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Abstract. Objective. X-ray spectral computed tomography (CT) allows for material

decomposition (MD). This study compared a one-step material decomposition MD

algorithm with a two-step reconstruction MD algorithm using acquisitions of a

prototype CT scanner with a photon-counting detector (PCD). Approach. MD and CT

reconstruction may be done in two successive steps, i.e. decompose the data in material

sinograms which are then reconstructed in material CT images, or jointly in a one-step

algorithm. The one-step algorithm reconstructed material CT images by maximizing

their Poisson log-likelihood in the projection domain with a spatial regularization in

the image domain. The two-step algorithm maximized first the Poisson log-likelihood

without regularization to decompose the data in material sinograms. These sinograms

were then reconstructed into material CT images by least squares minimization, with

the same spatial regularization as the one step algorithm. A phantom simulating the

CT angiography clinical task was scanned and the data used to measure noise and

spatial resolution properties. Low dose carotid CT angiographies of 4 patients were

also reconstructed with both algorithms and analyzed by a radiologist. The image

quality and diagnostic clinical task were evaluated with a clinical score. Main results.

The phantom data processing demonstrated that the one-step algorithm had a better

spatial resolution at the same noise level or a decreased noise value at matching spatial

resolution. Regularization parameters leading to a fair comparison were selected for

the patient data reconstruction. On the patient images, the one-step images received

higher scores compared to the two-step algorithm for image quality and diagnostic.

Significance. Both phantom and patient data demonstrated how a one-step algorithm

improves spectral CT image quality over the implemented two-step algorithm but

requires a longer computation time. At a low radiation dose, the one-step algorithm

presented good to excellent clinical scores for all the spectral CT images.

Keywords: Computed tomography, spectral CT, photon-counting detector, material

decomposition, image quality, one-step
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1. Introduction

Photon-counting detector computed tomography (PCD-CT) represents a milestone in

medical imaging (Danielsson et al. 2021; Si-Mohamed et al. 2021b; Rajendran et al.

2021). Compared to energy-integrating detectors (EIDs), PCDs improve the spatial

resolution for the same dose level and enable low-dose clinical protocols. These

improvements have been demonstrated with conventional images, i.e. the CT image

reconstructed from the attenuation of all detected photons. The conventional image is

traditionally reconstructed with filtered back-projection (FBP) for EID-CT and PCD-

CT. The improved resolution and noise properties come from the detection technology.

PCDs and dual-energy (DE) EIDs also provide spectral images (McCollough et al.

2020) but spectral images inherently suffer from a higher noise level than conventional

imaging. While the reconstruction algorithm is rather similar between CT systems in

conventional imaging, different strategies have been adopted to reconstruct the spectral

images and fundamentally different algorithms have been developed.

Spectral x-ray images measure the energy variability of the attenuation coefficient

of the patient. In most cases, spectral CT uses the model of Alvarez and Macovski

1976 which describes the variations of the linear attenuation coefficients with energy by

the linear combination of a few basis functions. With this model, the reconstruction

of the energy-resolved CT image of a patient comes down to the reconstruction of two

basis material CT images (with an additional basis material CT image for each K-edge

contrast agent). This material decomposition (MD) formulation combined with a multi-

energy measurement (performed either with a DE-CT or a PCD-CT scanner) enables

material identification and quantification.

In PCD-CT acquisitions, several thresholds are set to define a corresponding

set of energy bins, each photon detected by the detector being sorted in the bin

corresponding to its measured energy. Because of physical phenomena in the detector

(charge sharing, fluorescence escape, etc.), the PCD spectral response is imperfect (Flohr

et al. 2020; Si-Mohamed et al. 2021b) which has to be taken into account in the

reconstruction. The spectral distortion is often accounted for during MD. MD and

tomographic reconstruction are the two sub-problems of spectral CT reconstruction.

Different strategies have been developed to tackle spectral CT reconstruction. They

can be classified into three categories depending on when MD occurs: pre-, post- or

during tomographic reconstruction. Pre-reconstruction techniques perform a projection-

based MD: basis sinograms are first decomposed from the energy bins (Roessl and Proksa

2007) and then reconstructed into basis CT images. These methods are computationally

efficient but it is difficult to implement noise reduction techniques in projection space

and crucial statistical information is lost after MD. Post-reconstruction techniques first

reconstruct the CT image of each energy bin (Maaß et al. 2009). However, these

reconstructed CT images suffer from beam-hardening artifacts which will degrade the

accuracy of the post-reconstruction MD. Finally, one-step (or joint) reconstruction

performs the MD and the tomographic reconstruction jointly. They directly reconstruct
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the basis material volumes from the multi-energy projection measurements, unlike pre-

and post-reconstruction techniques which have multiple steps with intermediate results.

All one-step algorithms are iterative unlike pre- and post-reconstruction methods

which can use FBP for tomographic reconstruction. One advantage is that spatial

regularization of the material CT images may be used while performing the MD.

However, these techniques are computationally more demanding and require an

efficient optimization algorithm. Several algorithms have been investigated for one-step

reconstruction: non-linear conjugate gradient (Cai et al. 2013; Simard and Bouchard

2022), separable quadratic surrogates (SQS) (Lee et al. 2022; Liu et al. 2022; Long and

Fessler 2014; Mechlem et al. 2017; Tilley et al. 2019; Weidinger et al. 2016) or algorithms

based on proximal operators such as ADMM (Jolivet et al. 2020; Schmidt et al. 2022),

Chambolle-Pock (Barber et al. 2016; Chen et al. 2021) or VMILa (Tairi et al. 2020). A

previous comparative study (Mory et al. 2018) has demonstrated that SQS combined

with Nesterov’s momentum is an efficient algorithm.

This study aimed at demonstrating the image quality improvement of one-step

approaches over a pre-reconstruction MD method, called two-step in the following.

Existing one-step algorithms have been compared to two-step methods (Mechlem et

al. 2017; Simard and Bouchard 2022) but, to our knowledge, no study has rigorously

compared the image quality of one-step and two-step material decomposition strategies.

In this study, a one-step algorithm and a two-step algorithm were selected from the

literature and implemented. Aiming at a comparison as fair as possible, the two-step

method uses iterative tomographic reconstruction with the same spatial regularization

as the one-step method. In a similar study limited to simulated data, one-step

reconstruction has already demonstrated its potential to reduce metal artifacts compared

to a two-step method (Schmidt et al. 2022). Here, experimental data acquired with a

full field-of-view (FOV) (500 mm) clinical prototype PCD-CT are used (Si-Mohamed

et al. 2023). We propose a methodology to select the hyperparameters of model-based

algorithms from empirical measurements leading to a fair comparison of both methods

before applying it to patient data. Only a few one-step methods have been applied

to patient data and this study demonstrates that they can facilitate the diagnosis on

spectral images.

The first part of this work investigates different regularization strengths for the

two methods to select parameters yielding the same level of noise or the same spatial

resolution. Image quality metrics are then evaluated and compared. In a second part

of this work, patient data were reconstructed and analyzed by radiologists for a specific

clinical task: carotid angiography.
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2. Material and Methods

2.1. Spectral forward model

The same forward spectral model was inverted in the two-step or one-step methods for

MD. This model estimates the photon count Cib in the energy bin b at the detector

pixel i from the scanned object attenuation:

Cib =

T b
max∫

T b
min

kVp∫
0

SResp(t, e)e−atti(e)de dt (1)

where T b
min and T b

max are respectively the lower and upper thresholds defining the energy

bin b, kVp is the tube voltage value, SResp the spectral response, and atti the attenuation.

The spectral response includes the PCD response and the incident source spectrum.

In the following, a discretized notation of this model is used where the spectral

response is a discretized spectrum per bin:

Cib ≃
kVp∑
e=1

SResp
be e−attie . (2)

This forward model is based on the assumption that the PCD behavior is linear.

Non-linearities such as pile-up effects or scatter are neglected. It also relies on an

accurate knowledge of the spectral response, in order to avoid low and high frequency

artifacts (Feng et al. 2021).

Using the model of Alvarez and Macovski 1976, the attenuation is decomposed into

several basis material lengths in the two-step method:

attTS
ie =

Nm∑
m=1

limµme (3)

where Nm is the number of basis materials, l is the concatenated vector representing the

basis material sinograms (withm the material index) and µme the attenuation coefficient

of the basis material.

For the one-step method, the attenuation is decomposed into several basis material

densities:

attOS
ie =

Nm∑
m=1

[Afm]iµme (4)

where f is the concatenated vector representing the basis material volumes and A is the

projection matrix to compute a material sinogram from a material volume fm.

2.2. Two-step method

The two-step MD was implemented in a projection-based scheme (Roessl and Proksa

2007) which computes in a first step the material sinograms from the PCD data
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by maximizing pixel by pixel the Poisson log-likelihood of measuring cib counts after

traversing li lengths of materials:

PLTS(li) =

Nb∑
b=1

[
cib log

(
C

TS

ib (li)
)
− C

TS

ib (li)
]

(5)

where

C
TS

ib (li) =

kVp∑
e=1

SResp
be exp

(
−

Nm∑
m=1

limµme

)
(6)

combines eq. (2) and (3). Given the pixel by pixel formulation, this log-likelihood is a

function of Nm scalars and is a small optimization problem (Nm being equal to 2 in this

work). The argument of the maximum was computed with the Nelder-Mead downhill

simplex algorithm (Nelder and Mead 1965).

In a second step, the basis material sinograms were used independently as input

of a conjugate gradient (CG) algorithm (Nocedal 2006) minimizing the penalized

least-square difference between the decomposed sinograms and the projections of the

reconstructed material map:

PLS(fm) =

Np∑
i=1

||Afm − lm||2 + λTS
m R(fm) (7)

where Np is the number of detector pixels, R(fm) is a spatial regularization term and λTS
m

is the regularization weight defined for each basis material. The spatial regularization

is defined by:

R(fm) =
Nv∑
j=1

∑
ξ∈Nj

ϕ(fmj − fmξ) (8)

where j is the voxel index, Nv is the number of voxels in the material volume and Nj

is the set of neighbouring voxels of the j-th voxel. In this study, ϕ is the Green prior

function (Green 1990) which approximates the absolute value function and is twice

differentiable:

ϕ(x) =
27

128
log

[
cosh

(
16

3
√
3
x

)]
. (9)

2.3. One-step method

The one-step method reconstructs directly the material volumes from the measured

counts. The implemented method also used the Poisson log-likelihood as in eq. (5) but

as a function of the material volumes f :

PLOS(f) =

Np∑
i=1

Nb∑
b=1

[
cib log

(
C

OS

ib (f)
)
− C

OS

ib (f)
]
−

Nm∑
m=1

λOS
m R(fm) (10)

where

C
OS

ib (f) =

kVp∑
e=1

SResp
be exp

(
−

Nm∑
m=1

[Afm]iµme

)
(11)
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combines eq. (2) and (4) and R(fm) is the same regularization term as in eq. (8)

with λOS
m the associated weights. Since the material volumes are jointly reconstructed,

the regularization of one material map will impact the others. In contrast, the two-

step algorithm reconstructs each material map independently and the regularization of

one volume will not impact the others. This is a crucial difference between the two

techniques which was accounted for in the following when adjusting the regularization

parameters λTS
m and λOS

m .

The Poisson log-likelihood was maximized using the SQS-based algorithm developed

by Weidinger et al. 2016 with two modifications to accelerate the convergence, the

use of ordered subsets (Hudson and Larkin 1994) and of Nesterov’s momentum

technique (Nesterov 2005). The projections were randomly sorted into 8 subsets and

Nesterov’s momentum was reset every 50 iterations (i.e. every 400 updates). Finally,

the one-step method may be unstable at the superior and inferior ends of the CT image.

We used the correction described by Rodesch et al. 2020 based on spatial regularization

weights. This method increases the spatial regularization at the superior and inferior

extremities where each voxel is seen by fewer projection pixels.

2.4. PCD-CT scanner

The two-step and one-step methods were implemented within the Reconstruction Toolkit

(RTK) (Rit et al. 2014) and tested on real data measured with a PCT-CT scanner

(SPCCT, Philips Healthcare, Haifa, Israel). This pre-clinical prototype has a 500 mm

FOV, a 1.825 magnification factor and a Z-coverage of 17.6 mm (Si-Mohamed et al.

2023). Projections were acquired with a 5 energy bins PCD-CT scanner. It was operated

in a 2 × 2 binning mode, resulting in a 0.55 x 0.55 mm pixel size at the isocenter and

32× 924 (binned) pixels per projection, in axial mode for the phantom acquisitions and

in helical mode for the patient protocol. In both modes, 2400 projections per rotation

were acquired but the source parameters were set to different values, as described in the

following.

Prior to all acquisitions, images of a step wedge were acquired to calibrate the

spectral response SResp (Eq. (2)) for the selected source parameters (voltage and

current). This procedure has been developed by the system manufacturer. Additionally,

a post-processing routine is also provided by the manufacturer to correct for concentric

ring artifacts in the material density maps which was applied to all reconstructed images.

The assumption is made that this correction equally affects the two-step and one-step

images which was validated empirically.

2.5. Phantom geometry

A 100 mm diameter cylindrical module (figure 1) was placed in an anthropomorphic

thorax phantom (QRM, Moehrendorf, Germany). This module was designed to

reproduce the contrast of a coronary CT angiography (CTA) protocol. The thorax

phantom simulates the attenuation of the chest of a small human adult and its
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Figure 1. Photograph of the CTA module placed inside the QRM anthropomorphic

thorax phantom.

height is 10 cm. The same phantom was used previously to compare the quality of

PCD-CT conventional images with state-of-the-art DE-CT (Rotzinger et al. 2021).

It is made of polyethylene (PE) with a 50 mm diameter hole, filled with iodine at

2 mg/ml concentration. The phantom was scanned with an axial protocol (rotation

time: 1 s), a 120 kVp tube voltage and 80 mA current. The thresholds were set to

30/51/62/72/81 keV. MD CT images were reconstructed with both MD methods and

a 0.25 x 0.25 x 0.5 mm voxel size. The reconstructed FOV was 500 x 500 x 10 mm.

2.6. Evaluation metrics

The PE and iodine have close densities in the water map (respectively 970 and

1020 mg/ml, see table 1). The contrast between the PE and the iodine, dominant

Figure 2. Left: conventional image of the anthropomorphic phantom. Right:

water/iodine MD CT images of the CTA module. The dashed circle indicates the

PE/iodine transition used for the assessment of the spatial resolution.
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in the iodine CT image, is about 4 mg/ml. This corresponds to the CTA clinical task

(see figure 2 and supplemental figure I). The water/iodine MD was computed for each

method with various values of the regularization parameters. For each regularization

parameter, the iodine concentration was measured in the iodine map. Additionally, the

spatial resolution and the noise level were measured in both maps (water and iodine).

They were evaluated individually for each slice and then averaged on 20 slices.

Table 1. Mean values of the PE and iodine solution measured in the conventional

and the water/iodine MD CT images. HU numbers were measured in the conventional

image reconstructed by the scanner manufacturer, the material densities were measured

in the one-step case (λOS
I , λOS

W ) = (5000, 0.5)

Material :
Conventional

(HU)

Water map

(mg/ml)

Iodine map

(mg/ml)

PE -90 +970 -2.0

Iodine +95 +1020 +2.0

The iodine concentration was measured in a 50 mm diameter region-of-interest

(ROI) at the center of the iodine insert. Thanks to the water/iodine MD, the voxel

values of the iodine map directly provide the concentration of the iodine solution in

mg/ml.

The spatial resolution was measured as the frequency corresponding to a task

transfer function (TTF) value of 10% (fTTF10%), evaluated on the PE/iodine transition

(red dashed circle in figure 2) using the circular rod method (Samei et al. 2019). The

edge spread function (ESF) was modeled by an error function to facilitate the TTF

computation (Richard et al. 2012).

The noise level was measured in the iodine insert. A 90 mm diameter circular

ROI was placed at the center of the iodine insert and the noise was measured with the

standard deviation of the voxel intensities in the iodine module.

2.7. Comparison of three specific phantom cases

From the various reconstruction cases, each with a different set of regularization

parameters as described in the next section, three were selected for further comparison:

a two-step regularization level and two one-step combinations of regularization weights,

providing either the same fTTF10% or the same noise level as the selected two-step

case. The noise power spectrum (NPS) and the TTF curve in the iodine volume were

evaluated for these three cases only. The TTF curve was derived from the fitted error

function (Richard et al. 2012). For the NPS evaluation, a second order polynomial was

fitted to the image and then subtracted from each slice to obtain a white noise image.

The NPS was then evaluated from 64 x 64 voxels ROIs (Samei et al. 2019), with 10

ROIs per slice, resulting in a total of 200 ROIs.
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2.8. Patient Data

Four patients underwent a routine low dose carotid CTA (mean age: 67.7 ± 7.7 years,

body mass index: 23.5 ± 2.7 kg/m2) with iodine contrast agent injection (Boccalini et

al. 2021). The injected iodine contrast agent (Iomeprol, Iomeron 400, Bracco Imaging,

Milan, Italy) concentration was 300 mg/ml. A volume of 40 ml was injected, followed

by the injection of 20 ml of a saline solution. The system was operated with the same

binning and threshold configuration as for the phantom acquisitions. The reconstructed

voxel size was also set to the same value: 0.25 x 0.25 x 0.5 mm. The images were acquired

with a 120 mm helical trajectory (pitch = 1.17), 0.33 s rotation time, 80 mA current

and 120 kV tube voltage. This represents 25% of the normal dose for the recommended

carotid CTA protocol.

The regularization parameter of the iodine image of the two-step method was

selected to match the noise level of the iodine map in the clinical CTA protocol (Boccalini

et al. 2021). Then a water/iodine MD was computed with both methods with the

regularization parameters providing equivalent spatial resolution levels in the iodine

map on the phantom data. From the reconstructed water/iodine MD CT images, virtual

mono-energetic images (VMIs) were computed at 40, 50, 60, 70 and 80 keV. For the

reconstruction of the water sinogram in the two-step method, different regularization

levels were investigated. The water regularization parameter was set to a value providing

a trade-off for the noise in the VMIs at the different energies.

One radiologist with 7 years of experience, blinded to image type and patient’s

identity, reviewed all images independently in a random order. Changes in image and

window settings were allowed according to personal preferences. The reviewer scored

the images independently using a 5-point quality score (1: insufficient, 5: excellent),

according to different criteria defined in a prior work about coronary CTA (Si-Mohamed

et al. 2022). Imaging quality criteria were assessed in all VMIs and the iodine image:

overall quality, noise and sharpness. Additionally, three CCTA diagnostic tasks were

evaluated in all VMIs: visualisation of vessel lumen, calcified and non calcified plaque

(Leipsic et al. 2014; Weigold et al. 2011). In the iodine image, only one clinical task

was assessed: the vessel lumen visualization. A patient’s CT scan was considered of

sufficient diagnostic quality if overall image quality score was higher than 3.

For comparison purposes, the overall mean score were computed and graphically

displayed. An image per image improvement percentage was also computed.

3. Results

3.1. Spectral quantification

The accuracy and the convergence were assessed for each reconstruction. The measured

iodine concentrations are presented in table 2 for various regularization parameters

including extreme values.

The maximum iodine concentration deviation between two cases is 0.06 mg/ml,
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Table 2. Iodine concentration (mg/ml)

TS
OS

λOS
W = 0.0

OS

λOS
W = 0.1

OS

λOS
W = 0.5

OS

λOS
W = 2.0

λTS
I = 10 1.99 1.96 1.97 1.98 1.98 λOS

I = 1

λTS
I = 50 2.00 1.97 1.98 1.98 1.98 λOS

I = 1000

λTS
I = 100 2.01 1.98 1.99 1.99 1.99 λOS

I = 3000

λTS
I = 200 2.02 2.00 2.00 2.00 2.00 λOS

I = 6000

λTS
I = 300 2.02 2.01 2.01 2.01 2.01 λOS

I = 10000

Figure 3. Noise/spatial resolution trade-off for various reconstructed cases with

different values of the regularization parameters. The image quality improves with

increasing abscissa and decreasing ordinates, i.e., towards the bottom right corners

of the plots. The blue number attached to the data points of the blue curve are the

two-step regularization weights. As the two-step reconstructions are independent, each

blue point is only characterized by one value: the values displayed in the water map

(left graph) are λTS
W and in the iodine map (right graph): λTS

I . The red points are

representing each one-step reconstruction and each one is characterized by two values:

λOS
I indicated as a red number in the graph and λOS

W in the legend. The cases squared

in the plots were selected for further analysis.

corresponding to 3% of the theoretical value. This value is below the dilution accuracy

and can be considered negligible. Based on past evaluations of one-step reconstruction

Mory et al. 2018, this indicates that the different algorithms have reached convergence.

3.2. Regularization parameters

The trade-off between spatial resolution, measured with fTTF10%, and the noise level

is presented for both techniques in figure 3 for the water map (left graph) and the

iodine map (right graph). These results were assessed following the application of a

ring artifact correction. In Figure I of the supplemental material, the same results

were obtained both before and after the correction in the iodine map for a subset of

the data points presented in Figure 3. This demonstrates that the correction equally
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Figure 4. Noise in the iodine insert for VMIs computed at 40, 50, 60, 70 and 80 keV

for different two-step water regularization parameters λTS
W . The iodine regularization

parameter was kept constant λTS
I = 100. The gray line represents the selected water

regularization parameter λTS
W = 20.

impacts two-step and one-step images at identical noise and spatial resolution levels.

Each point displayed in figure 3 represents a reconstruction characterized by one or

two regularization parameters for the two-step and one-step methods, respectively. It

is visible that one-step reconstruction has the potential to improve spatial resolution

for the same noise level as two-step reconstruction, or that it can decrease the noise at

the same fTTF10% value. As the targeted clinical task is the lumen vessel visualization,

the trade-off is more visible in the iodine map and the measured spatial frequency is

smaller in the water map. For the smallest regularization levels (λOS
I ∈ [1, 3000]), one-

step reconstruction reduces more the noise in the water map for the same resolution loss

compared to the two-step method (i.e. the curve slope is steeper in this region). The

fTTF10% evaluated in the water map are smaller because of the lower amount of contrast

present in this material map (cf figure 2).

It is also visible that the water and iodine regularization weights of one-step

reconstruction are linked: the iodine image quality improves when increasing the

regularization of water by increasing λOS
W . However, a too strong regularization difference

between the water and iodine weights is not recommended because it can lead to a cross-

talk effect. For example, for the one-step cases with λOS
I = 4000 (see dashed black curve

in figure 3 right), the noise is decreased from λOS
W = 0.0 to λOS

W = 0.1 but is then

increased for higher values of λOS
W . The cross-talk also negatively impacts the water

map (left graph) with a loss of spatial resolution for a high water parameter (λOS
W = 2.0)

compared to the same iodine regularization levels at lower water parameter values. Two

cases with a large weight difference are shown in supplemental material figure IIIa and

figure IIIb.
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Figure 5. Iodine and water maps of the insert for three different reconstructions: a

two-step case in the middle, a one-step case at the same resolution in the iodine map

on the left and the same noise level in the iodine map on the right. The water maps do

not have matching noise or spatial resolution. Theses cases correspond to the values

framed in figure 3.

For the CTA clinical task, the water map is not directly read by the radiologist.

However, it impacts the VMI that will be read. In order to select the water regularization

parameter in the two-step method, the noise was measured in the VMIs. The parameter

λTS
I = 100 corresponds to the noise reduction level of the clinical protocol. For this

parameter, the noise in the iodine insert in the VMIs is displayed in figure 4 as a function

of the water regularization parameter λTS
W . The behaviour is different depending on the

energy: for the lowest energies (40 and 50 keV), the noise increases with the water

regularization parameter. At other energies (60, 70 and 80 keV), the noise starts by

decreasing when the water parameter increases before increasing at the highest values.

In the CTA clinical task, the VMIs at the lowest energies are critical because of the

iodine signal. The water regularization parameter value λTS
W = 20 is a trade-off between

limiting the noise at 40 and 50 keV while providing a noise reduction at 60, 70 and

80 keV.

3.3. Comparison of the three selected phantom cases

The cases framed in figure 3 have been selected for further comparison: a two-step case

with a regularization level of λTS
I of 100 and two one-step cases corresponding to the



Image quality improvement of a one-step spectral CT reconstruction 13

Figure 6. VMIs computed at 40 and 80 keV for the three selected cases displayed

in figure 5. The values displayed in yellow are the noise values (HU) evaluated in the

iodine insert.

same noise and spatial resolution, with regularization weights (λOS
W , λOS

I ) of (0.5, 1500)

and (0.1, 5000), respectively. The highest water regularization levels were not selected

for comparison because the cross talk effect between materials discussed above was

visible.

The water and iodine maps corresponding to these three cases are displayed in

figure 5. The different noise textures are visible. The one-step reconstruction displays

a finer noise texture enabling a lower noise level for the same resolution or an improved

resolution at the same noise level. In the water volumes, the contrast is less visible but

differences are visible in the noise textures.

For the patient analysis, the radiologist has evaluated the imaging and diagnostic

scores on the iodine map and the VMIs. The 40 and 80 keV VMIs are displayed in

figure 6 for the three selected cases. The differences between the two techniques are

greater at 40 keV where the iodine map has a higher weight. Even if the one-step

images have been computed with regularization parameters leading to lower noise levels

in the water/iodine MD, the resulting noise is smaller in the VMIs at 40 keV and the

noise texture is finer.

The NPS of the iodine maps was calculated to evaluate the noise texture. The

NPS is plotted in the left panel of figure 7. When the noise is at a similar level (i.e.

same area under the curve), the one-step method better preserves high frequencies than
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the two-step method. This translates into a higher NPS in the high-frequency region.

Increasing the regularization will lead to the case at matching fTTF10%, where the high

frequencies are similar to the two-step method but low-frequencies are reduced in the

one-step iodine map. This quantitatively illustrates differences in noise texture with

finer details better preserved by the one-step algorithm, as observed in the iodine maps

in figure 5 (top row).

Finally, the TTF are presented in the right panel of figure 7. The reconstructed

images with the same spatial resolution have similar curves. However, the one-step

reconstruction matching the two-step noise level has an improved TTF.

Figure 7. Left: NPS evaluated for the three selected cases of figure 5. The area under

the curves are indicated in the legend. These areas measure the noise level. Right:

Task transfer functions (TTFs) curves for the three selected cases. These curves were

evaluated in the iodine maps.

3.4. Patient imaging scores

The parameters selected for the patient analysis based on the phantom results were

(λTS
I , λTS

W ) = (100, 20) for the two-step algorithm. These parameters lead to a noise

level similar to the clinical protocol in the iodine map and a trade-off between VMIs at

different energies (figure 6). For the one-step algorithm, the selected parameters were

(λOS
I , λOS

W ) = (0.1, 5000). These values match the spatial resolution of the iodine map

of the two-step method (figure 3) without visual cross-talk effect. The resulting images

are displayed in figure 8.

The contrast level in a VMI depends on the computed energy and increases

when the energy decreases (figure 8). VMI at low energies have already

demonstrated enhancement of the vessel lumen and potential reduction of contrast

administration (McCollough et al. 2020). As a result, the VMI at 40, 50 and 60 keV

presented the greatest score for the two-step method.

The mean score of the iodine image overall quality was 1.7 ± 0.5 and 4.2 ± 0.9 for

the two-step and one-step algorithms, respectively (figure 9). The iodine image score

for the implemented two-step algorithm was below the threshold for clinical use in all

cases. However, the VMIs computed from these iodine images present closer evaluations
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Figure 8. Example case of a carotid spectral photon-counting CT angiography in a

68-years-old man using VMIs at 40 keV and 70 keV and iodine images. The one-step

spectral images enable a better depiction of a severe carotid stenosis associated with

a calcified plaque in comparison to the two-step images (zoomed areas).

Figure 9. Detailed image quality and diagnostic scores for the iodine images and

VMIs for the two-step method (left) and one-step (right) methods.

with a mean score of 3.3 ± 0.5 for the two-step method and 4.4 ± 0.5 for the one-step

method (averaged over all VMIs). This indicates that the VMIs are above the acceptable

threshold even if the iodine image is not.

Similar observations of the noise scores were made for the iodine image with a mean

score of 1.7 ± 0.5 (two-step) and 3.7 ± 0.5 (one-step) compared to a mean VMI score

of 2.9 ± 0.2 (two-step) and 4.0 ± 0.0 (one-step). For the sharpness score, the levels in

the iodine image were 1.7 ± 0.5 (two-step) and 4.2 ± 0.9 (one-step) and, averaged over
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all VMIs, 3.2 ± 0.4 (two-step) and 4.0 ± 0.0 (one-step).

The percentages of patients with a score improvement are displayed in table 3. The

one-step method has improved the image quality criteria in all images. This led to an

improvement of diagnostic task scores in most cases except at lower VMI energies (40,

50 and 60 keV) were the two-step method provided acceptable to good scores for one

patient.

Table 3. Percentages of patient with a score improvement with the one-step method

compared to the two-step method. N/A: Non Available, only the vessel lumen clinical

task was evaluated in iodine maps.

Criterion 40 keV 50 keV 60 keV 70 keV 80 keV Iodine

Image quality -

Overall
100% 100% 100% 100% 100% 100%

Image quality -

Noise
100% 100% 100% 100% 100% 100%

Image quality -

Sharpness
100% 100% 100% 100% 100% 100%

Diagnostic -

Vessel lumen
75% 75% 75% 100% 100% 100%

Diagnostic -

Calcified plaque
100% 100% 100% 100% 100% N/A

Diagnostic -

Non-calcified plaque
75% 75% 75% 75% 75% N/A

4. Discussion

The evaluation of phantom data has shown that the one-step method can improve image

quality compared to the selected two-step method even with the same spatial regularizer.

The one-step algorithm can either provide a better spatial resolution at the same noise

level or a lower noise level at the same spatial resolution in the material decomposed

images. The NPS curves in section 3.3 illustrate that the one-step method preserves

the high spatial frequencies for the same noise level. However, the one-step algorithm

requires a longer computation time.

Indeed, the selected two-step algorithm operates the MD on a pixel-by-pixel basis

which is very efficient regarding computation time. More sophisticated methods could

have been used, e.g. with a regularization term on the sinograms or using a joint

reconstruction of the decomposed basis material sinograms. This would have increased

the computation time and/or the number of parameters to tune and the focus of

this work was the comparison with a two-step reconstruction algorithm with a similar

spatial regularization term. One limitation of this comparison lies in the absence of
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a dedicated evaluation of ring artifacts, which might differ between the two-step and

one-step strategies. In this study, a post-processing ring artifact correction was applied

to both approaches. However, further ring corrections could be investigated but would

be specific to each method. For example, the one-step scheme could be improved with

the modification of the spectral model (Eq. 2) to correct for ring artifacts during the

reconstruction process (Schmidt et al. 2017). Figure 3 illustrates how a one-step scheme

has the ability to reduce noise while preserving spatial resolution. On clinical spectral

CTs, the selected two-step scheme is coupled with image post-processing to improve

image quality which could also be applied to one-step images.

Because the computation time of the one-step implementation was not optimized,

we do not provide the computation time of the two techniques but the one-step

algorithm is significantly more computationally demanding than the two-step algorithm.

A limitation of the current work is that the implemented two-step algorithm is different

from the clinical two-step algorithm. Indeed, the reconstruction algorithm is a model-

based technique which, to our knowledge, is not currently employed in clinical scanners.

Another limitation is the difference in noise texture compared to FBP images. This

would modify the NPS curves presented in figure 7. FBP images are also characterized

by streak artifacts whereas model-based reconstructions will present patchy images with

strong spatial regularization.

For the one-step method, the quantitative measurements of the phantom images

have demonstrated how the regularization level applied to a material map can impact the

other basis material map. The choice of regularization parameters is more complicated

to avoid this cross-talk effect between material maps and it can impact both spatial

resolution at an edge between two materials and the spectral separation between the

two material density maps. The cross-talk impact could be further studied with other

iodine concentrations. The clinical analysis was not made on the reconstructed water

volume. However, the latter has an impact on the reconstructed VMIs. This impact is

different for the two-step or the one-step method. The pre-reconstruction MD two-step

methods provide an anti-correlated noise between the water and iodine maps (Persson

and Grönberg 2017). Indeed, for the regularization parameters applied to the patient

data, the Pearson correlation coefficients were -0.91 and -0.13 for the two-step and the

one-step methods, respectively. The two-step maps have a stronger covariance with anti-

correlated noise and these noise properties will have different impact depending on the

VMI computation (Leng et al. 2015) (see figure 4). This complicates the comparison of

the two techniques on VMIs as regularization parameters that lead to similar properties

in material maps would lead to different VMI noise properties. This means that there

is not an optimal set of parameters leading to a fair comparison of VMIs at all energies

for the two techniques. The choice has been made in this study to focus on the iodine

map comparison (cf figure 3), as this map is a direct result of the MD problem.

The phantom data were acquired at a conventional dose for clinical CT. The

quantitative results could vary and the difference between the one-step and the two-

step methods may be even larger at lower dose or at a smaller iodine concentration
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in the CTA insert. The scanner was operated with a 2 × 2 binning, which provides

a slightly smaller detector pixel size at the isocenter (0.55 mm) compared to average

commercial DE-CTs (0.6-0.75 mm). The results of this study indicate that the one-step

algorithm could reconstruct spectral images at the full PCD-CT spatial resolution and

low-dose. New CTA protocols are also investigated with the injection of K-edge contrast

agents (Si-Mohamed et al. 2021a). This would require a three-material basis MD with

a potential noise increase which might be better mitigated with the one-step method

than with the two-step method.

The clinical purpose of CTA protocols is the depiction of the calcified plaques

around the carotid artery (see supplemental figure I). This protocol benefits from an

increased spatial resolution and the patient data were acquired with a low-dose protocol.

In this context, the one-step algorithm presented a good overall image quality score in the

iodine maps. This shows that the one-step method can enable spectral reconstruction

at a low irradiation dose. The VMIs reconstructed with the selected two-step method

take advantage of the correlated noise in the iodine and water maps and present at some

energy an acceptable image quality. The VMIs computed with the one-step method still

had higher image quality and diagnostic scores.

The phantom used in this work was specifically designed to reproduce the CTA

diagnostic task. The impact of the regularization parameters would be different for a

different task. Moreover, the basis materials choice (iodine and water) depends on the

clinical task and would be different. For example, a calcium and water basis would be

selected in the absence of a contrast agent injection or the photo-electric and compton

energy functions to evaluate the atomic number. Nevertheless, the image quality metrics

measured on the phantom acquisitions presented a correlation with the scores evaluated

by an experienced radiologist. This correlation could be extended from the evaluated

NPS and TTF properties to other clinical tasks. A detectability index associated to a

model observer could be computed (Rotzinger et al. 2021; Solomon et al. 2015) to further

investigate the correlation between these metrics and the radiologist scores in a study

including more patients and several radiologists. The presented phantom methodology

is relevant to compare spectral imaging algorithms and set the regularization weights

of the iterative reconstruction methods to, eventually, improve image quality in patient

studies.

5. Conclusions

The presented one-step method improved image quality compared to a reference two-step

algorithm. The noise and spatial resolution improvements were measured on phantom

data designed for the CTA clinical task. This translated into higher image quality and

diagnostic scores evaluated by a radiologist on patient images. This demonstrates that

the one-step method can be used at low doses to reconstruct spectral CT images with

a high spatial resolution while maintaining a low noise level.
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