. As often done in the context of routing problems, an

individual is a permutation of the locations that need to be visited (see, e.g., Lacomme, Prins, and

Ramdane-Chérif (2001), Prins (2004), Vidal et al. (2012)).

5.1.2. Evaluation of individuals. Each individual is evaluated by means of the AdSplit

procedure (see Section 5.2 for a detailed description). The role of AdSplit is to cut (split) the

permutation in different bike and robot legs as well as to select the rendezvous customers. The

procedure AdSplit is inspired by the split procedure used to convert a permutation of customers in

solutions in the context of vehicle routing problems (see, e.g., Beasley (1983), Prins (2004)).

Zhao et al.: Synchronized Bike-and-Robot Deliveries
Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1 19

5.1.3. Initial population. The population is initialized with nc randomly generated sequences.

The AdSplit algorithm is then applied to each sequence to obtain a (non-necessarily feasible) TSPBR

solution. The local search procedure described in Section 5.1.6 is finally applied to optimize these

solutions (Vidal et al. 2012). These solutions are represented as sequences of delivery points obtained

by concatenating bike and robot legs as they appear in the solution. These new sequences are then

included in the population P along with the corresponding modified cost (see Section 5.1.6), which

is also used as part of the computation of the biased fitness of the individual (see Section 5.1.8).

5.1.4. Children generation. To generate a child, two chromosomes are randomly drawn from

the population, and the one with the lower biased fitness is selected to be one of the parents. The

procedure is repeated twice, once for each parent (Prins 2004).

5.1.5. Children education. Each newly generated child undergoes, first, the AdSplit proce-

dure to obtain a TSPBR solution, and, then, the local search for further improvements (Vidal et al.

2012). By concatenating the bike and robot legs as they appear in such a solution, a sequence of

delivery points is obtained. This sequence is added to the population P, and its cost is stored.

5.1.6. Local search. The local search procedure is based on the intra- and inter-leg relocation,

intra- and inter-leg exchange, and the 2-opt operators. By exploiting the objective function of the

TSPBR, the local search is implemented as follows. First, a solution ξ is evaluated with a modified

cost, c̄(ξ), computed as c̄(ξ) = c(ξ) + ε ·max{T (ξ)− ζ,0}, where T (ξ) is the total working time of ξ

and c(ξ) its cost, that is, the number of customers served by the bike.

A move is accepted if it reduces the modified cost of a solution. Notice that if T (ξ)≤ ζ, a move

is accepted only if it reduces the number of customers served by the bike, which is impossible for

intra-leg movements, or inter-leg relocations that relocate a customer from a robot leg to a bike

leg. On the other hand, if T (ξ)> ζ, an intra-leg move or an inter-leg relocation that relocates a

customer from a robot leg to a bike leg may be accepted if it reduces T (ξ). This approach takes

advantage of each iteration of the AdSplit procedure, even if the procedure provides an infeasible

solution.

5.1.7. Crossover. The crossover operator used to determine a child is the classical order-

crossover (OX) (Oliver, Smith, and Holland 1987).

5.1.8. Survivor strategy. Once ng chromosomes have been added to the population (that is,

|P|= nc +ng), the best nc individuals in terms of the value of their biased fitness are kept in the

population while the other ng are discarded. The biased fitness takes into account the quality of

the individual (based on the cost of the corresponding solution) and the diversification contribution

provided to the population. In particular, the diversification contribution of each individual is

Zhao et al.: Synchronized Bike-and-Robot Deliveries
20 Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1

evaluated with respect to the nclose closest chromosomes in the population. Finally, the best ne

individuals are always guaranteed to survive to the next population. This approach is proposed in

Vidal et al. (2012) to which the reader is referred.

5.1.9. Termination criteria. The GA terminates if it has not improved the best-known

solution for the last nstay iterations or if the computational time limit has been reached. An iteration

consists of children’s generation and education.

5.1.10. Overall heuristic description. We first generate nc individuals. Each individual

undergoes the AdSplit and the local search procedures. Then, as long as the termination criteria

are not met, we generate and educate children. When the population reaches the size of nc +ng,

the survivor strategy is applied. When the termination criteria are met, the best solution found is

returned. We refer to this procedure as H.

5.2. Procedure AdSplit

The procedure AdSplit obtains a (non-necessarily feasible) TSPBR solution from a permutation of

the nodes V such as σ = (σ0 = 0, σ1, . . . , σn, σn+1 = 0′) that starts with 0, ends with 0′, and features

all customers N in between. AdSplit consists of two main steps (i.e., the definition of the support

graph and the resolution of a constrained shortest path problem) that are detailed and illustrated

through the TSPBR instance described in Example 1 below.

Along with the notation used so far, we need some further notation. Given two values i, j such

that 0 ≤ i < j ≤ n+ 1, let us define N r
ij(σ) = {σk ∈ N r |k = i+ 1, . . . , j − 1} and N b

ij(σ) = {σk ∈
N b |k= i+ 1, . . . , j− 1}. Finally, let us define Nij(σ) =N r

ij(σ)∪N b
ij(σ).

Example 1. We consider a TSPBR instance with six customers, where N r = {1,2,4,5} and

N b = {3,6}. The robot has three containers: two small ones and a large one. Customers 1 and 2

required small parcels whereas the parcels of customers 4 and 5 are large. The bike and the robot

travel at the same speed, and travel times are reported in Table 1. The maximum working time is

ζ = 12, and the time for a replenishment is η = 1. The service time in each node is also one for each

customer.

1 2 3 4 5 6 0’
0 2 1 2 1 1
1 2 2 1 2
2 1 2 1 3
3 1 2
4 1 1 1
5 4 1
6 1

Table 1 Travel times of Example 1 – empty cells correspond to travel times not used in the example

Zhao et al.: Synchronized Bike-and-Robot Deliveries
Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1 21

5.2.1. Step1 – Definition of the support graph. To a permutation σ, we associate an

acyclic support multi-graph Gσ = (Vσ,Aσ). The node set Vσ contains two nodes for each customer

where the bike and the robot may have to synchronize plus the two copies of the depot, i.e.,

Vσ = {σαi , σ
β
i |σi ∈N r, N r

0i(σ) 6= ∅, N r
i0′(σ) 6= ∅} ∪ {σα0 = 0, σα0′ = 0′}. The arc set Aσ features an

arc (σγi , σ
δ
j)σkσ` (with σγi , σ

δ
j ∈ Vσ such that i < j, γ, δ ∈ {α,β}, and N r

ij(σ) 6= ∅) for each feasible

operation Oσkσ`
σ
γ
i σ

δ
j

with i < k≤ ` < j such that σk, σ` ∈N r
ij(σ), satisfying the following conditions:

C1) operation Oσkσ`
σ
γ
i σ

δ
j

starts from σi, ends at σj, the bike and the robot synchronize at these two

nodes, and σi and σj are served before (after, resp.) the replenishment if γ, δ = α (γ, δ = β,

resp.);

C2) customers σk, σ` as well as all robot customers of the set N r
k`(σ) are served by the robot in

the order in which they appear in permutation σ;

C3) all customers of the sets Nik(σ), N`j(σ), and N b
k`(σ) are served by the bike in the order in

which they appear in permutation σ;

C4) the parcels of the customers assigned to the robot can be feasibly accommodated in the robot

containers; notice that this feasibility check can easily be done by storing parcels in the smallest

feasible container available;

C5) the operation is not dominated.

To better clarify how the support graph Gσ is defined, let us refer to Example 1, and assume we con-

sider permutation σ = (0,1,2,3,4,5,6,0′). The node set Vσ is defined as Vσ = {0α,2α,2β,4α,4β,0′α}.

Notice that Vσ does not contain any node corresponding to customers 1 and 5 as N r
01(σ) = ∅ and

N r
50′(σ) = ∅. This decision of ruling out TSPBR solutions where the bike and the robot synchronize

at the first or the last robot customer of a permutation stems from the observation that it is unlikely

that an optimal TSPBR solution features an operation consisting of a robot leg that does not serve

any robot customer – as a matter of fact, the TSPBR always features an optimal solution that does

not include any robot leg without customers served by the robot if the travel time matrices tb and

tr satisfy the triangle inequalities.

Table 2 reports all the arcs (σγi , σ
δ
j)σkσ` that satisfy conditions C1-C4. For each arc (σγi , σ

δ
j)σkσ` ,

the table reports the indices k, `, the robot and the bike leg of operation Oσkσ`
σ
γ
i σ

δ
j
, the corresponding

cost co (equal to the number of customers served by the bike, including the last node of the leg, and

excluding the first node of the leg), the robot travel time (tr), the bike travel time (tb), the total

operation working time (to = max{tr, tb}), and if the operation is dominated or not. The robot and

the bike travel times include the replenishment time at the operation’s start node.

The dominance (i.e., condition C5) between two arcs (σγ1i1 , σ
δ1
j1

)σk1σ`1 and (σγ2i2 , σ
δ2
j2

)σk2σ`2 of cost

co1, c
o
2, resp., and working time to1, t

o
2, resp., is straightforward: if σγ1i1 = σγ2i2 , σδ1j1 = σδ2j2 , co1 ≤ co2, and

Zhao et al.: Synchronized Bike-and-Robot Deliveries
22 Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1

Table 2 Arcs of the support graph Gσ corresponding to Example 1 and permutation σ = (0,1,2,3,4,5,6,0′)

Arc k ` Robot Leg Bike Leg co tr tb to Dominated

(0α,2α)11 1 1 0α → 1 → 2α 0α → 2α 1 6 3 6 no

(0α,2β)11 1 1 0α → 1 → 2β 0α → 2β 1 6 2 6 no

(0α,4α)11 1 1 0α → 1 → 4α 0α → 2 → 3 → 4α 3 5 7 7 no

(0α,4α)12 1 2 0α → 1 → 2 → 4α 0α → 3 → 4α 2 9 6 9 no

(0α,4α)22 2 2 0α → 2 → 4α 0α → 1 → 3 → 4α 3 5 9 9 yes (by O11
0α4α)

(0α,4β)11 1 1 0α → 1 → 4β 0α → 2 → 3 → 4β 3 5 6 6 no

(0α,4β)12 1 2 0α → 1 → 2 → 4β 0α → 3 → 4β 2 9 5 9 no

(0α,4β)22 2 2 0α → 2 → 4β 0α → 1 → 3 → 4β 3 5 8 8 yes (by O11
0α4β)

(0α,0′α)11 1 1 0α → 1 → 0′α 0α → 2 → 3 → 4 → 5 → 6 → 0′α 5 6 15 15 yes (by O14
0α0′α)

(0α,0′α)12 1 2 0α → 1 → 2 → 0′α 0α → 3 → 4 → 5 → 6 → 0′α 4 10 14 14 yes (by O14
0α0′α)

(0α,0′α)14 1 4 0α → 1 → 2 → 4 → 0′α 0α → 3 → 5 → 6 → 0′α 3 11 13 13 no

(0α,0′α)22 2 2 0α → 2 → 0′α 0α → 1 → 3 → 4 → 5 → 6 → 0′α 5 6 17 17 yes (by O14
0α0′α)

(0α,0′α)24 2 4 0α → 2 → 4 → 0′α 0α → 1 → 3 → 5 → 6 → 0′α 4 7 16 16 yes (by O14
0α0′α)

(0α,0′α)44 4 4 0α → 4 → 0′α 0α → 1 → 2 → 3 → 5 → 6 → 0′α 5 4 18 18 yes (by O14
0α0′α)

(0α,0′α)55 5 5 0α → 5 → 0′α 0α → 1 → 2 → 3 → 4 → 6 → 0′α 5 4 14 14 yes (by O14
0α0′α)

(2α,0′α)44 4 4 2α → 4 → 0′α 2α → 3 → 5 → 6 → 0′α 3 5 12 12 yes (by O55
2α0′α)

(2α,0′α)55 5 5 2α → 5 → 0′α 2α → 3 → 4 → 6 → 0′α 3 4 8 8 no

(2β ,0′α)44 4 4 2β → 4 → 0′α 2β → 3 → 5 → 6 → 0′α 3 5 13 13 yes (by O55
2β0′α)

(2β ,0′α)55 5 5 2β → 5 → 0′α 2β → 3 → 4 → 6 → 0′α 3 4 9 9 no

(4α,0′α)55 5 5 4α → 5 → 0′α 4α → 6 → 0′α 1 4 4 4 no

(4β ,0′α)55 5 5 4β → 5 → 0′α 4β → 6 → 0′α 1 4 5 5 no

to1 ≤ to2 (with at least one of the two inequalities strictly satisfied), then operation (σγ2i2 , σ
δ2
j2

)σk2σ`2 is

dominated. Therefore, the arc set Aσ consists of eleven arcs.

The support graph Gσ is depicted in Figure 8, where empty circles represent bike customers and

filled circles represent robot customers. Each arc starting from a node σγi and ending in a node σδj

corresponds to an operation Oσkσ`
σ
γ
i σ

δ
j
, i < k≤ ` < j for which it is reported the operation cost co, the

operation time to, and the values of k and ` in the format (co, to)k,`. The initial and final depots are

represented by squares.

The computational complexity of creating the support graph Gσ is O(n4).

5.2.2. Step 2 – Resolution of a constrained shortest path problem on Gσ. The goal of

the second step is to find the best TSPBR solution that can be derived from the support graph Gσ.

To select the best sequence of operations and thus the synchronization points, we solve a shortest

path problem with a resource constraint on the acyclic multi-graph Gσ. The objective is to minimize

the number of customers served with the bike and the resource (i.e., the constraint) is the maximum

working time of the solution. To this end, we need states indexed by the total working time and

the last visited customer, which means we need up to 2|N r|ζ states. As each state is extended at

most |N r|n times (corresponding to the maximum number of operations starting from a node), the

computational complexity of solving this constrained shortest path problem is O(n3ζ).

Zhao et al.: Synchronized Bike-and-Robot Deliveries
Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1 23

0α

2β

0′α

2α

4β

4α

(1,6)1,1

(1,6)1,1

(3,6)1,1

(3,7)1,1

(2,9)1,2

(2,9)1,2

(3,13)1,4

(3,9)5,5

(3,8)5,5

(1,5)5,5

(1,4)5,5

Figure 8 Support graph Gσ corresponding to permutation σ = (0,1,2,3,4,5,6,0′)

Arcs cs ts Feasible cs

(0α,2α)11− (2α,0′α)55 4 14 no 4 + 2ε

(0α,2β)11− (2β ,0′α)55 4 15 no 4 + 3ε

(0α,4α)11− (4α,0′α)55 4 11 yes 4

(0α,4α)12− (4α,0′α)55 3 13 no 3 + ε

(0α,4β)11− (4β ,0′α)55 4 11 yes 4

(0α,4β)12− (4β ,0′α)55 3 14 no 3 + 2ε

(0α,0′α)14 3 13 no 3 + ε

Table 3 Set of (non-necessarily feasible) TSPBR solutions derived from the support graph Gσ of Figure 8

Table 3 indicates all the TSPBR solutions explored in this step when considering the support

graph Gσ of Figure 8. Table 3 reports, for each solution, the corresponding sequence of arcs, the

cost (cs), the total working time (ts), if the solution is feasible, and the modified cost (cs). The

modified cost is computed as cs = cs + ε ·max{ts− ζ,0}, where ε≥ 0 is a parameter of the algorithm,

which allows penalizing the infeasibility of the solutions.

The AdSplit procedure returns a solution with the lowest modified cost, which depends on the

value of parameter ε. In the example, if ε < 1, AdSplit returns one of the two (infeasible) solutions of

cost 3 and duration 13, i.e., (0α,4α)12− (4α,0′α)55 and (0α,0′α)14. On the other hand, if ε > 1, AdSplit

returns one of the two (feasible) solutions of cost 4 and duration 11, i.e., (0α,4α)11− (4α,0′α)55 and

(0α,4β)11− (4β,0′α)55, both of which corresponds to robot legs 0→ 1→ 4, 4→ 5→ 0′, and bike legs

0→ 2→ 3→ 4, 4→ 6→ 0′. If ε= 1, AdSplit returns one of these four solutions.

Table 3 also shows that properly ordering the service and replenishment at rendezvous customers,

to take advantage of the bike’s idle time, can affect the total working time of a solution. For example,

by comparing the solutions with synchronization at customer 2, i.e., (0α,2α)11 − (2α,0′α)55 and

(0α,2β)11− (2β,0′α)55, we can see that the former solution (where the bike serves customer 2 before

the replenishment) has a lower working time than the latter (i.e., 15 vs 14).

Zhao et al.: Synchronized Bike-and-Robot Deliveries
24 Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1

6. Computational Experiments and Results

6.1. Data Description and Instances Generation

The company that inspired our study on the TSPBR (i.e., JD.com) has provided us with a data set

of information that has allowed us to generate a set of realistic instances to test our algorithms.

In particular, they have provided us with information about the customers and their orders, the

robot and its containers, and the delivery costs. This information has allowed us to generate a set

of benchmark instances as follows.

6.1.1. Customers and their orders. The collaboration with JD.com enabled us to access

detailed information about ≈ 740000 fulfilled orders in January 2022. For each order, they have

provided us with the location of the corresponding customer (specifically, its latitude and longitude),

the volume of the parcel delivered, the realized service time, and a code that identifies the deliveryman

who performed the delivery.

6.1.2. Robots. JD.com has identified three types of robots that can be used for deliveries.

The first type of robot features 24 containers: 12 small, 8 medium, and 4 large. The second type of

robot features 12 containers: 6 medium and 6 large. The third and last type of robot features 8

large containers only. Figure 9 shows the three types of robots and a graphical representation of

the containers on each side of the robot.

Figure 9 The three types of robots considered by JD.com: Type 1 (left), Type 2 (middle), and Type 3 (right)

6.1.3. Delivery costs. JD.com has provided us with an assessment of the delivery costs. In

particular, they have estimated that the cost to serve a customer with the bike is 7 yuan whereas

the cost to serve a customer with the robot is 1 yuan. Notice that these costs are consistent with

Zhao et al.: Synchronized Bike-and-Robot Deliveries
Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1 25

the assumption (see Section 3) that it is more expensive to serve a customer with the bike than the

robot. Along with these two costs, JD.com has also estimated that they incur a fixed cost of 100

yuan per day to deploy the bike for deliveries and 150 yuan per day to deploy the robot. These

fixed costs include, for example, maintenance and insurance costs, depreciation charges, and battery

charging fees. The bike fixed cost also includes the biker’s fixed daily salary, social welfare, paid

holidays, etc. Being these costs fixed, they are not involved in the process of solving the TSPBR,

but they are helpful in drawing some conclusions about the economic impact of deploying the robot

along with the bike.

6.1.4. Generation of the test instances. To derive the graph of a single TSPBR instance,

we randomly selected one of the codes associated with the deliverymen provided by JD.com and

the customers served on one of the days of the available data. From the customer locations and

the depot location (also provided by JD.com), expressed in the form of latitude and longitude, we

could derive the travel time matrices by first computing geographical distances and then assuming,

as advised by JD.com, a travel speed of 6 m/sec (i.e., 21.6 km/hour) for the bike and 5 m/sec (i.e.,

18 km/hour) for the robot - travel times are expressed in seconds and rounded up if a fractional

value was obtained. The replenishment time η is set equal to 600 seconds. We have also explicitly

considered the customer service time provided by JD.com for these delivery tasks. To select the

subset of customers that must be served by the bike, we randomly picked 20% of the customers.

The compatibility of the remaining 80% of the customers with the robot containers is established

based on the volume of the corresponding parcels and the volume of the robot containers. Finally,

to obtain a valid upper bound ω on the required time to serve all customers, we assume to only

have the bike available for deliveries and solve the corresponding TSP on the resulting instance

with a time limit of one hour. We ended up with 100 graphs featuring between 35 and 60 nodes.

We then considered each of these graphs in nine different parameter settings, one for each robot

type and three different values of maximum working time ζ ∈ {0.65,0.80,0.95} ·ω, corresponding to

a 35%, 20% and 5% reduction of working time, respectively. Therefore, with such configurations,

the set of benchmark instances we considered consists of 900 instances.

6.2. Computational Results

In this section, we report on the computational results achieved by solving the TSPBR with the

following algorithms:

• F1 corresponds to F1 solved with CPLEX;

• F2 corresponds to F2 solved with CPLEX with constraints (3) separated as lazy cuts;

• F+
1 and F+

2 indicate F1 and F2 with the additional GSECs (5) separated as user cuts;

• H corresponds to the genetic algorithm described in Section 5;

Zhao et al.: Synchronized Bike-and-Robot Deliveries
26 Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1

• FH1 , FH2 , FH,+1 , and FH,+2 indicate algorithms F1, F2, F+
1 , and F+

2 , resp., in which the model

is warm-started with the best solution found by the genetic algorithm H.

All the experiments reported in this section have been performed on a computer equipped with

a 2.20 GHz AMD Ryzen Threadripper Pro 3955wx 16-Core CPU and 64 GB of RAM, running

a 64-bit Linux operating system. The algorithms were coded in C++, and the source codes were

compiled with gcc 9.4.0 and -O3 optimization flag. Version 20.1.0 of CPLEX was used, and the

default parameter setting has always been used. In all experiments, a time limit of one hour was

imposed on each algorithm to solve each instance.

6.2.1. Computational performance of F1, F2, F+
1 , and F+

2 . In this section, we report on

the computational performance of F1, F2, F+
1 , and F+

2 , and compare their effectiveness to solve

the TSPBR to optimality. We used the whole set of 900 instances to test the four algorithms with a

time limit of one hour on each run.

The results are summarized in Table 4. The top, middle, and bottom part of the table reports

the results when setting ζ = 0.95/0.80/0.65 · ω, respectively. The first two columns indicate the

number of nodes (V) and the number of instances (#) considered in the corresponding row. For

each of the four algorithms, Table 4 reports the number of instances solved to proven optimality

(opt), the average percentage gap between the final upper bounds and the cost of the best-known

solutions (gapu), the average percentage gap between the final lower bounds and the cost of the

best-known solutions (gapl), and the average computing time in seconds (cpu). The percentage

gaps of an instance, achieved by each of the algorithms, are computed as gapu = 100 · ub−bks
bks

and

gapl = 100 · bks−lb
bks

, where ub is the final best upper bound, lb is the final best lower bound, and bks

is the cost of the best-known solution computed by any of the algorithms.

Table 5 shows that algorithm F+
2 can solve 713 of the 900 instances to optimality and outperforms

the other three algorithms in terms of instances solved to optimality, final gaps, and average

computing times. We can also observe that instances with the maximum working time equal to

0.65 · ω are, on average, more difficult to solve to optimality with any of the algorithms: fewer

instances can be closed, final gaps are higher, and the average computing time increases. Moreover,

the higher the number of customers is, the more difficult the instances are.

When comparing the results of F1 and F2, we can see that they achieve similar results even

though the final upper bounds provided by F2 are, on average, significantly better. Furthermore,

Table 4 shows that separating GSEC (5) is usually beneficial; indeed, F+
1 and F+

2 can solve 3 and

18 instances more than F1 and F2, resp., in lower average computing times.

Zhao et al.: Synchronized Bike-and-Robot Deliveries
Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1 27

Table 4 Computational comparison between F1, F+
1 , F2, and F+

2

F1 F+
1 F2 F+

2

|V| # opt gapu gapl cpu opt gapu gapl cpu opt gapu gapl cpu opt gapu gapl cpu

ζ
=

0.
95
·ω

35 60 60 0.00 0.00 11 60 0.00 0.00 24 60 0.00 0.00 15 60 0.00 0.00 12

40 60 60 0.00 0.00 96 60 0.00 0.00 84 60 0.00 0.00 122 60 0.00 0.00 55

45 60 60 0.00 0.00 232 59 0.19 0.00 227 58 0.24 0.15 275 60 0.00 0.00 240

50 45 44 0.25 0.00 309 43 2.96 0.25 312 45 0.00 0.00 269 45 0.00 0.00 207

55 45 37 6.79 1.09 1137 36 10.41 0.94 1364 39 2.76 0.87 1125 41 9.64 0.49 1063

60 30 23 10.32 1.34 1438 26 18.19 0.96 1182 23 16.97 1.31 1208 27 19.92 1.02 1098

300 284 2.06 0.30 428 284 3.86 0.27 437 285 2.11 0.29 412 293 3.44 0.18 362

ζ
=

0.
80
·ω

35 60 59 0.00 0.19 96 60 0.00 0.00 102 59 0.00 0.19 145 60 0.00 0.00 71

40 60 57 0.19 0.35 361 58 0.00 0.39 379 57 0.14 0.37 437 58 0.00 0.37 432

45 60 56 0.27 0.45 824 53 1.16 0.86 895 55 0.23 0.69 815 59 0.00 0.17 766

50 45 37 3.65 1.46 1266 36 3.73 1.51 1243 38 2.28 1.36 1212 38 4.05 1.36 1168

55 45 19 31.36 2.86 2398 22 28.83 1.95 2410 26 5.38 1.97 2412 26 12.99 2.03 2124

60 30 13 39.52 2.97 2730 12 46.66 3.19 2798 14 10.71 3.19 2742 15 18.75 2.71 2392

300 241 9.12 1.14 1079 241 9.34 1.09 1103 249 1.92 1.07 1097 256 4.12 0.89 987

ζ
=

0.
6
5
·ω

35 60 55 1.54 0.42 554 57 1.78 0.18 530 58 0.47 0.21 386 60 0.00 0.00 474

40 60 46 2.90 1.49 1098 48 5.93 1.33 1164 48 1.54 1.66 1069 52 0.41 1.44 878

45 60 24 3.27 8.14 2546 21 3.56 8.26 2742 23 1.54 8.48 2573 23 3.26 8.25 2604

50 45 15 8.23 8.59 2768 19 5.95 8.30 2495 17 1.26 8.40 2708 17 3.13 8.77 2577

55 45 9 19.33 14.37 3219 9 21.78 13.96 3264 9 14.03 14.39 3265 6 25.11 14.55 3240

60 30 6 13.39 13.81 3238 4 40.58 13.87 3324 6 13.94 13.94 3356 6 20.48 13.63 3396

300 155 5.56 6.84 2061 158 7.89 6.68 2083 161 3.18 6.88 2037 164 4.70 6.80 2003

All 900 680 5.58 2.76 1190 683 6.94 2.68 1208 695 2.33 2.75 1182 713 4.03 2.62 1117

6.2.2. Computational performance of H. We first tuned the parameters of algorithm H.

In particular, we considered the following values for the six parameters of the algorithm:

• number of chromosomes kept in the population: nc ∈ {10,15,20,25,30};

• number of new chromosomes included in the population: ng ∈ {nc,2nc,3nc};

• number of elite individuals selected to survive and being carried over into the next generation:

ne ∈ {0.2nc,0.3nc,0.4nc}

• number of close chromosomes to the inspected individual: nclose ∈ {0.2nc,0.3nc,0.4nc};

• number of iterations without improvement of the best solution: nstay ∈ {1,3,5};

• penalty of the working time violation: ε∈ {10,15,20}.

Overall, we considered 1215 combinations of parameters, which we tested on 20 instances

randomly selected from our testbed of 900 instances. In particular, we selected four instances with

|N | ∈ {35,40,45,50,55} each. As to the termination criterion, the algorithm H terminates when

either it does not improve the best solution for nstay iterations or the one-hour time limit is reached.

To select the best parameter combination, we first excluded the configurations that could not

provide a feasible solution on all 20 instances. Then, we normalized (with a unity-based normalization)

the average gaps and run times of the remaining configurations. Finally, we computed a score for

Zhao et al.: Synchronized Bike-and-Robot Deliveries
28 Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1

each parameter combination by assigning equal weights to these two criteria. The best configuration

turned out being the one with nc = 15, ng = 15, ne = 3, nclose = 4, nstay = 1, ε= 10. Therefore, we

used this configuration in all the tests reported in the remainder of this section.

Then, we tested the heuristic algorithm H on all 900 generated instances and summarized its

performance in Table 5. Each row of the table indicates average values over the subset of instances

featuring the number of nodes reported in the first column (|V|). The second column (#) reports

the number of instances per row of the table. Then, for each of the three possible values of ζ (i.e.,

ζ ∈ {0.65,0.80,0.95} ·ω), Table 5 reports the number of instances on which H found an optimal

solution (opt), the average percentage gap with respect to the best-known solutions (gap), and the

average computing time in seconds (cpu). We can indicate the number of times H finds an optimal

solution because we have the results of F1, F2, F+
1 , F+

2 , FH1 , FH2 , FH,+1 , and FH,+2 , on which we

will report in the next sections. As to the gaps, we calculated them with respect to the best-known

solution we found for each instance in the entire computational campaign we conducted (no matter

the algorithm that found such solution). In particular, the gap of an instance is computed as

gap= 100 · ub−bks
bks

, where ub is the upper bound returned by H and bks is the cost of the best-known

solution. The average values reported in columns gap and cpu are computed over all instances in

the corresponding row.

Table 5 Summary of the performance of genetic algorithm H over all 900 test instances

ζ = 0.95 ·ω ζ = 0.80 ·ω ζ = 0.65 ·ω

|V| # opt gap cpu opt gap cpu opt gap cpu

35 60 60 0.00 8 59 0.17 9 39 5.78 10

40 60 58 0.44 17 53 1.14 19 40 3.12 22

45 60 55 1.06 29 47 1.88 32 21 4.75 190

50 45 42 0.62 46 37 1.11 53 17 4.69 197

55 45 37 2.02 84 29 2.41 101 16 4.05 438

60 30 28 0.21 114 21 1.41 138 7 2.61 591

All 300 280 0.72 42 246 1.31 49 140 4.30 199

Table 5 shows that H can find an optimal solution on 666 of the 900 instances with an average

computing time of less than 100 seconds and, on average, the best solution returned is within 2.11%

from the best-known solutions. We can also observe that instances with a tighter working time (i.e.,

ζ = 0.65 ·ω) are generally more difficult: H can find fewer optimal solutions, takes more time, and

has higher final gaps.

6.2.3. Effect of warm-starting F1, F+
1 , F2, and F+

2 with the best solution obtained

by H. Table 4 shows that F1, F+
1 , F2, and F+

2 struggle at finding high-quality primal solutions;

as a matter of fact, the best algorithm (i.e., F+
2) yields upper bounds that are, on average, 4.03%

Zhao et al.: Synchronized Bike-and-Robot Deliveries
Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1 29

far from the cost of the best-known solutions. For this reason, we tested F1, F+
1 , F2, and F+

2 by

warm-starting them with the best primal solution obtained by H.

The results achieved are summarized in Table 6, which features the same columns as Table 4. As

before, we imposed a time limit of one hour on each algorithm to solve each instance, but this time

limit includes the computing time taken by H. For ease of comparison, the last row of the table

indicates the overall results achieved by F1, F+
1 , F2, and F+

2 taken from Table 4.

Table 6 Computational comparison between FH
1 , FH,+

1 , FH
2 , and FH,+

2

FH1 FH,+1 FH2 FH,+2

|V| # opt gapu gapl cpu opt gapu gapl cpu opt gapu gapl cpu opt gapu gapl cpu

ζ
=

0.
95
·ω

35 60 60 0.00 0.00 11 60 0.00 0.00 14 60 0.00 0.00 14 60 0 0.00 13

40 60 59 0.28 0.00 87 60 0.00 0.00 37 60 0.00 0.00 38 60 0 0.00 51

45 60 60 0.00 0.00 137 60 0.00 0.00 111 60 0.00 0.00 83 60 0 0.00 96

50 45 45 0.00 0.00 98 45 0.00 0.00 98 45 0.00 0.00 52 45 0 0.00 50

55 45 44 0.20 0.09 461 44 0.20 0.00 458 44 0.22 0.00 326 45 0 0.00 449

60 30 28 0.26 0.63 362 29 0.00 0.33 304 29 0.00 0.33 263 29 0 0.33 277

300 296 0.11 0.08 167 298 0.03 0.03 146 298 0.03 0.03 110 299 0 0.03 134

ζ
=

0.
80
·ω

35 60 60 0.00 0.24 84 60 0.00 0.00 73 60 0.00 0.00 32 60 0.00 0.00 32

40 60 60 0.00 0.41 318 60 0.00 0.12 293 60 0.00 0.32 297 60 0.00 0.12 248

45 60 59 0.13 0.15 342 59 0.13 0.18 342 59 0.13 0.33 444 60 0.00 0.00 365

50 45 39 0.76 1.43 932 40 0.56 1.01 823 43 0.00 0.63 701 43 0.00 0.68 576

55 45 36 1.24 1.59 1499 38 0.74 1.61 1480 38 0.95 1.34 1472 41 0.13 1.03 1287

60 30 24 1.05 1.46 1207 27 0.21 1.25 1193 27 0.21 1.32 1123 26 0.42 1.08 1196

300 278 0.43 0.76 634 284 0.24 0.58 606 287 0.19 0.56 593 290 0.06 0.39 528

ζ
=

0.
65
·ω

35 60 57 0.60 0.39 459 57 0.60 0.24 426 59 0.22 0.11 430 59 0.12 0.00 510

40 60 53 1.11 0.92 835 54 0.99 0.76 769 50 1.71 1.06 855 55 0.00 0.78 706

45 60 33 1.79 7.33 2332 33 1.77 7.47 2405 33 1.29 7.43 2297 32 1.76 7.87 2509

50 45 22 2.23 8.12 2385 22 2.57 8.07 2381 25 2.63 8.40 2465 27 2.24 7.67 2124

55 45 20 3.06 13.63 2600 21 2.10 13.40 2581 20 0.70 13.85 2627 20 3.48 13.48 2520

60 30 11 4.70 13.08 2759 12 3.60 13.62 2954 10 2.85 13.39 2828 11 1.90 13.13 2838

300 196 1.96 6.30 1749 199 1.73 6.28 1760 197 1.43 6.40 1763 204 1.42 6.22 1725

All 900 770 0.79 2.41 850 781 0.67 2.30 837 782 0.55 2.33 822 793 0.49 2.12 799

vs F1 vs F+
1 vs F2 vs F+

2

680 5.58 2.76 1190 683 6.94 2.68 1208 695 2.33 2.75 1182 713 4.03 2.62 1117

Table 6 shows that all the algorithms benefit from the warm-start: they closed more instances,

and achieved lower final gaps, in lower average computing times. Even though the performance

of the warm-started algorithms is quite similar, we can see that F+
2 still outperforms the other

algorithms.

To easily compare the performance of the algorithms, we visualize their performance in the

performance profile of Figure 10. This performance profile reports the computing time in seconds,

Zhao et al.: Synchronized Bike-and-Robot Deliveries
30 Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1

50

55

60

65

70

75

80

85

90

500 1000 1500 2000 2500 3000 3500

%
o
f

in
st

an
ce

s

t (s)

F1

F+
1

F2

F+
2

FH1
F+,H

1

FH2
F+,H

2

Figure 10 Performance profile of the algorithms F1, F+
1 , F2, F+

2 , FH
1 , FH,+

1 , FH
2 , and FH,+

2 : percentage of

instances solved to optimality within given computing times

in the horizontal axis, and the cumulative percentage of instances being solved to optimality within

a given CPU time, in the vertical axis.

Figure 10 shows that FH,+2 enhanced with GSECs (5) and warm-started with the best solution

provided by H achieves the best performances. Moreover, warm-starting the algorithms allows

solving to proven optimality almost 70% of the instances within 300 seconds of computing time.

6.3. Managerial Insights

To the best of our knowledge, JD.com has not conducted any pilot project to assess the benefits

of last-mile deliveries with a bike aided by a robot yet. Therefore, in this section, we show some

potential benefits by assessing the impact of introducing self-driving robots in daily distribution.

6.3.1. Results on a sample instance. For a clear comparison of optimal TSPBR solutions

in different scenarios (without the self-driving robot or with the robot of one of the three types

considered), we selected a sample instance with |V|= 50 from the benchmark set. For a quantitative

analysis of these optimal solutions, JD.com estimated the purchasing cost of a robot to be 200 000

yuan, and this cost is amortized over four years. Therefore, by assuming that the robot can be

deployed in 330 work days per year, the daily depreciation charge is about 150 yuan per work day.

The main features of optimal solutions under the 10 scenarios are summarized in Table 7, which

indicates the number of customers served by the bike and the robot, the number of replenishments

(including the initial one at the depot), the total costs (including the assumed 150 yuan of

Zhao et al.: Synchronized Bike-and-Robot Deliveries
Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1 31

depreciation charge), and the total working time. The total cost equals the sum of the service cost

by the bike (i.e., 7×# customers served by bike + daily fixed cost to deploy a bike of 100) and by

the robot (i.e., 1×# customers served by robot + daily depreciation of 150).

Table 7 Comparison of the optimal solutions on the sample 50-node instance under different scenarios

ζ = 0.95 ·ω ζ = 0.80 ·ω ζ = 0.65 ·ω

No Robot Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3

#customers served by bike 48 7 9 10 10 11 13 16 17 18

#customers served by robot 0 41 39 38 38 37 35 32 31 30

#replenishments 0 2 4 5 2 3 5 3 3 3

Costs (incl. depreciation) 436 340 352 358 358 364 376 394 400 406

Working time 413 374 371 377 328 329 327 260 265 263

Table 7 clearly shows that there can be a significant reduction of costs whenever the robot is

deployed no matter which type of robot is used. Moreover, these cost reductions can be attained

with an 8%∼ 37% saving of working time taken by the bike when the robot is not deployed.

6.3.2. Expected cost savings. Table 8 summarizes the average cost savings, over all the

benchmark instances, when deploying a robot of each of the three types and setting the maximum

working time to {0.95,0.80,0.65} · ω minutes. Average cost savings are computed in percentage

considering the cost incurred using the bike only as a base – notice that the cost of serving all

customers with the bike only for an instance with n customers is 7n+ 100.

Table 8 Average percentage of cost savings, over all benchmark instances, by using robots compared to using

the bike only

ζ = 0.95 ·ω ζ = 0.80 ·ω ζ = 0.65 ·ω

|V| Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3

35 3.44 2.36 0.82 1.72 0.36 -1.09 -3.08 -4.89 -6.71

40 10.90 9.51 8.20 8.11 6.64 5.16 3.20 1.72 0.41

45 15.86 14.36 12.72 12.94 11.37 10.02 6.81 3.82 -0.60

50 20.28 18.62 16.79 17.98 16.15 14.13 11.83 8.53 3.39

55 26.67 24.12 21.91 23.10 20.38 19.36 16.73 11.30 3.06

60 27.63 25.85 23.72 25.61 23.12 20.87 19.45 14.82 5.34

15.85 14.24 12.52 13.28 11.47 9.93 7.61 4.58 0.12

From Table 8, we can observe that the average cost savings are in the range −7% ∼ 28%,

depending on the time-saving reduction target and the deployed robot type. Higher cost savings

can be expected when the number of customers to serve increases and if the robot features more

containers (see, e.g., type-1 and type-2 robots compared to type-3 robots). No matter the type of

robot used, cost savings are expected in instances with 50 or more nodes.

Zhao et al.: Synchronized Bike-and-Robot Deliveries
32 Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1

Table 8 also indicates that, by introducing the self-driving robot, working time savings can be

significant while still decreasing total costs. Indeed, by reducing the working-time restriction by

35% (e.g., from 8 hours to about 5 hours), the average cost savings can be as much as 7.61% with

Type 1 robots; if the robot is deployed to help busy deliverymen (for example, bikes with more than

50 customers per day), cost savings can reach 19%. Besides, if the working time-saving requirement

is not so ambitious, for example, a 20% reduction, the average cost saving will be 13.28%,11.47%,

and 9.93% for the three types of robots, resp., which is still promising to most of the e-commerce

companies. In particular, this is crucial for JD.com as the number of their parcel delivery requests is

increasing at an annual rate of 30% (Wang 2022b). These time savings can be valuable for JD.com

as they could (a) allow bikers to take extra breaks or earn more by serving additional customers,

(b) better cope with spikes in their sales and subsequent deliveries on special days such as Chinese

Black Friday (on June 18, August 18, and November 11) when daily sales may double (e.g., Wang

2022a), and (c) in the long term, reallocate their workforce to other departments or tasks and deal

with increases in sales and deliveries.

6.3.3. Sensitivity to cost values. Possible cost savings resulting from adopting SDRs in a

TSPBR setting depend on the expected costs for serving customers with the bike and the robot,

i.e., cb and cr. Based on the expectations of JD.com, we have previously assumed cb = 7 and cr = 1.

We now show what happens if cb and cr vary. In particular, we consider nine combinations of

values with cb ∈ {5,7,10} and cr ∈ {0.5,1.0,1.5}. For each of these combinations and for each of

the 100 graphs previously described, we compute the cost of the best-known TSPBR solution

when ζ = 0.8 ·ω for any of the three robot types. Figure 11 presents the box-plot distributions of

cost-savings (in percentage), compared to the bike-only solution, using type-1 robot (white bars),

type-2 robot (green bars), and type-3 robot (red bars).

Figure 11 suggests that: (a) the benefits of deploying robots increase with the ratio between cb

and cr (e.g., if cb = 10 and cr = 0.5, deploying type-1 robots brings up to 50% of cost savings), and

(b) if cb = 5, there may not be any cost savings in most cases, especially if type-2 and type-3 robots

are deployed.

7. Conclusions

Motivated by the challenges faced by the Chinese e-commerce giant JD.com in last-mile delivery,

we have addressed a delivery problem where a bike and a self-driving robot work in tandem to

deliver parcels to customers in urban areas. We called this new problem the Traveling Salesman

Problem with Bike-and-Robot (TSPBR). The decisions entailed by the TSPBR are (i) partitioning

the customers to serve between the bike and the robot, (ii) deciding upon the locations where

the two vehicles synchronize so that the robot is replenished, and (iii) routing the two vehicles.

Zhao et al.: Synchronized Bike-and-Robot Deliveries
Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1 33

Type 1 Type 2 Type 3

−20

0

20

40

A
v
g
 c

o
s
t
s
a
v
in

g
s
 (

%
)

cb=5,c r=0.5

Type 1 Type 2 Type 3

−20

0

20

40

A
v
g
 c

o
s
t
s
a
v
in

g
s
 (

%
)

cb=5,c r=1

Type 1 Type 2 Type 3

−20

0

20

40

A
v
g
 c

o
s
t
s
a
v
in

g
s
 (

%
)

cb=5,c r=1.5

Type 1 Type 2 Type 3

−20

0

20

40

A
v
g
 c

o
s
t
s
a
v
in

g
s
 (

%
)

cb=7,c r=0.5

Type 1 Type 2 Type 3

−20

0

20

40
A

v
g
 c

o
s
t
s
a
v
in

g
s
 (

%
)

cb=7,c r=1

Type 1 Type 2 Type 3

−20

0

20

40

A
v
g
 c

o
s
t
s
a
v
in

g
s
 (

%
)

cb=7,c r=1.5

Type 1 Type 2 Type 3

−20

0

20

40

A
v
g
 c

o
s
t
s
a
v
in

g
s
 (

%
)

cb=10,c r=0.5

Type 1 Type 2 Type 3

−20

0

20

40

A
v
g
 c

o
s
t
s
a
v
in

g
s
 (

%
)

cb=10,c r=1

Type 1 Type 2 Type 3

−20

0

20

40

A
v
g
 c

o
s
t
s
a
v
in

g
s
 (

%
)

cb=10,c r=1.5

Figure 11 Cost savings distributions assuming different combinations of cost values (cb ∈ {5,7,10} and cr ∈

{0.5,1,1.5}), when ζ = 0.8 ·ω, with the three robot types (1-white, 2-green, 3-red)

The main challenge in mathematically modeling the TSPBR is the needed spatial and temporal

synchronization of the two vehicles.

We have introduced two mixed-integer linear programming formulations that model the synchro-

nization constraints with different approaches. In the first formulation, synchronization constraints

are ensured through a polynomial number of constraints. In the second formulation, synchronization

is guaranteed with an exponential number of constraints generated on the fly. To strengthen the

linear relaxation of both formulations, we have also introduced a set of valid inequalities derived

from the well-known generalized subtour elimination constraints.

To have an algorithm that can scale up and solve large TSPBR instances, we have also proposed a

genetic algorithm. As often done in the TSP literature, chromosomes are represented as permutations

of customers. To efficiently explore large neighborhoods, we have devised a dynamic programming-

based procedure.

We have tested the formulations and the genetic algorithm on a set of benchmark instances

based on real data provided by JD.com. The formulations can often find optimal solutions for

Zhao et al.: Synchronized Bike-and-Robot Deliveries
34 Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1

instances with up to 60 nodes in some ten minutes of computing time. The genetic algorithm can

yield high-quality solutions, within ∼ 3% to optimality, in a few minutes of computing time. Finally,

we have shown that significant cost savings can be achieved by deploying the robot along with the

bike rather than assigning all deliveries to the bike alone.

We hope that our study can inspire other researchers and practitioners to explore the potential

benefits of adopting robots in last-mile deliveries, which is still a partly unexplored research area. We

envision several interesting ways to extend the TSPBR problem setting we consider: multiple bikes

and robots can be investigated, different types of collaboration among the vehicles can be adopted,

and customer-oriented constraints could also be embedded in the model. From a methodological

perspective, all these features bring an extra layer of complexity to the TSPBR that would require

an effort to develop new solution methods that can address real-size instances.

References

Agatz N, Bouman P, Schmidt M, 2018 Optimization Approaches for the Traveling Salesman Problem with

Drone. Transportation Science 52(4):965–981.

Alfandari L, Ljubić I, da Silva MdM, 2022 A Tailored Benders Decomposition Approach for Last-mile Delivery

with Autonomous Robots. European Journal of Operational Research 299(2):510–525.

Archetti C, Bertazzi L, 2021 Recent Challenges in Routing and Inventory Routing: E-commerce and Last-mile

Delivery. Networks 77(2):255–268.

Bakach I, Campbell AM, Ehmke JF, 2021 A Two-tier Urban Delivery Network with Robot-Based Deliveries.

Networks 78(4):461–483.

Beasley J, 1983 Route First–Cluster Second Methods for Vehicle Routing. Omega 11(4):403–408.

Boccia M, Masone A, Sforza A, Sterle C, 2021 A Column-and-Row Generation Approach for the Flying Sidekick

Travelling Salesman Problem. Transportation Research Part C: Emerging Technologies 124:102913.

Bouman P, Agatz N, Schmidt M, 2018 Dynamic Programming Approaches for the Traveling Salesman Problem

with Drone. Networks 72(4):528–542.

Boysen N, Schwerdfeger S, Weidinger F, 2018 Scheduling Last-mile Deliveries with Truck-based Autonomous

Robots. European Journal of Operational Research 271(3):1085–1099.

Chen C, Demir E, Huang Y, 2021 An Adaptive Large Neighborhood Search Heuristic for the Vehicle Routing

Problem with Time Windows and Delivery Robots. European Journal of Operational Research 294:1164–

1180.

Chen C, Demir E, Huang Y, Qiu R, 2021 The Adoption of Self-Driving Delivery Robots in Last Mile Logistics.

Transportation Research Part E 146:102214.

de Freitas J, Penna P, 2020 A Variable Neighborhood Search for Flying Sidekick Traveling Salesman Problem.

International Transactions in Operational Research 27(1):267–290.

Zhao et al.: Synchronized Bike-and-Robot Deliveries
Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1 35

Dell’Amico M, Montemanni R, Novellani S, 2021 Algorithms based on Branch and Bound for the Flying

Sidekick Traveling Salesman Problem. Omega 104:102493.

Dell’Amico M, Montemanni R, Novellani S, 2022 Exact Models for the Flying Sidekick Traveling Salesman

Problem. International Transactions in Operational Research 29(3):1360–1393.

Drexl M, 2012 Synchronization in vehicle routing—a survey of vrps with multiple synchronization constraints.

Transportation Science 46(3):297–316.

El-Adle A, Ghoniem A, Haouari M, 2021 Parcel Delivery by Vehicle and Drone. Journal of the Operational

Research Society 72(2):398–416.

Es Yurek E, Ozmutlu H, 2018 A Decomposition-based Iterative Optimization Algorithm for Traveling Salesman

Problem with Drone. Transportation Research Part C: Emerging Technologies 91:249–262.

Fischetti M, Salazar González JJ, Toth P, 1998 Solving the Orienteering Problem through Branch-and-Cut.

INFORMS Journal on Computing 10(2):133–148.

Ha Q, Deville Y, Pham Q, Hà M, 2020 A Hybrid Genetic Algorithm for the Traveling Salesman Problem with

Drone. Journal of Heuristics 26(2):219–247.

Holland JH, 1975 Adaptation in Natural and Artificial Systems: An Introductory analysis with Applications

to Biology, Control, and Artificial Intelligence (University of Michigan Press).

Lacomme P, Prins C, Ramdane-Chérif W, 2001 A Genetic Algorithm for the Capacitated Arc Routing Problem

and its Extensions. Boers E, ed., Applications of Evolutionary Computing. EvoWorkshops 2001. Lecture

Notes in Computer Science, volume 2037, 473–483 (Springer, Berlin, Heidelberg).

Liu Z, Li X, Khojandi A, 2022 The Flying Sidekick Traveling Salesman Problem with Stochastic Travel Time:

A Reinforcement Learning Approach. Transportation Research Part E: Logistics and Transportation

Review 164:102816.

Macrina G, Di Puglia Pugliese L, Guerriero F, Laporte G, 2020 Drone-aided Routing: A Literature Review.

Transportation Research Part C 120:102762.

Moscato P, Cotta C, 2010 A Modern Introduction to Memetic Algorithms. Gendreau M, Potvin JY, eds.,

Handbook of Metaheuristics. International Series in Operations Research & Management Science,

chapter 6 (Boston: Springer).

Murray CC, Chu AG, 2015 The Flying Sidekick Traveling Salesman Problem: Optimization of Drone-assisted

Parcel Delivery. Transportation Research Part C: Emerging Technologies 54:86–109.

Oliver I, Smith D, Holland J, 1987 A Study of Permutation Crossover Operators on the Traveling Sales-

man Problem. Proceedings of the Second International Conference on Genetic Algorithms on Genetic

algorithms and their application, 224–230.

Ostermeier M, Heimfarth A, Hübner A, 2022 Cost-optimal Truck-and-Robot Routing for Last-mile Delivery.

Networks 79(3):364–389.

Zhao et al.: Synchronized Bike-and-Robot Deliveries
36 Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1

Otto A, Agatz N, Campbell J, Golden B, Pesch E, 2018 Optimization Approaches for Civil Applications of

Unmanned Aerial Vehicles (UAVs) or Aerial Drones: A Survey. Networks 72:411–458.

Poikonen S, Golden B, Wasil E, 2019 A Branch-and-Bound Approach to the Traveling Salesman Problem

with a Drone. INFORMS Journal on Computing 31(2):335–346.

Prins C, 2004 A Simple and Effective Evolutionary Algorithm for the Vehicle Routing Problem. Computers &

Operations Research 31(12):1985–2022.

Roberti R, Ruthmair M, 2021 Exact Methods for the Traveling Salesman Problem with Drone. Transportation

Science 55(2):315–335.

Schermer D, Moeini M, Wendt O, 2020 A Branch-and-Cut Approach and Alternative Formulations for the

Traveling Salesman Problem with Drone. Networks 76(2):164–186.

Scherr YO, Saavedra BAN, Hewitt M, Mattfeld DC, 2019 Service Network Design with Mixed Autonomous

Fleets. Transportation Research Part E: Logistics and Transportation Review 124:40–55.

Simoni MD, Kutanoglu E, Claudel CG, 2020 Optimization and Analysis of a Robot-assisted Last Mile Delivery

System. Transportation Research Part E 142:102049.

Soares R, Marques A, Amorim P, Parragh SN, 2023 Synchronisation in vehicle routing: classification schema,

modelling framework and literature review. European Journal of Operational Research .

Srinivas S, Ramachandiran S, Rajendran S, 2022 Autonomous Robot-driven Deliveries: A Review of Recent

Developments and Future Directions. Transportation Research Part E: Logistics and Transportation

Review 165:102834.

Statista, 2021a eCommerce Report 2021. https://www.statista.com/study/42335/ecommerce-report/,

accessed on November 21st, 2022.

Statista, 2021b Leading Aspects that Global Shoppers Would Change about the Delivery of Prod-

ucts Purchased Online as of April 2021. https://www.statista.com/statistics/1274950/

global-online-shoppers-wished-changes-on-delivery/, accessed on November 21st, 2022.

Vásquez S, Angulo G, Klapp M, 2021 An Exact Solution Method for the TSP with Drone Based on Decompo-

sition. Computers and Operations Research 127:105127.

Vidal T, Crainic TG, Gendreau M, Rei W, 2012 A Hybrid Genetic Algorithm for Multi-depot and Periodic

Vehicle Routing Problems. Operations Research 60(3):611–624.

Wang Y, 2022a JD.com’s Record-breaking 2022 Singles’ Day Grand Promo-

tion Reflects Robust Consumption Vitality. https://jdcorporateblog.com/

jd-coms-record-breaking-2022-singles-day-grand-promotion-reflects-robust-consumption-vitality/,

accessed on August 1st, 2023.

Wang Y, 2022b The First Chinese Retailer Among World Top 10: JD.com. https://jdcorporateblog.com/

the-first-chinese-retailer-among-world-top-10-jd-com/, accessed on August 1st, 2023.

Zhao et al.: Synchronized Bike-and-Robot Deliveries
Article submitted to Transportation Science; manuscript no. TS-2023-0169.R1 37

Yu S, Puchinger J, Sun S, 2020 Two-echelon Urban Deliveries using Autonomous Vehicles. Transportation

Research Part E: Logistics and Transportation Review 141:102018.

Yu S, Puchinger J, Sun S, 2021 Van-based Robot Hybrid Pickup and Delivery Routing Problem. European

Journal of Operational Research 298(3):894–914.

Citation on deposit: Zhao, Y., Cattaruzza,
D., Kang, N., & Roberti, R. (in press).
Synchronized Deliveries with a Bike and a
Self-Driving Robot. Transportation Science,

For final citation and metadata, visit
Durham Research Online URL:

https://durham-repository.worktribe.com/output/1925903

Copyright statement: This accepted manuscript is licensed under the Creative
Commons Attribution licence.

https://durham-repository.worktribe.com/output/

	Zhao_Y_Synchronized deliveries with a bike and a self-driving robot
	Citation page-V1-2023

