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Multi-segmented non-isothermal compositional liquid gas well
model for geothermal processes

D. Castanon Quiroz ∗, L. Jeannin †, S. Lopez‡, R. Masson§

December 20, 2023

Abstract

We consider a non-isothermal compositional gas liquid model for the simulation of well
operations in geothermal processes. The model accounts for phase transitions assumed to be
at thermodynamical equilibrium and is based on an hydrodynamical Drift Flux Model (DFM)
combined with a No Pressure Wave approximation of the momentum equation. The focus of this
work is on the design of a robust discretization accounting for slanted and multibranch wells
with the ability to simulate both transient behavior such as well opening as well as coupled
simulations at the time scale of the reservoir. It is based on a staggered finite volume scheme
in space combined with a fully implicit Euler time integration. The construction of consistent
and stable numerical fluxes is a key feature for a robust numerical method. It is achieved by
combining a monotone flux approximation for the phase superficial velocities with an upwind
approximation of the phase molar fractions, density and enthalpy. In order to facilitate the
coupling of the well and reservoir models, the Newton linearization accounts for the elimination
of the hydrodynamical unknowns leading to Jacobian systems using the same primary unknowns
than those of the reservoir model. The efficiency of our approach is investigated on both
stand alone well test cases without and with cross flow, and on a fully coupled well-reservoir
simulation.

Keywords: thermal well model, drift flux model, liquid gas compositional model, geothermal
system, multi-segmented well, finite volume scheme, staggered finite volume, monotone flux,
Coats formulation.

1 Introduction

Wells are key objects during the operation of geothermal reservoirs: they provide the connection
between the surface and the geothermal reservoir at depth, enable fluid and heat exchanges
with the geological structure, and are the place of two-phase flows and phase changes. During
apraisal phases well tests provide valuable information on the target and during geothermal
field operation, it is very important to correctly describe the behavior of wellbore flows in order
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to predict the quality of the fluids produced at the surface. A thorough understanding of wells
and their modeling allow a better understanding of the reservoir behaviour.

Physical phenomena and exchanges with the reservoir are complex. For example, the start-
up of a high-temperature geothermal well, fed by a hot liquid, gives rise to transient flows with
flash in the well. Geothermal wells may also be connected by several feed zones at different
pressures and some feed zones will produce in the well, while others may receive fluids from
the well, even when the latter is in production. Finally, in addition to describing wells over
transient short periods, well modeling can also be used to predict the operational behaviour of
a reservoir over a period of several years. In this case, the well model has to be coupled with a
flow model in the geological structures.

Flows occuring in geothermal wells are generally described as two-phase thermal pipe flows.
Given the well’s radius/length aspect ratio, the usual assumption is to rely on 1D models. This
type of flow is relevant not only to the geothermal industry, but also to the oil and gas industry
(for example, [21] for steady flows, [8] for transient flows or [11]). The nuclear industry has also
a strong interest in multiphase thermal flows in pipes ([9] for a review). We present below a few
bibliographical elements relevant to our work for geothermal processes, but readers interested
in more details may find further information in [22], where Tonkin et al. recently proposed an
in-depth review of mathematical models of flows in geothermal boreholes.

The specifics of geothermal flows lie in the description of the interaction between the well and
the reservoir, and the consideration of feed zones and cross-flow phenomena. Bjornsson [6] was
one of the first to propose a multi-feedzone well simulator. These well models are either transient
or steady-state; transient well models are particularly useful for interpreting well tests or, for
example, well start-up, while steady-state models are more dedicated to operations follow-up
(for example, [10] for matching field data or [3] for the modeling of the IDDP-1 supercritical
well).

One of the greatest difficulties in modeling multiphase flows in geothermal wells arises from
the complexity and variety of flow regimes encountered. The simplest homogeneous flow model,
in which all phases flow at the same velocity, is unsuitable because it cannot satisfactorily
reproduce the in-situ well volume fraction and flow rate of each phase. Drift Flux Models (DFM)
are more complex models in which a drift velocity (or slip law) is introduced to describe the
relative motion between phases [27, 24]. These DFM require a number of empirical correlations
derived from experiments for different flow regimes in order to correctly describe phase slip and
in situ phase volume fractions [24, 9, 22]. Given the diversity of flow regimes encountered in
geothermal wells, preference is given to DFM capable of describing all flow regimes encountered
during production well operations [22, 20].

It is usually assumed that the thermodynamical equilibrium assumption applies in the well,
but some authors are interested in non-equilibrium phenomena [18, 2] to describe scaling or
kinetics phenomena. [19, 14, 12, 26]. Nevertheless, these reactive phenomena will not be con-
sidered in our work. Our objective is to set-up an extensible framework for the modeling of
transient multi-component two-phase geothermal wellbore flows with a focus on robust numer-
ical schemes and the ability to couple reservoir and wellbore flow models.

The considered well thermodynamical model accounts for a two-phase liquid gas compo-
sitional non-isothermal system as for the reservoir model described in [25]. This two-phase
compositional system uses a Coats-type formulation in order to account for a large class of equi-
librium thermodynamical models ranging from single phase, two-phase immiscible to two-phase
fully compositional with phase appearance and disappearance. Choosing the same formulation
for both the well and the reservoir ensures robust coupling between these two systems. Then,
following [5], to be able to consider complex well geometries with slanted or multi-branched
paths, the geometry of each well is defined as a set of edges of the reservoir mesh assumed to
define a rooted tree oriented away from the root.

The hydrodynamical model is based on the DFM introduced in [20] for the slip law. More-
over, following [23, 13, 15], we consider a” No Pressure Wave” (NPW) approximation, where
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the mixture momentum equation is reduced to a static balance accounting for gravity and wall
friction pressure losses. This assumption remains valid to describe pressure transients (see [22]
for a numerical validation).

The discretization is based on a staggered finite volume scheme with edge center superficial
velocities and nodal pressure, temperature, saturation and molar fraction unknowns. This choice
is consistent with the Vertex Approximate Gradient (VAG) nodal discretization [25] used in the
reservoir. It is combined with a two-point monotone flux for the phase superficial velocities and
a phase based upwind approximation of the phase molar fractions, molar density and molar
enthalpy. The monotonicity of the superficial velocity fluxes is a key property for the stability
of the scheme. Moreover it guarantees the consistent definition of the phase based upwinding
according to the sign of the phase superficial velocity. The clear understanding of this interplay
between the upwinding of the phase superficial velocities and of the upwinding of the phase
transported variables is one of the main contribution of this work. The monotonicity property
of the superficial velocites is obtained on the full range of saturations [0, 1] using an hybrid
upwinding approach exploiting the mathematical properties of the drift velocity and profile
parameter of the DFM model proposed in [20]. Note that the methodology developped in this
work could be applied to other slip laws sharing the same types of mathematical properties.

The time integration is fully implicit to account for the large reservoir time scale and for
the stiffness of the system at the gas phase appearance. The Jacobian system is reduced by
elimination of the phase superficial velocities and of the well flow rates using the slip law, the
momentum NPW equation and the well monitoring conditions. This elimination allows the use
of the same primary unknowns as for the reservoir model [25] which facilitates the fully implicit
coupling with the reservoir system.

The remainder of this paper is organized as follows. Section 2 presents the well physical
model and its staggered finite volume discretization is described in Section 3. It starts, in
Subsection 3.1, by the definition of the well mesh and discrete unknowns, while the staggered
finite volume scheme is detailed in Subsection 3.2. Subsection 3.3 defines the monotonicity
properties required for the phase superficial velocities and underlines the interplay between these
properties and the upwind approximation of the phase molar fractions, density and enthalpy.
The detailed specific construction of the monotone superficial velocity flux function based on
an hybrid upwinding approach for the DFM model proposed in [20] is reported to Appendix
7.1. The well monitoring conditions are introduced in Subsection 3.4 in the case of a production
well and Appendix 7.2 recall the definition of the reservoir-well fluxes based on the Peaceman
indexes. Then, the algorithm used to solve the coupled nonlinear system at each time step of
the simulation is addressed in Section 4. It is based on a Newton-Raphson algorithm combined
with an active set method for the phase appearance/disappearance and the well monitoring
conditions. Its main originality is related to the elimination in the linearization process of
the thermodynamical, hydrodynamical and monitoring closure laws leading to the same set
of primary unknowns as for the reservoir model in the Jacobian system. This procedure is
described respectively in Subsections 4.1, 4.2 and 4.3. The objective of the numerical Section
5 is to validate the discrete model and to investigate the efficiency of our approach on both
stand alone well test cases in Subsection 5.1 and and for a fully coupled well-reservoir model in
Subsection 5.2. The first test case in Subsection 5.1.1 considers the validation of the numerical
model on a simple two-phase incompressible immiscible flow which reduces to a Buckley Leverett
scalar hyperbolic equation. The second and third test cases consider a high energy liquid vapor
single component thermal flow along a multi-branch production well without and with cross
flow in respectively Subsections 5.1.2 and 5.1.3. Finally, a single well liquid vapor geothermal
test case is considered in Subsection 5.2 to validate the fully coupled model by comparison to a
simpler well model based on a single implicit well unknown.
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2 Well physical model

Let W denote the set of wells. As in [5], each multi-branch well ω ∈ W is defined by a set of
oriented edges of the reservoir mesh assumed to define a rooted tree oriented away from the
root. This orientation corresponds to the drilling direction of the well. We consider a two-phase
liquid gas, compositional, and non-isothermal flow model. The liquid (`) and gas (g) phases
are described by their pressure p (both liquid and gas pressures are assumed to match along
the well), temperature T , volume fraction or saturation sα, and molar fractions cα = (cαi )i∈C ,
α ∈ P = {`, g}, where C denotes the set of components and P the set of liquid and gas phases.
The components are not necessarily present in both phases but at least in one of them. We
consequently denote by Cα ⊂ C the set of components in phase α and by Pi the set of phases
containing the component i ∈ C.

The thermodynamical model uses a Coats’ formulation already developped for the reservoir
model (see e.g. [25]). It is based on the natural variables p, T , sα, cα, α ∈ Q with a set of
unknowns and equations depending on the additional unknown Q ⊂ P representing the subset
of present phases at each point of the space time domain. This formulation has the advantage to
account for an arbitrary number of phases and components and also to allow the components to
be either present or absent of each given phase. This allows to account in the same framework
for models ranging from single phase liquid, single phase gas to two-phase gas liquid, and from
immiscible to fully compositional.

For each phase α, we denote by ζα(p, T, cα) its molar density, by ρα(p, T, cα) its specific
density, by µα(p, T, cα) its dynamic viscosity, by eα(p, T, cα) its molar internal energy, and by
hα(p, T, cα) its molar enthalpy. The fugacities are denoted by fαi (p, T, cα).

The hydrodynamical model is based on the Drift Flux Model (DFM) with slip closure laws
expressing the phase superficial velocities as functions of the mixture velocity and drift velocity
terms [28]. It is combined with the No-Pressure-Wave (NPW) approximation of the momentum
equation relating the pressure gradient to the friction and gravity pressure losses [23, 13].

Let τ denote the curvilinear coordinate along the well and eτ the unit tangential vector
along the well assumed to be oriented toward the well root node. We denote by uα = uαeτ the
superficial velocity of each phase α ∈ P. The mixture velocity is defined by

um = u` + ug = umeτ .

The tangential divergence along the well is denoted by divτ and the tangential gradient by ∇τ .
The section along the well is denoted by Sω(τ). We also set gτ = (g · eτ )eτ where g is the
acceleration of gravity vector.

Let εω(τ) = (∇τ z(τ))·eτ )
|∇τ z(τ)| ∈ {−1, 1} define the orientation along the well, with arbitrary value

for ∇τz = 0 along an horizontal branch. Following [20], let us introduce the function

oω(τ) = εω(τ) cos(θω(τ))1/2(1 + sin(θω(τ)))2,

where θω(τ) ∈ [0, π/2] is the edge angle w.r.t. the vertical direction. Note that oω(τ) = 0
along an horizontal branch. The slip closure law introduced in [28] expresses the gas superficial
velocity ug as a function of the mixture velocity, the drift velocity, and the profile parameter:

ug = sgUd(sg, H̄)oω + sgC0(sg, H̄)um, (1)

with the non negative drift velocity Ud (for vertical wells) and the profile parameter C0 such
that C0(sg = 1, H̄) = 1, Ud(sg = 1, H̄) = 0, sgC0(sg, H̄) ≤ 1 and sgC0(sg, H̄) non decreasing
w.r.t. sg. The drift velocity and profile parameter depend on a set of thermodynamical variables
denoted by H̄ and typically comprising the densities of the phases and the liquid gas interfacial
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tension. They also depend on other fixed parameters such as the well radius rω.

We denote by
Tf = T feτ ,

the wall friction law depending on the mixture velocity um and on thermodynamical quantities.
To fix ideas, we will use in the following a Darcy-Forchheimer type law:

T f = −
(8µm

r2
ω

+ fqρ
m 1

4rω
|um|

)
um, (2)

where fq is the friction coefficient, µm = sgµg + s`µ` the mean viscosity and ρm = sgρg + s`ρ`

the mean specific density.

The well model is based on the molar conservation of each component (3a), the total energy
conservation (3b) and the mixture momentum equation based on the NPW model (3c). It is
combined with the the DFM slip law (3e) and the thermodynamical equilibrium (3d):∑

α∈Pi

(
∂t(S

ωcαi ζ
αsα) + divτ (Sωcαi ζ

αuα) = qr→ωi , i ∈ C, (3a)

∑
α∈P

(
∂t(S

ωeαζαsα) + divτ (Sωhαζαuα)
)

+ divτ (−Sωλ∇τT ) = qr→ωe , (3b)

∇τp = Tf + ρm gτ , (3c)

fgi (p, T, cg) = f li (p, T, c
l) if Q ∩ Pi = P,∑

i∈Cα
cαi = 1, α ∈ Q,∑

α∈Q
sα = 1, sα = 0 if α 6∈ Q,

(3d)

ug = sgUd(sg, H̄)oω + sgC0(sg, H̄)um if Q = P, (3e)

where qr→ωi and qr→ωe are the molar and energy exchange terms with the reservoir. The system
is closed with monitoring conditions at the root node and with a flash computation to determine
the set of present phases Q. The temperature and pressure continuity is also assumed at the
well junctions.

3 Staggered Finite Volume discretization of the well

model

Notations about the well mesh and the discrete variables are introduced in Subsection 3.1. The
scheme presented in Subsection 3.2 is based on a fully implicit time integration to cope with large
time steps at the reservoir time scale. It is combined with a staggered finite volume discretization
in space using node centred control volumes for the molar and energy conservation equations
and edge control volumes for the momentum equation. A key ingredient is the discretization of
the convective fluxes based on a monotone two-point flux for the approximation of the superficial
velocities. This framework is presented in Subsection 3.3 and an example is detailed in Appendix
7.1 based on the model proposed in [20]. Thanks to the monotonicity and consistency properties
of the superficial velocities, it is combined with an upwind approximation of the phase molar
fractions, density and enthalpy w.r.t. the sign of the phase superficial velocity. The monitoring
conditions at the head node of the well are described in Subsection 3.4 in the case of a production
well considered in the numerical Section.
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3.1 Well discretization and notations

The set of nodes of a well ω ∈ W is denoted by Vω and its root node is denoted by vω. A partial
ordering is defined on the set of vertices Vω with v <

ω
v′ if and only if the unique path from the

root vω to v′ passes through v. The set of edges of the well ω is denoted by Eω and for each
edge a ∈ Eω we set a = vv′ with v <

ω
v′ (i.e. v is the parent node of v′, see Figure 1). It is

assumed that Vω1 ∩ Vω2 = ∅ for any ω1, ω2 ∈ W such that ω1 6= ω2.
Let |Sωa | and |Sωvω | denote the well section at respectively the center of the edge a and at the

head node vω. For a ∈ Eω, |a| denotes the lengh of the edge a. Let us define Eωv ⊂ Eω as the set
of well edges sharing the node v ∈ Vω. For all vv′ = a ∈ Eω, let us set κa,v′ = −1 and κa,v = 1.

well

a = vv′

uα
a

pv, Tv, s
α
v , cα

v

uα
ω

v

vω

v′

qr→ω
v,i

qr→ω
v,e

Figure 1: Example of multi-branch well ω with its root node vω, one edge a = vv′ (v parent node
of v′) and the main physical quantities: the head node superficial velocities uαω (non negative for
production wells and non positive for injection wells), the molar and energy flow rates between the
reservoir and the well qr→ωv,i , qr→ωv,e , the well node pressure, temperature, saturations and phase molar
fractions pv, Tv, s

α
v, c

α
v, and the phase superficial velocity uαa at the edge a oriented positively from v′

to v.

For each edge a = vv′ ∈ Eω, let us denote by uαa the superficial velocity of phase α along the
edge a oriented positively from v′ to v. Using the Coats’ formulation, the set of well unknowns
is defined at each node v ∈ Vω by

• the set of present phases Qv,

• the well pressure pv,

• the well temperature Tv,

• the well saturations sαv for α ∈ P,

• the well molar fractions cαv for α ∈ Qv,

• the number of moles ñv,i for i ∈ C̃Qv ,

and by

• the edge superficial velocities uαa for α ∈ P at each well edge a ∈ Eω,
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• the head node superficial velocities uαω for α ∈ P at the well head node vω.

In the above definition, C̃Q denotes the set of components not contained in
⋃
α∈Q Cα. For

C̃Qv 6= ∅, the additional unknowns ñv,i corresponding to the number of moles of the absent

components i ∈ C̃Qv are needed first to avoid the singularity of the Jacobian and second to
track the appearance of the missing phase containing these absent components (see [25] for
details). Note that the saturation sαv of an absent phase α 6∈ Qv vanishes. In the following, to
fix ideas, we assume that the monitoring conditions at the well head node correspond to the
case of a production well consistently with the numerical section.

For a given thermodynamical phase property ξα at a node v, we will use the notation

ξαv = ξα(pv, Tv, c
α
v),

with typically ξα = ζα, ρα, eα, hα, fαi , µ
α.

The molar and energy flow rates between the reservoir and the well ω at a given node v ∈ Vω
are defined by a two point flux approximation between the reservoir and well properties at node
v based on the Peaceman approach combined with a phase potential upwinding. They are
denoted respectively by qr→ωv,i for each component i ∈ C and qr→ωv,e in what follows (see Figure 1
and Appendix 7.2 for their definitions).

3.2 Fully implicit Finite Volume scheme

Let us define at each nodal control volume v, the total number of mole of each component and
the total energy as follows

nv,i =


(
∑
a∈Eωv

|Sωa |
|a|
2

)
∑

α∈Qv∩Pi

cαv,is
α
vζ

α
v if i 6∈ C̃Qv ,

ñv,i else,

nv,e = (
∑
a∈Eωv

|Sωa |
|a|
2

)
∑
α∈Qv

sαvζ
α
v e

α
v,

where the case of an absent component i ∈ C̃Qv is accounted for by the introduction of the
additional unknown ñv,i in order to avoid the singularity of the discrete system.

For each edge a = vv′ ∈ Eω, and each phase α, let us define the following upwind approxi-
mation of the phase molar fractions, density and enthalpy w.r.t. the sign of the phase superficial
velocity:

ξαa =

{
ξαv′ if uαa ≥ 0,

ξαv if uαa < 0,
(4)

with ξα = cα, ζα, hα.

We denote by (0, tF ) the time interval and consider its discretization given by tn, n =
0, · · · , N with t0 = 0, tN = tF and ∆tn = tn − tn−1 > 0 for all n = 1, · · · , N . The time
discretization of the system (3) is based on an implicit Euler integration scheme. To simplify
the notations only the accumulation terms nv,i, nv,e at time tn−1 will be specified by the n− 1
superscript. For all other quantities considered at the current time tn, we will drop the n
superscript for simplicity.
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Then, the discretization of the well equations (3a)-(3b)-(3c)-(3d) at each time step n =
1, · · · , N is defined as follows:

nv,i − nn−1
v,i

∆tn
+
∑
a∈Eωv

∑
α∈Pi

−κa,v|Sωa |cαa,iζαa uαa

= qr→ωv,i − δvωv
∑
α∈Pi

|Sωvω |c
α
v,iζ

α
vu

α
ω, i ∈ C, v ∈ Vω,

(5a)

nv,e − nn−1
v,e

∆tn
+
∑
a∈Eωv

|Sωa |
(λa
|a|

(Tv − Tv′) +
∑
α∈P
−κa,vhαa ζαa uαa

)
= qr→ωv,e − δvωv

∑
α∈P
|Sωvω |h

α
vζ

α
vu

α
ω, v ∈ Vω,

(5b)

pv − pv′ + ρ̄m
a g(zv − zv′) = T fa |a|, vv′ = a ∈ Eω, (5c)

fg
i,v = f `i,v if Qv ∩ Pi = P, v ∈ Vω,∑
i∈Cα

cαv,i = 1, α ∈ Qv, v ∈ Vω,∑
α∈Qv

sαv = 1, sαv = 0 if α 6∈ Qv, v ∈ Vω.

(5d)

where δ stands for the Kronecker symbol with δvωv = 1 if v = vω, else 0. In (5), the edge thermal
conductivity of the mixture is defined by

λa =
∑
α∈P

sαv + sαv′

2
λα,

with λα the thermal conductivity of the phase α assumed constant for simplicity. The wall
friction term T fa is given by the Darcy-Forchheimer law (6) leading to

T fa = −
(8µ̄m

a

r2
a

+ fqρ̄
m
a

1

4ra
|um

a |
)
um
a , (6)

with the following arithmetic means of the mixture specific density and dynamic viscosity at
the edge a

ρ̄ma =
1

2

( ∑
α∈Qv

sαvρ
α
v +

∑
α∈Qv′

sαv′ραv′

)
, µ̄ma =

1

2

( ∑
α∈Qv

(
sαvµ

α
v +

∑
α∈Qv′

sαv′µαv′

)
. (7)

It remains to define the discretization of the edge superficial velocities uαa accounting for the
slip law (3e) at given mixture velocity um = ug + u`. This framework is detailed in the next
subsection based on a monotone two-point flux.

3.3 Monotone two-point flux for the edge superficial velocities

Let us define the arithmetic average of a thermodynamical variable ξα for a given phase α at a
well edge a = vv′ with α ∈ Qv ∪Qv′ by

ξ̄αa =



ξα(pv, Tv, c
α
v) if α ∈ Qv and α 6∈ Qv′ ,

ξα(pv′ , Tv′ , cαv′) else if α 6∈ Qv and α ∈ Qv′ ,
sαvξ

α(pv, Tv, c
α
v) + sαv′ξα(pv′ , Tv′ , cαv′)

sαv + sαv′
else if sαv + sαv′ > ε,

1

2

(
ξα(pv, Tv, c

α
v) + ξα(pv′ , Tv′ , cαv′)

)
else.
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This arithmetic averaging is used to compute the thermodynamical variables H̄a at the well
edge a = vv′ which enter in the definition of the slip law (3e).

Then, the superficial velocities uαa are obtained at given mixture velocity um
a using a numer-

ical two-point monotone flux denoted by

F g
a (sg

v′ , s
g
v, H̄a),

for the continuous flux function

fa(s
g) = sgUd(sg, H̄a)oa + sgC0(sg, H̄a)u

m
a ,

where oa is the value of the function oω along the edge a. The numerical flux function F g
a must

satisfy the following properties:

• consistency property:

F g
a (sg, sg, H̄a) = fa(s

g) for all sg ∈ [0, 1],

• monotonicity property which specifies that, for all (sg
v′ , s

g
v) ∈ [0, 1]×[0, 1], F g

a (sg
v′ , s

g
v, H̄a) is

non decreasing w.r.t. its first argument sg
v′ and non increasing w.r.t. its second argument

sg
v.

Then the superficial velocities uαa are defined by{
ug
a = F g

a (sg
v′ , s

g
v, H̄a),

u`a = um
a − u

g
a.

(8)

From the consistency and monotonicity properties, it results that

• sg
v′ = 0⇒ ug

a = F g(0, sg
v) ≤ 0 for all sg

v ∈ [0, 1],

• sg
v = 0⇒ ug

a = F g(sg
v′ , 0) ≥ 0 for all sg

v′ ∈ [0, 1],

• sg
v′ = 1⇒ u`a = um

a − F g(1, sg
v) ≤ 0 for all sg

v ∈ [0, 1],

• sg
v = 1⇒ u`a = um

a − F g(sg
v′ , 1) ≥ 0 for all sg

v′ ∈ [0, 1].

These properties are key for the definition (4) of the upwind approximations of the phase molar
fractions, phase molar density and phase molar enthalpy w.r.t. the sign of the phase superficial
velocity. Indeed, they ensure that either the phase is present at the upwind node or that its
superficial velocity vanishes ensuring that the product ξαa u

α
a is always properly defined, with

ξα = ζα, cα, hα.

Note also that if Qv ∪Qv′ = {α} (single phase α present at both nodes), the properties of

the numerical flux function imply that uαa = um
a and uβa = 0 for the absent phase β. It means

that, in that cases, the thermodynamical variables H̄a do not need to be computed which would
have required a cumbersome extension of the molar fractions of the absent phase.

The specific construction of the two-point monotone flux function F ga depends on the laws
C0 and Ud. We propose in Appendix 7.1 a monotone two-point flux for the gas liquid DFM
model introduced in [20] on the full range of gas saturation.

3.4 Monitoring conditions

Assuming the case of a production well to fix ideas, the monitoring conditions prescribe a
minimum head node pressure p̄ω and a maximum well molar flow rate q̄ω ≥ 0. Setting

pω = pvω and qω =
∑
α∈P
|Sωvω |ζ

α
vωu

α
ω, (9)
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the boundary condition at the head node vω combines the complementary constraints on the

pair
(
q̄ω − qω, pω − p̄ω

)
with the slip law:

qω ≤ q̄ω, pω ≥ p̄ω, (qω − q̄ω)(pω − p̄ω) = 0,

ug
ω = F g(sg

vω , s
g
vω , Hvω) = sg

vωC0(sg
vω , Hvω)um

ω + sg
vωUd(sg

vω , Hvω),

um
ω = ug

ω + u`ω.

(10)

4 Nonlinear solver

Given the subset of present phases Qv, let us define the set of well unknowns at node v ∈ Vω

Xv =
(
pv, Tv, s

g
v, s

`
v, c

α
v, α ∈ Qv, ñv,i, i ∈ C̃Qv

)
.

The discrete nonlinear system to be solved at each time step is defined for each well by the set
of unknowns

(Xv)v∈Vω , (Qv)v∈Vω , (ug
a, u

`
a)a∈Eω , (ug

ω, u
`
ω),

and the set of equations (5)-(8)-(10) complemented by the flash equations of type Qv =
flash(Xv) for each node v ∈ Vω. It is coupled fully implicitly to the reservoir system through
the source terms qr→ωv,i , qr→ωv,e for v ∈ Vω. Let us refer to Appendix 7.2 for their expressions
depending on the reservoir and well pressure, temperature, molar fractions and saturations at
node v.

This system is solved using a Newton-Raphson algorithm based on an active set method for
the subsets of present phases and for the well active constraints. This type of algorithm can be
viewed as an active set formulation of a Newton-Min semi-smooth Newton algorithm (see e.g.
[25] and [4]).

The Jacobian system is assembled at each Newton iteration given the sets of present phases
and the well active constraints which are updated after each Newton update. An important
feature of the implementation is the reduction of the Jacobian system by elimination of the
local thermodynamical closure laws (5d), of the hydrodynamical equations (5c)-(8) and of the
well monitoring conditions (10). The elimination of the thermodynamical closure laws is also
applied to the reservoir equations. The reduced linear system couples the component and energy
conservation equations with a block structure of #C+1 equations and primary unknowns at each
well and reservoir nodes. This elimination procedure detailed in the next subsections facilitates
the assembly of the coupled linear system and reduce the cost of its resolution.

4.1 Elimination of the thermodynamical closure laws

Let us denote by Cv(Xv) the thermodynamical closure equations (5d) at node v. The elimina-
tion of the thermodynamical closure laws is based on a splitting of the unknowns Xv = (Xp

v, X
s
v)

into #C + 1 primary unknowns Xp
v and the remaining secondary unknowns Xs

v. This splitting

classically depends on the set of present phases Qv and is such that ∂C$(Xp
v,X

s
v)

∂Xs
v

is non singular.
It results that, after Newton linearization, the secondary unknowns dXs

v can be expressed as a
linear function of dXp

v and of the residual Cv(Xv) (see [25] for details in the case of the Coats’
formulation of the reservoir model).

4.2 Elimination of the hydrodynamical equations

For all well edge a = vv′, given Xv, Xv′ , Qv, Qv′ , the hydrodynamical module computes the
phase superficial velocities

uαa for α ∈ Qv ∪Qv′ ,

10



and their Newton linearization accounting for the elimination of the thermodynamical closure
laws, such that

duαa = Aαa,vdX
p
v +Aαa,v′dX

p
v′ +Bα

a for α ∈ Qv ∪Qv′ . (11)

This computation is detailed in the next two paragraphs. Note that, from the properties of the
numerical flux function F g

a , we have uαa = 0 for α 6∈ Qv ∪Qv′ , hence this case does not need to
be considered.

4.2.1 Mixture velocity

Let us define the difference of potential at the well edge a = vv′ by

∆aΦ = pv − pv′ + ρ̄m
a g(zv − zv′).

Considering the wall friction law (6), the momentum equation (5c) can be solved for the mixture
velocity as a function of ∆aΦ depending on the sign of ∆aΦ as follows

um
a = −sign(∆aΦ)

(αc − αb)
2αa

, (12)

with

αa = |a|fq
ρ̄m

4ra
, αb = 8|a| µ̄

m

(ra)2
, αc =

√
(αb)2 + 4|∆aΦ|αa,

and the definition (7) of the mean specific density ρ̄ma and viscosity µ̄ma .
Note that for more general wall friction laws, the elimination of the mixture velocity is not

always possible at the non linear level. In that case it is done at the linear level after Newton
linearization taking into account the momentum equation residual. The mixture velocity um

a is
computed from (12) as a function of the entries

∆aΦ, ρ̄
m
a , µ̄

m
a ,

as well as its derivative w.r.t. the 3 entries.
Then, using the two-point monotone flux function F ga , we can compute both superficial

velocities as detailed below.

4.2.2 Superficial velocities

For Qv ∪Qv′ = {α} ∈ P, {β} = P \ {α}, we simply have

uαa = um
a , uβa = 0,

with um
a defined by (12).

For Qv ∪Qv′ = P, we first compute um
a from (12), and then, the gas superficial velocity is

obtained from the two-point monotone flux F g
a . Using the model detailed in Appendix 7.1, the

entries of F g
a are

sg
v′ , s

g
v, ρ̄

`
a, ρ̄

g
a, σ̄g`,a, u

m
a .

The flux function F g
a computes ug

a as well as its derivatives w.r.t. the 6 entries. Then the liquid
superficial velocity is given by

u`a = um
a − ug

a.

Combining the derivatives of the mixture velocities and superficial velocities w.r.t. to the above
entries with the derivatives of the thermodynamical variables, we can compute (11).
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4.3 Elimination of the monitoring conditions

The complementary constraints are solved using an active set method meaning that we impose
either a fixed pressure pω = p̄ω with qω ≤ q̄ω or a fixed molar flow rate qω = q̄ω with pω ≥ p̄ω.
The active constraint is updated at each Newton iteration according to the remaining inequality
constraint.

The elimination of the head node superficial velocities is performed as follows. In case of
active flow rate constraint, the well total molar flow rate is prescribed with

qω = q̄ω, (13)

In case of active pressure constraint, it is obtained by the sum over i of the molar conservation
equations at node vω

qω = −
∑
i∈C

nvω ,i − nn−1
vω ,i

∆tn
+
∑
i∈C

qr→ωvω ,i +
∑

a∈Eωvω

∑
α∈P

κa,vω |Sωa |ζαa uαa . (14)

Note that this equation must hence be substituted by the equation pω = p̄ω in the system of
primary equations and unknowns. Using the total molar flow rate qω computed from (13) or
(14), we can eliminate the head node mixture velocity um

ω as follows. Using (9) and (10), we set

um
ω =

qω
|Sωvω |ζαvω

if Qvω = {α},

and, if Qvω = P, setting C0,vω = C0(sg
vω , Hvω), Ud,vω = Ud(sg

vω , Hvω), we obtain the equation

qω
|Sωvω |

= ζg
vω

(
sg
vωC0,vωu

m
ω + sg

vωUd,vω

)
+ ζ`vω

(
(1− sg

vωC0,vω)um
ω − sg

vωUd,vω

)
.

providing

um
ω =

qω
|Sωvω |

+ (ζ`vω − ζ
g
vω)sg

vωUd,vω

ζg
vωs

g
vωC0,vω + ζ`vω(1− sg

vωC0,vω)
.

Once um
ω is known we can compute the head node superficial velocities uαω from (10).

5 Numerical experiments

The objectives of this numerical Section is to validate the numerical model and investigate its
ability to simulate both well opening transient test cases without and with cross flow and fully
coupled test cases at the reservoir time scale. The well stand alone test cases are presented in
Subsection 5.1 and a fully coupled test case is considered in Subsection 5.2 where it is compared
for validation to a simpler single implicit unknown well model.

5.1 Stand alone well model

5.1.1 Validation on a Buckley Leverett solution

Let us consider a two component C = {1, 2}, two-phase P = {`, g}, immiscible, incompressible
and isothermal model obtained by setting in the general compositional framework C` = {1} and
Cg = {2}. The well is vertical of diameter 0.1 m and centerline (0, H) with z = 0 corresponding
to the leaf node and z = H = 100 m to the head node. The molar and specific densities as well
as the dynamic viscosities are considered constant.

Let us set
ug(sg) = sgUd(sg) + sgC0(sg)um,
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and
u`(sg) = um − ug(sg).

The volume conservation equations for each phase write{
∂ts

g + ∂zu
g(sg) = 0,

∂ts
` + ∂zu

`(sg) = 0.

Summing the above equations we obtain ∂zum = 0 meaning that the mixture velocity depends
only on time. It will be fixed by the input boundary condition at the leaf node fixing the mixture
velocity to um = 0.5 m.s−1. Thus, we obtain the scalar hyperbolic Buckely Leverett equation

∂ts
g + ∂zu

g(sg) = 0,

with the flux function ug(sg) at fixed mixture velocity. In this test case we compare the solution
of the model developped in this work to the one obtained by solving numerically the scalar hy-
perbolic equation. The same Euler implicit time discretization is used for both implementations.
The scalar hyperbolic discretization is based on a cell centered Finite Volume (FV) scheme while
the compositional model uses the node centered FV scheme described in this work. The data set
is defined by ρg = 4 Kg.m−3, ρl = 1000 Kg.m−3, by the input gas superficial velocity at the leaf
node ug = 0.55 m.s−1 and the output liquid velocity at the leaf node u` = −0.05 m.s−1. The
DFM model [20] (see Appendix 7.1) is used with the parameters A = 1.2, B = 0.3, a1 = 0.2,
a2 = 0.4, Ku = 1.5 and σg` is fixed to 71.97 10−3 (see the resulting flux function on the left
figure 2). The solutions are computed with both models using a uniform mesh of 200 cells, a
uniform time stepping with 200 time steps and the simulation time tF = 50 s. The right figure
2 shows that both models provide basically the same gas saturation plot at final time tF . We
also plot in Figure 3 the fine mesh gas saturation (Left) and superficial velocities (Right) at
final time obtained with the compositional model using 1000 cells and 1000 time steps. The gas
moves up at a higher velocity than the mixture velocity as a result of the drift velocity allowing
the liquid to go out of the well at the leaf node.

     0
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Figure 2: (Left): gas superficial velocity as a function of the gas saturation (flux function) at fixed
mixture velocity um = 0.5 m.s−1 for the Buckley Leverett test case. (Right): Comparison between
the Buckley Leverett (BL) and compositional (Comp) gas saturations at final time on the Buckley
Leverett test case
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Figure 3: (Left): Compositional gas saturation at final time using the fine mesh with 1000 cells
and 1000 time steps on the Buckley Leverett test case. (Right): liquid and gas superficial velocities
obtained with the compositional model at final time using the fine mesh with 1000 cells and 1000
time steps on the Buckley Leverett test case.

5.1.2 Thermal test case with a chair shaped production well

We consider a single H2O component liquid vapor thermal flow along the chair shaped produc-
tion well illustrated in Figure 4. The internal energy, mass density and viscosity of H2O in the
liquid and gas phases are defined by analytical laws as functions of the pressure and temperature
(refer [1, Section 4.1] for details). The vapour pressure Psat(T ) is given in Pa by

psat(T ) = 10−3(T − 273)4.

The DFM model [20] is used with the parameters A = 1.2, B = 0.3, a1 = 0.2, a2 = 0.4, Ku = 1.5
and σg` is fixed to 71.97 10−3 (see Appendix 7.1). The Darcy-Forccheimer friction law (6) is
set up with the friction parameter fq = 6 10−2. The well radius is fixed to 0.05 m, the thermal
conductivity is considered constant for simplicity with λ = 2.

The well is monitored with the minimum well head pressure set to p̄ω = 5 105 Pa and the
maximum well mass flow rate set to q̄ω = 15 Kg.s−1. The initial temperature is set to 350 K
along the well and the initial pressure is hydrostatic at liquid state with pressure set to 5 105

Pa at the head node.
Feed zones are modeled at each of the two leaf nodes at high temperature and high pressure

in liquid state. At both leaves the reservoir pressure is fixed to 1.1 107 Pa, the temperature
to 520 K, the Darcy well index to WID = 10−12 m and the Fourier well index to WIF = 100
J.s−1.K−1.

The well is meshed using a uniform discretization of each of the four branches with 40 edges
for both bottom vertical branches, 40 edges for the horizontal branch and 60 edges for the top
vertical branch. The simulation time is fixed to tF = 2000 s at which the stationnary state
is basically reached, and the time stepping is set up with an initial time step of 10 s and a
maximum time step of 40 s. The stopping criteria of the Newton nonlinear solver is fixed to
either 10−8 on the relative residual l1 norm or to 10−10 on the l∞ norm of the Newton increment
dsg + dp

105
+ dT

100 . The time step is multiplied by the factor 1.1 until it reaches the maximum time
step in case of Newton convergence in less than 50 iterations and restarted with a twice smaller
time step otherwise. Using this setting, the simulation runs in 58 time steps with no time step
failure and a total number of 438 Newton iterations.

Figures 5 and 6 exhibit the final pressure, temperature, gas saturation and superficial ve-
locities. The rise of the hot temperature front induces the appearance of the gas phase at the
top of the well starting at roughly t = 1200 s (see Figure 7). Figure 7 plots the time histories
of the well pressure p̄ω, the mass flow rate q̄ω, the leaf pressures and the gas volume inside the
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well. The well starts to produce at the fixed minimum well head pressure of 5 105 Pa with a
rising mass flow rate. This rising flow rate is induced by the temperature increase along the well
which reduces the weight of the liquid column. This can be checked in the leaf pressures plot
showing the decrease of the leaf pressures in the first part of the simulation at fixed minimum
well pressure. Then, the well flow rate reaches its maximum value of 15 Kg.s−1 and the well
operates at fixed maximun mass flow rate with a rising well head pressure which speeds up when
the gas phase appears. At around t = 1400 s, the well head pressure starts to decrease rapidly
as a result of the pressure drop induces by the high gas velocity, until the well operates again
at fixed minimum well head pressure of 5 105 Pa. We can also notice, in the leaf pressures plot,
the gap between the two leaf pressures which results from the additional wall friction along the
horizontal branch.

Figure 4: Chair shaped well with one junction and four branches of sizes 600 m (upper vertical
branch), 400 m (lower left vertical branch), 400 m (lower vertical branch) and 400 m (horizontal
branch).

Figure 5: Pressure (Pa), temperature (K), gas saturation solutions at final time for the chair shaped
thermal well test case.
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Figure 6: Liquid and gas superficial velocities (m.s−1) at final time for the chair shaped thermal well
test case.
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Figure 7: Well mass flow rate, well head pressure, leaf pressures, and gas volume in the well as a
function of time for the chair shaped thermal well test case.

5.1.3 Thermal test case with cross flow

We consider the same liquid vapor thermal model as in the previous test case along the T
shaped production well illustrated in Figure 8. The DFM model [20] is again used with the same
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parameters as in the previous test case. In order to obtain cross flow, the reservoir properties at
the two leaf nodes are set up as follows. The bottom left leaf will act as an injection point and
is set up with the reservoir pressure 9 106 Pa, the reservoir temperature 520 K, the Darcy well
index WID = 10−12 m and the Fourier well index WIF = 100 J.s−1.K−1. The right leaf will
act as a feed zone and is set up with the reservoir pressure 7 106 Pa, the reservoir temperature
500 K, the Darcy well index WID = 10−12 m and the Fourier well index WIF = 100 J.s−1.K−1.

The well is monitored as in the previous test case with the minimum well head pressure set
to p̄ω = 5 105 Pa and the maximum well mass flow rate set to q̄ω = 15 Kg.s−1. The initial
temperature is set to 350 K along the well and the initial pressure is hydrostatic at liquid state
with pressure set to 5 105 Pa at the head node.

The well is meshed using a uniform discretization of each of the three branches with 40
edges for the bottom vertical branch, 40 edges for the horizontal branch and 60 edges for the
top vertical branch. The simulation time is fixed to tF = 2500 s to reach the stationnary state
and the time stepping is set up with an initial time step of 0.1 s and a maximum time step of
40 s. Using the same nonlinear solver setting as in the previous test case, the simulation runs
in 147 time steps with 5 time step failures and a total number of 1056 Newton iterations.

Figure 10 exhibits the final superficial liquid and gas velocities and Figure 13 plots the liquid
and gas superficial velocities along the vertical (b1) and horizontal (b2) parts of the well at times
1000 s and 2500 s. These figures clearly exhibit the cross flow between the right leaf acting as
a feed zone and the bottom leaf acting as an injection point.

Figure 9 exhibits the final pressure, temperature, and gas saturation. The high temperature
front propagates from the right leaf to both the top and the bottom sides of the vertical part of
the well. The rise of the hot temperature front at the low pressure top side of the well induces
the appearance of the gas phase starting at roughly t = 1800 s (see also Figure 11). Figure 11
plots the time histories of the well pressure p̄ω, the mass flow rate q̄ω, the leaf pressures and
the gas volume inside the well. It is shown that the well is monitored at the minimum well
head pressure until the gas phase appears reducing the weight of the column which reduces
the pressure at the right leaf node and allows to reach the maximum mass flow rate. The
well rapidly switches back to the minimum pressure monitoring due to the increase of the wall
friction induced by the high gas velocity.

Figure 12 exhibits the plots of the pressure, temperature, gas saturation along the vertical
(b1) and horizontal (b2) parts of the well at times 1000 s and 2500 s showing the propagation
of the temperature front on both sides of the vertical part of the well, as well as the decrease of
the pressure along the well as a result of the temperature increase.

Figure 8: T shaped well with one junction and three branches of sizes 600 m (upper vertical branch),
400 m (lower left vertical branch), and 400 m (horizontal branch).
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Figure 9: Pressure (Pa), temperature (K), gas saturation solutions at final time for the cross flow
thermal well test case.

Figure 10: Liquid and gas superficial velocities (m.s−1) at final time for the cross flow thermal well
test case.
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Figure 11: Well mass flow rate, well head pressure, leaf pressures, and gas volume in the well as a
function of time for the cross flow thermal well test case.
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Figure 12: Pressure, temperature and gas saturation at different times along the left vertical left
branches (b1) and the right horizontal branch (b2) for the cross flow thermal well test case.
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Figure 13: Liquid and gas superficial velocities at different times along the left vertical left branches
(b1) and the right horizontal branch (b2) for the cross flow thermal well test case.

5.2 One production well coupled with a reservoir

The objective of this test case is to validate the coupled reservoir multi-segmented well model
by comparison with the results obtained using a simpler well model based on a single implicit
unknown. We consider single component H2O two-phase (liquid and vapor), non-isothermal
flow. The DFM model [20] parameters are the same as the ones used in the test case 5.1.2.
However, the Darcy-Forccheimer friction law (6) is set up with the friction parameter fq ∈
{0.001, 0.06} where the case fq = fq1 = 0.001 corresponds to a very small friction coefficient.
This choice will be useful for comparison with previous published results in the literature without
friction as explained below. The case fq = fq2 = 0.06 corresponds a typical order of magnitude.
The geothermal reservoir is defined by the domain Ω = (−H,H)2 × (0, Hz) where H = 1000 m
and Hz = 200 m, and we consider one vertical producer well along the line {(x, y, z) ∈ Ω |x =
y = 0} of radius rω = 0.1 m. The reservoir is assumed homogeneous with isotropic permeability
K = kI, k = 5×10−14 m2 and porosity φ = 0.15. It is assumed to be initially saturated with pure
water in liquid phase. The internal energy, mass density and viscosity of water in the liquid and
gas phases are defined by analytical laws as functions of the pressure and temperature (refer [1,
Section 4.1] for details). The vapour pressure Psat(T ) is given in Pa by the Clausius-Clapeyron
equation

psat(T ) = 100 exp

(
46.784− 6435

T
− 3.868 log(T )

)
.

The reservoir thermal conductivity is fixed to λr = 2 W.m−1.K−1, and the rock volumetric heat
capacity is given by Cs = 1.6 MJ.K−1.m−3 with Es(p, T ) = CsT . The relative permeabilities are
set to kαr (sα) = (sα)2 for both phases α ∈ {`, g}. The gravity vector is as usual g = (0, 0,−gz)
with gz = 9.81 m.s−2. The simulation consists in two stages. At the first one, the well is closed
and we impose a Dirichlet boundary condition at the top of the domain prescribing the reservoir
pressure and the temperature equal to pr = 4 MPa and T r = (psat)

−1(pr) − 1 K; respectively,
and homogeneous Neumann boundary conditions are set at the bottom and at the sides of the
domain. The choice of the initial temperature T r just below the saturated vapor temperature
is made in order to make the gas phase appear at the beginning of the production during the
second stage. The first stage is run until the simulation reaches a stationary state with the
liquid phase only, a constant temperature and an hydrostatic pressure depending only on the
vertical coordinate.

For the second stage, homogeneous Neumann boundary conditions are prescribed at the
bottom and at the top of the domain Ω, but Dirichlet boundary conditions for the pressure and
temperature are fixed at the sides of the domain to the ones at the end of stage one. The well
is set in an open state, i.e., it can produce, and its monitoring conditions are defined by the
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minimum bottom hole pressure p̄ω = 1 bar (never reached in practice) and the maximum total
mass flow rate q̄ω = 200 ton.hour−1. The second stage is run on the time interval (0, tF ) with
tF = 30 days. Moreover, at the top of the reservoir and at the root of the well, there is no
coupling between them during both stages. The entire simulation runs on uniform Cartesian
mesh of size nx × ny × nz to discretize the domain Ω with (nx, ny, nz) = (20, 20, 10). The well
indexes WID and WIF introduced in Appendix 7.2 are computed at each node of the well
following [5].

In order to validate the coupled model, we compare the numerical results against the ones
published in [1, Section 4.1] using the same thermodynamic parameters, the same initialization
and stages, and the same mesh. The model presented in [5] is based on the following assumptions
on the well model:

(i) the wall friction, the thermal conduction and the transient terms are all neglected all along
the well,

(ii) the thermal conduction is neglected between the reservoir and the well,

(iii) there is no cross flow and both the gas and liquid velocities are oriented in the same
direction all along the well,

(iv) the pressure drop along the well is computed based on an explicit approximation of the
mean density ρm.

In that case, the well model can be shown (see e.g. [5]) to reduce to a single implicit unknown,
the well head node pressure pω, and to a single equation, the monitoring conditions, fully coupled
to the reservoir system. The computation of the mean density ρm along the well is based on
a gas liquid flash computation providing the well temperature and gas saturation at each well
node. This flash computation is based on the lagged in time values of the well pressures and
molar and energy flow rates qr→ωv,i , qr→ωv,e . It usually assumes a zero slip law ug = sgum as
detailed in [5], but it can also easily account for a general slip law (1) by a simple modification
of the gas liquid flash computation. In order to investigate further the effects of the DFM slip
law, we consider in this test case the model proposed in [5] with both a zero slip law and its
enhancement using the same slip law as the one used in the multi-segmented well model. For
the sake of completeness, the modified flash computations implied by the non zero slip law is
detailed in Appendix 7.3.

To make easier the comparison of the results obtained by each model, we label by MSwell-fq1

and MSwell-fq2 the results obtained by the proposed Multi-Segmented well model (5) with
fq1 = 0.001 and fq2 = 0.06, respectively. We label by SIUwell the ones obtained by the Single
Implicit Unknown well model proposed in [5], and we label by SIUwell-DFM its enhancement
including the DFM slip law (1) in the gas liquid flash computation. Figure 14 compares the
pressure, the temperature and the gas saturation along the well; respectively, at final time tF
using this three different models. Figure 15 show the total volume of gas inside the well and
the reservoir as functions of time for the three models. It can be noticed from those figures
that the results obtained with the MSwell model (5) with fq1 = 0.001 are very close to the
ones obtained using the well model of [5] provided that the DFM slip law is taken into account.
This is expected for such configuration with no cross flow, no significant thermal conduction
losses between the well and the reservoir, no significant wall friction, and no significant transient
effects at the reservoir time scale. On the other hand, the more realistic value fq2 of the friction
coefficient induces a larger pressure drop which results in significant variations between the
MSwell-fq2 and the SIUwell-DFM models.

Table 1 shows the numerical efficiency of the nonlinear solver for all models using the same
mesh for the second stage of the simulation. We denote by N∆t the number of time steps and
by NNewton the average number of Newton iterations per time step. It exhibits as expected
the higher number of Newton iterations for the multi-segmented well models compared with
the single implicit unknown well models, as a result of stronger nonlinearities. We note also
that the nonlinear convergence of the multi-segmented well model is sensitive to very small (not
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physical) friction coefficients due to an increased stiffness of the mixture velocity as a function
of ∆aΦ in such cases (see (12)).
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Figure 14: Pressure in Pa, temperature in ◦C and gas saturation along the well at final time using
the three different models.
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time using the three different models.
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Model #M N∆t NNewton

MSwell-fq1 32000 121 10.12
MSwell-fq2 32000 120 6.15
SIUwell 32000 133 1.56

SIUwell-DFM 32000 133 1.58

Table 1: Numerical behavior of the second stage of the simulation for different models using the
same mesh. N∆t is the number of time steps, and NNewton the average number of Newton iterations
per time step.

6 Conclusion

A numerical model for two-phase compositional non-isothermal flow in geothermal multi-branch
wells is developed to simulate the flow and transport along the wells in geothermal field oper-
ations. The model combines the flexible thermodynamical Coats’ formulation with the a drift
flux hydrodynamical model leading to a system coupling the conservation equations for each
component, momentum and energy.

The discretization is fully implicit in time and based on a staggered finite volume scheme
in space, with node centred control volumes for components and energy conservations and edge
control volumes for the momentum conservation. The numerical fluxes combine a monotone
flux approximation for the phase superficial velocities on the full range of gas saturation with
an upwind approximation of the phase molar fractions, density and enthalpy. The interplay
between these two parts of the fluxes is a key ingredient of the stability of the scheme.

The nonlinear solver benefits from the elimination of the well superficial velocities and flow
rates in the Newton linearization process leading to a Jacobian system with the same primary
unknowns both for the well and the reservoir, which makes the coupling between both models
much easier.

This numerically robust well model can be used to simulate complex transient flows such
as those occurring during the start-up of a geothermal well, as well as cross-flow configurations
along the wells. It can be used either by modeling the reservoir with source terms using well
indexes, or fully coupled with a subsurface flow model. Different configurations (transient,
stationary, coupled or not with a reservoir flow model) have been tested to validate the model
performance.

Future work will focus on the implementation of alternative drift flux models in particular
to take downward flows into account, and on coupled well-reservoir modeling for large scale
industrial case studies.

7 Appendices

7.1 Appendix I: example of monotone two-point flux for the
DFM model from [20]

The gas liquid DFM model introduced in [20] is based on the following choices of the drift
velocity and profile parameter.

Let σg` be the gas liquid interfacial tension, and let us define the following characteristic
velocity for the rise of a gas bubble in a liquid:

Uc =
(
σg`g

(ρ` − ρg)

(ρ`)2

) 1
4
.
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The profile parameter is defined by

C0(sg) =
A

1 + (A− 1)γ2
,

γ = P[0,1]

(β −B
1−B

)
,

β = max
(
sg, Fνs

g |um|
Vsgf

)
,

Vsgf = Ku

√
ρ`

ρg
Uc,

(15)

with constant parametersA, B which must be such thatB < (2−A)/A to ensure that sgC0(sg) ≤
1 and sgC0(sg) non decreasing. Typically we set A = 1.2, B = 0.3. The Critical Kutateladze
number Ku ∈ [0, 3.5] depends on the dimensionless diameter of the pipe defined by

D̂ =
(
g

(ρ` − ρg)

σg`

) 1
2
D,

where D is the diameter of the pipe. The constant parameter Fν is typically set to 1 and the
projection P[0,1] is defined by

P[0,1](x) =


0 if x ≤ 0,
1 if x ≥ 1,
x if x ∈ (0, 1).

The drift velocity times sg is defined by

sgUd(sg) = G(sg)K̃(sg) Uc, (16)

with

G(sg) =
(1− sgC0(sg))

sgC0(sg)

√
ρg

ρ`
+ 1− sgC0(sg)

,

and

K̃(sg) =


1.53 sg if sg ≤ a1,

KuC0(sg)sg if sg ≥ a2,

1.53 a1
sg − a2

a1 − a2
+KuC0(a2)a2

sg − a1

a2 − a1
if sg ∈ (a1, a2).

Note that the linear interpolation between a1 and a2 is done in [20] on K̃(sg)
sgC0(sg) rather than

on K̃(sg). It has been modified here to simplify the design of a monotone flux. The constant
parameters 0 < a1 < a2 < 1 are typically set to a1 = 0.2 and a2 = 0.4. We can check that
G(sg) is a non increasing function w.r.t. sg. We also assume in the following that K̃(sg) is a
non-decreasing function w.r.t. sg which is the case provided that the condition

1.53 a1 ≤ a2KuC0(a2),

is satisfied. In practice, it seems that this condition is not very restrictive. This condition
guarantees that the following flux function F g

a is a monotone two-point flux: F g
a (u, v) = u C0(u)(um

a )+ + v C0(v)(um
a )−

+G(v) K̃(u)(Ucoa)
+ +G(u) K̃(v)(Ucoa)

−.
(17)

If 1.53 a1 > a2KuC0(a2), a Godunov scheme could still be computed for K̃(sg) since it is in
that case a piecewise monotone function non decreasing on (0, a1) ∪ (a2, 1) and non increasing
on (a1, a2).
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7.2 Appendix II: reservoir source terms

It is assumed that the radius of the wells are small compared to the cell sizes in the neighborhood
of the well. It results that the Darcy flux between the reservoir and the well at a given well
node v ∈ Vω is obtained using the Two Point Flux Approximation

V α
v = WIDv (pr,αv − pv),

where pr,αv is the reservoir phase pressure at node v. Fourier fluxes between the reservoir and
the well are discretized in the same way using the Two Point Flux Approximation

Fv = WIFv (T rv − Tv),

with T rv denoting the reservoir temperature at node v. The Well Indexes WIDv and WIFv are
typically computed using Peaceman’s approach (see [16, 17, 7, 5]) and take into account the un-
resolved singularity of respectively the pressure and temperature solutions in the neighborhood
of the well. Let us denote by kαr,v(sα) the phase relative permeability at node v as a function
of the phase saturation sα, by sr,αv the reservoir saturation of phase α, and by cr,αv the reservoir
molar fractions of phase α.

For any a ∈ R, let us define a+ = max(a, 0) and a− = min(a, 0). The molar flow rates
between the reservoir and the well ω at a given node v ∈ Vω are defined by the following phase
based upwind approximation of the mobilities:

qr→ωv,α,i = cαv,i
ζαv
µαv
kαr,v(sαv)(V α

v )− + cαv,i
ζα(prv, T

r
v , c

r,α
v )

µα(prv, T
r
v , c

r,α
v )

kαr,v(sr,αv )(V α
v )+,

qr→ωv,i =
∑
α∈Pi

qr→ωv,α,i,
(18)

and the energy flow rate is defined similarly by

qr→ωv,e =
∑
α∈P

(
hαv(qr→ωv,α )− + hα(prv, T

r
v , c

r,α
v )(qr→ωv,α )+

)
+ Fv, (19)

with qr→ωv,α =
∑
i∈Cα

qr→ωv,α,i.

7.3 Appendix III: computations of the well temperatures and
saturations for the single implicit unknown well model

We detail in this Appendix the computations of the production well temperatures and satura-
tions for the single implicit unknown well model of Subsection 5.2 at given well pressures pv,
molar qr→ωv,h2o and energy qr→ωv,e flow rates for v ∈ Vω. Using the assumptions (i) and (ii) stated in
Subsection 5.2 for the SIUwell-DFM well model, and considering the case of a single component
H2O, the conservation equations (5a)-(5b) reduce to∑

a∈Eωv

∑
α∈P
−κa,v|Sωa |ζαa uαa = qr→ωv,h2o − δvωv

∑
α∈P
|Sωvω |ζ

α
vu

α
ω,∑

a∈Eωv

∑
α∈P
−κa,v|Sωa |hαa ζαa uαa = qr→ωv,e − δvωv

∑
α∈P
|Sωvω |h

α
vζ

α
vu

α
ω,

for v ∈ Vω. Summing these molar and energy conservation equations over all nodes v′′ ≥
ω

v,

and using assumption (iii) for the enthalpy and molar density upwind values, we obtain for all
a = v′v ∈ Eω that∑

α∈P
|Sωa |ζα(pv, Tv)uαa =

∑
v′′∈Vω |v′′≥

ω
v

qr→ωv′′,h2o := Qωv,h2o,

∑
α∈P
|Sωa |hα(pv, Tv)ζα(pv, Tv)uαa =

∑
v′′∈Vω |v′′≥

ω
v

qr→ωv′′,e := Qωv,e.
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It results that the thermodynamical equilibrium at fixed well pressure pv, molar Qωv,h2o and
energy Qωv,e provides the well temperature Tv and the well saturations sαv at node v as follows.
Let us define the phase molar fractions cαv, α ∈ P such that

cαvQ
ω
v,h2o = |Sωa |ζα(pv, Tv)uαa .

We first assume that both phases are present which implies that Tsat = (psat)
−1(pv) and that

the liquid molar fraction is given by

c`v =
hg(pv, Tsat)−

Qωv,e
Qωv,h2o

hg(pv, Tsat)− h`(pv, Tsat)
,

from which we can compute cg
v = 1− c`v and the superficial velocities u`a and ug

a. The following
alternatives are checked:

Two-phase state: if 0 < c`v < 1, the two-phase state is confirmed. Using the slip law
ug = sgUd(sg) + sgC0(sg)(ug +u`), then Tv = Tsat and the gas saturation sg

v is solution of
the equation

sg
vUd(sg

v) + sg
vC

0(sg
v)(uga + u`a)− ug

a = 0.

In the no slip case, corresponding to Ud = 0 and C0 = 1, it reduces to sg
v = uga

uga+u`a
.

Liquid state: if c`v ≥ 1, then only the liquid phase is present, we set s`v = 1, sg
v = 0, and

Tv is the solution of

h`(pv, Tv) =
Qωv,e
Qωv,h2o

.

Gas state: if c`v ≤ 0, then only the gas phase is present, we set s`v = 0, sg
v = 1, and Tv is

the solution of

hg(pv, Tv) =
Qωv,e
Qωv,h2o

.

We note that the same computations are done at the head node vω based on the equations∑
α∈P
|Sωvω |ζ

α(pvω , Tvω)uαω =
∑

v′′∈Vω

qr→ωv′′,h2o := Qωvω ,h2o,∑
α∈P
|Sωvω |h

α(pvω , Tvω)ζα(pvω , Tvω)uαω =
∑

v′′∈Vω

qr→ωv′′,e := Qωvω ,e.

Then, the pressures pv, temperatures Tv and saturations sαv, v ∈ Vω are used to compute the
edge mean densities ρ̄m

a defined by (7). These mean densities are frozen in the momentum equa-
tion for the computation of the next time step. Together with the zero wall friction assumption
(i) (which could be relaxed by an explicit approximation), it results that the next time step
well pressures depend only on the well head node pressure pω. This is the only well unknown
implicitly coupled to the reservoir system combined with the single well equation reducing to

the complementary constraints on the pair
(
q̄ω − qω, pω − p̄ω

)
(first equation of (10)). Let us

refer to see [5] for more details about this type of single implicit unknown well model.
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Les Ulis, 2008.

[10] H. Gudmundsdottir and M. T. Jonsson. The Wellbore Simulator FloWell - Model En-
hancement and Verification. In World Geothermal Congress 2015, Melbourne, Australia,
2015.

[11] M. Jerez-Carrizales, J. E. Jaramillo, and D. Fuentes. Prediction of Multiphase Flow in
Pipelines: Literature Review. Ingenieria y Ciencia, pages 213–233, 2015.

[12] Khasani, Deendarlianto, and R. Itoi. Numerical study of the effects of CO 2 gas in geother-
mal water on the fluid-flow characteristics in production wells. Engineering Applications
of Computational Fluid Mechanics, 15(1):111–129, Jan. 2021.

[13] S. Livescu, L. Durlofsky, K. Aziz, and J. Ginestra. A fully-coupled thermal multiphase
wellbore flow model for use in reservoir simulation. Journal of Petroleum Science and
Engineering, 71(3):138 – 146, 2010. Fourth International Symposium on Hydrocarbons
and Chemistry.

[14] S. Lopez, V. Hamm, M. L. Brun, L. Schaper, F. Boissier, C. Cotiche, and E. Giuglaris.
40 years of Dogger aquifer management in Ile-de-France, Paris Basin, France. Geother-
mics, 39(4):339–356, Dec. 2010. ISBN: 0375-6505 Publisher: CNR-Istituto di Geoscienze e
Georisorse.

[15] J. M. Masella, Q. H. Tran, D. Ferre, and C. Pauchon. Transient simulation of two-phase
flows in pipes. International Journal of Multiphase Flow, 1998.

[16] D. Peaceman. Interpretation of Well-Block Pressures in Numerical . Reservoir Simulation
Symposium Journal SEPJ, pages 183–194, 1978.

[17] D. Peaceman. Interpretation of Well-Block Pressures in Numerical Reservoir Simulation
with Nonsquare Grid Blocks and Anisotropic Permeability. Reservoir Simulation Sympo-
sium Journal SEPJ, pages 531–543, 1983.

[18] V. E. Pereira and A. C. Fowler. Exsolving two-phase flow in oil wells. Geophysical &
Astrophysical Fluid Dynamics, 114(3):283–305, May 2020.

27



[19] A. Satman, Z. Ugur, and M. Onur. The effect of calcite deposition on geothermal well in
flow performance. 1999.

[20] H. Shi, J. A. Holmes, L. J. Durlofsky, K. Aziz, L. Diaz, B. Alkaya, and G. Oddie. Drift-flux
modeling of two-phase flow in wellbores. SPE Journal, 10(01):24–33, 2005.

[21] M. Shippen and W. J. Bailey. Steady-state Multiphase Flow: Past, Present, and Future
with Flow Assurance Perspective. Energy & Fuels, 26(7):4145–4157, July 2012.

[22] R. Tonkin, M. O’Sullivan, and J. O’Sullivan. A review of mathematical models for geother-
mal wellbore simulation. Geothermics, 97:102255, Dec. 2021.

[23] Q. Tran, I. Faille, C. Pauchon, and F. Willien. The No Pressure Wave (NPW) Model:
Application to Oil and Gas Transport. In Third International Symposium on Finite Volume
for Complex Applications Porquerolles France, 2002.

[24] G. B. Wallis. One-dimensional two-phase flow. McGraw-Hill, New York, 1969.

[25] F. Xing, R. Masson, and S. Lopez. Parallel numerical modeling of hybrid-dimensional com-
positional non-isothermal darcy flows in fractured porous media. Journal of Computational
Physics, 345:637–664, sep 2017.

[26] M. Zolfagharroshan and E. Khamehchi. A rigorous approach to scale formation and depo-
sition modelling in geothermal wellbores. Geothermics, 87:101841, Sept. 2020.

[27] N. Zuber and J. A. Findlay. Average Volumetric Concentration in Two-Phase Flow Sys-
tems. Journal of Heat Transfer, 87(4):453–468, Nov. 1965.

[28] Zuber, N. and Findlay, J.A. Average volumetric concentration in two-phase flow systems.
J. Heat Transfer Series, 87:453–458, 1965.

28


