

Analyse des données en coupe instantanée : Application sur le logiciel Stata

Nathan Mbende, Jean-Claude Nkashama Mukenge, Jonathan Tshitolo

▶ To cite this version:

Nathan Mbende, Jean-Claude Nkashama Mukenge, Jonathan Tshitolo. Analyse des données en coupe instantanée : Application sur le logiciel Stata. 2024. hal-04362269

HAL Id: hal-04362269 https://hal.science/hal-04362269

Preprint submitted on 5 Jun 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Analyse des données en coupe instantanée : Application au logiciel stata.

Nathan Mbende(nathanmbende4@gmail.com) Jean-Claude Nkashama(jackonkashama@gmail.com) Jonathan Tshitolo(jonathantshitolo70@gmail.com)

JANVIER 2024

,

Table des matières

1	Données en coupe instantanée	8
2	Données Quantitatives et Qualitatives 2.1 Données quantitatives 2.1.1 Types des données quantitatives 2.2 Données qualitatives 2.2.1 Types des données qualitatives	8 8 8 8 9
3	Console Stata 17	10
4	Analyses univariées 4.1 Analyse descriptive 4.2 Tableau des fréquences	12 13 15
5	Analyses bivariées 5.1 Analyse de relation 5.2 Analyse de corrélation 5.3 Analyse de comparaison	18 18 21 25
6	Modèles de régression 6.1 Régression Linéaire Multiple et simple 6.2 Régression Multiple et simple à variables discontinues 6.2.1 Logit/Probit 6.2.2 Ologit Multiple 6.3 Mlogit Multiple	35 37 46 47 59 63
7	Appendice 1 : Force et direction du coefficient de corrélation	68
8	Appendice 2 :La commande edit	68
9	Appendice 3 : Importer fichier Excel	70
10	Appendice 4 : La commande asdoc	73
11	Appendice 5 : Install.	80
12	Appendice 6 : Describe	81
13	Appendice 7 : Help	82
14	Appendice 8 : Option detail	83
15	Appendice 9 : Tabstat, stats	86
16	Appendice 10 : Ameans	87
17	Appendice 11 : Analyse graphique de la distribution normale	88

18 Appendice 12 : Tab2, firstonly	94
19 Appendice 13 : Tau de kendall's	95
20 Appendice 14 : Test post hoc de Welch	96
21 Appendice 15 : Test post hoc Dunett's	97
22 Appendice 16 : Ologit simple	98
23 Appendice 17 : Mlogit simple	101
24 Appendice 18 : Oprobit simple	103
25 Appendice 19 : Oprobit Multiple	106
26 Appendice 20 : Mprobit Simple	112
27 Appendice 21 : Mprobit Multiple	114

Liste des tableaux

1	Exemple d'une variable qualitative ordinale	9
2	Présentation des variables	18
3	Coefficient	68

Table des figures

1	Présentation stata
2	Tableur stata 10
3	Les moyens de collage 11
4	L'option Variables names
5	Collage réussi
6	Analyse descriptive
7	Histogramme
8	Tableau des fréquences 15
9	Diagramme à barres 16
10	Diagramme circulaire
11	Chi2
12	Fisher exact
13	Normalité Shapiro
14	Normalité Skwness et Kurtosis
15	Corrélation de Pearson
16	Corrélation de Spearman
17	Kolmogorov Smirnov
18	Moyennes sous-groupes
19	Test de levène
20	Student
21	Kolmogorov Smirnov
22	Moyennes sous groupes
23	Mann Whitney
24	Moyennes sous-groupes
25	Anova
26	Moyennes sous-groupes
27	Kruskal Wallis
28	MCO
29	Normalité des résidus
30	Normalité des résidus
31	Breush-Pagan
32	Test de White $\ldots \ldots 41$
33	Spécification du modèle
34	Test de multicolinéarité
35	MCO simple
36	Linktest
37	Logit
38	Effets marginaux

39	Prédiction du modèle
40	Logit et effets marginaux
41	Prédiction du modèle
42	Probit
43	Effets marginaux
44	Prédiction
45	Probit et effet marginal
46	Prédiction
47	Ologit
48	Efféts marginaux
49	Effets marginaux suite
50	Effets marginaux suite et fin
51	Spécification
52	Mogit
53	Mlogit suite
54	Effets marginaux
55	Effets marginaux suite
56	Effets marginaux fin 67
57	Commande edit
58	Commande edit
59	Importer le fichier 70
60	Importer le fichier 71
61	Importer le fichier 71
62	Importation réussie 72
63	Asdoc 73
64	Asdoc 74
65	Asdoc 75
66	Asdoc 76
67	Asdoc 77
68	Asdoc 78
60	Aboren word 70
$\frac{09}{70}$	Install 80
70	Describe 81
71	Help 89
12	Detsil 82
73	Detail
74 75	Tabstat
75 76	Ameans
70	Normalité Histogramme
70	Normalité Histogramme
(8 70	Normalite Histogramme
79	Kernel density
80	Kernel density
81	Kernel density
82	tab2, firstonly
83	Tau de kendall's
84	Post hoc Welch

85	Dunett's
86	Ologit simple
87	Effets Marginaux
88	Spécification du test
89	Mlogit simple
90	Effets Marginaux
91	Oprobit Simple
92	Effets Marginaux
93	Spécification du modèle
94	Oprobit
95	Effets Marginaux
96	Effets Marginaux suite
97	Effets Marginaux suite
98	Effets Marginaux fin
99	Spécification du modèle
100	Mprobit Simple
101	Effets Marginaux
102	Mprobit
103	Mprobit suite

Résumé

Un document pratique permettant de faire le pont entre les théories nécessaires, importantes et la pratique des notions liées à l'analyse des données en coupé instantanée sur le logiciel Stata. En commençant par les analyses univariées, bivariées et multivariées pour les variables qualitatives et quantitatives.

Le document donne aussi une introduction pour la prise en main et quelques astuces pour mieux utiliser Stata avec une approche de quelques exercices d'interprétation pour faire participer le lecteur.

Le document aborde à tour de rôle les analyses ci-après : Analyse descriptive, tableau des fréquences, Analyse graphique(Histogramme, diagramme circulaire et diagramme en barres) test de Chi2, test de Cramer, test de Gamma, test Fisher exac't, test de normalité(Shapiro Wilk, test de Skwness et Kurtosis ainsi que les analyses graphiques),test de Pearson, test de Spearman,test de Tau de Kendall, test de Kolmogorov Smirnov, test de Levène, test de student, test post hoc de Welch, test de Mann Whitney, test de Bartlett, test d'Anova, test post hoc de Dunett's, test de Kruskal Wallis, Méthode des moindres carrés ordinaires, régression Logit avec ses formes(Logit, ologit et mlogit) et la régression Probit(probit, oprobit et mprobit)..

1 Données en coupe instantanée

¹On appelle données en coupe instantanée, transversale, les données qui sont collectées au même moment ou approximativement au même moment.

2 Données Quantitatives et Qualitatives

Les tests statistiques dépendent de la nature des données, d'où l'importance capitale de maitriser et distinguer clairement les différentes natures des données existantes.

Il existe deux types des données statistiques. L'on parle alors des données quantitatives et qualitatives.

2.1 Données quantitatives

²Les données quantitatives ont des valeurs numériques et présentent un caractère dénombrable. I.E. calculable, admettant des opérations mathématiques ayant un sens. Elles sont des deux types.

2.1.1 Types des données quantitatives

L'on a les données quantitatives discrètes et continues.

La compréhension la plus simple des données discrète, ces sont des données quantitatives n'admettant pas des virgules.

Exemples : les nombres des personnes, salles, l'âge, etc.

Les données continues sont des quantitatives admettant des virgules, des quantitatives décimales.

Exemple : La taille d'une personne, son poids, la superficie, etc.

2.2 Données qualitatives

 $^{3}\mathrm{Les}$ données qualitatives incluent des labels ou des noms utilisés pour identifier une caractéristique de chaque élément.

Elles peuvent aussi utiliser des codes numériques.

Elles n'admettent pas les opérations mathématiques car les résultats issus de ces opérations seront vides de sens mais admettent les opérateurs de comparaison.

⁴Elles contiennent des valeurs qui expriment une qualité, un état, une condition, un statut unique et exclusif.

Un autre jargon utilisé pour les données qualitatives est les données catégorielles.

Elles sont de deux types.

^{1.} Anderson, Sweeney et Williams., (2010), *Statistiques pour l'économie et la gestion*, édition 3, de boeck.

^{2.} Anderson, Sweeney et Williams., (2010), *Statistiques pour l'économie et la gestion*, édition 3, de boeck.

^{3.} Anderson, Sweeney et Williams., (2010), *Statistiques pour l'économie et la gestion*, édition 3, de boeck.

^{4.} Musangu M. (2018), *Elements de statistique descriptive*, G1 Faculté d'administration des affaires et sciences économiques, UPC, Kinshasa.

2.2.1 Types des données qualitatives

Nous avons deux types des données qualitatives, d'une part les nominales et de l'autre part les ordinales. Toujours selon l'approche simpliste, une donnée qualitative est dite nominale lorsque ⁵l'on utilise des nombres, symboles, noms comme des simples étiquettes pour différencier des groupes auxquels les différentes observations appartiennent.

Elles n'acceptent pas des opérateurs de comparaison.

Exemples : La variable état matrimonial contient des éléments tels que célibataire, marié(e)s, divorcé(e)s et veuf(ve)s. dans notre base des données, nous décidons d'utiliser le code 2 pour tout célibataire, 4 pour les marié(e)s, 6 pour les divorcé(e)s et 8 pour les veuf(ve)s. ces codes numériques utilisés sont juste pour des raisons de distinction des différents groupes de la variable état matrimonial.

Une donnée qualitative est dite ordinale lorsqu'elle suit un ordre bien déterminer qui respecte les critères préalablement établis et utilisent les nombres et symboles.

Elle admet les opérateurs de comparaison.

Exemple : les mentions que l'on retrouve au sein des universités.

TABLE	1 –	Exemple	ď	une	variable	qualita	ative	ordinale
1	-		~	~~~~	10011001010	90.00	20210	010110010

Mention
Plus grande distinction
Grande distinction
Distinction
Satisfaction
Ajourner
Non accessible à la filière

Source : L'auteur, inspiré

Commentaire : l'on peut effectuer des opérations de comparaison telles que la mention grande distinction est > à la mention satisfaction.

5. Musangu M. (2018), *Elements de statistique descriptive*, G1 Faculté d'administration des affaires et sciences économiques, UPC, Kinshasa.

3 Console Stata 17

Voici à quoi ressemble la console Stata V.17.

Subdyten 11.0		U ~
File Edit Data Graphics Statistics User Window Help		
<mark>■</mark> = = = • • • • • • • ■ • • • • • • • • •		
History	Variables	• # # <mark>*</mark>
Filter commands here	💦 Filter variables here	
# Command _rc _/ / // MP-Parallel Edition	Name Label	
There are no items to show. Statistics and Data Science Copyright 1985-2021 Statistics and Data Science StataCorp 4905 Lakeway Drive College Station, Tes 979-696-4600 Stata license: Single-user 2-core network, expiring 23 Serial number: S01709318480 Licensed to: Olah Data Semarang WA 085227746673 Olah Data Semarang WA 085227746673 Olah Data Semarang WA 085227746673 Olah Data Semarang WA 085227746673 Olah Data Semarang WA 085227746673 Notes: 1. Unicode is supported; see help unicode_advice. 2. Nore than 2 billion observations are allowed; 3. Maximum number of variables is set to 5,000; s Checking for updates (contacting http://www.stata.com) bad serial number unable to check for update; verify Internet settings ar . Command	StataCorp LLC as 77845 USA https://www.stata.com stat@stata.com Jun 2021 see help obs_advice. ee help set_maxvar. e correct.	how.

FIGURE 1 – Présentation stata

Commentaire :

La partie encerclée en rouge, c'est l'espace réservé aux commandes stata, en bleu, c'est pour garder et consulter votre historique des commandes, en jaune, c'est l'espace ou apparaitra les variables une fois insérer et en vert, l'espace pour coller une base des données Excel.

En cliquant sur la partie verte, stata ouvre une autre fenêtre pour vous permettre de coller votre base des données en format Excel.

Pour coller la base des données, stata propose deux moyens, le moyen le plus rapide est juste de cliquer sur paste.

FIGURE 3 – Les moyens de collage

il faut ensuite, opter pour variables names.

FIGURE 4 – L'option Variables names

Nous aurons ensuite un aperçu du tableur correctement rempli.

FIGURE 5 – Collage réussi

4 Analyses univariées

Dans un contexte général, l'on parle d'analyse univariée ou descriptive. Dans notre cadre, pour parler des analyses d'une façon générale, nous utilisons le terme univariée et non pas descriptive.

4.1 Analyse descriptive

C'est l'analyse univariée des données quantitatives, elle permet de résumer une variable avec quelques indicateurs de tendance centrale et de la variabilité telles que la moyenne, l'écart-type, le minimum, maximum. et elle renseigne aussi sur le nombre des observations.

La commande est sum suivi de la variable étudiée ou des variables étudiées.

FIGURE 6 – Analyse descriptive

Commentaire :

Le revenu mensuel des chefs de ménage est 249,45\$, avec un écart type qui montre que les valeurs sont très dispersés autour de la moyenne. Le revenu minimal est 145 et maximal 690\$pour nos 100 ménages enquêtés.

En moyenne, nous avons des ménages composés de 5 personnes (4,74 étant une variable quantitative discrète) les données sont d'une façon étroite autour de la moyenne. La taille minimum de ménage est de une personne et maximum 12 personnes dans un ménage pour les 100 ménages observés.

Par ménage, nous avons en moyenne 2 enfants (1.73), avec un écart type qui montre que les données sont autour de la moyenne d'une façon étroite, le nombre d'enfant minimum est de 0 ce qui traduit qu'il y'a des ménages sans enfants et le maximum est de 6 pour nos 100 ménages.

Par ménage, nous avons en moyenne 1 personnes ayant un emploi, l'écart type traduit une distribution étroite des données autour de la moyenne, il existe des ménages où personne ne travaille d'où le minimum de 0 et en maximum des ménages dans lequel 6 personnes travaillent pour nos 100 ménages.

Nous pouvons aussi générés des graphiques. Il en existe plusieurs tels que l'histogramme de fréquence, le polygone de fréquence, l'ogive, etc. Nous allons présenter ici l'histogramme de fréquence.

la commande est histogram Revenu chef mén, frequency addlabel

FIGURE 7 – Histogramme

Commentaire :

Nous avons 32 chefs des ménages qui ont un revenu compris entre [0-200], 63 chefs des ménages qui ont un revenu compris entre [200-400], 2 chefs des ménages qui ont un revenu compris entre [400-600] et 3 chefs des ménages ayant un revenu compris entre [600-800].

4.2 Tableau des fréquences

C'est l'analyse univariée des données qualitatives, comme les valeurs numériques ou codes d'un questionnaire sont arbitraires, les calculs associés se résument à des comptages. Ce comptage nous fournis des éléments tels que les fréquences absolues, relatives et en pourcentage.

La commande est tab suivie de la variable étudiée. Pour générer plusieurs tables de fréquence à la fois, la commande est tab1 suivie de toutes les variables.

Stata/MP 17.0							- 0 X
File Edit Data Graphics Statistics U	ser Window H	Help					
🎽 🗄 🖨 🗿 🔹 🖬 🔹 📓 🖌	• • •						
History T # ×						Variables	т‡х
Filter commands here	Sexe	Freq.	Percent	Cum.		Kilter variables h	ere
# Command _rc	0	37	37.00	37.00		Name	Label
sum Revenu_chef_mén Taille_ména	1	63	63.00	100.00		sexe	Sexe
tab sexe						statut	Statut
tab statut	Iotal	100	100.00			Âge	
tab Accès_crédits	, tab statut					profession	Profession
						niveau_instructi	Niveau_instruction
	Statut	Freq.	Percent	Cum.		Revenu_chef_mé	n
						Taille_ménage	
	1	41	41.00	41.00		У	γ
	2	48	48.00	92.00		nombre_enfants	Nombre_enfants
	4	4	4.00	96.00		emploi	Emploi
	5	4	4.00	100.00		statut_logement	Statut_logement
						type_logement	Type_logement
	Total	100	100.00			taille_logement	Taille_logement
	tab Accès e	nádite				Accès_soins_sant	é
	. Lab Acces_c	reults				Accès_éléctricité	
	Accès cré					Accès_regideso	
	dits	Freq.	Percent	Cum.		Mode_évac_ord	
						possession_voit	Possession_voiture
	0	59	59.00	59.00		possession_ant	Possession_ant
		41	41.00	100.00		possession_clim	Possession_clim
	Total	100	100.00			apppart_mouv	Apppart_mouv
	· ·					Accès_crédits	
						Compte_épargne	
	Command				1	L	
	comuna						

FIGURE 8 – Tableau des fréquences

Commentaire :

Pour le sexe, genre , 1 représente les hommes et 0 les femmes . 1 et 0 sont donc des codes numériques. Nos résultats montrent que nous avons enquêté 100 ménages dont 63 étaient représentés par des hommes et 37 par des femmes, ce qui se traduit par la présence de 63%d'hommes et 37%des femmes.

Pour le statut , 2 correspond aux personnes mariées donc la majorité de notre échantillon soit 48% sont des mariées.

Pour l'accès au crédit, 59‰ des ménages enquêtés n'ont pas accès aux crédits contre 41%qui en ont. L'on peut aussi faire une analyse graphique des variables qualitatives.Nous en présentons deux.

Le diagramme en bâton ou en barres et le diagramme circulaire.

Pour le diagramme en barre, la commande est graph bar, over(sexe) blabel(total)

FIGURE 9 – Diagramme à barres

Commentaire:

Le graphique illustre bien ce que l'on a déjà vu (figure 7), notre échantillon est composé à 37% des femmes contre 63% d'hommes.

Pour le diagramme circulaire, la commande est graph pie, over (Accès Crédits) plabel(_all percent)

Commentaire:

Comme nous le savons déja, nous avons dans notre échantillon 59‰ des personnes qui ont déja eu accès aux crédits contre 41%qui n'ont jamais eu accès aux crédits.

5 Analyses bivariées

Nous présentons dans cette section 10 tests et un ensemble de 6 tests servant de pré-requis.

L'analyse bivariée permet de tester la relation existante entre deux variables. il peut s'agir de deux variables qualitatives ou quantitatives.

cette analyse bivariée permet aussi de faire des comparaisons des groupes en présence de deux variables, l'une étant qualitative et l'autre quantitative.

Ces différents tests reposent sur des hypothèses et possèdent des critères de décision.

Voici les variables qui seront utilisées.

	11111				
	Nom de la variable	Type de la variable	Mesure et description		
	La pauvreté	Qualitative binaire	1=pauvres		
			0= non pauvres		
	Profession	Qualitative multimodale	1=employé chez les privés		
			2= fonctionnaire		
			3=profession libérale		
			4=Retraités		
			5=Chômeurs		
	Avoir un compte épargne	Qualitative binaire	1=Oui		
			$0{=}Non$		
	Revenu chef de ménage	Quantitative	Revenu mesurer mensuellement		
	Taille de ménage	Quantitative	Nombre des personnes composant le ménage		
	âge	Quantitative	Mesurer en année		
Niv instruction		Qualitative multimodale	1 = primaire et secondaire		
			2=universitaire		
			3= post universitaire		

TABLE 2 – Présentation des variables

5.1 Analyse de relation

L'on appelle analyse de relation, liaison ou tableau de contingence, l'ensemble des tests effectués pour tester la relation entre deux variables qualitatives.

Ces tests reposent sur les hypothèses suivantes :

- H0 : indépendance entre la variable à expliquer et celle qui explique.

- H1 : dépendance entre la variable qui explique et celle qui est expliquée. Les critères de décision :

- Si la probabilité associée au test soit la P-value est supérieur au seuil de 0.05 soit 5%: acceptation de l'hypothèse nulle (H0); rejet de l'hypothèse une (H1).

- Si la probabilité associée au test de soit P-value est inférieur au seuil de 0.05%: rejet de l'hypothèse nulle(H0) donc il y a acceptation de l'hypothèse une (H1).

Présentation des tests.

1. Test de Chi2 ou Khi2 :

Ce test est utilisé lorsque tous les effectifs théoriques sont supérieurs à 5. Il permet de tester l'association entre deux variables mais sans en donner l'information sur l'intensité de l'association.

Pour mesurer l'intensité, il faut faire appel au test v de cramer ou gamma. le V de cramer mesure l'intensité lorsque les deux variables qualitatives sont nominales et le gamma, lorsque les deux variables sont ordinales.

Illustration : On veut savoir s'il existe une relation entre la pauvreté et la profession.

La commande est tab pauvreté profession, chi2 V

	Profession							
Y	1	2	3	4	5	Total		
0 1	29 2	16 15	13 13	2 3	4 3	64 36		
Total	31	31	26	5	7	100		

Figure 11 – Chi2

tab pauvreté profession, chi2 V

Pearson chi2(4) = 17.4167 Pr = 0.002 Cramér's V = 0.4173

Commentaire :

La probablité associée au test de chi2 est égale à 0,002 ce qui est inférieure au seuil de 0,05 signifiant donc qu'il existe une relation entre la pauvreté et la profession occupée ce qui nous pousse donc au rejet de H0 et l'acceptation de H1.

Le V de cramer nous fait comprendre que cette relation est positive avec une intensité de 41,73%.

2. Test de fisher exact :

 6 Le test exact de fisher est utilisé pour déterminer s'il existe ou non une association significative entre deux variables catégorielles. Il est généralement utilisé comme alternative au test de chi2 lorsque l'on a au minimum un effectif théorique inférieur à 5 dans un tableau 2*2.

Illustration : On veut savoir s'il existe une relation entre la pauvreté et le fait d'avoir un compte épargne.

La commande est tab pauvreté compte épargne, exact

FIGURE 12 – Fisher exact tab pauvreté Compte_épargne,exact

	Compte_	épargne	
Y	0	1	Total
0	62	2	64
1	34	2	36
Total	96	4	100
F	- isher's exa	ict =	0.617
1-sided F	isher's exa	ict =	0.455

Commentaire :

La probabilité associée au test de fisher est supérieure au seuil de 0,05 ce qui traduit l'absence d'une relation entre les deux variables étudiées par conséquent, l'on accepte le H0.

^{6.} Muayila P. (2023), *Introduction aux techniques d'enquêtes*, L2 LMD Faculté d'administration des affaires et sciences économiques, UPC, Kinshasa.

5.2 Analyse de corrélation

Cette analyse permet d'établir la corrélation entre deux variables quantitatives.

Nous présentons ici deux tests, celui de rang de spearman et le test de pearson. Le choix entre ces deux tests est basé sur la normalité de la distribution des données.

Les données peuvent-être normalement distribuées ou pas.

Avant d'aborder les deux tests de corrélation, il est donc primordial d'aborder les différents tests permettant d'étudier la distribution des données.

Énonçons la règle de décision et les hypothèses :

Une population, un échantillon ou encore des données sont dites normalement distribuées lorsque la probabilité associée au test est supérieure au seuil de 0,05 ou de 5‰.

Les hypothèses sont :

• H0 : l'échantillon suit une loi normale.

• H1 : l'échantillon ne suit pas une loi normale.

Les tests de normalité

1. Shapiro Wilk : Ce test de normalité est effectué lorsque la taille de l'échantillon est inférieure à 50.

La commande est swilk suivie de la variable ou des variables.

Exemple :

FIGURE 13 – Normalité Shapiro

swilk nombre_enfants

Variable	Obs	W	v	z	Prob>z
nombre_enf~s	45	0.95236	2.063	1.535	0.06243

Shapiro-Wilk W test for normal data

Commentaire :

La probabilité associée au test est de 0.06 qui est supérieure au seuil de 0.05, par conséquent la variable nombre d'enfants est normalement distribuée.

2. Skwness et Kurtosis : ce test de normalité est effectué lorsque la taille de l'échantillon est supérieure à 50.

La commande est sktest suivie de la variable ou des variables.

Exemple :

FIGURE 14 – Normalité Skwness et Kurtosis

. sktest Revenu_chef_mén Taille_ménage age

ss and kurtosis tests for normality

Variable	Obs	Pr(skewness)	Pr(kurtosis)	—— Joint Adj chi2(2)	test — Prob>chi2
Revenu_chef_mén	100	0.0000	0.0003	32.21	0.0000
Taille_ménage	100	0.0743	0.0959	5.72	0.0571
age	100	0.2598	0.1150	3.86	0.1452

Commentaire:

La variable revenu chef de ménage n'est pas normalement distribuée car sa probabilité est de 0,0000 qui est inférieure au seuil de 0,05.

La variable taille de ménage et l'âge sont normalement distribuées car leurs probabilités respectives sont supérieures au seuil de 0,05.

Abordons maintenant nos deux tests de corrélation.

1. Test de corrélation de Pearson.

Le test de corrélation de pearson est le test à utiliser lorsque les deux variables quantitatives étudiées sont normalement distribuées.

Illustration : on veut tester s'il existe une corrélation entre la taille de ménage et l'âge du chef de ménage. Nous savons déjà que ces deux variables sont normalement distribuées comme nous renseigne la figure 11.

La commande est donc pwcorr taille de ménage $\hat{a}ge$, sig star(5).

. pwcorr Tail	le_ménage ag	ge,sig star(5)
	Taille~e	age
Taille_mén∼e	1.0000	
age	-0.0402 0.6914	1.0000

FIGURE 15 – Corrélation de Pearson

Commentaire :

La corrélation entre la taille de ménage et l'âge est non significative car la probabilité est 0,6914 qui est supérieure au seuil de 0,05.

la valeur au-dessus de la probabilité indique l'intensité et la direction de la corrélation. ⁷Quoique la corrélation n'est pas significative, elle est néanmoins négative et à une force modérée.

^{7.} La section 7.1. permet de mieux comprendre la direction et la force du coefficient de corrélation

2. Test de rang de Spearman

Ce test est utilisé lorsque les deux variables quantitatives ne sont pas normalement distribuées ou au moins l'une d'entr'elle ne l'est pas.

Illustration : On veut tester la corrélation entre le revenu du chef de ménage et la taille de ménage. Nous savons que les deux variables sont anormalement distribuées en se réferant à la figure 11.

La commande est spearman Revenu chef mén Taille ménage, stats
(rho obs $\mathbf{p})$ star(0.05) matrix

FIGURE 16 – Corrélation de Spearman

. spearman Revenu_chef_mén Taille_ménage,stats(rho obs p) star(0.05) matrix

Кеу
rho
Number of obs
Sig. level

	Revenu~n	Taille~e
Revenu_che~n	1.0000 100	
⊺aille_mén~e	0.1288 100 0.2017	1.0000 100

Commentaire:

La corrélation entre le revenu du chef de ménage et la taille de ménage n'est pas significative car la probabilité associée au test est 0,2017 est supérieure au seuil de 0,05. quoique pas significative, la corrélation est positive à hauteur de 12,88%.

5.3 Analyse de comparaison

Les tests présentés dans cette section sont utilisés lorsque les échantillons ne sont pas appariés.

Cette analyse permet de faire des comparaisons des moyennes, médianes ou des variances lorsque les données concernent au moins deux populations.

Le choix du test de comparaison dépend :

- Du nombre de la population ou des sous-groupes de la variable qualitative, souvent notée K. L'on a des cas ou K est égal à 2(variable qualitative binaire ou bimodale) et k supérieur à 2(variable qualitative multimodale ou plurimodale).

- De la distribution de la variable quantitative que nous avons déjà abordé à la page 13 lorsque K est supérieure à 2 et de la distribution de la variable quantitative dans les sous-groupes de la variable qualitative lorsque K est égal à 2.

- De l'homogénéité des variances, I.E. l'égalité des variances.

1. Premier cas :

K=2.

П

- Si la distribution de la variable quantitative dans les sous-groupes de la variable qualitative est normale et que les variances sont homogènes, l'on fait le test de Student, à noter que pour le test de Student, le test de normalité à effectuer est le test de Kolmogorov Smirnov, ce dernier permet de voir la distribution de la variable quantitative dans les sous-groupes d'une variable qualitative binaire.

Illustration : on veut savoir si les ménages qui épargnent sont des petites taille comparer aux ménages qui n'épargnent pas.

Première étape : tester la normalité des sous-échantillons(groupes).

La commande est ksmirnov Taille ménage, by (Compte épargne)

FIGURE 17 – Kolmogorov Smirnov

Smaller group	D	p-value		
0	0.0938	0.935		
1	-0.1875	0.763		
Combined K-S	0.1875	0.999		

Commentaire : les probabilités de sous-échantillons sont respectivement 0.935 et 0.763 étant toutes deux supérieures au seuil de 0.05, les deux sous-échantillons sont normalement distribués.

Deuxième étape : croiser la variable quantitative à la variable qualitative afin de dégager les moyennes des sous-groupes.

La commande est tab
stat Taille ménage,
by
(Compte épargne) stat (n mean min max)

FIGURE 18 – Moyennes sous-groupes

. tabstat Taille_ménage,by(Compte_épargne) stat (n mean min max)

```
Summary for variables: Taille_ménage
Group variable: Compte_épargne
```

Compte_épargne	N	Mean	Min	Max
0	96	4.760417	1	12
1	4	4.25	1	7
Total	100	4.74	1	12

Commentaire :

Nous voyons qu'en moyenne les chefs de ménage qui épargent ont des ménages qui sont constitués en moyenne de 4.25 personne \sim 4 tandisque ceux qui n'epargnent pas ont généralement des ménages plus grand 4.7 \sim 5.

Troisième étape : vérifier l'homogénéité des variances.

La commande est robvar Taille ménage, by(Compte épargne)

FIGURE 19 – Test de levène

	. robvar Tai	bménage	oy(Compte	e_épargne	:)
	Compte_épa rgne	Summa Mea	ary of Tai an Std.	ille_ména dev.	ge Freq.
	0 1	4.760416 4.2	57 2.908 25 2.753	32271 37853	96 4
	Total	4.7	74 2.890	6677	100
	WØ = 0.063	88804 df(1	l, 98)	Pr > F	= 0.80098246
	W50 = 0.062	06939 df(1	l, 98)	Pr ≻ F	= 0.803776
	W10 = 0.056	12649 df(1	l, 98)	Pr ≻ F	= 0.8132209
L					

Commentaire :

La probabilité étant supérieure au seuil de 0.05, les variances de deux souséchantillons sont donc égales. Quatrième étape : faire le test de Student.

La commande est ttest Taille ménage, by(Compte épargne)

		FIGURE	20 - Student			
. ttest Ta	aille_ménag	ge,by(Compte	_épargne)			
Two-sample	e t test wi	ith equal var	iances			
Group	Obs	Mean	Std. err.	Std. dev.	[95% conf.	interval]
0	96	4.760417	.2968197	2.908227	4.171155	5.349678
1	4	4.25	1.376893	2.753785	1318869	8.631887
Combined	100	4.74	.2890668	2.890668	4.166429	5.313571
diff		.5104167	1.481748		-2.430064	3.450897
diff : H0: diff :	= mean(0) - = 0	mean(1)		Degrees	t of freedom	= 0.3445 = 98
Ha: d: Pr(T < t)	iff < 0) = 0.6344	Pr(Ha: diff != T > t) =	0 0.7312	Ha: d Pr(T > t	iff > 0) = 0.3656

Commentaire:

Le t-test est non significative, car la probabilité est supérieure au seuil (p=0.6344).nous ne pouvons donc pas parler d'une différence significative entre les ménages qui épargnent et celles qui n'épargnent pas.

Note : Il existe des cas ou la condition de normalité est satisfaite mais pas celle de l'homogénéité, dans ce cas, il faut faire un test post hoc, il en existe plusieurs.

Nous optons pour le test ⁸post hoc de Welch. La commande est ttest variable quantitative,by(variable qualitative) unequal.

^{8.} Voir Appendice 19

- Si la distribution de la population est non normale ou anormale et que les variances sont non-homogènes, l'ont fait le test de **Mann Whitney.**

Illustration : on veut savoir si les ménages des non pauvres sont constitués de moins des personnes que les ménages des pauvres.

Première étape : vérifier la normalité par le test de kolmogorov Smirnov. La commande est ksmirnov Taille ménage,by(pauvreté)

FIGURE 21 – Kolmogorov Smirnov

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	p-value
0	0.6510	0.000
1	0.0000	1.000
Combined K-S	0.6510	0.000

Note: Ties exist in combined dataset;

there are 12 unique values out of 100 observations.

Commentaire:

En voyant les probabilités, le premier sous-échantillon n'est pas normalement distribué.

Deuxième étape : comparer les moyennes en croisant les deux variables, hormis la commande utilisée au niveau du Student, l'on peut procéder par une autre commande, mean Taille ménage, over(pauvreté)

FIGURE 22 – Moyennes sous groupes

```
. mean Taille_ménage,over( pauvreté)
```

Mean estimation

Number of obs = 100

	Mean	Std. err.	[95% conf.	interval]
c.Taille_ménage@pauvreté	2 220425	2792224	2 77607	3 99049
1	7.25	.3571825	6.541272	7.958728

Commentaire:

L'on voit qu'en moyenne, les ménages non pauvres sont composés de 3 personnes et les ménages pauvres de 7 personnes. Troisième étape : le test de Mann Whitney.

La commande est ranksum Taille ménage, by(pauvreté)

FIGURE 23 – Mann Whitney

. ranksum Taille_ménage,by(pauvreté)

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

pauvreté	Obs	Ran <mark>k</mark> sum	Expected		
0	64	2339	3232		
1	36	2711	1818		
Combined	100	5050	5050		
Unadjusted variance 19392.00					
Adjustment for	rties -	261.47			
Adjusted variance 19130.53					
H0: Taille~e(p z = · Prob > z = @ Exact prob = @	oauvreté==0) -6.456 0.0000 0.0000	= Taille∾e(pauvreté==1)		

Commentaire:

La probabilité étant inférieure au seuil de 0.05, elle vient confirmer la tendance qui s'était dégagée au niveau des moyennes des sous-groupes donc il existence une différence significative, I.E. les ménages des non pauvres sont constitués de moins des personnes que les ménages des pauvres. 2. Deuxième cas :

K est supérieur à 2 et les échantillons sont indépendants. - Si la distribution de la population est normale et que les variances sont homogènes, l'on fait le test **d'Anova.**

Illustration : l'hypothèse que l'on teste est que la taille de ménage serait différente selon le niveau d'instruction du chef de ménage. Première étape : la vérification de la normalité (voir la figure 14).

Deuxième étape : croiser la variable quantitative à la variable qualitative afin de dégager les moyennes des sous-groupes.

la commande est tabstat Taille ménage, by(niveau instruction) stats(n mean max min)

FIGURE 24 – Moyennes sous-groupes

tabstat Taille_ménage,by(niveau_instruction) stats(n mean max min)

Summary for variables: Taille_ménage Group variable: niveau_instruction

niveau_instruction	N	Mean	Max	Min
1	19	5.789474	12	1
2	72	4.541667	11	1
3	9	4.111111	7	1
Total	100	4.74	12	1

Commentaire :

L'on voit que les chefs de ménage avec un haut niveau d'instruction ont en moyenne moins d'enfants (4.11 pour les post-universitaire contre 4.54 pour les universitaire et 5.78 pour ceux qui se sont limités au niveau primaire et secondaire.)

Troisième étape : Faire le test d'Anova et vérifier l'homogénéité des variances.

La commande est . oneway Taille ménage niveau instruction

FIGURE 25 – Anova

. oneway Taille_ménage niveau_instruction

Analysis of variance					
Source	SS	df	MS	F	Prob > F
Between groups	38.8021053	3	12.9340351	1.57	0.2005
Within groups	788.437895	96	8.21289474		
Total	827.24	99	8.3559596		

Bartlett's equal-variances test: chi2(2) = 5.0044 Prob>chi2 = 0.082

note: Bartlett's test performed on cells with positive variance: 1 single-observation cells not used

Commentaire:

Le test est non significatif car la probabilité est supérieure au seuil de 0.05, par conséquent nos variances sont homoscédastiques et l'on peut procéder au test d'Anova. Contrairement à nos attentes, le test montre que la différence n'est pas significative, la probabilité (0.2005)étant supérieure au seuil de 0.05 par conséquent la taille de ménage ne diffèrent pas selon le niveau d'instruction.

Note : Il existe des cas ou la condition de normalité est satisfaite mais pas celle de l'homogénéité, dans ce cas, il faut faire un test post hoc, il en existe plusieurs.

Nous optons pour le test ⁹post hoc de Dunett's.

La commande est pw mean Revenu chef mén, over (profession) mcompare(dunnett) effect.

^{9.} Voir Appendice 20

- Si la distribution de la population est non normale ou anormale et que les variances sont non-homogènes, l'ont fait le test de **Kruskal Wallis**.

Illustration : L'on veut savoir si le revenu mensuel des chefs de ménage diffèrent selon la profession de ce dernier. Première étape : la vérification de la normalité (voir la figure 14).

Deuxième étape : comparer les moyennes en croisant les deux variables.

la commande est mean Revenu chef mén, over(profession)

FIGURE 26 – Moyennes sous-groupes

. mean Revenu_chef_mén,over(profession)

Mean estimation

Number of obs = 100

	Mean	Std. err.	[95% conf.	interval]
c.Revenu_chef_mén@profession				
1	256.6129	20.61864	215.701	297.5248
2	263.0645	25.59053	212.2874	313.8417
3	266.7308	21.10585	224.8522	308.6094
4	161	16	129.2525	192.7475
5	156.4286	11.42857	133.7518	179.1053

Commentaire :

Le tableau indique des différences des moyennes, l'on peut clairement voir que les chômeurs et les retraités sont ceux qui ont le revenu le plus bas. Troisième étape : le test de Kruskal Wallis proprement dit.

La commande est kwallis Revenu chef mén, by(profession)

FIGURE 27 – Kruskal Wallis

. kwallis Revenu_chef_mén,by(profession)

Kruskal-Wallis equality-of-populations rank test

profes~n	0bs	Rank sum
1	31	1642.00
2	31	1610.50
3	26	1524.50
4	5	120.00
5	7	153.00

chi2(4) = 13.341 Prob = 0.0097

chi2(4) with ties = 15.164 Prob = 0.0044

Commentaire:

La probabilité du test est inférieure au seuil, par conséquent, le revenu diffèrent selon les types de profession.

6 Modèles de régression

La régression permet d'étudier l'impact d'une variable indépendante sur la variable dépendante ou les impacts de plusieurs variables indépendantes sur la variable dépendante.

Dans cette section, nous illustrons la régression linéaire simple et multiple (MCO), la régression logistique simple et multiple puis la régression probit simple et multiple.

Le choix du modèle se base sur la nature de la variable dépendante.

Nous allons utilisés ces variables :
Questions	Modalités
Sexe du chef de ménage	0 = Femme ; $1 =$ Homme
Statut matrimoniale	1=Célibataire
	2=mariée monogame
	3=Mariée polygame
	4=Divorcé
	5=Veuf
Age	En année
Profession du chef de ménage	1=employé chez les privés
	2=Fonctionnaire
	3=Profession libérale et
	Indépendant
	4=Retraité et chômage
	5=Autres
Niveau d'instruction	1=Primaire et secondaire
	2=Universitaire
	3=Post-universitaire
Revenu du chef de ménage	Montant en usd
Taille du ménage	Nombre de personne au ménage
Emploi	Nombre de personnes avec un emploi
Statut logement	1=Propriétaire
	2=Locataire
	3=Autres
Type logement	1=Maison
	2=Appartement
	3=Autre
Taille logement	Nombre de pièce
Accès aux soins de santé	1=Hôpital
	2=Traditionnelle
	3=Automédication
Accès à l'électricité de la Snel	1=jamais; 2=régulier; 3=Irrégulier
Accès eau de la Regideso	1=jamais; 2=régulier; 3=Irrégulier
Mode d'évacuation des ordures	1=Dépotoir/incinération/enlèvement
	2=Enfouissement
	3=Services spéciales
	4=Rue et autres
Possession d'une voiture ou moto	0=Non : 1=Oui
Possession d'une antenne avec décodeur	0=Non; 1=Oui
Possession d'une climatisation et machine à lavage	0=Non; 1=Oui
Appartenance à un mouvement associative ou culturel	0=Non; 1=Oui
Accès au crédit	0=Non; 1=Oui
Possession compte épargne	0=Non; 1=Oui
. 1 0	/

6.1 Régression Linéaire Multiple et simple

Cette régression a pour but de modéliser les relations entre une variable à expliquer quantitative et une ou plusieurs variables explicatives qui peuventêtre quantitatives ou qualitatives sous la forme d'une fonction linéaire.

Ce modèle a des hypothèses qui doivent-être respectées pour l'appliquer :

- La condition de linéarité des relations entre la variable dépendante et ses variables indépendantes.(Cette hypothèse n'est pas toujours évaluer car elle est minimisable)

- Dans le cas de la régression multiple, il faut s'assurer que les variables explicatives ne présentent pas une trop forte multi-colinéarité.

- Les erreurs doivent-être homoscédastiques.

- Les résidus doivent-être indépendants.

- Les résidus doivent-être normalement distribués.

Illustration : On veut savoir quelles sont les variables qui influent sur la taille de ménage.

Première étape : Estimer le modèle.

La commande est reg variable dépendante variables indépendantes

Figure $28 - MCO$								
Source		SS	df	MS	Number of	obs =		100
					F(21, 78)	=	1	0.54
Model	611	.694206	21 29.	1282955	Prob > F	=	0.	0000
Residual	215	.545794	78 2.7	5340762	R-squared	=	0.	7394
					Adj R-squa	ared =	0.	6693
Total		827.24	99 8.	3559596	Root MSE	=	1.	6624
					- 1-1			
Taille_mé	enage	Coefficient	Std. er	r. t	P> t	[95%	conf.	interval]
	sexe	0956348	374398	9 -0.2	6 0.799	8410	058	6497362
st	atut	.2252796	.191845	7 1.1	7 0.244	1566	557	.607215
	age	.0150857	.015298	9 0.9	9 0.327	0153	721	.0455435
profes	sion	.1705788	.175683	2 0.9	7 0.335	1791	797	.5203372
niveau instruc	tion	4491257	.344612	9 -1.3	0 0.196	-1.135	197	.2369458
Revenu chef	mén	.0061523	.002136	9 2.8	8 0.005	.0018	981	.0104064
pauv	_ reté	3.438082	.508155	6.7	7 0.000	2.426	421	4.449742
en	ploi	.4940019	.205115	9 2.4	1 0.018	.0856	474	.9023564
statut loge	ment	.3402283	.334876	3 1.0	2 0.313	3264	593	1.006916
type loge	ement	1507461	.346604	2 -0.4	3 0.665	8407	821	.53929
taille loge	ement	.6255973	.152335	1 4.1	1 0.000	.3223	214	.9288732
Accès soins s	anté	.3339547	.297402	2 1.1	2 0.265	2581	277	.926037
Accès éléctri	cité	3227283	.335746	4 -0.9	6 0.339	991	148	.3456914
Accès_regi	deso	0861266	.340688	7 -0.2	5 0.801	7643	857	.5921325
Mode_évac_ord	lures	2505644	.173551	5 -1.4	4 0.153	5960	791	.0949503
possession_voi	ture	.3479614	.436849	8 0.8	0 0.428	5217	397	1.217662
possession	_ant	1.229044	.517937	5 2.3	7 0.020	.1979	096	2.260178
possession_	clim	8001819	.431768	5 -1.8	5 0.068	-1.659	767	.0594034
apppart_	mouv	4430568	.406294	4 -1.0	9 0.279	-1.251	927	.3658133
Accès_cré	dits	3066964	.423573	5 -0.7	2 0.471	-1.149	966	.5365736
Compte_épa	rgne	-1.09677	.911582	9 -1.2	0 0.233	-2.911	592	.7180522
	cons	-1.254841	1.90153	8 -0.6	6 0.511	-5.040	513	2.53083

Commentaire:

Les résultats montrent que le modèle est globalement significatif car la probabilité associée au test est de 0.0000 qui est inférieure à 1‰. La variance expliquée est de 73.94‰. les variables retenues expliquent à 66.93%la variable dépendante mais ces 66.93%sont expliqués que par 6 variables. les variables ayant des probabilités inférieures à 10%.

Deuxième étape : Vérifier la normalité des résidus La commande est predict residuols,res kdensity residuols,normal

Commentaire :

le graphique montre que les résidus sont normalement distribués.

L'on peut aussi voir cette distribution par le test de Skwness et Kurtosis.

FIGURE 30 – Normalité des résidus

. sktest residuols

Skewness and kurtosis tests for normality

				Joint	test ——
Variable	Obs	Pr(skewness)	Pr(kurtosis)	Adj chi2(2)	Prob>chi2
residuols	100	0.7966	0.2428	1.46	0.4810

Commentaire :

la probabilité étant supérieure au seuil de 0.05, les résidus sont normalement distribués.

Troisième étape : il faut tester l'homoscédasticité des erreurs avec le test de Breush-Pagan.

La commande est hettest

FIGURE 31 – Breush-Pagan

. hettest

Breusch-Pagan/Cook-Weisberg test for heteroskedasticity Assumption: Normal error terms Variable: Fitted values of Taille ménage

H0: Constant variance

chi2(1) = 14.83 Prob > chi2 = 0.0001

Commentaire :

La probabilité du test étant inférieure au seuil de 0.05, nos erreurs sont hétérocédastiques, il faudrait donc corriger cela. Quatrième étape : Correction de l'hétérocédasticité avec le test de White.

La commande est reg variable dépendante variables indépendantes, robust

	FIGUR	E 32 - 1est	de Whit	e		
Linear regression			Numbe	er of obs	=	100
_			F(21	, 78)	= 1	6.26
			Prob	> F	= 0.	0000
			R-sq	uared	= 0.	7394
			Root	MSE	= 1.	6624
		Robust				
Taille_ménage	Coefficient	std. err.	t	P> t	[95% conf.	interval]
sexe	0956348	.3858299	-0.25	0.805	8637631	.6724936
statut	.2252796	.1777709	1.27	0.209	128635	.5791943
age	.0150857	.0166544	0.91	0.368	0180707	.048242
profession	.1705788	.1608929	1.06	0.292	1497344	.490892
niveau_instruction	4491257	.3218238	-1.40	0.167	-1.089828	.1915762
Revenu_chef_mén	.0061523	.0031611	1.95	0.055	000141	.0124456
pauvreté	3.438082	.466006	7.38	0.000	2.510335	4.365828
emploi	.4940019	.1754438	2.82	0.006	.1447202	.8432836
<pre>statut_logement</pre>	.3402283	.2786003	1.22	0.226	2144224	.894879
type_logement	1507461	.3350113	-0.45	0.654	8177023	.5162102
taille_logement	.6255973	.1885692	3.32	0.001	.2501849	1.00101
Accès_soins_santé	.3339547	.3443137	0.97	0.335	3515212	1.019431
Accès_éléctricité	3227283	.3392727	-0.95	0.344	9981685	.3527118
Accès_regideso	0861266	.2815028	-0.31	0.760	6465556	.4743024
Mode_évac_ordures	2505644	.1617491	-1.55	0.125	5725821	.0714533
possession_voiture	.3479614	.3462029	1.01	0.318	3412757	1.037199
possession_ant	1.229044	.4717921	2.61	0.011	.2897779	2.16831
possession_clim	8001819	.3565628	-2.24	0.028	-1.510044	0903199
apppart_mouv	4430568	.3884711	-1.14	0.258	-1.216443	.3303297
Accès_crédits	3066964	.4165311	-0.74	0.464	-1.135946	.5225534
Compte_épargne	-1.09677	.6452694	-1.70	0.093	-2.381403	.1878628
_cons	-1.254841	2.062239	-0.61	0.545	-5.360443	2.85076

FIGURE 32 – Test de White

commentaire:

Après correction du problème d'hétérocédasticité, les résultats montrent que le modèle est globalement significatif car la probabilité associée au test est de 0.0000 qui est inférieure à 1‰. La variance expliquée est de 73.94‰. la variable dépendante est expliquée que par 7 variables. les variables ayant des probabilités inférieures à 10‰. Cinquième étape : Vérifier si le modèle est bien spécifié.

La commande est linktest

				. linktest
MS Number of obs = 100	MS	df	SS	Source
45687 Prob > F = 0.0000	306.456	2	612.913739	Model
54908 R-squared = 0.7409	2.209549	97	214.326261	Residual
Adj R-squared = 0.7356				
59596 Root MSE = 1.4865	8.35595	99	827.24	Total
t P> t [95% conf. interval]	t	Std. err.	Coefficient	 Taille_mén~e
21 0.000 .7175276 1.60082 74 0.4590577474 .0262903 58 0.560 -1.339371 .7295928	5.21 -0.74 -0.58	.2225227 .0211711 .5212222	1.159174 0157286 304889	_hat _hatsq _cons

FIGURE	33 -	Spécification	du	modèle

Commentaire :

On s'intéresse à la p-value du _hatsq qui a une valeur supérieure au seuil de 5‰, ce qui veut dire que le modèle est bien spécifié.

Sixième étape : Détection de la multicolinéarité avec le test de vif(Variance inflation factor).

La commande est vif ou estat vif

. vif

FIGURE 34 – Test de multicolinéarité

Variable	VIF	1/VIF
Revenu_che~n	2.35	0.426387
pauvreté	2.15	0.464482
taille_log~t	1.91	0.524681
possession~m	1.82	0.549008
possession~e	1.72	0.580144
Accès_éléc~é	1.66	0.601582
statut_log~t	1.63	0.612376
possession~t	1.61	0.620932
Accès_créd~s	1.57	0.636725
type logem~t	1.57	0.637015
profession	1.49	0.671970
emploi	1.48	0.677203
Accès soin∼é	1.47	0.678611
 Mode évac ∼s	1.43	0.700406
apppart mouv	1.41	0.710539
niveau ins~n	1.37	0.731967
Accès regi~o	1.26	0.793612
age	1.26	0.796624
statut	1.24	0.809432
sexe	1.18	0.845733
Compte_épa∼e	1.15	0.866007
Mean VIF	1.56	

Commentaire:

Etant donné que les vif sont tous inférieurs à 10, cela renseigne qu'il n'existe aucune multicolinéarité.

Pour répondre à la question posée au niveau de l'illustration, les variables qui infuent sur la taille des ménages sont le revenu du chef des ménages, la pauvrété, le nombre des personnes ayant un emploi, la taille du logement, la posséssion de la climatisation, la possession antenne et le compte épargne. Pour une régression simple, il faudrait refaire les mêmes étapes.

Illustration : on veut savoir si la taille de ménage est influencé par la taille du logement et si cette influence est positive ou négative.

L'on va aller plus directement étant donné que nous avons déjà vu les étapes.

FIGURE 35 - MCO simple

. reg Taille_ménage taille_logement, robust

Number of obs	=	100
F(1, 98)	=	35.80
Prob > F	=	0.0000
R-squared	=	0.2830
Root MSE	=	2.4601
	Number of obs F(1, 98) Prob > F R-squared Root MSE	Number of obs = F(1, 98) = Prob > F = R-squared = Root MSE =

Taille_ménage	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
taille_logement	1.015686	.1697508	5.98	0.000	.6788206	1.352551
_cons	1.164787	.6089873	1.91	0.059	0437288	2.373302

predict residuols2, res

. kdensity residuols2, normal

sktest residuols2

Skewness and kurtosis tests for normality

Variable	Obs	Pr(skewness)	Pr(kurtosis)	Adj chi2(2)	Prob>chi2
residuols2	100	0.0212	0.9907	5.22	0.0736

Commentaire :

pour le commentaire du modèle, on peut se référer à l'illustration précédente.

La seule nouveauté est d'insister sur un fait, la commande reg accompagné du robust corrige directement les éventuels problèmes d'hétéroscédasticité, l'on ne peut pas faire le test de Breusch-Pagan après avoir déjà corriger l'hétéroscédasticité.à la place de robust, l'on peut utiliser vce(r). La commande serait donc reg variable dépendante variable independante,vce(r) FIGURE 36 – Linktest

. linktest

Source	SS	df	MS	Num	ber of obs	=	100
Model Residual	257.376904 569.863096	2 97	128.68845 5.8748772	- F(2) 2 Prol 8 R-s(, 97) b > F quared	= = =	21.90 0.0000 0.3111
Total	827.24	99	8.355959	6 Roo	k-squared t MSE	=	2.4238
「aille_mén∼e	Coefficient	Std. err.	t	P> t	[95% con	f.	interval]
_hat _hatsq _cons	2.465479 1387441 -3.504275	.7536376 .0697567 1.930447	3.27 -1.99 -1.82	0.001 0.050 0.073	.9697173 2771918 -7.335678		3.961241 0002964 .3271274

Commentaire :

Le modèle est acceptable, car le hatsq est égal à la valeur du seuil.

Il ne peut pas avoir des problèmes de multicolinéarité car l'on a qu'une seule variable indépendante.

6.2 Régression Multiple et simple à variables discontinues

Ces modèles de régression sont générés lorsque la variable dépendante est une qualitative.

L'on fait généralement le choix entre le modèle logit et le probit. le choix est théoriquement basé sur la distribution des erreurs qui peuvent suivre la loi logistique ou la loi normale. Dans la pratique, les deux modèles donnent des résultats similaires sauf pour les grands échantillons et il n'existe pas des tests économétriques qui peuvent aider à faire le choix entre les deux.

Ces modèles ont des variantes. dans ce document, nous exploiterons :

- Le logit/probit : lorsque la variable dépendante est binaire et nominale.

- Ologit/Oprobit : lorsque la variable dépendante est ordinale.

- Mlogit/M
probit : lorsque la variable dépendante est multimodale et nominale.

6.2.1 Logit/Probit

Illustration : On veut savoir quelles sont les déterminants de la pauvreté. Première étape : Estimer le modèle logit

La commande logit est logit variable dépendante variables indépendantes, ro $^{10}l'option$ ro permet de corriger d'éventuels problèmes d'hétéros cédasticité.

	110	ente or e	0810			
Logistic regression				Numbe	er of obs =	100
				Wald	chi2(21) = 4	4.83
				Prob	> chi2 = 0.	0018
Log pseudolikelihoo	d = - 18.154567	,		Pseud	do R2 = 0.	7222
		Robust				
nauvreté	Coefficient	std err	7	PSIZI	[95% conf	intervall
	coerricient	stu. err.	2	12121	[35% com.	Incervar]
sexe	3.13607	1.493156	2.10	0.036	.2095373	6.062602
statut	.250232	.5534159	0.45	0.651	8344432	1.334907
profession	.9792319	.631625	1.55	0.121	2587303	2.217194
niveau_instruction	.6792286	.8358627	0.81	0.416	9590322	2.317489
Revenu_chef_mén	0531765	.0161451	-3.29	0.001	0848202	0215327
nombre_enfants	1.863816	.6871478	2.71	0.007	.5170315	3.210601
emploi	2.739096	1.123601	2.44	0.015	.5368776	4.941314
<pre>statut_logement</pre>	-1.084365	1.420846	-0.76	0.445	-3.869173	1.700442
type_logement	.622639	1.03503	0.60	0.547	-1.405982	2.65126
<pre>taille_logement</pre>	2.011259	.5950068	3.38	0.001	.8450667	3.177451
Accès_soins_santé	3.18628	1.205953	2.64	0.008	.822656	5.549904
Accès_éléctricité	9128737	1.414513	-0.65	0.519	-3.685269	1.859521
Accès_regideso	0510668	1.009638	-0.05	0.960	-2.02992	1.927787
Mode_évac_ordures	-1.456473	.4643778	-3.14	0.002	-2.366637	5463093
possession_voiture	-4.060645	1.886325	-2.15	0.031	-7.757774	3635157
possession_ant	3.8145	1.958152	1.95	0.051	0234064	7.652407
possession_clim	2.015522	1.678378	1.20	0.230	-1.274038	5.305082
apppart_mouv	3.365102	1.755158	1.92	0.055	0749451	6.805149
Accès_crédits	-6.230359	2.539274	-2.45	0.014	-11.20725	-1.253473
Compte_épargne	1.660679	1.809762	0.92	0.359	-1.886388	5.207746
age	.0736026	.0508958	1.45	0.148	0261512	.1733565
_cons	-11.11448	6.523008	-1.70	0.088	-23.89934	1.670382

FIGURE 37 – Logit

Commentaire : Le modèle est globalement significatif car sa probabilité est inférieure au seuil

^{10.} Muayila sondage

de 0.05, ce qui veut dire qu'au moins une variable indépendante retenue explique la variable dépendante.

la colonne P > |Z| permet d'identifier les variables étant statistiquement et significativement associées à la variable dépendante.

En effet, les variables peuvent-etre statistiquement et significativement associées à la variable dépendante lorsqu'elles ont des p-values inférieures à 1, 5 et 10%.

Au seuil de 1‰, sont statistiquement et significativement associées à la pauvreté les variables revenu chef ménage, les nombres d'enfants scolarisés, les nombres des personnes ayant un emploi, la taille du logement, l'accès aux soins de santé, le mode d'évacuation des ordures et l'accès au crédit.

Au seuil de 5‰, les variables sexe et possession voiture.

Au seuil de 10%, les variables possession d'une antenne avec décodeur et appartenir à un mouvement associative ou culturel.

Nous avons donc 11 variables qui déterminent la pauvreté.

L'on peut interpréter le signe du coefficient.

Les variables revenu chef de ménage, mode d'évacuation des ordures, possession d'une voiture et l'accès au crédit sont les seules variables qui diminuent la la probabilité d'être pauvre. et les 7 autres variables statistiquement et significativement associées à la variable pauvreté augmentent les chances ou la probabilité d'être pauvre. Deuxième étape : Estimer les effets marginaux.

La commande est mfx compute

FIGURE 38 – Effets marginaux

. mfx compute

```
Marginal effects after logit
y = Pr(pauvreté) (predict)
```

```
= .05431888
```

variable	dy/dx	Std. err.	z	P> z	[95%	c.i.]	х
sexe*	.1469968	.11697	1.26	0.209	082256	.376249	.63
statut	.012854	.0319	0.40	0.687	049677	.075385	1.82
profes~n	.0503015	.04052	1.24	0.215	029125	.129728	2.26
niveau~n	.0348908	.0439	0.79	0.427	051158	.12094	1.89
Revenu~n	0027316	.00187	-1.46	0.145	006402	.000939	249.45
nombre~s	.0957412	.08342	1.15	0.251	067762	.259244	1.73
emploi	.1407028	.10168	1.38	0.166	05859	.339996	1.49
statut~t	0557021	.07879	-0.71	0.480	21013	.098726	1.76
type_1~t	.0319839	.0468	0.68	0.494	059739	.123707	1.33
taille~t	.103315	.07297	1.42	0.157	03971	.24634	3.52
Accè~nté	.1636739	.11085	1.48	0.140	053592	.38094	1.14
Accè~ité	0468928	.072	-0.65	0.515	188018	.094233	2.25
Accès_~o	0026232	.05225	-0.05	0.960	105032	.099786	2.2
Mode_é~s	0748166	.07192	-1.04	0.298	215774	.066141	1.99
posses~e*	31369	.1644	-1.91	0.056	635903	.008523	.52
posses~t*	.1106351	.07076	1.56	0.118	028048	.249319	.79
posses~m	.103534	.08783	1.18	0.238	068602	.27567	.5
apppar~v*	.3005955	.16641	1.81	0.071	025561	.626752	.38
Accès_~s*	4234728	.15552	-2.72	0.006	728294	118652	.41
Compte~e*	.1694895	.25049	0.68	0.499	321471	.66045	.04
age	.0037808	.00351	1.08	0.281	003096	.010658	41.05

Commentaire:

Les effets marginaux mesurent comment un petit changement dans une variable indépendante affecte la probabilité de l'événement.

Dans notre cas, les effets marginaux permettent de voir comment un petit changement d'une variable indépendante peut affecter la probabilité d'être pauvre. ¹¹Par exemple : toutes les autres variables restants constantes, l'augmentation d'une unité du revenu diminue la probabilité d'être pauvre d'environ 0.27% ce qui reste minime comme impact.

La variable accès au crédit diminue la probabilité d'être pauvre d'environ 42.34%i.e. avoir un accèes au crédit élevé diminue la probabilité d'être pauvre. La variable nombre d'enfants augmentent la probabilité d'être pauvre d'environ 9.5%i.e. avoir un nombre plus élevé d'enfant augmente la probabilité d'être pauvre.

Troisième étape : voir le tableau de prédiction du modèle.

La commande est lstat

. lstat			
Logistic mo	del for pauvreté		
	True		
Classified	D	~D	Total
+	31	3	34
-	5	61	66
Total	36	64	100
True D defi	+ if predicted Pr(D ned as pauvreté != () >= .5	0.5 44
Sensitivity		Pr(+ D)	86.11%
Positive pr	edictive value	Pr(- ~U) Pr(D ⊥)	95.51%
Negative pro	edictive value	Pr(~D -)	92.42%
False + rate	e for true ~D	Pr(+ ~D)	4.69%
False - rate	e for true D	Pr(- D)	13.89%
False + rate	e for classified +	Pr(~D +)	8.82%
False - rat	e for classified -	Pr(D -)	7.58%
Correctly c	lassified		92.00%

Commentaire :

Le tableau indique que pour les personnes pauvres, 31 cas sur 36 ont été bien prédit, donc 5 cas mal prédit cela veut dire qu'il y'a 5 ménages classés comme pauvres mais qui ne sont pas pauvres. et pour les personnes non pauvres, 61 cas sur 64 ont été bien prédit, donc 3 cas mal prédit, ce qui veut dire qu'il

^{11.} le lecteur peut s'exercer en interprétant les autres variables

y'a 3 ménages classés comme non-pauvres mais qui sont en réalité pauvres. le modèle a correctement classé 92%des observations.

 12 On peut faire une régression logistique simple : on veut savoir si le revenu est un déterminant de la pauvreté.

FIGURE 40 – Logit et effets marginaux

```
. logit pauvreté Revenu_chef_mén,ro
```

Log pseudolikelihood = -56.878529

```
Iteration 0: log pseudolikelihood = -65.341819
Iteration 1: log pseudolikelihood = -57.404463
Iteration 2: log pseudolikelihood = -56.88125
Iteration 3: log pseudolikelihood = -56.878529
Iteration 4: log pseudolikelihood = -56.878529
```

Logistic regression

```
Number of obs = 100
Wald chi2(1) = 11.41
Prob > chi2 = 0.0007
Pseudo R2 = 0.1295
```

pauvreté	Coefficient	Robust std. err.	z	P> z	[95% conf.	interval]
Revenu_chef_mén	0106974	.0031665	-3.38	0.001	0169036	0044911
_cons	1.84234	.7010422	2.63	0.009	.4683224	3.216357

. mfx compute

```
Marginal effects after logit
y = Pr(pauvreté) (predict)
```

= .30446642

variable	dy/dx	Std. err.	z	P> z	[95%	с.і.]	х
Revenu~n	0022653	.00059	-3.82	0.000		003429	001	102	249.45

^{12.} Partant de l'illustration précédente, le lecteur peut s'exercer en interprétant les résultats de cette illustration

FIGURE 41 – Prédiction du modèle

. lstat

Logistic model for pauvreté

True							
Classified	D	~D	Total				
+	18	14	32				
-	18	50	68				
Total	36	64	100				
Classified + if predicted Pr(D) >= .5							
True D defined as pauvreté != 0							

Sensitivity	Pr(+ D)	50.00%
Specificity	Pr(- ∼D)	78.13%
Positive predictive value	Pr(D +)	56.25%
Negative predictive value	Pr(∼D -)	73.53%
False + rate for true ~D	Pr(+ ~D)	21.88%
False - rate for true D	Pr(- D)	50.00%
False + rate for classified +	Pr(~D +)	43.75%
False - rate for classified -	Pr(D -)	26.47%
Correctly classified		68.00%

On va illustrer le modèle probit avec la même illustration du modèle logit. Première étape : Estimer le modèle probit

La commande est probit variable dépendante variables indépendantes, ro

	Figu	RE $42 - Pro$	bit						
Probit regression				Number of obs = 100					
				Wald	chi2(21) =	58.24			
					Prob > chi2 = 0.0000				
Log pseudolikelihoo	d = - 17.887077			Pseud	o R2 =	0.7263			
		Robust							
pauvreté	Coefficient	std. err.	z	P> z	[95% con	f. interval]			
sexe	1.818658	.7791614	2.33	0.020	.2915297	3.345786			
statut	.1664134	.2654257	0.63	0.531	3538114	.6866381			
profession	.5898148	.2921495	2.02	0.043	.0172122	1.162417			
niveau_instruction	.3564002	.4094903	0.87	0.384	4461861	1.158987			
Revenu_chef_mén	0304559	.0072095	-4.22	0.000	0445862	0163256			
nombre_enfants	1.062167	.3241102	3.28	0.001	.4269222	1.697411			
emploi	1.63773	.5747716	2.85	0.004	.5111982	2.764261			
<pre>statut_logement</pre>	608337	.6526514	-0.93	0.351	-1.88751	.6708363			
type_logement	.3129441	.563654	0.56	0.579	7917974	1.417686			

.2841121

.552365

.6085622

.5539597

.2626197

.8763114

.9531368

.8468108

.7977816

1.270489

.8157364

.0245908

3.059844

4.16

3.31

-0.87

-0.10

-3.37

-2.68

2.26

1.36

2.43

-2.82

1.14

1.79

-2.11

0.000

0.001

0.382

0.921

0.001

0.007

0.024

0.175

0.015

0.005

0.253

0.073

0.035

.6238249

.7431271

-1.725136

-1.140956

-1.400032

-4.068636

.2851149

-.5106409

.3753173

-.66552

-6.069294

-.0041336

-12.44917

1.737524

2.908358

.6603837

1.030526

-.3705818

-.6335586

4.021342

2.808796

3.502564

-1.089068

2.532108

.0922607

-.4548063

<u>~</u>		
1 ommontairo	•	
Commentance		

taille_logement

Accès_regideso

possession ant

possession clim

apppart mouv

age

_cons

Accès_crédits

Compte_épargne

Accès_soins_santé

Accès_éléctricité

Mode_évac_ordures

possession_voiture

1.180674

1.825743

-.5323763

-.0552149

-2.351097

2.153229

1.149078

1.938941

-3.579181

.9332939

.0440635

-6.45199

-.885307

Le modèle est globalement significatif car sa probabilité est inférieure au seuil de 0.05, ce qui veut dire qu'au moins une variable indépendante retenue explique la variable dépendante.

la colonne P>|Z| permet d'identifier les variables étant statistiquement et significativement associées à la variable dépendante. En effet, les variables peuvent-être statistiquement et significativement associées à la variable dépendante lorsqu'elles ont des p-values inférieures à 1, 5 et 10%.

Au seuil de 1‰, sont statistiquement et significativement associées à la pauvreté les variables revenu chef ménage, les nombres d'enfants scolarisés, les nombres des personnes ayant un emploi, la taille du logement, l'accès aux soins de santé, le mode d'évacuation des ordures et l'accès au crédit.

Au seuil de 5‰, les variables sexe, profession, possession voiture, possession d'une antenne avec décodeur et appartenir à un mouvement associative ou culturel.

Au seuil de 10%, la variable âge

Nous avons donc 13 variables qui déterminent la pauvreté.

L'on peut interpréter le signe du coefficient.

Les variables revenu chef de ménage, mode d'évacuation des ordures, possession d'une voiture et l'accès au crédit sont les seules variables qui diminuent la probabilité d'être pauvre. et les 9 autres variables statistiquement et significativement associées à la variable pauvreté augmentent les chances ou la probabilité d'être pauvre. Deuxième étape : Estimer les effets marginaux.

La commande est mfx compute

FIGURE 43 – Effets marginaux

Marginal effects after probit y = Pr(pauvreté) (predict)

= .04988547

variable	dy/dx	Std. err.	z	P> z	[95%	c.i.]	x
sexe*	.1626399	.10126	1.61	0.108	035835	.361115	.63
statut	.0171318	.03034	0.56	0.572	042324	.076588	1.82
profes~n	.0607198	.04079	1.49	0.137	019227	.140667	2.26
niveau~n	.0366904	.04344	0.84	0.398	04846	.121841	1.89
Revenu~n	0031353	.00174	-1.80	0.072	006546	.000275	249.45
nombre~s	.1093471	.07267	1.50	0.132	033083	.251778	1.73
emploi	.1685997	.09775	1.72	0.085	022982	.360182	1.49
statut~t	0626266	.06888	-0.91	0.363	197628	.072375	1.76
type_1~t	.0322167	.05549	0.58	0.562	07654	.140974	1.33
taille~t	.1215471	.07027	1.73	0.084	016182	.259276	3.52
Accè~nté	.1879551	.09885	1.90	0.057	005786	.381696	1.14
Accè~ité	0548066	.06644	-0.82	0.409	185031	.075418	2.25
Accès_~o	0056842	.05703	-0.10	0.921	117465	.106096	2.2
Mode_é~s	0911399	.0643	-1.42	0.156	217162	.034883	1.99
posses~e*	3332393	.12134	-2.75	0.006	57107	095409	.52
posses~t*	.1158722	.06717	1.73	0.085	015779	.247523	.79
posses~m	.1182943	.08677	1.36	0.173	051764	.288353	.5
apppar~v*	.319994	.14624	2.19	0.029	.033378	.60661	.38
Accès_~s*	429079	.13844	-3.10	0.002	700413	157746	.41
Compte~e*	.1804676	.2203	0.82	0.413	251311	.612246	.04
age	.0045362	.00314	1.45	0.148	001613	.010685	41.05

(*) dy/dx is for discrete change of dummy variable from 0 to 1

Commentaire:

Les effets marginaux mesurent comment un petit changement dans une variable indépendante affecte la probabilité de l'événement.

Dans notre cas, les effets marginaux permettent de voir comment un petit changement d'une variable indépendante peut affecter la probabilité d'être pauvre. 13 Par exemple : toutes les autres variables restants constantes, l'augmentation d'une unité du revenu diminue la probabilité d'être pauvre d'environ 0.31%ce qui reste minime comme impact.

La variable accès au crédit diminue la probabilité d'être pauvre d'environ 42.90‰i.e. avoir un accèes au crédit élevé diminue la probabilité d'être pauvre. La variable nombre d'enfants augmentent la probabilité d'être pauvre d'environ 10.93‰i.e. avoir un nombre plus élevé d'enfant augmente la probabilité d'être pauvre.

Troisième étape : voir le tableau de prédiction du modèle.

La commande est lstat

FIGURE 44 – Prédiction

. lstat

Probit model for pauvreté

True						
Classified	D	~D	Total			
+	30	3	33			
-	6	61	67			
Total	36	64	100			

Classified + if predicted Pr(D) >= .5 True D defined as pauvreté != 0

Sensitivity	Pr(+ D)	83.33%
Specificity	Pr(- ~D)	95.31%
Positive predictive value	Pr(D +)	90.91%
Negative predictive value	Pr(~D -)	91.04%
False + rate for true ~D	Pr(+ ~D)	4.69%
False - rate for true D	Pr(- D)	16.67%
False + rate for classified +	Pr(~D +)	9.09%
False - rate for classified -	Pr(D -)	8.96%
Correctly classified		91.00%

 14 Commentaire :

Le tableau indique que pour les personnes pauvres, 30 cas sur 36 ont été bien prédit, donc 6 cas mal prédit cela veut dire qu'il y'a 6 ménages classés comme pauvres mais qui ne sont pas pauvres. et pour les personnes non pauvres, 61

13. le lecteur peut s'exercer en interprétant les autres variables

^{14.} Comme on peut bien le voir, le modèle logit et probit ont presque les mêmes résultats, par conséquent, vous retrouverez le oprobit et mprobit dans les appendices.

cas sur 64 ont été bien prédit, donc 3 cas mal prédit, ce qui veut dire qu'il y'a 3 ménages classés comme non-pauvres mais qui sont en réalité pauvres. le modèle a correctement classé 91% des observations.

 15 On peut faire une régression Probit simple : on veut savoir si le revenu est un déterminant de la pauvreté.

	FIGU	re 45 – Pr	obit et	effet ma	rginal	
Probit regressio	n			Nu	mber of obs =	100
				Wa	ld chi2(1) =	12.32
				Pn	ob > chi2 =	0.0004
Log pseudolikeli	hood = - 56.836	287		Ps	eudoR2 =	0.1302
		Robust				
pauvreté	Coefficient	Robust std. err.	z	P> z	[95% conf.	interval]
pauvreté Revenu_chef_mén	Coefficient	Robust std. err.	z -3.51	P> z 0.000	[95% conf.	interval]

. mfx compute

```
Marginal effects after probit
  y = Pr(pauvreté) (predict)
  = .31182467
```

variable	dy/dx	Std. err.	z	P> z	[95%	с.і.]	x
Revenu~n	0022311	.00059	-3.79	0.000	(003386	001	1077	249.45

^{15.} Partant de l'illustration précédente, le lecteur peut s'exercer en interprétant les résultats de cette illustration

. lstat

Probit model for pauvreté

	True -		
Classified	D	~D	Total
+	18	14	32
-	18	50	68
Total	36	64	100

Classified + if predicted Pr(D) >= .5 True D defined as pauvreté != 0

Correctly classified		68.00%
False - rate for classified -	Pr(D -)	26.47%
False + rate for classified +	Pr(~D +)	43.75%
False - rate for true D	Pr(- D)	50.00%
False + rate for true ~D	Pr(+ ~D)	21.88%
Negative predictive value	Pr(~D -)	73.53%
Positive predictive value	Pr(D +)	56.25%
Specificity	Pr(- ~D)	78.13%
Sensitivity	Pr(+ D)	50.00%

6.2.2 Ologit Multiple

¹⁶Illustration : On veut voir dans cette base des données, quelles sont les variables qui peuvent expliquer le niveau d'instruction du chef de ménage, cette illustration est juste à titre exemplatif afin de garder la même base des données.

Première étape : estimer le modèle Ologit.

La commande est ologit variable dépendante variale indépendante, ro

```
. ologit niveau_instruction Accès_soins_santé profession statut sexe Revenu_chef_mén pauvreté nombre_enfants emploi Accès
Iteration 0:
               log pseudolikelihood = -72.71388
Iteration 1:
               log pseudolikelihood = -60.65192
Iteration 2:
               log pseudolikelihood = -59.150022
               log pseudolikelihood = -59.125585
Iteration 3:
Iteration 4:
               log pseudolikelihood = -59.125582
Ordered logistic regression
                                                         Number of obs =
                                                                             100
                                                         Wald chi2(11) = 25.62
                                                         Prob > chi2 = 0.0074
Log pseudolikelihood = -59.125582
                                                         Pseudo R2
                                                                       = 0.1869
                                   Robust
                                                                 [95% conf. interval]
niveau_instruction
                     Coefficient
                                  std. err.
                                                  z
                                                       P>|z|
Accès_soins_santé
                      -1.236075
                                   .4557246
                                               -2.71
                                                       0.007
                                                                -2.129279
                                                                             -.3428712
       profession
                       .5528287
                                   .277155
                                               1.99
                                                       0.046
                                                                 .0096149
                                                                             1,096042
            statut
                       .2032458
                                   .3948965
                                                0.51
                                                       0.607
                                                                -.5707372
                                                                              .9772288
              sexe
                       .6497786
                                   .5396626
                                                1.20
                                                       0.229
                                                                -.4079405
                                                                             1.707498
  Revenu_chef_mén
                       .0037677
                                  .0025481
                                               1.48
                                                       0.139
                                                                -.0012264
                                                                              .0087618
                      -.3203365
                                  .7355503
                                               -0.44
                                                                -1.761989
         pauvreté
                                                       0.663
                                                                             1.121316
                                                                              .1342683
   nombre_enfants
                      -.2819151
                                   .2123423
                                               -1.33
                                                       0.184
                                                                -.6980984
            emploi
                       -.476844
                                   .3585205
                                               -1.33
                                                       0.184
                                                                -1.179531
                                                                              .2258432
```

FIGURE 47 – Ologit

Commentaire :

age

/cut1

/cut2

Accès_crédits

Compte_épargne

Le modèle est globalement significatif car sa probabilité est inférieure au seuil de 0.05. les variables accès aux soins de santé et l'accès au crédits sont statistiquement et significativement associées à la variable niveau d'instruction au seuil de 1‰.

3.16

0.69

-0.97

0.002

0.492

0.331

.7431272

-2.231567

-.0705078

-5.312408

.2506071

3.161123

4.638058

.0237816

1.746905

7.207555

16. Vous retrouverez le ologit simple dans les appendices.

1.952125

1,203245

-.0233631

-1.782751

3.729081

.616847

1.752488

.0240539

1.800878

1.774764

la variable profession est statistiquement et significativement associée à la variable niveau d'instruction au seuil de 5‰.

et aucune variable au seuil de 10%.

la variable accès soins de santé a un impact négatif et les deux autres variables influencent positivement.

Deuxième étape : avoir les effets marginaux. La commande est margins,dydx(*)

		Delta-method				
	dy/dx	std. err.	z	P> z	[95% conf.	interval]
Accès_soins_santé						
_predict						
1	.1399229	.0520663	2.69	0.007	.0378749	.2419709
2	0918502	.0382932	-2.40	0.016	1669034	016797
3	0480727	.0271555	-1.77	0.077	1012965	.0051511
profession						
_predict						
1	0295767	.0273579	-1.08	0.280	0831972	.0240437
2	.0194152	.0184236	1.05	0.292	0166944	.0555248
3	.0101615	.0102527	0.99	0.322	0099333	.0302564
statut						
_predict						
1	.0180941	.0404589	0.45	0.655	0612038	.097392
2	0118776	.0273279	-0.43	0.664	0654393	.0416842
3	0062165	.0134577	-0.46	0.644	0325932	.0201602
sexe						
_predict						
1	0585023	.0700532	-0.84	0.404	195804	.0787994
2	.0384029	.0488396	0.79	0.432	0573209	.1341268
3	.0200994	.0231919	0.87	0.386	0253558	.0655546
Revenu chef mén						
predict						
1	0007181	.00032	-2.24	0.025	0013453	0000908
2	.0004714	.0002618	1.80	0.072	0000417	.0009845
3	.0002467	.0001201	2.05	0.040	.0000113	.0004821

¹⁷Commentaire :

Dans cette première figure, la variable accès aux soins de santé augmente la probabilité d'avoir un niveau d'instruction primaire et secondaire par rapports

^{17.} Le lecteur peut s'exercer en interprétant les deux autres variables statistiquement et significativement associées à la variable niveau d'instruction et à l'aide d'une base des données, il peut s'exercer pour le modèle oprobit

aux autres niveaux d'études d'environ 13.99‰.

elle diminue à la probabilité d'avoir un niveau d'instruction universitaire par rapports aux autres niveaux d'études d'environ 9.18%.

Elle diminue également la probabilité d'avoir un niveau d'instruction post universitaire par rapports aux autres niveaux d'études d'environ $4.87\%_0$.

045613	.0818025	-0.56	0.577	2059429	.1147169
.0299419	.0545659	0.55	0.583	0770052	.1368891
.015671	.0283131	0.55	0.580	0398216	.0711637
.0339147	.0264871	1.28	0.200	0179992	.0858285
0222628	.0177707	-1.25	0.210	0570927	.0125672
0116519	.0104616	-1.11	0.265	0321563	.0088525
.0701199	.0399172	1.76	0.079	0081163	.1483561
0460291	.0288087	-1.60	0.110	1024931	.0104349
0240908	.0160339	-1.50	0.133	0555166	.007335
279843	.0773554	-3.62	0.000	4314569	1282292
.1836986	.0535197	3.43	0.001	.0788019	.2885953
.0961445	.0533922	1.80	0.072	0085023	.2007913
1578522	.2560246	-0.62	0.538	6596511	.3439468
1036196	.1653525	0.63	0.531	2204654	.4277046
.1050150					
	045613 .0299419 .015671 .0339147 0222628 0116519 .0701199 0460291 0240908 279843 .1836986 .0961445 1578522	045613 .0818025 .0299419 .0545659 .015671 .0283131 .0339147 .0264871 0222628 .0177707 0116519 .0104616 .0701199 .0399172 0460291 .0288087 0240908 .0160339 279843 .0773554 .1836986 .0535197 .0961445 .0533922	045613 .0818025 -0.56 .0299419 .0545659 0.55 .015671 .0283131 0.55 .015671 .0283131 0.55 .015671 .0264871 1.28 0222628 .0177707 -1.25 0116519 .0104616 -1.11 .0701199 .0399172 1.76 0460291 .0288087 -1.60 0240908 .0160339 -1.50 279843 .0773554 -3.62 .1836986 .0535197 3.43 .0961445 .0533922 1.80	045613 .0818025 -0.56 0.577 .0299419 .0545659 0.55 0.583 .015671 .0283131 0.55 0.580 .0339147 .0264871 1.28 0.200 0222628 .0177707 -1.25 0.210 0116519 .0104616 -1.11 0.265 .0701199 .0399172 1.76 0.079 0460291 .0288087 -1.60 0.110 0240908 .0160339 -1.50 0.133 279843 .0773554 -3.62 0.000 .1836986 .0535197 3.43 0.001 .0961445 .0533922 1.80 0.072	045613 .0818025 -0.56 0.5772059429 .0299419 .0545659 0.55 0.5830770052 .015671 .0283131 0.55 0.5800398216 .0339147 .0264871 1.28 0.2000179992 0222628 .0177707 -1.25 0.2100570927 0116519 .0104616 -1.11 0.2650321563 .0701199 .0399172 1.76 0.0790081163 0460291 .0288087 -1.60 0.1101024931 0240908 .0160339 -1.50 0.1330555166 279843 .0773554 -3.62 0.0004314569 .1836986 .0535197 3.43 0.001 .0788019 .0961445 .0533922 1.80 0.0720085023

FIGURE 49 – Effets marginaux suite

FIGURE 50 - Effets marginaux suite et fin

age							
	_predict						
	1	.0025804	.003146	0.82	0.412	0035857	.0087466
	2	0016939	.0021531	-0.79	0.431	005914	.0025262
	3	0008866	.0010812	-0.82	0.412	0030058	.0012327

FIGURE 51 – Spécification

. linktest						
Iteration 0: log	likelihood =	-72.71388				
Iteration 1: log	likelihood = -	59.973265				
Iteration 2: log	likelihood = -	58.939679				
Iteration 3: log	likelihood = -	58.924965				
Iteration 4: log	likelihood = -	58.924963				
Ordered logistic re	gression			Numbe	r of obs =	100
	5			LR ch	i2(2) = 2	7.58
				Prob	> chi2 = 0.	0000
Log likelihood = -5	8.924963			Pseud	lo R2 = 0.	1896
niveau_instruction	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
_hat	1.471357	.4354655	3.38	0.001	.6178604	2.324854
_hatsq	1759767	.1297676	-1.36	0.175	4303166	.0783631
/cut1	6762958	.3184948			-1.300534	0520574
	4 (07740	.7045126			3.246493	6.008131
/cut2	4.62/312					

Commentaire :

Etant donné que la probabilité du _hatsq est supérieure au seuil de 0.05, notre modèle est bien spécifié.

6.3 Mlogit Multiple

¹⁸Illustration : On veut voir dans cette base des données, quelles sont les variables qui peuvent expliquer l'accès aux soins de santé du chef de ménage, cette illustration est juste à titre exemplatif afin de garder la même base des données.

Première étape : estimer le modèle mlogit.

La commande est mlogit variable dépendante variale indépendante,ro

FIGURE 52 – Mlogit

			0			
Multinomial logistic	c regression			Numbe	er of obs =	100
Log pseudolikelihood	d = -21.084638			Prob Pseud	> chi2(22) = 71 > chi2 = 0.	0000 3005
Accès_soins_santé	Coefficient	Robust std. err.	z	P> z	[95% conf.	interval]
1	(base outco	ome)				
2						
profession	.4327414	.9775579	0.44	0.658	-1.483237	2.34872
statut	.3297554	.7743752	0.43	0.670	-1.187992	1.847503
sexe	.6058333	1.830844	0.33	0.741	-2.982554	4.194221
niveau_instruction	676114	1.158888	-0.58	0.560	-2.947494	1.595266
Revenu_chef_mén	.0028003	.0067379	0.42	0.678	0104057	.0160063
pauvreté	.5125893	1.412655	0.36	0.717	-2.256164	3.281342
nombre_enfants	-1.375393	.8211169	-1.68	0.094	-2.984752	.2339671
emploi	.2420737	.395169	0.61	0.540	5324433	1.016591
Accès_crédits	4901594	.7198251	-0.68	0.496	-1.900991	.9206719
Compte_épargne	-12.46963	1.233459	-10.11	0.000	-14.88717	-10.0521
age	1086469	.0465978	-2.33	0.020	1999769	0173169
_cons	.5782558	1.802317	0.32	0.748	-2.954221	4.110733

Commentaire :

Le modèle est globalement significatif car sa probabilité est inférieure au seuil de 0.05.

La machine a choisi automatiquement comme modalité de base(base outcome) l'hôpital, i.e. les coefficients associés aux autres modalités sont interprétés par rapport à l'hôpital.

Pour la modalité traditionnelle, il y'a 3 variables qui sont statistiquement et significativement associées à la variable dépendante, l'on a les nombres d'enfants scolarisés (au seuil de 10‰), avec un coefficient négatif qui veut dire que les chefs des ménages ayant beaucoup d'enfants scolarisés ont une probabilité faible de choisir le mode traditionnel par rapport à l'hôpital.

^{18.} Vous retrouverez le Mlogit simple dans les appendices.

la variable compte épargne (au seuil de 1‰) avec un coefficient négatif qui veut dire que les chefs des ménages ayant un compte épargne ont une probabilité faible de choisir le mode traditionnel par rapport à l'hôpital.

La variable âge (au seuil de 5‰) avec un coefficient négatif qui veut dire qu'à mesure que l'âge du chef de ménage avance, celui-ci a une probabilité faible de choisir le mode traditionnel par rapport à l'hôpital.

3						
profession	1.277681	.615441	2.08	0.038	.0714384	2.483923
statut	7561652	1.274001	-0.59	0.553	-3.253161	1.740831
sexe	.7288412	1.763436	0.41	0.679	-2.72743	4.185113
niveau_instruction	-3.063968	1.402466	-2.18	0.029	-5.812751	3151841
Revenu_chef_mén	.0145149	.0077255	1.88	0.060	0006268	.0296566
pauvreté	2.336941	2.202894	1.06	0.289	-1.980651	6.654533
nombre_enfants	8389589	.7876202	-1.07	0.287	-2.382666	.7047484
emploi	3506544	.5844979	-0.60	0.549	-1.496249	.7949405
Accès_crédits	2.066909	1.259714	1.64	0.101	402085	4.535903
Compte_épargne	-10.84144	1.353678	-8.01	0.000	-13.4946	-8.188283
age	0826427	.0526778	-1.57	0.117	1858893	.0206039
_cons	-1.887523	3.394169	-0.56	0.578	-8.539972	4.764927

FIGURE 53 – Mlogit suite

Note: 4 observations completely determined. Standard errors questionable.

Commentaire

Pour la modalité automédication, il y'a 4 variables qui sont statistiquement et significativement associées à la variable dépendante, l'on a La variable profession (au seuil de 5‰) avec un coefficient positif qui veut ¹⁹dire. niveau d'instruction (au seuil de 5‰), avec un coefficient négatif qui veut dire que les chefs des ménages ayant un niveau élevé ont une probabilité faible de choisir le mode automédication par rapport à l'hôpital.

Le revenu du chef de ménage(au seuil de 10‰), avec un coefficient positif. la variable compte épargne(au seuil de 1‰) avec un coefficient négatif qui veut dire que les chefs des ménages ayant un compte épargne ont une probabilité faible de choisir le mode automédication par rapport à l'hôpital.

^{19.} le lecteur peut s'exercer avec cette interpétation et celle sur le revenu

Deuxième étape : avoir les effets marginaux.

La commande est margins, dydx(*)

			0			
		Delta-method				
	dy/dx	std. err.	z	P> z	[95% conf.	interval]
profession						
_predict						
1	0053208	.0054339	-0.98	0.327	0159711	.0053296
2	.0027566	.0050337	0.55	0.584	0071093	.0126225
3	.0025642	.0023479	1.09	0.275	0020376	.007166
statut						
_predict						
1	0005979	.0040263	-0.15	0.882	0084892	.0072934
2	.0021231	.0031376	0.68	0.499	0040266	.0082727
3	0015252	.0023763	-0.64	0.521	0061825	.0031322
sexe						
_predict						
1	005331	.0092502	-0.58	0.564	0234611	.012799
2	.003873	.0080321	0.48	0.630	0118696	.0196156
3	.001458	.0038469	0.38	0.705	0060817	.0089978
niveau instruction						
predict						
1	.0104468	.0068424	1.53	0.127	002964	.0238575
2	004293	.0058241	-0.74	0.461	015708	.0071219
3	0061537	.0043117	-1.43	0.154	0146046	.0022971
	1					

FIGURE 54 – Effets marginaux

Commentaire:

 20 La variable profession diminue la probabilité de choisir l'hopital comme mode d'environ 0.53‰, elle augmente la probabilité de choisir le mode traditionnel d'environ 0.27‰ celle de choisir l'automédication d'environ 0.25‰.

^{20.} Le lecteur peut s'exercer en commentant les variables niveau d'instruction, revenu et compte épargne et exécuter le mprobit avec une base des données adéquates.

Revenu_chef_mén							
_predict							
1	0000469	.0000633	-0.74	0.459	000171	.0000772	
2	.0000178	.0000593	0.30	0.765	0000985	.000134	
3	.0000292	.0000197	1.48	0.139	-9.42e-06	.0000677	
pauvreté							
_predict							
1	0079481	.0119173	-0.67	0.505	0313056	.0154093	
2	.0032545	.0109018	0.30	0.765	0181126	.0246217	
3	.0046936	.0045277	1.04	0.300	0041805	.0135677	
nombre_enfants							
predict							
1	.0104728	.0077243	1.36	0.175	0046665	.0256121	
2	0088033	.0073689	-1.19	0.232	0232461	.0056395	
3	0016695	.002354	-0.71	0.478	0062833	.0029443	
emploi							
_predict							
1	0008475	.0030947	-0.27	0.784	0069129	.005218	
2	.0015559	.0029245	0.53	0.595	0041759	.0072877	
3	0007084	.0010499	-0.67	0.500	0027661	.0013493	
Accès crédits							
_ predict							
- 1	0009955	.0048457	-0.21	0.837	0104929	.008502	
2	0031681	.0037399	-0.85	0.397	010498	.0041619	
3	.0041635	.0030405	1.37	0.171	0017957	.0101227	

FIGURE 55 - Effets marginaux suite

				-		
Compte_épargne						
_predict						
1	.1014138	.1091014	0.93	0.353	112421	.3152485
2	0797706	.1074675	-0.74	0.458	290403	.1308617
3	0216432	.0179979	-1.20	0.229	0569184	.013632
age						
_predict						
1	.00086	.0009784	0.88	0.379	0010576	.0027776
2	0006952	.000968	-0.72	0.473	0025924	.0012021
3	0001648	.0001231	-1.34	0.181	000406	.0000764

FIGURE 56 - Effets marginaux fin

7 Appendice 1 : Force et direction du coefficient de corrélation

TABLE 3 – Coeffici	ient	
Valeur du coefficient de corrélation	Force	Direction
Supérieur à 0,5	Fort	Positif
Entre 0,3 et 0,5	Modéré	Positif
Entre 0 et 0,3	Faible	Positif
0	Aucun	Aucun
Entre 0 et -0,3	Faible	Négatif
Entre -0,3 et -0,5	Modéré	Négatif
Moins de $-0,5$	Fort	Négatif

Source : https ://datatab.fr/tutorial/pearson-correlation, consulté le 10/12/2023.

8 Appendice 2 :La commande edit

La commande edit permet d'ouvrir la fenêtre permettant de coller la base des données Excel.

Après avoir exécuter la commande, voici la fenêtre.

FIGURE 58 – Commande edit

9 Appendice 3 : Importer fichier Excel

On peut aussi importer directement un fichier Excel sur Stata sans copier-coller.

🟥 3 - Stata/MP 17.0 ٥ \times File Edit Data Graphics Statistics User Window Help 🍯 Open... Open... Open data subset... Ctrl+S Ctrl+0 ųх . Variables тџ× = Save 0 K Filter variables here 17.0 MP-Parallel Edition Ctrl+Shift+S Save as.. _rc Name Label View... There are no items to show. Copyright 1985-2021 StataCorp LLC StataCorp 4905 Lakeway Drive College Station, Texas 77845 USA con_STAT_Dr https://www.st Statistics and Data Science Do... Filename... Change working directory... 800-STATA-PC https://www.stata.com 979-696-4600 stata@stata.com Log Import Excel spreadsheet (*.xls;*.xlsx) ***** Export Text data (delimited, *.csv, ...) network, expiring 23 Jun 2021 🚔 Print SPSS data (*.sav) WA 085227746673 WA 085227746673 SAS data (*.sas7bdat) Example datasets... Text data in fixed format Recent files Text data in fixed format with a dictionary Exit help unicode_advice. vations are allowed; see help obs_advice. les is set to 5,000; see help set_maxvar. Unformatted text data SAS XPORT Version 8 (*.v8xpt) SAS XPORT Version 5 (*.xpt) Federal Reserve Economic Data (FRED) Haver Analytics database ODBC data source dBase (*.dbf)

FIGURE 59 – Importer le fichier

Ensuite, il faut surtout cocher import first row as variables names, cette option fait comprendre au logiciel que la première ligne fait référence aux noms des variables.

	_/ 1	7.0						
/ / // / /_	= import e	excel - Im	port Ex	cel files			×	
Statistics and Data Scien	<u> </u>							
	Excel file:							
C:\Users\chris\OneDrive\Documents\J ANALYSE 3.xlsx					Browse.			
	Worksheet:	orksheet:				range:		
	Feuil1 A1:X	.01			✓ A1	:X101		
Stata license: Single-user						- H		
Serial number: 50170931848	Import fir	st row as	variable	names	vari	able case:		
Licensed to: Olah Data S	Import all	data as s	trings		Pre	serve ~		
Olah Data S	Preview: (sh	wing row	is 2-51 d	of 101)				
	L covo		Âgo	profession	niver instruction	Povonu chof mán	1	
lotes:	Sexe	Statut	Age	proression	niveau_instruction	Nevenu_cnei_men		
2. More than 2 hilli	2	2	с 	3		145		
 Maximum number of 	5		2	1		143		
	4 0		2	I		2 373		
edit	5	1	2	1		2 373		
	7			1		2 5/3		
					1 .	140		
	1							
					C	K Cance		
	-			_				

FIGURE 60 – Importer le fichier

Il faut cliquer sur data editor(browser) pour avoir un aperçu des variables importées.

Voici l'aperçu du data editor (browser)

Data	ditor (Brows	e) - [Untitled]													-	o ×
File E	dit View	Data Tools														
í 🗈 .	ビ 🗄 🖷	1 🖻 🖻 🛛	L 🕈 🖵													
	sex	e[1]		1												
	sexe	statut	Âge	profession	niveau_ins~n	Revenu_che~n	Taille_ménage	pauvreté	nombre_enf~s	emploi	statut_lo	Variables				
1	1	2	3	3	2	375	8	0	3	2		K Filter variables h	ere			
2	1	2	2	1	2	145	2	0	3	1		✓ Name	Label	Type	Format	Value I
з	0	5	2	1	2	375	3	9	1	1		✓ sexe	sexe	byte	%10.0g	
4	1	5	3	2	2	375	5	0	2	2		✓ statut	statut	byte	%10.0g	
5	0	1	2	1	2	375	4	0	2	2		☑ Âge	Âge	byte	%10.0g	
6	0	1	1	1	2	145	3	0	1	1		✓ profession	profession	byte	%10.0g	
7	0	1	2	1	2	225	2	0	1	1		☑ niveau_instructi	niveau_instruction	byte	%10.0g	
8	1	2	3	3	2	375	3	0	2	3		Revenu_chef_mér	n Revenu_chef_mén	int	%10.0g	
9	1	2	1	2	2	225	6	1	2	1		✓ Taille_ménage	Taille_ménage	byte	%10.0g	
10	1	2	3	2	2	375	6	0	1	1		☑ pauvreté	pauvreté	byte	%10.0g	
11	0	2	2	3	2	225	4	0	1	1		✓ nombre_enfants	nombre_enfants	byte	%10.0g	
12	1	2	2	2	2	375	5	0	1	1		Madahlar Carachat	- 1			
13	1	2	2	3	2	225	11	1	3	2		variables snapshot	S			
14	1	2	1	1	2	225	4	0	1	1		Properties				
15	1	2	2	2	2	375	6	0	1	1		▲ Variables				
16	0	2	3	2	1	145	8	1	2	2		Name				
17	0	1	1	1	2	225	2	0	1	1		Label				
18	1	1	1	1	2	225	1	0	0	1		Туре				
19	1	2	2	3	2	225	6	1	1	2		Format				
20	0	2	3	2	1	145	8	1	2	2		Value label				
21	0	1	1	4	2	145	9	1	5	2		4 Data				
22	0	1	1	1	2	225	1	0	0	1		Frame		default		
23	0	2	2	1	2	375	6	0	2	1		▶ Filename				
24	1	1	1	2	2	145	11	1	0	1		Label				
25	0	1	1	5	2	145	7	1	3	1		Notes				
26	0	1	1	5	2	145	4	1	2	2		Variables		24		
_												Observations		100		
												C1		3.442		
eady												Vars: 24 Order: Data	set Obs: 100	Filter: Off	Aode: Browse	CAP

FIGURE 62 – Importation réussie

10 Appendice 4 : La commande asdoc

 $^{21}\mathrm{La}$ commande as doc permet d'enregistrer, exporter directement les résultats en format word.

Pour commencer, on lance notre première commande, ici, il s'agit d'un tableau des fréquences.

La commande asdoc tab variable, save(nom du document que l'on veut créer.doc)

FIGURE 63 – Asdoc

. asdoc tab pauvreté , save(Analyse.doc)

pauvreté	F	req.	Percent	Cum.
0		64	64.00	64.00
1		36	36.00	100.00
Total		100	100.00	
Click to Open	n File:	Analy	se.doc	

^{21.} Le lecteur peut se servir de cette section pour s'exercer en interprétant les différents résultats.

Ensuite, on lance les restes des analyses des fréquences.

La commande devient asdoc tab1 variables, save(nom du document.doc))

FIGURE 64 – Asdoc

. asdoc tab1 sexe statut profession, save (Analyse.doc) (File Analyse.doc already exists, option append was assumed)

sexe	Freq.	Percent	Cum.
0	37	37.00	37.00
1	63	63.00	100.00
Total	100	100.00	
statut	Freq.	Percent	Cum.
1	41	41.00	41.00
2	48	48.00	89.00
3	3	3.00	92.00
4	4	4.00	96.00
5	4	4.00	100.00
Total	100	100.00	
profession	Freq.	Percent	Cum.
1	31	31.00	31.00
2	31	31.00	62.00
3	26	26.00	88.00
4	5	5.00	93.00
5	7	7.00	100.00
Total	100	100.00	
Click to Ope	n File: Analy	/se.doc	

On choisi quelques variables pour illustrer asdoc avec les analyses bivariées.

La commande est as doc tab2 variable dépendante variables indépendantes, chi
2 $^{22} {\rm firstonly}$

FIGURE 65 - Asdoc

 asdoc tab2 pauvreté sexe Accès_crédits, chi2 firstonly (File Analyse.doc already exists, option append was assumed)
 tabulation of pauvreté by sexe

	sexe		
pauvreté	0	1	Total
0	25	39	64
1	12	24	36
Total	37	63	100

Pearson chi2(1) = 0.3244 Pr = 0.569
-> tabulation of pauvreté by Accès_crédits

	Accès_créd	its	
pauvreté	0	1	Total
0	35	29	64
1	24	12	36
Total	59	41	100

Pearson chi2(1) = 1.3668 Pr = 0.242 Click to Open File: Analyse.doc

^{22.} L'option firstonly fait comprendre à la machine que seule la première variable est la dépendante.Sans cette option, la machine lancera des analyses avec chaque variable prise comme la dépendante à tour de rôle

as doc et el modèle de régression.

La commande est asdoc logit variable dépendante variables indépendantes,ro

```
FIGURE 66 – Asdoc
```

```
. asdoc logit pauvreté sexe statut Revenu_chef_mén,ro
(File Analyse.doc already exists, option append was assumed)
Iteration 0:
              log pseudolikelihood = -65.341819
Iteration 1:
              log pseudolikelihood = -55.92373
Iteration 2:
              log pseudolikelihood = -55.027358
Iteration 3:
              log pseudolikelihood = -55.01578
Iteration 4:
              log pseudolikelihood = -55.015771
              log pseudolikelihood = -55.015771
Iteration 5:
Logistic regression
                                                       Number of obs =
                                                                           100
```

Log pseudolikelihood = -55.015771

Wald chi2(3) = 12.26 Prob > chi2 = 0.0065 Pseudo R2 = 0.1580

pauvreté	Coefficient	Robust std. err.	z	P> z	[95% conf.	interval]
sexe	.4929391	.4755373	1.04	0.300	4390969	1.424975
statut	.4236335	.2595136	1.63	0.103	0850038	.9322708
Revenu_chef_mén	0128463	.0037514	-3.42	0.001	020199	0054936
_cons	1.223992	.8078018	1.52	0.130	3592707	2.807254

Click to Open File: Analyse.doc

As doc et les effets marginaux.

La commande est asdoc mfx compute

```
FIGURE 67 - Asdoc
```

```
Marginal effects after logit
```

```
y = Pr(pauvreté) (predict)
```

= .	28926448
-----	----------

/ariable	dy/dx	Std. err.	z	P> z	[95%	(c.i.]	x
sexe*	.0983608	.09278	1.06	0.289	083493	.280214	.63
statut	.087095	.05352	1.63	0.104	017794	.191984	1.82
Revenu~n	0026411	.00067	-3.96	0.000	003948	·.001335	249.45

(*) dy/dx is for discrete change of dummy variable from 0 to 1 **:lick to Open File:** Analyse.doc As doc et le modèle de spécification.

La commande est asdoc linktest

FIGURE 68 – Asdoc

. asdoc lstat

(File Analyse.doc already exists, option append was assumed)

Logistic model for pauvreté

	True		
Classified	D	~D	Total
+	16	11	27
-	20	53	73
Total	36	64	100

Classified + if predicted Pr(D) >= .5 True D defined as pauvreté != 0

Correctly classified		69.00%
False - rate for classified -	Pr(D -)	27.40%
False + rate for classified +	Pr(~D +)	40.74%
False - rate for true D	Pr(- D)	55.56%
False + rate for true ~D	Pr(+ ~D)	17.19%
Negative predictive value	Pr(~D -)	72.60%
Positive predictive value	Pr(D +)	59.26%
Specificity	Pr(- ~D)	82.81%
Sensitivity	Pr(+ D)	44.44%

Click to Open File: Analyse.doc

Un aperçu du modèle logit et effets marginaux sur word grâce à la commande asdoc.

Logistic regression						
pauvreté	Coef.	St.Err.	t-value	p-value	[95% Conf	Interval]
sexe	.493	.476	1.04	.3	439	1.425
statut	.424	.26	1.63	.103	085	.932
Revenu_chef_mÃ	013	.004	-3.42	.001	02	005
©n						
Constant	1.224	.808	1.52	.13	359	2.807
Mean dependent var		0.360	SD deper	ident var		0.482
Pseudo r-squared		0.158	Number	of obs		100
Chi-square		12.264	Prob > cl	hi2		0.007
Akaike crit. (AIC)		118.032	Bayesian	crit. (BIC)		128.452
			-			

FIGURE 69 – Aperçu word

****p<.01, **p<.05, *p<.1

Marginal effects after logit y = Pr(pauvreté) (predict) = .28926448

variable	dy/dx	Std.	err.	z	P>z	[
sexe*	0.098	0.093	1.060	0.289	-0.083	0.280
statut	0.087	0.054	1.630	0.104	-0.018	0.192
Revenu~n	-0.003	0.001	-3.960	0.000	-0.004	-0.001

11 Appendice 5 : Install.

Il existe un certain nombre des packages(programmes) qui ne sont préinstallés lorsque nous téléchargeons stata mais que nous pouvons selon nos besoins installer.

La commande est ssc install nom du package

FIGURE 70 – Install

```
. ssc install jb6
checking jb6 consistency and verifying not already installed...
installing into c:\ado\plus\...
installation complete.
```

Command

.

12 Appendice 6 : Describe

Le logiciel donne la possibilité de voir les packages existant, non encore téléchargés afin que l'on puisse selon notre besoin télécharger. La commande est ssc describe première lettre de la liste des packages. Par exemple, je voudrais voir la liste de tous les programmes commençant par b que contient stata et que je peux télécharger.

Ssc describe b

FIGURE 71 – Describe

ttp://fmwww.bc.edu/ no title)	repec/bocode/b/
ACKAGES you could -	net describe-:
b1x2	module to account for changes when X2 is added to a base model with X1
babibplot	module to plot two graph types which are rooted in Bland-Altman plots using journal and paper percentiles
backnasch	module to implement a backward procedure with a Rasch model
backup	module to make daily backup of important files (Windows only)
bacondecomp	module to perform a Bacon decomposition of difference-in-differences estimation
baing	module to determine and estimate the number of common factors following Bai and Ng
balancetable	module to build a balance table and print it in a LaTeX file or an Excel file
bandplot	module to plot summary statistics of responses for bands of predictors
baplot	module to produce Bland-Altman plots
barplot	module to plot varlist against xvar
barplot2	module to produce bar plot with optional error bars
basetable	module to compare a set of risk factors or effects with respect to a categorical variable
batcher	module to parallelise tasks
batplot	module to produce Bland-Altman plots accounting for trend
bayerhanck	module to compute test for non-cointegration
bayesmixedlogit	module to perform Bayesian estimation of mixed logit models
bayesmixedlogitw	tp
	module for Bayesian estimation of mixed logit model in willingness-to-pay (WTP) space
bayesmlogit	module to perform Bayesian estimation of mixed logit models
bcii	module to to estimate the number needed to treat (NNT) and confidence intervals for patients improving, or 'benefiting' (either improvements gained or deteriorations prevented), in a rando

Commentaire : cette figure ne fait pas état de tous les packages commençant par b, la liste continue.

13 Appendice 7 : Help

Nous pouvons demander de l'aide au sujet d'un package afin d'avoir des informations nécessaires.

La commande est help nom du package.

Nous nous référons a la figure70 se trouvant à la page80 pour demander au logiciel de nous expliquer son utilisation.

help jb6

Figure 72 – Help
Viewer - help jb6
File Edit History Help
← → C 🖶 Q help jb6
help jb6 ×
+
help for jb6
Jarque-Bera test for normality
jb6 varname
Description
jb6 calculates the Jarque-Bera asymptotic test for normality on the specified variable in level form.
Options
No options available
Example
. jb6 varname
References

14 Appendice 8 : Option detail

L'on peut vouloir faire une analyse descriptive approfondies et pour ce faire, il faudrait aller au-déla de la comande sum qui nous offre juste la moyenne, l'écart-type, le minimum et le maximum.

L'un des moyens que l'on peut utiliser est la commande detail.

La commande est sum nos différentes variables quantitatives, detail

		Revenu chef r	1	
		nevena_ener_i	nen	
	Percentiles	Smallest		
1%	145	145		
5%	145	145		
10%	145	145	Obs	100
25%	145	145	Sum of wgt.	100
50%	225		Mean	249.45
		Largest	Std. dev.	119.7364
75%	300	550		
90%	375	650	Variance	14336.82
95%	462.5	690	Skewness	1.72717
99%	690	690	Kurtosis	6.264017
		Taille_ménag	ge	
	Percentiles	Smallest		
1%	1	1		
5%	1	1		
10%	1	1	Obs	100
25%	2	1	Sum of wgt.	100
50%	4.5		Mean	4.74
		Largest	Std. dev.	2.890668
75%	7	11		
90%	8	11	Variance	8.35596
95%	10.5	11	Skewness	.4249188
99%	11.5	12	Kurtosis	2.353478

Command

Commentaire :

Avec cette commande, on a des indicateurs qui se rajoutent, tels que les percentiles, la médiane, la variance, les smallest et largest, le coefficient d'asymétrie qu'on appelle le skwness et le coefficient d'applatissement que l'on appelle le kurtosis.

Expliquons à présent chaque élément :

1. ²³Le percentile : il fournit les informations sur la manière dont les observations sont réparties dans l'intervalle la plus petite (minimum) et la plus grande valeur (maximum).

Nous voyons pour le revenu que le 90èm percentile est égal à 375, ce qui nous fait comprendre que seulement 10‰de notre échantillon ont un revenu supérieur ou égal à 375. Pour la taille de ménage, l'on constate que 75‰de notre échantillon ont une taille de ménage inférieure ou égale à 7 personnes.

2. ²⁴La médiane : il s'agit ici du milieu d'une distribution, elle correspond à la valeur de la distribution qui partage l'effectif en deux sous-effectifs de même taille.

Nous voyons que la médiane pour le revenu est de 225 ce qui traduit que 50‰ de notre échantillon ont un revenu inférieur à 225 et le 50‰ restant ont un revenu supérieur à 225. Pour la taille de ménage, 50‰ de nos ménages sont composés de moins de 5 personnes et le 50‰ restant sont composés de plus de 5 personnes.

- 3. Smallest : le premier smallest correspond au minimum.
- 4. Largest : le dernier largest correspond au maximum.
- 5. Le skwness : ce coefficient nous fournit les informations sur l'asymétrie de la distribution, grâce à elle, l'on peut analyser la normalité d'une distribution. Nous pouvons dire que l'asymétrie indique à quel point notre distribution sous-jacente s'écarte de la distribution normale puisque la distribution normale a une asymétrie de 0.

En général, nous avons trois types d'asymétrie.

- (a) Symétrique : lorsque l'asymétrie est proche de 0 et que la moyenne est presque la même que la médiane
- (b) Inclinaison négative : Lorsque la queue gauche de l'histogramme de la distribution est plus longue et que la majorité des observations sont concentrées sur la queue droite. Dans ce cas, nous pouvons également utiliser le terme « biaisé à gauche » ou « arrière gauche ». Et la médiane est supérieure à la moyenne.
- (c) Inclinaison positive : Lorsque la queue droite de l'histogramme de la distribution est plus longue et que la majorité des observations sont

^{23.} Musangu M. (2018), *Elements de statistique descriptive*, G1 Faculté d'administration des affaires et sciences économiques, UPC, Kinshasa.

^{24.} Musangu M. (2018), *Elements de statistique descriptive*, G1 Faculté d'administration des affaires et sciences économiques, UPC, Kinshasa.

concentrées sur la queue gauche. Dans ce cas, nous pouvons également utiliser le terme « biaisé à droite » ou « à queue droite ». Et la médiane est inférieure à la moyenne.

Valeurs d'asymétrie et interprétation :

Il existe de nombreuses approches différentes de l'interprétation des valeurs d'asymétrie. Une règle de base stipule que :

- (a) Symétrique : valeurs comprises entre -0,5 et 0,5
- (b) Données asymétriques modérées : valeurs comprises entre -1 et -0,5 ou entre 0,5 et 1
- (c) Données fortement biaisées : valeurs inférieures à -1 ou supérieures à 1.

Nous avons pour le revenu un coefficient de skwness de 1.72 qui fait référence à une asymétrie fortement biaisées, ce qui fait comprendre que le revenu n'est pas normalement distribué. Tandis que pour la taille de ménage, le coefficient est de 0.42 compris entre -0.5 et 0.5, nous avons donc une symétrie, cette variable suit la loi normale, elle est normalement distribuée.

6. Le kurtosis : En statistique, nous utilisons la mesure de l'aplatissement pour décrire la « queue » de la distribution car elle décrit la forme de celle-ci. C'est aussi une mesure du « pic » de la distribution. Une distribution de kurtosis élevée a un pic plus net et des queues plus grosses plus longues, tandis qu'une distribution de kurtosis faible a un pic plus arrondi et des queues plus courtes et plus fines.

Voyons les trois principaux types de kurtosis :

- (a) Mésokurtique : c'est la distribution normale
- (b) Leptokurtic : Cette distribution a des queues plus grosses et un pic plus net. Le kurtosis est « positif » avec une valeur supérieure à 3
- (c) Platykurtic : La distribution a un pic plus bas et plus large et des queues plus minces. Le kurtosis est « négatif » avec une valeur inférieure à 3

La valeur kurtosis du revenu est 6.26, ce qui laisse comprendre que cette variable est leptokurtic, donc elle a des queues plus grosses et un pic plus net. Celle de la variable taille de ménage est 2.35 est mésokurtique, elle est normalement distribuée.

Appendice 9 : Tabstat, stats 15

Cette commande est comme detail, elle permet de faire une analyse descriptive plus poussée.

La commande est tabstat nos variables, stats(mean variance sd min max median sk k).

Stats	Âge	emploi	nombre~s	taille~t			
Mean	1.78	1.49	1.73	3.52			
Variance	.6177778	.979697	1.855657	2.292525			
SD	.7859884	.9897964	1.362225	1.514109			
Min	1	Ø	0	1			
Max	3	6	6	9			
p50	2	1	1	3			
Skewness	.406238	1.786655	.97901	.7074225			
Kurtosis	1.740485	7.66465	3.45307	3.702822			

FIGURE 74 – Tabstat

Commentaire :

tous ces indicateurs ont déjà été interprétés (page 82-83), prière au lecteur de s'exercer en interprétant ces données.

16 Appendice 10 : Ameans

En effet, les commandes sum et mean ne donnent que la moyenne arithmétique, c'est la moyenne la plus utilisée mais il est à noter qu'utiliser cette moyenne face à certaines variables, données est un biais, une erreur pourtant commise par plusieurs.

Hormis la moyenne arithmétique, le logiciel stata propose les moyennes harmonique et géométrique.

En effet, ²⁵la moyenne harmonique est utilisée dans des domaines ou il existe des liens de proportionnalité inverses. ²⁶ Pour une distance donnée plus la vitesse est élevée, le temps du trajet est court.

²⁷La moyenne géométrique : est la moyenne permettant de calculer les taux moyens, notamment les taux moyens annuels. Son utilisation est justifiée uniquement lorsque les valeurs ont un caractère multiplicatif.

FIGURE 75 – Ameans

Nous les implémentons à titre illustratif.

La commande est ameans variables

Variable 0bs Mean [95% conf. interval] Туре Revenu_che~n Arithmetic 100 249.45 225.6917 273.2083 210.0356 227.8221 247,1149 Geometric 100 211.3238 197.2298 227.5871 Harmonic 100 Taille_mén~e Arithmetic 100 4.74 4.166429 5.313571 3,729593 3,20797 4.336033 Geometric 100 Harmonic 100 2.742727 2.344379 3.304156 emploi Arithmetic 100 1.49 1.293603 1.686397 1.399551 1,272105 1.539764 Geometric 94 Harmonic 94 1.278332 1.189539 1.38145 nombre_enf~s Arithmetic 100 1.73 1.459705 2.000295 1.698443 Geometric 86 1.503601 1.918533 Harmonic 86 1.475129 1.339043 1.642004 Arithmetic taille_log~t 100 3.820432 3.52 3.219568 Geometric 100 3.188579 2.906357 3.498208 Harmonic 100 2.833116 2.548938 3.18861 100 Âge Arithmetic 1.78 1.624043 1.935957 Geometric 100 1.611821 1.473966 1.762569 Harmonic 100 1.463415 1.350233 1.597306

ameans Revenu_chef_mén Taille_ménage emploi nombre_enfants taille_logement Âge

25. Musangu M. (2018), *Elements de statistique descriptive*, G1 Faculté d'administration des affaires et sciences économiques, UPC, Kinshasa.

26. Exemple

27. Musangu M. (2018), *Elements de statistique descriptive*, G1 Faculté d'administration des affaires et sciences économiques, UPC, Kinshasa.

17 Appendice 11 : Analyse graphique de la distribution normale

L'on peut aussi étudier la distribution normale des variables grâce aux graphiques, avec l'approche des histogrammes et de la densité.

1. Histogramme

La commande est histogram variable, normal

Commentaire :

l'on voit que la variable revenu n'est pas normalement distribuée, car sa courbe ne ressemble pas à une cloche et elle a une inclinaison positive, car la plupart des éléments sont à gauche et elle a une queue droite longue.

FIGURE 77 – Normalité Histogramme

Commentaire :

cette variable est normalement distribuée, car sa courbe ressemble à une cloche et la majorité de ses valeurs, données sont concentrées ni à gauche, ni à droite mais au centre.

FIGURE 78 – Normalité Histogramme

Commentaire :

Cette variable est normalement distribuée, car sa courbe ressemble à une cloche et la majorité de ses valeurs, données sont concentrées ni à gauche, ni à droite mais au centre.

2. Densité : l'on recourt à cette façon de faire lorsque l'histogramme n'est pas assez informatif, elle renseigne aussi sur la concentration des données.une densité plus élevée indique une concentration des données à cet endroit. Nos histogrammes sont très informatifs, nous implémentons donc la kernel density à titre d'exmple.

La commande est kdensity variable,normal

FIGURE 79 – Kernel density

Commentaire :

Les données sont concentrées à gauche et la variable n'est pas normalement distribuée.

Commentaire : Le lecteur peut s'exercer.

FIGURE 81 – Kernel density

Commentaire : Le lecteur peut s'exercer.

18 Appendice 12 : Tab2, firstonly

La commande tab2 permet d'implémenter l'analyse de relation entre une variable , la dépendante et plusieurs variables indépendantes. Illustration : l'on veut savoir si la variable pauvreté est en relation avec les variables statuts et professions.

La commande est alors tab2 pauvreté statut profession, chi2 V $^{28} \rm firstonly$ $^{29} \rm Commentaire$:

FIGURE 82 – tab2, firstonly

. tab2 pauvreté profession statut,chi2 V firstonly

-> tabulation of pauvreté by profession

	profession								
Total	5	4	3	2	1	pauvreté			
64	4	2	13	16	29	0			
36	3	3	13	15	2	1			
100	7	5	26	31	31	Total			

Pearson chi2(4) = 17.4167 Pr = 0.002 Cramér's V = 0.4173

-> tabulation of pauvreté by statut

	1		statut			
pauvreté	1	2	3	4	5	Total
0	30	27	1	3	3	64
1	11	21	2	1	1	36
Total	41	48	3	4	4	100
P	earson chi2(4) =	4.3926	Pr = 0.355			

Cramér's V = 0.2096

^{28.} l'option fisrtonly fait comprendre au logiciel qu'uniquement la première variable cité qui fait office de la variable dépendante.

^{29.} Le lecteur peut s'exercer

19 Appendice 13 : Tau de kendall's

le taux de kendall est un tel alternatif à celui du test de rang de spearman.

La commande est ktau Revenu chef mén Taille ménage,
stats(tau obs p) $\operatorname{star}(0.05)$ pw matrix

FIGURE 83 – Tau de kendall's

. ktau Revenu_chef_mén Taille_ménage, stats(taub obs p) star(0.05) pw matrix

Кеу	
tau_b Number of obs Sia. Level	;

	Revenu~n	Taille~e
Revenu_che~n	1.0000	
	100	
Taille_mén∼e	0.1089	1.0000
-	100	100
	0.1786	
Taille_mén∼e	0.1089 100 0.1786	1.0000 100

Commentaire:

La corrélation entre le revenu chef ménage et la taille de ménage n'est pas significative, car la probabilité est de 0.1786 qui es très largement supérieur au seuil de 0.05. et le 0.1089 est le coefficient informant de la direction et la force de la corrélation, ce coefficient est interpretable lorsque la corrélation est significative.

20 Appendice 14 : Test post hoc de Welch

A titre illustratif, nous allons reprendre l'exemple du test de student juste pour illustrer ce test. L'on ne devrait normalement pas prendre ce cas car l'homogénéité est respecté mais c'est juste pour pouvoir illustrer le test de welch.

La commande est ttest Taille ménage ,by(Compte épargne)unequal

1		Figure 84	– Post hoc We	elch		
. ttest Ta	aille_ménag	e ,by(Compt	e_épargne)u	nequal		
Two-sample	e t test wi	th unequal v	variances			
Group	Obs	Mean	Std. err.	Std. dev.	[95% conf.	interval]
0	96	4.760417	.2968197	2.908227	4.171155	5.349678
1	4	4.25	1.376893	2.753785	1318869	8.631887
Combined	100	4.74	.2890668	2.890668	4.166429	5.313571
diff		.5104167	1.408522		-3.759902	4.780735
diff :	= mean(0) -	mean(1)			t	= 0.3624
H0: diff :	= 0		Satterthwai	te's degrees	of freedom	= 3.28508
Ha: di	iff < 0		Ha: diff !=	0	Ha: d	iff > 0
Pr(T < t)) = 0.6304	Pr(T > t) =	0.7391	Pr(T > t) = 0.3696

 $^{30}\mathrm{Commentaire}$:

^{30.} Le lecteur peut s'exercer en interprétant.

21 Appendice 15 : Test post hoc Dunett's

A titre illustratif, nous allons reprendre l'exemple du test d'Anova juste pour illustrer ce test. L'on ne devrait normalement pas prendre ce cas car l'homogénéité est respecté mais c'est juste pour pouvoir illustrer le test de Dunett's.

La commande est ttest Taille ménage ,by(Compte épargne)unequal

Pairwise comparisons	s of means wit	th equal var	iances			
Over: niveau_instru	tion					
	Number of comparisons	- F 5				
		-				
niveau_instruction	3	3 -				
niveau_instruction	3	3	Dun	nett	Dunr	ett
niveau_instruction	Contrast	Std. err.	Dun t	nett P> t	Dunn [95% conf.	ett interval]
niveau_instruction Taille_ménage	Contrast	Std. err.	Dun t	nett P> t	Dunn [95% conf.	ett interval]
Taille_ménage	Contrast	Std. err.	Dun t	nett P> t 0.231	Dunn [95% conf. - 2.986244	ett interval] .527297
Taille_ménage	Contrast -1.229474 -1.589474	Std. err. .7360454 1.440429	Dun t -1.67 -1.10	nett P> t 0.231 0.554	Dunn [95% conf. -2.986244 -5.027446	ett interval] .527297 1.848499

FIGURE 85 – Dunett's

Commentaire :

Étant donné que les p-values, les probabilités sont toutes supérieures au seuil de 0.05, donc il n'existe pas des différences significatives.

22 Appendice 16 : Ologit simple

Il peut y'arriver que l'on soit en présence uniquement de deux variables et que l'on veule analyser l'impact de x sur y. Illustration : l'on voudrait savoir si l'accès au crédit des chefs de ménage a une influence sur les niveaux d'instruction.

La commande est ologit niveau_instruction accès crédits,ro

FIGURE 86 – Ologit simple

```
. ologit niveau_instruction Accès_crédits ,ro
Iteration 0:
               log pseudolikelihood = -72.71388
Iteration 1:
               log pseudolikelihood = -67.952999
Iteration 2:
               log pseudolikelihood = -67.641062
Iteration 3:
               log pseudolikelihood = -67.64035
Iteration 4:
               log pseudolikelihood = -67.64035
Ordered logistic regression
                                                          Number of obs =
                                                                             100
                                                          Wald chi2(1)
                                                                        =
                                                                            7.80
                                                          Prob > chi2
                                                                        = 0.0052
Log pseudolikelihood = -67.64035
                                                          Pseudo R2
                                                                        = 0.0698
                                    Robust
niveau instruction
                     Coefficient
                                   std. err.
                                                        P>|z|
                                                                  [95% conf. interval]
                                                  7
     Accès_crédits
                                                                                2.87134
                        1.687472
                                                2.79
                                                        0.005
                                   .6040253
                                                                  .5036044
             /cut1
                       -.9681736
                                   .2843728
                                                                 -1.525534
                                                                              -.4108132
```

4.898413

8.1696

2.610985

3.09739

 31 Commentaire :

/cut2

/cut3

3.754699

5.633495

.5835381

1.293955

^{31.} Le lecteur peut s'exercer

FIGURE 87 – Effets Marginaux

. margins,dydx(*)

Average marginal effects Model VCE: Robust Number of obs = 100

dy/dx wrt: Accès_crédits

```
1._predict: Pr(niveau_instruction==1), predict(pr outcome(1))
2._predict: Pr(niveau_instruction==2), predict(pr outcome(2))
3._predict: Pr(niveau_instruction==3), predict(pr outcome(3))
4._predict: Pr(niveau_instruction==5), predict(pr outcome(5))
```

	dy/dx	Delta-method std. err.	z	P> z	[95% conf.	. interval]
Accès_crédits						
_predict						
1	2410431	.0836946	-2.88	0.004	4050815	0770047
2	.1498088	.0634333	2.36	0.018	.0254819	.2741357
3	.0748271	.0452737	1.65	0.098	0139078	.1635619
4	.0164073	.0145738	1.13	0.260	0121568	.0449713

 32 Commentaire :

^{32.} Le lecteur peut s'exercer

FIGURE 88 – Spécification du test

```
. linktest
note: _hatsq omitted because of collinearity.
Iteration 0:
               log likelihood = -72.71388
Iteration 1:
               log likelihood = -67.952999
Iteration 2:
               log likelihood = -67.641062
Iteration 3:
               log likelihood = -67.64035
               log likelihood = -67.64035
Iteration 4:
Ordered logistic regression
                                                         Number of obs =
                                                                             100
                                                         LR chi2(1)
                                                                       = 10.15
                                                         Prob > chi2
                                                                       = 0.0014
Log likelihood = -67.64035
                                                         Pseudo R2
                                                                       = 0.0698
niveau_instruction
                     Coefficient Std. err.
                                                       P> z
                                                                 [95% conf. interval]
                                                  z
                                                2.85
              hat
                              1
                                   .3511032
                                                       0.004
                                                                 .3118504
                                                                              1.68815
            hatsq
                              Ø
                                 (omitted)
             /cut1
                      -.9681736
                                   .2860748
                                                                 -1.52887
                                                                             -.4074772
             /cut2
                       3.754699
                                   .6075907
                                                                 2.563843
                                                                             4.945555
             /cut3
                       5.633495
                                   1.100729
                                                                 3.476106
                                                                             7.790884
```

 $^{33}\mathrm{Commentaire}$:

^{33.} Le lecteur peut s'exercer

23 Appendice 17 : Mlogit simple

Illustration : l'on voudrait savoir si l'âge du chef de ménage a une influence sur le mode d'accès aux soins de santé.

La commande est mlogit accès soins de santé âge,ro

				0	1	
Iteration 0:	log pseudolikel	lihood = -20	6.515837			
Iteration 1:	log pseudolikel	lihood = -2	5.291945			
Iteration 2:	log pseudolikel	lihood = -24	4.189157			
Iteration 3:	log pseudolikel	lihood = -24	4.063205			
Iteration 4:	log pseudolikel	lihood = -24	4.051533			
Iteration 5:	log pseudolikel	lihood = -24	4.049395			
Iteration 6:	log pseudolikel	lihood = -24	4.048915			
Iteration 7:	log pseudolikel	lihood = 🐳	-24.0488			
Iteration 8:	log pseudolikel	lihood = -24	4.048775			
Iteration 9:	log pseudolikel	lihood = -2	24.04877			
Iteration 10:	log pseudolikel	lihood = -24	4.048769			
Multinomial log Log pseudolikel	istic regressic ihood = -24.048	9769		Nu Wa Pr Ps	umber of obs = ald chi2(2) = rob > chi2 = seudo R2 =	= 100 = 325.11 = 0.0000 = 0.0930
		Robust				
Accès_soins_s~é	Coefficient	std. err.	z	P> z	[95% conf.	interval]
1	(base outco	ome)				
2						
Revenu chef mén	0027094	.0055585	-0.49	0.626	0136039	.0081851
	-2.516755	1.342281	-1.87	0.061	-5.147578	.1140675
3						
- Revenu chef mén	199935	.0110889	-18.03	0.000	2216689	1782011
cons	26,33546	2.250471	11.70	0.000	21,92462	30,7463

FIGURE 89 – Mlogit simple

 34 Commentaire :

^{34.} Le lecteur peut s'exercer

```
FIGURE 90 – Effets Marginaux
```

```
. margins,dydx(*)
                                                            Number of obs = 100
Average marginal effects
Model VCE: Robust
dy/dx wrt: Revenu_chef_mén
1._predict: Pr(Accès_soins_santé==1), predict(pr outcome(1))
2._predict: Pr(Accès_soins_santé==2), predict(pr outcome(2))
3._predict: Pr(Accès_soins_santé==3), predict(pr outcome(3))
                             Delta-method
                       dy/dx
                               std. err.
                                                    P> z
                                                              [95% conf. interval]
                                               z
Revenu chef mén
       predict
             1
                    .0036558
                                .0024719
                                             1.48
                                                    0.139
                                                             -.0011891
                                                                           .0085007
             2
                    .0000899
                                .0001957
                                             0.46
                                                    0.646
                                                             -.0002937
                                                                           .0004735
             3
                                                             -.0088517
                   -.0037457
                                .0026051
                                            -1.44
                                                    0.150
                                                                           .0013603
```

 35 Commentaire :

35. Le lecteur peut s'exercer

24 Appendice 18 : Oprobit simple

Illustration : l'on voudrait savoir si l'accès au crédit des chefs de ménage a une influence sur les niveaux d'instruction.

La commande est oprobit niveau_instruction accès crédits,ro

FIGURE 91 – Oprobit Simple

```
. oprobit niveau_instruction Accès_crédits ,ro
```

```
Iteration 0: log pseudolikelihood = -72.71388
```

```
Iteration 1: log pseudolikelihood = -68.182071
```

```
Iteration 2: log pseudolikelihood = -68.102093
```

```
Iteration 3: log pseudolikelihood = -68.101888
```

```
Iteration 4: log pseudolikelihood = -68.101888
```

```
Ordered probit regression
```

Log pseudolikelihood = -68.101888

```
Number of obs = 100
Wald chi2(1) = 7.98
Prob > chi2 = 0.0047
Pseudo R2 = 0.0634
```

niveau_instruction	Coefficient	Robust std. err.	z	P> z	[95% conf.	interval]
Accès_crédits	.819707	.2902074	2.82	0.005	.2509109	1.388503
/cut1	6163828	.1706717			9508933	2818724
/cut2	2.034285	.287805			1.470197	2.598372
/cut3	2.808443	.556019			1.718665	3.89822

 36 Commentaire :

^{36.} Le lecteur peut s'exercer

FIGURE 92 – Effets Marginaux

```
. margins,dydx(*)
                                                            Number of obs = 100
Average marginal effects
Model VCE: Robust
dy/dx wrt: Accès_crédits
1._predict: Pr(niveau_instruction==1), predict(pr outcome(1))
2._predict: Pr(niveau_instruction==2), predict(pr outcome(2))
3._predict: Pr(niveau_instruction==3), predict(pr outcome(3))
4._predict: Pr(niveau_instruction==5), predict(pr outcome(5))
                           Delta-method
                     dy/dx
                              std. err.
                                                  P> z
                                                            [95% conf. interval]
                                             z
Accès_crédits
     _predict
                 -.2073686
                               .071547
                                          -2.90
                                                  0.004
                                                           -.3475981
                                                                        -.0671391
           1
           2
                                           2.20
                  .1188784
                               .054064
                                                  0.028
                                                            .0129148
                                                                          .224842
           3
                  .0661941
                              .0376629
                                           1.76
                                                  0.079
                                                           -.0076238
                                                                          .140012
```

.0165606

1.35

0.178

-.0101621

.0547543

 $^{37}\mathrm{Commentaire}$:

4

.0222961

^{37.} Le lecteur peut s'exercer

FIGURE 93 – Spécification du modèle

```
. linktest
note: _hatsq omitted because of collinearity.
               log likelihood = -72.71388
Iteration 0:
Iteration 1:
               log likelihood = -68.182071
Iteration 2:
               log likelihood = -68.102093
Iteration 3:
               log likelihood = -68.101888
               log likelihood = -68.101888
Iteration 4:
Ordered probit regression
                                                         Number of obs =
                                                                            100
                                                         LR chi2(1)
                                                                           9.22
                                                                       =
                                                         Prob > chi2
                                                                       = 0.0024
Log likelihood = -68.101888
                                                         Pseudo R2
                                                                       = 0.0634
                     Coefficient Std. err.
niveau instruction
                                                       P> z
                                                                 [95% conf. interval]
                                                  z
              _hat
                              1
                                   .3444985
                                                2.90
                                                       0.004
                                                                 .3247954
                                                                             1.675205
                                 (omitted)
            _hatsq
                              Ø
             /cut1
                      -.6163828
                                    .168554
                                                                -.9467425
                                                                            -.2860231
             /cut2
                       2.034285
                                                                 1.480275
                                    .282663
                                                                             2.588294
                       2.808443
             /cut3
                                   .4108911
                                                                 2.003111
                                                                             3.613774
```

³⁸Commentaire :

^{38.} Le lecteur peut s'exercer

25 Appendice 19 : Oprobit Multiple

Illustration : On veut voir dans cette base des données, quelles sont les variables qui peuvent expliquer le niveau d'instruction du chef de ménage, cette illustration est juste à titre exemplatif afin de garder la même base des données.

Première étape : estimer le modèle Oprobit.

La commande est oprobit variable dépendante variale indépendante,ro

Figure	94 -	Opro	bit
--------	------	------	-----

<pre>. oprobit niveau_ins</pre>	struction prof	ession stat	ut sexe I	Revenu_ch	ef_mén pauvre	té nombre_enf	ants emploi	Accès_crédit	ts Cor
Ttonation A. log	a saudalikalika	ad - 727	4 3 0 0						
Iteration 0. log	seudolikeliho	od = -60 80	79//						
Iteration 2: log	oseudolikeliho	od = -60.83	3560						
Iteration 2. log	seudolikeliho	od = -60.43	1719						
Iteration 4: log	oseudolikeliho	od = -60.43	4710						
106 106	JSCOUDIIKCIINC	00.45	4710						
Ordered probit regre	ession			Numbe	r of obs =	100			
				Wald	chi2(10) = 2	8.31			
				Prob	> chi2 = 0.	0016			
Log pseudolikelihood	d = -60.434718	3		Pseud	o R2 = 0.	1689			
		Robust							
niveau_instruction	Coefficient	std. err.	z	P> z	[95% conf.	interval]			
profession	.2773423	.1311365	2.11	0.034	.0203195	.5343651			
statut	.1423183	.166824	0.85	0.394	1846507	.4692873			
sexe	.4039936	.2845087	1.42	0.156	1536333	.9616204			
Revenu_chef_men	.001525	.0013138	1.16	0.246	0010501	.0041			
pauvreté	2734736	.3878276	-0.71	0.481	-1.033602	.4866545			
nombre_enfants	1179118	.1121638	-1.05	0.293	3377487	.1019252			
emploi	2441985	.1616031	-1.51	0.131	5609348	.0/253/9			
Acces_credits	.99411/4	.28/605	3.46	0.001	.430422	1.55/813			
Compte_epargne	.6124123	.6941304	0.88	0.3/8	/480582	1.9/2883			
age	00/3081	.0119342	-0.61	0.540	0306987	.0160825			
/cut1	0994087	.7880923			-1.644041	1,445224			
/cut2	2,91194	.8211621			1,302492	4.521388			
/cut3	3,818602	.8924215			2.069488	5.567716			
, 5465					21000 .00				

 $^{39}\mathrm{Commentaire}$:

^{39.} Le lecteur peut s'exercer

FIGURE 95 – Effets Marginaux

```
. margins,dydx(*)
Average marginal effects
Model VCE: Robust
```

Number of obs = 100

dy/dx wrt: profession statut sexe Revenu_chef_mén pauvreté nombre_enfants emploi Accès_crédits Compte_épargr

```
1._predict: Pr(niveau_instruction==1), predict(pr outcome(1))
2._predict: Pr(niveau_instruction==2), predict(pr outcome(2))
3._predict: Pr(niveau_instruction==3), predict(pr outcome(3))
4._predict: Pr(niveau_instruction==5), predict(pr outcome(5))
```

	-	Delta-method				
	dy/dx	std. err.	z	P> z	[95% conf	. interval]
profession						
_predict						
1	0613314	.0277677	-2.21	0.027	1157551	0069077
2	.0342298	.0176233	1.94	0.052	0003112	.0687708
3	.0205761	.0100805	2.04	0.041	.0008187	.0403335
4	.0065255	.0067801	0.96	0.336	0067632	.0198142
statut						
_predict						
1	0314722	.0363497	-0.87	0.387	1027164	.039772
2	.017565	.0196937	0.89	0.372	0210339	.0561639
3	.0105586	.0132019	0.80	0.424	0153167	.0364339
4	.0033486	.0050942	0.66	0.511	0066359	.013333

 40 Commentaire :

^{40.} Le lecteur peut s'exercer
	FIGURE 90 – Ellets Marginaux suite								
sexe									
_predict									
1	089339	.0652632	-1.37	0.171	2172525	.0385744			
2	.0498611	.0407314	1.22	0.221	0299709	.1296932			
3	.0299724	.0217471	1.38	0.168	0126511	.0725958			
4	.0095055	.0102173	0.93	0.352	0105201	.0295311			
Revenu chef mén									
_predict									
1	0003372	.0002925	-1.15	0.249	0009105	.0002361			
2	.0001882	.0001783	1.06	0.291	0001612	.0005376			
3	.0001131	.0001057	1.07	0.284	000094	.0003203			
4	.0000359	.0000343	1.05	0.295	0000313	.0001031			
pauvreté									
_predict									
1	.0604759	.0852807	0.71	0.478	1066713	.2276231			
2	0337523	.0481261	-0.70	0.483	1280778	.0605732			
3	0202891	.0274955	-0.74	0.461	0741792	.0336011			
4	0064345	.0120972	-0.53	0.595	0301445	.0172755			
nombre enfants									
_predict									
1	.026075	.0246146	1.06	0.289	0221687	.0743186			
2	0145527	.0139386	-1.04	0.296	041872	.0127665			
3	0087479	.0092483	-0.95	0.344	0268743	.0093785			
4	0027743	.0032105	-0.86	0.388	0090669	.0035182			

 $FIGURE \ 96-Effets \ Marginaux \ suite$

 $^{41}\mathrm{Commentaire}$:

^{41.} Le lecteur peut s'exercer

nombre_enfants						
_predict						
1	.026075	.0246146	1.06	0.289	0221687	.0743186
2	0145527	.0139386	-1.04	0.296	041872	.0127665
3	0087479	.0092483	-0.95	0.344	0268743	.0093785
4	0027743	.0032105	-0.86	0.388	0090669	.0035182
emploi						
. predict						
1	.054002	.0353427	1.53	0.127	0152684	.1232723
2	0301391	.0215614	-1.40	0.162	0723988	.0121205
3	0181172	.0134848	-1.34	0.179	0445468	.0083125
4	0057457	.0054342	-1.06	0.290	0163965	.0049052
Accès crédits						
predict						
1	2198388	.0606344	-3.63	0.000	3386801	1009975
2	.1226946	.0449102	2.73	0.006	.0346721	.2107171
3	.0737538	.037718	1.96	0.051	0001721	.1476798
4	.0233904	.0163359	1.43	0.152	0086274	.0554081
Compte épargne						
predict						
1	1354287	.1524334	-0.89	0.374	4341926	.1633353
2	.0755843	.0865208	0.87	0.382	0939932	.2451619
3	.045435	.0558086	0.81	0.416	0639478	.1548179
4	.0144093	.018093	0.80	0.426	0210524	.049871

FIGURE 97 – Effets Marginaux suite

 42 Commentaire :

E

^{42.} Le lecteur peut s'exercer

				, 			
age							
	_predict						
	1	.0016161	.0026185	0.62	0.537	003516	.0067482
	2	000902	.0014747	-0.61	0.541	0037923	.0019883
	3	0005422	.0008771	-0.62	0.536	0022613	.0011769
	4	0001719	.0003308	-0.52	0.603	0008202	.0004763

FIGURE 98 – Effets Marginaux fin

 43 Commentaire :

.

 44 Commentaire :

^{43.} Le lecteur peut s'exercer44. Le lecteur peut s'exercer

FIGURE 99 – Spécification du modèle

. linktest

Iteration 0: log likelihood = -72.71388 Iteration 1: log likelihood = -60.611079 Iteration 2: log likelihood = -60.160084 Iteration 3: log likelihood = -60.159537 Iteration 4: log likelihood = -60.159537

Ordered probit regression

Number of obs = 100 LR chi2(2) = 25.11 Prob > chi2 = 0.0000 Pseudo R2 = 0.1727

Log likelihood	=	-60.159537
----------------	---	------------

niveau_instruction	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
_hat _hatsq	1.334828 1682854	.5374495 .2367971	2.48 -0.71	0.013 0.477	.2814458 6323992	2.388209 .2958284
/cut1 /cut2 /cut3	0085623 2.969373 3.868726	.2664244 .4290032 .5674738			5307446 2.128542 2.756498	.5136199 3.810204 4.980954

26 Appendice 20 : Mprobit Simple

Illustration : l'on voudrait savoir si l'âge du chef de ménage a une influence sur le mode d'accès aux soins de santé.

La commande est mprobit accès soins de santé âge,ro

FIGURE 100 – Mprobit Simple

			1	1		
Multinomial prob	it regression			Num	ber of obs =	100
				Wal	d chi2(2) =	2254.76
Log pseudolikeli	hood = -24.104	225		Pro	b > chi2 =	0.0000
		Robust				
Accès_soins_s~é	Coefficient	std. err.	z	P> z	[95% conf.	. interval]
1	(base outco	me)				
2						
Revenu_chef_mén	0019338	.0033148	-0.58	0.560	0084307	.0045631
cons	-1.972876	.8171684	-2.41	0.016	-3.574496	3712549
3						
Revenu_chef_mén	1559864	.0033053	-47.19	0.000	1624647	1495081
cons	20.51951	•	•	•	•	

 45 Commentaire :

^{45.} Le lecteur peut s'exercer

$FIGURE \ 101-Effets \ Marginaux$

. margins,dydx(*)

Average marginal effects Model VCE: Robust Number of obs = 100

dy/dx wrt: Revenu_chef_mén

1._predict: Pr(Accès_soins_santé==1), predict(pr outcome(1))
2._predict: Pr(Accès_soins_santé==2), predict(pr outcome(2))
3._predict: Pr(Accès_soins_santé==3), predict(pr outcome(3))

	ا dy/dx	Delta-method std. err.	z	P> z	[95% conf.	interval]
Revenu_chef_mén _predict						
1	.0040339	.0020886	1.93	0.053	0000597	.0081276
2	.0004092	.0002444	1.67	0.094	0000698	.0008883
3	0044432	.0022847	-1.94	0.052	008921	.0000347

 46 Commentaire :

46. Le lecteur peut s'exercer

27 Appendice 21 : Mprobit Multiple

Illustration : On veut voir dans cette base des données, quelles sont les variables qui peuvent expliquer l'accès aux soins de santé du chef de ménage, cette illustration est juste à titre exemplatif afin de garder la même base des données.

Première étape : estimer le modèle mprobit.

La commande est mprobit variable dépendante variale indépendante, ro

			-			
Multinomial probit	regression			Nu	mber of obs =	= 100
				Wa	ld chi2(10) =	• •
Log pseudolikelihood = -11.995569				Pr	ob > chi2 =	• •
		Robust				
Accès_soins_santé	Coefficient	std. err.	z	P> z	[95% conf.	interval]
1	(base outco	ome)				
2						
sexe	0724244	.6514595	-0.11	0.911	-1.349262	1,204413
statut	.1355522	.3537666	0.38	0.702	5578175	.8289219
profession	.3105359	.3491865	0.89	0.374	3738569	.9949288
niveau instruction	5769205	.5653733	-1.02	0.308	-1.685032	.5311908
	.0025657	.0037585	0.68	0.495	0048008	.0099322
pauvreté	.5825477	.7778017	0.75	0.454	9419156	2.107011
nombre_enfants	-1.038952	.3940367	-2.64	0.008	-1.81125	2666539
emploi	.0689574	.233894	0.29	0.768	3894665	.5273813
Accès_crédits	3806147	.435604	-0.87	0.382	-1.234383	.4731534
Compte_épargne	-22.63579					
age	0886901	.030334	-2.92	0.003	1481436	0292366
_cons	1.36867	1.450985	0.94	0.346	-1.475208	4.212548
2						
5 Seve	11 42006					
statut	6 688565				•	•
profession	19 63954				•	•
niveau instruction	-9 890917				•	•
Revenu chef mén	3429548	•	•		•	•
nauvreté	5,784183	•			•	•
pauviece	5.704105	•		•	-	-

FIGURE 102 – Mprobit

FIGURE	103 -	Mprobit	suite
--------	-------	---------	-------

3				
sexe	11.42006			
statut	6.688565			
profession	19.63954			
niveau_instruction	-9.890917			
Revenu_chef_mén	3429548			
pauvreté	5.784183			
nombre_enfants	-34.83356			
emploi	5.219533			
Accès_crédits	23.85969			
Compte_épargne	94.01332			
age	-2.823437			
_cons	77.56453			

Commentaire :

Cette illustration n'est pas adaptée pour un modèle multinomial probit.

Références

- Anderson, Sweeney et Williams., (2010), Statistiques pour l'économie et la gestion, édition 3, de boeck.
- [2] Anderson, Sweeney, Williams et al., (2015), *Statistiques pour l'économie* et la gestion, édition 5, de boeck.
- [3] Muayila P. (2019), *Théorie et pratique de sondage*, L1 Faculté d'administration des affaires et sciences économiques, UPC, Kinshasa.
- [4] Muayila P. (2023), Introduction aux techniques d'enquêtes, L2 LMD Faculté d'administration des affaires et sciences économiques, UPC, Kinshasa.
- [5] Musangu M. (2018), Elements de statistique descriptive, G1 Faculté d'administration des affaires et sciences économiques, UPC, Kinshasa.
- [6] Nkongo L. et Zumbu D. (2020), Satistique appliquée aux affaires, L1 Faculté d'administration des affaires et sciences économiques, UPC, Kinshasa.
- [7] Observatoire Economique et Statistique d'Afrique Subsaharienne .,(2012), Manuel pratique d'introduction au logiciel stata., Afrisat.
- [8] Olivier M., (2009), l'enquête et ses méthodes, édition 2, Armand colin.
- [9] Omonga K. (2017), Statistiques inférencielles, G2 Faculté d'administration des affaires et sciences économiques, UPC, Kinshasa.
- [10] Regis bourbonnais.,(2015), Econométrie, édition 9, Dunod.
- [11] Rohit Dass A., (2022), Introduction to stata, Institute of Health Policy Management, and Evaluation Canadian Centre for Health Economics University of Toronto.
- [12] Tremblay M., Lavallé P., et Tirari M., (2011), Pratique et méthode de sondage, Dunod.
- [13] https://datatab.fr/tutorial/pearson-correlation, consulté le 10/12/2023, à 7h00.