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We study two related universal anomalies of the spectral function of cuprates, so called wa-
terfall and high-energy kink features, by a combined cellular dynamical mean-field theory and
angle-resolved photoemission study for the oxychloride NaxCa2−xCuO2Cl2 (Na-CCOC). Tracing
their origin back to an interplay of spin-polaron and local correlation effects both in undoped and
hole-doped (Na-)CCOC, we establish them as a universal crossover between regions differing in the
momentum dependence of the coupling and not necessarily in the related quasiparticles’ energies.
The proposed scenario extends to doping levels coinciding with the cuprate’s superconducting dome
and motivates further investigations of the fate of spin-polarons in the superconducting phase.

Understanding the physics of cuprate high-
temperature superconductors (HTSC) remains one
of the most intricate challenges of condensed matter
physics. Among the tools available to tackle this
long-standing problem, photoemission spectroscopy is a
method of choice for it provides a detailed access to the
materials’ electronic structure. Two related universal
spectral features of the cuprate family have particu-
larly attracted the attention: the so-called waterfall
and high-energy kink features [1, 2]. They have been
detected in angle-resolved photoemission spectroscopy
(ARPES) measurements performed on hole- [1–13],
electron- [10, 14, 15], and un-doped cuprates [16–18], as
well as nickelates [19] which have been in the spotlight
recently for their ability to host HTSC phases [20, 21].
The high-energy kink corresponds to an abrupt renor-
malization of the electronic dispersion close to the nodal
(π2 ,

π
2 ) point of the Brillouin zone (BZ), usually a few

hundreds of meV below the top of the valence band. It

is connected to the seemingly unperturbed dispersion
at higher binding energies around Γ (0, 0) through a
fast and incoherent feature: the waterfall. In insulating
samples, the renormalized dispersion is located far in
the gap [16–18], and is promoted to the Fermi level
upon hole- or electron-doping. These anomalies are
central to the understanding of HTSC since (i) they are
universal, and (ii) they renormalize the quasi-particle
band opening a superconducting gap below Tc.

Many different interpretations of the waterfall have
been proposed, of which the most debated ones are
related to the electron-phonon coupling [22–27], the
matrix-element effects [28–30], and the spin-polaron sce-
nario [6–8, 17, 18, 31–35]. Phonons are promising to
account for low-energy kinks which can possibly coex-
ist with anomalies of purely electronic origin at higher
energies [2]. The latter, which are the focus of this work,
appear to be better accounted for by spin-polarons, i.e.
electrons heavily dressed by the antiferromagnetic spin
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fluctuations. In particular, the distribution of spectral
weight between Γ and the nodal point is well reproduced
by spin-polarons [33–35]. The occurrence of these anoma-
lies in undoped samples would be naturally explained
since a spin-polaron can be understood as a single hole
moving in an antiferromagnetic background [32], which
would then survive upon doping. Yet this scenario re-
mains to be firmly established. Indeed, systematic quan-
titative comparison between experiments and theoretical
calculations from the undoped to the hole-doped regime
is missing. Moreover, the energy scale at which the high-
energy kink appears is not properly understood, neither
the related issue concerning its position in momentum
space.

In this letter, we address this problem by a combined
theoretical and experimental study of the spectral func-
tion of NaxCa2−xCuO2Cl2 (Na-CCOC, with number of
holes nh ∼ x). Na-CCOC is a well-suited system since it
is free from structural transitions upon doping, it can be
synthetized both in the undoped and hole-doped regime,
and from a theoretical point of view it displays a sim-
ple electronic structure which eases the construction of
effective models. We show that the anomalies present in
the undoped samples (nh = 0) are precursors of the ones
observed in doped samples until at least nh = 0.10. Our
cluster dynamical mean-field theory (C-DMFT) [36–39]
calculations are in quantitative agreement with experi-
ment, while naturally including the spin-polaron physics
on the length-scale of the cluster. Combined with an
analysis by means of simplified effective models, we un-
ambiguously show that the kink stems from a spin-
polaron. Most importantly, we argue that the waterfall
feature may rather be understood as a crossover between
two momentum regimes: one in which correlations are
mainly local, and another where spin fluctuations dom-
inate. The electron-magnon coupling strongly depends
on the electron momentum and cancels in the region of
local correlations. The energy scale of the kink is related
to the spin-polaron bandwidth and can be accounted for
precisely both in the undoped and doped cases. The sur-
vival of the spin-polaron picture at doping levels in which
superconductivity is observed calls for detailed investi-
gations of these quasi-particles in the superconducting
regime.

Na-CCOC single crystals were synthesized in a high-
pressure cell to obtain samples with nh = 0.06(1) and
nh = 0.10(1). Their magnetic state was determined us-
ing a SQUID magnetometer, and their crystal quality
and orientation with a 4-circle x-ray diffractometer as
detailed in the supplemental information [40]. ARPES
spectra were measured at the beamline BL-28 [41] of the
Photon Factory (KEK, Tsukuba, Japan) on nh = 0.06(1)
samples and at the Cassiopée beamline of the SOLEIL
synchrotron (Saint-Aubain, France) on nh = 0.10(1)
ones. Single crystals oriented prior to the experiments
were cleaved in situ at low temperature and at a pres-
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FIG. 1. (a) CCOC crystal structure. (b) LDA bandstructure
along with the Wannier fit (blue dots), and its restriction up
to the second nearest-neighbour hopping term (dashed red
line). The inset illustrates the BZ. (c) Sketch of the single-
band Hubbard model and the 8-site cluster used for C-DMFT
(dashed blue lines, showing geometry and tiling).

sure lower than 10−11 mbar. Photoelectron spectra were
taken at photon energies of 50 eV on both experiments.
The temperature was kept at T = 20 K on BL-28 for the
nh = 0.06(1) sample, and at T = 13±0.2 K on Cassiopée
for the nh = 0.10(1) one. The typical energy and angular
resolutions were 15 meV (25 meV) and 0.2◦ (1◦) respec-
tively for BL-28 (Cassiopée), with a few spectra taken
at Cassiopée beamline with ∆E = 12.5 meV for better
resolution around the Fermi energy.

C-DMFT [36–39] calculations were performed based
on an effective one-band Hubbard model derived from
ab initio density functional theory calculations in the lo-
cal density approximation (LDA) as described in Ref. 42,
using Wien2k [43] and wannier90 [44, 45]. Both the hop-
ping terms of the model, t = 0.425 eV, t′/t = −0.18,
t′′/t = 0.12, as determined using maximally localized
Wannier functions [46, 47], see Fig. 1(b,c), and the value
of the local Coulomb interaction (U/t = 10.2) as fit-
ted from comparing to the corresponding magnon dis-
persion [42] are in agreement with the literature [48].
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FIG. 2. (a) C-DMFT (color plot) vs. Hubbard-I vs. spin-polaron (SCBA) spectral functions for undoped CCOC. The latter
is obtained by extracting the lowest energy dispersion. (b) ARPES measurements reproduced from Ref. 17 (left) against the
C-DMFT spectral function (right). The experimental dispersion is highlighted with the green dots extracted from Ref. 17. A
rigid shift in energy was applied to the experimental dispersion, the Hubbard-I and the SCBA spectral functions (see text) to
align the chemical potentials. (c) Calculated constant energy cuts of the upper right corner of the BZ, at four different binding
energies.

We emphasize that there are, thus, no hand-tuned pa-
rameters in our calculations. For C-DMFT, we used the
continuous-time interaction expansion CT-INT solver of
the ALPSCore library [49–52], at temperatures down to
T = 1/40 eV on the 8-site cluster shown in Fig.1(c). The
cluster-orientation averaged Green’s function was repe-
riodized as described in Ref. 53, continued analytically
using the maximum entropy method [54, 55] of Ref. 56.
To obtain a clear physical interpretation, we compare
the C-DMFT spectral function to the one obtained from
the self-energy of a single isolated orbital (Hubbard-I ap-
proximation) [40, 57], as well as to the one of a hole
propagating into an antiferromagnetic background (spin-
polaron) as calculated using the self-consistent Born ap-
proximation (SCBA) corrected by a three-site correlated
hopping [32, 35]. Additional details about the crystal
growth, characterization, and the methods are provided
in the supplemental information [40].

In Fig. 2(a) we show the C-DMFT momentum-resolved
spectral function for the undoped case along Γ −
X (π, 0)−M (π, π)−Γ. We observe two Hubbard bands
separated by a gap of the order of ' 1.5 eV, in agreement
with the onset of optical conductivity at ∼ 1.6 eV [58],
though slightly lower than the scanning tunneling mi-
croscopy gap of 2 eV [59]. The waterfall feature at
the nodal point (π/2, π/2) is in quantitative agreement
with the ARPES measurements of Ref. 17 as shown in
Fig. 2(b). Not only the position in momentum matches
precisely, but also the bandwidth of the renormalized dis-
persion located around −1 eV and the distribution of
spectral weight. In Fig. 2(c) we show constant energy
cuts at binding energies around the top of the valence
band. The spectral weight first increases as reaching the
top of the valence band (from −0.7 eV to −0.8 eV) and
then weakens at higher binding energies, showing signs of
backfolding around −1.0 eV. This evolution is in excel-
lent agreement with the remnant Fermi surface observed

previously [16, 60].
We have a closer look at the highly dispersive water-

fall feature between Γ and (π/2, π/2), and the related
kink at the binding energy Eb ∼ −1.4 eV. The high-
intensity spectral features around −2.8 eV can be viewed
as a renormalized dispersion that is well captured by
Hubbard-I approximation [35], see Fig. 2(a). Similarly
for the upper Hubbard band in the hole-part of the C-
DMFT spectrum provided that the screening of the lo-
cal Hubbard interaction U on the cluster has been ac-
counted for [40]. Due to the spin fluctuations, a separate
quasi-particle-like feature of ∼ 400 meV bandwidth [17]
emerges and leads to a kink in the spectral function, see
Fig. 2(b).

The phonon modes in CCOC are located at ∼ 75− 85
meV [42, 61] which is too low in energy to account for
the observed effect [17]. The fact that our C-DMFT
simulations accurately capture the high-energy kink un-
derlines its electronic origin, which can be traced back
to the interaction with magnons forming a spin-polaron.
Indeed, by simulating the propagation of a hole in an
antiferromagnetic spin background using SCBA [32] cor-
rected by a three-site correlated hopping term [35], the
quasi-particle-like dispersion is very well reproduced, see
Fig. 2(b).

The waterfall feature is hence interpreted as the
crossover between a local-correlation regime and a spin-
polaron band, in agreement with previous studies [31].
Yet an important question remains open: is the waterfall
feature a matter of energy scales or momentum depen-
dence?

In the electron-phonon picture the kink arises precisely
at the phonon energy which entirely determines the po-
sition of the kink in momentum. We argue that the spin-
polaron picture is rather lead by the momentum depen-
dence of the electron-magnon coupling [40]. Indeed, in
the case of a hole propagating in an antiferromagnetic
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background, this effective coupling reads [32]:

Mk,q =

(
1 + νq
2νq

) 1
2

γk−q − sign(γq)

(
1− νq
2νq

) 1
2

γk,

(1)

where γk = 1
2 (cos(kx) + cos(ky)), νq =

√
1− (γq)2,

and k (q) is the momentum of the hole (magnon). At Γ
k = (0, 0) and at the nodal point k = (π/2, π/2), Mk,q

becomes:

M(0,0),q =

(
1 + νq
2νq

) 1
2

γq − sign(γq)

(
1− νq
2νq

) 1
2

. (2)

M(π/2,π/2),q =

(
1 + νq
2νq

) 1
2

γ(π/2,π/2)−q. (3)

In the local-correlation region around Γ and M , the
coupling vanishes because of the negative sign between
the two terms in Eq. 2, which can be interpreted as a de-
structive interference between two counter-propagating
magnon branches. In contrast, at X and the nodal point
only one term is left (see Eq. 3) which leads to a much
stronger electron-magnon coupling. The C-DMFT self-
energy captures these effects which lead to the strong
renormalization of the dispersion at the nodal point and
the characteristic incoherence of the waterfall feature.
Moreover, the kinks observed in the anti-nodal region [24]
may also be related to the spin-polaron physics since the
electron-magnon coupling is also strong there.

Further details, as well as an argument as of why such
framework would also be relevant for the electron-doped
case, are provided in the supplemental information [40].
Finally, we find the position in energy of the spin-polaron
at the nodal point to be well described by SCBA when it
is shifted by Ueff/2, instead of U/2, with Ueff the screened
Coulomb interaction used for the Hubbard-I approxima-
tion [62].

We now turn to doped NaxCa2−xCuO2Cl2 and study
the evolution of the spectral function at doping levels of
nh = 0.05, 0.10. Figure 3 displays the measured and sim-
ulated spectra along the Γ−M path showing the charac-
teristic anomalies now promoted to the Fermi level due
to the shift of the chemical potential to the top of the
valence band [63]. Most interestingly, the experimental
kink position around −0.4 eV corresponds well to the
characteristic bandwidth of the spin-polaron, which is of
the same order of magnitude as the paramagnon disper-
sion since both are governed by the spin exchange J [32].
Despite the rather large doping level of up to nh = 0.10,
the spin-polaron scenario remains valid. We provide an
additional analysis in the supplemental information [40].

The survival of the spin-polaron picture is consistent
with resonant inelastic x-ray scattering studies which
found only little softening of the paramagnon modes
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FIG. 3. Experimental (left) and theoretical (right) quasi-
particle dispersion at the nodal point (π/2, π/2) for (a1,2)
nh = 0.06(1) (nh = 0.05 for C-DMFT), and (b1,2) nh = 0.10.
Orange circles highlight the experimental dispersion, black ar-
rows mark the kink position found from the intersection of two
fit affine functions. A rigid shift is applied to the Hubbard-I
and spin-polaron spectra for alignment.

of Na-CCOC upon doping [42, 61], similar to other
cuprates [64–66]. It is also in line with theoretical ev-
idence from fluctuation diagnostics [67–69] and diagram-
matic Monte Carlo simulations [70, 71], showing that
short-range spin fluctuations, within the range of our 8-
site cluster, remain strong upon hole-doping in the one-
band Hubbard model.

As for the undoped case, our observations for nh =
0.05, 0.10 are consistent with the existing literature. The
Fermi surface evolution measured in Ref. 72 is correctly
captured in our calculations, showing the emergence of
a Fermi arc at the nodal point upon hole doping, see
Fig. 4(a). We show in Fig. 4(b) the ARPES energy dis-
tribution curves (EDC) and the C-DMFT spectral func-
tion. Close to the nodal point (π/2, π/2), in agreement
with Ref. 3 and 72, we notice a two-peak structure in
the EDCs (marked by black and blue arrows): a well de-
fined quasi-particle-like peak and a second ’broad hump’
structure. The C-DMFT spectrum remarkably captures
this two-peak structure, and points out that the sharp
feature seen experimentally is hole-like, but cut by the
Fermi function. That the measured quasi-particle peak
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FIG. 4. (a) C-DMFT Fermi surfaces for nh = 0.05 (left)
and nh = 0.10 (right). (b) EDC (left) and spectral function
(right) along Γ−M for nh = 0.10.

appears further away from the Fermi level as compared
to the calculations may be related to (i) an uncertainty
of the effective hole-doping -as opposed to Na-doping- in
experiment, and (ii) the broadening of the quasi-particle
peak well known in Na-CCOC samples [72]. The same
conclusions can be drawn for nh = 0.05 [40].

In summary, using a combined experimental and the-
oretical approach we firmly establish that spin-polarons
are at the origin of the high-energy spectral anomalies
in cuprates. The anomalies were, up to now, mostly dis-
cussed separately in the undoped and hole- (electron-)
doped materials [6–8, 10, 12–15, 17, 31–35]. We provide
a novel understanding that allows to unify the description
of the high-energy anomalies at any value of doping up to
nh = 0.10. The anomalies appear as a crossover in mo-
mentum between a region of essentially local correlations,
and another dominated by short-range spin fluctuations,
mediated by the momentum-dependent coupling between
the charge carriers and magnons. We propose a yet miss-
ing systematic comparison between experiment and a pa-
rameterized model without free parameters, at values of
doping ranging from the Mott insulating regime, to the
entrance in the superconducting dome, which provides a
strong support to our interpretation. Two other scenar-
ios can be ruled out for Na-CCOC: the phonon scenario
is discarded since there are no known phonon modes at

the characteristic energy of the anomalies; the matrix-
elements are not sufficient either since ARPES measure-
ments have confirmed that the high-energy anomalies
were robust and consistent across multiple BZ [18].

Further investigations of this feature at optimal doping
and low-temperature are needed to map out the limits of
the spin-polaron picture and shed light on its link with
high-temperature superconductivity. In this context, our
work resonates with recent efforts based on diagrammatic
expansions beyond DMFT that attempt to bring together
the local Mott physics along with the non-local nature of
the spin fluctuations [73–75].
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SUPPLEMENTAL INFORMATION

Experimental details

Samples

Synthesis. The nh = 0.06(1) samples were obtained
using a Conac press with toroidal anvils at Institut Néel.
We used the following precursors: CaCO3 (99.95%),
CuO (99.999%), CaCl2 (96%), NaClO4 (≥ 98%) and
NaCl (99.99%). First, we prepared a stoichiometric
Ca2CuO2Cl2 powder by a solid state reaction of CaCO3,
CuO, and CaCl2 as described in previous works [77–79].
In an argon filled dry box, we mixed the resulting
Ca2CuO2Cl2 powder with NaClO4, and NaCl precur-
sors in a molar ratio of 1:0.2:0.2. We charged the mix-
ture in cylindrical Pt capsules which were inserted in
high-pressure assemblies. We compressed the sample
at 2 GPa in order to dope with Na the Ca2CuO2Cl2
precursor. The reacting mixtures were heated up to
1000◦C at a rate of 81.5◦C/min, kept at this tempera-
ture for 30 minutes and then slowly cooled down to about
870◦C at a rate of 20◦C/h, in order to grow crystals,
and finally quenched. After heat treatment, we released
the pressure. Magnetic susceptibility measurements per-
formed using a METRONIQUE© SQUID magnetometer
on the whole batch showed no superconductivity down
to 2 K, and were further extended on a large sample
of the same batch down to 70 mK using an in-house
SQUID magnetometer with dilution cryostat, giving an
upper hole-content limit of 0.07 [80]. Since the nomi-
nal Na substitution is difficult to assess, and also that
part of the hole doping may be attributed to Ca va-
cancy [79], we decided to estimate the hole content in-
stead. The latter was estimated at nh = 0.06(1), by com-
paring the lattice parameters measured by x-ray pow-
der diffraction with synthesis of superconducting sam-
ples using the same apparatus, and for which we ex-
trapolated the hole content from literature. The de-
tails will be given elsewhere [81]. For the sample with
nh = 0.10(1) doping, the synthesis is described in Ref.
42. We measured an onset critical temperature T on

c of
12.7(2) K for the crystal used in this experiment using
an MPMS3 Quantum Design© SQUID magnetometer.
A ground sample from each of the two batches was ana-
lyzed with X-ray powder diffraction and Le Bail anal-
ysis of the data is in both cases compatible with the
expected tetragonal space group I4/mmm, with lattice
parameters of a=3.85420(3) and c=15.1151(5) for the
nh = 0.06(1) batch and a=3.8511(2) and c=15.1204(7)
for the nh = 0.10(1) one.

Single crystal characterization. The crystalline qual-
ity of the samples was checked, and the orientation of
the facets determined using two 4-circle diffractometers:
a Nonius apparatus using a Incoatec micro Mo-target X-

ray source equipped with Montel optics and a Bruker
APEXII detector for the sample with nh = 0.06(1),
and an Oxford Diffraction Xcalibur S using a Mo anode
source and a Sapphire CCD detector for the one with
nh = 0.10(1).

Details of the ARPES experiments

Propositions were made to evaluate the effective dop-
ing using the area between the Fermi arc and the anti-
ferromagnetic BZ [104]. This method remains however
approximate, and does not seem to be necessarily more
accurate than relying on the trends of lattice parame-
ters. A further limitation in the determination of the
true Fermi surface is the lack of gold reference sample on
the BL-28 beamline during our measurements. Thus, we
followed the procedure used in Ref. [82], i.e. the chemical
potential was set at the top of the valence band (the on-
set of the band’s spectral weight). This provides consis-
tent results in comparison to nh = 0.10(1) for which the
Fermi level was determined from a reference gold sample
at Cassiopée beamline.

Additional spectra

To complement the figures presented in the main text,
we provide here some additional spectral functions ob-
tained from C-DMFT calculations for the 8-site cluster
at doping nh = 0.05, 0.10, and ARPES spectra for the
nh = 0.06(1) sample. We also present a representative
example of Hubbard-I and SCBA spectra, and summa-
rize the set of parameters used for these calculations in
Table. I.

Fig. S1 shows the measured spectral functions for
nh = 0.06(1) and a comparison to computed ones at dop-
ing nh = 0.05, 0.10. The waterfall feature can be seen in
the ARPES data, see Fig. S1(a), as well as the broad anti-
nodal feature around X which vanishes below the Fermi
level, clearly indicating that the sample is in the pseudo-
gap phase. This is also confirmed by the measured Fermi
surface, as shown in Fig. S1(d). The calculated spectra
are in good qualitative agreement with the experiment,
see Fig. S1(b). The maximum of spectral weight is lo-
cated at the nodal point, at the Fermi energy, while the
anti-nodal point shows a clear gap opening, with the two-
hump feature almost symmetric around X. As discussed
in the main text, the SCBA dispersion reproduces the
C-DMFT features close to the Fermi energy remarkably
well.

In order to check if the momentum-driven crossover
interpretation still holds at finite doping, we show in
Fig. S1(c) the full spectra, including both Hubbard
bands. As for the undoped case, the Hubbard-I ap-
proximation captures the spectral weight at Γ and M .
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FIG. S1. Spectral functions of doped Na-CCOC (a) measured on a nh = 0.06(1) doped sample, and (b) computed for both
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and Hubbard-I dispersions for alignment. (d) Upper right corner of the experimental Fermi surface for nh = 0.06(1), 0.10(1).

We emphasize that we used the same screened onsite in-
teraction Ueff as for the undoped system. This demon-
strates that the momentum-dependent electron-magnon
coupling remains essential to the cuprates’ physics until
at least nh = 0.10 doping.

Moreover, based on these results, we can infer on the
evolution of the spectral function upon hole-doping. It is
clear from our data that the introduction of holes does
not lead to a simple static shift of the chemical potential.
Instead, in the region where the electron-magnon cou-
pling is strong, the spectral weight is transferred to the
Fermi level upon doping. The hole-doping maintains the
splitting in energy between the local-correlation region
and the spin-polaron one, which was initiated already at
half-filling. Therefore, as stated in the main text, the
spin-polaron in the undoped case should be seen as a
precursor of the quasi-particle present at finite doping.

We show in Fig. S2(a) the EDC on nh = 0.06(1) and
spectral function for nh = 0.05. Overall, the features
resemble closely the nh = 0.10 data: the quasiparticle
peak appears just after crossing the Fermi level, which
produces a two-peak structure reminiscent of the exper-
iment [3]. As mentioned in the main text, the coher-
ent quasi-particle peak is absent from the experimen-
tal spectrum, which is consistent with previous measure-
ments [72]. The C-DMFT quasiparticle peak has its max-
imum coherence on the hole-side, as for nh = 0.10. Yet,

in contrast to the latter where the quasiparticle peak
marked in blue stays on the hole-side of the spectrum
around k = (π2 ,

π
2 ), see Fig. 4(a) (main text), it clearly

crosses the Fermi level for nh = 0.05. This resembles our
measured ARPES data and that of Kohsaka et al. [3] who
measured nh = 0.10 samples, for which the secondary
peak crosses and appears on the electron-side of the spec-
trum. These small variations between nh = 0.05, 0.10
compounds may be related to the fact that it is difficult
to reliably estimate the ”true” doping of the samples, and
to make a one-to-one correspondence with the theoretical
doping.

The C-DMFT spectra in the anti-nodal region are dis-
played in Fig. S2(b) for nh = 0.05, 0.10. We observe
the expected pseudogap around X, which is larger for
nh = 0.05 since the spin-fluctuations are stronger for
lower doping [83–91]. Interestingly, the dispersion shows
a two-hump structure almost symmetric around X, which
is similar to the spin-polaron dispersion shown in Fig. S1.
This is consistent with the presence of a strong electron-
magnon coupling in the anti-nodal region, which is de-
tailed in the following section.

To further support our spin-polaron interpretation, we
provide an additional test in which we inspect the spec-
tral function along cuts moving away from the nodal
point. According to the experimental data of Refs. [8, 13]
obtained on hole-doped samples, the spin-polaron band
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spectral function along Γ−X −M for nh = 0.05, 0.10.

should flatten as increasing the distance from the nodal
point, and the kink should accordingly appear closer to
the Fermi level. As shown in Fig. S3 for nh = 0.05 (simi-
lar results are obtained for nh = 0.10), both the C-DMFT
and the SCBA capture the trend correctly. As going to-
wards the anti-nodal region, we notice a small shift be-
tween the CDMFT and SCBA spectra, consistent with
Fig. S1(b). This difference does not preclude the inter-
pretation that the experimental decrease of the kink’s
energy is witnessed in our calculations by the sharp flat-
tening of the spin-polaron dispersion, as well as the loss
of spectral weight visible in both the C-DMFT and the
SCBA results.

For completeness, we show in Fig. S4 a representative
example of the Hubbard-I and SCBA spectral functions.
The Hubbard-I approximation leads to two well-defined
Hubbard bands, see Fig. S4(a). The maximum of spectral
weight is located around Γ in the lower Hubbard band,
and at M for the upper one. Within the Hubbard-I ap-
proximation this distribution of spectral weight is rather
a matter of energy scales since it is lead by the 1

ω di-
vergence of the self-energy at the Fermi energy. These
maxima coincide with the coherent high-energy part of
the waterfall feature as calculated with C-DMFT at Γ
and M .

The SCBA spectrum, shown in Fig. S4(b), displays
a coherent low-energy dispersion, which we extract to
compare with the C-DMFT results. It is calculated for
a 30× 30 lattice. Replicas of this feature can be seen at
higher binding energies. At Γ we notice some coherent
spectral weight, located at roughly −2.2 eV. The split-
ting between this feature and the top of the spin-polaron
band depends strongly on the hopping processes that do
not disturb the antiferromagnetic order, such as the cor-
related three-site hopping [35], and the t′, t′′ terms (see
next section for further details). The splitting obtained in

SCBA is lower than the one obtained in C-DMFT. This
is a sign that corrections beyond the correlated three-site
hopping are necessary for SCBA to agree even better with
C-DMFT.

Finally we summarize in Table I the value of the hop-
ping and (effective) interaction parameters used in the
C-DMFT, SCBA and Hubbard-I calculations. We re-
call that the hopping parameters were obtained ab initio
by using maximally localized Wannier functions [46, 47],
and the local Coulomb interaction U was determined by
fitting the magnon dispersion measured on an undoped
CCOC sample [42] with an effective Heisenberg model,
whose spin exchange terms are obtained in the strong
coupling limit of the Hubbard model. Thereby, the hop-
ping values uniquely determine the effective exchange pa-
rameters entering the SCBA equations (see next section).

Parameter t t′/t t′′/t U/t Ueff/t
Value 0.425 eV − 0.18 0.12 10.2 9

TABLE I. Hopping terms and local interactions used in the
C-DMFT, SCBA and Hubbard-I calculations.

Spin-polaron picture

The picture of the spin-polaron naturally emerges in
the framework of the t−J model, which can be derived in
the limit U � t from the Hubbard model by integrating
out the doubly occupied states via a Gutzwiller projector,
leading to the well-known t− J Hamiltonian [92–94]:

Ht−J = −t
∑
〈ij〉,σ

c̃†iσ c̃jσ + J
∑
〈ij〉

(
SiSj −

1

4
ninj

)
.
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FIG. S3. (a-c) C-DMFT and the SCBA spectral functions along the momentum cuts illustrated in (d), computed for nh = 0.05.

Here, c̃†iσ = c†iσ(1 − ni−σ) are the restricted cre-
ation/annihilation operators, Si is the spin operator on
site i, and J = 4t2

U is the spin exchange coupling. For the
sake of simplicity, the longer ranged hopping terms t′, t′′
are omitted in this part of the section since they lead to
hopping processes that do not disturb the antiferromag-
netic background. We detail how they are included in
practice at the end of this section.

When a hole is created, its behavior is non-trivial:
it will be dressed by the spin fluctuations and form
the so-called spin-polaron [32]. The motion of a sin-
gle hole can be approximately accounted for by the
self-consistent Born approximation (SCBA) [32, 95, 96],
which we briefly summarize in the following.

The first step consists in transforming the spin opera-
tors into bosonic operators using the Holstein-Primakoff
transformation for half-integer spins [97]:

S+
i =

√
1− a†iaiai ∼ ai ,

S−
i = a†i

√
1− a†iai ∼ a†i ,

Sz
i =

1

2
− a†iai ,

where we use the linear approximation to define the
bosonic operators a†i , ai . Then, the fermionic operators
can be decomposed to define a spinless hole operator:

ci↑ = h†i ,

ci↓ = h†iS
+
i ,

and using a Bogoliubov transformation, the t − J
Hamiltonian may be transformed into the spin-polaron
Hamiltonian [32]:

Hsp =
zt√
N

∑
k,q

Mk,q

[
hkh

†
k−qαq + h.c.

]
+

∑
q

ωqαqα
†
q,

where z is the coordination number of the lattice, N is
the number of sites, ωq = SzJ(1−nh)

2νq is the magnon
dispersion with νq =

√
1− (γq)2 and γk = 1

2 (cos(kx) +
cos(ky)). The magnon dispersion is damped by (1−nh)

2

to take into account, in an approximate way, the hole-
doping [32] (nh is set to 0 at half-filling, when only one
hole exists in the lattice). Mk,q is the coupling between
the hole and the magnons, and is defined as:

Mk,q = (uqγk−q + vqγk), (S1)

with uq, vq and αq obtained from the Bogoliubov
transformation as:

αq = uqaq − vqa
†
−q

uq =

(
1 + νq
2νq

) 1
2

vq = −sign(γq)

(
1− νq
2νq

) 1
2

.

There is no bare dispersion term in the spin-polaron
Hamiltonian: the motion of the hole necessarily involves
the hole-magnon coupling Mk,q. If the coupling term
vanishes, the hole is localized. Most importantly, the
coupling Mk,q depends both on the momentum of the
magnon q, and on the momentum of the hole k. The
k-dependence of the hole-magnon coupling is shown in
Fig. S5, where we plot |Mk,q| at fixed k as a func-
tion of the magnon momentum q. Remarkably, the cou-
pling vanishes for all q at Γ and M points, i.e., exactly
where the Hubbard-I provides a good description of the
C-DMFT spectra. In the nodal and anti-nodal region,
where the spin-polaron picture dominates, the coupling is
maximum. This observation supports the view of the wa-
terfall feature as a momentum-driven crossover, instead
of an energy-driven crossover.
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We can interpret the cancellation of the coupling in
certain regions as the consequence of a negative interfer-
ence between the two magnon branches aq and a†−q. This
is more easily seen by writing out explicitly the coupling
constant as:

Mk,q =

(
1 + νq
2νq

) 1
2

γk−q − sign(γq)

(
1− νq
2νq

) 1
2

γk.

At Γ, i.e., k = (0, 0), γk = 1 and γk−q = γq, hence:

M(0,0),q =

(
1 + νq
2νq

) 1
2

γq − sign(γq)

(
1− νq
2νq

) 1
2

.

The minus sign signals a negative interference between
the two terms. Due to this cancellation, M(0,0),q re-
mains small at all q. In contrast, at the nodal point, i.e.,
k = (π/2, π/2), γk = 0 and only a single magnon branch
contributes to the coupling:
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FIG. S5. Absolute value of the coupling |Mk,q|, see Eq. (S1),
plotted as a function of q at four specific k points.

M(π/2,π/2),q =

(
1 + νq
2νq

) 1
2

γk−q.

In order to get the spin-polaron spectrum, which we
compare to C-DMFT, the self-energy is approximated
with the SCBA [32]:

Σ(k, ω) =
z2t2

N

∑
q

|Mk,q|2

ω − ωq − Σ(k− q, ω − ωq) + iη
.

(S2)

As a consequence, the hole Green’s function is strongly
affected by the spin-polaron self-energy only in regions
where Mk,q is not vanishing. At this stage, we can re-
introduce the remaining hopping terms t′, t′′, as well as
the correlated hopping term J3s [35]. Since these terms
do not disturb the antiferromagnetic background, they
can be accounted for by adding a ”non-interacting” dis-
persion to the SCBA self-energy:

Σ(k, ω) =
z2t2

N
·∑

q

|Mk,q|2

ω − ωq − εk−q − Σ(k− q, ω − ωq) + iη
,

εk =4t′ cos(kx) cos(ky) + 2t′′ (cos(2kx) + cos(2ky))

+
J3s
2

(cos(2kx) + cos(2ky) + 4 cos(kx) cos(ky)).

We also take into account the extra spin-exchange
terms, including the cyclic exchange, which modify the
magnon dispersion as [98]:
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FIG. S6. Sketch of the propagation of a (a) doublon, and (b)
hole in an antiferromagnet.

ωq = Zc(q)(1− nh)
2
√
A2

q −B2
q

Aq = 4JS + 4J ′S(cos(qx) cos(qy)− 1)

+ 2J ′′(cos(2qx) + cos(2qy))− 4JcS
3(cos(qx) cos(qy) + 1)

Bq = 2JS(cos(qx) + cos(qy))− 4JcS
3(cos(qx) + cos(qy)),

where Zc(q) accounts for the quantum fluctuations and
is computed following Ref. 99 (Appendix D), J = 4t2

U −
24t4

U3 , J ′ = 4t
′2

U + 4t4

U3 , J ′′ = 4t
′′2

U + 4t4

U3 , and Jc =
80t4

U3 [98,
99].

We argue that this vision of a hole dressed by anti-
ferromagnetic fluctuations can also be relevant for the
electron-doped cuprates. Indeed, the antiferromagnetic
order survives to large amount of electron doping in
cuprates. Since doubly occupied sites carry no spin,
they are then similar to holes from the point of view
of the magnons. Hence the photoemission process in
an electron-doped cuprate can still be approximated by
the propagation of a hole in a damped antiferromagnet.
In particular, the electron-magnon coupling would re-
main the same, i.e. it would remain maximum when the
momentum k of the electron is in the nodal (π/2, π/2)
and anti-nodal (π, 0) regions. Then it is not surpris-
ing that high-energy anomalies have been observed both
in the nodal and anti-nodal regions in electron-doped
cuprates [14].

One may think of this problem in another way: start-
ing from an antiferromagnet, what would be the behavior
of an additional electron? In other words, what would we
observe in inverse photoemission? As sketched in Fig. S6,
the additional electron on a given site would give a dou-
blon. In analogy to the hole, the doublon carries no spin
and its propagation through the lattice necessarily cou-
ples to spin excitations. This analogy reinforces the in-
terpretation that spin-polarons are also relevant in the
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FIG. S7. Spectral function obtained with an ED calculation
for an isolated undoped 8-site cluster. We use the same ef-
fective screened Ueff as the one used in the main text for the
Hubbard-I approximation, as well as for the shift Ueff/2 of
the SCBA.

physics of electron-doped cuprates, as witnessed by the
presence of high-energy anomalies in the single-particle
spectrum.

Effective screened Hubbard interaction

The Hubbard-I approximation reproduces the C-
DMFT spectrum at Γ and M , provided that it is
computed with an effective screened on-site interaction
Ueff =' 9t, instead of the bare U = 10.2t. The domi-
nating screening mechanism can be understood from an
exact diagonalization (ED) calculation (without bath)
performed for the 8-site cluster with the PyQCM pack-
age [100], which is shown in Fig. S7.

We first rule out that the Hubbard band splitting is not
well captured by the analytic continuation, which has re-
duced precision away from the Fermi level. Comparing
to a calculation using ED which does not require any
analytic continuation shows that it is in excellent agree-
ment with the Hubbard-I approximation calculated using
Ueff . Moreover, we also checked that using the PoorMan’s
Maxent method as implemented in TRIQS [101, 102] pro-
vides a similar result as the implementation of Ref. 56.

The screening of the on-site U on the cluster via the
hybridization function is also not sufficient to explain
this effect. The ED calculation, which includes no bath,
shows that the hybridization has barely any effect on the
splitting of the Hubbard bands.

Therefore, the fact that the Hubbard-I approximation
requires an effectively smaller U is most probably the
consequence of treating the hopping terms at the non-
interacting level. Indeed, the Green’s function obtained
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FIG. S8. Real and imaginary part of the hybridization func-
tion from the C-DMFT calculation of the undoped 8-site clus-
ter, for the cluster momentum K = (π/2, π/2).

from the Hubbard-I approximation reads:

GH1(k, ω) =
1

ω + iη + µ− εk − ΣH1(ω)
,

where µ is the chemical potential, εk is the non-
interacting dispersion, and ΣH1 is the Hubbard-I self-
energy [57]. Hence the hopping terms are included
in the Hubbard-I approximation, but only at the non-
interacting level, in contrast to the cluster calculation
which incorporates them in the correlated framework. In
other words, the non-local correlations included in the
cluster lead to an effective screening of the onsite U in-
teraction, which has to be taken into account for the local
Hubbard-I approximation.

A closer inspection of the ED spectral function brings
another subject of discussion: the SCBA dispersion,
which was rigidly shifted with the same energy as for
the C-DMFT calculation, appears at higher binding en-
ergy than the spin-polaron feature of the isolated clus-
ter. Again, analytic continuation is most probably not
the culprit since using different implementations leads to
very similar results. Moreover, it is precise for the split-
ting of the Hubbard bands and should be even more re-
liable closer to the Fermi level. Since the hopping terms
are included in the cluster both in ED and C-DMFT cal-

culations, this shift is not due to non-local correlations
within the cluster.

The main difference between this ED calculation com-
pared to the C-DMFT ones is the absence of the hy-
bridization function, which relates to the local Green’s
function via:

Gloc(ω) = [ω + iη + µ−∆(ω)− Σ(ω)]
−1

,

where ∆(ω) is the hybridization function. We show in
Fig. S8 the K = (π/2, π/2) cluster momentum compo-
nent of the hybridization function for nh = 0 (other com-
ponents are similar). A total of four peaks can be distin-
guished, two at each side of the Fermi level, at energies
which correspond to the main features of the spectral
function (Hubbard bands, spin-polaron). Most interest-
ingly, the sign of the real part of ∆(ω) changes betwen
the ”low-energy” peaks, and the high-energy ones. Fo-
cusing on the occupied part, ω < 0, this sign change
induces a lowering of the energy of the spin-polaron, and
an increase of the energy of the Hubbard band. In other
words, the hybridization function tends to enlarge the
splitting between the lower Hubbard band and the spin-
polaron. The effect is dynamic, since including a cluster
perturbation theory [103] static correction to the ED re-
sult does not modify the spin-polaron energy position.
Hence the hybridization to the bath may be seen as an
additional traveling channel for the spin-polaron without
disturbing the local antiferromagnetic correlations inside
the cluster.

Note that we need a smaller shift Ueff/2 instead of U/2
for the spin-polaron energy position to match well with
the SCBA. This may be a consequence of the Gutzwiller
projector. Indeed, in the t−J model the doubly-occupied
states are projected out, whereas in C-DMFT on the
Hubbard model they are taken into account and not en-
tirely prohibited since the bandwidth remains close to
the onsite U . To make a connection with the screened
interaction used for the Hubbard-I calculation, one may
argue that the projection of the doubly-occupied states
to obtain the t− J model effectively amounts to setting
the hopping terms to zero, at half-filling. Then, the same
Ueff has to be used both for shifting the SCBA spectrum,
and for the Hubbard-I approximation. This point is left
for future in-depth studies about the precise relation be-
tween the SCBA and the C-DMFT spin-polaron.
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