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Abstract

We propose a theoretical analysis of a novel source routing scheme called XSR.
XSR uses linear encoding operation to both 1) build the path labels of unicast and
multicast data transfers; 2) perform fast computational efficient routing decisions
compared to standard table lookup procedure without any packet modification
all along the path. XSR specifically focuses on decreasing the computational
complexity of forwarding operations. This allows packet switches (e.g, link-layer
switch or router) to perform only simple linear operations over a binary vector
label that embeds the path. We provide analytical proofs demonstrating that
XSRs efficiently compute a valid unicast or multicast path label over any finite
fields F2w . Furthermore, we show that this path label can be used for both the
forward and return unicast paths, unlike other source routing algorithms that
require recomputing a label for the return path. Compared to recent approaches
based on modular arithmetic, XSR computes the smallest label possible and
presents strong scalable properties, allowing it to be deployed over any kind of
core vendor or datacenter networks.

Keywords: source/segment routing, optimal path label encoding, label switching, SDN
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1 Introduction

Source routing is a very old technique to route a data packet from a source to a
destination, initially presented in [1] and currently developed at the IETF within
the SPRING (Source Packet Routing in Networking) working group [2]. Compared
to conventional routing, which forwards packets following both the IP destination
address and the forwarding table lookup, source routing allows the sender to partly or
completely indicate inside the packet headers the path that must be followed. Source
routing has several advantages. As highlighted in [3], the data plane becomes simpler,
core elements perform simple operations, and traffic engineering is more flexible.

The source routing technique gained popularity in particular following the rapid
spread of the Software Defined Networking (SDN) paradigm as a scalable solution to
deploy services in datacenters [4]. Source routing is also the basis of embedded networks
such as SpaceWire [5] or ad-hoc networks [6]. This is also the case for most wide-area
networks managed by Internet Service Providers that use traffic engineering techniques
to ease their network management. For instance, ISPs usually deploy centralized or
distributed SDN controllers to handle their network, MPLS-TE to control routing
paths or IPv6. Some studies have highlighted significant improvements in convergence
times because of the reduced number of states that the SDN controller must distribute
into the network.

In particular, the authors in [7] illustrate that SDN-based source routing signif-
icantly decreases flow-states exchange by storing the path information into packet
headers. Encoding the whole path inside a packet suppresses expensive lookup proce-
dures inside core packet switches (e.g, link-layer switch or router) as each switch can
quickly identify the next hop of the path stored in the packet. This explains why the
translation of a network path resulting from a given TE objective to an SID sequence
is a key operation for the deployment of segment routing [8].

The length of the encoded path label is a potential issue in source routing. In
particular, there are use cases where each individual hop must be specified in the
label, resulting in a long list of hops that is instantiated into an MPLS label stack (in
the MPLS data plane) or a list of IPv6 addresses (in the IPv6 data plane) [2]. This
obviously leads to potentially oversized labels. Furthermore, current MPLS equipments
only supports a limited number of stacked labels (five to ten labels are currently
supported by some routers [9]). To cope with this problem, there exists an up-to-date
variant called segment routing [10] that leverages the source routing principle. Segment
Routing encodes a path label as a stack composed of node segments (a router) and
adjacency segments (a router interface output) [10] which prevents the recording of
all nodes addresses. Another solution to reduce the path label size is to reduce the
number of fixed-length labels of the path, as proposed in [11–13] or to use interface
labels instead of global ones [14].

The XOR-based source routing (XSR) scheme is a novel approach to improve
data plane operations.The originality of XSR is that it conjointly optimizes the size
of the path label with low switching processing cost while enabling multicast and
unicast forwarding. This is explained through the use of linear operations over binary
vectors. A large survey browsing previous attempts is proposed in [8]; eight papers are
identified therein. In this study, we select and focus on two recent competitive studies
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that provide path optimization techniques to minimize the size of a path label encoded
inside packets. We will mainly discuss XSR against these two solutions proposed,
respectively, in 2017 [15] and in 2018 [16]. In the latter, the authors propose a whole
architecture, referred to as RDNA, that lays on modular arithmetic to compute a label
number to identify (following a reverse operation) the output switch port considering
a unique router ID [16].

After presenting our proposal, we will show in 8 that RDNA requires a larger path
label length and performs less computationally efficient operations than XSR (i.e.,
XOR versus modulo operation), particularly for multicast. In [15], the authors propose
an elegant algorithm that minimizes the maximum length of any encoded path in the
network. The main drawback is the restriction of this solution to unicast exchanges.
On the contrary, XSR copes with all these issues, enabling unicast and multicast
communications at the same processing cost, and performing computationally efficient
routing decisions without any packet modification.

We first discuss the path encoding problem in the next Section 2. Then, we provide
the big picture of our proposal through a simple illustrated example in Section 3. The
full description of the XOR-based source routing is further detailed in Section 4. An
analysis of XSR parameters is done in Section 5, followed by a comparison of XSR
with existing approaches in Section 8. We conclude this work in Section 9.

2 The Path Encoding Problem

Actually, a router only needs to assess the output link(s) corresponding to a given input
packet. Therefore, the path of a packet can be encoded by the output links sequence of
the routers composing the path. Since the labels of the output links (denoted interface
labels in the following) are local to a node, they can be represented by short bit
vectors. For example, a node having 3 output paths can number them 0, 1 and 2 and
thus, uses 2-bit vectors (00), (01) and (10) as interface labels to identify them. This
principle, adopted by the authors in [14], uses short fixed-length interface labels. Note
that the number of bits needed to identify each interface label of a router depends
on the number of output links. The authors in [15] further investigate this approach
by using variable-length prefix-codes usually used in lossless compression systems to
represent the interface labels of the output links. They show that they can reduce the
lengths of the largest encoded paths.

With segment routing, all labels have the same length, and each router considers
the first label at the top of the stack in the received packet, processes the packet, and
then removes this label. The next router uses the next label until it reaches the final
receiver. When short interface labels are used, this strategy cannot be applied because
the interface label size is not necessarily a multiple of 8 bits. In [14], each interface label
has a fixed length and a hop counter is added to the header, allowing identification
of the current path position. This counter is then decremented by each router before
forwarding the packet involving data modifications. Similarly to [14], due to variable
interface label sizes, a pointer is also needed in [15] to point to the current position
in the encoded path. After reading the corresponding interface label, the router slides
the pointer and forwards the packet.
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The localization strategies of the labels in the encoded paths have several
implications. First, removing or modifying some parts of the label involves header sup-
plementary data operations and computations. The second consequence is that these
strategies are only usable for unicast transmissions. Indeed, if we consider multicast
or multipath transmissions, some router must send packets on several interfaces. How-
ever, the header modifications performed by the router are only based on its local
information; thus, it is not possible to make different modifications on the packets sent
to the different interfaces.

Other strategies have been proposed to enable multipath or multicast. In [17], the
source builds a Bloom filter based on the addresses of the nodes of the path, and
stored in the packet header. At the reception of a packet, each router checks whether
the addresses of its neighbors are verified by the Bloom filter and forwards the packet
to the valid ones. Since Bloom filters are probabilistic tools, the main difficulty with
this scheme is to choose the right parameters of the filter to minimize the ratio of
false positives while maintaining a reasonable size. Finally, for multicast transmissions,
where data can be sent to different interfaces, the interface label can be chosen as a
bitmap. For example, the label of a packet that must be sent on the interfaces 0, 4
and 5 of a router having 6 interfaces is (110001) (to be read from the right to the
left). A simple method to generate the encoded path is to concatenate the interface
labels. More elaborated strategies presented in [18] and [16] encode the path into an
integer number. The routers recover their information by computing the residue of
this integer modulo a prime number.

3 XOR-based Source Routing in a Nutshell

Let us start with an illustration of XSR interface labels principle. We recall that an
interface label corresponds to an interface IDs of a router or a set of interfaces in
the case of multicast. Fig. 1 shows an example where an input packet of a unicast
transmission coming from the interface (4 = 100b) is forwarded to the interface (3 =
011b). The interface label of this packet for this router is defined as the XOR between
the input interface ID and the output interface ID, i.e. 100b ⊕ 011b = 111b. It is
obvious that the output interface ID can be computed from the interface label and
the input interface ID (100b ⊕ 111b = 011b). Similarly, for the reverse path, the input
interface ID can be retrieved from the output interface ID and the interface label
(011b ⊕ 111b = 100b).

0 1

2

3=011
b

4=100
b

111
b

Fig. 1 Unicast interface label

0 1

2

3

4
01011

b

Fig. 2 Multicast interface label
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For the multicast transmission shown in Fig. 2, the interface label to the packet
is the bitmap (01011) of the output interface IDs. A 1 in positions 0, 1 and 3 means
that the packet must be forwarded to the ports 0, 1, and 3.

The XSR principle is to concatenate the interface labels of each router of the path
into a vector L. We assume that each router has a unique identifier RID (e.g., hardware
address). The path label, denoted P , is computed by the source (or directly provided
by a centralized SDN controller) by applying to L a linear transformation based on
the IDs of the routers of the path. This path label is stored in the header of the packet.
To forward a packet, each router applies a filtering function (based on its own ID) to
the path label to obtain its interface label. This function is a linear function over the
binary finite field F2 only using XOR-based operations.

The first advantage is that packets are not modified when crossing a router. In
contrast to [15], the interface labels list does not need to be ordered in the path label,
preventing the use of a pointer or vector. This filtering function is simply a few-dot
products of short vectors that can be done on-the-fly, compliant with fast routing
strategie such as, e.g., cut-through.

Briefly, the length of the path label P is the sum of the lengths of the interface
labels of each router of the path, even if they do not have the same length.

D

R
17

R
11

R
12

R
8

R
29

0=00
b

1

2=10
b

0

1

0 1
0 1

2

0

1=01
b

2=10
b

S

Fig. 3 Example network

To illustrate this, let us consider the network presented in Fig. 3. Assume that
the source S requests to send a packet to the destination D through the path
(R17|R11|R29). The path can be represented by the sequence of interface labels
L = (L17 L11 L29) = (2⊕ 0 0⊕ 1 1⊕ 2) = (10b ⊕ 00b 0b ⊕ 1b 01b ⊕ 10b) = (10b 1b 11b).
Once again, the lengths of the interface labels varies according to the routers or can
be variable for the same router as in [15]. Here, we consider that R17 and R29 labels
have a length of 2 bits while R11 label has a length of 1 bit.

The path label P is computed by solving the following system built from the
filtering functions F17, F11 and F29:
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F17(P ) = (10) (1)

F11(P ) = (1) (2)

F29(P ) = (11) (3)

These functions are linear operations characterized by a matrix defined from the
routers IDs. For R17, let us denote this matrix M17. We then have:

F17(P ) = P ·M17 = (10)

where the notation · between two vectors or matrices represents the matrix mul-
tiplication. Since the length of P is the sum of the lengths of the interface labels, i.e.
5, and the length of the interface label is 2, M17 has 5 rows and 2 columns. In this
simple example, the first column is defined by the router ID 17 = 010001b and the
second column as its cyclic shift. Finally, the label must verify:

F17(P ) = P ·M17 = P.

(
1 1
0 1
0 0
0 0
1 0

)
= (10) (4)

By using the same method, we can obtain the following linear equations for R11

and R29:

P ·M11 = P ·

(
0
1
0
1
1

)
= (1) and P ·M29 = P ·

(
1 1
1 1
1 1
0 1
1 0

)
= (11) (5)

The set of linear combinations can be aggregated in the 5 × 5 matrix M =
(M17|M11|M29) allowing to obtain the global relationship between the path label P
and the concatenation of interface labels list L:

P ·M = L (6)

By observing that M is invertible, the source computes M−1 and P as follows:

P = L ·M−1 = (10 1 11) ·

(
0 0 1 1 1
1 0 0 1 1
1 1 1 1 1
1 1 0 0 1
1 1 1 0 1

)
= (11100) (7)

It can be verified that (1), (2) and (3) hold for this value of P .

4 XOR-based Source Routing

We have previously illustrated within a little example the main principle of our pro-
posal. We now present in further details the core mechanisms of XOR-based source
routing.
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4.1 Notations

The most important notations used in this paper are listed thereafter.

Table 1 Notations

Ri defines a router with ID number i;
Li is an interface label for router Ri;
L is a path label between a source S and a destination D. The concatenation of the interface

labels correspond to a bit vector denoted L = (Li1 , Li2 , . . . , Lip ) with a size sL =
∑p

k=1 sik ;
P is the length of the path label L;

Mi
(e)

is the binary filtering stored matrix ID number e of router Ri defined by sP rows and si columns;

M
(e)
i is the binary filtering submatrix ID number e of router Ri defined by sP rows and si columns;

sP is the maximum length in bits of the size of P ;
si is the maximum size of the interface labels of Ri;
M is the concatenation of the filtering matrices used by the routers of the path.

4.2 Network Hypotheses

We define a network has a set of edge nodes (source and/or destination nodes) con-
nected to nR routers Rj , j = 1, . . . , nR as illustrated in Fig. 3. Communications occur
between several edge nodes through a path formed by several routers. For example,
a unicast communication between a source S and destination D could use either the
path (R17|R11|R29) or (R17|R12|R8|R29). The connection can be unicast, multipath
or multicast.

4.3 Router Forwarding

The main operation performed by a router Ri at the reception of a packet is to filter
the path label P to recover its corresponding interface label Li.

The general form of the simple example presented in Section 3 is to consider that

each router stores 2ϵ binary filtering matrices denoted M
(e)

i , where e = 0, . . . , 2ϵ−1, as
shown in Fig. 4. Each matrix has sP rows and si columns, where sP is the maximum
length in bits of the size of P and si is the maximum size of the interface labels of Ri.

At the reception of a packet, the router reads the path label P of size sP (denoted
step #1 in Fig. 4) and the value e set by the source stored on ϵ bits (denoted step
#2). This value e is encoded on ϵ bits. In the following, the value of ϵ is set to 4. It
means that 24 matrices will be stored numbered from 0 to 15. The number e, thus
corresponds to the matrix that must be selected (step #3) to compute Li (step #4).

Since sP ≤ sP and si ≤ si, the router takes Mi as the submatrix of M
(e)

i formed by
the first sl rows and si columns. The filtering function Fi is a set of linear operations
that consist in multiplying the path label P by a filtering matrix Mi with si columns
and sP rows.
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As a matter of fact, the size of ϵ impacts on the path label size and on the number
of different filtering matrices stored by a router. We will discuss on the choice of this
value in Section 5.

More formally, if F2 denotes the binary finite field, the filtering function is defined
as follows:

Fi

{
FsP
2 −→ Fsi

2

P −→ P ·Mi

These operations are summarized in Fig. 4

Mi

2

4

1

e

sP e

Mi
sP

si

...
e

Mi

PP Li

3

sP

Mi

stored matrices

received packet

(0) (1) (2-1)

si

Fig. 4 Receiver operations. The numbers represent the different steps.

4.4 Path Label Construction

Once again, the construction of a path label from a source S to a destination D is
done either by the source itself or by the controller which builds the path label and
send it to the source.

Let {Ri1 , Ri2 , . . . , Rip} the set of the routers on the path. For unicast transmission,
this set corresponds to a sequence of routers. Considering multicast, this sequence is
not ordered and corresponds to the set of routers that will forward the packet.

The concatenation of the interface labels corresponds to a bit vector denoted L =
(Li1 , Li2 , . . . , Lip) with a size sL =

∑p
k=1 sik .

As seen in the previous paragraph, the routers multiply the path label by their
filtering matrix to obtain their interface label. This implies that the path label P must
verify some linear constraints. These constraints can be represented by the matrix
M = (Mi1 , Mi2 , . . . ,Mip) which is the concatenation of the filtering matrices used by
the routers of the path. Since we set sP , the length of P , to sL, M is a sL× sL-square
matrix. We define a path label as valid if the filtering process (defined in the previous
section) applied by any router of the path produces the correct interface label of a
given router. We will show that we can obtain a valid path label P if M is nonsingular.

The construction of P is based on the following theorem:
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Theorem 1. Let M−1 be the inverse of M. Then:

P
def
= L ·M−1 (8)

is a valid path label.

Proof. From the definition of P , we have P ·M = L·M−1·M = L = (Li1 , Li2 , . . . , Lip).
On the other hand, P ·M = P · (Mi1 , Mi2 , . . . ,Mip) = (P ·Mi1 , P ·Mi2 , . . . , P ·Mip).
It follows that, for each k = 1, . . . , p, P ·Mik = Lik and thus P is valid.

Theorem 2. Let P be a valid path built from Theorem 1 to route the packets for a
unicast transmission from a sender to a destination.

Then, P is also valid to route the packets from the destination to the source.

Proof. To demonstrate this theorem, it is sufficient to prove that if a router receives
a packet with a path label P on an input interface numbered IDi, forwarded via
the output interface IDo, then, the resulting feedback packet incoming on the same
interface IDo will be forwarded on the same interface IDi using the same path label.

Let us consider a router Ru of the path. On the forward path, the router filters the
path label of a packet with the matrix Mu and obtains the interface label Lu = P.Mu.
According to 3, Lu is the XOR of the input interface IDi and the output interface
IDo. Let’s identify these interfaces as forward path interface as follows: IDf

i and IDf
o .

Since IDf
i is known, we can recover the IDf

o by XORing Lu and IDf
i as follows:

IDf
i ⊕ Lu = IDf

i ⊕ (IDf
i ⊕ IDf

o ) = IDf
o

Following this operation, the packet is forwarded on this output interface IDo.
On the reverse path, it receives a feedback packet on the return interface denoted

IDr
i with the same path label. By applying the filtering function Mu, it recovers Lu.

Similarly, it computes IDr
i ⊕ Lu to obtains IDr

o as follows:

IDr
i ⊕ Lu = IDr

o

as IDr
i = IDf

o , in other words, the forwarding output port is equal to the feedback
input port, we then have:

IDr
i ⊕ Lu = IDf

o ⊕ Lu = IDf
i

5 Analysis of the Parameters

The main system parameter that must be evaluated is the probability of building a
valid path label. Indeed, this probability impacts on the complexity of the construction
of a path label and allows to correctly size ϵ previously presented in 4.3. Note that we
make no assumption about the filtering matrices and consider them as random binary
matrices.
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5.1 Probability of Construction of a Valid Path Label

According to 4.4, a valid path label can be built if the matrix M is invertible. [19]
shows that the probability that a sL×sL binary random matrix is invertible is equal to

σ0(sL) =

sL−1∏
i=0

(1− 2i−sL) (9)

Fig. 5 confirms that this probability quickly converges to a limit which known to be
0.2888.

A valid path can be built if at least one of the 2ϵ matrices built from the matrices
stored by the routers is invertible. The probability is thus equal to

σϵ(sL) = 1− (1− σ0(sL))
2ϵ (10)

These values are plotted in Fig. 6. It can be observed that a valid path can be obtained
with a very high probability (for example, 0.99998 for 25 = 32 8 × 8 binary matrices
stored by each router).

2 4 6 8
sL

0.30

0.35

0.40

0.45

0.50

0

0.289

Fig. 5 proba. invertible matrix

1 2 3 4 5

0.5

0.6

0.7

0.8

0.9

1.0
0.995 0.99998

sL = 1
sL = 2
sL = 4
sL = 8

Fig. 6 proba. valid path

5.2 Complexity of the Path Label Construction

As the path label computation can also be done in the control plane (e.g., SDN
controller), there is no impact on the data plane forwarding procedure. However, we
believe that estimating its complexity is of interest.
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To build a path label from a matrix M , it is necessary to find its rank and to per-
form a matrix inversion. This is generally done by using algorithms based on Gaussian
Elimination (GE). Even if there exists theoretical optimizations like Strassen’s algo-
rithm [20] which runs in O(n2.807) operations for very large matrices, we will consider
that the complexity is in O(n3) for each tested matrix.

To evaluate the average number of tested matrices, we can observe that it is nec-
essary to perform k GEs only when the first k− 1 fails to build a valid path and when
the kth succeeds. This occurs with the probability (1 − σ)k−1σ. It follows that the
average number of GEs is:

∞∑
k=1

k(1− σ)k−1σ =
1

σ
(11)

5.3 Number of Signalling Bits

Section 5.1 has shown that σ must be chosen greater or equal to 3 to provide a high
probability of building a path label. This represents the size of the signalling field
added to the packet header with the path label. For example, this value is similar to
the size of the pointer used in [15] which is 4 bits in most of the studied configurations.

5.4 Storage Amount in Routers

According to 4.3, each router stores 2ϵ binary matrices of sP rows and si columns.
Therefore, the global amount stored by a router is

2ϵ × sP × si

By considering unicast transmissions, reasonable maximal values of ϵ = 4, sP = 50
and si = 10 can be chosen. This represents 50 × 10 × 16 = 8000 bits, i.e 1000 bytes,
which is completely scalable.

For multicast transmissions, the path label can be larger (see 8.2). In the largest
case studied, the path label has a size of approximately 200 bytes and the interface
labels have a maximal size of approximately 100 bits. For ϵ = 4, the total number
of bits stored is 16 × 200 × 8 × 100 = 2.56 Mbits i.e 320 Kbytes. Even if this num-
ber is rather low compared to traditional routers, we can easily reduce it by globally
optimizing the choice of the filtering matrices to reduce the value of ϵ. Another pos-
sibility is to use filtering matrices that can be deduced from a short representation as
in 3 where the columns of the filtering matrices are deduced from the first column by
cyclic permutations.

6 Extensions of XSR

In this section, we propose two extensions of XSR. The first extends the principle to
more general finite field. Since data packets usually carry bits, we only consider binary
extension fields F2w , i.e. extension fields of F2, but the concepts can be theoretically
applied to any finite fields. Thus, considering the filtering function now defined as
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follows:

Fi

{
FsP /w
2w −→ Fsi/w

2w

P −→ P ·Mi

We need to update both theorems 1 and 2 proofs. The second extension is based on
the observation that the construction of path is also possible from specific singular
matrices.

Both extensions lead to a significant improvement of the probability of building
valid paths.

6.1 Extension of XSR to finite fields F2w

Theorem 1 gives a first solution to build a valid path label in the case where M is
non-singular. In the following, we show that we can extend it to fields F2w .

In practice, the device that wants to build the path (i.e., the source or the net-
work manager) first considers the matrix M (1) built from the first filtering matrices

M
(1)
i1

, M
(1)
i2

, . . . ,M
(1)
ip

stored by the routers of the path. If the matrix is not invert-

ible, it considers M (2) built from the second matrices stored by the routers and so
on until finding a matrix M (j) invertible. Then, it indicates in the packet field e (see
previous paragraph) which matrix must be used to build/filter this path label. The
number of stored matrices is chosen to ensure a path label construction with a targeted
probability.

To evaluate the interest of using different finite fields, we first evaluate the proba-
bility of building a valid path with each finite field. To compare the different fields, we
assume that the encoded vector L is a vector of sL =

∑p
k=1 sik bits and that each sik

(and thus sL) is divisible by w. For each possible w, we consider that a path vector of
size sL/w over F2w must be encoded from the sL/w × sL/w over F2w .

According to Theorem 1, a valid path can be built if the encoding matrix M is
invertible. Several studies have given the probability that a random square matrix of
a given size defined over a given finite field is invertible.

Based on [21] (p. 338), reference [22] gives the probability P(n, q, r) that a random
n× n-matrix M defined over Fq has rank r :

P(n, q, r) =
1

qn2

[
n
r

]
q

r∑
k=0

(−1)r−k

[
r
k

]
q

qnk+(
r−k
2 ) (12)

where

[
n
r

]
q

=

r−1∏
l=0

qn−l − 1

ql+1 − 1

According to Theorem 1, a valid path can be built with probability P1(n, q) =
P(n, q, n). Fig. 7 is obtained with (12) by varying sP as a function of a set of w values.

It is clear that the size of the finite field has a big impact of the probability to
build a valid path. It follows that it has an impact on the number of matrices needed
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Fig. 7 Probability of building a valid path in F2w with Theorem 1

to be stored by each router to obtain a global targeted probability of building a path
(discussed in Section 5 and on the number of signaling bits ϵ.

Theorem 2 is clearly valid for fields F2w because it depends solely on the represen-
tation of the interfaces and not on the types of operations performed to recover the
output interface.

6.2 Building Path Labels With Singular Matrices

Even the use of binary extension fields increases the probability of building a valid
path. It is sometimes difficult to use a large finite field because the size of the field is
linked to the number of routers interfaces. In the following, we show that a valid path
can sometimes be built even if the matrix is non-invertible.

6.2.1 Path Label Construction

Let us consider M a sL/w × sL/w-singular matrix over F2w with rank r < sL/w.
Then sL/w − r columns can be expressed as linear combinations of r columns that
are linearly independent. Without loss of generality, we can assume that the r first
columns of M are linearly independent and that the sL/w − r other ones are linear
combinations of the r first ones. Similarly, since the first r columns of M are linearly
independent, they contain a r × r-submatrix invertible. To simplify the notations in
the following, we assume, without loss of generality, that its first r rows are linearly
independent, and thus, the matrix M|r defined as the r×r-submatrix of M built from
its r first rows and columns is invertible.
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Let us denote by Cj the jth column of M . We then have:

Cu =

r∑
k=1

au,kCk (13)

for u = r + 1, . . . , sL/w and au,k ∈ F2w . Let us now consider L as a vector of sL/w
elements of F2w (l1, . . . , lsL/w). Then,
Theorem 3. There exists a valid path label if and only if:

lu =

r∑
k=1

au,klk (14)

for u = r + 1, . . . , sL/w.
Under this condition, a valid path label P is :

(p1, . . . , pr,

sL−r︷ ︸︸ ︷
0, . . . , 0) (15)

where (p1, . . . , pr) = (l1, . . . , lr) ·M−1
|r .

Proof. Let us first assume that there exists a valid path label P such that P ·Mi = L.
(13) states that Cu =

∑r
k=1 au,kCk for u = r + 1, . . . , sL/w. Then,

P · Cu = P ·
r∑

k=1

au,kCk

=

r∑
k=1

au,kP · Ck (16)

Since P ·Mi = L, we have P · Cj = lj for any j = 1, . . . , sL/w. It follows from (16)
that lu =

∑r
k=1 au,klk for u = r + 1, . . . , sL/w.

Now, by assuming that (14) holds, we should prove that there exists a solution. To
do this, we will prove that the vector P given in (15) is a valid path label. For that,
we only should prove that P ·Mi = L. Let us first consider the product of P by the
sL/w × r-submatrix of Mi built from its r first column. As the sL/w − r last values
of P are equal to 0, this product is equal to (p1, . . . , pr) · M|r. Since (p1, . . . , pr) =

(l1, . . . , lr) · M−1
|r , this product is equal to (p1, . . . , pr) = (l1, . . . , lr) · M−1

|r · M|r =

(l1, . . . , lr). Thus, we have proved that the path label is valid for the first r values of
L. To complete the proof, let us consider the product P ·Cu, for u = r+ 1, . . . , sL/w.
Then,

P · Cu =

r∑
k=1

au,kP · Ck
(a)
=

r∑
k=1

au,klk
(b)
= lu (17)

14



Equality (a) is obtained from the first step of this proof on the first r components of
L and (b) is obtained with the hypothesis that (14) holds.

To evaluate the interest of Theorem 3, compared to the path construction of Section
4.4, we need to evaluate the increase in the probability of building a valid path.

Recall that P(n, q, r) is the probability that a n×n-binary matrix defined over Fq

has rank r. The global probability of finding a valid path label, denoted by σ, is equal
to:

P2(sL/w, 2
w) =

sL/w∑
r=0

P(sL/w, 2
w, r)

2w.(sl/w−r)
(18)

Indeed, according to Theorem 3, a valid path can be built if the rank of the matrix
is r and if the last sl/w − r values of L verify (14).

Figure 8 shows the probability of building a valid path by using non-invertible
matrices by varying w and sP , length of the path in bits.
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Fig. 8 Probability of building a valid path in F2w with Theorem 3

By comparing the results with the ones in Fig. 7 (recalled in dot lines), we observed
significant gains for w = 1 and 2 and lower gains for higher values of w (which are
already rather high).

7 Parameters Analysis over F2w

We analyze in the following the router storage footprint of the filtering matrices, and
then assess both the mathematical complexity of the filtering operation and the path
construction.
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7.1 Storage of the filtering matrices

From a system perspective, the filtering matrices must be known by both the filtering
router and the entity that builds the path. Except for specific structured networks,
these matrices are randomly chosen. A simple solution to store them is to generate
them using a pseudo-random number generator (PRNG) from a seed shared by the
routers. This solution can be used by the entity which generates the path because
this operation is performed once at the beginning of the first connection between
the sender and the destination. However, the duration of the execution of a PRNG
would drastically slow down the forwarding process if computed at each packet arrival.
Therefore, the filtering matrices must be generated once and then stored by the routers.

To evaluate this storage amount, we first need to evaluate the size of a matrix and
then, the number of stored matrices.

Each filtering matrix stored by a router Ri has the size si/w × sP /w elements of
F2w , so the number of bits stored is equal to

si.sP
w

(19)

It can be observed that increasing the value of w reduces the amount of date stored
for one matrix.

As explained in Section 4.4, the number nM of matrices stored by the routers
depends on the targeted probability P3 to build a path. We have :

P3 = 1− (1− P2(n, q))
nM (20)

If P3 is given, nM can be deduced as follows :

nM =
⌈ log(1− P3)

log(1− P2(n, q))

⌉
(21)

It follows that the global amount of data (in bits) stored by a router is equal to :

nM .si.sP
w

(22)

For si = 4 and P3 = 1− 10−6, Figure 9 evaluates this storage amount for a router for
various values of sP and w. This clearly demonstrates the interest of using finite fields
larger than F2.

7.2 Complexity

Two different complexities must be considered. The most important one is the
complexity of the filtering operation, which is critical to allow fast forwarding.

As explained in Section 4.3, this operation is a multiplication over F2w of a sP /w-
vector by a sP /w × si/w-matrix. So, the number of operations in the field is sP /w ×
si/w. Many efficient methods were proposed to optimize multiplications in finite fields
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Fig. 9 Storage amount for si = 4 and P3 = 1− 10−6

(see e.g., [23],[24]), but it can generally be assumed that a multiplication in F2w can be
done in O(w2) bit operations. It follows that the complexity of the filtering operation
is in O(sP .si) number of bit operations and, thus, does not depend on w.

For the complexity of the path construction, the most costly operation is an inver-
sion of a sP /w × sP /w, which is in O((sP /w)

3) operations in F2w , and thus, in
O(((sP /w)

3.w2) = O(s3P /w) bit operations. This complexity is thus reduced when w
is increased. As explained in [25], the number of inversions is 1/P2(n, 2

w) which also
decreases when w is increased. Therefore, using a large finite field also allows reducing
the complexity.

7.3 Conclusion

To conclude the last two sections, the first important observation is that we obtain
a better gain both in terms of complexity and storage within an extension of a finite
field F2w . However, the inherent simplicity of practically using F2w should lead to an
implementation that is simpler to optimize considering the multiple bits operations
available on CPUs today. As the gain depends on the motherboard specifications, the
CPU, and the implementation itself, the choice of the best finite field should be done
by commercial vendors following benchmarks on their own implementations. As a
matter of fact, it would be inconsistent to propose any recommendation at this stage,
without several vendors benchmarking over commercial hardware.

8 XSR Versus Existing Work and Application

Two recent results have interesting relationships with our proposal. In the two next
sections, we expose these links and compare various metrics of interest.
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8.1 Optimal Path Encoding for Unicast Transmissions

This first considered work, denoted OPE, is presented in [15]. The authors propose
the use of prefix codes to represent the interface labels and optimize the choice of the
labels to minimize the maximal length of the path label. The path label is then the
sequence of the interface labels, with an additional pointer indicating to a router the
position in the encoded path that it must consider. This pointer is updated by the
router according to the length of its interface label. This scheme allows significantly
reducing the size of the largest path label.

Compared to this work, our proposal goes further by encoding their output (the
sequence of optimized interface labels) with binary linear operations.

If we estimate the number of bits needed to implement each solution, the lengths
of the path labels are equal both for OPE and XSR and require the same amount of
signalling bits: around 4 for OPE to encode the pointer and ϵ = 3 or 4 with XSR.

However, the advantage of adding XSR on top of OPE is twofold:

1. the pointer used by OPE involves an ordered sequence of interface labels and thus
can only be used for unicast transmissions. This is rather unfortunate because
the idea of optimizing the interface labels according to the maximal length makes
sense for multicast transmissions, as in datacenter networks (see next Section 8.2).
Encoding the path with XSR removes this notion of order and thus allows multicast
transmissions;

2. using fast filtering router operations prevent any packet modification due to pointer
update or possibly integrity checks.

8.2 Datacenter Networks

8.2.1 Recent Work in Source Routing for Datacenter Networks

The potential of source routing for datacenter networking was demonstrated in
KeyFlow [26] and COXcast [18] for both unicast and multicast transmissions. The first
interest is the simplification of the management of multiple small multicast groups.
The protocol Xcast [2] was defined for this purpose. However, the generated headers
can be large. To cope with this issue, KeyFlow and COXcast independently propose
a source routing mechanism that encodes the paths with interface labels associated
to the interfaces of the routers. The main idea is to associate to each router a prime
number label and to the paths an integer stored in the packet header. At the reception
of a packet, a router simply computes the residue of the path modulo its label. The
obtained value corresponds to the output interface(s). They reduce significantly the
size of the path label compared to Xcast. Moreover, the core routers neither use for-
warding tables nor modify the packets. This simplifies router operations and reduces
the processing delay, allowing ultra-low latency communications.

The path label size is also reduced in the RDNA architecture [16]. RDNA improves
the way to choose the prime numbers and to compute the path. Since the integer
path is determined from the prime numbers of the system, it is preferable to use short
prime numbers to reduce the size of the integer path. Unfortunately, the number of
primes in integer numbers is quite low, and it is not always possible to choose small
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prime numbers that provide residues with a given number of bits. Multiplying prime
numbers (and finding the right ones) leads to oversized binary values, making the path
label size not optimal and RDNA solution less flexible than XSR particularly in the
context of multicast.

8.2.2 Path Length Comparison

The mechanism used in COXcast and RDNA is based on a concept similar to XSR.
The main difference is that XSR is based on linear algebra, whereas both others are
based on modular arithmetic. Linear algebra has several advantages:

• linear algebra does not have the problem of scarcity of prime numbers, and thus
the length of the path is very close to the optimal. This is demonstrated in Tables
2 and 3;

• linear operations performed in routers are simple dot products and are less complex
than modulo operations on integers;

• linear algebra provides better flexibility. The configuration of the global network
can easily be changed because finding new invertible matrices is effortless and leads
to optimal size compared to the complex choice of the best set of prime numbers.

We now compare the overhead in terms of size. We consider the use cases studied
in RDNA [16] and compute the corresponding header length for each solution.

The datacenter network analyzed in [16] is a 2-tier Clos network topology (shown
Fig. 10) composed of two stages core switches (spine and leaf) and one stage of edge
switches connected to hosts. Connections are defined between two hosts. The con-
sidered path is defined between the edge switches connected to the hosts source and
destination. The longest path is from the edge switch connected to the source, to the
edge switch connected to the destination through a first leaf, a spine and a second leaf.

…   Spines  ...

 …   Leafs   ...

Edges

Hosts
 …   

Fig. 10 Datacenter network
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Table 2 Path label size (bytes) for unicast

Spine 2 6 12 8
Leafs 4 12 16 16
Ports 16 24 32 16 24 32 48 96 16 24 32 48 96 16 24 32 48 96

COXcast[18] 5 8 11 5 8 11 17 35 5 8 11 17 35 5 8 11 17 35
RDNA [16] 2 2 2 3 3 3 4 4 3 3 3 4 4 3 3 3 4 4

XSR 2 2 2 2 3 3 3 3 2 3 3 3 3 2 3 3 3 3

8.2.3 XSR - first method

let us denote spines, resp. leafs, the number of spines, resp. leafs, and let ports be
the number of ports of the leafs. The number of ports of the spines is leafs.

To represent a unicast path, we then need to store the output port of the first leaf
(i.e., among ports− 1 since we do not consider the input port), then the output port
of the spine (among leafs − 1) and then the output port of the second leaf (among
ports− 1).

According to the results of 4.4, this path can be encoded in 2. log2(ports − 1) +
log2(leafs− 1) + ϵ bits with a high probability. We fix the value of ϵ to 4 bits1.

The number of bytes necessary to encode the path is thus:⌈
(2. log2(ports− 1) + log2(ports− 1) + 4)/8

⌉
The obtained values are compared to COXcast and RDNA in Table 2. We observe

that we always have path label sizes lower or equal to the other proposals.
For multicast transmissions, the longest path is from the host source and its

corresponding edge switch to all other hosts. The packet must be sent from the cor-
responding edge switch to a first leaf, which forwards it to all its ports connected to
other edge switches and to one spine. The spine transmits the packets to all other leafs
which forwards it to all their connected edge switches (see Fig. 4 of [16]).

We recall that multicast interface labels can be represented as a bitmap of the
output ports. Thus, a multicast interface label of a spine is a vector of leafs bits and
an interface label of a leaf is a vector of ports bits.

The application of results of 4.4 leads to a encoded path of length
ports+leafs+(leafs-1).ports+ϵ bits. By fixing the value of ϵ to 4 bits, we obtain
the following number of bytes:⌈

(ports+ leafs+ (leafs− 1).ports+ 4)/8
⌉

The values obtained are reported in Table 3 in the row ”XSR #1”. Except two
cases, a small gain is observed in most configurations.

1The value of ϵ can be reduced by determining a static configuration of the filters (out of the scope of
this paper).
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Table 3 Path label size (bytes) for multicast

Spine 2 6 6 8
Leafs 4 12 16 16
Ports 16 24 32 16 24 32 48 96 16 24 32 48 96 16 24 32 48 96

COXcast[18] 10 14 18 36 48 60 84 156 47 63 79 111 207 51 67 83 115 211
RDNA [16] 9 14 18 26 39 52 75 154 34 51 68 100 200 34 51 68 100 200
XSR #1 9 13 17 26 38 50 74 146 35 51 67 99 195 35 51 67 99 195
XSR #2 9 13 17 20 32 44 68 140 26 42 58 90 186 22 38 54 86 182

8.2.4 XSR alternative method - just another possible
representation of the path label for multicast

the rather intuitive representation of our filtering operation allows us to propose an
enhancement of the path encoding in the multicast case. The idea is to optimize the
interface label in the leafs by differentiating the ports of the leafs connected to the
spines and the one connected to edge switches. We propose to use some ”signalling”
bits in the label to encode differently the packets that must be only sent to some
spines, the ones that must be only sent to edge switches and the others. To reduce the
number of these bits, we use the prefix code {0, 10, 11} as it was proposed in [15] for
unicast transmissions.

In a use case, for spines = 6 and ports = 16, the new labels would be:

• [10......]: the code 10 followed by the 6 ports connected to the spines for the packets
only sent to some spines

• [0..........]: the code 0 followed by the 16 − 6 = 10 ports connected to the edges for
the packets that only be sent to the edges.

• [11................]: the code 11 followed by the 16 ports for the other packets

This leads to an encoded path of length 2 + ports + leafs + (leafs − 1).(1 +
ports−spines)+ ϵ bits. By fixing the value of ϵ to 4, we obtain the following number
of bytes: ⌈

(2 + ports+ leafs+ (leafs− 1).

(1 + ports− spines) + 4)/8
⌉

From a practical perspective, to forward a packet with the types of labels, the
leaf just needs to identify the 2 first bits to determine the length of the label it must
recover and the filter it must use.

The results reported in the row ”XSR #2” of Table 3 show a significant gain in
most use cases.

9 Conclusion and Future Work

We presented XOR-based source routing, a new data plane scheme enabling fast for-
warding by performing only simple linear operations over a binary vector label which
embeds an encoded routing path label. Compared to recent approaches, XSR com-
putes the smallest label possible and does not require to modify forwarded packets.
The main advantage compared to other existing approaches is to allow the re-use of the
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same path label for the feedback path and so, prevent the receiver to compute another
label to reply (considering the SDN controller allows the same path for reply). XSR
provides the building blocks to speed up the forwarding plane and can be applied to
different data planes such as MPLS or IPv6 for unicast and multicast communications.

In a future work, we expect to implement XSR within Mininet emulator to further
demonstrate the effective processing cost of forwarding operations. Furthermore, we
believe that XSR would lead to promising application in terms of privacy and security
if routers filtering operations remain unknown to attackers attempting to observe the
network.
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