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Abstract—In this paper, a nonparametric identification
method is used to identify the dynamic model of a flexible
joint robot (FJR) that includes friction and transmission nonlin-
earities. More precisely, the Best Linear Approximation (BLA)
approach has been considered in a closed-loop setup to provide
the frequency response of the system and an evaluation of the
nonlinearities. Based on simulated data, the paper investigates
the tuning of an adequate multisine excitation signal that
enables good identification results. First, an algorithm is adapted
in order to shape the spectrum of the control signal adequately.
Second, based on an evaluation of the effects on the Coulomb
friction and transmission nonlinearity, it is showed that an
optimal amplitude can be found.

Index Terms—System identification, frequency domain, non-
linear distortions, flexible joint robots.

I. INTRODUCTION

When manipulator robots are used on large workspace with
fast dynamical changes, nonlinear behavior may occur [1].
This is all the more true when these robotic systems have
strong flexibilities (like structural [2] or joint flexibilities
[3]) because of (i) the coupling between the rigid bodies
and elastic deformations of joints, (ii) position dependent
nonlinearities such as the well known Coulomb friction [4]
or (iii) variable stiffness due to motor-to-joint transmission
[5] to name a few. White box models of such nonlinear
systems can be generated based on mechanical modeling
of rigid and/or flexible multibodies chains. Because such
an approach requires an accurate knowledge of the robot
under study as well as high level skills in robotics, system
identification [6] is often suggested as a valuable data based
tool to bypass these modeling difficulties. In order to benefit
from the white box analysis in the system identification
procedure, parametric models are often used for modeling
manipulator robots [1], [7], [8], [9]. This kind of gray box
model often neglects strong nonlinearities (for example the
stiffness of the transmission) in order to keep, in the end, a

model structure (i) generic to mimic the system behavior,
(ii) simple enough to ensure that the controller can be
designed easily. Neglecting the effect of nonlinearities on
resonance phenomena may unfortunately lead to conservative
low-bandwidth controllers or simplified models which do not
involve the resonance phenomena (this can damage the sys-
tem if such phenomena occur within the control bandwidth).
This is one of the main reasons why, at a first step, it is
often suggested performing a nonparametric identification
of the flexible joint robot [10], mainly in the frequency
domain, in order to provide knowledge of the input-output
behavior of the system without requiring strong structural
knowledge of the robotic system to control. By resorting
to a divide and conquer strategy, nonparametric frequency
response function (FRF) identification algorithms can be used
locally to determine linear models of the robot behavior in
various configurations around user defined working points.

This paper is dedicated to the nonparametric estimation of
the FRF of FJRs in the presence of friction and transmission
nonlinearities using the Best Linear Approximation -BLA-
method described in details in [11] and [12]. Our contribu-
tions firstly consist in adapting the multisine amplitudes by
restoring to an iterative procedure which shapes the multisine
spectrum in order to optimize the quality of the identified
model. Furthermore, by applying odd random phase multisine
as excitation signal in a closed loop setup, we determine the
BLA of the underlying linear transfer from the motor torque
to the motor position, the variance of the stochastic nonlinear
contributions as well as the noise variance. Secondly, the
impact of the nonlinear nature of the transmissions is revealed
by mapping the resonances and antiresonances frequencies of
the FRF to the levels of excitation signals.

The paper is organized as follows. In Section II, the
modeling of the flexible joint robot is introduced. Section



III is dedicated to the basics of the frequency response
function estimation with the BLA approach. In Section IV,
we investigate the tuning of the multisine excitation signal
and we show the simulation results of the identification of
FJR. Concluding remarks are provided in section V.

II. MODELING OF FLEXIBLE JOINT ROBOT DYNAMICS

When it comes to the compliant manipulation in contact
with human, flexible joint robots are more suitable and
provide better performance than rigid robots. By FJRs, we
refer to robots in which the flexibility is located at the
articulation level [3]. In this section, we first present the
mathematical description of a FJR with n degrees of freedom.
Then, the modeling of single FJR is discussed along with the
description of nonlinearities considered in the current work.

The most commonly used model to describe the dynamics
of FJRs is called the reduced model proposed by [3]. In
this model, the inertial coupling between the motors and the
links of the robot is neglected. The dynamics of the robot
typically consist of two coupled equations as follows

M(q)q̈ + C(q, q̇)q̇ + τG(q) + τfl(q̇) + τe(q, θ) = 0,

Jmθ̈ + τfm(θ̇)− τe(q, θ) = τ,
(1)

with q is the joint position, while θ is the motor position.
M(q) represents the inertia matrix of the rigid bodies of
the poly-articulated chain. Jm denotes the inertia matrix of
the actuators, C(q, q̇)q̇ is the Coriolis torques, τG(q) is the
gravity torque, τfl(q̇) and τfm(θ̇) are the friction torques on
the link side and motor side, respectively, while τe(q, θ) is
the elastic torque.

The friction torques on the link and the motor side
according to Coulomb friction law are given by

τfl = fv q̇ + fssgn(q̇),

τfm = fvmθ̇ + fsmsgn(θ̇),
(2)

where fv and fs are the viscous and dry friction coefficients
on the joint side, respectively, while fvm and fsm are the
viscous and dry friction coefficients on the motor side,
respectively.

The flexibility at the joint level transforms the deflection
q − θ into an elastic torque as follows

τe = K(q, θ) (q − θ), (3)

where the stiffness K(q, θ) of the transmission is deflection
dependent. This stiffness can be a nonlinear polynomial
function of order n according to [5]. In our work, we consider
the case of a second order polynomial stiffness as given
below, where k0 and k1 are stiffness coefficient, i.e.,

K(q, θ) = k0 + k1(q − θ)2. (4)

Consider a single FJR on a horizontal plane, hence, without
gravity (see Fig. 1). When the friction torques as well as the

elastic torque given by Eq. (2) and Eq. (3), respectively, are
included in Eq. (1), the dynamical model is

Jq̈ + fv q̇ + fssgn(q̇) + k0(q − θ) + k1(q − θ)3 = 0,

Jmθ̈ + fvmθ̇ + fsmsgn(θ̇) + k0(θ − q) + k1(θ − q)3 = τ.
(5)

Eq. (5) is nonlinear, coupled and characterized by elastic
modes. We consider the case where only the motor position
θ is available, and we locally calculate the underlying linear
transfer function from the motor torque to the motor position
(τ → θ). Such transfer is of prime importance for feedback
control design and is known as the collocated transfer [3]. By
omitting the nonlinear terms in Eq. (5), we derive the transfer
functions of interest, i.e., from the input τ to the output θ,
we get

G0(s) =
θ(s)

τ(s)
=
Js2 + (fv + fs)s+ k0

den(s)
, (6)

with den(s) given by

den(s) = {JJms3 + [J(fvm + fsm) + Jm(fv + fs)]s
2

+[(J + Jm)k0 + (fv + fs)(fvm + fsm)]s

+[(fv + fs) + (fvm + fsm)]k0}s.
(7)

By neglecting the friction terms, G0(s) becomes

G0(s) =
s2 + ω2

ar

s2(s2 + ω2
a)
. (8)

where the antiresonance ωar and the resonance ωr are given
by

ωar =

√
k0
J
, ωr =

√
(J + Jm)k0

JJm
. (9)

Fig. 1. Single flexible joint.

In practice, calculating G0(s) is not carried out by going
through the linearization since the nonlinearities are usually
unknown. For this reason, the FRF is a fundamental tool
which allows the estimation of G0(s) from the measurement
of the input-output signals of the system under study. Such
a step is crucial and essential in the identification process
because it gives the first insights about the input-output
behavior of the system and allows the user to determine the
frequency band of interest. In the next section, we present the
BLA method [13] to reach this goal. This method enables to
accurately estimate the underlying linear system G0(s) in the
presence of nonlinearities, to detect and to quantify nonlinear
distortions and noise contributions [13].



III. FREQUENCY RESPONSE FUNCTION MEASUREMENT

In the frequency domain, nonparametric identification con-
sists in estimating the FRF of a system given the measure-
ments of the input u(t) and output y(t) signals by calculating
their discrete Fourier transforms -DFTs-. In this section,
we introduce a method which allows accurate estimation
of a linear model of a nonlinear system. Furthermore, the
dedicated tools to minimize the impact of nonlinearities are
presented along.

A. Best linear approximation

For systems that are subject to nonlinear distortions repre-
sented by a Volterra series [14] and for a class of Gaussian-
like excitations [15], the FRF can be written as [13]

G(jωk) = Ĝ0(jωk) +Gs(jωk) +NG(k), (10)

where ωk (k = 1, 2, . . . , Fmax) stands for the excited
frequencies, Ĝ0 is an estimate of the underlying linear model
G0, Gs is a zero mean stochastic nonlinear distortions and
NG represents the noise contributions. It was shown in [13],
that a consistent estimation of G0, called the best linear
approximation GBLA, can be obtained using Gaussian-like
excitations.

Due to the instability of the model given by Eq. (5), the
identification procedure is performed in a closed-loop setup
[16] as shown in Fig. 3. The difficulty is that the input u(t)
depends on the nonlinear distortions because of the feedback
loop, which introduces bias in the estimation of BLA. In
[17], this problem was solved by presenting a generalized
definition of the BLA. The idea consists in using the BLA via
the indirect method [18], where we use the reference signal
r(t) (typically the excitation signal), the input signal u(t) and
the output signal y(t) to identify two systems, i.e, Gry(jωk)
and Gru(jωk), respectively. The BLA is then given by

GBLA(jωk) =
Syr(jω)

Sur(jω)
, (11)

where Syr(jωk) and Sur(jωk) are the reference-output and
the reference-input cross-power spectrum, respectively.

B. Best linear approximation approaches

Two estimation approaches were presented in [11] and [12]
to calculate the BLA of a system in presence of nonlinear
distortions:
• The fast approach is based on a single realization

of odd random phase multisine excitation given by
Eq. (13), i.e., with M = 1 realization and P ≥ 2
periods (see Fig. 2 (a)). From the excited harmonics
of the odd multisine, we randomly eliminate some
harmonics called the nonexcited lines (detection lines).
The elimination of harmonics consists in (i) gathering
the excited odd harmonics into groups of Fgroup

consecutive harmonics (typical values for Fgroup are
two, three, or four [13]) (ii) for each group, one
randomly selected harmonic is omitted. For a nonlinear

system, even harmonics in the input spectrum show up
in the output spectrum at even nonexcited harmonics
only, regardless of the parity of the nonlinearity, while
the odd harmonics in the input spectrum appear at
even and odd nonexcited harmonics in the output
spectrum according to the parity of the nonlinearity.
The level of the output spectrum at the detection lines
corresponds to the stochastic nonlinear distortions at
the adjacent excited lines. The detection lines enable
the calculation of the variance of nonlinear distortions
σ̂2
NL and the variance of noise contributions σ̂2

noise [13].

• In the robust method, the information about the stochas-
tic nonlinear distortions are obtained based on the
analysis of the mean and variance of the input/output
signals by performing several realizations of random
phase multisines. For each new realization, a new odd
random phase excitation is generated (see Fig. 2 (b)). It
was shown in [13] that the variance of the nonlinear
distortions are inversely proportional to M and it is
recommended to choose M ≥ 7 and P ≥ 2. The com-
parison between the variance of the nonlinear distortion
and the noise variance allows the user to distinguish
whether the system behaves nonlinearly or not. In order
to reduce the impact of the nonlinear distortions, we
increase the number of realizations M .
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Fig. 2. BLA approaches [13].

In this work, both approaches are used. First, the fast ap-
proach is considered for the classification of the nonlinear
distortions in even and odd contributions and for the shaping
of the excitation spectrum. In a second stage, the robust
approach is used to reduce the distortions of the nonlinearities
and noise contributions.
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Fig. 3. Closed loop setup.

IV. BEST LINEAR APPROXIMATION OF FLEXIBLE JOINT
ROBOTS

In this section, we apply the method described in sec-
tion III to estimate the FRF of a single FJR from sim-
ulated data and to study the impact of the nonlinearities



on the estimation. The model parameters are: motor inertia
Jm = 0.2 kg.m2, link inertia J = 0.3 kg.m2, parameters
of the Coulomb friction fs = 5 N.m, fsm = 6 N.m,
fv = 4 N.m.s.rad−1, fvm = 2 N.m.s.rad−1, deflection
dependent stiffness parameters k0 = 1500 N.m.rad−1 and
k1 = 3000 N.m.rad−2. The plant controller C(s) is a
parallel PD given by

C(s) = P +D
N

1 +N 1
s

, (12)

where P = 200 N.m.rad−1, D = 60 N.m.s.rad−1 and the
filter is N = 24 rad.s−1.

A. Multisine excitation

From the class of Gaussian-like excitations, the multisine
excitation is usually preferred for the estimation of the FRF
[19]. The multisine enables (i) to reduce the measurement
duration, (ii) to use its periodicity in order to avoid the
leakage, (iii) to classify, detect and quantify the nonlinear
distortions by a specific choice of the harmonics of the
multisine [13]. The multisine excitation is defined as follows

r(t) =

Fmax∑
k=1

Ak cos(2πfkt+ φk), (13)

where Ak are the amplitudes, Fmax is the number of harmon-
ics, fk are integer multiples of the fundamental frequency f0
with k = 1, 2, . . . , Fmax and φk are random phases with
a uniform distribution in [0, 2π]. An integer number P of
periods of r(t) are acquired after the transient has vanished,
thus, providing N = PNperiod samples, where Nperiod is
the number of samples over one period.

B. Excitation signal shaping

In order to evaluate the quality of the estimated FRF and
thus to tune the excitation signal accordingly, the following
metric has been used that compares the estimated FRF with
the actual frequency response of the system G0:

V =
1

Fmax

Fmax∑
k=1

|20 log(G0(jωk))− 20 log(GBLA(jωk))|2.

(14)
In experimental conditions, G0 is not available. The metric
Eq. (14) might be replaced by the variance of the nonlinear
distortions σ̂2

NL, to evaluate the quality of the identification.
Fig. 4 represents the variations of the metric with respect to
the excitation amplitude in four cases: (i) red line: when both
nonlinearities given by Eq. (2) and Eq. (3) are included, (ii)
blue line: when the transmission nonlinearity is active, (iii)
black line: when the friction nonlinearity is used and (iiii)
green line: when the data is noisy and both nonlinearities are
included. It is clear from Fig. 4 that an optimal amplitude
Aopt exists.

Using a flat spectrum on the reference signal results in a
non flat spectrum on the control signal, leading to possible
saturation and low excitation at some frequencies (see both
spectrum on sub-figures (a) and (b) in Fig. 5). In order to get
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Fig. 4. Variation of the quality of the identification as a function of the
excitation amplitude.

a flat spectrum on the control signal, we have used Algorithm
1 that has been adapted from [20]. The results of Algorithm

Algorithm 1: Multisine spectrum shaping
Input: desired input spectrum Udes(jω)
Output: reference spectrum Ri(jω)

1 condition← true;
2 generate multisine reference signal ri(t) defined by

(13) of a flat spectrum Ri(jω);
3 while condition do
4 excite the robot with ri(t) defined by (13);
5 measure the input signal and calculate its

spectrum U(jω);
6 estimate the FRF of Gi,r→u(jω) according to Eq.

(11);
7 calculate the inverse of Gi,r→u(jω) (assumed to

be invertible) and the new reference spectrum:
Ri+1(jω)= G−1i,r→u(jω)Udes(jω);

8 calculate the new reference signal ri+1(t) with
the inverse Fourier transform i.e., ifft function of
MATLAB;

9 scale the time signal rrmi+1(t) to avoid saturation;
10 if U(jω) 6= Udes(jω) then
11 condition← true;
12 i← i+ 1;
13 else
14 condition← false;
15 end
16 end
17 return Ri(jω);

1 are shown in Fig. 5, for an odd random phase multisine,
within the band of excitation 0.1Hz–50Hz and a frequency
resolution fres = 0.1Hz. The top of Fig. 5, i.e., (a) and
(b), represents the case without the input shaping and the
bottom, i.e., (c) and (d) with the use of the input shaping.
Excited odd harmonics (in black), non-excited odd harmonics
(in red) and non-excited even harmonics (in blue) are shown.
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Whereas, only some odd harmonics are excited (in black
in subfigures (a) and (c)), the energy is also observed on
the control signal at the nonexcited odd harmonics, which
confirms according to [13] that the system is nonlinear and
contains almost one odd nonlinearity. Moreover, the spectrum
of the input becomes flat as desired (see Fig. 5 (d)). By
using Algorithm 1, the metric Eq. (14) on the quality of
the estimation at the optimal amplitude was reduced from
0.94dB to 0.78dB.

C. Nonlinearity impact on the FRF estimate

The impacts of the friction and nonlinear transmission
on the FRF estimate are first evaluated separately and then
together. The data is affected by a Gaussian zero mean white
noise of SNR = 20dB.
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Friction nonlinearity impact:
As can be seen on the black line in Fig. 4, the friction
nonlinearity mostly introduces errors in the estimation for
small amplitudes. Thus, to study the friction impacts, we
choose a small excitation amplitude (Ak = 10−3 rad) and
we consider that the stiffness is linear (i.e., k1 = 0). As a
result, the only acting nonlinearity is the Coulomb friction
(see Fig. 6 (left)). In the first instance, the FRF is estimated

by making a single realization (M = 1 and P = 7). The
resulting FRF estimate is shown in Fig. 7. We observe that
the Coulomb friction nonlinear distortions are indeed present
and cause larger variability in the FRF (resonances and anti-
resonances are masked). This is sensible because the dry
friction acts as a damping.

In order to reduce these nonlinear distortions and improve
the quality of the estimation, 40 realizations (M = 40 and
P = 4) are performed, because increasing the number of
periods P reduces the noise contribution only on the FRF
estimate [13]. By averaging 40 realizations, these distortions
are reduced. The plot in black in Fig. 9. reveals that the best
linear approximation corresponds (almost) to the linearized
model.
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Fig. 7. Fast approach (M = 1 and P = 7) for estimating the gain of FRF
between τ and θ in the presence of friction nonlinearity. The gain of GBLA

(in black) is compared with the gain of the linearized model G0 (in blue),
variance of nonlinear distortions (in red) and variance of noise contributions
(in green).

Stiffness nonlinearity impact
In this case, we increase the value of the excitation amplitude
(Ak = 9.10−2 rad), such that the nonlinearity of the
transmission is active (see Fig. 6). In addition, we omit
the nonlinear terms in the friction torques, by setting the
Coulomb friction coefficients to zero (fs = fsm = 0). As
a result, the only source of nonlinearity is the deflection
depending stiffness. First, the FRF is estimated by making
a single realization (M = 1 and P = 7). The results are
shown in Fig. 8. We observe that the nonlinear distortions
are larger than the measurement noise contributions (variance
of noise contributions σ̂2

noise is at least 100 dB lower than
the variance of the nonlinear distortions σ̂2

NL. Thus, these
fluctuations in the FRF are mostly due to the nonlinear
distortions of the transmission.
By performing 100 realizations, we reduce the transmission
nonlinear distortions via the robust method (see the result in
green in Fig. 9). The resonance and anti-resonance frequen-
cies are stiffness dependent according to Eq. (9), thus, for
high amplitudes they are shifted to the right.

Friction and stiffness nonlinearities impact:
The optimal amplitude (Aopt = 8.10−3 rad) from Fig.
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4 is used to estimate the FRF in the presence of both
nonlinearities. Fig. 9 in red, shows that, for the optimal
amplitude and even in the presence of both nonlinearities,
the FRF estimation via the robust method fits G0 perfectly.
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Fig. 9. Robust approach for estimating the gain of FRF between τ and θ.

V. CONCLUSION AND PERSPECTIVES

In this paper, a nonparametric approach based on the BLA
method has been investigated to estimate the FRF of a single
FJR, in the presence of Coulomb friction and transmission
nonlinearities, in a closed-loop setup. To get an accurate FRF
estimate and to reduce the nonlinear distortions, several ex-
periments were performed with different phase initializations
of the multisine excitation signal. Our investigations have
highlighted the dependence of the estimation on the signal
amplitude. Moreover, an optimal amplitude could be found,
that makes a trade-off in terms of quality of the identified
model between the effects of the Coulomb friction and the
nonlinearity of the transmission. Future work will consist in
using the BLA method on an experimental data, in order to
detect nonlinearities and accurately estimate the FRF of a
flexible joint robot.
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