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The paper concerns the image, level and sojourn time sets associated with sample paths of the Rosenblatt process. We obtain results regarding the Hausdorff (both classical and macroscopic), packing and intermediate dimensions, and the logarithmic and pixel densities. As a preliminary step we also establish the time inversion property of the Rosenblatt process, as well as some technical points regarding the distribution of Z.

Introduction

The Rosenblatt process Z = (Z t ) t≥0 is a stochastic process that is a limit of normalized sums of long-range dependent random variables. It belongs to the class of Hermite processes and is the simplest member that is non-Gaussian. It has continuous but nowhere differentiable paths and is selfsimilar of order H ∈ (1/2, 1) with stationary increments.

The process Z, due to its self-similarity, can find applications across a multitude of fields like internet traffic [START_REF] Chaurasia | Performance of synthetic rosenblatt process under multicore architecture[END_REF], hydrology, and turbulence [START_REF] Sakthivel | Retarded stochastic differential equations with infinite delay driven by rosenblatt process[END_REF][START_REF] El | Existence, uniqueness and stability of impulsive stochastic neutral functional differential equations driven by rosenblatt process with varyingtime delays[END_REF]. We refer the reader to [START_REF] Embrechts | Selfsimilar processes[END_REF] and [START_REF] Samorodnitsky | Stable non-Gaussian random processes[END_REF] for a detailed review of the properties associated with selfsimilarity. In particular, the Rosenblatt process is used in finance [START_REF] Torres | Donsker type theorem for the Rosenblatt process and a binary market model[END_REF][START_REF] Stoyan | Pricing derivatives in Hermite markets[END_REF][START_REF] Fauth | Multifractal random walk driven by a Hermite process[END_REF] and statistical inference [START_REF] Lévy-Leduc | Asymptotic properties of U -processes under long-range dependence[END_REF][START_REF] Dehling | Non-parametric change-point tests for long-range dependent data[END_REF][START_REF] Nourdin | Statistical inference for Vasicek-type model driven by Hermite processes[END_REF].

From a mathematical standpoint the process has received a lot of interest since its inception in [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF]. Its distribution is not known in explicit form but was studied first in [START_REF] Albin | A note on Rosenblatt distributions[END_REF] and more recently in [START_REF] Maejima | On the distribution of the Rosenblatt process[END_REF] and [START_REF] Veillette | Properties and numerical evaluation of the Rosenblatt distribution[END_REF]. There are three integral representations: in terms of time, the spectrum and on finite intervals, see [START_REF] Taqqu | The rosenblatt process[END_REF]. There is also a wavelet representation [START_REF] Pipiras | Wavelet-type expansion of the Rosenblatt process[END_REF] (see also the recent article [START_REF] Ayache | Wavelet-type expansion of the generalized Rosenblatt process and its rate of convergence[END_REF] for the wavelet representation of the generalized Rosenblatt process and its rate of convergence). From a statistical point of view, the value of the Hurst index H is important for practical applications and various estimators exist, see [START_REF] Bardet | A wavelet analysis of the Rosenblatt process: chaos expansion and estimation of the self-similarity parameter[END_REF][START_REF] Tudor | Variations and estimators for self-similarity parameters via Malliavin calculus[END_REF].

In the present paper, we focus on the fractal properties of the random sets and measures determined by the sample paths of Z, i.e., if the underlying probability space is (Ω, F, P), we study the function Z(t) = Z t (ω), for a fixed ω ∈ Ω. Some where E ⊂ R + and E ⊂ R are Borel sets. These sets , due to self-similarity property of Z, may look like a fractal, see, e.g., Figure 1, for the sojourn set of the Rosenblatt process. In order to describe such sets quantitatively one can use a type of fractal dimension.

Figure 1. Simulation of a Rosenblatt process of Hurst index H = 0.6. In red -the sojourn set E Z (γ) for γ = 0.6.

Fractal dimensions give you an intuition about the geometry of a set. Having identified some interesting random sets and possible ways to measure them, we note that such studies can be traced to the pioneering work of Lévy [START_REF] Lévy | La mesure de Hausdorff de la courbe du mouvement brownien[END_REF] and Taylor [START_REF] Taylor | The Hausdorff α-dimensional measure of Brownian paths in n-space[END_REF][START_REF] Taylor | The α-dimensional measure of the graph and set of zeros of a Brownian path[END_REF][START_REF] Taylor | Sample path properties of a transient stable process[END_REF] on the sample path properties of the Brownian motion. We refer the reader to [START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF] and [START_REF] Xiao | Random fractals and Markov processes[END_REF] for surveys of such results for Lévy and Markov processes respectively.

An important class of such dimensions reflects local properties of the set. One important example is the classical Hausdorff dimension, which can be defined as follows using the Hausdorff content, see [START_REF] Falconer | Fractal geometry[END_REF]Section 3.2]. For E ⊂ R,

dim H (E) := inf s ≥ 0 : ∀ > 0, ∃ cover {U i } ∞ i=1 of E, s.t. ∞ i=1 |U i | s ≤ , (1.6) 
where |F | denotes the diameter of the set F . Moreover by imposing further restrictions on the sets in the cover {U i } one can recover the definitions of box dimension.

In particular, for E ⊂ R, the lower box dimension is given by: dim B (E) := inf s ≥ 0 :

∀ > 0, ∃ cover {U i } ∞ i=1 of E, s.t. |U i | = |U j | ∀i, j and ∞ i=1 |U i | s ≤ .
(1.7)

Similarly, we define the upper box dimension:

dim B (E) := inf s ≥ 0 : ∀ > 0, ∃δ > 0, ∀ cover {U i } ∞ i=1 of E, s t. |U i | ≤ δ, |U i | = |U j | ∀i, j and ∞ i=1 |U i | s ≤ . (1.8)
The box dimension dim B (E) is then given by the common value (if it exists) of dim B (E) and dim B (E). Next for θ ∈ [0, 1], the θ-intermediate dimensions dim θ (E) is a dimension that interpolate between the Hausdorff and box dimensions by increasing restriction on the relative sizes of covering sets as θ increases (δ 1/θ ≤ |U i | ≤ δ for all i). In particular, one defines dim θ (E) and dim θ (E) similarly to dim B (E) and dim B (E). Then dim θ (E) is the common value if it exists of dim θ (E) and dim θ (E).

One need not consider only covers for the set E. For example, dim B (E) can be defined alternatively using coverings by small balls of equal radius (corresponding to dim B (E)) or using packings by disjoint balls of equal radius that are as dense as possible (corresponding to dim B (E)), see [START_REF] Falconer | Fractal geometry[END_REF]Section 3.4]. If the radii are allowed to differ the covering procedure corresponds to the classical Hausdorff dimension while the packing one is associated to the packing dimension dim P (E). In linear programming the packing and covering problems are dual of each other and thus the packing dimension can be considered as the dual analogue to the classical Hausdorff dimension. The precise definitions are delayed to Section 3.

Other definitions of the packing and intermediate dimensions are possible by employing methods from potential theory. Thus, dim P (E), dim θ (E) and dim θ (E) can be expressed via capacities with respect to certain kernels, see [START_REF] Falconer | Packing dimensions of projections and dimension profiles[END_REF][START_REF] Stuart | Projection theorems for intermediate dimensions[END_REF]. This gives rise to packing and intermediate dimension profiles -dim P,α (E), dim θ,α (E) and dim θ,α (E) respectively. See 3.2 for the precise definitions.

All the dimensions in the discussion above pertain to local properties of the set. It is often the case, for instance in statistical physics, that one needs to quantify global properties of an infinite set. The simplest way of assessing the size of such a set is given by its (Lebesgue) density at infinity. In particular, we utilize the logarithmic density Den log (E) and the pixel density Den pix (E) (the latter corresponding to the "pixelated" image). Alternatively, one can use the macroscopic Hausdorff dimension Dim H (E) introduced in [START_REF] Barlow | Fractional dimension of sets in discrete spaces[END_REF][START_REF] Barlow | Defining fractal subsets of Z d[END_REF] for the study of the macroscopic properties of random walks. More recent applications can be found in the study of high peaks of solutions of the stochastic heat equation [START_REF] Khoshnevisan | Intermittency and multifractality: a case study via parabolic stochastic PDEs[END_REF][START_REF] Khoshnevisan | On the macroscopic fractal geometry of some random sets[END_REF]. Definitions of these concepts are provided in Section 4. A brief summary of all dimensions discussed can be seen in Table 1.

Dimension Name Cover Size Values Limit dim H (•) Classical Hausdorff Covering (0, δ] [0, 1] δ → 0 dim B (•) Box Upper -Covering Lower -Packing δ [0, 1] δ → 0 dim P (•) Packing Packing (0, δ] [0, 1] δ → 0 dim θ (•) Intermediate ∈ (δ 1/θ , δ) [0, 1] δ → 0 Den log (•) Logarithmic density Interval [1, 2 n ] [0, 1] n → ∞ Den pix (•) Pixel density Interval* [1, 2 n ] [0, 1] n → ∞ Dim H (•) Macroscopic Hausdorff Collections of sets in [2 n-1 , 2 n ) (0, δ] [0, 1] n → ∞ Table 1.
Overview of the types of fractal dimensions. For the pixel density the cover consists of the integer points in the interval at distance less than 1 from E.

We also mention a few relations between the dimensions mentioned so far to give the reader some intuition:

dim H (E) ≤ dim B (E) ≤ dim B (E) ; dim H (E) ≤ dim θ (E) ≤ dim θ (E) ≤ dim B (E) ; dim P (E) ≤ dim B (E) ; Den log (E) ≤ Den pix (E) .
Before we list our main results, we outline what is known regarding fractional properties of sample paths of a Hermite process of rank 1, i.e., the fractional Brownian motion. The fractional Brownian motion X = (X t ) t≥0 , like Z, is a selfsimilar stochastic process with stationary increments. Both processes, X and Z, share the same covariance structure and are governed by a parameter H (called Hurst parameter in both cases). Unlike the Rosenblatt process, the process X is Gaussian and H ∈ (0, 1). See Table 2 for an overview of some fractal properties of sets associated with the sample paths of the fractional Brownian motion.

For completeness we mention also some results regarding the graph and the inverse sets. If X : R N → R d is a fractional Brownian sheet, it has been proved in [START_REF] Adler | Hausdorff dimension and Gaussian fields[END_REF] that, almost surely, dim H Gr X ([0, 1] N ) = min {N/H, N + (1 -H)d}. The box dimension of the graph of the fractional Brownian sheet over a non degenerate cube Q of R N was determined in [START_REF] Kamont | On the fractional anisotropic wiener field[END_REF]. Moreover, with probability 1, dim B (Gr X (Q)) = N + 1 -H. Regarding the inverse set, the following holds: for E a closed subset of [START_REF] Monrad | Local nondeterminism and Hausdorff dimension[END_REF]). We believe that analogous results can be established for the Rosenblatt process, but the sets in question are not the subject of the current paper.

R d , dim H (X -1 (E)) = N -Hd + dim H (E) (see
Many of the results listed above rely on Hölder regularity conditions for the sample paths, and more precisely, for the local time of the process. Such properties have

X(E) L X (x) E X (γ) dim P (•) 1 H dim P,H (E) [56] 1 dim θ (•) 1 H dim θ,H (E) [9] 1 dim H (•) min 1, 1 H dim H (E) [24] 1 -H [18] 1 Dim H (•) 1 -H [12] 1 -H [34] Den pix (•) γ + 1 -H [34] Den log (•) γ + 1 -H [34]
Table 2. been established for stationary Gaussian processes, like the fractional Brownian motion, by Berman in [START_REF] Berman | Local times and sample function properties of stationary Gaussian processes[END_REF]. His analytic approach, which is based on properties of the Fourier transform of the underlying process, has been adapted to the Rosenblatt setting in [START_REF] Shevchenko | Properties of trajectories of the multifractional Rosenblatt process[END_REF] where existence of the local time of Z was first established. Hölder regularity was then recovered in the recent paper [START_REF] Kerchev | Local times and sample path properties of the Rosenblatt process[END_REF]. These new results now allow to generalize some of the results in Table 2 for the Rosenblatt case. See Table 3. All results in Table 3 but the ones for the dimensions of the image of the process Z(E) are new. Our findings are collected in the following three propositions. First, for the image set we extend the results of [START_REF] Shieh | Hausdorff and packing dimensions of the images of random fields[END_REF] to the intermediate dimensions setting, as in [START_REF] Stuart | Dimensions of fractional brownian images[END_REF]: Theorem 1.1. Let θ ∈ (0, 1] and E ⊂ R + be compact. Then almost surely:

Z(E) L Z (x) E Z (γ) dim P (•) 1 H dim P,H (E) [43] 1 -H 1 dim θ (•) 1 H dim θ,H (E) 1 -H 1 dim H (•) min 1, 1 H dim H (E) [43] 1 -H 1 Dim H (•) 1 -H 1 -H Den pix (•) γ + 1 -H Den log (•) γ + 1 -H Table 3.
dim θ (Z(E)) = 1 H dim θ,H (E) , (1.9) 
and

dim θ (Z(E)) = 1 H dim θ,H (E) , (1.10) 
where dim θ,H (•) and dim θ,H (•) are the lower and upper θ-intermediate dimension profiles respectively. For the precise techinical definitions of these two objects see (3.7) and (3.8) in Section 3.2.

Then, we study the proportion of time spent by a stochastic process in a given region. We describe the size of the level sets L Z (x) in terms of intermediate dimensions and macroscopic Hausdorff dimension. The following holds: Theorem 1.2. For E ⊂ R and θ ∈ [0, 1], let dim θ (E) and Dim H (E) denote the θ-intermediate and macroscopic Hausdorff dimensions of E. Then, for any x ∈ R and 0 < ε < 1,

∀x ∈ R, P (dim θ (L Z (x) ∩ [ε, 1]) = 1 -H) = 1.
(1.11)

And,

∀x ∈ R, P(dim P (L Z (x) ∩ [ε, 1]) = 1 -H) = 1.
(1.12)

Moreover,

P(∀x ∈ R : Dim H (L Z (x)) = 1 -H) = 1. (1.13) 
We believe that the same uniform result holds for classical Hausdorff dimension but we only prove the pointwise one. Finally, we establish the results for the sojourn times E Z (γ): Theorem 1.3. For E ⊂ R, let Den pix (E) and Den log (E) denote the pixel and logarithmic densities of E. Then, for all γ ∈ [0, H],

Den pix (E Z (γ)) = Den log (E Z (γ)) = γ + 1 -H, a.s.
(1.14)

Moreover, Dim H (E Z (γ)) = 1 -H a.s. (1.15) 
To fill the missing entries in Table 3 one needs new techniques. In particular, the macroscopic Hausdorff dimension and the two densities of the image set Z(E) should depend on the fractional properties of E (in particular should be 0 if E is bounded). However, intuition regarding this relation is missing. Regarding, the level set L Z (x), the approach for the macroscopic Hausdorff dimension does not translate since the key result (Lemma 4.3) is an artifact of the definition of Dim H .

The authors believe that many of the results above can be extended to some generalizations of the Rosenblatt process, for instance, when the time and space sets are N and d dimensional, or when the Hurst index is a function of time, as in [START_REF] Shevchenko | Properties of trajectories of the multifractional Rosenblatt process[END_REF]. To ease the presentation only the case N = d = 1 and H ∈ (1/2, 1)fixed is considered. However, establishing the results for Hermite processes of rank above 2 requires new techniques and is beyond the scope of the current paper. In particular, the Berman analytic approach relies on a "good" representation for the Fourier transform of the process and this is not known for Hermite processes of higher rank.

The structure of the paper is as follows. The three main results listed above are established in Sections 3-5. Some necessary technical properties of the Rosenblatt process are reviewed and proved in Section 2.

Properties of the Rosenblatt process

We start this section with some basic properties of the stochastic process Z. As mentioned in the introduction, there exist a few integral representations of Z. For our purposes, of special interest is the spectral representation (see [START_REF] Taqqu | The rosenblatt process[END_REF] and [START_REF] Dobrushin | Non-central limit theorems for nonlinear functionals of Gaussian fields[END_REF]):

Z H t = C(H) R 2 e i(x+y)t -1 i(x + y) Z G (dx)Z G (dy), (2.1) 
where the double Wiener-Ito integral is taken over x = ±y and Z G (dx) is a complexvalued random white noise with control measure G satisfying G(tA

) = t 1-H G(A) for all t ∈ R and G(dx) = |x| -H dx. The constant C(H) in (2.1) is such that E[Z 2 t ] = t 2H and E[Z t Z s ] = 1 2 t 2H + s 2H -|t -s| 2H ,
for all s, t ≥ 0.

Remark 1. Note that in the notation of [START_REF] Taqqu | The rosenblatt process[END_REF],

Z G (dx) = |x| -H/2 d B(x), with (B(t)) t∈R
the Brownian motion and d B(x) is viewed as the complex-valued Fourier transform of dB(x). For more details, see [START_REF] Taqqu | Convergence of integrated processes of arbitrary Hermite rank[END_REF].

It is known (see [START_REF] Ciprian | Analysis of the rosenblatt process[END_REF]) that the Rosenblatt process has the following properties:

(1) self-similarity: Z is H-self-similar; that is, the processes {Z ct , t ≥ 0} and c H Z t , t ≥ 0 have the same distribution. (2) stationary increments: Z has stationary increments; that is, the distribution of the process {Z t+s -Z s , t ≥ 0} does not depend on s ≥ 0. (3) continuity: the trajectories of the Rosenblatt process Z are δ-Hölder continuous for every δ < H. We will mention one more property that will be needed in our proofs, and is a consequence of the finite time interval representation [START_REF] Taqqu | The rosenblatt process[END_REF]Section 7.3] of the Rosenblatt process. The natural filtration associated to a Rosenblatt process is Brownian, i.e., there is a Brownian motion (B t ) t≥0 defined on the same probability space than Z such that its filtration satisfies

σ {Z s : s ≤ t} ⊂ σ {B s : s ≤ t} , (2.2) 
for all t > 0. Moreover, by [32, Theorem 1.1], for any d ≥ 1 and t 1 , . . . , t d ≥ 0,

(Z t 1 , . . . , Z t d ) d = ∞ n=1 λ n (t 1 )(ε 2 n -1), . . . , ∞ n=1 λ n (t d )(ε 2 n -1) , (2.3) 
where (ε n ) n≥1 are i.i.d N (0, 1) random variables and (λ n (t)) n≥1 are the (real) eigenvalues of a self-adjoint Hilbert-Schmidt operator associated with the process Z (see [START_REF] Dobrushin | Non-central limit theorems for nonlinear functionals of Gaussian fields[END_REF]).

For our analysis a few properties of the density for the joint process (Z t 1 , Z t 2 ) are needed. Using techniques from [START_REF] Kerchev | Local times and sample path properties of the Rosenblatt process[END_REF] we can establish the following: Proposition 2.1.

(i) The probability density function f : R → R + of Z 1 is continuous and f (x) > 0 for x ≥ 0. (ii) For every t 1 , . . . , t n ≥ 0, the vector (Z t 1 , . . . , Z tn ) has a continuous density.

Proof of Proposition 2.1. (i) The density f of Z 1 is continuous (see [START_REF] Veillette | Properties and numerical evaluation of the Rosenblatt distribution[END_REF]Corollary 4.3]) and unimodal (see [START_REF] Maejima | On the distribution of the Rosenblatt process[END_REF]). Therefore f (0) > 0 since E[Z 1 ] = 0. To see that f (y) > 0 for all y > 0, recall [54, Corrolary 4.5]: for α > 0,

lim u→∞ P(Z 1 > u + α) P(Z 1 > u) = c H , for a deterministic constant c H > 0.
In particular, this shows that for every y ∈ R + , there is x > y, such that f (x) > 0. Combined with the fact that f is continuous and unimodal, this implies that f (x) > 0 for every x ∈ R + .

(ii) If the characteristic function μ(z) of a probability measure µ in R d is integrable, then µ has a continuous density g(x) that tends to 0 as |x| → ∞ (see [41, Proposition 2.5(xii)]). Therefore, it is enough to show that for all t ∈ R n + and ξ ∈ R d :

R d E exp i n j=1 ξ j Z t j dξ < ∞. At this point we recall [26, Lemma 2.1, 2.2]. Lemma 2.2. Let L 2 G (R) be a weighted space with norm f 2 L 2 G := R |f (x)| 2 G(x)dx. For t ∈ R n + , ξ ∈ R n , let A t,ξ : L 2 G (R) → L 2 G (R)
be the operator given by

(A t,ξ f )(x) = R n j=1 ξ j e it j (x-y) -1 i(x -y) f (y)|y| -H/2 dy.
Let (λ k (t, ξ)) k≥1 be the set of eigenvalues of A t,ξ . Then,

E exp i n j=1 ξ j Z t j = k≥1 1 (1 + 4λ k (t, ξ)) 1/4 . Moreover, if t 0 = 0 < t 1 < • • • < t n ≤ 1, for every k ≥ 1, λ k (t, ξ) ≥ C(H)( max 1≤j≤n |ξ j -ξ j-1 ||t j -t j-1 | H ) 2 λ4 k , (2.4) 
where λk ∼ k -H/2 (independent of t and ξ), ξ 0 = 0 and C(H) > 0 is a constant that only depends on H. Now, we follow a similar procedure to the one employed for the proof of [26,

Proposition 1.3]. Let f 0 : R n + × R n → R + be given by f 0 (t, y) := t H 1 |y 1 | ∨ t H 2 |y 2 | ∨ • • • ∨ t H n |y n |. (2.5) Further, let ξ = (ξ 1 -ξ 0 , ξ 2 -ξ 1 , . . . , ξ n -ξ n-1 ) and t = (t 1 -t 0 , t 2 -t 1 , . . . , t n -t n-1 ). Then R d E exp i n j=1 ξ j Z t j dξ = R d k≥1 (1 + 4λ k (ξ, t)) -1/4 dξ ≤ R d k≥1 1 + 4C(H)( max 1≤j≤n |ξ j -ξ j-1 ||t j -t j-1 | H ) 2 λ4 k -1/4 dξ = R d k≥1 1 + 4C(H)f 2 0 (t , ξ ) λ4 k -1/4 dξ . (2.6) Let G(s) := k≥1 (1 + 4s 2 λ4 k ) -1/4 .
We can now switch to polar coordinates in (2.6) via |ξ | = r , ξ /r = w :

R d k≥1 1 + 4C(H)f 2 0 (t , ξ ) λ4 k -1/4 dξ ≤C |w |=1 ∞ 0 (r ) n-1 G( C(H)r f 0 (t , w ))dr H n-1 (dw ) =C ∞ 0 R n-1 G(R)dR |w |=1 (f 0 (t , w )) -n H n-1 (dw ) ,
where H n-1 (dw ) is the (n -1)-dimensional Hausdorff measure, C > 0 is a constant that depends on H and the last equality follows with the change of variables R = C(H)r f (t , w ).

Next, recall [START_REF] Kerchev | Local times and sample path properties of the Rosenblatt process[END_REF]Lemma 2.3] that G(s) is finite and positive for any s > 0 and moreover there are constants c 1 , c 2 > 0 such that for all β ≥ 1,

∞ 0 s β-1 G(s)ds ≤ c 2 Hc -βH 1 Γ(βH),
where Γ is the Gamma function.

Finally, since t 1 , . . . , t n > 0 are fixed, by the definition (2.5) of f 0 (t , w ),

|w |=1 (f 0 (t , w )) -n H n-1 (dw ) ≤C(t ) |w |=1 (|w 1 | ∨ • • • ∨ |w n |) -n H n-1 (dw ) ≤C(t ) |w |=1 (n -1/2 ) -n H n-1 (dw ) < ∞,
where C(t ) := inf{t Hn 1 , . . . , t Hn n } is a positive constant. Therefore, the characteristic function of (Z t 1 , . . . , Z tn ) is integrable and thus the joint distribution has a continuous density.

Next we establish a time inversion property for the Rosenblatt process:

Proposition 2.3. The inverse time process t → Zt := t 2H Z 1/t , (2.7) 
is also a Rosenblatt process.

Proof. First, using the spectral representation of a Rosenblatt process (2.1),

t 2H Z 1/t d = C(H)t 2H R 2 e i(x+y)/t -1 i(x + y) Z G (dx)Z G (dy) = C(H)t 2H R 2 e i(x +y )t -1 i(x + y )t 2 Z G (t 2 dx )Z G (t 2 dy ),
with the change of variables x = x t 2 and y = y t 2 . Now recall the change of variables formula for the Itô integral [14, Proposition 4.2]:

Proposition 2.4. Let G and G be two non-atomic spectral measures such that G is absolutely continuous with respect to G , and let g(x) be a complex valued function such that

g(x) =g(-x), |g 2 (x)| = d(G(x)) d(G (x)) .
Let f : R 2 → C be a measurable function such that:

(1) f (-x 1 , -x 2 ) = f (x 1 , x 2 ), and (2) ||f || 2 = |f (x 1 , x 2 )| 2 G(dx 1 )G(dx n ) < ∞. Then, for f (x 1 , x 2 ) = f (x 1 , x 2 )g(x 1 )g(x 2 ), f (x 1 , x 2 )Z G (dx 1 )Z G (dx 2 ) d = f (x 1 , x 2 )Z G (dx 1 )Z G (dx 2 ). Let G t 2 (A) := G(At 2 ) = t 2(1-H) G(A)
for every measurable A. We apply Proposition 2.4 with G and G t 2 , i.e., with |g(x)| 2 = t 2(1-H) a constant depending on t. Then,

C(H)t 2H R 2 e i(x +y )t -1 i(x + y )t 2 Z G (t 2 dx )Z G (t 2 dy ) = C(H)t 2H R 2 e i(x +y )t -1 i(x + y )t 2 Z G t 2 (dx )Z G t 2 (dy ) d = C(H)t 2H R 2 e i(x +y )t -1 i(x + y )t 2 t 2(1-H) Z G (dx )Z G (dy ) = C(H) R 2 e i(x +y )t -1 i(x + y ) Z G (dx )Z G (dy ),
and we recover the spectral representation of Z t as desired.

Remark 2. For the fractional Brownian motion B H t of Hurst index H ∈ (1/2, 1), the same fact is established using that the process is Gaussian and by comparing covariance functions. However, this property can also be recovered using the approach above. Indeed, we have the following spectral representation:

B H t d = C(H) R e iλt -1 iλ 
1 |λ| H-1/2 d B(λ).
The same change of variables yields the desired conclusion.

We also recall a result [26, Proposition 4.2] regarding oscillations: Proposition 2.5. Let (Z t ) t≥0 be the Rosenblatt process. Then for any s > 0 and h ∈ (0, s),

P sup t∈[s-h,s+h] |Z t -Z s | ≥ u ≤ C exp - u c 1 h H ,
where c 1 and C are constants that depend only on H.

We need the following properties of the local time of the Rosenblatt process. Its existence was shown in [START_REF] Shevchenko | Properties of trajectories of the multifractional Rosenblatt process[END_REF] and one has the representation:

L(x, t) = 1 2π R t 0 e iξ(x-Zs) dsdξ. (2.8) 
As we mentioned in the beginning of this section, Z is selfsimilar of index H, then its local time at level x also has some selfsimilarity properties in time with index 1 -H, but with a different level as stated below. More precisely, one has, for every c > 0:

(L(x, ct)) t≥0,x∈R d = c 1-H (L(c -H x, t)) t≥0,x∈R . (2.9) 
Indeed, for every c > 0, t ≥ 0 and x ∈ R, one has 

L(x, ct) = 1 2π R ct 0 e iξ(x-Zs) dsdξ = c 1 2π R t 0 e iξ(x-Zcs) dsdξ d = c 1 2π R t 0 e iξ(x-c H Zs) dsdξ = c 1-H 1 2π R t 0 e iξ(c -H x-Zs) dsdξ = L(c -H x, t).
lim sup r→0 L * ([s -r, s + r]) r 1-H (log log r -1 ) 2H ≤ C 1 , (2.10) 
and

lim sup r→0 sup s∈I L * ([s -r, s + r]) r 1-H (log r -1 ) 2H ≤ C 2 .
(2.11)

Furthermore, we can establish the following property which is key in the study of the classical Hausdorff dimension of the level sets.

Proposition 2.7. For β ∈ 0, 1 2 1 H -1 , P sup x∈[-1,1]\{0} L 0, 1 2 , 1 -L x, 1 2 , 1 |x| β < ∞ = 1.
Proof. The result relies on a celebrated lemma due to Garsia, Rodemich and Rumsey [START_REF] Garsia | A real variable lemma and the continuity of paths of some Gaussian processes[END_REF], as well as on the moment estimates for the local time in [START_REF] Kerchev | Local times and sample path properties of the Rosenblatt process[END_REF]. First, let us recall the lemma from [START_REF] Garsia | A real variable lemma and the continuity of paths of some Gaussian processes[END_REF]:

Lemma 2.8. Let Ψ(u) be a non-negative even function on (-∞, ∞) and p(u) be a non-negative even function on [-1, 1]. Assume both p(u) and Ψ(u) are non decreasing for u ≥ 0. Let f be continuous on [0, 1] and suppose that

1 0 1 0 Ψ f (u) -f (v) p(u -v) dudv ≤ B < ∞.
Then, for all x, y ∈ [0, 1],

|f (x) -f (y)| ≤ 8 |x-y| 0 Ψ -1 4B u 2 dp(u).
Let Ψ(u) = |u| p and p(u) = |u| α+1/p where α ≥ 1/p and p ≥ 1. Then for any continuous f and x ∈ [0, 1],

|f (x) -f (y)| p ≤ C α,p |x -y| αp-1 [0,1] 2 |f (r) -f (v)| p |r -v| -αp-1 drdv.
Here the constant C α,p is given by C α,p = 4 • 8 p α + p -1 p α -p -1 -p . Thus, for fixed α and large enough p, we have C α,p ≤ C(α) p , where C(α) > 0 is a constant that depends on the chosen α. We apply this to f (x) = L 2x -1, 1 2 , 1 :

sup x∈[-1,1]\{0} L x, 1 2 , 1 -L 0, 1 2 , 1 p x 2 αp-1 ≤ C p [0,1] 2 L r, 1 2 , 1 -L v, 1 2 , 1 p |r -v| -αp-1 drdv.
Using the moment bounds for the occupation density established in [START_REF] Kerchev | Local times and sample path properties of the Rosenblatt process[END_REF]Theorem 3.1], one has

E sup x∈[-1,1]\{0} L x, 1 2 , 1 -L 0, 1 2 , 1 p x 2 αp-1 ≤ C p [0,1] 2 c(γ, H) p p p2H(1+γ) 2 γp |r -v| γp 2 (1-H-γH) |r -v| -αp-1 drdv,
where γ ∈ 0, 1-H 2H and c(γ, H) > 0 is a constant depending only on γ and H. Let α = γ/2 and p > 4/γ. Then,

E sup x∈[-1,1]\{0} L x, 1 2 , 1 -L 0, 1 2 , 1 p x 2 αp-1 ≤ C(γ, H, p),
where C(γ, H, p) > 0 is a constant that depends on γ, H and p. Fatou's lemma implies that

P sup x∈[-1,1]/{0} L 0, 1 2 , 1 -L x, 1 2 , 1 |x| β < ∞ = 1,
as desired.

Finally, the local time is Hölder continuous in both time and space [26, Corollary 3.2]. In particular: Proposition 2.9. For every x ∈ R,almost surely, the local time L(x, t) is Hölder continuous in t of order α for every α ∈ [0, 1 -H).

Image sets

The present section is dedicated to the study of intermediate dimensions and profiles. To make a comparison, we recall the more popular packing dimensions and profiles.

3.1. Packing dimensions. First, recall the definition of the packing dimension. For any α > 0, the α-dimensional packing measure of

E ⊂ R N is s α -p (E) := inf n s α -P (E n ) : E ⊆ n E n ,
where for E ⊂ R,

s α -P (E) := lim ε→0 sup i (2r i ) α : B(x i , r i ) are disjoint , x i ∈ E, r i < ε . The packing dimension of E is dim P (E) := inf{α > 0 : s α -p (E) = 0} (3.1)
and the packing dimension of a Borel measure µ on R N is defined by dim P (µ) := inf{dim P (E) : µ(E) > 0 and E ⊂ R N is a Borel set}.

Next, we recall the concept of packing dimension profiles first conceived by Falconer and Howroyd in [START_REF] Falconer | Packing dimensions of projections and dimension profiles[END_REF] and [START_REF] Howroyd | Box and packing dimensions of projections and dimension profiles[END_REF]. For finite Borel measures µ on R N and for any s > 0, let

F µ s (x, r) = R ψ s x -y r dµ(y),
be the potential with respect to the kernal ψ s (x) = min {1, x -s },∀x ∈ R N . The packing dimension profile of µ is defined as follows dim P,s (µ) = sup β ≥ 0 : lim inf r→0 F µ s (x, r) r β = 0 for µ -a.e. x ∈ R N .

Now for any

Borel set E ⊂ R N , we define M + c (E) to be the family of finite Borel measures on E with compact support in E. Then dim P (E) = sup dim P (µ) : µ ∈ M + c (E) . Motivated by this, Falconer and Howroyd [START_REF] Falconer | Packing dimensions of projections and dimension profiles[END_REF] define s-dimensional packing dimension profile of E ⊂ R N by dim P,s (E) = sup dim P,s (µ) : µ ∈ M + c (E) . It is easy to see that 0 ≤ dim P,s (E) ≤ s and for any s ≥ N , dim P,s (E) = dim P (E).

Intermediate dimensions. For a bounded and non-empty set

E ⊂ R N , θ ∈ (0, 1] and s ∈ [0, N ], define H s r,θ (E) = inf i |U i | s : {U i } i is a cover of E such that r ≤ |U i | ≤ r θ for all i . (3.2) 
In particular, for θ = 0, H s r,0 (E) is the s-dimensional Hausdorff measure of E. Now, the intermediate dimensions are defined as in [START_REF] Falconer | Fractal geometry[END_REF]:

Definition 3.1. Let E ⊂ R N be bounded. For 0 ≤ θ ≤ 1, the lower θ-intermediate dimension is dim θ (E) = the unique s ∈ [0, N ] such that lim inf r→0 log H s r,θ (E) -log r = 0. (3.3)
Similarly, the upper θ-intermediate dimension of E is defined by

dim θ (E) = the unique s ∈ [0, N ] such that lim sup r→0 log H s r,θ (E) -log r = 0. (3.4) When dim θ (E) = dim θ (E), we refer to the θ-intermediate dimension dim θ (E) = dim θ (E) = dim θ (E).
Thus, the classical Hausdorff (1.6) and box dimensions (1.7), (1.8) can be viewed as the extremes of a continuum of dimensions with increasing restrictions on the relative sizes of covering sets. Indeed, for every bounded E ⊂ R,

dim 0 E = dim 0 E = dim H (E) , dim 1 E = dim B (E) and dim 1 E = dim B (E) .
Moreover, the intermediate dimensions can be defined in terms of capacities with respect to an appropriate kernel denoted by φ s,m r,θ (see [START_REF] Stuart | Projection theorems for intermediate dimensions[END_REF]). For each collection of parameters θ ∈ (0, 1], 0 < m ≤ 1, 0 ≤ s ≤ m and 0 < r < 1, let φ s,m r,θ : R N → R be the function We note that originally the definitions of capacities and profiles above were established for E ⊂ R N and integers m ∈ (0, N ]. However, the recent result [9, Lemma 2.1], allows one to work with the version stated above. In fact, our first main result Theorem 1.1 is an extension of a similar result in [START_REF] Stuart | Dimensions of fractional brownian images[END_REF] obtained for the index-α fractional Brownian motion. We proceed with the proof of Theorem 1.1 3.3. Proof of Theorem 1.1. Let θ ∈ (0, 1]. We first state two results due to Burrell [START_REF] Stuart | Dimensions of fractional brownian images[END_REF]. The first one establishes an upper bound for the intermediate dimensions of Hölder images using dimension profiles:

φ s,m r,θ (x) :=      1 0 ≤ |x| < r,
Lemma 3.2. [9, Theorem 3.1] Let E ⊂ R be a compact, θ ∈ (0, 1], m ∈ {1, ..., n} and f : E → R. If there exist c > 0 and 0 < α ≤ 1 such that |f (x) -f (y)| ≤ c|x -y| α , for all x, y ∈ E, then dim θ (f (E)) ≤ 1 α dim θ,α (E) and dim θ (f (E)) ≤ 1 α dim θ,α (E) .
The second result gives a lower bound for the intermediate dimensions of image of a compact set E under measurable functions satisfying certain properties:

Lemma 3.3. [9, Theorem 3.3] Let E ⊂ R be a compact, θ ∈ (0, 1], γ > 1 and s ∈ [0, 1). If f : Ω × E → R is a random function such that for each ω ∈ Ω, f (ω, .
) is a continuous measurable functions and there exists c > 0 satisfying

P ({ω ∈ Ω : |f (ω, x) -f (ω, y)| ≤ r}) ≤ cφ 1/γ,1/γ r γ ,θ (x -y),
for all x, y ∈ E and r > 0, then

dim θ (f (ω, E)) ≥ γdim θ,α (E) and dim θ (f (ω, E)) ≥ γdim θ,α (E) ,
for almost all ω ∈ Ω. Now let 0 < < H < 1. The Rosenblatt process Z has Hölder continuous paths in time of order H -, see [START_REF] Tudor | Analysis of variations for self-similar processes[END_REF]Propostion 3.5], and so there exists, almost surely, M > 0 such that

|Z s -Z t | ≤ M |s -t| H-,
for all s, t ∈ E. In addition by Proposition 2.1(i), the density function f of Z 1 is continuous and f (0) > 0. Then for all s, t ∈ E and r > 0, one has

P (|Z s -Z t | ≤ r) = P |Z 1 | ≤ r |s -t| H ≤ 4f (0) r |s -t| H = 4f (0) φ H,H r 1/H ,θ (s -t).
Now since the profiles are monotonically increasing, by Lemmas 3.2 and 3.3, one has almost surely

1 H dim θ,H (E) ≤ dim θ (Z(E)) ≤ 1 H - dim θ,H-(E) ≤ 1 H - dim θ,H (E) , and 
1 H dim θ,H (E) ≤ dim θ (Z(E)) ≤ 1 H - dim θ,H-(E) ≤ 1 H - dim θ,H (E) .
Letting → 0 establishes the result.

Level sets

The present section is devoted to the proof of Theorem 1.2. First, we establish (1.11) and (1.12) -the result regarding the θ-intermediate dimensions and the packing dimension. Recall that the definition of dim θ (E) and dim P (E) for E ⊂ R are given in definition 3.1 and 3.1 respectively. Note that the techniques employed in this section apply for the fractional Brownian motion case. As mentioned earlier, [START_REF] Ayache | Asymptotic properties and Hausdorff dimensions of fractional Brownian sheets[END_REF]Theorem 5] [START_REF] Falconer | Fractal geometry[END_REF]. Thus from the defintion of the θ-intermediate dimensions (see 3.2) dim θ (L X (x) ∩ [ , 1]) = 1 -H, as well. Relevant results about the local time can be found in [START_REF] Xiao | Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields[END_REF], which allows us to establish dim For n ≥ 1 we cover [ε, 1] by n 1/H subintervals R n, of length n -1/H , with ∈ {1, 2, . . . , n 1/H }. Let 0 < δ < 1 be fixed and τ n, be the left endpoint of the interval R n, . We first bound the probability P(x ∈ Z(R n, )):

establishes dim B (L X (x) ∩ [ , 1]) ≤ 1 -H and dim H (L X (x) ∩ [ , 1]) = 1 -H was shown in
P (L X (x)) = 1 -H. Proof of (1.11). Let θ ∈ [0, 1]. Recall that for any set E ⊆ R, one has dim H (E) ≤ dim θ (E) ≤ dim θ (E) ≤ dim B (E) , and dim H (E) ≤ dim P (E) ≤ dim B (E) . It is enough to show that dim B (L Z (x) ∩ [ε, 1]) ≤ 1-H and dim H (L Z (x) ∩ [ε, 1]) ≥ 1 -
P(x ∈ Z(R n, )) ≤ P( sup t∈R n, |Z t -Z τ n, | ≤ n -(1-δ) , x ∈ Z(R n, )) + P( sup t∈R n, |Z t -Z τ n, | ≥ n -(1-δ) ) ≤ P(|Z τ n, -x| ≤ n -(1-δ) ) + C 1 exp(-c 1 n -(1-δ) /n -1 ) ≤ C 2 n -(1-δ) + C 1 exp(-c 1 n δ ) = O(n -(1-δ) ), (4.1) 
where we have used Proposition 2.5, and the fact that the density of Z t is continuous. We can cover the set

L Z (x) ∩ [ε, 1] by a sequence of intervals R n, with R n, = R n, if x ∈ Z(R n,
) and R n, = ∅, otherwise, for ∈ {1, 2, . . . , n 1/H }. We need to show that

E   n 1/H =1 |R n, | η   < ∞, (4.2) 
for η = 1 -H(1 -δ) and arbitrary δ > 0. In turn this would imply by Fatou's lemma that dim B (L Z (x) ∩ [ε, 1]) ≤ η almost surely. Then, letting δ → 0 yields the upper bound on the upper Box dimension.

We establish (4.2):

E   n 1/H =1 |R n, | η   ≤ E   n 1/H =1 n -1/H η 1 x∈Z(R n, )   ≤ cn 1/H-1/H(1-H(1-δ))-(1-δ) = c,
where the last inequality follows from the bound (4.1) on P(x ∈ Z(R n, )).

For the lower bound we first recall a relation between the Hölder regularity and the Hausdorff dimension. Proposition 4.1 (Theorem 27 in [START_REF] Dozzi | Occupation density and sample path properties of N -parameter processes[END_REF]). Let [u, v] ⊂ R be a finite interval and f : [u, v] → R be a continuous function with occupation density denoted by L. Suppose that L satisfies a Hölder condition of order γ ∈ (0, 1) (in the set variable).

Then dim H f -1 [u,v] (x) ≥ γ for all x ∈ R such that L(x, [u, v]) = 0.
A Hölder regularity condition for the local time of the Rosenblatt process was recently obtained in [START_REF] Kerchev | Local times and sample path properties of the Rosenblatt process[END_REF]. In particular, the following holds: Proposition 4.2 (Theorem 1.4 in [START_REF] Kerchev | Local times and sample path properties of the Rosenblatt process[END_REF]). Let (Z t ) t≥0 be a Rosenblatt process with H ∈ 1 2 , 1 and local time L. For a finite closed interval I ⊂ (0, ∞), there exists a constant C > 0 such that almost surely,

lim sup r→0 sup s∈I sup x∈R L(x, [s -r, s + r]) r 1-H | log r| 2H ≤ C.
Therefore, the occupation density of the Rosenblatt process satisfies a Hölder condition in the set variable of order γ for all γ < 1-H, and thus dim

H (L Z (x) ∩ [ε, 1]) ≥ 1 -H.
Before we establish the second part (1.13) of Theorem 1.2 we recall some definitions and properties regarding the macroscopic Hausdorff dimension. Of special interest is a relation between Dim H (E Z (γ)) and Dim H (L Z (x)) which eases the proofs of both (1.13) and (1.15).

Macroscopic Hausdorff dimension.

To set up the notation as in [START_REF] Khoshnevisan | On the macroscopic fractal geometry of some random sets[END_REF][START_REF] Khoshnevisan | Intermittency and multifractality: a case study via parabolic stochastic PDEs[END_REF], consider the intervals S -1 = [0, 1/2) and S n = [2 n-1 , 2 n ) for n ≥ 0. For E ⊂ R + , we define the set of proper covers of E restricted to S n by

I n (E) = {I i } m i=1 : I i = [x i , y i ] with x i , y i ∈ N, y i > x i , I i ⊂ S n and E ∩ S n ⊂ m i=1 I i .
.

For any set E ⊂ R + , ρ ≥ 0 and n ≥ -1, define ν n ρ (E) := inf m i=1 |I i | 2 n ρ : {I i } m i=1 ∈ I n (E) , where |[a, b]| = b -a.
The macroscopic Hausdorff dimension of E ⊂ R + is defined as:

Dim H (E) := inf ρ ≥ 0 : n≥0 ν n ρ (E) < ∞ .
Next we establish a relation between (1.13) of Theorem 1.2 and (1.15) of Theorem 1.3 .

Recalling Definitions 1.3 and 1.4, for a fixed γ > 0 and any x ∈ R, the level set L Z (x) is ultimately included in E Z (γ):

L Z (x) ∩ t ≥ |x| 1 γ ⊂ E Z (γ).
The macroscopic Hausdorff dimension is left unchanged after the removal of any bounded subset. Then, almost surely, for every x ∈ R,

Dim H (L Z (x)) = Dim H L Z (x) ∩ t ≥ |x| 1 γ ≤ Dim H (E Z (γ)) . (4.3) 
Therefore, to prove (1.13) and (1.15) it suffices to show that the following two statements hold almost surely:

For any x ∈ R, Dim H (L Z (x)) ≥ 1 -H, (4.4) 
Dim H (E Z (γ)) ≤ 1 -H. (4.5) 
The proof of (4.4) follows in the next subsection while (4.5) is established in Section 5.3.

Lower bound for Dim

H (L Z (x)).
In this section we aim to find a lower bound for Dim H (L Z (x)). We first establish a result regarding macroscopic Hausdorff dimension in general.

Lemma 4.3. Let E ⊂ R + and suppose that there exist M > 0 and s ∈ [0, 1] such that there exists a family of finite measures {µ n } n≥-1 on S n such that for all intervals I ⊂ S n , we have

µ n (I) ≤ M |I| s . If Dim H (E) = t for some 0 ≤ t < s, then n≥-1 µ n (E ∩ S n ) 2 ns < +∞.
Proof. As t < s and using the definition of macroscopic Hausdorff dimension we have ν s (A) < +∞.

Let {I i } m i=1 ∈ I n (E), then µ n (E ∩ S n ) ≤ m i=1 µ n (I i ) ≤ m i=1 M |I i | s = 2 ns M m i=1 |I i | 2 n s . Then µ n (E ∩ S n ) 2 ns ≤ M ν s n (E ∩ S n ) and so n≥-1 µ n (A ∩ S n ) 2 ns < +∞.
By Proposition 2.9, the local time is Hölder continuous in t of order α for every α ∈ [0, 1 -H). Now we will be using this property and the preceding lemma in order to get a lower bound for Dim H (L Z (x)). To this end, fix α ∈ [0, 1 -H) and introduce the following random variables

Y x n = L (x, S n ) 2 nα and F x N = N n=1 Y x n . (4.6) 
The random variables (Y x n ) n≥-1 are positive, so (F x N ) N ≥1 is non-decreasing. We denote by

F x ∞ its limit, i.e. F x ∞ = ∞ n=-1 Y x n ∈ [0, +∞].
As a direct consequence of Lemma 4.3, there is a connection between Dim H (L x ) and the r.v. Y x n . Indeed, for n ≥ -1 consider the sequence of measures µ n (I) := L(x, I), for all I ⊂ S n , By Proposition 2.9, there exists M > 0 such that for all n ≥ -1 a.s.

µ n (I) ≤ M |I| α , for all I ⊂ S n .
Now by Lemma 4.3, a.s. for every

x ∈ R, Dim H (L x ) ≥ α if n≥-1 µ n (L x ∩ S n ) 2 nα = F x ∞ = +∞.
As a consequence, we see that Dim H (L x ) ≥ α for all x ∈ R such that F x ∞ = +∞. Moreover in order to conclude the proof of Theorem 1.2, it is enough to prove that for all α ∈ [0, 1 -H), a.s. for all x ∈ R, Dim H (L x ) ≥ α . Letting α ↑ 1 -H gives that a.s. for all x ∈ R, Dim H (L x ) ≥ 1 -H. Finally it remains to check that P(∀x ∈ R, F x ∞ = +∞) = 1, for all α ∈ [0, 1 -H). This is the object of the next proposition.

Proposition 4.4. Let α ∈ [0, 1 -H) and

Y x n = L x (S n ) 2 nα , for n ≥ -1, and 
F x ∞ = n≥-1 Y x n .
Then,

P(∀x ∈ R, F x ∞ = +∞) = 1. (4.7)
Proof. We follow the technique in [START_REF] Daw | A uniform result for the dimension of fractional Brownian motion level sets[END_REF]. For every a > 0, let

Y a n = inf x∈[-a,a] Y x n , for n ≥ 1, and F a ∞ = n≥1 Y a n .
Using the self-similarity property of the local time (2.9), for all n ≥ 0,

Y a n = inf x∈[-a,a] Y x n d = inf x∈[-a,a] Y 2 -nH x 0 = inf x∈[-2 -nH a,2 -nH a] Y x 0 = Y 2 -nH a 0 .
The proof now relies on the following technical result: Lemma 4.5. For any b > 0, one has

P( F b ∞ = ∞) > 0.
Proof of Lemma 4.5. We first show that there exists ε > 0 such that P(Y 0 0 > ε) > 0. Recall that Y 0 0 = L(0, [1/2, 1]) and is non-negative. Thus, it is enough to show that E[L(0, [1/2, 1])] > 0. Using the following representation of the local time, see [39, Chapter 10], one gets

L(0, [1/2, 1]) = lim ε→0 1 2 1 1/2 1 -ε,ε (Z t )dt.
Then using self-similarity of Z and then Proposition 2.1(i) with some constant c 1 > 0, one gets

E[L(0, [1/2, 1])] = lim ε→0 1 2 1 1/2 P(Z t ∈ [-ε, ε])dt = lim ε→0 1 2 1 1/2 P(Z 1 ∈ [-εt -H , εt -H ])dt ≥ lim ε→0 1 2 1 1/2 2c 1 εt -H dt = c 1 1 -H (1 -(1/2) 1-H ).
Therefore, E[L(0, [1/2, 1])] > 0 and thus P(Z 0 0 > ε) > 0 for some ε > 0. The rest of the proof is based on the following two facts:

(1) For every ε > 0 small enough, there exists a ∈ R + , such that:

0 < P(Y 0 0 > ε) ≤ 2P( Y a 0 > 0). (2 
) For any a, b > 0, we have

P( F b ∞ = ∞) ≥ P( Y a 0
). The statements above correspond to Lemmas 8 and 9 in [START_REF] Daw | A uniform result for the dimension of fractional Brownian motion level sets[END_REF] and the proofs are identical as long as the following holds:

P sup x∈[-1,1]/{0} L 0, 1 2 , 1 -L x, 1 2 , 1 |x| β < ∞ = 1,
where β ∈ 0, 1 2 1 H -1 . In [START_REF] Daw | A uniform result for the dimension of fractional Brownian motion level sets[END_REF], this property corresponds to Lemma 5 which is originally due to Geman in Horowitz [START_REF] Geman | Occupation densities[END_REF]Theorem 26.1]. For the Rosenblatt case, the above is established in Proposition 2.7.

Using the result of Lemma 4.5 we can establish that P( F b ∞ = ∞) = 1 if we can apply Blumental's 0-1 law. This is possible since

F b ∞ = ∞ ∈ M ≥1 σ W u : u < 2 -(M -1) , (4.8) 
where (W t ) t≥0 is the standard Brownian motion. Indeed, the time inverted process Z t = t 2H Z 1/t , t > 0 is distributed as the Rosenblatt process (see Proposition 2.3).

Then, using the representation (2.8), the local time 1) , for M ≥ 1 and thus 1) .

L x (S n ) is σ Z u : u ≤ 2 -(n-1) - measurable. Moreover, σ Y b n : n ≥ M ⊂ σ Z u : u ≤ 2 -(M -
F b ∞ = ∞ ∈ M ≥1 σ Z u : u < 2 -(M -
(4.9)

At this point by (2.2) (with Z instead of Z), there exists standard Brownian motion (W t ) t≥0 such that σ Zu : u ≤ t ⊂ σ {W u : u ≤ t}. This fact combined with (4.9) establishes (4.8). Then using (4.8) and the fact that P( F b ∞ = ∞) > 0 for all b > 0, one can apply Blumental's 0-1 law and thus gets that P(

F b ∞ = ∞) = 1, for all b > 0.
Finally, for every b > 0,

P(∀x ∈ [-b, b] : F x ∞ = ∞) = P inf x∈[-b,b] F x ∞ = ∞ = P inf x∈[-b,b] n≥1 Y x n = ∞ ≥ P n≥1 inf x∈[-b,b] Y x n = ∞ = P( F b ∞ = ∞) = 1.
Therefore,

P(∀x ∈ R : F x ∞ = ∞) = lim b→∞ P(∀x ∈ [-b, b], F x ∞ = ∞) = 1,
and (4.7) is established.

Next, we establish (1.12)-the result regarding Packing dimension. Recall that dim P (L Z (x)) ≤ dim B (L Z (x)) = 1 -H. It is enough to show that dim P (L Z (x)) ≥ 1 -H, which is the aim of the next section.

Sojourn times

This section is dedicated to the proof of Theorem 1.3. We first establish (1.14). Recall the definitions of logarithmic and pixel densities. For E ⊂ R + , the logarithmic density of E is given by Den

log (E) := lim sup n→∞ log 2 Leb(E ∩ [1, 2 n ]) n ,
where 'Leb' is the one-dimensional Lebesgue measure.

Let pix(E) := {n ∈ N : dist(n, E) ≤ 1}. Then, the pixel density of E is

Den pix (E) := lim sup n→∞ log 2 #pix(E ∩ [1, 2 n ]) n .
The two quantities are closely related, see [START_REF] Khoshnevisan | On the macroscopic fractal geometry of some random sets[END_REF]:

Den log (E) ≤ Den pix (E) .

(5.1)

We want to show that for γ ∈ [0, H), Den pix (E Z (γ)) = Den log (E Z (γ)) = γ+1-H, almost surely. Our strategy is then to establish that Den pix (E Z (γ)) ≤ γ + 1 -H and Den log (E Z (γ)) ≥ γ + 1 -H, almost surely.

5.1. Upper bound for Den pix (E Z (γ)). Our goal is to obtain an upper bound for #pix(E Z (γ)) ∩ [1, 2 n ] that holds with probability 1 for all large n. We first study the expectation

E[pix(E Z (γ)) ∩ [1, 2 n ]] = 2 n m=1 P (∃s ∈ [m -1, m + 1], |Z s | ≤ s γ ) = 2 n m=1 P ∃s ∈ 1 - 1 m , 1 + 1 m , |Z s | ≤ s γ m γ-H = 2 n m=1 P ∃s ∈ 1 - 1 m , 1 , |Z s | ≤ s γ m γ-H + P ∃s ∈ 1, 1 + 1 m , |Z s | ≤ s γ m γ-H ≤ 2 n m=1 (A - 1/m + A + 1/m ), (5.2) 
where

A - ε :=P(∃s ∈ [1 -ε, 1], |Z s | ≤ ε H-γ ), A + ε :=P(∃s ∈ [1, 1 + ε], |Z s | ≤ 2ε H-γ ). Lemma 5.1.
There is a universal constant c > 0, such that, for every ε small enough,

max(A - ε , A + ε ) ≤ cε H-γ . (5.3) Proof. Consider A - ε first. We have A - ε ≤ P(∃s ∈ [1 -ε, 1], |Z s | ≤ ε H-γ , |Z 1 | ≤ 2ε H-γ ) + P(∃s ∈ [1 -ε, 1], |Z s | ≤ ε H-γ , |Z 1 | ≥ 2ε H-γ ) ≤ P(|Z 1 | ≤ 2ε H-γ ) + P(∃s ∈ [1 -ε, 1], |Z s -Z 1 | ≥ ε H-γ ). (5.4) 
To bound the first term on the right-hand side above, we use Proposition 2.1(i), i.e, the density function f of Z 1 is continuous and f (0) > 0. Then one can show, for instance, that for ε > 0 small enough,

P(|Z 1 | ≤ 2ε H-γ ) ≤ 4f (0)ε H-γ .
(5.5)

We are left to study the term P(∃s

∈ [1 -ε, 1], |Z s -Z 1 | ≥ ε H-γ ). Write P(∃s ∈ [1 -ε, 1], |Z s -Z 1 | ≥ ε H-γ ) ≤ P( sup s∈[1-ε,1+ε] |Z s -Z 1 | ≥ ε H-γ ) ≤ C exp -c 1 ε -γ , (5.6) 
where the last inequality follows from Proposition 2.5 and C, c 1 > 0 are constants depending only on H. Note that exp(-c 1 ε -γ ) = O(ε δ ), for any δ > 0 if any ε is small enough. Finally, for ε small enough, combining (5.6) and (5.5) in (5.4) yields the bound of (5.3) for A - ε . Same arguments as above can be applied to A + ε to get an equivalent bound and establish (5.3).

Next, applying Lemma 5.1 in (5.2) yields, for some absolute constant C > 0,

E[#pix(E Z (γ)) ∩ [1, 2 n ]] ≤ 2C 2 n m=1 m γ-H = O 2 n(γ+1-H) . Choose ρ > γ + 1 -H. Then, n≥1 P (#pix(E Z (γ)) ∩ [1, 2 n ] > 2 nρ ) ≤ C n≥1 2 n(1+γ-h) 2 nρ < ∞.
By the Borel-Cantelli lemma, with probability one,

#pix(E Z (γ)) ∩ [1, 2 n ] ≤ 2 nρ , for every large enough n. Hence, Den pix (E Z (γ)) ≤ ρ. Letting ρ ↓ γ + 1 -H yields Den pix (E Z (γ)) ≤ γ + 1 -H.

Lower bound for Den

log (E Z (γ)). Introduce S γ ([t 1 , t 2 ]) = Leb({t 1 ≤ s ≤ t 2 : |Z s | ≤ s γ }), for all 0 ≤ t 1 ≤ t 2 .
We will prove that for infinitely many integers n, S γ ([0, 2 n ]) ≥ c 2 2 n(γ+1-H) , for any c ∈ (0, 1). This implies that Den log (E Z (γ)) ≥ γ + 1 -H almost surely. Then using (5.1), we also obtain Den pix (E Z (γ)) ≤ γ + 1 -H and the proof of (1.14) is completed.

First we show that for any c ∈ (0, 1), there is a constant c > 0 such that

P(S γ ([0, 2 n ]) ≥ c2 n(1+γ-H) ) ≥ c . (5.7) 
By Paley-Zygmund inequality, for any c ∈ (0, 1), we have

P(S γ ([0, 2 n ]) ≥ c2 n(1+γ-H) ) ≥ (1 -c) E[S γ ([0, 2 n ])] 2 E[S γ ([0, 2 n ]) 2 ]
.

(5.8)

The numerator can be rewritten as:

E[S γ ([0, t])] = t 0 P(|Z s | ≤ s γ )ds = t 0 P(|Z 1 | ≤ s γ-H )ds.
Now, we establish a lower bound for P(|Z 1 | ≤ s γ-H ). Apply Proposition 2.1(i) there is a constant α > 0 such that for s large enough, the density function of Z 1 is bounded below by α in [-s γ-H , s γ-H ]. Therefore,

P(|Z 1 | ≤ s γ-H ) ≥ 2αs γ-H and thus E[S γ ([0, t])] ≥ 2αt 1+γ-H .
(5.9)

We bound the second moment from above:

E[S γ ([0, t]) 2 ] = [0,t] 2 P(|Z u | ≤ u γ , |Z v | ≤ v γ )dudv = t 2 [0,1] 2 P |Z u | ≤ u γ t γ-H , |Z v | ≤ v γ t γ-H dudv.
By Proposition 2.1(ii), the density function g u,v of (Z u , Z v ) is continuous and tends to 0 as |x| → ∞. Therefore, By (5.7), it is easy to see that P (A n,γ ) ≥ c > 0. Moreover, by the definition of A n,γ , one has A n,γ ⊂ S γ ([0, 2 n ]) ≥ c 2 2 n(1+γ-H) . Then it is enough to prove that A n,γ happens infinitely often which give us that S γ ([0, 2 n ]) ≥ c 2 2 n(1+γ-H) for infinitly many n. To this end, let A γ be the event that A n,γ happens infinitely often. Recall that for any sequence of events (A i ) i≥1 , one has lim n→∞ P(∪ i≥n A i ) = P(A i i. o ). In other words, one has

A γ = M ≥1 n≥M
A n,γ .

(5.12)

We know that P (A γ ) (≥ c ) is strictly positive. It remains to prove that it is in fact equal to 1. As in Section 4.2, such a conclusion will follow by using that the time inverted process Zt = t 2H Z 1/t is distributed as the Rosenblatt process (see Proposition 2.3). Now let Sγ (resp. Ãn,γ , Ãγ ) be the event analogous to S γ (resp.

A n,γ , A γ ), but associated to Z instead of Z. So for any fixed integer n ≥ 0, we have Recalling definition 5.12 of A γ , we obtain that

Ãγ ∈ M ≥1 σ {A n,γ : n ≥ M } .
Using (2.2), we deduce that

Ãγ ∈ M ≥1 σ(B u : u ≤ 2 -M (1+γ-H) ),
where (B t ) t≥0 is the Brownian motion. Therefore, Ãγ is a tail event and P( Ãγ ) = 0 or 1 by the Blumenthal 0-1 law. Obviously, as Z and Z have the same distribution, then P( Ãγ ) = P(A γ ) ≥ c > 0 and then P( Ãγ ) = P(A γ ) = 1 as desired.

Upper bound for Dim

H (E Z (γ)). We now turn to the proof of (1.15). Following our discussion in Section 4.1, and in particular the relation (4.3) between Dim H (E Z (γ)) and Dim H (L Z (x)), it is enough to show (4.5), i.e., for every 0 ≤ γ < H, Dim H (E Z (γ)) ≤ 1 -H, a.s.

We follow the technique in [START_REF] Nourdin | Sojourn time dimensions of fractional Brownian motion[END_REF]. Let us fix 0 ≤ γ < H, as well as η > 0 (as small as necessary). We are going to prove that Dim H (E Z (γ)) ≤ 1 -H + η. Letting η tend to zero will then give the result. Fix ρ > 1 -H + η, our aim is to prove that Dim H (E Z (γ)) ≤ ρ. To this end, consider for every integer n ≥ 1 and i ∈ 0, ..., ≤c2 n H-γ H (1-H+η-ρ) .

2
Thus, the Fubini Theorem entails E ∞ n=1 ν n ρ (E Z (γ)) < +∞ as soon as ρ > 1 -H + η. This implies that for such ρ's, the sum ∞ n=1 ν n ρ (E Z (γ)) is finite almost surely. In particular, Dim H (E Z (γ)) ≤ ρ, for every ρ > 1 -H + η. Since such a relation holds for an arbitrary (small) ρ > 0, we deduce (4.5) as desired.

(

  random) sets of interest are then:Image set: Z(E) := {Z(t) : t ∈ E} ;(1.1)Graph set: Gr Z (E) := {(t, Z(t)) ∈ E × R : t ∈ E} ; (1.2) Level set: L Z (x) := {t ∈ R + : Z(t) = x} , x ∈ R; (1.3) Sojourn set: E Z (γ) := {t ∈ R + : |Z(t)| ≤ t γ } , γ > 0; (1.4) Inverse image: Z -1 (E ) := {t ∈ R + : Z(t) ∈ E } ,(1.5)

Moreover, a recent result [ 26 ,Proposition 2 . 6 .

 2626 Theorem 1.4] describes the scaling behavior of the local time of Z: The local time L(x, [0, t]) is jointly continuous with respect to (x, t) and has finite moments. For a finite closed interval I ⊂ (0, ∞), let L * (I) = sup x∈R L(x, I). There exist positive constants C 1 and C 2 such that, almost surely, for any s ∈ I,

5 ) 1 ,

 51 Using this kernel we define the capacity of a compact set E ⊂ R N asC s,m r,θ (E) := inf µ∈M(E)φ s,m r,θ (x -y)dµ(x)dµ(y)-(3.6)where M(E) is the set of probability measures supported in E.Now for 0 < m ≤ N , the lower intermediate dimension profiles of E ⊂ R N are dim θ,m (E) = the unique s ∈ [0, m] such that lim inf r→0 log C s,m r,θ (E) -log r = s , (3.7) and the upper intermediate dimension profiles are dim θ,m (E) = the unique s ∈ [0, m] such that lim sup r→0 log C s,m r,θ (E) -log r = s . (3.8) The intermediate dimension profiles are increasing in m and for E ⊂ R N , dim θ,N (E) = dim θ (E) and dim θ,N (E) = dim θ (E) .

  H with probability one. Starting with the upper bound, we follow the technique used for [4, Theorem 5] -an upper bound result for the classical Hausdorff dimension of level sets associated to fractional Brownian sheet. But in fact, the covers used are of equal length and so this technique gives an upper bound for the Box dimension.

E 2 [ 2 g≤

 22 [S γ ([0, t]) 2 ] ≤ t u,v (x, y) 1   |x| ≤ u γ t γ-H |y| ≤ v γ t γ-H Ct 2+2γ-2H .(5.11)Applying (5.9) and (5.10) in (5.8) yields (5.7). Now, define the eventA n,γ := S γ c 2 2 n(1+γ-H) , 2 n ≥ c 2 2 n(1+γ-H) .

Sγ c 2 2 n

 2 (1+γ-H) , 2 n = Leb c 2 2 n(1+γ-H) ≤ s ≤ 2 n : |t 2H Z 1/s | ≤ s γ ,which implies in return that Ãn,γ ∈ σ Z u : u ≤ 2 -n(1+γ-H) . As a consequence, for all M ≥ 0, one hasÃn,γ : n ≥ M ∈ σ Z u : u ≤ 2 -M (1+γ-H) .

  Table of fractal dimensions and densities of random sets associated with the fractional Brownian motion with γ ∈ [0, H).

  Table of fractal dimensions and densities of random sets associated with the Rosenblatt process with γ ∈ [0, H).

  = [t n,i , t n,i+1 ) with t n,i = 2 n-1 + i2 n γ H . And the associated eventE n,i = {∃t ∈ I n,i : |Z t | ≤ t γ } . Denote n,i = 2 n γ H /t n,i , so that I n,i = [t n,i , t n,i (1 + n,i )), and observe that the ratio between any two of the quantities 2 n( γ H -1) , n,i , and t are bounded uniformly with respect to n and i. By self-similarity, we have that, when n becomes large,P (E n,i ) = P (∃ t ∈ I n,i : |Z t | ≤ t γ ) = P ∃ s ∈ [1, 1 + n,i ] : |Z s.t n,i | ≤ (s.t n,i ) γ = P ∃ s ∈ [1, 1 + n,i ] : |Z s | ≤ t γ-H n,i .s γ = P ∃ s ∈ [1, 1 + n,i ] : |Z s | ≤ 2t γ-H n,i = P ∃ s ∈ [1, 1 + n,i ] : |Z s | ≤ c H n,i = P ∃ s ∈ [1, 1 + n,i ] : |Z s | ≤ H-η n,i.The last estimate holds because η is a small positive real number and n,i tends to zero when n becomes large. By Lemma 5.1, we deduce thatP (E n,i ) ≤ c H-ηNow observe that E n,i is realized if and only if E Z (γ) ∩ I n,i = φ. So, using the intervals I n,i as a covering of E Z (γ) ∩ S n , we obtain that

								n,i	and so
		P (E n,i ) ≤ c2 n(γ-H) H-η H .		
		E ν n ρ (E Z (γ)) ≤E	 	2 n-1-n γ H 0	Leb(I n,i ) 2 n	ρ	1 E n,i	 
				2 n-1-n γ		
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