
HAL Id: hal-04362139
https://hal.science/hal-04362139v1

Submitted on 22 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Rethinking Gauss-Newton for learning
over-parameterized models

Michael Arbel, Romain Ménégaux, Pierre Wolinski

To cite this version:
Michael Arbel, Romain Ménégaux, Pierre Wolinski. Rethinking Gauss-Newton for learning over-
parameterized models. NeurIPS 2023 - Thirty-seventh Conference on Neural Information Processing
Systems, Dec 2023, La Nouvelle-Orléans, United States. pp.1-24. �hal-04362139�

https://hal.science/hal-04362139v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Rethinking Gauss-Newton for learning
over-parameterized models

Michael Arbel, Romain Menegaux∗, and Pierre Wolinski∗†
Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK,38000 Grenoble, France

firstname.lastname@inria.fr

Abstract

This work studies the global convergence and implicit bias of Gauss Newton’s
(GN) when optimizing over-parameterized one-hidden layer networks in the
mean-field regime. We first establish a global convergence result for GN in the
continuous-time limit exhibiting a faster convergence rate compared to GD due to
improved conditioning. We then perform an empirical study on a synthetic regres-
sion task to investigate the implicit bias of GN’s method. While GN is consistently
faster than GD in finding a global optimum, the learned model generalizes well
on test data when starting from random initial weights with a small variance and
using a small step size to slow down convergence. Specifically, our study shows
that such a setting results in a hidden learning phenomenon, where the dynamics
are able to recover features with good generalization properties despite the model
having sub-optimal training and test performances due to an under-optimized lin-
ear layer. This study exhibits a trade-off between the convergence speed of GN
and the generalization ability of the learned solution.

1 Introduction

Gauss-Newton (GN) and related methods, like the Natural Gradient (NG) can offer faster conver-
gence rates compared to gradient descent due to the improved dependence on the conditioning of
the problem [9, 21, 30, 31]. For these reasons, these methods have attracted attention in machine
learning as an alternative to gradient descent when optimizing ill-conditioned problems arising from
the use of vastly over-parameterized networks and large training sets [29, 45]. Unfortunately, GN’s
high computational cost per iteration, which involves solving an expensive linear system, restricts
its applicability in large-scale deep learning optimization. Addressing this challenge has been a
primary focus, with extensive efforts dedicated to crafting computationally efficient approximations
for GN/NG methods where the aim is to strike a delicate balance between computational cost and
optimization speed, thereby enhancing scalability [4, 9, 11, 21, 31, 42].

While substantial effort has been put into making GN scalable, little is known about the global
convergence of these methods and their generalization properties when optimizing neural networks,
notably compared to gradient descent. Understanding these properties is particularly relevant know-
ing that state-of-the-art machine learning methods rely on over-parameterized networks for which
infinitely many solutions interpolating the data exist albeit exhibit varying generalization proper-
ties that depend on implicit bias of the optimization procedure [7, 39]. To date, the majority of
studies on generalization in over-parameterized networks have primarily focused on analyzing the
dynamics of gradient descent and gradient flows – their continuous-time limit –, making impor-
tant progress in understanding the implicit bias of these optimization procedures. Specifically, [15]

∗Equal contribution.
†Now affiliated with the LMO, Université Paris-Saclay, Orsay, France.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



showed that a gradient flow can run under two regimes which yield solutions with qualitatively dif-
ferent generalization properties: the kernel regime, where the internal features of a network remain
essentially constant during optimization, often yields poor generalization, and the feature learning
regime, which allows the internal features of a network to adapt to the data, seems behind the im-
pressive generalization properties observed in practice. In addition, the same work precisely defines
conditions for these regimes: The kernel regime systematically occurs, for instance, when taking the
Neural Tangent limit (NTK), i.e. scaling the output of a network of width M by a factor 1/

√
M ,

while the feature learning regime can arise when instead taking the mean-field limit, i.e. scaling the
output by a factor of 1/M . However, these insights rest upon attaining a global solution, which is
far from obvious given the non-convexity of the training objective. While global linear convergence
of gradient flows is known in the kernel regime [1, 23], obtaining such convergence guarantees in
the feature learning regime remains an active research area [8, 10, 12, 14]. Importantly, all these
works have focused solely on gradient flows and gradient descent, given their prevalent usage when
optimizing neural networks.

In contrast, GN/NG methods have received limited attention in the study of both generalization
and global convergence for over-parameterized networks. The added complexity of these methods
makes their analysis intricate, particularly in the stochastic setting where inaccurate estimates of the
pre-conditioning matrix can alter the dynamics in a highly non-trivial manner [32, Section 12.2].
Recent works studied the convergence and generalization of GN in the kernel regime [11, 20, 26,
52], while others focused on linear networks [27]. However, the behavior of these methods for non-
linear over-parameterized models remains understudied in the feature learning regime which is a
regime of interest as it is more likely to result in good generalization.

Contributions. The present work aims to deepen our understanding of the properties of Gauss-
Newton (GN) methods for over-parameterized networks, building upon recent advancements in
neural network optimization [15]. Unlike prior works that primarily addressed scalability issues
of GN/NG or studied the impact of stochastic noise on optimization dynamics, we uniquely focus
on studying the convergence and implicit bias of an exact GN method. Specifically, our research
investigates GN in the context of a regression problem using over-parameterized one-hidden layer
networks in a deterministic (full-batch) setting. By examining an exact, deterministic GN method,
rather than an approximate or stochastic version, we eliminate potential regularization effects stem-
ming from approximation and stochasticity that might influence convergence and generalization.
This strategy, in turn, enables us to provide both theoretical and empirical insights, shedding light
on the properties of GN methods when optimizing neural networks:

1. We provide a global convergence result in Proposition 3 with a linear rate for the continuous-time
limit of GN’s dynamics in the over-parameterized regime that holds under the mean-field limit.
The achieved rate shows better conditioning than the gradient flow with the same objective,
emphasizing the method’s advantage from a pure optimization perspective. While similar rates
can be achieved under strong non-degeneracy conditions as in [50], these conditions are never
met over-parameterized networks. Instead, our result relies on a simple condition on the initial
parameters of a similar nature as in [13, Thm 3.3]: (i) that the hidden weights are diverse enough
so that an interpolating solution can be obtained simply by fitting the linear weights, and (ii) that
the linear weights result from a simple fine-tuning procedure to reach near optimality. The result
shows that GN can reach the data interpolation regime, often required for studying the implicit
bias of optimization (Section 4).

2. The empirical study in Section 5 complements the convergence result in Proposition 3 by further
investigating the implicit bias of GN on a student/teacher regression task using synthetic data.
We show that, while GN attains an interpolating solution, as predicted by Proposition 3, such a
solution generalizes more or less well depending on the regime under which the GN dynamics
is running. Specifically, we show that the GN dynamics can exhibit both kernel and feature
learning regimes depending on the choice of step size and variance of the weights at initializa-
tion. Our experiments also indicate that a hidden learning phenomenon occurs in GN dynamics
where hidden features that generalize well are obtained even when both raw training and test
performances are sub-optimal due to an under-optimized linear layer. Quite surprisingly, these
features are found when using small step sizes and, sometimes, generalize better than those
learned by gradient descent. This is contrary to the common prescription of using larger step
sizes in gradient descent for better generalization [3]. Our results suggest a tradeoff between
optimization speed and generalization when using GN which is of practical interest.
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2 Related work

Convergence of Gauss-Newton’s methods. A large body of work on inverse problems studied the
local convergence of Gauss-Newton and its regularized versions such as the Levenberg-Marquardt
method [25, 38]. Many such works focus on a continuous-time analysis of the methods as it allows
for a simplified study [24, 41]. In this work, we also consider continuous-time dynamics and leave
the study of discrete-time algorithms to future work. More recently, increasing attention was given
to global convergence analysis. [50] studied the global convergence of GN with an inexact oracle
and in a stochastic setting establishing linear convergence. The analysis requires that the smallest
singular value of the Jacobian is positive near initialization, a situation that can never occur in the
over-parameterized regime. [34] studied the convergence of the Levenberg-Marquardt dynamics,
a regularized version of Gauss-Newton’s method, in a non-convex setting under a cubic growth
assumption and showed global albeit sub-linear convergence rates. It is unclear, however, if such
cubic growth assumption holds in our setting of interest. Closest to our work is [11] which aims to
accelerate optimization by solving a kernel regression in the NTK scaling limit. There, the authors
show global convergence of a regularized version of GN in the kernel regime. We aim to investigate
the behavior of GD in the feature learning regimes.

The implicit bias of gradient flows. In the over-parameterized setting, the training objective often
possesses several global minima that perfectly interpolate the training data. The generalization error
thus heavily depends on the solution selected by the optimization procedure. [39] highlighted the
importance of understanding the properties of the selected solutions for a given initialization and
several works studied this problem in the case of linear neural networks [6, 33, 40, 49, 51]. For non-
linear networks, there is still no general characterization of the implicit bias in the regression setting,
although [10] recently made important progress in the case of a one-hidden layer network with ReLU
activation and orthogonal inputs showing that gradient flows select a minimum norm interpolating
solution when the initial weights are close to zero. Recently, the implicit bias of gradient flows was
shown to play a crucial role in other optimization problems such as non-convex bi-level optimization
[5, 47], therefore illustrating the ubiquity of such phenomenon in deep learning. The present work
empirically studies the implicit bias of Gauss-Newton which is vastly understudied.

3 Setup and preliminaries

3.1 Regression using over-parameterized one-hidden layer networks

We consider a regression problem where the goal is to approximate an unknown real-valued function
f⋆ defined over a subset X of Rd from a pair of i.i.d. inputs/outputs (xn, yn)1≤n≤N where each
xn is a sample from some unknown distribution P and yn = f⋆(xn). We assume that f⋆ belongs
to L2(P), the set of square-integrable functions w.r.t. P and note that f⋆ always belongs to L2(P̂),
where P̂ denotes the empirical distribution defined by the samples (x1, . . . , xN ). For simplicity, we
assume the data are non-degenerate, meaning that xn ̸=xn′ whenever n ̸= n′. In this case L2(P̂)
is isomorphic to RN (i.e., L2(P̂) ∼= RN ) and we can identify any function f ∈ L2(P̂) with the
evaluation vector (f(x1), . . . , f(xN )). We are interested in approximating f⋆ using a one-hidden
layer network fw with parameter vector w belonging to some, possibly infinite, Hilbert space W .
The network’s parameters are learned by minimizing an objective of the form L(fw) where L is
a non-negative, L-smooth, and µ-strongly convex function defined over L2(P̂) and achieving a 0
minimum value at f⋆. A typical example that we consider in Section 5 is the mean-squared error
over the training set:

min
w∈W

L(fw), L(fw) =
1

2N

N∑
n=1

(fw(xn)− yn)
2
. (1)

For the convergence results, we will consider both finite-width one-hidden layer networks and their
mean-field infinite-width limit. In the experiments, we will restrict to finite-width networks although,
we will be using a relatively large number of units M compared to the size of the training data,
therefore approximating the mean-field limit.
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Finite-width one-hidden layer networks. Given a non-polynomial point-wise activation function
γ and some positive integer M , these networks take the form:

fw(x) =
1

M

M∑
i=1

viγ(u
⊤
i x), w = (v, u) ∈ W := RM × RM×d, (2)

where v ∈ RM is the linear weight vector while u ∈ RM×d is the hidden weight matrix. Popular
choices for γ include ReLU [37] and its smooth approximation SiLU(x) = x(1 + e−βx)−1 which
can be made arbitrary close to ReLU by increasing β [19]. The above formulation can also account
for a bias term provided the input vector x is augmented with a non-zero constant component.

Mean-field infinite-width limit. We consider some base probability µ measure with full support
on X and finite second moment and denote by L2(µ) and L2(µ,Rd) the set of square integrable
functions w.r.t. µ and taking values in R and Rd. Given a non-polynomial point-wise non-linearity,
we define infinitely-wide one-hidden layer networks fw as:

fw(x) =

∫
v(c)γ(u(c)⊤x) dµ(c), w := (v, u) ∈ W := L2(µ)× L2(µ,Rd). (3)

Functions of the form (3) correspond to the mean-field limit of the network defined in (10) when the
number of units M grows to infinity and appear in the Lagrangian formulation of the Wasserstein
gradient flow of infinitely wide networks [48]. Existing global convergence results of GN methods
were obtained in the context of the NTK limit [11] which does not allow feature learning. The mean-
field limit we consider here can result in optimization dynamics that exhibit feature learning which
is why we consider it in our global convergence result analysis. For completeness, we provide a
brief discussion on mean-field vs NTK limits and kernel vs feature learning regimes in Appendix A.

Over-parameterization. We consider an over-parameterized setting where the network has enough
parameters to be able to fit the training data exactly, thus achieving a 0 training error. To this end,
we define the gram matrix G which is an N × N matrix taking the following forms depending on
whether we are using a finite-width network (GF ) or infinite-width network (GI):

GF
n,n′(u) =

1

M

M∑
i=1

γ(u⊤
i xn)γ(u

⊤
i xn′), GI

n,n′(u) =

∫
γ(u(c)⊤xn)γ(u(c)

⊤xn′) dµ(c).

We say that a network is over-parameterized if G(u0) is invertible for some hidden-layer weight u0:

(A) (Over-parameterization) G(u0) is invertible for an initial parameter w0=(v0, u0)∈W .

When u0 is sampled randomly from a Gaussian, a common choice to initialize a neural network,
Assumption (A) holds for infinitely wide networks as long as the training data are non-degenerate
(see [18, Theorem 3.1] for ReLU, and [17, Lemma F.1] for analytic non-polynomial activations).
There, the non-degeneracy assumption simply means that the inputs are not parallel to each other
(i.e. xi ∦ xj whenever i ̸= j for any 1 ≤ i, j ≤ N ), a property that holds almost surely if the
data distribution P has a density w.r.t. Lebesgue measure. In the case of finite-width networks with
M > N , the result still holds with a high probability when u is sampled from a Gaussian [28].

3.2 Generalized Gauss-Newton dynamics

To solve (1), we consider optimization dynamics based on a generalized Gauss-Newton method.
To this end, we denote by Jw the Jacobian of (fw(x1), ..., fw(xN )) w.r.t. parameter w which can
be viewed as a linear operator from W to RN . Moreover, ∇L(fw) denotes the vector of size N
representing the gradient of L w.r.t. the outputs (fw(x1), ..., fw(xN )). We can then introduce the
Gauss-Newton vector field Φ : W → W defined as:

Φ(w) := (J⊤
wHwJw + ε(w)I)−1J⊤

w∇L(fw),

where Hw is a symmetric positive operator on L2(P̂) and ε(w) is an optional non-negative (possibly
vanishing) damping parameter. Starting from some initial condition w0 ∈ W and for a given positive
step-size γ, the Gauss-Newton updates and their continuous-time limit are given by:

wk+1 = wk − γΦ(wk), ẇt = −Φ(wt). (4)
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The continuous-time limit is obtained by taking the step-size γ to 0 and rescaling time appropri-
ately. When Hw is given by the Hessian of L, the dynamics in (4) recovers the generalized Gauss-
Newton dynamics in continuous time when no damping is used [44] and recovers the continuous-
time Levenberg-Maquardt dynamics when a positive damping term is added [35]. When the matrix
Hw is the identity Hw = I , the resulting dynamics is tightly related to the natural gradient [2, 30].
More generally, we only require the following assumption on Hw:

(B) Hw is continuously differentiable in w with eigenvalues in [µH , LH ] for positive LH , µH .

Optional damping. Amongst possible choices for the damping, we focus on ε(w) of the form:

ε(w) = ασ2(w) (5)

where α is a non-negative number α ≥ 0, and σ2(w) is the smallest eigenvalue of the Neural Tangent
Kernel (NTK) Aw := JwJ

⊤
w which is invertible whenever Jw is surjective. This choice allows us to

study the impact of scalar damping on the convergence rate of the GN dynamics. While computing
σ2(w) is challenging in practice, we emphasize that the damping is only optional and that the case
when no damping is used, i.e. when α = 0, is covered by our analysis.

4 Convergence analysis

4.1 Global convergence under no-blow up

We start by showing that the continuous-time dynamics in (4) converge to a global optimum provided
that it remains defined at all times.
Proposition 1. Let w0 = (v0, u0) ∈ W be an initial condition so that u0 satisfies Assumption (A).
Under Assumption (B) and assuming that the activation γ is twice-continuously differentiable, there
exists a unique solution to the continuous-time dynamics in (4) defined up to some maximal, possibly
infinite, positive time T . If T is finite, we say that the dynamics blows-up in finite time. If, instead
T is infinite, then fwt

converges to a global minimizer of L. Moreover, denoting by µ the strong
convexity constant of L and defining µGN := 2µ/(LH(1 + α/µH)), it holds that:

L(fwt
) ≤ L(fw0

)e−µGN t. (6)

Proposition 1 is proved in Appendix B.2. It relies on the Cauchy-Lipshitz theorem to show that the
dynamics are well-defined up to a positive time T and uses strong convexity of L to obtain the rate
in (6). The result requires a smooth non-linearity, which excludes ReLU. However, it holds for any
smooth approximation to ReLU, such as SiLU. As we discuss in Section 5, this does not make a large
difference in practice as the approximation becomes tighter. The rate in (6) is only useful when the
dynamics is defined at all times which is far from obvious as the vector field Φ can diverge in a finite
time causing the dynamics to explode. Thus, the main challenge is to find conditions ensuring the
vector field Φ remains well-behaved which is the object of Section 4.2.

Comparaison with gradient flow. The rate in (6) only depends on the strong-convexity constant µ
of L, the smoothness constant of H , and damping strength α, with the fastest rate achieved when no
damping is used, i.e. α = 0. For instance, when choosing H to the identity and α = 0, the linear
rate becomes µGN = 2µ. This is in contrast with a gradient flow of w 7→ L(fw) for which a linear
convergence result, in the kernel regime, follows from [15, Theorem 2.4]:

L(fwt) ≤ L(fw0)e
µGDt,

with µGF := µσ(w0)/4 where σ(w0) is the smallest singular value of the initial NTK matrix Aw0
.

In practice, µGF ≪ µGN since the linear rate µGF for a gradient flow is proportional to σ(w0),
which can get arbitrarily small as the training sample size N increases thus drastically slowing
down convergence [43].

4.2 Absence of blow-up for almost-optimal initial linear layer

In this section, we provide a condition on the initialization w0 = (v0, u0) ∈ W ensuring the Gauss-
Newton dynamics never blows up. We start with a simple result, with a proof in Appendix B.1,
showing the existence of a vector v⋆ so that w⋆ := (v⋆, u0) ∈ W interpolates the training data
whenever the over-parameterization assumption Assumption (A) holds for a given u0.
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Proposition 2. Let w0 = (v0, u0) ∈ W be an initial condition so that u0 satisfies Assumption (A).
Define Γ(u) :=

(
γ(u⊤xn)

)
1≤n≤N

and F ⋆ := (f⋆(x1), ..., f
⋆(xN )) and let v⋆ be given by:

v⋆ = Γ(u0)G(u0)F
⋆.

Then the vector w⋆ = (v⋆, u0) ∈ W is a global minimizer of w 7→ L(fw) and a fixed point of the
Gauss-Newton dynamics, i.e. Φ(w⋆) = 0.

The above result ensures a global solution can always be found by optimizing the linear weights
while keeping the hidden weights fixed. In practice, this can be achieved using any standard opti-
mization algorithm such as gradient descent since the function v 7→ l(v) = L(f(v,u0)) converges to
a global optimum as it satisfies a Polyak-Lojasiewicz inequality (see Proposition 4 in Appendix B.1).
However, this procedure is not of interest here as it does not allow us to learn the hidden features.
Nonetheless, since w⋆ = (v⋆, u0) is a fixed point of the Gauss-Newton dynamics, we can expect
that an initial condition w0 = (v0, u0), where v0 is close to v⋆, results in a well-behaved dynamics.
The following proposition, proven in Appendix B.4, makes the above intuition more precise.
Proposition 3. Let w0 = (v0, u0) ∈ W be an initial condition so that Assumption (A) holds, i.e.
the gram matrix G(u0) is invertible, and denote by σ2

0 the smallest eigenvalue of G(u0). Assume
that the activation γ is twice-continuously differentiable and that Assumption (B) holds. Let R be
any arbitrary positive number and define CR = supw∈B(w0,R) ∥∂wJw∥op where ∥.∥op denotes the
operator norm. If the linear layer is almost optimal v0 in the sense that:

∥∇L(fw0
)∥ < ϵ, ϵ := (µµHµGN/8LN)min(R,C−1

R )min
(
σ0, σ

2
0

)
, (7)

then (4) is defined at all times, i.e. T= + ∞, the objective L(fwt
) converges at a linear rate to 0

according to (6) and the parameters wt remain within a ball of radius R centered around w0.

Proposition 3 essentially states that the dynamics never blow up, and hence, converge globally at the
linear rate in (6) by Proposition 1, provided the hidden features are diverse enough and the initial
linear weights optimize the objective well enough. As discussed in Section 3.1, the first condition on
the hidden weights u0 typically holds for a Gaussian initialization when the data are non-degenerate.
Additionally, the near-optimality condition on the linear weights v0 can always be guaranteed by
optimizing the linear weights while keeping the hidden ones fixed.

Remark 1. In the proof of Proposition 3, we show that the occurrence of a finite-time blow-up
is tightly related to the Neural Tangent Kernel matrix Awt

becoming singular at t increases which
causes the vector field Φ to diverge. When the NTK matrix Awt

at time t is forced to remain close
to the initial one Aw0 , as is the case in the NTK limit considered in [11], one can expect that the
singular values of Awt remain bounded away from 0 since this is already true for Aw0 . Therefore,
the main technical challenge is the study, performed in Propositions 7 to 9 of Appendix B.3, of the
time evolution of the eigenvalues of Awt

in the mean-field limit, where Awt
is allowed to differ

significantly from the initial NTK matrix Aw0
. The final step is to deduce that, while the weights

wt are allowed to be in a ball centered in w0 of arbitrarily large radius R, the singular values remain
bounded away from 0 provided the initial linear weights v0 satisfy the condition in (7).

Remark 2. Comparing Proposition 3 to the convergence results for gradient flows in the kernel
regime [15, Theorem 2.4], our result also holds for an infinite dimensional space of parameters such
as in the mean-field limit of one-hidden layer network. Moreover, while [15, Theorem 2.4] requires
the norm wt to be within a ball of fixed radius R0 determined by initial smallest singular value
σ(w0) of Aw0

, our result allows wt to be within arbitrary distance R regardless of the initial σ(w0)
provided the condition in (7) holds. Proposition 3 is more similar in flavor to the convergence result
of the Wasserstein gradient flow for some probability functionals in [13, Theorem 3.3, Corollary
3.4] which requires the initial objective to be smaller than a given threshold.

While the results of this section guarantee global convergence of the training objective, they do not
guarantee learning features that generalize well. Next, we empirically show that GN can exhibit
regimes where it yields solutions with good generalization properties.

5 Empirical study of generalization for a Gauss-Newton algorithm

We perform a comparative study between gradient descent (GD) and Gauss-Newton (GN) method in
the context of over-parameterized networks. Since we observed little variability when changing the

6



seed, we have chosen to use a single seed for the sake of clarity in the figures when presenting the
results of this section, while deferring the analysis for multiple seeds to Appendix C.1. Additional
experiments using MNIST dataset [16] are provided in Appendix C.4. The results presented below
were obtained by running 720 independent runs, each of which optimizes a network given a specific
configuration on a GPU. The total time for all runs was 3600 GPU hours.

5.1 Experimental setup

We consider a regression task on a synthetic dataset consisting of N training points (Xn, Yn)1≤n≤N .
The objective is to minimize the mean-squared error L(fw), defined in (1), over the parameters w
of a model fw that predicts the target values Yn based on their corresponding input points Xn.

Data generation. We generate N i.i.d. samples denoted as (Xn)1≤n≤N from a standard Gaussian
distribution of dimension d = 10. Each corresponding target Yn is obtained by applying a predefined
function f⋆, referred to as the teacher network, to the input Xn (i.e., Yn = f⋆(Xn)). We choose
f⋆ to be a one-hidden layer network of the form in (10) with M⋆ = 5 hidden units (v⋆i , u

⋆
i )1≤i≤M⋆

drawn independently from a standard Gaussian distribution. Furthermore, we consider two non-
linearities γ when defining f⋆: the widely used ReLU activation [37] for the main results and its
smooth approximation SiLU for additional ablations in Appendix C.3. This choice of target function
f⋆ results in a hidden low-dimensional structure in the regression task as f⋆ depends only on 5-
dimensional linear projection of the input data. In most cases, we take the size of the training data to
be N = 500 except when studying the effect of the training size. This choice allows us to achieve a
balance between conducting an extensive hyper-parameter search and being able to compute precise
GN updates on the complete training data within a reasonable timeframe. Finally, we generate 10000
test samples to measure the generalization error.

Model. We consider a well-specified setting where the model w 7→ fw, referred to as the student
network, is also a one-hidden layer with the same activation function γ as the teacher network
f⋆. Importantly, the student network possesses a number M = 5000 of hidden units, denoted as
w := (vi, ui)1≤i≤M , which is much larger than the teacher’s number of units M⋆ = 5 and allows
fitting the training data perfectly (over-parameterized regime). Following [15], we also normalize
the output of the student fw by M to remain consistent with the mean-field limit as M increases.

Initialization. We initialize the student’s hidden units according to a centered Gaussian with stan-
dard deviation (std) τ0 ranging from 10−3 to 103. Varying the initial std τ0 allows us to study the
optimization dynamics in two regimes: the kernel regime (large values of τ0) and the feature learn-
ing regime (small values of τ0). Finally, we initialize the weights of the last layer to be 0. This
choice allows us to perform a systematic comparison with the minimum norm least squares solution
obtained using random features as described next.

Methods and baselines. We consider three optimization methods for the model’s parameters: a
regularized version of Gauss-Newton (GN), gradient descent (GD), and optimizing the linear layer
parameters alone, which can be viewed as a random features (RF) model.
(GN): We use the discrete GN updates in (4) with a constant step-size λ and Hw = I . Each update
is obtained using Woodbury’s matrix identity by writing Φ(wk)=J⊤

wk
zk with zk the solution of a

linear system
(
Jwk

J⊤
wk

+ϵ(wk)I
)
zk=∇L(fwk

) of size N . Here, we use the damping defined in (5)
with α=1 and ensure it never falls below ϵ0 = 10−7 to avoid numerical instabilities. In practice, we
found that small values of ϵ0 had little effect on the results (see Figure 4 (Right) of Appendix C.1).
(GD): The model’s parameters w are learned using gradient descent with a constant step-size λ.
(RF): Instead of optimizing the entire parameter vector w = (v, u) of the model fw, we selectively
optimize the parameter v of the linear layer while keeping the weights u of the hidden layer con-
stant. This procedure corresponds to computing a minimal-norm least squares solution vRF for a
random features (RF) model, where the features are obtained from the output of the hidden layer at
initialization. Specifically, the solution vRF is obtained as

vRF = Γ(u)(Γ(u)⊤Γ(u))†Y, (8)

where Γ(u) = (γ(u⊤Xn))1≤n≤N ∈ RM×N is the feature vector computed over the training data,
and Y is a vector of size N consisting of the target values Yn. The choice of the un-regularized
solution as a baseline is supported by recent findings [22], demonstrating its good generalization in
the over-parameterized regime.
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Stopping criterion. For both (GD) and (GN), we perform as many iterations as needed so that the
final training error is at least below 10−5. Additionally, we stop the algorithm whenever the training
error drops below 10−7 or when a maximum number of iterations of KGD = 106 iterations for (GD)
and KGN = 105 iterations for (GN) is performed. For (RF) we solve the linear system exactly using
a standard linear solver.

5.2 Performance metrics

In addition to the training and test losses, we introduce two complementary metrics to assess the
quality of the hidden features Γ(u) learned by the student model.

Weighted cosine distance (WCD). Measuring proximity between the student and teacher’s hidden
weights (u1, ..., uM ) and (u⋆

1, ..., u
⋆
M⋆) requires being able to find a correspondance between each

student’s parameter ui and a teacher’s one u⋆
j . When using a positively homogeneous non-linearity

such as ReLU, only the alignment between vectors is relevant. However, since the student’s model
is vastly over-parameterized, there could be vanishing weights ui = 0 which do not influence on
the network’s output, while the remaining weights are well aligned with the teacher’s weights. We
introduce the following weighted distance to account for these specificities:

WCD(u, u⋆) = 2

M∑
i=1

pi

(
1− max

1≤j≤M⋆

u⊤
i u

⋆
j

∥ui∥
∥∥u⋆

j

∥∥
)
, pi =

∥ui∥2∑M
k=1 ∥uk∥2

. (9)

Equation (9) finds a teacher’s parameter u⋆
j that is most aligned with a given student’s parameter ui

and downweights its cosine distance if ui has a small norm. In practice, we found this measure to
be a good indicator for generalization.

Test loss after linear re-fitting (Test-LRfit). To evaluate the relevance of the hidden features Γ(u),
we train a new linear model ṽ on those features and measure its generalization error. In practice,
we freeze the weights u of the hidden layer and fit the last layer v using the procedure (8) described
above for the random features (RF) baseline. In our over-parameterized setting, this new model
should always achieve perfect training loss, but its generalization error strongly depends on how the
features were learned.

5.3 Numerical results

Implicit bias of initialization. Figure 1(Left) shows that GN and GD generalize more or less well
compared to a random features model depending on the variance τ0 of the weights at initialization.
First, in the case of the RF model, changing τ0 barely affects the final training and test error. This
is essentially due to the choice of the non-linearity ReLU which is positively homogeneous. Second,
for large τ0, the final test error of both GN and GD matches that of RF suggesting that the dynam-
ics were running under the kernel regime/lazy regime [15, 23] where the final layer’s weights are
learned without changing the hidden features much. Finally, for small values of τ0, both GN and
GD obtained a better test error than RF which can only be explained by learning suitable hidden
features. These results are further confirmed when varying the size of the training set as shown
in Appendix C.2. In Appendix C.3, we performed the same experiment using SiLU non-linearity
instead of ReLU and observed the same transition between the kernel and feature learning regimes.
While prior works such as [11] analyzed Gauss-Newton in the kernel learning regime, our results
indicate that Gauss-Newton can also exhibit a feature learning regime for small values of τ0.

Implicit bias of the step size. Figure 1(Right) shows that increasing the step size in Gauss-Newton
results in features that do not generalize well. This is unlike gradient descent where larger step sizes
yield better-performing features3. This behavior is first observed in the top figures showing an in-
creasing weighted cosine distance (WCD) between the student’s hidden weights and the teacher’s
weights as the step size increases in the case of Gauss-Newton. On the contrary, the distance de-
creases with larger step sizes in the case of gradient descent, indicating that the algorithm learns
better features. This effect is also confirmed when computing the test loss after refitting the linear
layer to the training data exactly while keeping the learned hidden weights fixed (see linear re-fitting
in Section 5.2). Several works, such as [3, 36], highlight the importance of taking large step-sizes

3The step size can be taken as large as possible provided the algorithm does not diverge. In our experiments,
we found that going beyond a step size of λ = 103 for GD results in a divergence of the algorithm
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Figure 1: Final values of various metrics vs std of the hidden layer’s weights at initialization τ0 (left)
and step size (right) for a ReLU network. (Left figure) The training size is set to N = 500 while τ0
ranges from 10−3 to 102. For both GD and GN, results are reported for the best-performing step-size
λ selected according to the test loss on a regular logarithmic grid ranging from 10−3 to 103. (Right
figure) The std of the weights at initialization is set to τ0 = 10−3. All models are optimized up to a
training error of 10−6 or until the maximum number of steps is exceeded, (M = 5000 , N = 500).

for gradient descent, to improve generalization, our results show that Gauss-Newton benefits instead
of using smaller step-sizes. As shown in Appendix C.3, this behavior persists when using a different
non-linearity, such as SiLU with different values for β (1 and 106). Interestingly, we observed that
GN might underperform GD as the parameter β defining SiLU decreases making SiLU nearly linear
and less like ReLU. In all cases, while the final test loss remains large for small step sizes (in both GD
and GN), the test loss after linear re-fitting is much lower in the case of Gauss-Newton, indicating
that the algorithm was able to learn good features while the last layer remained under-optimized.

Hidden feature learning. Figure 2 (Left) shows the evolution of various metrics, including
the WCD, the training, and test errors with the number of iterations for both GN and GD. For
each method, results for the best step size and variance at initialization are presented ((τ0, λ) =
(10−3, 102) for GD and (τ0, λ) = (10−3, 10−2) for GN). The bottom figure clearly indicates that
the early iterations of GN essentially optimize internal features first while barely improving the last
layer. This can be seen deduced from the training and test losses which remain almost constant at
the beginning of optimization, while the test loss after linear re-fitting steadily decreases with the
iterations. The last layer is learned only towards the end of training as indicated by a faster decrease
in both train and test objectives. Gradient descent displays a different behavior with test loss before
and after linear re-fitting remaining close to each other during optimization.

Better generalization of GN comes at the cost of a slower training. Figure 2 (Right) shows the
evolution of the same quantities as in the left figures for τ0 = 10−3 as a function of time (in seconds)
and for the three values of the step-size λ (10−2 (bright colors) 1 (medium colors) and 102 (dark
colors)). The figure shows that, while the training loss converges much faster for larger step sizes
in the case of GN, it does not result in the best generalization error as measured by the test loss
after linear re-fitting. Hence, better generalization comes at the cost of a slower convergence of the
training loss. Again, the behavior is quite different in the case of gradient descent for which larger
step sizes result in both faster optimization of the training objective and better generalization.

6 Conclusion

The results illustrate the importance of the initialization and choice of the step size for the general-
ization performance of GN when optimizing over-parameterized one-hidden layer networks. While
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Figure 2: Evolution of various metrics during training for both GD and GN. Both the variance
of the weights at initialization τ0 and step-size λ are selected from two sets {10−3, 1, 102} and
{10−2, 1, 102}. In all cases, we report results for the best-performing choice of τ0 (achieved for
τ0 = 10−3) based on test error after linear re-fitting (Test-LRfit). Both Top-Left and Bottom-Left
figures show the evolution of the WCD defined in (9) and the three metrics (the training loss, the
test loss and Test-LRfit) for both GD and GN using the step-size λ achieving the lowest Test-LRfit.
Top-Right and Bottom-Right figures show the evolution of WCD, train loss and test loss after linear
re-fitting for the various choices of step-size (darker colors correspond to larger step-sizes).

our theoretical analysis shows that GN can reach a global solution of the training objective when
starting from a close-to-optimal initialization, this result does not imply anything about the general-
ization properties of the obtained solution or the quality of the learned features. Our empirical study
instead shows that GN may favor feature learning (thus yielding improved generalization) at the cost
of a slower optimization of the training objective due to the use of a smaller step size. Providing
a theoretical analysis of these phenomena is an interesting direction for future work. Finally, our
study shows that the training or test error may not always be a good indicator of the quality of the
learned features due to an under-optimized final layer. Instead, a test/validation error after re-fitting
the linear layer may be a better indicator for the quality of the learned features which can be of
practical use.
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A Background: NTK vs mean-field limits, kernel vs feature learning regimes

We provide a brief discussion of the notions of NTK and mean-field limits as well as the related
convergence regimes for a gradient flow. Given a non-polynomial point-wise and differentiable
activation function γ and some positive integer M , consider the following one-hidden network:

fw(x) = α(M)

M∑
i=1

viγ(u
⊤
i x), w = (v, u) ∈ W := RM × RM×d, (10)

where α(M) is a scaling factor that depends on the number of neurons M . For simplicity, we assume
that the weights (vi, ui) are i.i.d. samples from a Gaussian. We are interested in the dynamics of a
gradient flow when M increases to +∞ and for specific choices of the scaling factor α(M). First,
let’s introduce some notations. We denote by F (w) the vector of evaluation of the network on the
training data F (w) = (fw(x1), . . . , fw(xN )) and by Jw the Jacobian of F (w) w.r.t. parameter w.
Moreover, we introduce the NTK matrix Aw := JwJ

⊤
w which is an N × N symmetric positive

semi-definite matrix. Finally, ∇L(fw) denotes the vector of size N representing the gradient of L
w.r.t. F (w). The gradient flow of an objective L(Fw) is given by:

ẇt = −Jwt
∇FL(Fwt

),

Additionally, it is often informative to track the time evolution of the vector Fwt
, which is given by

the following ODE:

∂tFwt
= −Jwt

J⊤
wt
∇FL(Fwt

) = −Awt
∇FL(Fwt

). (11)
One can see from (11) that the NTK matrix Awt

arises naturally when expressing the dynamics of
the function Fwt

. We can even provide an explicit expression of Awt
using the NTK kernel, which

is a positive semi-definite kernel Kw(x, x
′) defined by the inner product:

Kw(x, x
′) = ∂wf(x)∂wf(x

′)⊤ = α(M)2
M∑
i=1

(
γ(u⊤

i x)γ(u
⊤
i x

′) + (vi)
2γ′(u⊤

i x)γ
′(u⊤

i x
′)x⊤x′).

The NTK matrix Aw is then formed by collecting the values (Kw(xi, xj))1≤i,j≤N on the training
data. It is easy to see that when α(M) = 1√

M
, then Kw(x, x

′) converges to an expectation under
the distribution of the weights (vi, ui)1≤i≤M under mild conditions. In this case, Aw depends on
the choice of the distribution of the weights (vi, ui)1≤i≤M and not on the particular samples. On
the other hand, when α(M) = 1

M , it is the function fw itself that converges to an expectation under
the distribution of the weights. This distinction will lead to different qualitative dynamics for the
gradient flows as we discuss next.

A.1 The Neural Tangent Kernel limit and the kernel regime (α(M) = 1√
M

)

When choosing α(M) = 1√
M

and setting M → +∞, it is shown in [23] that the NTK matrix Awt

remains constant in time and depends only on the distribution of the weights w0 at initialization.
Hence, Fwt

is effectively the solution of the ODE:
∂tFt = −Aw0

∇FL(Ft), F0 = Fw0
,

which converges at a linear rate to a global minimizer of L whenever Aw0
is invertible and L is

strongly convex. The NTK limit results in a kernel regime, where the resulting solution is equivalent
to the one obtained using a kernel method with the initial NTK kernel Kw0

(x, x′) [15, 23].

A.2 The mean-field limit and the feature learning regime (α(M) = 1
M )

When choosing instead α(M) = 1
M , it is possible to view the limiting function as an expectation

over weights drawn from some probability distribution ρ

fρ(w) =

∫
vγ(u⊤x) dρ(v, u).

In [48], it is further shown that such a formulation is essentially equivalent to the one considered in
(3). As a result, the time evolution in (11) does not simplify as in the NTK limit, since the NTK
matrix Awt

(and NTK kernel Kwt
) is allowed to evolve in time. This is a limit in which feature

learning is possible since the dynamics do not necessarily simplify to a kernel method.
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B Proofs

Notations. For an operator A between two Hilbert spaces, denote by ∥A∥op its operator norm and
by ∥A∥F its Frobenius norm and let σ⋆(A) be its smallest singular value whenever it is well-defined.
Denote by B(w,R) the open ball of radius R centered at an element w in a Hilbert space.

B.1 Over-parameterization implies interpolation.

Proof of Proposition 2. Denote by F ⋆ = (f⋆(x1), ..., f
⋆(xn)). First, it is easy to see that the matrix

∂vfw∂vf
⊤
w is exactly equal to the N × N matrix G(u0) considered in Assumption (A), which is

assumed to be invertible. Moreover, ∂vfw is independent of v since f(v,u0) is linear in v. Hence, we
can simply choose:

v⋆ = (∂vf(v,u0))
†F ⋆ = (∂vf(v,u0))

⊤(∂vf(v,u0)∂vf
⊤
(v,u0)

)†F ⋆ = (∂vf(v,u0))
⊤G(u0)

−1F ⋆.

Moreover, using again the linearity of f in v, we have that

f(v⋆,u0) = ∂vf(v⋆,u0)v
⋆ = G(u0)G(u0)

−1F ⋆ = F ⋆.

We have therefore shown that w⋆ = (v⋆, u0) is a global minimizer of w 7→ L(fw). Finally, since
∇L(fw⋆) = ∇L(f⋆) = 0, it follows that ϕ(w⋆) = 0.

Proposition 4. Assume that Assumption (A) holds for some vector u0. Then, the function v 7→
l(v) = L(f(v,u0)) is convex and satisfies a Polyak-Lojasiewicz inequality:

∥∇ul(u)∥2 ≥ 2µσ2
0(l(u)− L(f⋆)).

with µ the strong convexity constant of L and σ2
0 the smallest singular value of the matrix G(u0)

appearing in Assumption (A).

Proof. It is easy to see that l(v) is convex as a composition of a strongly convex function L and a
linear function v 7→ f(v,u0). We will show now that l satisfies a Polyak-Lojasiewicz (PL) inequality.
To this end, we make the following calculations:

∥∇ul(u)∥2 = ∇fL(fw)⊤∂vfw∂vf⊤
w∇fL(fw). (12)

It is easy to see that the matrix ∂vfw∂vf
⊤
w is exactly equal to the N×N matrix G(u0) considered in

Assumption (A), which is assumed to be invertible. Hence, its smallest singular value σ2
0 is positive

and the following inequality holds:

∥∇ul(u)∥2 ≥ σ2
0∥∇fL(fw)∥2. (13)

On the other hand, since L is strongly convex and differentiable, then it satisfies the following PL
inequality:

∥∇fL(fw)∥2 ≥ 2µ(L(fw)− L(f⋆)), (14)

where µ is the strong convexity constant of L. Hence, we get the desired inequality by combining
(13) and (14):

∥∇ul(u)∥2 ≥ 2µσ2
0(l(u)− L(f⋆)).

B.2 Global convergence under no blow-up: Proof of Proposition 1

In this section we prove the global convergence result under no blow-up stated in Proposition 1. We
start by stating the smoothness assumption on the activation function γ as we will be using it in
many places.

(C) The non-linearity γ is twice-continuously differentiable.

As a first step, we need to prove a local existence and uniqueness of the solution to the ODE in (4)
which results from Cauchy-Lipschitz theorem applied to the vector field Φ. To this end, a key step
is to show that Φ is locally Lipschitz near initialization when the Jacobian Jw0

is surjective.
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Proposition 5 (Regularity of Φ.). Assume (B) and (C) and that w0 satisfies Assumption (A). Then,
there exists a neighborhood of w0 so that Φ(w) is locally Lipschitz in w.

Proof of Proposition 5. By application of the Woodbury matrix identity, Φ can be equivalently writ-
ten as:

Φ(w) = J⊤
w

(
JwJ

⊤
w + ε(w)H−1

w

)−1
H−1

w ∇L(fw). (15)

Moreover, by the smoothness assumption, Jw, Hw, ϵ(w) and ∇L(fw) are all differentiable in w.
Additionally, since Jw0

is surjective, it must hold that σ2(w) > 0 in a neighborhood of w0 so that
JwJ

⊤
w remains invertible. Finally, since Hw is always positive, it holds that

(
JwJ

⊤
w + ε(w)H−1

w

)−1

and H−1
w are differentiable in a neighborhood of w0. Therefore, Φ is Locally Lipschitz in a neigh-

borhood of w0.

The next proposition establishes the existence and uniqueness of the dynamics defined in (4).

Proposition 6 (Local existence). Under the same conditions as Proposition 5, there exists a unique
solution (wt)t≥0 to (4) defined up to a, possibly infinite, maximal time T > 0.

Proposition 6 is a direct consequence of the Cauchy-Lipschitz theorem which holds since the vector
field Φ(w) is locally Lipschitz in w in a neighborhood of w0 by Proposition 5. The above local
existence result does not exclude situations where the dynamics blow up in finite time T < +∞
and possibly fail to globally minimize the objective L. We will show, later, that finite-time blow-ups
never occur under additional assumptions on the initial condition.

Proof of Proposition 1. Existence and uniqueness of the continuous-time dynamics up to a maximal
time T > 0 follows from Proposition 6. It remains to obtain the global convergence rate when T
is infinite. For simplicity, we will ignore the dependence on wt in what follows and will write
b := ∇L(fwt). By differentiating the objective in time, we get the following expression:

∂t[L(fwt
)] = −b⊤J

(
J⊤HJ + εI

)−1
Jb

= −b⊤H−1b+ εb⊤H−1
(
JJ⊤ + εH−1

)−1
H−1b

= −b⊤H−1b+ εb⊤H− 1
2

(
H− 1

2

(
JJ⊤ + εH−1

)−1
H− 1

2

)
H− 1

2 b

≤ −b⊤H−1b

(
1− ε

∥∥∥H− 1
2

(
JJ⊤ + εH−1

)−1
H− 1

2

∥∥∥
op

)
≤ −b⊤H−1b

(
1− ε

ε+ σ⋆(H)σ⋆(JJ⊤)

)
︸ ︷︷ ︸

≥η:=(1+α/µH)−1

≤ −ηb⊤H−1b ≤ −ηL−1
H ∥b∥2 ≤ −2ηµL−1

H L(fwt
).

We used the Woodbury matrix inversion lemma to get the second line while the third and fourth lines
use simple linear algebra. To get the fifth line, we used Lemma 3 to upper-bound the operator norm
appearing in the fourth line. The last line follows by definition of ε(w), the fact that H ≤ LHI and
the fact that 1

2∥∇L(f)∥2 ≥ µL(f) by µ-strong convexity of L. This allows to directly conclude
that L(fwt

) ≤ L(fw0
)e−µGN t, with µGN := 2ηµL−1

H .

B.3 Control of the singular values of NTK matrix

In this section, we are interested in the evolution of the smallest singular value of the NTK matrix
Awt

:= Jwt
J⊤
wt

. For any arbitrary positive radius R > 0, define the constant CR and stopping time
TR as follows:

CR := sup
w∈B(w0,R)

∥∂wJw∥op < +∞

TR := sup {t ≥ 0 |∥wt − w0∥ < R, and σ⋆(Awt
) > 0},

16



The stopping time TR characterizes the smallest-time when the dynamics becomes either degenerate
(σ⋆(Awt) = 0) or grows too far away from initialization (wt ̸= B(w0, R)).

To control the singular values of Awt
, we find it useful to consider the dynamics of the Frobenius

norm of the pseudo-inverse J†
w which we denote by at :=

∥∥∥J†
t

∥∥∥
F

.

Indeed, simple linear algebra provides the following lower-bound on σ⋆(Awt
) in terms of at:

σ⋆(Awt
) ≥ a−2

t . (16)

Note that, while the space of parameters can even be infinite-dimensional (mean-field limit), Jw has
a finite-dimensional range and thus always admits a pseudo-inverse J†

w given by:

J†
w = J⊤

w (JwJ
⊤
w )†.

The next proposition provides a differential inequality for at =
∥∥J†

wt

∥∥
F

in terms of ∥ẇt∥ that holds
for all times smaller than TR.
Proposition 7. Assume (B) and (C) and that w0 satisfies Assumption (A), then for any R > 0, the
time TR is positive and smaller than the maximal time T , i.e. 0 < TR ≤ T . Moreover, for any
t ∈ [0, TR), at satisfies:

|ȧt| ≤ a2tCR∥ẇt∥,

Proof. Positive stopping time TR. By construction, TR must be smaller than T as it requires wt

to be well-defined. Moreover, Jw0
is surjective by assumption and Jw is continuous in w, therefore

Jwt
must also be surjective for small enough positive times t > 0. Additionally, it must hold that

∥wt − w0∥ ≤ R for small positive times, by continuity of t 7→ wt. This allows shows that TR > 0.

Dynamics of J†
wt

. By smoothness of Jw it holds that J†
wt

is differentiable on the open interval
(0, TR) and satisfies the following ODE obtained by direct differentiation:

J̇†
t = −J†

t J̇tJ
†
t + (I − Pt)J̇

⊤
t

(
JtJ

⊤
t

)−1
. (17)

In (17), we introduced notation Jt := Jwt and its time derivative J̇t for simplicity and denote by Pt,
the projector: Pt := J⊤

t

(
JtJ

⊤
t

)−1
Jt.

Controlling |ȧt|. Taking the time derivative of at and recalling the evolution (17) yields:

atȧt = −
(
J†
t

)⊤
J†
t J̇tJ

†
t .

where we used that
(
J†
t

)⊤
(I − Pt) = 0 by Lemma 1 in Appendix B.5. Furthermore, taking the

absolute value of the above equation, and recalling that the Frobenius norm is sub-multiplicative for
the product of operators (Lemma 4 in Appendix B.5), we directly get:

at|ȧt| ≤
∣∣∣∣(J†

t

)⊤
J†
t J̇tJ

†
t

∣∣∣∣ ≤ a3t

∥∥∥J̇t∥∥∥
F
. (18)

By the chain rule, we have that J̇t = ∂wJtẇt therefore,
∥∥∥J̇t∥∥∥

F
≤ ∥∂wJt∥op∥ẇt∥. Moreover,

since t < TR, then it must holds that wt ∈ B(w0, R) so that ∥∂wJt∥op ≤ CR. Henceforth,∥∥∥J̇t∥∥∥
F
≤ CT ∥ẇt∥ and (18) yields the desired inequality after dividing by at which remains positive

all times t ∈ [0, TR) since Jt does not vanish.

The next proposition provides an estimate of the time derivatives |ȧt| and ∥ẇt∥ up to time TR. For
simplicity, we introduce the notation ∆t = ∥∇L(fwt

)∥.
Proposition 8. Assume (B) and (C) and that w0 satisfies Assumption (A). Then, for any R > 0, the
time TR is positive and smaller than the maximal time T up to which (4) is defined, i.e. 0 < TR ≤
T . Moreover, define C := Lµ−1µ−1

H ∆0CR. Then at and ∥ẇt∥ satisfy the following differential
inequality on [0, TR):

|ȧt| ≤ Ca3t e
−µGN

2 t

∥ẇt∥ ≤ CC−1
R ate

−µGN
2 t
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Proof of Proposition 8. By application of Proposition 7 to (wt)0≤t<T , we directly have that TR is
positive and smaller than T and the following estimate holds for any t < TR:

|ȧt| ≤ a2tCR∥ẇt∥,
It remains to upper-bound ∥ẇt∥.
Controlling ∥ẇt∥. Ignoring the dependence on wt in the notations for simplicity and setting
B := H

1
2 J , we have, by definition of the dynamical system (4):

∥ẇt∥ ≤
∥∥∥(J⊤HJ + εI

)−1
J⊤∇L(f)

∥∥∥
=
∥∥∥J⊤(JJ⊤ + εH−1

)−1
H−1∇L(f)

∥∥∥
=
∥∥∥B⊤(BB⊤ + ε

)−1
H− 1

2∇L(f)
∥∥∥

≤
∥∥∥BB⊤(BB⊤ + εI

)−2
∥∥∥ 1

2

F

∥∥∥H− 2
2∇L(f)

∥∥∥
≤
∥∥B†∥∥

F
∥∇L(f)∥

≤ µ−1
H

∥∥J†∥∥
F
∥∇L(f)∥ = µ−1

H at∆t,

where the second line follows by the Woodbury matrix identity, and the third line follows by simple
linear algebra. For the fourth line, we use the properties of the Frobenius norm. The fifth and last
lines are direct consequences of Lemmas 2 and 4 in Appendix B.5.
Concluding. We can combine the upper-bound on |ȧt| and ∥ẇt∥ to get:

|ȧt| ≤ µ−1
H CRa

3
t∆t.

Finally, since t ≤ T , it follows from Proposition 1 that ∆t ≤ L
µ∆0e

−µGN
2 t which allows to con-

clude.

The next proposition controls at and ∥wt − w0∥ in terms of TR, CR, and other constants.

Proposition 9. Consider the same conditions as in Proposition 8. Let ζ := 4L
µµHµGN

and consider
the (possibly infinite) time T+ defined as:

T+ = −2µ−1
GN log

(
1− (ζCR∆0a

2
0)

−1
)
,

with the convention that T+ = +∞ if 1 ≥ ζCR∆0a
2
0. Then for any time t < T− := min(TR, T

+)
it holds that:

∥wt − w0∥ ≤ ζ∆0a0, at ≤ a0

(
1 + ζCR∆0a

2
0

(
e−

µGN
2 t − 1

))− 1
2

(19)

Proof of Proposition 9. First, by Proposition 8, we know that at satisfies the following differential
inequality:

|ȧt| ≤ Ca3t e
−µGN

2 t,

with C := L
µHµ∆0CR. We will control at by application of Grönwall’s inequality. To this end,

consider the ODE:
ḃt = Cb3t e

−µGN
2 t, b0 = a0 > 0.

We know by Lemma 5 in Appendix B.5 that bt is given by:

bt = b0

(
1 + 4Cµ−1

GNb20

(
e−

µGN
2 t − 1

))− 1
2

,

= a0

(
1 + ζ2CR∆0µ

−1
GNa20

(
e−

µGN
2 t − 1

))− 1
2

for all times t < T+. Therefore, by Grönwall’s inequality, it must hold that at ≤ bt for all times
t < min(TR, T

+). Moreover, recalling now that ∥ẇt∥ ≤ Lµ−1µ−1
H ∆0ate

−µGN
2 t by Proposition 8,

we directly get that:

∥ẇt∥ ≤ C

CR
a0e

−µGN
2 t
(
1 + 4Cµ−1

GNb20

(
e−

µGN
2 t − 1

))− 1
2

. (20)
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Integrating the above inequality in time yields the following estimate on ∥wt − w0∥ for any t <
min(TR, T

+):

∥wt − w0∥ ≤
∫ t

0

∥ẇs∥ ds

≤
1−

(
1 + 4Cµ−1

GNa20

(
e−

µGN
2 t − 1

)) 1
2

CRa0

≤ 4L(µµHµGN )−1∆0a0 = ζ∆0a0,

where the second line follows by explicitly integrating the r.h.s. of (20) while the last line follows
by the concavity of the square-root function.

Proposition 9 shows that the Frobenius norm of the J†
t remains bounded at all times provided that

∆0a
2
0 is small enough, a quantity that depends only on the initial conditions. Moreover, it also

shows that making the product ∆0a0 small enough at initialization ensures that wt remains in a ball
of radius R around w0. We exploit these two consequences to prove Proposition 3 in Appendix B.4.

B.4 Absence of blow-up for almost-optimal initial linear layer: proof of Proposition 3

To prove Proposition 3, we rely on the results of Appendix B.3 which allow controlling the evolution
of the smallest singular value of the NTK matrix Awt

. More precisely, Proposition 3 is a direct
consequence of Proposition 9 with a particular choice for the initialization w0.

Proof of Proposition 3 . By assumption on w0, it holds that

∆0 := ∥∇L(fw0
)∥ < ϵ =

µµHµGN

8LN
min(R,C−1

R )min
(
σ0, σ

2
0

)
.

Moreover, by definition of a0 :=
∥∥∥J†

0

∥∥∥
F

and of σ2
0 = σmin(G(u0)), we know that a20 < Nσ−2

0 .
Hence, we get

∆0 <
1

2ζ
min(R,C−1

R )min
(
a−1
0 N− 1

2 , a−2
0

)
,

where we introduced ζ := 4L
µµHµGN

. This above inequality directly yields:

ζ∆0a0 ≤ R

2N
1
2

, ζCR∆0a
2
0 < 1, (21)

Therefore, we can use the above inequalities in the estimates (19) of Proposition 9 to get:

∥wt − w0∥ ≤ R

2N
1
2

, at ≤ a0
(
1− ζCR∆0a

2
0

)− 1
2 ,

for any time t ∈ [0, TR), where TR is defined as:

TR := sup {t ≥ 0 | ∥wt − w0∥ < R, and σ⋆(Awt) > 0}.

This implies, in particular, that wt never escapes the ball B(w0, R). Moreover, using (16) we
get that the smallest singular value σ⋆(A⊤

wt
) is always lower-bounded by a positive constant

σ̃ := a−2
0

(
1− ζCR∆0a

2
0

)
. Therefore, TR must necessarily be greater or equal to T , the maximal

time over which wt is defined. Additionally, if T was finite, then wt must escape any bounded do-
main. This contradicts the fact that wt ∈ B(w0, R). Therefore, T must be infinite and the inequality
(6) applies at all times t ≥ 0.

B.5 Auxiliary results

Lemma 1. Let J be a linear operator from a Hilbert space W to a finite-dimensional space H
and assume that JJ⊤ is invertible. Define the projector P = J⊤(JJ⊤)−1J . Then the following
relations hold:

(J†)⊤(I − P ) = 0
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Lemma 2. Let J be a linear operator from a Hilbert space W to a finite-dimensional space H and
assume that JJ⊤ is invertible. Then for any non-negative number ϵ, it holds that:∥∥JJ⊤(JJ⊤ + ϵI)−2

∥∥
F
≤
∥∥J†∥∥2

F

Lemma 3. Let W be a Hilbert space and R be a finite-dimensional euclidean space. Let J be a
linear operator from W to R and H an invertible operator from R to itself. Further, assume that
JJ⊤ is invertible. Then the following holds for any non-negative number ϵ:∥∥∥H− 1

2

(
JJ⊤ + ϵH−1

)−1
H− 1

2

∥∥∥
op

≤ 1

ϵ+ σ⋆(H)σ⋆(JJ⊤)
.

Lemma 4. Let J and K be two Hilbert-Schmidt operators between two Hilbert spaces. Then, it
holds that: ∥∥JK⊤∥∥

F
≤ ∥J∥op∥K∥F ≤ ∥J∥F ∥K∥F

Lemma 5. Let C and r be two positive constants. For a given initial condition b0 > 0, consider the
following differential equation:

ḃt = Cb3t e
−rt.

Then bt is defined for any time t < T+ where T+ is given by:

T+ =

{
r−1 log

(
1− r

2Cb20

)
, 2Cr−1b20 > 0

+∞ Otherwise.

Moreover, bt is given by:

bt = b0
(
1 + 2Cr−1b20

(
e−rt − 1

))− 1
2 , t < T+.

Proof. First note that a local solution exists by the Cauchy-Lipschitz theorem. Moreover, it must
never vanish since otherwise, it would coincide with the null solution bt = 0 by uniqueness. How-
ever, this is impossible, since b0 > 0. We can therefore divide the ODE by b3t and explicitly integrate
it which gives:

b−2
t = b−2

0 + 2r−1C
(
e−rt − 1

)
.

The solution is defined only for times t so that the r.h.s. is positive, which is exactly equivalent to
having t < T+.

C Additional experimental results

C.1 Multi-seed experiments

We present result obtained for 5 independent runs. Each run uses a different initialization for the
parameters of both student and teacher networks. Additionally, the training and test data are all
generated independently for each run. All these results are obtained using SiLU non-linearity. It is
clear from Figure 3, that the results display little variability w.r.t. the seed of the experiment, which
justifies the single-seed setting chosen in the main paper.

Effect of over-parameterization Figure 4 (Left) shows the effect of over-parameterization of
the network on generalization error. It appears that the generalization error remains stable with
an increasing parameterization for both GN and GD, as soon as the network has enough over-
parameterization to fit the data exactly. On the other hand, the test error of RF improves with
increasing over-parameterization which is consistent with [22].

Evolution of the smallest singular value of Aw. Figure 4 (Right) shows that the smallest singu-
lar value σ⋆(Aw) systematically increases during training, especially in the feature learning regime
(bright red colors). Hence, the dynamics are far from blowing up even as the features change sub-
stantially. On the other hand, σ⋆(Aw) remains nearly constant for large values of τ0 (darker colors)
which indicates that the features barely change in the kernel regime.
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Figure 3: (Left) Test error vs std of the initial weights τ0. All models are trained until the training
objective is smaller than 10−6 using M = 5000 hidden units and N = 500. Confidence interval
at 95% estimated from 5 independent runs shown in shaded colors. (Right) Test error vs training
sample size. All models are trained until the training objective is smaller than 10−6 using M = 5000
hidden units and initial std of the weights τ0 = 1. Confidence interval at 95% estimated from 5
independent runs shown in shaded colors.
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Figure 4: (Left) Test error vs number of hidden units, All models are trained using N = 2000
training samples until the training objective is smaller than 10−6. The initial std of the weights is
set to τ0 = 1. (Right) Evolution of σ⋆(Aw) during training using Gauss-Newton for different values
of the initial std τ0 of the weights. All models are trained using N = 500 training samples until
the training objective is smaller than 10−6. We used M = 5000 units. Confidence interval at 95%
estimated from 5 independent runs shown in shaded colors.

C.2 Effect of the sample-size

Figure 5 shows the evolution of the test error as the training sample size N varies in
{100, 200, 500, 1000, 1500} for two choices of activation functions: ReLU (Left) and SiLU (Right).
In both cases, we display the results for two different values for the initial std τ0 (10−3 and 1).
Results are reported for the best performing step size for each of GN and GD. The first observation
is that the performance gap between random features RF and learned features (using either GN or
GD) keeps increasing with the sample size. This observation suggests that the learned features use
training samples more efficiently than random features. The second observation is the almost affine
relation between the generalization error Ltest and training sample size in a logarithmic scale with
a strong dependence of the slope on the variance at initialization and the optimization method. Such
affine relation implies the following upper-bound on Ltest in terms of sample-size N :

Ltest ≤ C
1

Nα
,

for some positive constants C and α. The coefficient α controls the speed at which the estimator ap-
proximates f⋆ as one accesses more training data and usually appears in learning theory to describe
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the statistical convergence rate of a given estimator [46]. The consistent and strong dependence of
α on the optimization methods (GN vs GD) and regime (kernel vs feature learning) further confirms
the implicit bias of both initialization and optimization algorithms.
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Figure 5: Final values of various metrics vs training sample size for both ReLU (left) and SiLU
(right) networks. Two values for τ0 are displayed for each method τ0 ∈ {10−3, 1} while training
data ranges from N = 100 to N = 1500. All models are optimized until the training objective is
smaller than 10−6 using M = 5000 hidden units. For both GD and GN, results are reported for the
best-performing step-size λ selected according to the test loss on a regular logarithmic grid ranging
from 10−3 to 103.

C.3 Choice of the non-linearity

Figure 6 shows the effect of step-size on the final performance of a SiLU network with two choices
for the temperature parameter: β = 1 and β = 106. Similarly to Figure 1, it is clear that increasing
the step size in Gauss-Newton results in features that do not generalize well, while the opposite is
observed in case of gradient descent. On the other hand, depending on the value of β, we observe
that GN either outperforms GD (β = 106) or the opposite (β = 1). This variability suggests that
the effectiveness of an optimization method in improving generalization is dependent on the specific
characteristics of the problem at hand. Finally, note that for β = 106, we recover almost the same
results as those obtained for ReLU in Figure 1 (right). This is due to the fact SiLU becomes a tight
smooth approximation to ReLU for large values of β. We also notice that when using a larger std for
the initial weights (ex. τ0 = 1), using either ReLU or SiLU with (β = 1) yields similar results, as
shown in Figure 7.

C.4 Experiments on MNIST

We have performed a series of experiments on MNIST to illustrate the behavior of GN on higher
dimensional data (notably, with multidimensional targets). To stay as close as possible to the theoret-
ical framework, we modify the original MNIST dataset. Specifically, we construct a student/teacher
setup in which the trained network can achieve a zero-loss, which is an assumption made in Sec-
tion 3.1.

Building datasets based on MNIST by using a teacher. In our theoretical framework, we re-
stricted ourselves to cases where the minimum loss can be achieved on the considered model. To
make this condition hold, we build a new dataset by using a teacher trained on the MNIST classifi-
cation task [16]:

1. we construct a training set for the teacher which consists of Dtr∪Dts, where Dts is the orig-
inal MNIST test dataset and Dtr is a balanced subset of size 3000 of the original MNIST
training set;

2. we then train a teacher neural network with one hidden layer of size 50 and ReLU activation
function on training set Dtr ∪ Dts using a cross-entropy objective;

22



10 4 10 3 10 2 10 1 100 101 102 103

10 1

100

W
CD

WCD/Loss vs step size (beta=1)

10 4 10 3 10 2 10 1 100 101 102 103

Step size 

10 8

10 6

10 4

10 2

100

Lo
ss

Test loss (Linear re-fitting)
Test loss
Train loss

GD
GN
RF

GD
GN
RF

10 3 10 1 101 103

10 1

100

W
CD

WCD/Loss vs step size (beta=1e6)

10 3 10 1 101 103

Step size 

10 8

10 6

10 4

10 2

100

Lo
ss

Test loss (Linear re-fitting)
Test loss
Train loss

GD
GN
RF

GD
GN
RF

Figure 6: Final values of various metrics vs the step size for both SiLU network with β = 1 (left)
and β = 106 (right). (Right figure) The std of the weights at initialization is set to τ0 = 10−3.
All models are optimized up to a training error of 10−6 or until the maximum number of steps is
exceeded, (M = 5000 , N = 500).
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Figure 7: Final values of various metrics vs the step size for both ReLU (left) and SiLU (right)
networks. The std of the weights at initialization is set to τ0 = 1. All models are optimized up to a
training error of 10−6 or until the maximum number of steps is exceeded, (M = 5000 , N = 500).

3. given the trained teacher fT , we build new datasets D̄tr and D̄ts for the student network:

D̄tr := {(xi,Softmax(fT (xi))) : (xi, yi) ∈ Dtr},
D̄ts := {(xi,Softmax(fT (xi))) : (xi, yi) ∈ Dts}.

Training procedure. Once the pair of training and testing datasets (D̄tr, D̄ts) has been built, we
use them to train and test a student neural network based on (10), with one hidden layer of size 5000
and a ReLU activation function. We use a similar initialization scheme for the student’s network and
fix the std of the initial weights to τ0 = 0.001. For training, we use a quadratic loss between the
student and teacher’s outputs and perform a maximum of 100000 iterations of either GN or GD. The
training stops whenever the training loss goes below 10−6. We vary the step size λ on a logarithmic
range [10−3, 103] for both methods and evaluate the test loss and test loss after linear re-fitting.
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Figure 8: Final values of various metrics vs the step size for a ReLU network trained using MNIST
data. Std of the initial weights is set to τ0 = 0.001. For GD, results are displayed up to λ = 10 the
algorithm diverges for higher values.

Results. Figure 8 shows the evolution of the test loss (both with or without re-fitting) as a function
of the step size. We observe similar behavior as in the main experiments, with hidden learning
occurring for GN when using small step sizes and a degraded generalization error as the step size
increases. On the other hand, generalization improves for GD by increasing the step size up to the
point where optimization becomes unstable.
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