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Abstract

Heat transfer in the human eyeball, a complex organ, is significantly influenced by various pathophysiological

and external parameters. Particularly, heat transfer critically affects fluid behavior within the eye and ocular drug

delivery processes. Overcoming the challenges of experimental analysis, this study introduces a comprehensive

three-dimensional mathematical and computational model to simulate the heat transfer in a realistic geometry.

Our work includes an extensive sensitivity analysis to address uncertainties and delineate the impact of different

variables on heat distribution in ocular tissues. To manage the model’s complexity, we employed a very fast model

reduction technique with certified sharp error bounds, ensuring computational efficiency without compromising

accuracy. Our results demonstrate remarkable consistency with experimental observations and align closely with

existing numerical findings in the literature. Crucially, our findings underscore the significant role of blood flow

and environmental conditions, particularly in the eye’s internal tissues. Clinically, this model offers a promising

tool for examining the temperature-related effects of various therapeutic interventions on the eye. Such insights are

invaluable for optimizing treatment strategies in ophthalmology.

Keywords : mathematical and computational ophthalmology, heat transfer, validation, finite element method,

real-time model order reduction, uncertainty quantification, sensitivity analysis, Sobol index analysis.

1 Introduction

The development of new technologies allows us to simulate more and more complex models in order to apprehend

the world we live in. In this study, we will focus on a specific model: heat transfer inside the human eyeball. The

temperature of the eyeball may have an impact on the distribution of drugs in the eye, partly due to the aging of the

tissues [BBS20]. The model, originally introduced in [Sco88] to examine temperature rises induced by exposure to

infrared radiation, has been expanded upon in subsequent studies [Ng 06; NO07; ON08; Li+10] using diverse methods

for computing heat transfer.

While invasive studies on animals have been conducted [PW05], non-invasive measurements on human subjects are

scarce, complex to perform and may yield inaccurate results [RF77]. Most studies focus on temperature measurements

at the eye’s surface [Map68; EYB89] but report significant differences and identify several sources of uncertainty.

Alternatively, numerical simulations can provide complementary information. However, in order to guarantee the

reliability of such results, a rigorous validation step in required.



1 INTRODUCTION

The present contribution aims to contribute to these developments, by means of a mathematical and computational

modeling approach, combined with a sensitivity analysis study performed thanks to a model reduction technique. The

comparison with data available in the literature, obtained either by measurement on patients [EYB89] or by other

simulations [Ng 06; NO07; Li+10] will ensure the validity of the approach.

In this model, numerous parameters, both physiological and geometrical, are involved. The present study concentrates

on physiological parameters, in a large range that include potential extremal conditions. The variation of these

parameters can have a significant impact on the results. To quantify their impact, we set up a framework to perform a

forward uncertainty quantification study, complemented by a sensitivity analysis. Deterministic sensitivity analysis has

already been performed in [Sco88; Ng 06; NO07; Li+10], using various numerical methods. In this work, we reproduce

and extend these results, to incorporate the effect of blood flow, as suggested for instance in [Sco88]. We also run

a global sensitivity analysis, that accounts for stochastic effects, and discriminate among different factors by means

of Sobol’s indices [Sob93]. To the best of our knowledge, this is the first time that such a study is performed in the

context of bioheat transport in the tissues of the human eyeball.

While Sobol indices are effective in measuring parameter impact and interactions, the complexity and the significant

computational time of our model is very challenging. To overcome this, we adopt the certified reduced basis method

[Pru+01; QMN16] to obtain a reduced model, maintaining its 3D nature while significantly reducing computational

demands. This method aligns with the paradigm observed in patient-specific mathematical models applied to biomedical

problems, ensuring a comprehensive approach involving data integration, model derivation, numerical solving, validation,

and uncertainty quantification, as seen in mature research fields like cardiovascular simulations or cerebral hemodynamics.

In ophthalmology, a similar paradigm is imperative due to the richness and heterogeneity of available data, requiring

innovative approaches for diagnosis and monitoring.

More generally, the present work aims to contribute to the project Eye2Brain [Sal16], that has the ambitous

objective to connect the cerebral and ocular environments, and contribute on the long term to a better understanding

of neurodegenerative diseases [Gui+20]. In this context, a model accounting for the combined effects of ocular blood

flow and different ocular tissues was proposed in [Sal+] To incorporated inherent uncertainties and variability, an

uncertainty propagation and sensitivity analysis on the component simulating the fluid flows in the eye was developed

in [PSS21]. We here focus on the heat propagation phenomena, with the perspective of coupling the fluid and thermal

contributions in a future work.

The structure of the paper is the following. After the introduction, we describe in Section 2 the geometrical model

describing the human eyeball, the biophysical model governing the heat transfer, as well as the parameters involved in

the equations. Next, we present in Section 3 the methods developed to simulate the full and reduced models, including

a step of verification and validation, to ensure that the mathematical and computational framework is correct. We

report in Section 4 our results of the sensitivity analysis, using two methods: a deterministic one and a stochastic

approach. All the methods are implemented in the open-source software Feel++ [Pru+23] and can be reproduced

following guidelines described in Appendix A. Finally, conclusions and perspectives are outlined in Section 5.
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2 THREE-DIMENSIONAL BIOPHYSICAL MODEL
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Figure 1: Geometrical model of the human eye.

2 Three-dimensional biophysical model

2.1 Geometry of the human eyeball

In this section, we describe the realistic three-dimensional geometry that will be used in the sequel. The model we

employ in the present work stems from [Sal+], and was constructed using a CAD (Computer Aided Design) module

from SALOME [CAS22]. Figure 1 shows a cut-away view along a vertical plane of the reconstructed eye anatomy.

The eye is composed of several regions, which have different physical properties. The original geometry contained

five subdomains: the sclera, the choroid, the retina, the cornea and the lamina cribrosa. To have a better assessment of

the thermal properties of each part, we further decompose the geometry as follows: (i) the cornea which allows heat

transfer between the eye and the ambient air, (ii) the envelope of the eye composed of the sclera, the optic nerve, and

the lamina cribrosa, (iii) the vascular beds namely the choroid and the retina, mostly composed of blood vessels, (iv)

the anterior and posterior chambers, filled with aqueous humor, (v) the lens and (vi) the vitreous body filled with the

vitreous humor, a transparent liquid allowing the light to reach the retina. In the present model, the optic nerve domain

is assumed to be homogeneous, the contribution of the inner vessels is not directly taken into account in heat transfer.

Several more simplified geometrical descriptions were already utilized in the literature to study heat transport in

the eye; mostly in 2D [Sco88; Ng 06] or in 3D [NO07; Li+10]. In particular, the 3D model developed in [NO07] did not

incorporate a detailed description of the vascular beds, although previous studies [Sco88] and our further sensitivity

analysis pointed out the importance of the influence of the blood temperature on the heat distribution.

In order to compare in a first stage our results with previously reported findings [EYB89], we define on the front

part of the cornea the geometrical central cornea (GCC), see Figure 1, which is an imaginary line “cutting” the cornea

horizontally. This region is interesting because this part of the eye is accessible easily and the temperature can be

measured non-invasively.

We focus on outputs of interest that are studied in the literature [Sco88; Ng 06]. These outputs are the temperature

values at given locations or the mean temperature on a given domain. Precisely, we select on points present at the

interface of two regions of the eye, as well as the mean temperature over the cornea. For a precise description of these

locations, see Figure 2.

3
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Figure 2: Featured geometrical locations for the output of interest (pointwise temperature).

2.2 Biomechanical non-linear continuous model and its linearization

Based on Section 2.1, the geometry of the eye can be written as a disjoint union of different regions: Ω =
⊔10

i=1 Ωi,

where i is the index of the subdomain and Ωi corresponds to the following regions: cornea, vitreous humor, aqueous

humor, retina, iris, choroid, lens, sclera, lamina cribrosa, and optic nerve.

We focus on stationary heat transfer in this domain. Following [Sco88; Ng 06] the steady-state condition of the heat

transfer in the human eye can be described by the following system

∇ · (ki∇T ) = 0 in Ω = ⊔10
i=1Ωi (1a)

where:

• i is the volume index (cornea, vitreousHumor...),

• Ti [K] is the temperature in the domain Ωi,

• ki [W m−1 K−1] is the thermal conductivity of Ωi.

We set the global thermal conductivity k [W m−1 K−1] as a discontinuous piecewise constant function: k = ki on

Ωi. The boundary ∂Ω is decomposed as: ∂Ω = Γamb ∪ Γbody (see Figure 3), where Γamb corresponds to the boundary

region exposed to the ambient environment and Γbody the boundary of the internal domain. Denote by n the outward

normal vector to the domain Ω. The following boundary conditions are adopted:

• To model the exchange between the eye and the ambient air, and incorporate radiative heat transfer we impose

the following non-linear Neumann condition:

−k
∂T

∂n
= hamb(T − Tamb) + σε(T 4 − T 4

amb) + E on Γamb (1b)

Three terms are present in this condition to describe different heat loss mechanisms occurring on the cornea: (i)

The first term in the equation represents the convective heat transfer between the surface of the eye and the

surrounding air. The parameter hamb [W m−2 K−1] is the air convective coefficient, and Tamb [K] is the ambient
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Figure 3: Description of the physical boundaries and interfaces of the domain Ω.

temperature; (ii) the second term represents the radiative heat transfer between the surface of the eye and the

surrounding environment, where the parameter σ is the Stefan-Boltzmann constant (σ = 5.67×10−8 W m−2 K−1),

and ε [–] is the emissivity of the surface; (iii) the third term represents the heat loss due to tear evaporation. The

parameter E [W m−2] represents the heat transfer rate due to evaporation, which depends on the environmental

conditions and the tear film characteristics. This process causes a cooling effect on the surface of the eye, which

can be significant in dry environments or cases of reduced tear production.

• To model the thermal exchanges between the eye and the body, we impose:

−k
∂T

∂n
= hbl(T − Tbl) on Γbody (1c)

where the parameter hbl [W m−2 K−1] is the blood convection coefficient and Tbl [K] is the blood temperature.

Finally, to ensure a continuous flow of heat flux and no temperature jump, we impose at the interface between two

adjacent regions Ωi and Ωj the following condition:


Ti = Tj

ki(∇Ti · ni) = −kj(∇Tj · nj)
on ∂Ωi ∩ ∂Ωj (1d)

where ni (resp. nj) denotes the outward normal vector to the domain Ωi (resp. Ωj).

System (1a) - (1d) defines a non-linear problem, denoted ENL in the sequel.

Remark 2.1. Note that the condition (1b) modeling radiative transfer is non-linear, because of the term in T 4, which

requires a more complex treatment, both from the mathematical standpoint, for the reduced basis method; and from

the numerical standpoint, due to extra computational cost. As an alternative, a linearization of the condition (1b) was

proposed in [Sco88]:

σε(T 4 − T 4
amb) = (T − Tamb) σε(T 2 + T 2

amb)(T + Tamb)︸ ︷︷ ︸
=:hr

,

which leads to a linear Robin condition. The value hr stands for the radiation heat transfer coefficient and is

approximately equal to 6 W m−2 K−1 [Sco88].

Condition (1b) can hence be rewritten as:
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Symbol Name Dimension Baseline value Range
Tamb Ambient temperature [K] 298 [283.15, 303.15]
Tbl Blood temperature [K] 310 [308.3, 312]

hamb Ambient air convection coefficient [W m−2 K−1] 10 [8, 100]
hbl Blood convection coefficient [W m−2 K−1] 65 [50, 110]
E Evaporation rate [W m−2] 40 [20, 320]

klens Lens conductivity [W m−1 K−1] 0.4 [0.21, 0.544]
kcornea Cornea conductivity [W m−1 K−1] 0.58 –

ksclera = kiris =
klamina = kopticNerve

Eye envelope components conductivity [W m−1 K−1] 1.0042 –

kaqueousHumor Aqueous humor conductivity [W m−1 K−1] 0.28 –
kvitreousHumor Vitreous humor conductivity [W m−1 K−1] 0.603 –

kchoroid = kretina Vascular beds conductivity [W m−1 K−1] 0.52 –
ε Emissivity of the cornea [–] 0.975 –

Table 1: Parameters involved in the model, baseline values and ranges used in the sensitivity analysis.

−k
∂Ti

∂n
= hamb(T − Tamb) + hr(T − Tamb) + E on Γamb (2)

The model described by Equations (1a)-(2)-(1c)-(1d) is further denoted EL.

2.3 Model parameters

In the model presented in the previous section, many parameters are involved, but not all of them are directly

measurable. Moreover, inherent uncertainties due to noise and individual variability must be taken into account in

the modeling process. We therefore fixed in a first stage a set of baseline values, corresponding to the nominal values

for the human body, according to the literature [Sco88; Ng 06] (see Table 1). In a second step, we split the total set

of parameters into two subsets: a first part kept fixed to baseline values, and a second part that varies in a certain

range (see Table 1). The aim is to perform a refined sensitivity analysis, that encompasses previously published studies

[Sco88; Ng 06; NO07], and extends the analysis to a larger parameter space.

Specifically, we set the varying parameter space Dµ ⊂ R6 as the Cartesian product of the intervals defined in the

last column of Table 1. For the purpose of the sensitivity analysis, an element µ = {Tamb, Tbl, hamb, hbl, E, klens} ∈ Dµ

is called a parameter, and we denote µ̄ the baseline parameter, extracted from the corresponding column in Table 1.

The dependence of the model concerning the parameter µ is emphasized by the notation EL(µ) and ENL(µ).

3 Mathematical and computational framework

This section outlines the mathematical and computational framework, including the variational formulation

derivation, the high fidelity finite element method (FEM) resolution technique, and the construction of reduced basis

metamodel. It is followed by the presentation of numerical results, verification and validation steps.

3.1 Continuous and discrete model

We first compute the variational formulation of the linearized model EL(µ) described in Section 2.
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Let v ∈ H1(Ω) be a test function. As the union Ω =
⊔

i Ωi is disjoint, we have:

∫
Ω

−∇ · (k∇T )v dx =
∑

i

∫
Ωi

−∇ · (ki∇T )v dx (3)

Hence, using Green’s theorem:

∑
i

∫
Ωi

−∇ · (ki∇T )v dx = 0⇔
∑

i

∫
Ωi

ki∇T · ∇v dx−
∫

∂Ωi

ki
∂T

∂ni
v dσ = 0 (4a)

with boundary and interface conditions Equations (1c), (1d) and (2), we obtain

∑
i

ki

∫
Ωi

∇T · ∇v dx +
∫

Γamb

[hambT + hrT ] v dσ +
∫

Γbody

hblTv dσ =∫
Γamb

[hambTamb + hrTamb − E] v dσ +
∫

Γbody

hblTblv dσ (4b)

The previous equation is equivalent to:

aL(T, v; µ) = fL(v; µ) (5a)

with:

aL(T, v; µ) := klens

∫
Ωlens

∇T · ∇v dx +
∑

i ̸=lens
ki

∫
Ωi

∇T · ∇v dx +
∫

Γamb

[hambT + hrT ] v dσ +
∫

Γbody

hblTv dσ (5b)

fL(v; µ) :=
∫

Γamb

[hambTamb + hrTamb − E] v dσ +
∫

Γbody

hblTblv dσ (5c)

The problem statement is therefore: for µ ∈ Dµ given, find the output of interest s(µ) ∈ R given by

s(µ) = ℓ(T (µ)), (6)

where T (µ) ∈ H1(Ω) is solution to

aL(T (µ), v; µ) = fL(v; µ) ∀v ∈ H1(Ω). (7)

The functional ℓ returns the desired output of interest, which can be the mean temperature in a selected region e.g.

ℓ(T (µ)) = 1
|Ωcornea|

∫
Ωcornea

T (µ) dx, or the temperature at a fixed point e.g. ℓ(T (µ)) = ⟨δO, T (µ)⟩.

Theorem 3.1. Let µ ∈ Dµ fixed. The problem (5) is well-posed for v ∈ H1(Ω): there exists a unique T (µ) ∈ H1(Ω)

such that aL(T (µ), v; µ) = fL(v; µ) for all v ∈ H1(Ω). If T (µ) ∈ C1(Ω̄) ∩ C2(Ω), then T (µ) is solution to problem

EL(µ).
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Proof. The result is a straightforward application of the Lax-Milgram theorem [EG21], and of the regularity of T .

Remark 3.2. The well-posedness of the fully non-linear problem ENL(µ) can also be obtained by the mean of a

variational approach, in the spirit of [Mil93].

High fidelity FEM resolution We present here the discretization approach and briefly describe the in-house

computational framework we developed.

In the sequel, we set V := H1(Ω) and focus on outputs of interest, sk(µ), for k ∈ J1, noutputK given by the formula

sk(µ) = ℓk(u(µ); µ), where ℓ is a bounded linear form and u(µ) is the solution of Equation (7).

Denote by Vh ⊂ V the approximate functional space of dimension N , h standing for the discretization of the space,

for a finite element approach. The previous problem is equivalent to:

AL(µ)T fem(µ) = fL(µ) (8a)

sk(µ) = Lk(µ)TT fem(µ) (8b)

with A(µ) ∈ RN ×N , f(µ) ∈ RN , Lk(µ) ∈ RN , and k is the index of the output. The vector T fem(µ) ∈ Vh ≃ RN is

the solution, and s(µ) ∈ R is the computed output.

More precisely, the steps run during resolution are given in Algorithm 1.

Algorithm 1: High fidelity resolution.
Input: µ ∈ Dµ

Construct A(µ), f(µ), Lk(µ);
Solve A(µ)T fem(µ) = f(µ);
Compute outputs sk(µ) = Lk(µ)TT fem(µ);
Output: Numerical solution T fem(µ) and outputs sk(µ)

To establish numerical results, we implement Algorithm 1 in the framawork of the open-source library Feel++

[Pru+23]1, and specifically the heat toolbox2 where both models ENL(µ) and EL(µ) can be simulated, with both P1 and

P2 piecewise polynomials [EG21]. The solution strategy uses conjugate gradient method solver preconditionned by an

algrebraic multigrid method. Whereas, in the context of ENL, non-linear iterations are required.

All the results presented in this document are available and can be reproduced, refer to Appendix A for more

details. All subsequant computational simulations are performed on the same machine equipped with the following

hardware: AMD EPYC 7552 48-Core Processor.

3.2 Reduced order modeling with the reduced basis method

We now introduce the reduced basis metamodel [Pru+01; RHP08; QMN16]. The goal of the reduced basis method

(RBM) is to approximate the solution of the parametrized-PDE described by Equations (1a)-(2)-(1c)-(1d). For complex

geometries and biomechanical problems, such as the one described in Section 2.1, numerical solving has a prohibitive
1Soure code: https://github.com/feelpp/feelpp/
2See documentation: https://docs.feelpp.org/toolboxes/latest/heat/toolbox.html
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3.2 Reduced order modeling with the reduced basis method3 MATHEMATICAL AND COMPUTATIONAL FRAMEWORK

cost, especially for studies of uncertainty quantification, requiring the resolution of the system for many parameters.

We briefly present the implemented strategy, following [Pru+01].

Recall that T fem(µ) ∈ Vh can be written as T fem(µ) =
N∑

n=1
T fem

n (µ)ϕh,n, where (ϕh,n)n∈J1,N K is a basis of Vh.

ß

The main idea of RBM is to construct a low-dimension subspace VN ⊂ Vh, of dimension N with N ≪ N , such that

the approximation error is small: ∥T fem(µ)− T rbm(µ)∥ ⩽ εtol, while the procedure to compute T rbm(µ) is efficient and

stable.

The reduced equivalent of the variational form Equation (7) is: given µ ∈ Dµ, find T rbm,N (µ) ∈ VN such that:

aL(T rbm,N (µ),v; µ) = fL(v; µ) ∀v ∈ VN (9)

The reduced space VN is constructed from snapshots, which are high fidelity solutions. The RBM consists of two

main phases: (i) the offline stage, where the reduced space is constructed, and (ii) the online stage, where the reduced

space is used to compute the solution of the system. The first step is performed only once and can be costly, while the

second step is performed for each parameter µ and is efficient.

During the offline stage, snapshots are computed for a set of parameters {µi}N
i=1. This gives a familly of vectors(

T fem(µi)
)

1⩽i⩽N
⊂ Vh. The reduced space is defined by VN := span (ξi), where (ξi)1⩽i⩽N is an orthonormal family of

vectors, obtained by the Gram-Schmidt process applied to the snapshots {T fem(µi)}1⩽i⩽N . We define the snapshots

matrix ZN = [ξ1, · · · , ξN ] ∈ RN ,N .

The snapshots can be selected in different ways. The first approach is to select the snapshots randomly in the

parameter space, but this could lead to a poor approximation of the solution [Buf+12]. Another approach is to select

the snapshots greedily, by selecting the parameter that maximizes the error between the reduced solution and the high

fidelity solution, see Section 3.2.2.

Setting AN (µ) = ZT
NAL(µ)ZN ∈ RN×N and fN (µ) = ZT

NfL(µ) ∈ RN , we obtain the reduced algebraic system of

size N :

AN (µ)T rbm,N (µ) = fN (µ) (10a)

sk,N (µ) = Lk,N (µ)TT rbm,N (µ) (10b)

the same process applying for the outputs Lk.

Thanks to the linearity of the model EL(µ), we can further write the following affine decomposition: for T, v ∈ V ,

aL(T, v; µ) =
Qa∑
q=1

βq
A(µ)aq

L(T, v) (11a)

9



3.2 Reduced order modeling with the reduced basis method3 MATHEMATICAL AND COMPUTATIONAL FRAMEWORK

with

β1
A(µ) = klens a1

L(T, v) =
∫

Ωlens

∇T · ∇v dx (11b)

β2
A(µ) = hamb a2

L(T, v) =
∫

Γamb

Tv dσ (11c)

β3
A(µ) = hbl a3

L(T, v) =
∫

Γbody

Tv dσ (11d)

β4
A(µ) = 1 a4

L(T, v) =
∫

Γamb

hrTv dσ +
∑

i ̸=lens
ki

∫
Ωi

∇T · ∇v dx (11e)

and

fL(v; µ) =
Qf∑
p=1

βp
F (µ)fp

L(v) (12a)

with

β1
F (µ) = hambTamb + hrTamb − E f1(v) =

∫
Γamb

v dσ (12b)

β2
F (µ) = hblTbl f2(v) =

∫
Γbody

v dσ (12c)

where Qa = 4 and Qf = 2. We furthermore define the algebraic matrices Aq
L ∈ RN ×N and vectors fp

L ∈ RN , so the

following equality holds:

AL(µ) =
Qa∑
q=1

βq
A(µ)Aq

L, fL(µ) =
Qf∑
p=1

βp
F (µ)fp

L (13)

From this decomposition and Equation (10a), we obtain the following algebraic system:

AN (µ) =
Qa∑
q=1

βq
A(µ)ZT

NAq
LZN︸ ︷︷ ︸

Aq
N

(14)

We set Aq
N := ZT

NAq
LZN ∈ RN×N . The matrices Aq

N ∈ RN×N are independent of µ and can be computed only

once and stored. The same process applies to fN (µ) and Lk,N (µ):

fN (µ) =
Qf∑
q=1

βq
F (µ)f q

N , Lk,N (µ) =
Qℓ∑

q=1
βq

ℓ (µ)Lq
k,N (15)

For the outputs we study in this work, the decomposition of Lk,N has only one term since the output does not depend

on the parameters.

This decomposition allows implementing an offline/online procedure. During the offline phase, the basis of VN is

constructed from the snapshots, as well as the matrices Aq
N , f q

N , and Lq
k,N are computed and stored. More details

about this construction are given in Section 3.2.2. This procedure is costly and is performed only once for the problem.

During the online phase, the reduced system Equation (10) is solved for any parameter µ. The entire procedure is

synthesized in Algorithm 2

10



3.2 Reduced order modeling with the reduced basis method3 MATHEMATICAL AND COMPUTATIONAL FRAMEWORK

During the offline stage, two approaches can be used to select the size of the reduced basis N : (i) an approach

where we set the size of the reduced basis N to a fixed value, and (ii) an approach where we set a tolerance εtol on the

error committed on the output. The second approach is more interesting since it allows having a reduced basis of size

N that is adapted to the desired tolerance.

Algorithm 2: Offline and online stages of the RBM.
Offline procedure:

Input: Parameters µ1, · · · , µN ∈ Dµ

Compute snapshots T fem(µ1), · · · ,T fem(µN );
Construct ZN ← [ξ1, · · · , ξN ] (orthonormal);
Construct the reduced matrices (Aq

N )1⩽q⩽Qa
, (F p

N )1⩽p⩽Qf
, (Lk,N )1⩽k⩽noutput ;

Output: Reduced basis and reduced matrices, stored.
Online procedure:

Input: µ ∈ Dµ

Assemble AN (µ), FN (µ), Lk,N (µ) using the saved matrices and the affine decomposition;
Solve AN (µ)uN (µ) = FN (µ);
Compute the output sk,N (µ) = Lk,N (µ)TuN (µ);
Output: uN (µ), sk,N (µ).

3.2.1 Error estimates

Error bound Given the reduced basis approximation T rbm,N (µ) of the high fidelity resolution solution T fem(µ) for

µ ∈ Dµ, we defined the field error

e(µ) := T fem(µ)− T rbm,N (µ) (16)

We want to construct quantities ∆N (µ) and ∆s
N (µ) such that

∥e(µ)∥V ⩽ ∆N (µ) and s(µ)− sN (µ) ⩽ ∆s
N (µ) (17)

Those quantities are named a posterior error bounds [Pru+01; RHP07]. To quantify the sharpness and rigor

properties of the error bound, we introduce the effectivity:

ηN (µ) := ∆N (µ)
∥e(µ)∥V

ηs
N (µ) := ∆s

N (µ)
s(µ)− sN (µ) (18)

It has benn proven in [Pru+01] that the error bound is rigorous and sharp, that is, that it is always greater than

the error; and sharp, that is, that it is as close as possible to the actual error.

These properties can be summarized as:

1 ⩽ ηN (µ) ⩽ ηub(µ) ∀µ ∈ Dµ (19)

where ηub(µ) is a the sharpness of the bound and is proven to be bounded [Pru+01] when N increases.

Finally, to construct the reduced space, we require the error bound to be efficient, that is, its evaluation is

independent of the size of the high fidelity space N . This is critical when heuristic algorithms are used to construct the

reduced space, such as the Greedy algorithm discussed in Section 3.2.2.
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Such an error bound can be constructed efficiently from the residual r of the problem (5), a lower bound αlb(µ) of

the coercivity constant α(µ) of aL(·, ·; µ), and the affine decomposition of aL and fL:

α(µ) = inf
v∈V

a(v, v; µ)
∥v∥2

V

, r(v, µ) := ℓ(v; µ)− a(uN (µ), v; µ) ∀v ∈ V and ∆N := ∥r(·, µ)∥V ′

αlb(µ) (20)

For more details, refer to [Pru+01].

3.2.2 Generation of the reduced basis

The a posteriori error estimator introduced earlier provides an efficient criterion to select the desired dimension of

the reduced space N , in the offline phase. Given a fixed tolerance εtol, we can greedily select the greatest N such that

the error bound is smaller than the tolerance. In this section, we describe an algorithm to generate the reduced basis.

For this algorithm, a large set of parameters Ξtrain ⊂ Dµ is required. This set is called the training set, and is

generated log-randomly. A first snapshot is computed for a given parameter µ0 ∈ Dµ. To get the N + 1-th snapshot to

be inserted in the basis, we select the parameter µ⋆ that maximizes the error bound ∆N (µ), for µ ∈ Ξtrain. This step

is performed until a selected tolerance for the maximal error bound is reached. The greedy algorithm is presented in

Algorithm 3.

Algorithm 3: Greedy algorithm to construct the reduced basis.
Input: µ0 ∈ Dµ, Ξtrain ⊂ Dµ and εtol > 0
S ← [µ0];
while ∆max

N > εtol do
µ⋆ ← arg max

µ∈Ξtrain

∆N (µ) (and ∆max
N ← max

µ∈Ξtrain
∆N (µ));

u(µ⋆)← FE solution, using S as generating sample;
VN−1 ←

{
ξ = T fem(µ⋆)

}
∪ VN ;

Append µ⋆ to S;
N ← N + 1;

end
Output: Sample S, reduced basis VN

3.3 Numerical results

3.3.1 Mesh convergence

In Section 2.1, we detailed the geometry of the eyeball, derived from computer-aided design (CAD) data. As

illustrated in Figure 1, certain regions exhibit greater complexity than others. For instance, the lamina cribrosa is

notably thinner, while the iris presents a less uniform structure. Achieving an effective mesh requires a well-distributed

arrangement of elements. This is attainable through the application of a specialized meshing algorithm designed to

tailor the mesh according to the geometric intricacies. Utilizing the MMG library [too22], we have generated a family

of meshes with varying levels of refinement. These meshes are used to our subsequent simulation processes.

Table 2 displays the characteristics of the meshes, such as their characteristic size h and the number of degrees of

freedom (nDof) for both P1 and P2 finite element discretizations.

12
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Mesh h nDof P1 nDof P2

M0 0.86 47,284 3.27 · 105

M1 0.74 68,993 4.73 · 105

M2 0.51 1.21 · 105 8.83 · 105

M3 0.47 2.08 · 105 1.58 · 106

M4 0.29 9.96 · 105 7.87 · 106

M5 0.15 7.36 · 106 5.87 · 107

Table 2: Characteristics of the meshes.

105 106 107
309.382

309.384

309.386

309.388

309.39

M0

M1

M2

M2

M3

M3

M4

M4

M5

Number of degrees of freedom N

T
fe

m
N

L
,O

[K
]

P1
P2

Figure 4: Temperature at the center of the cornea computed with the high-fidelity model ENL(µ̄), depending on the
level of refinement of the mesh.

In this section, we detail the outcomes of our mesh convergence analysis. This analysis involves solving the given

problem across various mesh configurations and subsequently comparing the resultant data. To conduct this study, we

first solve the model denoted as ENL(µ̄). Following this, we compute the output T fem
NL,O representing the temperature at

the cornea’s center as determined by the high-fidelity model. The primary objective of this analysis is to ascertain

whether the obtained temperature values demonstrate convergence towards a consistent value. Figure 4 illustrates the

results of our mesh convergence study, clearly indicating a pattern of satisfactory convergence. We select for further

comparisons the values obtained for M3 and for P2.

3.3.2 Scalability

In this section, we explore the scalability of our computational framework. This involves measuring the time required

to solve the model in relation to the number of MPI parallel processes utilized. The time measured pertains to the

duration necessary for assembling the algebraic system and solving the problem, as per Algorithm 1. Our experiments

utilized mesh M3, with both P1 and P2 discretizations. The results, presented in Figure 5, demonstrate satisfactory

scalability: the execution time decreases as the number of parallel processes increases. However, we observed that

beyond 12 processes, the reduction in execution time becomes less significant. Consequently, for optimal efficiency,

we have selected 12 processes for our subsequent analyses. This study sets the stage for a subsequent comparison

with a reduced-order model, which employs a reduced basis with reliable, certified output bounds derived from the

13
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Figure 5: Time of execution to run EN
L (µ̄) and corresponding speed-up, for an increasing number of parallel processes.

Simulations are performed on the M3.

high-fidelity solutions. This comparison aims to highlight that, while parallel computing can accelerate the high-fidelity

computation, the reduced-order approach offers even more substantial computational gains.

3.3.3 Linearized model

We now compare the results obtained after solving ENL(µ̄) against EL(µ̄). We denote the solution of the nonlinear

model ENL(µ̄) by TNL(µ̄), and by TL(µ̄) the solution of the linearized model EL(µ̄), and computational the relative

error:

elin(µ) =
∥TNL(µ)− TL(µ)∥L2(Ω)

∥TNL(µ)∥L2(Ω)
(21)

For µ = µ̄, we get elin = 4.176 · 10−7. In Figure 6, we plot the difference between the two solutions |TNL(x)−TL(x)|

for x ∈ Ω. We notice that the difference is the largest on the front of the eye, where the boundary condition has been

changed. Whereas at the back of the eye, the solutions are superposed. We also compute the maximal difference:

2.1667 · 10−3 K. Therefore, we consider in the sequel that the linearized model does not induce a significant error in

the results.

Figure 7 displays the results of the simulation of the linear model EL(µ), for three parameters µ: µ̄ the baseline

value parameters, µmin (resp. µmax) where each component is the lowest (resp. highest) bound of its range of values.

3.3.4 Verifications of the reduced basis model

We compare the results of the reduced basis method with the output of the high fidelity FEM model. We generate a

sample Ξtest of 100 parameters in Dµ. For µ ∈ Ξtest, we compute on the one hand T fem
O (µ), the value of the temperature

at point O from the model EL(µ), and on the other hand T rbm,N
O (µ), the value of the temperature for the reduced basis

model, with a basis of size N . In Figure 8(a), the value of the error |T fem
O (µ)− T rbm,N

O (µ)| is plotted for each µ ∈ Ξtest,

for various reduced basis sizes N . Statistics on the error committed over the sample Ξtest are displayed in Figure 8(b),

14
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Figure 6: Difference of the temperature between the full model and the linearized model, computed on the mesh M3
with P2 elements, and the baseline values µ̄ for the parameters.
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Figure 7: Distribution of the temperature [K] in the eyeball from the linear model EL(µ).
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Figure 8: Comparison of the temperature between the full order model and the reduced basis model, tested over a
sample Ξtest ⊂ Dµ of 100 parameters.

as well as the effectivity ηN (µ) in Figure 8(c).

We observe that even for small values of N , the error on the output is remarkably small: an error of 10−4 is reached

for N = 6. On the other hand, we find that the convergence on the output is twice as fast as the convergence on the

field, as predicted by the theoretical error estimate [Pru+01, Eq. (36)].

Note that the anticipated error behavior aligns with theory when the output functional maintains continuity. In this

work, we deviate from the standard case, attributed to the utilization of the Dirac functional in output computation

used for pointwise evaluation. Nevertheless, a similar behavior is observed, and additional insights into this phenomenon

will be provided in future work.

Table 3 offers a comparative analysis of execution times for solving the heat transfer problem. We first discuss the

execution times for the high-fidelity solution, encompassing both P1 and P2 finite-element discretizations. The measured
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Finite element resolution Reduced model
T fem(µ) T rbm,N (µ), ∆N (µ)

P1 P2 (np=1) P2 (np=12)
Problem size N = 207 845 N = 1 580 932 N = 10

texec 5.534 s 62.432 s 10.76 s 2.88× 10−4 s
speed-up 11.69 1 5.80 2.17 × 105

Table 3: Times of execution, using mesh M3 for high fidelity simulations.

time, denoted as texec, includes assembling and solving the problem. In contrast, we also evaluate the execution time of

the online phase of our certified reliable reduced basis model. This comparison highlights a significant reduction in

the time required to assemble and solve the problem using our advanced reduced basis approach. Importantly, this

efficiency does not compromise accuracy; the results from the reduced basis model are effectively exact with respect to

the high fidelity model. As anticipated in our earlier scalability analysis, we achieve remarkable computational gains

with our model, reinforcing the benefits of our approach in both precision and performance.

The reduced bases constructed for the various outputs of interest are generated with the greedy algorithm

(Algorithm 3), using a maximal tolerance εtol = 1 · 10−6 and a maximal size for the basis N = 20. In practice, the

tolerance is reached for N = 10 to 12.

3.4 Validation and comparison with previous studies

We present in this section a thorough comparison between the results of this work and previously published data on

the temperature of the eye, obtained either by experimental procedures or via computational modeling. Note that only

scarce data are available for the entire human eyeball, since most of the measurement techniques estimated only the

surface temperature of the cornea. In particular, [EYB89] gathers the outputs of 19 studies conducted with various

instruments (mercury bulbs, liquid crystal thermometers or infrared thermometers), and the mean valued reported,

according to [Ng 06], is T exp
O = 307.15 K. The temperature at the center of the cornea computed with baseline value

from our model is T fem
O (µ̄) = 306.02 K, which lies in the interval of results found in the literature (see [EYB89, Table 1]

and [Ng 06, Table 9]).

Additionally, in [EYB89], the temperature is measured along an imaginary horizontal line, the Geometrical Center

of the Cornea (GCC), as described in Figure 1, on a panel of 21 subjects. The experimental data are displayed in

Figure 9, together with the findings of the present work. On the horizontal axis, the distance to the center of the eye

is represented, and on the vertical axis is the temperature difference to the central one (mean value and standard

deviation). Note that as the geometry of the simulated eye is not the same as the one used in the experiment, we scaled

the results over the x-axis. The result shows that the high fidelity model is able to closely replicate the same behavior

as the one experimentally measured, and the model EL(µ̄) provides very close values (see Section 3.3.3). Moreover,

thanks to the error bound introduced in Section 3.2.1 for the RBM, the approach is considered to be valid for the

sensitivity analysis procedure hereafter.

In Figure 10, we present a comparative analysis between the results of our current study and various numerical

findings reported in existing literature. This comparison features temperatures calculated along a line traversing the
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Figure 9: Temperature on the GCC: experimental data (mean and standard deviation) vs. numerical results. In this
alalysis, we cannot distinguish graphical difference between the linear and non-linear models.
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Figure 10: Temperature on a line going through the center of the eye (see Figure 2), comparison with numerical results
from literature.

eye’s center, the specific location of which is depicted in Creffig:outputs. This comparative approach is crucial as it

verifies the accuracy of our computed values, encompassing not just the corneal surface but also the eye’s internal

tissue structures.* It’s noteworthy that our analysis includes a mix of both 2D and 3D results, derived from both

non-linear and linearized models.

The results show a very good agreement between the findings of the present study and previously reported

temperature results, along the different locations in the eyeball.

4 Uncertainty quantification

The uncertainty quantification (UQ) allows quantifying the uncertainty of the model parameters on various outputs.

In the present work, we focus on forward UQ, that is, we want to quantify the uncertainty and the sensitivity of the

output of the model, given the uncertainty of the input parameters. More precisely, two studies are performed: (i) an
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Figure 11: Results of the DSA for the 6 parameters studied, among previous studies from the literature (markers x
ENL(µ), □ [Ng 06], + [Sco88], ∗ [Li+10]). The vertical dashed line corresponds to the baseline value of the parameter.

uncertainty propagation, to understand how the uncertainties of the inputs of the model are propagated to the output

via the computational model, and (ii) a sensitivity analysis (SA) to assess the impact of varying selected parameters on

several outputs of interest, namely temperature at specific locations in the eye. Their locations are detailed in Figure 2.

The SA is conducted in two different approaches. First, to recapitulate findings from the literature, we performed

a deterministic SA, where for each simulation, only one parameter is allowed to vary in a given range, whereas the

others are fixed to their baseline value. In a second stage, we extended the SA to a stochastic framework, where each

selected parameter follows a given random distribution and the impact on the quantity of interest is assessed via

sensitivity indices. The advantage of the latter is the global perspective provided by this method and its ability to

capture high-order interactions among several input parameters.

4.1 Deterministic sensitivity analysis

Our initial investigation of the impact of varying selected parameters is conducted through a deterministic sensitivity

analysis (DSA). Specifically, we choose a parameter among the ones defined in Table 1, and we set the other to their

baseline value. Next, we vary the selected parameter among pre-defined values and compute the outputs of the high

fidelity model. Similar studies were performed in [Sco88; Ng 06; Li+10]. We gather in the present study information

about several parameters of interest for the heat transfer model from these studies, namely baseline values and ranges.

These variations correspond not only to physiological conditions but also include some extreme situations. We postpone

a more in-depth on this topic to Section 4.2, where the random distributions characterizing these parameters are set up.

Note that in this case, we do not need to use the reduced model, since only a relatively small number of simulations is
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required.

In Figure 11, we show the results of the DSA for the parameter µ = {E, hamb, hbl, klens, Tamb, Tbl}, on point O

which is at the surface of the cornea. The plain-line curves correspond to the results reported in the literature, which

we compare with the results of our simulations; the vertical dashed line corresponds to the baseline value for each

parameter. The results are in very good agreement with previous findings and show that temperature at the level of

the cornea is strongly influenced by hamb, Tamb, E, and Tbl, whereas the influence of hbl and klens is less significant.

For instance, high air conductivity can result in a temperature 7 K lower than the baseline value, while the difference

obtained for hbl and klens in the computed temperature is at most of 1 K.

4.2 Stochastic sensitivity analysis (SSA)

We consider an output quantity Y depending on a set of input parameters µ ∈ Dµ, and we estimate the sensitivity

of Y to each parameter µi for i ∈ J1, dK, where d is the dimension of the parametric space. To this end, we compute the

Sobol’ sensitivity indices introduced in [Sob93] as follows. We assume that each component µi of µ follows a random

variable Xi, independent of the others. The first-order indices are defined as:

Si := var (E [Y |Xi])
var(Y ) (22)

where var(Y ) corresponds to the variance of Y including the eventual non-linearity effect of the coefficient on the

output, and var (E [Y |Xi]) is the variance of the conditional expectation of Y given Xi, corresponding to the first order

effect of the parameter µi on the output: if the parameter modeled by the distribution Xj has a great impact on the

output Y , then E [Y |Xj ] will vary has well, and so its variance.

We also define the total Sobol’ index:

Stot
i :=

var
(
E

[
Y

∣∣X(−i)
])

var(Y ) = 1− S−i (23)

where X(−i) = (X1, · · · , Xi−1, Xi+1, · · · , Xd) is the set of parameters without the parameter Xi, and S−i is the sum of

the indices where Xi is not present.

To compute the Sobol’ indices, we use an algorithm of functional chaos, implemented in the library OpenTURNS

[Bau+16] by the class FunctionalChaosAlgorithm, using a bootstrap method3 for the confidence intervals.

4.2.1 Choice of the distributions

We discuss now the prior distributions for each parameter. Each parameter does not depend on the others, resulting

in a family of 6 random independent variables. Figure 12 shows the probability density function (PDF) of distributions

of the parameters, associated with the baseline values (see Table 1), where the parameters used in the literature for the

deterministic sensitivity analysis are represented with a vertical line. We present hereafter some details on how the

random distributions were constructed.
3See documentation https://openturns.github.io/openturns/latest/auto_meta_modeling/polynomial_chaos_metamodel/

plot_chaos_sobol_confidence.html
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• Evaporation rate E: according to [Sco88], the evaporation rate’s range is of 40 to 100 W m−2, using data from

literature [Adl53]. The value E = 40 W m−2 is chosen as the baseline value. Some high values are also considered,

to study the impact of important evaporation rates. The values used in the literature run from 20 to 320 W m−2.

As this parameter varies by several orders of magnitude, we decided to use a log-normal distribution to represent

it. More precisely we set E ∼ log -N (µE , σE , γE), with σE = 0.7, µE = log(40)− 0.152

2 and γE = 20, restricted to

[20, 130]. The distribution is presented in Figure 12(a). This choice of the distribution leads to a mean value of

E = 55.8 W m−2.

• Ambient air convection coefficient hamb: In [Sco88], the sole value given for the ambient air convection

coefficient is 10 W m−2 K−1, and similar values are used to run the DSA, from 8 to 15 W m−2 K−1. Other results

in the literature coroborate this value: [Kos+13, Table 12.2] reports a range of 2.5 to 25 W m−2 K−1 for a free

convection, and 10 to 500 W m−2 K−1 for a forced convection. [Edg] proposes a range of 10 to 100 W m−2 K−1

for the air. In their DSA, [Ng 06] and [Li+10] use higher values of hamb, up to 100 W m−2 K−1 to simulate a

forced convection condition. As high values are not a common case, such a coefficient should not have a high

frequency in the distribution. We chose to use a log-normal distribution: hamb ∼ log -N
(
log(10)− 1

2 , 1, 8
)
. In

Remarl 2.1, we discussed the linearization process of the model, inducing the usage of a fixed parameter hr

chosen to fit temperature in usual ambient room conditions, which leads to a restriction of the distribution to the

interval [8, 100] W m−2 K−1. The distribution is presented in Figure 12(b). The mean value of the distribution is

hamb = 17.6 W m−2 K−1.

• Blood convection coefficient hbl: A control values of 65 W m−2 K−1, derived from experimental data [Lag82]

is provided in [Sco88]. For the DSA, the values used run from 50 to 120 W m−2 K−1. This leads us to the following

assumption for the distribution of the parameter: hbl ∼ log -N
(

log(65)− 0.152

2 , 0.15, 0
)

, restricted over [50, 120],

see Figure 12(c). The mean of this distribution is hbl = 65.8 W m−2 K−1.

• Lens conductivity klens: This parameter is chosen among all the conductivities since the water content of the

lens varies with aging [Sco88]. [Sco88] and [Ng 06] run the DSA with this parameter, using values from 0.21 to

0.544 Wm−1K−1. As the range of values is not very large, it seems reasonable to use a uniform distribution for

this parameter: klens ∼ U(0.21, 0.544), see Figure 12(d).

• Ambient temperature Tamb: The baseline value of this parameter is taken to a usual room temperature of

294 K (20 ◦C). The values used for the DSA vary from extreme conditions of 273 K (0 ◦C) to 308 K (35 ◦C). As

these extreme values are not very common, we choose to restrict the values taken by Tamb from 283.15 K (−35 ◦C)

to 303.15 K (30 ◦C): Tamb ∼ U(283.15, 303.15). The distribution is presented in Figure 12(e).

• Blood temperature Tbl: The temperature of human blood is commonly accepted to be 310 K (37 ◦C). For

the DSA, cases of hypothermia and hyperthermia are considered, with a range from 308 K to 312.15 K (35 ◦C to

39 ◦C). We therefore take Tbl ∼ U(308, 312.15), see Figure 12(f).
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Figure 12: Distributions of the parameters. The vertical lines represent the values chosen in literature for the DSA.

Tcornea TO TG

Mean 305.590082 303.185187 310.028526
Standard deviation 1.788358 2.457063 1.055978

Table 4: Statistics of the outputs.

4.2.2 Uncertainty propagation

We focus on the distribution of outputs of interest, from a random sample of the input parameters of get from

the distributions presented 10,000 points, which leads to a number of 10,000 simulations. The computational cost of

the high fidelity simulations becomes in this case prohibitive and therefore we employ the reduced basis metamodel

developed in Section 3.2. Figure 13 presents the distribution of three outputs, namely the mean of the temperature over

the cornea Tcornea, and the temperature on points O and G respectively are the front and the back of the eyeball. Note

that TO and Tcornea display a Gaussian distribution, whereas TG is more difficult to interpret, but could correspond to

a uniform or bi-modal distribution.

We provide in Table 4 results about mean values and standard deviation for the same quantities. We note that the

mean values of TO and Tcornea are of the same order of magnitude as the experimental data in the validation section

(Section 3.4): the difference of temperature is about 2 K, and standard deviations are in the same ranges. The mean

value of TG is very close to results reported in Figure 10 from the literature with a small standard deviation.
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Figure 13: Distribution of the output, from the composed input distribution.

Nparam Max deviation texec Q2

60 0.18102 0.756 09 s 0.999153
100 0.03698 1.996 51 s 0.992648
150 0.02969 2.837 43 s 0.99986
200 0.02923 4.160 46 s 0.998926
400 0.00739 8.367 01 s 0.999931
600 0.00496 15.7947 s 0.9998
1000 0.00248 22.364 s 0.999904

Table 5: Convergence of the Sobol indices.

4.2.3 Results of the SA

We perform a sensitivity analysis to compute Sobol’s indices, a convergence analysis varying the sampling size

Nparam. Table 5 reports the maximal deviation of these indices, and the time taken by the application to compute the

6 sets of Sobol indices.

Additionally, we compute the predictivity factor Q2 for the polynomial chaos metamodel is defined as:

Q2 := 1−
∑N

l=1
(
Yl − f̂(Xl)

)2

var(Y ) , (24)

measuring how accurate the metamodel f̂ is at predicting the output Y from the input X. The closer Q2 is to 1, the

better the metamodel is. In the context of the Sobol indices experiment, the metamodel f̂ is the polynomial chaos

expansion of the output Y . The test of convergence is performed using the temperature on point O as the output. The

convergence of Sobol indices is reached for Nparam = 200 with a 10−2 accuracy, which is a threshold used in the sequel.

Figure 14 shows the results of the Sobol analysis for different outputs of interest. Recall that Figure 2 shows where

the points are in the eye.

In the deterministic sensitivity analysis conducted in Section 4.1, the impact of the variation of a sole parameter on

the temperature at point O was studied. Using Sobol indices, we are now able to measure the impact when all of them

are varying. The results of Sobol analysis at point O presented in Figure 14(a) are in very good agreement with the
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deterministic findings: the temperature at the level of the cornea is strongly influenced by external factors such as

hamb, as well subject-specific parameters such as Tamb, E, and Tbl, Moreover, it is minimally influenced by the lens

conductivity klens and the blood convection coefficient hbl.

Sobol indices for several other locations are gathered in Figure 14(b–f). From these results, we can infer the

following ranking of the influential parameters: Tamb, hamb, E, and Tbl. In particular, the dependence of the ambient

temperature Tamb decreases when we go deeper inside the eye. Precisely, the impact of Tamb is still significant for

the mean temperature of the cornea, but the other parameters are equally influential. These behaviors are coherent

with physiological conditions. Moreover, regardless of the output studied, the parameters klens and hbl are minimally

influencing the output. Consequently in future simulations, their value can be set at baseline. Surprisingly, the

temperature at B1, on the lens, is minimally influenced by klens, but this parameter has a minimal role in the modeling

process. On the other hand, Tbl is very influential at D1 and G, close to vascular beds, again in a coherent manner

with the physiological situation. Finally, we can notice a slight difference between the first-order and total-order indices,

mostly for hamb and Tamb, implying that there are high-order interactions among these selected parameters. To measure

the impact of coupled parameters, second-order Sobol’s indices computation is required, but the polynomial chaos

expansion does not directly provide these values. Alternatively, a Monte-Carlo based method could be implemented

which is very costly to the computational viewpoint.

5 Conclusion

We have successfully developed a numerical model that accurately simulates heat transfer within the complex

three-dimensional structure of the human eyeball, enabling us to calculate the temperature distribution across various

ocular tissues. This model has undergone rigorous validation against both experimental data and numerical results

from existing literature. A key advancement in our study is the implementation of a certified reduced basis method.

This method significantly accelerates the simulations of our complex model while maintaining high accuracy, making it

highly efficient for many-queries computations essential in uncertainty quantification studies. Our sensitivity analysis

pinpointed four main physiological parameters as most influential in affecting the results: blood temperature, ambient

temperature, the ambient air convection coefficient, and the evaporation rate. These findings build upon and enrich

prior studies, such as those highlighted in [Sco88; Ng 06; Li+10], underscoring the vital role of blood flow characteristics

and environmental conditions, particularly in the inner ocular tissues. Additionally, through Sobol’ indices analysis,

we identified the significant impact of parameter interactions, particularly those related to ambient temperature.

From a clinical standpoint, our insights into heat transport in the human eye could inform studies on the effects of

electromagnetic wave radiations, as explored in [NO07] and related references. As a next step, we plan to couple

the heat transfer model with models describing the aqueous humor flow, as in [ON08; Abd+21], which is crucial for

optimizing ocular drug delivery. Ultimately, our work, in conjunction with previous initiatives such as the Ocular

Mathematical Virtual Simulator [Sal+], lays the groundwork for a comprehensive, multi-physics, multiscale framework

in ophthalmology, tailored for personalized medical applications.
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Figure 14: Sobol indices for the SSA.
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A Reproductibility of results

All the codes used to run the simulations are available on the Feel++ [Pru+23] GitHub repository4. Details are

given in the README.md file of the repository: https://github.com/feelpp/feelpp/tree/develop/mor/examples/

eye2brain

B Materials and Methods

None
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