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Abstract—The growing adoption of Electric Vehicles (EVs)
creates new challenges due to the increasing charging demand,
but also opportunities for EV Charging Station Operators (CSOs)
to leverage EV user flexibility. In this work, we consider an
EV CSO who offers several power rates at different prices,
and explore the problem of optimal price menu design. In
this setting, EV users are inflexible in their parking duration
but flexible in terms of their energy demand, and choose the
option that maximizes their welfare, i.e., their utility minus their
cost of charging. We formulate the optimal price menu design
problem for a profit maximizing CSO as a Mixed Integer Linear
Programming problem, which we compare against the outcome
of social welfare maximization problem. We further account for
the provision of demand response by the CSO, i.e., lowering its
power consumption for a certain period given a certain price for
remuneration, by adjusting the price menu (in real time), so as to
discourage EV users with a lower need for energy from choosing
higher power rates. Our numerical demonstrations provide useful
insights on the construction of the optimal price menu.

Index Terms—Electric vehicle, charging station operator, op-
timal price menu design, demand response.

I. INTRODUCTION

Considering the growing adoption of Electric Vehicles
(EVs) [1] public charging stations are attracting significant
attention. Their aggregate power consumption may stress the
grid and its assets, hence, leveraging the flexibility of the
EV users is key to avoid costly and potentially unnecessary
upgrades. An EV Charging Station Operator (CSO), with a
capability to modulate its aggregate power consumption for
a given period, can provide some type of demand response
to the grid operator. For instance, the French distribution
system operator offers remuneration in exchange for this
type of services [2]. To this end, the CSO can intelligently
design the options/services provided to EV users, by forming
a dynamic charging price menu, with a variety of charging op-
tions/services, which can adapt to heterogeneous requirements
of EV users using information that may be either provided by
the users or obtained from the CSO statistics/data collected
about its EV user characteristics/behavior.

There are a few works [3], [4], [5], [6] that have addressed
the problem of designing a charging price menu for an EV
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CSO. In a rather general setting for electric power loads
[3], the consumers can choose an energy for intermediary
times before their true deadline, with a price that depends on
the aggregate power consumption. It is found that marginal
cost pricing, combined with “earliest-deadline-first” charging
maximizes the social welfare. In [4], the CSO offers a menu-
based pricing, considering the EV user flexibility in the amount
of energy and the deadline for charging. The charging station
electricity is provided by either a local renewable energy
source with zero cost, or by buying from the grid, therefore
the cost depends on the charging station aggregate power
consumption. EV users are assumed to provide information
on both their energy demand and deadline. In [5], apart
from modulating the price of each deadline in the service
menu, the focus shifts to identifying optimal deadline values.
The charging station scheduling problem is formulated as an
optimal control problem, aiming at smoothing the aggregate
power consumption and assuming a convex electricity cost
for the CSO. In [6], the CSO offers different charging options
to EV users that are flexible with their deadline for charging
but have a pre-determined energy demand. A flexible deadline
allows the CSO to charge EVs when the cost of electricity is
low, but a long occupancy of the charging point may deprive
a future arrival from charging. This deadline-differentiated
pricing considers either full information on the EV user utility
or a clustering to EV classes with similar energy demand and
utilities. However, [5], [6] do not account for the EV user
flexibility in their energy demand. In another relevant work
[7], the EV users can choose between two charging levels,
and the CSO objective is to set the prices so as to minimize
the “dropping rate,” i.e., the proportion of EV users declining
the entrance to the chosen charging station because of a long
queue.

The aforementioned works require EV users to provide
information on their parking duration (deadline) and/or their
energy demand. Apart from privacy concerns, it is not unrea-
sonable to assume that many users may not have a specific
need in energy, and/or there may be some uncertainty in their
parking duration. Furthermore, in the deadline-differentiated
pricing, there may be no guarantee on the amount of energy
charged if the EV user leaves sooner than expected (also
not unreasonable to assume). For these reasons, we suggest
a price menu that offers a guaranteed power for a certain
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price, so that EVs can choose among different power rates,
thus guaranteeing a certain quality of service.

In this paper, our aim is to investigate the problem of the
CSO price menu design and its capability to provide demand
response. We consider a CSO equipped with a large enough
number of charging points, i.e., the station’s capacity (in terms
of charging points) does not become a limiting factor for
serving EVs. We also consider EV users that view charging
more as an opportunity rather than an indispensable need.
Hence, the parking duration depends only on their on-site
activities — see, e.g., [8] on the in-elasticity of the parking
demand. A profit maximizing CSO, using the information (or
estimate) on the EV user utilities, would offer a price menu
with different prices per power rate. Assuming a certain price
for offering demand response in real-time, the CSO could
then adjust the price menu to reduce its aggregate power
consumption.

Our main contribution is three-fold. First, we formulate the
price menu design problem of an EV CSO that differentiates
the options in the power rate, instead of a deadline, as a
Mixed Integer Linear Programming (MILP) problem. Second,
we propose a setting for the provision of demand response
by the CSO, given a price for reducing its aggregate power
consumption over a certain time period, by adjusting its
price menu in real-time. Third, we provide insights through
numerical experimentation on the construction of the optimal
price menu, and the trade-offs considered in terms of the
CSO profits and the social welfare under different prices for
electricity and demand response.

The remainder of the paper is organized as follows. Section
II presents the preliminaries for the CSO and EV models. Sec-
tion III formulates the price menu design problem, and Section
(IV) describes the provision of demand response by the CSO.
Section V discusses a numerical experimentation, and Section
VI concludes and provides further research directions.

II. MODEL PRELIMINARIES

In this section, we introduce the EV CSO offered charg-
ing options (in Subsection II-A), the utility function of EV
users, (in Subsection II-B), and we define the CSO profit (in
Subsection II-C) and the social welfare (in Subsection II-D).

A. EV CSO Offered Charging Options

The CSO offers a discrete set of K options, denoted by K =
{1, ...,K}, where option k corresponds to a power rate Pk and
a price per energy unit (kWh) πk. For notational simplicity,
we denote the set of available options, which includes option
k = 0 corresponding to “not charging,” i.e., P0 = 0 and
π0 = 0, by K+ := K ∪ {0}.

The CSO options are ordered from lowest power rate to
the highest, i.e., Pk−1 < Pk, ∀k ∈ K, with prices that are
non-decreasing with the power rate, i.e.,

πk−1 ≤ πk, ∀k ∈ K. (1)

In most of the charging stations in reality, a higher charging
price incurs a higher cost, see for example [9].

B. EV Utility

Let EV class i ∈ I, where I = {1, ..., I} is the set of EV
classes, have an initial state of charge (upon arrival) denoted
by e0i , and parking duration denoted by di. Let emax

i denote
the EV battery capacity, and ei the state of charge at the time
of departure. For brevity, we shall refer to EV i instead of EV
class i.

If EV i charges at a power rate P , its state of charge at the
time of departure is given by:

ei = e0i + P di. (2)

Given any option k, EV i can charge at most min{emax
i −

e0i , Pkdi}, so that the battery capacity is not exceeded. We
can therefore denote the options available to EV i using a
subset Ki = {1, ...,Ki} ⊆ K, where Ki is defined as the
highest available power rate such that the battery capacity is
not exceeded given the parking duration di.

Let Ui denote the utility of EV i, which depends on the state
of charge ei at the time of departure, and is increasing and
concave in ei — standard in the EV literature [10]. Essentially,
increasing the state of charge increases the EV utility but with
diminishing returns (due to the concavity). From (2), we can
express the dependency of the EV utility on the power rate P
using Ui(P ).

Let ui(Pk) denote the marginal utility of EV i choosing
option k related to power Pk, i.e.,

ui(Pk) =
∂Ui(P )

∂P

∣∣∣
P=Pk

. (3)

Given the increasing and concave utility in ei, which also,
from (2), implies that the utility is increasing and concave in
P , the marginal utility is non-negative and decreasing in k,
i.e.,

ui(Pk−1) ≥ ui(Pk) ≥ 0, ∀k ∈ K+
i . (4)

Eq. (4) simply states that the marginal utility is positive but
decreasing in the power rate, hence, there are diminishing
returns when choosing an option with a higher power rate.

C. CSO Profit

The CSO buys electricity from the grid and sells electricity
to EVs. Let λt be the price (per kWh) at which the CSO buys
electricity at time t. Let ci denote the average cost (per kWh)
over time that the CSO incurs when charging EV i, which is
given by:

ci =
1

di

∫ τ0
i +di

τ0
i

λt dt, (5)

where τ0i and τ0i + di are the arrival and departure times,
respectively of EV i.

When EV i chooses option k, the CSO charges πk (per
kWh), whereas incurs a cost ci (per kWh). Hence, the CSO
profit for charging EV i choosing option k, denoted by Πi(πk)
to indicate the dependence on πk, is then given by:

Πi(πk) = (πk − ci)Pk di. (6)
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D. Social Welfare
Let Wi(πk) denote the welfare of EV i choosing option k,

which is the difference between their utility Ui(Pk), and the
cost of charging at the charging station, i.e.,

Wi(πk) := Ui(Pk)− πk Pk di. (7)

Note that we express the dependence of the welfare on the
price πk, whereas the dependence of the utility is on the
associated power rate Pk.

EV i aims at maximizing its welfare, hence, the optimal
choice, k∗i , is given by:

k∗i = argmax
k∈K+

i

Wi(πk). (8)

Using the concavity of the utility function and the price
ordering (1), one can show that for any set of options the
welfare increases (in k) until the option that corresponds to
the optimal choice for the EV user, and then decreases. Hence,
one can find the optimal choice, with a simple search among
ordered options (from the lowest power rate to the highest
power rate) until the welfare begins to decrease.

The social welfare, WS
i (πk), i.e., the sum of the CSO’s

profit and the welfare of EV i choosing option k, is given by:

WS
i (πk) := Πi(πk) +Wi(πk) = Ui(Pk)− ciPkdi, (9)

where we added the dependence on πk, which naturally
associates to the power rate Pk.

III. PRICE MENU DESIGN PROBLEM

In this section, we consider the price menu design problem
of a CSO who has information on the distribution of EV users
among a finite set of classes, I. These classes and their weight
over the population, denoted by θi for EV (class) i, can be
obtained using data on the EV user behavior — see e.g., [6].

In what follows, we consider the price menu design problem
under two objectives: (i) maximization of the expected CSO
profit (in Subsection III-A), and (ii) maximization of the
expected social welfare (in Subsection III-B). Notably, the two
problems can be solved for each time period separately (no
time coupling constraints), i.e., the CSO can update the price
menu at each time period, assuming without loss of generality
an hourly granularity, (although the offered price when an
EV arrives will be binding for that EV for its entire parking
duration). Hence, in the formulation we will not include a time
index for brevity.

A. CSO Profit Maximization
The CSO expected profit is given by:

Eθ[Πi(πk∗
i
)] =

∑
i∈I

θi(πk∗
i
− ci)Pk∗

i
di, (10)

where k∗i is the optimal choice of EV (class) i, which is given
by (8). Hence, the CSO profit maximization problem is given
by:

max
π,k∗

Eθ[Πi(πk∗
i
)] given by (10),

s.t. (1) and (8). (11)

The optimal choice, k∗i , for EV user i can be modeled using
a binary variable, ai,k, ∀i ∈ I, k ∈ K+

i , denoting whether EV
i chooses option k (value 1, otherwise 0). The expected profit
is thus given by:

Eθ[Πi] =
∑
i∈I

∑
k∈K+

i

θi ai,k (πk − ci)Pkdi, (12)

where we require that only one option is chosen, i.e.,∑
k∈K+

i

ai,k = 1, ∀i ∈ I. (13)

Constraint (8) can then be reformulated using the big M
method as follows:

Wi(πk) +MW
∑
m̸=k

ai,m ≥ Wi(πℓ),

∀i ∈ I, k, ℓ ∈ K+
i , ℓ ̸= k., (14)

where MW is a positive and sufficiently large number. To-
gether with (13), Constraints (14) ensure that ai,k∗

i
= 1. The

idea of this constraint is that for k such that ai,k = 0, the
inequality is verified because the lhs sum take a very large
value with MW . For the unique k such that ai,k = 1, the
lhs sum is equal to zeros, which enforce option k to be the
optimal option in terms of EV welfare maximization.

The objective function in (12) contains a product of a binary
variable ai,k and a non-negative continuous variable πk. Using
standard big M linearization techniques [11], we can replace
the product by a new, non-negative, continuous variable, say
bi,k, ∀i ∈ I, k ∈ Ki, so that (12) becomes:

Eθ[Πi] =
∑
i∈I

∑
k∈Ki

θi (bi,k − ai,kci)Pkdi, (15)

and add the following constraints:

bi,k ≤ ai,kM
π, ∀i ∈ I, k ∈ Ki, (16a)

bi,k ≥ 0, ∀i ∈ I, k ∈ Ki, (16b)
bi,k ≤ πk, ∀i ∈ I, k ∈ Ki, (16c)
bi,k ≥ πk − (1− ai,k)M

π, ∀i ∈ I, k ∈ Ki. (16d)

Constraints (16) ensure that the variables bi,k take the value
πk when ai,k = 1 and 0 otherwise. Specifically, constraints
(16a) and (16b) enforce bi,k = 0 when ai,k = 0, whereas
(16a) becomes redundant when ai,k = 1. Constraints (16c)
and (16d) enforce bi,k = πk when ai,k = 1, and they become
redundant otherwise.

Summarizing, the CSO expected profit maximization prob-
lem, ΠCSO

max is given by:

ΠCSO
max : max

π,a,b
Eθ[Πi] given by (15),

s.t. (1), (7), (13), (14), and (16). (17)

Problem (17) is a MILP problem.
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B. Social Welfare Maximization

Using the aforementioned binary variable ai,k, the expected
social welfare is given by:

Eθ[W
S
i ] =

∑
i∈I

∑
k∈Ki

θi ai,k [Ui(Pk)− ciPkdi]. (18)

For practical purposes, in order to ensure a non-negative profit
for the CSO (who sets the prices), we require from (15) that:∑

i∈I

∑
k∈Ki

θi (bi,k − ai,kci)Pkdi ≥ 0, (19)

where bi,k are described by constraints (16).
Summarizing, the expected social welfare maximization

problem, WS
max, is as follows:

WS
max : max

π,a
Eθ[W

S
i ] given by (18),

s.t. (1), (7), (13), (14), (16) and (19). (20)

Problem (20) is also a MILP problem.

IV. CSO DEMAND RESPONSE

In this section, we consider the case of a CSO providing
demand response, by reducing the aggregate power consump-
tion by a certain amount, during specific time periods. This
reduction can be viewed as the provision of a reserve product
(to be used interchangeably with demand response) — or flexi-
bility as is often mentioned in the literature — w.r.t. its “usual”
power consumption. Indeed, there is a long debate on how to
determine such a “base case,” or whether this is even possible.
However, for the purposes of this paper, we can employ the
outcome of the CSO profit maximization problem as the “usual
consumption,” upon which any reduction can be calculated.
Alternatively, one can think of a day-ahead commitment on
a certain power consumption (considering an expected profit
maximization problem and the resulting power consumption
given the “optimal price menu”) and a ”real-time adjustment”
of the price menu to reduce the actual consumption by a certain
amount. In what follows, we consider the problem for the
provision of demand response through a certain reduction in
the aggregate consumption during a certain time period.

For clarity, we introduce the notation in the multi-period
problem, whose horizon is represented by the set T =
{1, . . . , T}, assuming without loss of generality that t refers
to an hourly period.

Let Nt denote the number of EV arrivals at time t, of
expectation N̄t, and with weights per class i at hour t, θi,t.
For brevity, we define parameter ni,t = N̄t θi,t representing
the expected number of vehicles of class i arriving at time t.

The price menu is denoted by πk,t, i.e., the prices can
change every hour, assuming without loss of generality that
the power rates, Pk, do not change every hour. Still, for each
time period, prices should be ordered as in (1), i.e.:

πk−1,t ≤ πk,t, ∀k ∈ K, t ∈ T . (21)

The binary variables ai,k,t denote whether EV i, arriving at
time t, chooses option k, with:∑

k∈K+
i

ai,k,t = 1, ∀i ∈ I, t ∈ T . (22)

The optimal choice of EV i, that is k∗i such that ai,k∗
i ,t

= 1,
arriving at time t is given by the following constraints:

Ui(Pk)− πk,tPkdi +MW
∑
m̸=k

ai,m,t ≥ Ui(Pℓ)− πℓ,tPℓdi,

∀i ∈ I, k, ℓ ∈ K+
i , ℓ ̸= k, t ∈ T , (23)

where we replaced the EV welfare by its definition — see (7).
Similarly to (16), the continuous variables bi,k,t verify the

following conditions:

∀i ∈ I, k ∈ Ki, t ∈ T : (24)
0 ≤ bi,k,t ≤ ai,k,tM

π,

πk,t − (1− ai,k,t)M
π ≤ bi,k,t ≤ πk,t.

The aggregate expected profit over the time horizon, using
(15) and parameter ni,t, is given by:

Π̂T =
∑
t∈T

∑
i∈I

∑
k∈Ki

ni,t (bi,k,t − ai,k,tci)Pkdi. (25)

Let TR = {τ1, . . . , τ2} be the set of time periods during
which the CSO reduces the aggregate power consumption by
a certain amount denoted by PR

t , from the aggregate power
consumption, denoted by PΠ

t that pertains to the solution of
problem (17), which can be solved separately for each time
period.

Let indicator (parameter) δi,t′,t denote whether an EV of
class i arriving at time t′ is connected at time t, where t ≥ t′

— i.e., for as long as its parking duration di. Let variable P̂t

denote the expected aggregate power consumption, given by:

P̂t =
∑
i∈I

∑
k∈Ki

t∑
t′=1

ni,t′ ai,k,t′ Pk δi,t′,t, ∀t ∈ T . (26)

The reduction of the power consumption for the provision of
demand response is then enforced through:

P̂t ≤ PΠ
t − PR

t , ∀t ∈ TR. (27)

Summarizing, the CSO demand response problem, given a
price λR

t for reducing the power consumption during hour t,
is now as follows:

DRCSO
λR : max

π,a,b,PR
[Π̂T given by (25)] +

∑
t∈TR

λR
t P

R
t ,

s.t. (21) − (23), (26), and (27), (28)

with PR
t ≥ 0, ∀t ∈ TR. As Problems (17) and (20),

Problem (28) is a MILP problem. They all can be solved
using commercials solvers such as CPLEX.

So far, we have considered the expected number of arrivals
per class, ni,t, and calculated expected profits and power
consumption. One may think that the provision of demand
response, i.e., the reduction in power, should be enforced with
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a higher probability. A simple way of enforcing a more con-
servative would be to replace the expected number of arrivals
ni,t in constraint (26) by an appropriately-defined “worst-
case” number of arrivals, during the periods TR (potentially
even earlier). Indeed, in a practical setting, the CSO can re-
solve the problem, after each hour, and define the price menu
dynamically every hour, with the information available up
to that hour. However, due to space considerations, we will
refrain from such settings in this first work. Future work will
be directed to more elaborate robust optimization formulations
and appropriate uncertainty sets as well as more dynamic
settings that employ the information that becomes available
during the day.

V. NUMERICAL RESULTS

In this section, we provide a numerical experimentation of
the optimal price menu design problem. In Subsection V-A,
we describe the test case (CSO and EVs). In Subsection V-B,
we present the results from the profit and social welfare max-
imization problems, whereas in Subsection V-C, we discuss
the results from the CSO demand response provision.

A. Test Case

1) CSO: We consider the provision of 4 power rates for
charging: P1 = 2.5 kW, P2 = 5 kW, P3 = 7.5 kW, and
P4 = 10 kW, i.e., K = 4. We note that we consider “low”
charging rates [12] in our numerical illustrations to emphasize
the fact that EVs view charging more as an opportunity than
as an absolute need (which would make them less flexible or
direct them to fast charging stations). However, our analysis
remains relevant for higher charging rates.

2) EVs: We consider that all EVs have a battery capacity
of 50 kWh, and charge between 20% and 80% of their
state of charge. EV classes are determined by their initial
state of charge and parking duration. We consider 3 different
initial states of charge: 10 kWh, 20 kWh, and 30 kWh.
We also consider 4 different parking durations: 1h, 2h, 3h,
and 4h. Hence, in total, we have 12 EV classes, assumed
to be equally distributed. EVs arrive at the charging station
with a constant rate of 120 vehicles per hour, from 7am
to 8pm. They share a quadratic utility function given by
Ui(P ) = αi [P di − 1

2 βi (P di)
2 ], where αi, βi, are positive

scalars, which parameterize EV i willingness to charge while
ensuring an increasing utility for practical power rates, and is
assumed, without loss of generality, to depend only on the state
of charge at arrival. Table I summarizes the 12 EV classes, the
highest (in power rate) option available (Ki) for EV class i,
and utility parameters. Big M values are set at 15 for MW

and 0.5 for Mπ .
All problems were solved using CPLEX 22.1.1.0 solver.

B. Profit and Social Welfare Maximization Results

For convenience, we shall refer to the outcome of the
CSO expected profit maximization problem (17), ΠCSO

max , as the
“Base Case,” and to the expected social welfare maximization
problem (18), WS

max, as the “Benchmark.”

TABLE I
PARAMETERS OF EV CLASSES

Class i: Ki Utility Parameters
ei / di 1 h 2 h 3 h 4 h αi βi

10 kWh 1: 4 2: 4 3: 4 4: 3 0.425 0.017
20 kWh 5: 4 6: 4 7: 2 8: 2 0.35 0.021
30 kWh 9: 4 10: 2 11: 1 12: 1 0.275 0.027

Fig. 1. Optimal price menu, Base Case and Benchmark.

Fig. 1 presents the optimal price menu for the Base Case and
the Benchmark, as well as the electricity price (parameter), λt,
that the CSO has to pay for charging the EVs (for comparison
purposes). We observe that the Base Case optimal price menu
remains always higher than the electricity price (maximizing
CSO profit). For the most part of the day (from 7am to 5pm),
when the electricity price is low (around 20 cents per kWh),
the Base Case price menu remains stable (spanning around 2
cents from option 1 to option 4), whereas when the electricity
price increases (from 6pm to 8pm), the price menu increases
and remains practically stable for all options. The Base Case
shape of the menu indicates that the optimal price menu when
the CSO maximizes its profits is not very sensitive to small
changes in the electricity price. This is attributed to the fact
that the price menu considers also the utility of the EVs, whose
optimal choices are discrete; hence, a small increase in the
price might result in the EVs choosing a lower power rate or
even not charging. Consider for example the case of EV class
5, which chooses at 5pm option 2. Note that this class could
choose any option, however, it chooses option 2 and not the
higher power rate option 3, even though the price difference
(between options 2 and 3) is only 0.625 cents; hence, this
small difference in price is enough to discourage EV class 5
from choosing option 3.

The Benchmark optimal price menu in Fig. 1 exhibits a
different shape with a larger span during the day, and with
some values that may be well below the electricity price. We

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



Fig. 2. Hourly profit and social welfare, Base Case and Benchmark.

Fig. 3. Aggregate power consumption (left axis, line) and number of EVs
deciding to charge (right axis, columns, lower part: EVs arriving at the hour;
upper part EVs remaining from previous hours).

elaborate further on this shape by illustrating in Fig. 2, the
hourly profit and social welfare, and in Fig. 3 the aggregate
power consumption and the number of EVs deciding to charge,
for the Base Case and the Benchmark. We observe in Fig.
2 that the maximum social welfare is achieved with zero
profits for the CSO, and maximum welfare for the EV users.
The trend of the Benchmark price menu follows the trend
of a “weighted moving average” of the electricity cost of
the charging station. Low prices attract EV users with a low
marginal utility (i.e., those classes that need less to charge),
and the price span is such that the CSO profit is zero, whereas
the welfare of the EVs is maximized. Clearly, as shown in Fig.
3, the Benchmark maximizes social welfare by charging more
EVs at lower prices (e.g., all arriving EVs decide to charge
from 7am to 4pm), and consuming significantly higher power,
peaking at 1,925 kW, whereas the Base Case maximizes profit
by charging less EVs at higher prices, and peaking at 875 kW.
The total social welfare over the entire day for the Benchmark
is 2519.22 C (821.58 C higher compared to the social welfare

Fig. 4. Optimal price menu design during demand response period and for
different price reserve

Fig. 5. Aggregate power consumption.

of the Base Case).

C. Demand Response Results

Using the solution of the Base Case as a “baseline” for the
CSO aggregate consumption, we solve the demand response
problem (28), with a 5-hour reserve period between 4pm and
9pm. We consider two cases for the reserve price (constant
for the entire 5-hour period): λR

t = 5 cC/kW and λR
t = 15

cC/kW.
In Fig. 4, we present the price menu for the Base Case,

and for the two different values of the reserve price. For
reasons that will soon become apparent, we present the 5
hours affected (4pm, 5pm, 6pm, 7pm, 8pm) as well as the
previous hour (3pm). In Fig. 5, we illustrate the aggregate
power consumption, for the Base Case and the two reserve
prices.

Considering first the lower reserve price (Fig. 4, middle),
we observe that the main change w.r.t. the Base Case refers
to hours 4pm and 5pm, when the prices increase (they span
between 32 and 34 cents at 4pm, and reach 37 cents at 5pm).
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Fig. 6. CSO profit (lower part of column: profit for energy; upper part:
revenue from demand response).

The reduction in the aggregate power consumption (Fig. 5,
green line) is 75 kW at 4pm and 275 kW at 5pm. Note that the
price menu at 6pm is the same with the Base Case, however,
we still see a reduction by 200 kW, which is due to the lower
amount of EVs charging in the previous hours (we remind that
EVs may charge for 4 hours). The reduction reduces to 175 kW
at 7pm and 75 kW at 8pm. Considering next the higher reserve
price (Fig. 4, right), we observe that the prices increase earlier
(slightly at 3pm, and then reach around 37 cents) achieving a
higher reduction in the aggregate power consumption (Fig. 5,
red line) starting with 50 kW at 3pm, to 275 kW at 4 pm, to
450 kW at 5pm, to 350 kW at 6pm to 200 kW at 7pm, and
100 kW at 8pm.

In Fig. 6, we illustrate the CSO profit for the Base Case
and the two reserve prices, which includes the revenue for
providing demand response. We observe that at 3pm, the Base
Case and the lower reserve price yield the same profit, whereas
the higher reserve price yields lower profit (compare with the
higher prices in Fig. 4, right). However, the profit of the higher
reserve price (red column) is the highest in all other hours.
The profit of the lower reserve price (green column) becomes
higher than the Base Case at 5pm and remains higher until
8pm. The total profit over the entire day for the Base Case is
1,323.45 C. The total profit when providing demand response
increases by 16.04 C (1.21 %) for the low reserve price, and
by 128.41 C (9.70%) for the high reserve price. The total
social welfare over the entire day for the Base Case is 1697.64
C. Accounting for the revenues from demand response, it
decreases by 40.66 C for the low reserve price, and by 3.28C
for the high reserve price. Considering the total welfare of
the EVs over the entire day, which is 374.19 C for the Base
Case, it decreases to 301.46 C for the low reserve price, and
to 114.08 C for the high reserve price.

VI. CONCLUSIONS AND FURTHER RESEARCH

In this work, we considered a CSO who serves EVs that
are not flexible in their parking duration but they are flexible

in their energy demand, offering different charging rates at
different prices. Arguably, this CSO model can fit well public
charging stations, considering the future EV adoption, where
charging will be viewed as an opportunity (e.g., in a public
parking station), and charging point availability is unlikely
to be a limiting factor. In this context, we formulated the
optimal price menu design problem as a MILP problem,
considering both a profit maximizing CSO and a social welfare
maximization (as a benchmark). We further accounted for the
provision of demand response by considering an adjustment
of the price menu (in real time) to reduce the aggregate power
consumption and benefit from a certain price for remuneration
(as a type of reserve deployment). Our numerical experimen-
tation illustrated the construction of the optimal price menu,
the trade-offs considered for the CSO profit and the social
welfare, and the price menu adjustment to provide demand
response under different (reserve) prices.

Future research is directed to account for uncertainty in the
parking duration and the EV user utility through robust opti-
mization approaches and the construction of appropriate data-
driven uncertainty sets. More elaborate price menus which
might also relate to the EV state of charge, as well as CSO-
EV contracts for lowering the charging rate in case of demand
response provision, are also interesting directions for further
research.
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