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eText 1: Sensitivity check analysis for the GWAS using PSC C32_1 105 

We used the GWAS results (233 significant SNPs in 5 genomic loci) of the first PSC in C32 106 

(C32_1) from the UKBB discovery set to demonstrate this.  107 

We replicated all the 233 significant SNPs in 5 genomic loci both at the nominal level (-108 

log10[p-value] > 1.31), and the Bonferroni corrected p-value threshold (-log10[p-value] > 3.67) 109 

using the combined discovery and replication sets (N=33,541) (SI eFigure 4b), the 20,438 110 

participants with all ancestries in the discovery set (SI eFigure 4c), and the 16,743 participants 111 

in the discovery set with four additional imaging-related covariates (3 parameters for the brain 112 

position in the lateral, longitudinal, and transverse directions, and 1 parameter for the head 113 

motion from fMRI) (SI eFigure 4d). While replicating the results in 2386 participants with non-114 

European ancestries, we only replicated 41 SNPs (17.6%), passing the nominal significant 115 

threshold (SI eFigure 4e). Finally, only 14 SNPs (6.4%) were replicated when replicating the 116 

results using 1481 whole-genome sequencing (WGS) data from ADNI consolidated by the 117 

AI4AD consortium16 (SI eFigure 4f). The low replication rates in other ancestries and 118 

independent disease-specific populations are expected due to population stratification, disease-119 

specific effects, and reduced sample sizes. This further emphasizes the urge to enrich and 120 

diversify genetic research with non-European ancestries and disease-specific populations.    121 

  122 
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eText 2: Institutional Review Board (IRB) statement 123 

All individual studies were approved by their local corresponding Institutional Review Boards 124 

(IRB). The iSTAGING and PHENOM consortia consolidated all individual imaging and clinical 125 

data; imputed genotype data were directly downloaded from the UKBB website. Data from the 126 

UKBB for this project pertains to application 35148. For iSTAGING, the IRB at the University 127 

of Pennsylvania (protocol number: 825722) reviewed the research proposal on August 31st, 2016, 128 

and updated it on August 31st, 2022. No human subjects were recruited or scanned. Existing de-129 

identified data will be used in this mega-analysis study pooling data from 17 studies: BLSA, 130 

ADNI1, ADNI2, ADNI3, ACCORD-MIND, LookAhead, SPRINT, CARDIA, MESA, SHIP, 131 

BIOCARD, WRAP, Penn-ADC, WHIMS-MRI, AIBL, OASIS, UKBB, MESA, HANDLS. For 132 

PHENOM, the IRB at the University of Pennsylvania (protocol number: 828077) reviewed the 133 

research proposal on August 19th, 2017. No human subjects were recruited or scanned. Existing 134 

de-identified data will be used in this meta-analysis study pooling data from 10 studies at Penn, 135 

Ludwick-Maximmilian University of Munich, Kings College-London, University of Utrecht, 136 

University of Melbourne, University of Cantabria, University of Sao Paolo, Xijing Hospital 137 

Shaanxi, Tianjin Anning Hospital, and Institute of Mental Health Peking University.  138 

  139 
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eText 3: The four datasets and populations defined in this study 140 

We defined four populations or data sets per analysis across the paper: i) discovery set, ii) 141 

replication set, iii) training population, and iv) comparison population (refer to SI eText 2 for 142 

details).  143 

• Discovery set: It consists of a multi-disease and lifespan population that includes 144 

participants from all 12 studies (N=32,440). Note that this population does not contain 145 

the entire UKBB population but only our first download (July 2017, N=21,305). 146 

• Replication set: We held 18,259 participants from the UKBB dataset to replicate the 147 

GWAS results. We took these data from our second download of the UKBB dataset 148 

(November 2021, N=18,259).  149 

• Training population: We randomly drew 250 patients (PT), including AD, MCI, SCZ, 150 

ASD, MDD, HTN (hypertension), DM (diabetes mellitus), and 250 healthy controls 151 

(CN) per decade from the discovery set, ensuring that the PT and CN groups have 152 

similar sex, study and age distributions. The resulting set of 4000 imaging data was used 153 

to generate the MuSIC atlas with the sopNMF algorithm. The rationale is to maximize 154 

variability across a balanced sample of multiple diseases or risk conditions, age, and 155 

study protocols rather than overfit the entire data by including all images in training. 156 

• Comparison population: To validate sopNMF compared to the original opNMF 157 

algorithm, we randomly subsampled 800 participants from the training population (100 158 

per decade for balanced CN and PT). For this scale of sample size, opNMF can load all 159 

images into memory for batch learning.1 160 

  161 
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eMethod 1: Empirical validation of sopNMF. 162 

For the empirical validation of sopNMF, the comparison population (Method 1 in the main 163 

manuscript) was used so that the machine's memory could be sufficient to read the entire data for 164 

opNMF. For sopNMF, different choices of batch size (i.e., BS=32, 64, 128, and 256) were 165 

tested. We hypothesized that sopNMF could approximate the optima of opNMF during 166 

optimization, i.e., resulting in similar parts-based representation, training loss, and sparsity. 167 

TensorboardX was embedded into the sopNMF framework to monitor the training process 168 

dynamically. All experiments were performed on an Ubuntu machine with a maximum RAM of 169 

32 GB and 8 CPUs. The predefined maximum number of epochs for all experiments is 50,000, 170 

and the tolerance of early stopping criteria is 100 epochs based on the training loss. 171 

We qualitatively compared the extracted PSCs and quantitatively for the training loss, the 172 

sparsity of the component matrix W, and the memory consumption for C=20 (number of PSCs). 173 

The 20 PSCs were spatially consistent between opNMF and sopNMF, despite that some regions 174 

were decomposed into different PSCs (i.e., the white ellipse in eFig. 1A). For the training loss, 175 

opNMF obtained the lowest loss (1.103 x 106), and the loss of sopNMF were 1.107 x106, 1.108 176 

x106, 1.111 x106 and 1.210 x106 for BS =256, 128, 64, and 32, respectively (eFig. 1D). For the 177 

sparsity of the component matrix, all models obtained comparable results (sparsity ≈ 0.83, eFig. 178 

1E). The estimated memory consumptions during the training process were 28.65, 4.02, 3.81, 179 

2.60, 1.47 GB for opNMF and sopNMF (BS =256, 128, 64, and 32), respectively 180 

(Fig. e1F). 181 

  182 
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eMethod 2: Reproducibility index. 183 

We proposed a reproducibility index (RI) to test the reproducibility of sopNMF for brain 184 

parcellation: 185 

• We used the Hungarian match algorithm2 to match the pairs of PSCs between two splits 186 

under the specific condition that maximizes the similarity (i.e., minimizes the cost of 187 

workers/jobs in its original formulation). 188 

• For each pair of PSCs, we calculated the inner product of the vectors (𝑅!), referred to as 189 

RI. This index takes values between [0, 1], with higher values indicating higher 190 

reproducibility. 191 

• For each scale C, we presented the mean/standard deviation of the RIs for all PSCs. 192 

 193 

 194 
  195 
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eMethod 3: Inter-site image harmonization  196 

We used an extensively validated statistical harmonization approach, i.e., ComBat-GAM,3 to 197 

harmonize the extracted multi-scale PSCs. This method estimates the variability in volumetric 198 

measures due to differences in site/cohort-specific imaging protocols based on variances observed 199 

within and across control groups while preserving normal variances due to age, sex, and 200 

intracranial volume (ICV) differences. The model was initially trained on the discovery set and 201 

then applied to the replication set. 202 

  203 
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eMethod 4: Quality check of the image processing pipeline.  204 

Raw T1-weighted MRIs were first quality checked (QC) for motion, image artifacts, or restricted 205 

field-of-view. Another QC was performed: First, the images were examined by manually 206 

evaluating for pipeline failures (e.g., poor brain extraction, tissue segmentation, and registration 207 

errors). Furthermore, a second step automatically flagged images based on outlying values of 208 

quantified metrics (i.e., PSC values); those flagged images were re-evaluated. 209 

  210 
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eMethod 5: Definition of the index, candidate, independent significant, and lead SNP and 211 

genomic locus. 212 

Index SNP 213 

They are defined as SNPs with a p-value threshold ≤ 5e-8 (clump-p1) from GWAS summary 214 

statistics. 215 

Independent significant SNP  216 

They are defined as the index SNPs, which are independent of each other (not in linkage 217 

disequilibrium) with r2 ≤ 0.6 (clump-r2) within 250 kilobases (non-overlapping, clump-kb) away 218 

from each other.  219 

Lead SNP and genomic loci 220 

They are defined as the independent significant SNPs, which are independent of each other with 221 

a more stringent r2 ≤ 0.1 (clump-r2) within 250 kilobases (non-overlapping, clump-kb) away 222 

from each other. Each of these clumps is defined as a genomic locus. 223 

Candidate SNP 224 

With each genomic locus, candidate SNPs are defined as the SNPs whose association p-values 225 

are smaller than 0.05 (clump-p2). The definitions followed instructions from FUMA4 and Plink5 226 

software.   227 
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eMethod 6: Cross-validation procedure for PAML.  228 

Nested cross-validation was adopted for all tasks following the good-practice guidelines 229 

proposed in our previous works6–8. In particular, an outer loop was used to evaluate the task 230 

performance (250 repetitions of random hold-out splits with 80% of data for training). In 231 

contrast, an inner loop focused on tuning the hyperparameters (10-fold splits). We computed the 232 

balanced accuracy (BA) to evaluate the classification tasks. We calculated the effect size 233 

(Cohen's d) and p-value for each SPARE index to quantify its discriminative power. 234 

  235 
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 236 
eFigure 1: Comparison between opNMF and sopNMF. (A) Qualitative evaluation: The 237 
extracted components are shown in the original image space, with each PSC displayed in a 238 
distinct color. The white ellipse indicates the region where the models diverge. Quantitative 239 
evaluation: training loss (B, D) and sparsity (C, E) demonstrated similar patterns between 240 
models, except that batch size (BS) = 32 had a larger loss than the other models. Comparing the 241 
estimated memory consumption during training across models shows significant advantages for 242 
all sopNMF models compared to opNMF.  243 



 14 

 244 
eFigure 2: Reproducibility of the sopNMF brain parcellation. In general, sopNMF 245 
demonstrated high reproducibility under various conditions. For each brain PSC, the 246 
reproducibility index (RI) was calculated (Supplementary eMethod 2). (A) Split-sample 247 
analyses, where the training population (N=4000) was randomly split into two halves while 248 
maintaining similar age, sex, and site distribution between groups. (B) Split-sex analyses, where 249 
the training population was divided into males and females. Colored PSCs on the brain template 250 
illustrate the same PSC independently derived from the two splits. (C) Leave-one-site-out 251 
analyses for C32 PSCs., where the training populations excluding participants from each site 252 
(BIOCARD, ADNI, WARP, AIBL, ABIDE, BLSA, OASIS, CARDIA, PHENOM, PENN, 253 
UKBB, and WHIMS) were independently trained with sopNMF. The RI indices were compared 254 
to the sopNMF results using the full training sample (N=4000).  255 
  256 
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 257 

 258 
eFigure 3: Scatter plot for the h2 estimates from the discovery and replication sets. The 259 
SNP-based heritability was estimated independently for the discovery set (N=18,052) and 260 
replication set (N=15,243). In particular, the two estimates were highly correlated (r = 0.94, p-261 
value < 10-6), demonstrating a highly similar genetic architecture across different sets of UKBB 262 
data. 263 

  264 
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 265 
eFigure 4: Sensitivity check for the GWAS results using the discovery set in UKBB. A) The 266 
GWAS results for participants with European ancestry in the discovery set. B) The GWAS 267 
results for participants with European ancestry in the discovery and replication sets. C) The 268 
GWAS results for participants with all different ancestries in the discovery set. D) The GWAS 269 
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results for participants with European ancestry in the discovery set by adding four additional 270 
imaging-related covariates. E) The GWAS results for participants with non-European ancestry in 271 
the discovery set. F) The GWAS results for participants with the independent ADNI WGS data.     272 
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 273 
eFigure 5: Machine learning performance for disease classification. Balanced accuracy (BA) 274 
for each classification task using different features from multi-scale MuSIC, AAL, and RAVENS 275 
(higher score better). Details are presented in eTable 4. 276 
  277 
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 278 
eFigure 6: Annotation of MUSE ROIs to MuSIC PSCs based on the overlap index. We 279 
automatically annotated the 119 MUSE GM PSCs to the MuSIC atlases at all six scales (C=32, 280 
64, 128, 256, 512, and 1024). To this end, we calculated an overlap index (OI) to quantify the 281 
spatial overlaps between MUSE and MuSIC. For instance, for each MUSE PSC (eTable 5) vs. 282 
each of the 32 PSCs of MuSIC at C=32 scale, the OI equals the proportion of the number of 283 
overlap voxels and the total number of voxels in the MUSE PSC. Here we illustrate by mapping 284 
the right thalamus of MUSE to all 6 MuSIC atlases. The highest OIs are 0.82, 0.70, 0.86, 0.30, 285 
0.09, 0.05 for C32_1, C64_42, C128_114, C256_110, C512_249, and C1024_249 PSCs. This 286 
functionality is available in BRIDGEPORT: 287 
https://www.cbica.upenn.edu/bridgeport/MUSE/Right%20Thalamus%20Proper     288 

  289 
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 290 
eFigure 7: Summary statistics of the multi-scale PSCs of MuSIC. Multi-scale PSCs show 291 
considerable normal distributions, i.e., symmetrical distribution (A) with a low kurtosis (B). 292 
Moreover, we fit the Generalized Additive Model for Location, Scale, and Shape (GAMLSS)9 293 
model (fractional polynomials with 2 degrees) to each PSC to delineate the age trajectory over 294 
the lifespan in males (solid lines) and females (dotted lines), respectively (C). For visualization 295 
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purposes, we selectively display the first 10 PSCs from each scale of the MuSIC atlases. In 296 
general, males have larger brain volumes than females. For D-F, we selectively showed the 297 
distribution of age (D) and the distribution of PSC volume before harmonization (E) and after 298 
harmonization (F) for C32_1 within each site in the discovery set. For G and H, we tested the 299 
normality of the PSC volume (C32_1) from each pair of sites using the Shapiro-Wilk test 300 
(scipy.stats.shapiro function) in the discovery set before (G) harmonization and after 301 
harmonization (H). A higher -log10(P) indicates the data are less likely to be normally 302 
distributed. As a general trend, our statistical harmonization techniques demonstrated a slight 303 
improvement in the normality of the data. Additionally, we consistently applied normality 304 
transformations to all statistical analyses, including GWAS, to mitigate any non-normality. 305 
  306 
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eTable 1. Study cohort characteristics. 307 
The current study consists of two main populations/sets: the discovery set (N=32,440, including 308 
participants from the first download of the UKBB data) and the replication set (N=18,259, the 309 
second download of the UKBB data). To train the sopNMF model for MuSIC, we selected 250 310 
patients (PT) and 250 healthy controls (CN) for each decade of the discovery set, resulting in 311 
4000 participants in total, referred to as the training population. Age ranges from 5 to 97 years 312 
and is shown with mean and standard deviation. Sex is displayed with the number and 313 
percentage of female participants. Data was collected from 12 studies, 130 sites, and 12 314 
countries. The number of sites (country) per study is detailed as follows:  315 

• ADNI: 63 sites (USA) 316 
• UKBB: 5 sites (UK) 317 
• AIBL: 2 sites (Australia) 318 
• BIOCARD: 2 sites (USA) 319 
• BLSA: 1 site (USA) 320 
• CARDIA: 3 sites (USA) 321 
• OASIS: 1 site (USA) 322 
• PENN: 1 site (USA) 323 
• WHIMS: 14 sites (USA) 324 
• WRAP 1 site (USA) 325 
• PHENOM: 12 sites (China, Brazil, Australia, Germany, Spain, USA, Netherlands) 326 
• ABIDE: 25 sites (USA, Netherlands, Belgium, Germany, Ireland, Switzerland, France) 327 

Abbreviations: CN: healthy control; AD: Alzheimer's disease; MCI: mild cognitive impairment; 328 
SCZ: schizophrenia; ASD: autism spectrum disorder; MDD: major depressive disorder; DM: 329 
diabetes; HTN: hypertension. 330 
aUKBB data were separately downloaded two times: the first was the N=21,305 in the discovery 331 
set, and the second was the replication set. 332 
bWe define CN (healthy controls) as participants that do not have any of the diseases listed here. 333 
These CN participants might have diagnoses of other illnesses or comorbidities (e.g., participants 334 
from UKBB have a wide range of pathology based on ICD-10). 335 
 336 

Study N 
(50,699) 

Age 
(5-97 
year) 

Sex 
(female/%

) 

CNb 
 AD MCI SCZ ASD MDD DM HTN 

Discovery 
set 32,440 60.04± 

14.87 16,868/52 24,98
0 954 1288 1094 597 1476 1093 958 

ADNI 1765 73.66± 
7.19 798/45 297 343 875 NA NA NA NA 250 

UKBBa 21,305 62.58± 
7.48 10,101/53 18,73

5 1 NA NA NA 1476 1093 NA 

AIBL 830 71.36± 
6.78 471/57 625 86 115 NA NA NA NA 4 

BIOCARD 288 58.15± 
10.54 115/60 283 1 4 NA NA NA NA NA 

BLSA 1114 65.44± 
14.11 589/53 729 9 11 NA NA NA NA 365 

CARDIA 892 51.21± 
3.98 471/53 620 NA NA NA NA NA NA 272 

OASIS 983 69.92± 
9.75 557/57 759 220 NA NA NA NA NA 4 
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PENN 807 72.63± 
10.65 333/59 173 294 283 NA NA NA NA 57 

WHIMS 995 69.61± 
3.64 995/100 986 NA NA NA NA NA NA 6 

WRAP 116 63.36± 
6.06 79/68 116 NA NA NA NA NA NA NA 

PHENOM 2125 30.21± 
10.60 854/40 1031 NA NA 1094 NA NA NA NA 

ABIDE 1220 17.92± 
9.01 203/17 623 NA NA NA 597 NA NA NA 

Replication 
seta 18,259 54.70± 

7.43 9742/53 NA NA NA NA NA NA NA NA 

 337 
  338 
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eTable 2: Clinical phenotypes and diagnoses used in machine learning classification.  339 
We harmonized the population of the phenotypes of interest per study definitions:  340 

• We combined AD and MCI patients from ADNI, PENN, and AIBL but excluded OASIS 341 
subjects because of the different diagnostic criteria of an AD patient in OASIS.  342 

• For several binary disease phenotypes, we used the ICD-10 diagnosis 343 
(https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id=41270). Note that ICD-10 diagnoses are 344 
generally collected from the participants' medical inpatient records. We first included 345 
diseases from the following categories:  346 

o Diseases of the blood and blood-forming organs and certain disorders involving the 347 
immune mechanism (D-XXX, XXX represents the ID of a specific disease); 348 

o  Endocrine, nutritional, and metabolic diseases (E-XXX);  349 
o Mental and behavioral disorders (F-XXX);  350 
o Diseases of the nervous system (G-XXX);  351 
o Diseases of the circulatory system (I-XXX).  352 

We then set a threshold of 75 patients for any ICD-10 diagnosis. We finally randomly 353 
selected age and sex-matched healthy controls (excluding all patients in all diagnoses). a: 354 
For major depressive disorder, we used the inclusion criteria from our previous work.10 355 

• For cognitive scores, we included:  356 
o Tower rearranging (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=21004) 357 
o Matrix pattern (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=6373) 358 
o TMT-A (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=6348) 359 
o TMT-B (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=6350) 360 
o DSST (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=23324) 361 
o Pairs matching (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=399) 362 
o Numerical memory (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=4282) 363 
o Prospective memory (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=4288) 364 
o Reaction time (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20023) 365 
o Fluid intelligence (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20016) 366 

AD: Alzheimer's disease; MCI: mild cognitive impairment; SCZ: schizophrenia; DM: diabetes 367 
mellitus; MDD: major depressive disorder; HTN: hypertension; ASD: autism spectrum disorder; 368 
CN: healthy control; PT: patient; N: number of participants. We decided not to harmonize 369 
cognitive scores from different studies. 370 
 371 

Trait (ICD-10 code 
or ID) 

Sample size 
(CN/PT or N) Site Trait (ICD-10 code or ID) Sample size 

(CN/PT or N) Site 

AD 1095/723 
ADNI, 

PENN, & 
AIBL 

Carpal tunnel syndrome 
(G560) 901/901 UKBB 

MCI 1273/1095 
ADNI, 

PENN, & 
AIBL 

Lesion of ulnar nerve 
(G562) 104/104 UKBB 

SCZ 1031/1094 PHENOM Lesion of plantar nerve 
(G576) 163/163 UKBB 

DM 1093/1093 UKBB Angina pectoris (I20) 1535/1535 UKBB 

MDDa 1476/1476 UKBB Acute myocardial 
infarction (I21) 769/769 UKBB 

HTN 934/887 
ADNI, 

BLSA & 
CARDIA 

Chronic ischaemic heart 
disease (I25) 2217/2217 UKBB 

https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id=41270
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=21004
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=6373
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=6348
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=6350
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=23324
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=399
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=4282
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=4288
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20023
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 372 
  373 

ASD 623/597 ABIDE Pulmonary embolism (I20) 351/351 UKBB 
Iron deficiency 
anemia (D50) 1012/1012 UKBB Cardiomyopathy (I42) 116/116 UKBB 

Vitamin B12 
deficiency anemia 

(D50) 
78/78 UKBB Paroxysmal tachycardia 

(I47) 320/320 UKBB 

Agranulocytosis 
(D70) 245/245 UKBB Heart failure (I50) 436/436 UKBB 

Thyrotoxicosis 
(E05) 205/205 UKBB Cerebral infarction (I63) 291/291 UKBB 

Vitamin D 
deficiency (E55) 180/180 UKBB Vitamin B deficiency 

(E53) 130/130 UKBB 

Obesity (E66) 1481/1481 UKBB Hemiplegia (G81) 111/111 UKBB 
Lipoprotein 

metabolism disorder 
(E78) 

3880/3880 UKBB Facial nerve disorders 
(G51) 95/95 UKBB 

Mineral metabolism 
disorder (E83) 291/291 UKBB Tower rearranging (21004) 8412 UKBB 

Volume depletion 240/240 UKBB Matrix pattern (6373) 8501 UKBB 
Delirium 92/92 UKBB TMT-A (6348) 8599 UKBB 

Alcohol abuse 341/341 UKBB TMT-B (6350) 8599 UKBB 
Tobacco abuse 863/863 UKBB DSST (23324) 8523 UKBB 

Bipolar affective 
disorder 77/77 UKBB Pairs matching (399) 20945 UKBB 

Phobic anxiety 
disorder 84/84 UKBB Numerical memory (4282) 9323 UKBB 

Multiple sclerosis 109/109 UKBB Prospective memory 
(4288) 19681 UKBB 

Epilepsy 250/250 UKBB Reaction time (20023) 21258 UKBB 
Migraine 508/508 UKBB Fluid intelligence (20016) 19184 UKBB 

Sleep disorders 590/590 UKBB 
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eTable 3: Comparison of variants identified via MuSIC with other studies. Using the AAL 374 
atlas, we found (using the same data in the current study) that 269 independent significant SNPs 375 
had 356 pairwise associations with 54 AAL brain regions. 230 out of the 269 SNPs matched with 376 
the SNPs in MuSIC. Among the 39 unmatched SNPs, 15 SNPs were in linkage disequilibrium 377 
(LD, r2 > 0.6) with MuSIC SNPs (Supplementary eFile 5). As a second example, Zhao et al.11 378 
reported that 251 independent significant SNPs had 346 pairwise associations with 43 GM regions 379 
using the Mindboggle atlas on the UKBB (N=19,629).12 129 of the 251 SNPs matched with SNPs 380 
identified by MuSIC. Among these non-matching SNPs (127), 31 were in LD with MuSIC SNPs 381 
(Supplementary eFile 6). Similarly, Elliot et al.13 (N=8428) discovered that 20 independent 382 
significant SNPs had 58 pairwise associations with 52 GM regions from atlases in Freesurfer and 383 
FSL software. Out of the 20 SNPs, 16 coincided with MuSIC SNPs. Among the four unmatched 384 
SNPs, 1 SNP was in LD with MuSIC SNPs (Supplementary eFile 7). Note that the definition of 385 
independent significant SNPs or genomic loci might slightly differ between studies. 386 

Study/Atlas 
Identified 
genomic 

loci 
Matched loci Loci in LD Novel 

loci Database Sample 
size Ancestry 

MuSIC 915 NA NA NA UKBB 18,052 European 
AAL 218 162 13 740 UKBB 18,052 European 

Zhao et al.11 251 73 14 828 UKBB 19,629 European 
Elliot et al.13 20 16 1 898 UKBB 8428 European 

GWAS Catalog NA 298 NA 617 NA NA NA 
 387 
  388 
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eTable 4: Classification balanced accuracy for disease classification and effect size of these 389 
imaging signatures. 390 
Disease classification performance is presented using balanced accuracy. The mean and standard 391 
deviation are presented. Cohen's d was computed to compare the SPARE scores between groups. 392 
Multi-scale classificationa: All 2003 PSCs from multiple scales were fit into the classifier.  393 
Multi-scale classificationb: PSCs from all scales were fit into the classifier with a nested feature 394 
selection procedure (SVM-REF). The motivation is that PSCs from different scales are 395 
hierarchical and correlated. The nested feature selection can select the features most relevant to 396 
the specific task. We avoided any statistical comparison of the performance of machine learning 397 
models because available statistical tests are liberal and often lead to false-positive conclusions 398 
due to the complexity of the cross-validation procedure.14   399 
a): Classification results for all subjects in all sites using a nested CV procedure 400 

PSC AD d MCI d SCZ d DM d HTN d MDD d ASD d 

C32 0.78±
0.02 1.52 0.62±

0.02 0.59 0.55±
0.02 0.30 0.56±

0.02 0.35 0.55±
0.02 0.28 0.52±

0.02 0.16 0.50±
0.02 0.07 

C64 0.81±
0.02 1.73 0.63±

0.02 0.66 0.57±
0.02 0.41 0.57±

0.02 0.40 0.56±
0.02 0.31 0.53±

0.02 0.17 0.53±
0.02 0.19 

C128 0.82±
0.02 1.82 0.65±

0.02 0.76 0.59±
0.02 0.47 0.56±

0.02 0.33 0.55±
0.02 0.30 0.52±

0.02 0.15 0.52±
0.02 0.15 

C256 0.85±
0.02 2.08 0.66±

0.02 0.91 0.59±
0.02 0.50 0.56±

0.02 0.47 0.54±
0.02 0.31 0.51±

0.02 0.13 0.52±
0.02 0.16 

C512 0.88±
0.02 2.34 0.67±

0.02 1.06 0.62±
0.02 0.62 0.57±

0.02 0.54 0.56±
0.02 0.42 0.52±

0.02 0.05 0.54±
0.02 0.24 

C1024 0.90±
0.02 2.50 0.72±

0.02 1.12 0.65±
0.02 0.75 0.60±

0.02 0.59 0.59±
0.02 0.46 0.56±

0.02 0.13 0.55±
0.02 0.29 

Multi-
scalea 

0.91±
0.02 2.54 0.72±

0.02 1.12 0.66±
0.02 0.77 0.61±

0.02 0.64 0.59±
0.02 0.47 0.55±

0.02 0.23 0.56±
0.02 0.30 

Multi-
scaleb 

0.92±
0.02 2.61 0.73±

0.02 1.13 0.67±
0.02 0.78 0.64±

0.02 0.67 0.61±
0.02 0.49 0.55±

0.02 0.26 0.58±
0.02 0.32 

AAL 0.82±
0.02 1.81 0.66

±0.02 0.75 0.59±
0.02 0.46 0.57±

0.02 0.32 0.57±
0.02 0.35 0.52±

0.02 0.08 0.52±
0.02 0.14 

RAVENS 0.85±
0.02 2.04 0.64

±0.02 0.74 0.60±
0.02 0.45 0.58±

0.02 0.33 0.55±
0.02 0.34 0.50±

0.02 0.05 0.54±
0.02 0.15 

 401 
b): The classification results of the balanced accuracy (BA) from the test data in the nested CV 402 
and the independently left-out site for the task of AD vs. CN were assessed using all available 403 
multi-scale PSCsa. Three sites, namely ADNI, AIBL, and PENN, were considered for this 404 
analysis. However, UKBB, BIOCARD, and BLSA data were excluded due to limited AD cases 405 
(eTable 1). Similarly, data from OASIS were excluded due to discrepancies in the diagnosis 406 
criteria for AD, as previously stated in our previous work7. 407 

Left-out site Test BA in CV Test BA in the left-out site 
ADNI 0.90±0.02 0.88±0.02 
AIBL 0.88±0.02 0.95±0.02 
PENN 0.90±0.02 0.95±0.02 

  408 
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eTable 5: 119 MUSE gray matter regions of interest. 409 
L: Left hemisphere; R: Right hemisphere; ROI: region of interest. 410 

  411 

MUSE ROI MUSE ROI MUSE ROI 
Precentral gyrus (R) Occipital fusiform gyrus (R) Anterior insula (L) 
Precentral gyrus (L) Planum temporale (R) Anterior orbital gyrus (R) 
Accumbens area (R) Cerebellar vermal lobules I-V Anterior orbital gyrus (L) 
Accumbens area (L) Cerebellar vermal lobules VI-VII Angular gyrus (R) 

Amygdala (R) Cerebellar vermal lobules VIII-X Angular gyrus (L) 
Amygdala (L) Basal forebrain (R) Calcarine cortex (R) 

Occipital pole (L) Basal forebrain (L) Calcarine cortex (L) 
Caudate (R) Middle temporal gyrus (L) Central operculum (R) 
Caudate (L) Occipital pole (R) Central operculum (L) 

Cerebellum exterior (R) Planum temporale (L) Cuneus (R) 
Cerebellum exterior (L) Parietal operculum (L) Cuneus (L) 

Planum polare (L) Postcentral gyrus (R) Entorhinal area (R) 
Middle temporal gyrus (R) Postcentral gyrus (L) Entorhinal area (L) 

Hippocampus (R) Posterior orbital gyrus (R) Frontal operculum (R) 
Hippocampus (L) Temporal pole (R) Frontal operculum (L) 

Precentral gyrus medial 
segment (R) Temporal pole (L) Frontal pole (R) 

Precentral gyrus medial 
segment (L) 

Triangular part of the inferior frontal gyrus 
(R) Frontal pole (L) 

Superior frontal gyrus 
medial segment (R) 

Triangular part of the inferior frontal gyrus 
(L) Fusiform gyrus (R) 

Superior frontal gyrus 
medial segment (L) Transverse temporal gyrus (R) Fusiform gyrus (L) 

Pallidum (R) Superior frontal gyrus medial segment (L) Gyrus rectus (R) 
Pallidum (L) Planum polare (R) Gyrus rectus (L) 
Putamen (R) Transverse temporal gyrus (L) Inferior occipital gyrus (R) 
Putamen (L) Anterior cingulate gyrus (R) Inferior occipital gyrus (L) 

Thalamus proper (R) Anterior cingulate gyrus (L) Inferior temporal gyrus (R) 
Thalamus proper (L) Anterior insula (R) Inferior temporal gyrus (L) 

Lingual gyrus (R) Occipital fusiform gyrus (L) Subcallosal area (R) 
Lingual gyrus (L) Opercular part of inferior frontal gyrus (R) Subcallosal area (L) 

Lateral orbital gyrus (R) Opercular part of inferior frontal gyrus (L) Superior frontal gyrus (R) 
Lateral orbital gyrus (L) Orbital part of inferior frontal gyrus (R) Superior frontal gyrus (L) 

Middle cingulate gyrus (R) Orbital part of inferior frontal gyrus (L) Supplementary motor cortex (R) 
Middle cingulate gyrus (L) Posterior cingulate gyrus (R) Supplementary motor cortex (L) 
Medial frontal cortex (R) Posterior cingulate gyrus (L) Supramarginal gyrus (R) 
Medial frontal cortex (L) Precuneus (R) Supramarginal gyrus (L) 
Middle frontal gyrus (R) Precuneus (L) Superior occipital gyrus (R) 
Middle frontal gyrus (L) Parahippocampal gyrus (R) Superior occipital gyrus (L) 

Middle occipital gyrus (R) Parahippocampal gyrus (L) Superior parietal lobule (R) 
Middle occipital gyrus (L) Posterior insula (R) Superior parietal lobule (L) 
Medial orbital gyrus (R) Posterior insula (L) Superior temporal gyrus (R) 
Medial orbital gyrus (L) Parietal operculum (R) Superior temporal gyrus (L) 
Superior frontal gyrus 
medial segment (R) 

 
Posterior orbital gyrus (L) 
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eAlgorithm 1: Algorithm for sopNMF. 412 
The source code of the Python implementation of sopNMF is available here: 413 
https://github.com/anbai106/SOPNMF 414 

 415 
 416 
  417 

https://github.com/anbai106/SOPNMF
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