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Abstract

Recent advances combining outer images and deep-learning algorithms
(DLA) show promising results in the detection and the characterization
of the Adolescent Idiopathic Scoliosis (AIS). However, these methods are
providing a limited 2D characterization while scoliosis is defined in 3D.
In this study we propose an inference method that takes as input a depth
map of the back of a person and outputs the 3D shape estimation of the
thoracolumbar spine. Our DLA method predicts 3D vertebrae positions
with an average 3D error of 7.1mm (std: 4.7mm). From the predicted
3D positions, scoliosis can be located and estimated with a mean absolute
error (MAE) of 5.5° (std: 6.2°) in the frontal plane. Moreover, sagittal
alignments can be estimated with a MAE of 6.4° (std: 5.5°) in kyphosis
and 8.3° (std: 6.8°) in lordosis. In addition, our non-ionizing approach
can detect scoliosis with an accuracy of 89%.

1 Introduction

Adolescent idiopathic scoliosis (AIS) is a progressive disease mostly affecting
young people and evolving during the period of growth [5]. The main recom-
mendation is to use braces to stop scoliosis progression with medical monitoring
until the end of the adolescence. Diagnosis and follow-up are usually performed
with radiographs by measuring the Cobb Angle at the scoliotic curvature on
the coronal plane. This method is highly accurate but it involves multiple ra-
diation exposures which increase the risk of cancer [3][6]. Therefore, there is a
strong interest to examine spines using non-invasive and non-ionising methods,
especially with young people [10].



In the recent years, deep learning methods based on Convolutional Neural
Networks (CNN) showed promising results into the prediction of the Cobb angle
from outer images of the back. Yang et al 2019 [16] trained CNN models to
classify RGB images of the back according to the scoliosis severity. Kokabu
et al 2021 [20] extended the Adam’s forward bend test by the inference of the
severity of scoliosis, i.e. the main Cobb angle, from depth maps. Watanabe
et al. 2019 [17] predicted the coronal spinal alignments from Moiré images
and estimate the cobb angles along the predictions. However, these methods
are providing a limited 2D characterization of the deformities while scoliosis is
inherently a three-dimensional condition [4].

Our hypothesis is that the information present in a depth map of the back
of a person has a very strong correlation with the underlying 3D shape of the
spine, i.e. the 3D location of each vertebra. Thus, a model taking as input a
depth map could predict the 3D shape of the spine. The goal of this study is to
evaluate such a strategy and its accuracy by comparing the predictions made
by the proposed CNN model with real-life measurements of spine positions and
curvatures.

2 Data collection and processing

To validate our hypothesis and approach we use two different datasets. One ac-
quired at Grenoble Hospital (GH) and the publicly available NMDID dataset [19].

2.0.1 GH dataset

The study was approved by two Ethical Committees. The GH dataset was
collected and published in Courvoisier et al 2019 [18]: CECIC Rhoéne-Alpes-
Auvergne, Clermont-Ferrand, IRB 5891. The IRB for recent cases is CPP Ile
de France 2 on the 07/20/2020: no ID RCB: 2020-A01071-38. All parents and
patients received an information letter.

Two types of data were collected from 32 patients with AIS (7-16 y. old,
81% females): a 3D surface scan of the back or the torso with an optical scan
(ScanGogh IT Vorum Research Corporation or the Occipital Structure Sensor
Mark IT), and the corresponding 3D spine reconstruction obtained from biplanar
X-rays with the EOS Imaging systems [7].

As the surface scan and the EOS images were not performed simultaneously,
the patient pose can vary between both acquisitions. We therefore added an
additional step to adjust the skin surface pose to match the EOS pose. We use
a 3D kinematic anatomic model in Sofa [8] which we personalize to the back
surface. We then deform the pose of the avatar to match the visual envelope
extracted from the biplanar EOS radiographs. The obtained avatar has thus
the skin surface in the same pose as the pose observed during the radiographs.



(b) NMDID

Figure 1: Dataset examples. For each subject we have a depth map, the 3D
vertebrae locations and the measured angles. Coronal (left) and sagittal (right)
views.

2.0.2 NMDID dataset.

The GH dataset is composed of AIS patients only. To explore asymptomatic
AIS cases we included subjects from the NMDID [19] database, which provides
full-body CT-scans of ex vivo subjects. We included 89 cases (15-30 y. old, 32%
females, 7% with scoliosis), which had 17 thoracolumbar vertebrae and a Body
Mass Index (BMI) under 30kg/m?. A selection on BMI was needed since the
corpses are in supine position, and the back is flatten during the CT-acquisition.
High BMI bodies had completely flat backs with no shape information.

From the selected cases, we automatically segmented the thoracolumbar
spine vertebrae using Meng et al. 2023 method [22] and the skin with a bi-
nary segmentation approach on each slice of the volumetric image. The results
were then turned into meshes using the marching-cubes algorithm [2].

2.0.3 Depth map generation.

From the meshes of the backs of the patients we rendered depth maps using an
orthographic camera model. For the NMDID subjects we directly used the seg-
mented skin, whereas for the GH subjects, we used the skin of the repositionned
avatar matching the 3D spine shape in the radiographs.

2.0.4 Spine 3D characteristics.

From the 3D vertebra model positions obtained from the EOS Imaging sys-
tem [7] and the automatic CT segmentation [22], we computed the 3D spine
characteristics.

Using the method by Choi et al. [12] based on cubic B-Splines, we com-
puted the scoliosis severity by selecting the maximum absolute Cobb angle value.
Kyphosis and lordosis were obtained with splines fitted in the sagittal plane be-
tween T04-T12 and L01-L05 respectively. As we do not model SO1 we computed
the lordosis Cobb angle using the L05 centroid.
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Figure 2: An input depth map D, is fed into the Resnet that predicts the latent
PCA representation 6;. From 6; the 3D vertebrae coordinates ©; are computed.

2.0.5 Final dataset.

From the NMDID and GH datasets we reconstructed 121 pairs of 3D spines and
surfaces of the back: 89 from the NMDID and 32 from GH. The input dataset
we consider is therefore composed of 45% females aged between 7 and 30 years
old. 38 cases with scoliosis are included in our analysis with different type of
curvatures (simple, double curvatures, 10-65°). Fig. 1 illustrates one case of
each dataset with the depth map and the 3D characterization of the associated
spine.

3 Method

Our method takes as input a depth map of the back of a patient and outputs the
3D location of the thoraco-lumbar vertebrae. To ease the spine prediction we
use a low dimensional representation of the spine based on Principal Component
Analysis (PCA). Fig. 2 presents the overview of the method.

3.0.1 PCA spine representation.

To ensure that the predicted individual vertebrae create a consistent spine shape,
we use a low dimensional representation based on PCA (Principal Component
Analysis) [1]. The learned PCA space can produce a compressed latent represen-
tation of the spine data, while preserving most of its information and variability.
Two main advantages follow. The prediction of the ng = 20 PCA coefficients is
less complex than the prediction of each of the 17 individual vertebrae 3D loca-
tions (17 x 3 = 51). In addition, the compressed latent representation enforces
regularization over the estimated spine locations.

3.0.2 Architecture.

We use ResNet-18 [11] model as our backbone CNN architecture, which has
been shown to be efficient for regression tasks. It encodes the depth image
(224%224, 1 channel) into the aforementioned latent PCA representation of the
spine, which is in turn easily decoded into the 3D vertebrae positions. We train



the network to minimize an L.2-loss between the vertebrae coordinates predicted
by the neural model, and the annotated coordinates of the training examples.
The model is trained using an Adam optimizer with PyTorch [15] with 2000
epochs and a learning rate of le-4.

3.0.3 Data Processing.

To structure the dataset and ease the learning task we process the data. Fol-
lowing Choi et al. [12] the depth maps on the spine are centered and cropped
according to its length, then resized to a 224 x 224 resolution. Depth pixel
observations are further normalized between [—1,1], and the antero-posterior
positions of the vertebrae are defined with respect to a median vertebra (T08).
This 3D transformation allows a simpler representation of the spine while keep-
ing the vertebrae alignment information. It differs from [14] and [21] which are
regressing absolute positions.

We augment the dataset applying a random set of different transformations,
such as mirroring and rotating the torso in 3D. From the 121 rendered depth
maps, the data augmentation raises the amount of images to 10,890.

4 Evaluation

We start by validating the accuracy of the PCA spine representation. Then we
evaluate the vertebrae location accuracy by computing the 3D distances between
the ground-truth and the predictions as well as 2D distances in the coronal and
sagittal planes. We evaluate the spine curvature accuracy by computing the
Mean Absolute Error (MAE) in three angles: the main Cobb angle [12], kyphosis
(T04-T12) and lordosis (L01-L05). As the 3D predicted spine of our method
can also be used for spine classification (main Cobb angle > 10°) we compute
binary classification metrics: sensitivity, specificity, positive predictive value,
accuracy and AUC. All our quantitative results are computed using a stratified
20-fold cross-validation (CV) on the full dataset. All metrics are computed by
averaging over all test sets.

4.1 PCA dimensional reduction.

A first analysis is dedicated to the PCA and how well the resulting representation
is able to encode the vertebra positions. For each fold, the PCA model is learned
from the training set and evaluated by comparing the PCA reconstructions of
the spines of the test set with their true X-rays reconstructions. Our analysis
shows that with 20 components, the spines can be reconstructed with a Mean
Absolute Error (MAE) in 3D vertebra location of 0.92mm (std: 0.75 mm) and
an MAE in scoliosis severity of 2.71deg (std: 2.49). These values are close to
the annotation accuracy (< 1 mm and < 5°).



Figure 3: Selection of results. White: ground-truth; blue: predictions. Top
row: coronal view for each case, bottom row: sagittal view. GH: institution;
NMDID: New Mexico Decedent Image Database; L: Left; R: Right; P: Posterior;
A: Anterior.

4.2 3D spine prediction accuracy
4.2.1 Vertebra locations.

MAE of the vertebrae location predictions are reported in Table 1. Our model
is able to predict the 3D vertebra positions with an average 3D error below
the cm. These predictions allows the characterization of the spinal alignments
(scoliosis, kyphosis, lordosis) with automated measurements [12]. Visuals of the
predictions are presented in Fig. 3.

4.2.2 Spine 3D characteristics.

Table 1 reports the angle errors between the predicted spine shapes and the
ground truth ones. The last three lines of the Table 3) are provided for the
comparison with the literature. Note how our approach is the only one pre-
dicting kyphosis and lordosis. Numerical results are provided for informative
comparison on the range of values, as the considered datasets are different, both
in size and population.

4.2.3 Classification.

Classification results are reported in Table 1. Our method is able to discriminate
cases with scoliosis with a sensitivity of 64% and a specificity of 99%. We report
a positive predictive value of 95%, an accuracy of 89% and an AUC of 90%.
Fig. 4 shows the predicted severity against the ground truth one with the 10°
classification thresholds. Let us note how several miss-classifications arise near
the 10° threshold and the underestimation of moderate and severe scoliosis cases.
In conclusions we provide leads to improve these predictions.



Table 1: Spine prediction accuracy. Vertebrae errors in mm of the 3D locations
(3D) and 2D coronal (Cor.) and sagittal (Sag.) projections. Angle errors in de-
grees in the scoliosis severity (Sco. sev.), kyphosis (Kyph.) and lordosis (Lord.).
Scoliosis classification (> 10°) sensitivity (Sens.) and specificity (Spec.).

Locations (mm) Characteristics (°) Classification
Study 3D Cor. Sag. Sco. sev.  Kyph. Lord. | Sens. Spec.
Ours 7.07 4.51 5.60 5.46 6.44 826 | 0.64 0.99
(4.69) (2.99) (4.62) (6.19) (5.49) (6.85)
[12] X 5.4 (3.5) X 3.42 (2.64) X X NA NA
[16] X X X X X X 0.88 0.84
[20] X X X [4.4 - 4.7] X X 099 0.42
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Figure 4: Comparison between predicted scoliosis severity and ground-truth
measurements.

4.3 Ablation studies

To further understand the proposed approach we performed two complementary
experiments.

Recent work by Klarqvist et al. 2022 [23] has shown that it is possible
to estimate body composition from solely body silhouettes. We consider the
analogous case for the prediction of the 3D spine: instead to use a depth map as
input we consider the case where only the binary silhouette of the back surface
is observed.

In addition, we also experiment by training and testing on the two different
datasets (GH and NMDID) to see if the imbalance of scoliotic patients in the
datasets has an effect on the predictions.



Table 2: Comparison with binarized depth information, i.e. silhouette (silh).
MAE (with std.) on locations in 3D, coronal (Cor.) and sagittal (Sag.) plane
and the estimated scoliosis severity. Detection is evaluated sensitivity (Sens).
and specificity (Spec.).

Type 3D (mm)  Cor. (mm) Sag. (mm) | Severity (°) | Sens. Spec.

silh | 10.02 (6.96) 4.91 (3.34) 8.55 (7.22) | 6.34 (7.86) | 0.52  0.98

33 7.
depth | 7.07 (4.69) 4.51 (2.99) 5.60 (4.62) | 5.46 (6.19) | 0.64  0.99

Table 3: MAE in locations in mm and standard-deviations

Study | Train Test 3D Coronal Sagittal

Ours | GH GH 8.81 (5.19) | 5.87 (3.73) | 6.76 (4.97)
Ours | GH+NMDID | GH 8.80 (5.46) | 5.90 (3.73) | 6.74 (5.26)
Ours | GH+NMDID | NMDID 6.45 (4.21) | 4.01 (2.49) | 5.19 (4.30)
Ours | GH+NMDID | GH+NMDID | 7.07 (4.69) | 4.51 (2.99) | 5.60 (4.62)

4.3.1 Predictions from binary images.

We tested the impact of depth information by training our model to reconstruct
the 3D positions on binary images that show only the silhouette of the torso.
The results in Table 2 illustrate that model using depth maps achieves overall
better performance. Depth is informative for the network.

It is interesting to note the capability of the sihouette network to reconstruct
scoliosis curvatures with a severity error of 6.34°. The biggest difference is
obtained in the sagittal plane alignments, which is coherent with the lack of
depth information in the binary silhouette image.

4.3.2 Different datasets.

The inclusion of NMDID allows us to validate the approach on asymptomatic
cases. However, it could have a negative impact on the prediction of the scoliotic
cases by adding bias. We thus evaluate the impact of the NMDID dataset on the
network regression performance. We train solely on GH (scoliotic data) and on
both GH and NMDID (scoliotic + asymptomatic) data and report the results
on Table 3. Including the NMDID cases in the training set does not introduce
any bias in the prediction performances (first two lines) on GH subjects and
confirms that the inclusion of spines without scoliosis from deceased subjects in
supine position does not deteriorate the predictions over living patients acquired
with the regular protocol.



5 Conclusion

In this work, we presented an approach to predict the 3D spine shape of a pa-
tient from a depth map of the back. This depth map can be obtained with
depth sensors, which are usually inexpensive, portable, making them a promis-
ing cost-effective, non-ionizing approach to quantify scoliotic deformities. Our
approach provides accurate 3D predictions of the vertebrae locations and al-
lows to compute relevant anatomic curvatures along the spine as well as a fast
scoliosis diagnosis.

Our presented work predicts 3D vertebrae locations, but does not consider
today their individual 3D orientation. It has been studied that the axial vertebra
rotation contains information related to the early detection of scoliosis [9] and its
evolution [13]. Our approach could be adapted in the future to also predict the
orientations of the individual vertebrae. To that end, the PCA representation
should be reconsidered, as a linear approach might not be well suited to capture
the 3D rotations.

Another venue of improvement of the presented work would be to add more
subjects with moderate and severe scoliosis in the training pipeline. As shown
in Fig. 4, our model tends to underestimate severe deviations due to the low
number of such cases in our dataset. To make this possible, as well as to foster
future research in this direction, we make our trained model and training code
available for research purposes: https://gitlab.inria.fr/spine/skin _to_spine.
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