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Abstract

Background: the development of additive manufacturing technologies (3D print-
ing) has made it possible to manufacture complex structures such as architected
materials. However, traditional inspection methods are not suited to these
materials, which require volume inspection to examine their internal structure.
Objective: the aim is to provide a 3D shape measurement method based on
the initial computer-aided design (CAD) model used for 3D printing and X-ray
radiographs.

Method: the CAD model is deformed until its virtual radiographs obtained by
simulating the absorption of X-rays through the solid register with experimental
radiographs. This registration is achieved by minimising a cost function with
respect to the position of control points using radial basis function interpolation.
Results: the method’s performance is first evaluated using synthetic data. Its
robustness is assessed with respect to image resolution, number of radiographs
and noise level. Subsequently, the geometry of a solid with a tetrahedral archi-
tecture was quantified by means of a mere five radiographs. Global variation in
shape and local defects in lattice structure can be detected.

*License: CC-BY 4.0 @TheAuthors



Conclusions: the method enables the in-volume shape of architectured materials
to be checked without reconstructing the 3D computed tomography volume, but
from just a few radiographs. It is robust and can detect local defects.

Keywords: VIC, 3D-VIC, CT-scan, architected materials, shape measurement

Introduction

The evolution of additive manufacturing technologies (3D printing) has enabled the
creation of new complex structures, including architected materials. These materials
offer a good compromise between mass and rigidity [1]. They can also be optimized
for other applications, such as heat exchange [2, 3] or waveguiding and filtering [4, 5].
Architected materials possess an internal structure at some meso scale [6, 7] which
is intermediate between the macroscopic scale of the whole structure, and the micro
scale of the constitutive material. The macroscopic behavior of an architected material,
for example homogenized elasticity and limit stress states, is clearly related to its
mesoscopic geometry [8]. Many choices are possible for the meso scale arrangement,
which can be regular according to some symmetry group, random, or even quasi-
symetric [9], [10]. Furthermore, the cellular materials in which voids are separated by
walls (foams, honeycombs,. .. ) are generally distinguished from the lattice materials
composed of beams (3D trusses). The French ANR project MoMap, within this study
was carried out, focuses on regular lattice materials with tetrahedral unit cells because
of their high rigidity and strength.

In order to measure the shape of an architected material after 3D printing, it is
necessary to carry out checks from the mesoscopic to the macroscopic scale. Conven-
tional post-fabrication inspection methods (gages, ultrasound, etc. .. ) are suitable for
classical bulk materials but are no longer applicable to architected materials [6]. For
this reason, image-based inspection methods, such as the one presented hereafter, are

under development [11, 12].



In the field of mechanical engineering, the DIC (Digital Image Correlation) method
is now commonly used for non-destructive and contactless measurement of dis-
placement and deformation fields. At first developed for two-dimensional in-plane
displacement measurement with a single camera, the DIC has proven to have a sub-
pixel accuracy [13, 14]. The stereo-DIC technique enables the measurement of the
3D displacement vector of non planar surfaces, with at least two cameras or a mov-
ing camera [15-17]. The recent PhDIC method gives rise to the same quantities [18]
by building a textured digital twin object surface based on an optical modelling of
the scene. However these methods remain limited to the measurement of observable
surfaces, therefore are not suitable for the measurement of the internal shape of the
meso-structure of a lattice material.

The virtual image correlation (VIC) method initially applies for 2D shape and
contour measurements [19, 20]. It consists in finding the best local correlation between
an image of the boundary of an object and a virtual image. The latter is based on a
parametric curve and mimics the white to black gradient of the boundary. The curve
equation acts as an optimal filtering and the correlation method is close to the one
used in DIC. The precision of the shape measurement has been proven to be sub-
pixel and noise resistant [21]. It takes advantage of the knowledge of an ideal reference
geometry and of a simple synthetic image generation model.

The internal structure can be revealed by computed X-Ray tomography (CT scan).
It consists in a reconstruction of the 3D image from a collection of radiographs, possi-
bly projections, of the object which are acquired at many angles of rotation. The first
use was for medical imaging. Various algorithms have been developed for the recon-
struction of the 3D images such as ancient Hough and Radon transforms. The more
recent Filtered Back Projections (FPB) method, based on Fourier transforms is highly

effective in the case where tomographic data have low noise, but it requires a large



number of projections. The Algebraic Reconstruction Methods (ART) which are itera-
tive and thus require more computing time, offer better reconstruction quality and are
often preferred nowadays. They are based on the minimization of the quadratic norm
of the difference between the projections of the reconstructed volume and the projec-
tions acquired with the tomograph, while the initial volume can be reconstructed with
an FPB method.

However, a CT scan is not straightforwardly adapted to metrology, in its sense
of precise shape measurements of industrial parts. Firstly, a 3D image represents the
boundaries in the form of a variation in grey levels, which requires additional analysis
to measure the shape, such as thresholding (and filtering) or a VIC like those devel-
oped previously [12, 22]). As a consequence, the biases induced by the reconstruction
algorithm are combined with those of this further analysis. Furthermore, in an indus-
trial point of view, the thousands of required projections for volume reconstruction are
expensive. This method shares with PhDIC that synthetic images obtained by mim-
icking the optical system are compared to actual ones in order to identify the sought
differences from the digital model to the object. The objectives of medical imaging dif-
fer from the objectives of metrological measurements on architected materials. Medical
imaging has to deal with biological objects of unknown shapes and densities, unlike
engineering objects whose shape deviate little from their known design and whose
matter is fairly homogeneous.

The first extension of the DIC method in 3D, the DVC (Digital Volume Correla-
tion), uses such reconstructed 3D images [23, 24] and requires natural 3D speckle or
texture. In order to avoid using huge 3D images, the P-DVC consists in computing the
correlations on 2D projections [25, 26]. Only a small number of projections is needed
to measure displacement after an initial state volume image has been reconstructed.

The VIC has also been developed in 3D for surface detection in a 3D image. Appli-

cations have included measuring biological organ boundaries [22], crack surfaces [27]



and architectural materials metrology using CAD models [12]. The principle is an
extension of the 2D VIC: a virtual volume image is generated from a mathematical
surface equation and correlated with the reconstructed 3D image. Recently, Fragnaud
et al. [11] improved the method by generating a whole 3D virtual image (digital twin)
taking into account diffusion and scattering effect which occur in dense materials such
as metals, thus increasing the precision of the method. However, as already mentioned,
these methods use the reconstructed 3D image, which is therefore dependent upon the
precision of the reconstruction and requires a significant number of projections, thus
necessitating a substantial amount of computing and experimental time. Following the
idea of the P-DVC, we propose in this article the 3D-VIC method in which the pro-
jections are registered with digital twins (virtual projections) based on an adjustable
CAD model (using shape parameters) of the object.

Section 1 details the construction of the virtual projections from simulated X-rays
propagation and the CAD model, taking into account the whole geometry of the tomo-
graph. We take into account the absorption of X-rays by the material according to the
Beer-Lambert law. We chose not to model diffusion and scattering effects which are
not important for the polymeric materials and out of focus of this preliminary study.
The rasterisation process, used to compute the distance travelled by a virtual X-ray
through the 3D model, is also detailed. Section 2 shows the retained cost function
which is basically the mean over the projection images and for the considered pro-
jection angles of squared differences from virtual and physical projections. Section 3
details the identification of the local motion modifying the shape of the CAD model.
Using a CAD description, one may think that these local displacements could be iden-
tified by searching the displacement of each mesh node describing the CAD. However,
a mesh node position interpolation method is preferred. Among those available, the
Radial Basis Function (RBF) method was chosen as it allows smooth, local defoma-

tion [28]. For assessing the robustness of the proposed method, Section 4 analyzes



the algorithm’s performance on synthetically generated projections. Firstly the effect
of the method parameters (number of projections and supersampling) on the shape
measurement are discussed. Secondly, the effect of image noise on accuracy is tested.
The last Section 5 presents the analysis of real projections of a 3D tetrahedral lat-
tice material printed by polymer wire deposition. Unsurprisingly, the measured shape
differs significantly from the initial CAD model. Since no other method is available
to compare with, we analyze the consistency of the identified shape defects from the

knowledge of the printing process.



1 Virtual projections

The method consists in the registration of virtual and real projections. We model the

X-ray tomograph and the specimen as (Figure 1):

Ly A =3 9

L2
L,/2

Fig. 1: tomograph model

® the tomograph reference frame (O, Eq, Eq, E3) where (O, Eq, E3) is associated to
the detector plane

e the rotating plate frame (A, e;, ez, e3) where (A, eq) is its rotation axis. In this
study we suppose that this device has no misalignment thus e; = F;

® the rotating plate angle 6 is measured from FEs to eq. It is imposed by the rotating
stage and we shall suppose this value to be known and exact

® the X-ray source point S whose perpendicular projection corresponds to the center

of the detector.



For any point, the link between its coordinates (x,y, z) in the rotating stage frame

(A,e1,ez,e3) and (X,Y, Z) in the reference frame (O, Eq, Eo, E3) is given by:

X 10 0 z| | X(A)
Y| =1(0cosf —sinfd| |y| +|Y(A)], (1)
Z 0 sinf cosf z Z(A)

where (X(A),Y(A), Z(A)) are the coordinates of point A in the tomograph reference

frame. Furthermore we define the lengths :

Lz = Z(A), (2)

Ly = Z(9). 3)

For any point, the link between its coordinates (z”,y”,z"”) in the object frame
(C,ef ey, ey) and (x,y,2) in the rotating stage frame frame (A, eq, ez, e3) is given

by a combination of three rotations:

x cosa 0 sina| |cosw —sinw 0| |1 0 0 x” z(C)
yl| = 0 1 0 sinw cosw 0| [0cosB —sinfB| [y| + |y(C)|, (4)
z —sina 0 cosa 0 0 1| [0sinf cosp 2" z(C)

where (o, 3,w) are the Euler angles. For sake of clarity, these intermediate frames are
not represented on Figure 1.

The X-ray intensities transmitted to the sensor are conditioned by the thickness of
the traversed material via the Beer-Lambert law. This thickness is calculated from the
CAD model using the rasterization method [29]. The ray tracing method could also be
used. However, having no need for reflection computation, the rasterization method

has been chosen for its numerical efficiency [30]. For any pixel center point M of the



detector, this method allows us to compute the traversed length L(M) along the path
SM, where S is the punctual X-ray source. This distance is calculated by summing the
distances between the points at which the ray enters and exits the material.

In practice, the surface of the CAD model is discretized using a triangular mesh

where the nodes are V; with j € [1,..., Ny], N; being the number of nodes.

V3 / Vi

>

Fig. 2: Illustration of rasterization technique, projections (D, Da, D3) of the vertices
of the triangle (V1,Va, V3).

A triangle (V1,Va, V3) intersects a ray SM if the projected triangle (Dq, Do, D3)

onto the detector plane contains the pixel M (see Figure 2). The barycentric



coordinates (w1, ws,ws) of M are:

G,(DgDQM)
w1 =
CL(DlDQDg)
Q(DngM)
= 5
w2 a(D1D2D3)’ ( )
w Q(DQDlM)
3= CL(DlDQDg,)

where a stands for the area of the triangle. The position vector X (M) is then written

X(M) = ’w1X(D1) —‘r—U)zX(Dz) -|—’IU3X(D3), (6)

where X (D), for j = 1..3, are the position vectors of Dy, Dy, Dg. The beam passes by
this triangle if 0 < wy, wo, w3 < 1 and wy +ws +wz = 1. The distance ¢} between the
points M and N, where N is the intersection of the ray with the triangle (Vi, Vg, V3)
is [29, 31]: \
O(M) =Y wid;, (7)
i=1

where d; stands for the distance between points V; and D;. This distance £;(M), as
well as that of other intersected triangles, is stored in a Z-buffer relatively to the pixel
M. These distances are sorted in ascending order, so that the beam enters the material
through triangles with an odd k index and exits the material through triangles with
an even k index. The researched distance traveled within the matter L(M) for this

pixel is:
Ni /2

LM) = Y (far — Lagc—1), (8)

K=1

where Nk is the (even) number of intersected triangles. For any rotating angle 6 of the

rotating stage, the intensity received by the pixel is calculated using Beer-Lambert’s

10



law:

Iy(M) = Iy exp (—uL(M)), 9)

where [ is the blank intensity and p the absorption coefficient, supposed homogenous.
The gray level of the virtual projection Go(M) at the pixel M is computed from L(M)

only:

Iy(M)
I(] ,
— uL(M), (11)

Go(M) = —log

This virtual projection Gy will be registered with the real projection.

During the physical imaging process, each pixel captures a significant number of
X-rays. In contrast, when simulating this process for the construction of virtual projec-
tions, above method involves only one ray per pixel. To make virtual projections more
realistic, they are computed over a B times finer pixel grid (B being the supersampling
factor) and then binned (averaged) to match the resolution of physical images. This
supersampling technique is commonly used in volumetric reconstruction methods from
radiographs to reduce computation times by generating less noisy lower-resolution

radiographs [32, 33].
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2 Registration procedure

The cost function ¥ of the proposed 3D-VIC method allows one to evaluate the correla-
tion between the ng virtual and real projections. The real projections Fy are computed
from the radiaographs Iy acquired by the tomograph using the white fields Iy and fol-
lowing Equation (10). The virtual projections Gy (see previous section) depend upon
the tomograph parameters (points {S, A, C} and angles («, 5,w)) and upon the shape
parameters A\; which will be further specified in the next section. All the distances are
expressed in meters. The cost function is defined from the average of the quadratic

distance between the all the projections:

1 L1 L2
U, ... = Fy — Gy)2dXdY. 12
Oneod) = o 3 [ [ - Gntaxay (12)

where (L1, Lo) are the lengths of the detector plane, respectively along Eq, Eo. This
simple expression is commonly used in DIC for its simplicity and numerical effi-
ciency [34, 35]. The measured tomograph and shape parameters are defined as the
ones which minimize the cost function V.

The minimization of ¥ is achieved thanks to a Newton scheme:

92wk 17" 9wk
AR — \F — 13
¢ ’ OXiOA; O\ ’ (13)
where k is the number of the current iteration and where:
ov 1 Lv rla Gy
= —2(Fy — G dXdy, 14
8)\1 TLeLlLQ 29:/(; ‘/Ov ( o 9) 8)\1 ’ ( )

PR 1 Lo ke Gy 9Gg IGy
= 2| —(Fyp — XdY.(1

12



As in VIC [19] and DIC [36] theories, it is assumed that, as the cost function goes to

zero, the term involving the second derivative of Gy can be neglected. Thus we retain:

ov? 1 boorl2 [ 9Gy 0Gy
~ 2 — | dXdY. 16
OXiOA; ngLi Lo ZG:/O /0 ( ONi OA; ) (16)
The derivatives of Gy are computed from a right numerical differentiation. The algo-

rithm stopping criteria are one in convergence speed and one in the relative value of

the corrector H)\f — )\f71||/||/\f\|

13



3 Local shape corrections using Radial Basis

Functions

For the registration matrix to be sparse, each shape parameter must have a local action
on the CAD model shape. However, moving each node V; of the CAD mesh would
result in too local modifications and in many shape parameters Further, conditioning
problems can be encountered when a tangential motion of a node does not change the
shape of the model. A less local action, consistent with the precision of tomography
and VIC, is obtained by using Radial Basis Functions (RBF) [28, 37].

The RBF scheme interpolation is defined by the displacement vector ~; of the
N¢ control points C; which infer the displacement vector u(V;) of surrounding mesh

nodes V; thanks to a Gaussian weighting ¢:

Ne
u(V;) = Z’mﬁ(cmvj)a (17)
. _m . 2
QO(C“V]) = exp <_ <|$(VJ) - (Cl)“) >7 (18)

where r > 0 is the RBF dimensional parameter.

Note that, in general, the displacement of the a node V; at the same position
as a control point C; does not have the same displacement: u(V; = C;) # ~;. The
RBF method is reknowned for its interpolation quality [38]. The value of the RBF
dimensional parameter r significantly affects the stability and the accuracy of the
interpolation process. The larger r, the larger the influence volume of each control
points, thus a smoother deformation of the CAD mesh, but the denser the matrix in
Equation 16. In practice, r is chosen such as the supports of the Gaussian functions
overlap significantly 4.e. when r > 0.5h, where h is the length between the RBF control

points.

14



The RBF method is implemented in the Python programming language using the
PyGeM library, which includes various morphing methods for mesh deformation [39].
The 3D-VIC shape parameters \; are the 3 x No components of the RBF control

points displacements «;.
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4 Performance analysis on synthetic radiographs

The precision of the proposed 3D-VIC method is tested on synthetic data sets. To this
aim, a set of synthetic projections is generated from a reference CAD model (Figure 3)
and is considered as exprimental data. In the first test in Section 4.1, we study the
the influence of the major settings of the method which are the number of projections
and the supersampling factor used to compute the virtual projections. In the second

test in Section 4.2, we study the influence of image noise.

Fig. 3: CAD model of the tetrahedral lattice material

The MoMaP project, of which this research is a part, deals with regular lattice
materials with tetrahedral unit cells. Consequently, the test is performed on a regular
assembly of tetrahedral cells, forming a tetrahedron with 6 cells along on each side
(Figure 3), thus 56 cells in the volume. This is enough to deal with hidden faces and
fairly large Z-buffers but remains small enough that the projections, even with some
noise, still contain the information about the inner shapes. The projections have a

resolution of 235 x 187 pixels (Figure 6).
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Fig. 4: Reference part and the 35 RBF control points at their original location (red)

The 3D-VIC measurement is performed with a deformable CAD model, parame-
terized by 35 uniformly distributed RBF control points (Figure 4). As a consequence,
the set of the shape parameters in \; are the 3 x 35 components of the RBF control

point displacements. In this section, the number of iterations is limited to 10.

The synthetic projections being obtained with the original CAD model, a mea-
surement is exact if all the control points have a zero displacement at the end of the
computation. Due to the limited number of projections , due to the use of a lower
supersampling (see Section 4.1) factor for virtual projections than for synthetic pro-
jections or due to sensor noise (see Section 4.2), the measure is not exact and the RBF
control points move from their initial position. The measurement error is defined as

the standard deviation of the Euclidean norm of the displacement u(C;) of the RBF

17



control points, from their initial (and expected) position:

where p is the detector pixel size (m/pix).

4.1 Influence of supersampling and number of projections

In order to represent flawless data, while maintaining a reasonable calculation time,
the synthetic projections have been generated with a supersampling factor of By = 10.
From Section 1, this means that the gray level of each pixel is computed as the average
over the value of 100 subpixels computed from 100 corresponding rays. The influence
of the supersampling factor for virtual projections is tested by varying it from B =1
to B = 4. Of course, the value B = By = 10 has also been tested but is meaningless
except to check that it actually gives a zero distance to the exact shape. The influence
of the number of projections is tested from ny = 2 to ng = 8. The angle 6 between

two successive projections is constant at 7/ng.

100
-—-- B —
’\\ '-'.'-' B :2
P . e B4
e RN N P ——
8, 107! ‘\\ L e L e B -
< L\\\ \\. ————————————— [ ST P P S P 4
\\\‘ """""""" O ° ® 'Y
-2 | ) } } :
10 2 3 4 5 6 7 8

Number of projections

Fig. 5: Measurement error A as a function of the number of projections for different
supersampling factor B.
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As shown by Figure 5, the error of measure is already sub-pixel for two projections
and B = 1 (no supersampling). For a supersampling of 4 and at least 3 projections,
the error is less than 2 x 1072 pixel. The gain is little beyond 5 projections, a value
which is much lower than the thousands of projections required by conventional X-ray
tomography reconstruction methods. This observation on the low number of required
projections for projection-based methods is also made in other contexts, by other
authors [11, 26]. Note that the somewhat singular value for 3 projections corresponds
to the 27 /3 rotation invariance of the tetrahedral lattice. Figure 5 shows also that
the higher the supersampling factor the better the precision. Values for B > 4 are not
representative because too close to the value of B = 10 used for synthetic projections.
The computational cost depends quadratically on B whereas it depends only linearly
upon the number of projections. As a conclusion, the performance comes with high
supersampling factors with a quadratically increasing computational cost. Even for
a very moderate supersampling B = 2 and a reduced number of projections, the

3D-VIC measurement has clearly a sub-pixel precision in this noiseless case.

4.2 Influence of sensor noise

The second test concerns the effect of image noise. For this purpose, the synthetic pro-
jections Fy used in the previous test as physical images are, after rescaling, added with
a Gaussian image noise Hy of variance o2 and zero-mean. Its dependence on # means
that it is also temporally (from one projection angle to the next one) uncorrelated.
Such spatially and temporally uncorrelated noise mimics the noise of the imaging sys-
tem, of various physical origins including quantum, thermal and quantization noises.
Out-of-limits values are clipped. When o ranges from 0 to 0.25, knowing that 95% of
the obtained values are in [—20,20] and that the grey values range from 0 to 1, this

corresponds to a noise level of between 0 and 50% (see Figure 6).
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(a)
Fig. 6: (a) Projection without noise, (b) Projection with o = 0.25.

(b)

For this test, we used 4 projections, 35 control points and no supersampling (B = 1)

for both physical (synthetic in this case) and virtual projections in order not to take

into account the effect of the supersampling factor and to shorten the computation

time. Figure 7 shows the results for some noise levels o € [0,0.25].

0.3
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£
<0.1

Fig. 7: Measurement error as a function of the noise level
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It shows the increase of the error A with the noise amplitude. However, it is
worth noting that even for a noise level going up to 50% the sub-pixel accuracy is
preserved. This illustrates the ability of the proposed approach to measure the shape
of a lattice even with a reduced amount of data (only a few projections) and its
low noise sensitivity. This low sensitivity to uncorrelated noise is common for VIC
methods [21]. It is due to the filtering effect, brought here by the use of RBF functions

whose support, with » = 0.85 h, is larger than the distance between control points.
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5 An example of practical use

The tetrahedron lattice shown in Figure 3 has been wireframe printed in ABS with
a Zortrax M200. The tomograph is a RX-Solutions Ultratom set to 100 kV, which
belongs to the ISIS4D Platform at Université de Lille (France). The native resolution
of the projections is 1496 x 1880 pixels. To save computing time and reduce noise [33],
they were binned with B = 8 to a resolution of 187 x 235. A set of 1441 images were

taken per revolution.

At first we show in Figure 8 the classic CT-scan obtained from this imaging. It has
been reconstructed thanks to classical FBP, then thresholded using the Fast Marching

Cube method and meshed using the Trimesh Python library [40].

Fig. 8: 3D rendering of the reconstructed mesh obtained from the CT-scan of the
studied specimen.

While unintended details such as print layers are clearly visible, shape defects are
not because, in the absence of a reference shape, no shape defect, i.e. no comparison
to this reference, is available. In addition, the rough surface makes filtering necessary

before any measurement process, for example using previous VIC methods [12, 22]. As
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mentioned above, using a CT scan involves three steps before measurement: 3D recon-
struction, filtering and surface detection. In contrast, these three stages are carried out
simultaneously using the proposed 3D-VIC method. Finally, the 3D-VIC measurement
that follows was carried out using 5 projections instead of the 1441 used here.
Compared with the simulated measurement in the previous section, a real measure-
ment requires a few extra steps. At first, the radiographs are converted into projections
after being classically divided by the white fields. At second, an initial calibration of
the tomograph configuration is carried out. To do so, the same optimization proce-
dure as the one presented in the previous section is used but instead of adjusting the
shape parameters, the sole parameters defining the virtual tomograph are adjusted.
The source and the rotating stage will be supposed as perfectly aligned, so, in the
global reference frame (E+, Ea2, FE3) the coordinates of S and A are S(L1/2, La/2, Ly)

and A(0,L2/2, L3) (see Figure 1). The remaining parameters to be adjusted are:

the four lengths L, Lo, Ls and Ly

® the three positioning angles o , 8 and w

the three coordinates of C

the absorption coefficient p

In this first calibration step in which the 11 parameters of the tomograph are adjusted
(considered as the set A; of optimisation parameters of the cost function), the tetrahe-
dral lattice obtained after 3D printing is considered to be sufficiently consistent with
its CAD model. In other words, it is assumed that the geometrical defects of the object
compared to its CAD model do not affect the evaluation of the tomograph model
parameters and of the positioning of the object. This calibration is preceded from a
manual setting of («, 8, w,z(C),y(C), z(C)) and of the machine lengths L;. Figure 9
shows the evolution of one of the virtual projections which becomes visually closer to

the real one during this calibration step.

23



(a) (b) (c)

Fig. 9: Projections for § = 0: (a) virtual projection before calibration, (b) virtual
projection after calibration and (c) corresponding real projection obtained with the
tomograph.

Once the tomograph parameters and the position of the tetrahedral lattice have
been obtained, the shape measurement can be performed. This time, the \; optimiza-
tion parameters are the 3 x N components of the RBF control points displacements
~i. The computations were performed considering only 5 projections (21°, 63°, 84°,
105° and 126°), using a supersampling ratio for the virtual projections of B = 4 and
a maximum of 6 iterations. Two successive steps are shown which differ from the

number and the location of the control points:

® the first step aims to measure the shape defects of the entire specimen at the unit
cell scale. It is done with 35 RBF control points evenly distributed around the CAD
model mesh with » = 0.85 h, as used previously in Section 4 (Figure 4)

® the second step aims to measure with more precision the shape defects around the
upper vertex of the specimen so that the local beam shape and printing defects
can be detected. The shape defects are now measured by 165 RBF control points

distributed uniformly around the upper vertex with » = 1.2 h (Figure 10).

The computational time is roughly proportional to the number of RBF control points,

making the second step around 5 times more expensive.
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Fig. 10: Initial location of the 165 RBF control points (red) for the second step.

The exact shape of the specimen being unknown, the measurement error A as
defined by Equation 19 is no more available. However, as usual in both VIC and DIC,

we use the registration error maps defined as:

S0 = |Fy — Gl (20)

Figure 11 shows the decrease of one of them during the whole process:

¢ The map after manual setting (a) show large registration error. It enables minimiza-
tion to be started.

e The map after the calibration step (b) puts in good coincidence the virtual and real
projections. Only the small defects from the prescribed CAD shape appear with

light colors.
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e After the 35 RBF control point step, the error map (c) is quite everywhere lower
than 0.1.
e After the 165 RBF control points step (d), the error is close to 0 around the top

vertex.

(c) (d)
Fig. 11: Error maps dy for # = 63° after (a) manual setup, (b) calibration, (c) 35
RBF control points measurement, (d) 165 RBF control points around the upper vertex
measurement.
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Fig. 12: Evolution of the cost function ¥ during the iterative registration process.

The convergence of the method is also visible on the convergence chart (Figure 12). It
starts at ¥ = 1.109x 10~2 and decreases to ¥ = 7.900x 10~°. The quick convergence in
less than 6 iterations, already observed in the synthetic tests of the previous Section 4,
is confirmed in this real test. The gain during the local measure is due to the presence
of shape defects in this region (Figure 13). In the future, it is therefore conceivable
to strategically place control nodes in areas where the error map has large values, in
order to perform a more local shape measurement there.

Figure 13 represents the final result of the 3D-VIC measure. The visible shape
defects are at the cell scale, not at the pixel, CAD nodes or RBF grid scales, suggest-
ing that they are not some artefacts. At the last step, the 165 RBF control points grid
is fine enough to catch the beam diameter variation and beam curvature. Let us recall

that the pixel size in the projections is close to the quarter of the beam diameter.

Some unexpected measured defects, not visible to the naked eye on the CTscan
in Figure 8, can be explained by the manufacturing process. For example, Figure 14
shows, for some beams close to the top of the upper vertex, misalignment defects in the
middle of some bars. We can see that these defects were caused by imperfect printing
trajectories, which lead to stops and restarts in the printing path. We also observe

that bars produced in a single trajectory do not show these localized defects, but only
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Fig. 13: (a) x10 magnified displacement from the initial CAD model after the global
35 RBF points measure. (b) x2.5 magnified displacement from the initial CAD model

after the local 165 RBF points measure.

a curvature possibly due to local buckling or gravitational effect during printing. The

pixel size visible in this figure shows that 3D-VIC can be used to measure fine defects

without the need for very high image resolution.
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Fig. 14: Upper vertex detail. (a) mesh used for printing. 3D printing connection areas
are colored. (b) true scale displacement from the initial CAD model after the global
35 RBF points measure (¢) x2.5 magnified displacement from the initial CAD model
after the local 165 RBF points measure
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6 Discussion and conclusions

The presented 3D-VIC shape measurement method is an extension the Virtual Image
Correlation (VIC) technique into three dimensions. Contrary to previous develop-
ments ([11, 12, 22]), it does not use at all the classical reconstructed 3D image of
X-ray computed tomography, but only the 2D projections. This allows the use of a
very limited set of projections, instead of some thousands in classical tomography.
This has been made possible by the use of an efficient Z-buffer method for the
thickness computations and the use of a well defined RBF method for the basis of
displacements. The method has been shown to be able to measure the shape defects

at sub-pixel scale.

As presented, the method was made under simplifying assumptions, as a perfect
tomograph geometry, a punctual X-ray source and in absence of diffusion or scatter-
ing. Adding other tomograph parameters in the calibration phase is straightforward
in the proposed framework. Following Fragnaud [11], it will be possible to take
into account scattering and diffusion. However, if these defects are exacerbated by
3D image reconstruction processes, this is not the case with the proposed 3D-VIC
method in which only projections are considered. For example, a bad pixel in the
sensor may have a weak effect with the presented method using projections but, often
leading to a well-known ring artefact in 3D reconstructed images, it may deeply affect
methods using them. Furthermore, the result in Figure 7 and previous studies for the
2D VIC [21] suggest that the 3D-VIC is relatively insensitive to moderate blurring
effects. In the same spirit, if the printed material contains small voids or inclusions
(compared to the truss diameter) then the projections exhibit low and local grey
level variations which can be handled by the proposed method. In the case where the
object is made of different homogenous materials whose spatial distribution can be

related to the CAD model, then the tomograph model can be modified considering
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two or more X-ray absorption coefficients when computing the virtual projections.

This also comes as a possible extension of the proposed method.

The size of the lattice material specimen was here of 56 cells. Larger ones are
possible until the projections are enough contrasted at the points where the rays
intersects the largest number of beams, i.e. the center of the specimen. This limita-

tion is not specific to the 3D-VIC method.

The number and the location of the control points of the Radial Basis Functions
depend upon the researched kind of defects. This ranges from a few points for global
shape defects to a lot of points in the location where are the localized defects. Setting
directly a large number of control points may require a large computing time and may
lead to some instability if the control points cross each other, resulting in a loss of
the initial topology. The proposed process in two (or more) steps seems more adapted
and could evolve towards an automatic refinement of the control points where the

error maps show large correlation errors.

A future application will involve capturing tomographic projections of a lattice
specimen during mechanical tests, enabling shape and displacement measurements
using this algorithm throughout the test. This approach will provide us with a CAD
model of the initial specimen before loading, as well as a deformed mesh after loading,
with a precision better than the size of the projection pixels. This will allow the
measurement of the equivalent homogeneous elastic tensor and of the linearity of

linearity surface, and to compare them to the theoretical values as obtained by [8, 41]
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