
HAL Id: hal-04361907
https://hal.science/hal-04361907v1

Preprint submitted on 22 Dec 2023 (v1), last revised 3 Jul 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Alignment-free detection and seed-based identification of
multi-loci V(D)J recombinations in Vidjil-algo

Cyprien Borée, Mathieu Giraud, Mikaël Salson

To cite this version:
Cyprien Borée, Mathieu Giraud, Mikaël Salson. Alignment-free detection and seed-based identification
of multi-loci V(D)J recombinations in Vidjil-algo. 2023. �hal-04361907v1�

https://hal.science/hal-04361907v1
https://hal.archives-ouvertes.fr

Alignment-free detection and seed-based
identification of multi-loci V(D)J
recombinations in Vidjil-algo

Cyprien Borée, Mathieu Giraud, Mikaël Salson
Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL – Centre de Recherche en Informatique Signal et Automa-
tique de Lille – F-59000 Lille, France
Correspondence: contact@vidjil.org

Abstract 1

2

The diversity of the immune repertoire is grounded on V(D)J recombinations in several loci. Many algorithms
and software detect and designate these recombinations in high-throughput sequencing data. To improve
their efficiency, we propose amulti-loci seed identification through anAho-Corasick like automaton aswell as
a seed-based gene filtration. These algorithms were implemented into Vidjil-algo, used routinely by several
labs for the analysis of hematologic malignancies.

3

4

5

6

7

We benchmark the results of Vidjil-algo and of MiXCR on five datasets, evaluating the specificity and sensitiv-
ity of the detection, as well as the adequation of the designation to manually curated sequences. Compared
to the previous algorithms, the new algorithms implemented in Vidjil-algo bring speedups between 5x and
30x, with a smaller memory footprint and without quality loss in results. They enable to precisely annotate
in a few minutes millions of sequences coming from V(D)J recombinations, including incomplete V(D)J-like
recombinations, improving our knowledge on immune repertoires.
Availability: http://gitlab.vidjil.org
Preprint. December 22, 2023

8

9

10

11

12

13

14

15

16

17

18

Keywords: Spaced seeds; Aho-Corasick automaton; Alignment-free algorithms; Immune repertoire; V(D)J
recombinations; Adaptive Immune Receptor Repertoire (AIRR); Repertoire Sequencing (RepSeq)

19

20

1

mailto:contact@vidjil.org
http://gitlab.vidjil.org

V

AATA
D

GCT
J

Figure 1. A VDJ recombination. After removal of a few nucleotides at the junction of V, D, and J, genes, AATA
was inserted between gene segments V and D and GCT was inserted between gene segments D and J.

1 Introduction 21

V(D)J recombinations are genetic events occurring in immature immunologic cells, the lymphoblasts. These 22

recombinations are an important factor of the diversity of the receptors on B- and T-cells (Tonegawa, 1983). 23

A V(D)J recombination is the result of a random process combining a V gene, possibly a D gene, and a J 24

gene on the genome, building either VDJ or a VJ recombination. The recombination involves enzymes called 25

recombination-activating genes (RAGs). At the junction of these V, D, and J gene segments, nucleotides can be 26

removed and other random ones can be added (see Figure 1), improving again the diversity. Depending on 27

the cell type, these recombinations occur at several loci. Human B-cell receptors have an heavy chain (IGH) 28

and a light chain λ or κ (denoted here IGL and IGK), whereas T-cell receptors either have γ and δ chains (TRG 29

and TRD) or α and β chains (TRA and TRB). 30

T- and B-cell receptors are crucial for recognizing antigens, which is a key part of the adaptative immune 31

response. Identifying andpossibly quantifying V(D)J recombinations helps thus describe the immune response 32

more efficiently. Moreover, a V(D)J recombination can be seen as an identifier – that may be unique – of a 33

clonal population, or shortly clone, that is a cell population coming from a same lymphoblast. This identifying 34

sequence is called a clonotype, but there may be several clonotypes of the same clone (at different loci or 35

alleles) or several different clones with the same clonotype (that may differ elsewhere). In hemato-oncology, 36

V(D)J recombinations are thus used to identify and track clonotypes along time in blood cancers (Cavé et al., 37

1998). Library preparation for these studies was recently standardized by the EuroClonality-NGS working 38

group (Brüggemann et al., 2019; Langlois de Septenville et al., 2022; Villarese et al., 2022). 39

On the software side, since the 1980s, after the pioneering work by the Universität zur Köln with DNAPLOT, 40

many tools for the in-depth analysis of V(D)J recombinations were developed by IMGT (Giudicelli, Chaume, et 41

al., 1998; Lefranc, 2011). In the 2010s, newmethods and softwarewere proposed to analyze these V(D)J recom- 42

binations in high-throughput sequencing datawithmillions of sequences, such as (Arnaout et al., 2011), IgBlast 43

(Ye et al., 2013), Decombinator (Thomas et al., 2013), miTCR (Bolotin, Shugay, et al., 2013), TCRKlass (Yang et al., 44

2014), Vidjil (Giraud et al., 2014), MiXCR (Bolotin, Poslavsky, et al., 2015), IMSEQ (Kuchenbecker et al., 2015), 45

Partis (Ralph and Iv, 2016), IgReC (Shlemov et al., 2017), and IGoR (Marcou et al., 2018). Afzal et al. (2019) did a 46

comparison of several of those software . These Adaptive Immune Receptor Repertoire (AIRR-Seq) methods 47

and software, also called Repertoire Sequencing (RepSeq) (Benichou et al., 2012), developed and invented text 48

algorithmics methods adapted to the specificity of V(D)J recombinations. 49

We call here: 50

• detection, the process of identifying the presence of a V(D)J recombination within a given DNA sequence 51

and determining the related chain (the locus); 52

• designation, the process of determining the specific germline V, (D), and J genes that have undergone 53

recombination, as well as identifying nucleotide deletions, or insertions that may have occurred at the 54

junction between those genes, and possibly detecting the mutations in the whole sequence; 55

• clusterization, the process of gathering equal or similar recombinations, according to some criteria, into 56

clonotypes. 57

Most V(D)J analysis software detect and designate V(D)J recombinations at the same time, for each of the in- 58

put sequences, and some of them cluster sequences thereafter. Vidjil-algo rather cluster sequences before the 59

2

locus regular recombinations incomplete/irregular recombinations
14q1.12 TRA Va-Ja
7q34 TRB Vb-(Db)-Jb TRB+ Db-Jb
14q11.2 TRD Vd-(Dd)-Jd TRD+ Vd-Dd3, Dd2-(Dd)-Jd, Dd2-Dd3

TRA+D Vd-(Dd)-Ja, Dd-Ja
7p14 TRG Vg-Jg
14q32.33 IGH Vh-(Dh)-Jh IGH+ Dh-Jh
22q11.2 IGL Vl-Jl
2p11.2 IGK Vk-Jk IGK+ Vk-KDE, INTRON-KDE

Table 1. Regular and incomplete/irregular human V(D)J and V(D)J-like recombinations analyzed by
vidjil-algo. There are seven loci with at least 16 recombination possibilities (called recombination systems).
For example, on the 14q11.2 TRD locus, apart from the regular recombination, there are at least three known
systems of irregular recombinations (TRD+) as well as two systems involving the very close TRA locus (TRA+D).
These recombination systems are formally described in the JSON file homo-sapiens.g, and the correspond-
ing 5’ and 3’ genes (V and J genes for the regular recombinations) are indexed in a Aho-Corasick automaton.
Note also that, for short genes (J genes, and D genes involved in incomplete recombination systems), both the
genes and 60bp of their downstream/upstream region are indexed (Duez et al., 2016).

full designation (Giraud et al., 2014). Indeed, for many applications, the designation for each sequence is not 60

useful and more efficient alignment-free approaches, including k-mers indexing, can cluster the sequences 61

after detection. 62

A mature B- or T- cell needs only two V(D)J recombinations, on only one allele. However, V(D)J recombina- 63

tionsmayoccur at sevendiffent loci (IGH, IGL, IGK, TRG, TRD, TRA, TRB, see Table 1). Onemay find unproductive 64

recombinations on the other allele, or even in the TR loci in B-cells. Some of these non-productive recombina- 65

tionsmay be incomplete or irregular, such asD-J recombinations on the IGH locus or V-KDE on the IGK, the RAGs 66

enzymes handling the KDE sequence as a J gene. These bi-allelic, incomplete, or irregular recombination are 67

even more frequent in pathological samples, and are also tracked in hemato-oncology studies (Brüggemann 68

et al., 2019). 69

Altogether, one frequently studies datasets with V(D)J or V(D)J-like recombinations on different loci. Table 1 70

lists ℓ = 16 different known recombination systems. Some AIRR-Seq/RepSeq software allow to analyze several 71

systems. The previous Vidjil-algo algorithm was able to detect recombinations in time O(ℓn), where n is the 72

length of the input sequence. 73

We propose here a new algorithm able to detect any V(D)J or V(D)J-like recombinations in time O(n), in- 74

dependently of the number ℓ of recombination systems (Section 2). We also propose a filtering algorithm to 75

improve the V(D)J designation (Section 3). We finally report benchmarks, both on simulated and real datasets, 76

on the quality and the speed of detection and designation (Section 4). 77

2 Linear detection of multi-loci V(D)J recombinations 78

An efficient strategy to detect V(D)J recombinations in a sequence is to look for a position splitting the se- 79

quence into two zones the 5’ zone with significant hits from a given type (e.g. V genes) followed by a 3’ zone, 80

with significant hits from another type (e.g. J genes). In the original Vidjil-algo version, this strategy was used 81

successively for all recombination systems listed in Table 1 (Giraud et al., 2014). 82

We use here an Aho-Corasick automaton, well-suited to look for a set of patterns inside a sequence. This 83

search has a time complexity linear in the sequence size and independent from the size of the set of pat- 84

terns (Aho and Corasick, 1975). Note that Decombinator (Thomas et al., 2013) also relies on an Aho-Corasick 85

automaton by indexing some tags from the V, D and J genes in order to designate the sequences more effi- 86

3

https://gitlab.inria.fr/vidjil/vidjil/-/blob/49bfdd3cd487ec932870a5795b26efb4c022ae5f/germline/homo-sapiens.g

ciently. In our case, the automaton will be used for the detection of recombinations and it does not index V, 87

D, and J genes, but rather spaced seeds extracted from these genes. Using the automaton enables to store in 88

a single pass several types of seeds and to detect, in linear time, the recombination system (including incom- 89

plete/irregular recombinations), together with an estimation of the boundaries of the 5’ and 3’ zones. 90

Seeds and seed occurrences. Aword of size n is a sequence of symbols u1u2 . . . un, and we denote a factor 91

of a word by u[i, j] = uiui+1 . . . uj . We consider symbols denoting nucleotides, Σ = {A,C,G, T}, as well as 92

match (#) and don’t-care (-) symbols. A gene g ∈ Σ∗ is a sequence of nucleotides, and G is the set of genes. 93

Each gene g ∈ G has a type T (g) such as V −
H or J+

B . The type encodes both the V/J type, the locus, and the 94

strand information. 95

A spaced seed u (also called spaced k-mer) is a sequence of # and - symbols. We denote by seed(w, u) = v 96

the projection of the seed u on the word w of the same length, that is, for 1 ≤ i ≤ |w| = |u|, vi = wi if ui = # 97

and otherwise vi = -. For example, seed(ATCG, ##-#) = AT-G. The weight of a seed is its number of # symbol. 98

For example, weight(##-#) = 3. 99

Indexation. Let Fact(s) be the set of all the factors of s. We call P (g, u) the set of words that are factor of 100

a gene g relatively to the seed u: P (g, u) = {w ∈ Σ∗ | ∃i, seed(gi...i+|u|−1, u) = seed(w, u)}. As an example, 101

P (GCCAT, ####) = {GCCA, CCAT}, whereas P (ACAC, #-#) = {AAA, ACA, AGA, ATA, CAC, CCC, CGC, CTC}, 102

There are at mostO(|g|4z) of these words, where z = |w|−weight(w) is the number of don’t-care symbols 103

inw. Typical seeds have z = 1 or 2. All words fromP (g, u), for all genes g ∈ G, are indexed by an Aho-Corasick 104

automaton (see Figure 2). Note that, in practice, failure transitions are removed by replacing them with four 105

transitions, corresponding to the four nucleotides. More specifically a failure transition to a state representing 106

sequence s will be replaced by a transition to state s · c when it exists, with c one of each nucleotide. When 107

the state s · c does not exist, we will recursively follow the failure transition of state s until a state can be 108

reached through a transition c. If no such state exists, the failure transition will be replaced by a transition by 109

c to the initial state. Thus the (nondeterministic) Aho-Corasick automaton is transformed in linear time into a 110

(deterministic) factor automaton while keeping the same number of states. 111

The accepting states, that is here the end of seed occurrences, are taggedwith the list of the typesT (g) of the 112

genes g occurring at that point – there can be one or several such genes. Note that, contrarily to a lookup table 113

index, the Aho-Corasick automaton may store words with different lengths, representing different spaced 114

seeds (possibly with different weights) according to the recombination system, the gene type, or even an 115

individual gene. 116

Querying. Querying a sequence s simply means traversing it while following the transitions in the automa- 117

ton, in O(|s|) time. All accepting states encountered indicate the end of at least one spaced seed of a given 118

type that occurs in the sequence. The output is an affectation vector, that is a list of seed assignations such 119

as Aff (s,G) = - J+G - V+H V+H V+H J+H - - V+H V+H - V−B - - J+H J+H J+H -. As there may be several affectations per 120

state, the affectation vector can have a maximum sizeO(nL), where L ≤ ℓ is the maximum number of affec- 121

tations per state. In practice, L is considered constant (on the usual germlines, L ≤ 6, and, in average, 1.14 122

affectations per accepting state). 123

One can then focus on a reduced affectation vector Aff (s,G)±LOC focusing on V and J of one locus LOC 124

and one strand. For example, focusing on the types V +
H and J+

H , we consider a reduced affectation vector 125

Aff (s,G)+IGH = - - - V V V J - - V V - - - - J J J -. 126

Given a gene type t, we denote by |s|t = |{P (g, u) ∩ Fact(s) such that T (g) = t}|, the number of t in the 127

affectation vector Aff (s,G), with the seed u being used for t. On the same example, |s|V+H = 5. 128

Locus estimation and recombination detection. The affectation vector is analyzed according to the types 129

of the two most probable (see p-value estimation section below) gene types. These two gene types may rep- 130

resent complete or incomplete V(D)J recombinations (Table 1), but unexpected recombinations can also be 131

4

A
A AC

AG

A
TA

C
A TA

CC
CG

C
T

C

Figure 2. Aho-Corasick automaton for P (ACAC, #-#) ∪ P (CCAT, ####), that is for the projected seeds A-A,
C-C, and CCAT. The gray arrows correspond to the failure transitions in the Aho-Corasick automaton. They
can be seen as ε-transitions and are removed in a pre-processing step, without changing the number of states.

Input: an affectation string a = a1a2 . . . an

δ ← 0; δmax ← 0

i ← 0; j ← 0

For each q from 1 to n

Invariant: δ = |a[1, q − 1]|V − |a[1, q − 1]|J
if at = V, then δ ← δ + 1

if at = J, then δ ← δ − 1

if δ > δmax, then δmax ← δ and i ← q

if δ = δmax, then j ← q

End for
Return i and j

δ

i j

1 11 12 15 16 19

5’ zone 3’ zone

- - - V V V J - - V V - - - - J J J -

Figure 3. (Left)O(n) time search of the (i, j) plateau reached around the V-J recombination zone. The actual
implementation (affectanalyser.h) also computes, in the same linear time, the values |a[1, i]|V, |a[1, i]|J,
|a[j, n]|V et |a[j, n]|J for filters and the statistical evaluation. (Right) On this affectation vector, the maximal
values of δ are δ(11) = . . . = δ(15) = 4. Thus here i = 11 and j = 15.

5

http://gitlab.vidjil.org/-/blob/d158f16771b10626911c6ecac1444ac1c6542728/algo/core/affectanalyser.h#L205

a) n

o

M

b) o

m

c) n

d

δ d δV

J

V

J

V

J

D M ′read

Figure 4. V(D)J designation by dynamic programming, declared in segment.h. See Jones and Pevzner (2004,
chapter 6) for an introduction ondynamic programmingmethods to compare sequences. Grayed out triangles
show parts excluded from the computation. a) Search of the best alignments between the read with a V gene
and a J gene, inO(Mn) time, whereM is the total size of indexed genes and n the size of the read. Candidate
V and J segments are independently predicted. b) When the best alignements make the candidate V and J
segments overlap on o ≤ n positions, the best split point is found by another search in time O(mo), where
m ≪ M is the total size of considered V and J genes. c) In the case of a VDJ-like recombination, the central
segment is predicted by a local aligment in timeO(M ′(d+2δ)), whereM ′ is the total size of indexed D genes
and d+2δ ≤ n is the size of the zone where the D segment is searched. Overlaps between V and D or between
D and J candidate segmentes are handled as previouly. The algorithm finally runs in time O((M +M ′)n).

detected and are tagged as such. The algorithm detects a 5’ zone with seeds from a given type followed by 132

a 3’ zone with seeds of another type, but allowing other seeds, such as a few (random) J+
H or even V −

B in a 133

significant V +
H zone. 134

Let a = Aff (s,G)±LOC a reduced affectation vector. We look for positions t such as δ(t) = |a[1, t]|V−|a[1, t]|J 135

is maximal (many V and few J at the left). This is equivalent to maximize δ′(t) = |a[t, n]|J − |a[t, n]|V (many J 136

and few V at the right), because, for every t, δ(t)− δ′(t) = |a|V − |a|J is constant. The algorithm described on 137

Figure 3 computes, in linear time, both positions i ≤ j that are the first and the last to maximize δ, allowing 138

to detect in the affectation vector the 5’ and 3’ zones. 139

p-value estimation. To estimate the significance of the (i, j) zone split and exclude chimeric vectors such 140

as VVVV–-JJJ–-VVV–JJ, the first check is that the 5’ zone has significantly more 5’ seeds than the 3’ zone, 141

that is |a[1, i]|V ≥ τ · |a[j, n]|V with τ = 2, as well as the symmetrical check for the 3’ zone. The p-value of a 142

recombination is then estimated as follows. We call p′V the probability to observe as many affectations V in a 143

randomaffectation vector, and estimate p′V = B(pV, |a[1, i]|V, i), whereB(p, k, n) =
∑

k≤t≤n

(
n
t

)
pt(1−p)(n−t)

144

is the cumulated probability to have an event of probability p at least k times out of n in a Bernoulli schema. 145

This is a very simple model, as the occurrences of seeds are actually not independent. 146

The probability p to have an affectation V on a random seed of weight k (its number of match symbols) 147

is estimated as p = NV/4
k , where NV is the number of seeds V stored in the index. We similarly define 148

p′J = B(pJ, |a[j, n]|J, n − j + 1), and roughly estimate the p-value of a V-J recombination as p′V + p′J. As a 149

multiple testing correction, this p-value is multiplied by the number of processed sequences, giving an e-value. 150

Altogether, when this e-value is below a given threshold, a V(D)J recombination has been detected. The 151

middle of the recombination zone can then be estimated at around (j+ i+k− 1)/2. The next section details 152

how we precisely designate such a recombination. 153

6

http://gitlab.vidjil.org/-/blob/d158f16771b10626911c6ecac1444ac1c6542728/algo/core/segment.h#L383

3 Fast V(D)J designation through seed-based heuristics 154

Designating a V(D)J recombination requires to compare the sequence against all V(D)J germline genes from 155

the detected locus. Precisely aligning a gene against V, (D), and J germline genes can be done with dynamic 156

programming techniques (Figure 4). This alignment is done in time O(Mn), where M is the total length 157

of the considered V and J genes. As V genes are about 300bp in length, this is time consuming. Banded 158

alignments (Chao et al., 1992) bring some improvements, however due to the deletions that occur at the end 159

of V genes or the start of J genes, the constraint on the alignment is imposed on a single part on the gene to 160

prevent restrictions on the number of deletions (Figure 4a and c). However, aligning all the genes of a given 161

locus to a given sequence is still very long, in particular for some locus such as the B-cell heavy chain (IGH) 162

with about 350 genes and alleles. 163

Selecting candidate geneswith seed-basedheuristics. Several V(D)J designationmethods use seed-based 164

heuristics (eg. (Bolotin, Poslavsky, et al., 2015; Thomas et al., 2013; Ye et al., 2013)). We propose here to use the 165

previous filtering phase to speed-up the designation phase. The V(D)J detection heuristic presented in the pre- 166

vious section, giving an information on the gene type in sequences, is extended to identify genes which have 167

seeds occurring in any sequence, in order to determine against which genes the sequence s will be aligned. 168

For each gene g, the accepting states in the Aho-Corasick automaton are nowmarked with the gene identi- 169

fier I(g) along with the gene type T (g). Computing, still in linear time, the affectations on the gene identifiers, 170

we consider CG(s) = {g ∈ G | |s|I(g) > 0} the set of genes, having at least one seed in the sequence s, and 171

nmax = maxg∈G |s|I(g) the maximal number of seeds from s that matched on a gene. We want to align s 172

against all the genes whose number of matched seeds is close to nmax. This proximity is determined by as- 173

suming that the number of matched seeds follows a binomial distribution. Thus we compute a confidence 174

interval for nmax (with a p-value at 99.9% by default) which gives us a range [na, nb]. We finally consider the set 175

of candidate genes C⋆
G(s) = {g ∈ G | |s|I(g) ≥ na}: All the genes from G which have at least na seeds match- 176

ing on s are aligned against s using dynamic programming as on the Figure 4. The designation algorithm runs 177

in O(M ′n), whereM ′ ≤ M is the total size of these candidate genes. For example, on the IGH germlines, a 178

typical value of nmax = 200 on sequences of length about 300 gives [na, nb] = [174, 216], and there are usually 179

less than 10 genes/alleles (out of 350+) matching at least 174 seeds, thusM ′ ≪M . 180

4 Evaluation and results 181

4.1 Datasets 182

Five datasets were used to benchmark the detection and the designation of V(D)J recombinations. 183

Evaluation of the specificity of the detection 184

• A. 106 random DNA sequences, generated with %GC ratios and sequence length similar to the V(D)J IGH 185

germline genes, in which no V(D)J recombination should be found. 186

Evaluation of the sensitivity of the detection 187

• B. 2.3 · 106 synthetic sequences on all loci, both for regular and “incomplete” recombinations. For each 188

possible combination of V, D, and J genes, 10 sequences were generated, by taking the full gene lengths. 189

Insertions and deletions at the junctions were added according to a normal distribution of 5 ± 5, and 190

substitutions to the whole sequence on 2% of the nucleotides to take into account sequencing artifacts 191

but also individual variations. We also generated datasets with 5% and 10% substitutions (resp. B5% 192

and B10%). 193

7

101 102 103 104

time (s)

vidjil-new
vidjil-old

mixcr4
mixcr3

random.fa
1,000,000 seq.

0 1000 2000

memory (MB)

0.00 0.01 0.02

% detection

Figure 5. Detection results of MiXCR and Vidjil-algo on random sequences (dataset A)

• C. TRB simulated sequences from the benchmark of Afzal et al. (2019). We focus on their datasets with 194

more than a single clone and with some errors (low, .1%, and medium, 1%). Each dataset is made of 1M 195

sequences of 250bp. For each error rate, we average the results obtained for the datasets with varying 196

level of clonal populations, as they were very similar. 197

Evaluation of the correctness of the V(D)J designation 198

• D. 1,365 sequences from LIGM-DB (Giudicelli, Duroux, et al., 2006), focusing on the two most repre- 199

sented loci in LIGM-DB, IGH and IGK. 200

• E. 301 sequences from patient data with curated VDJ designations (Salson et al., 2016). 201

4.2 Software 202

Methods described here were implemented in C++ in a development Vidjil-algo version1 and compared to 203

Vidjil-algo 2018.02. We benchmarked against MiXCR 2 (versions 3.0.13 and 4.4.1) (Bolotin, Poslavsky, et al., 204

2015). MiXCR is widely used, and, although it is not open-source, its code is available. After systematic com- 205

parison between several V(D)J analysis tools, MiXCR was assessed by Afzal et al. (2019) as the most balanced 206

generic tools in terms of flexibility and accuracy. Note that MiXCR and Vidjil-algo were launched on the same 207

germline sequences coming from the same IMGT GENE-DB version. The four programs were launched on 208

one thread on a server with 2 Intel Xeon Gold 6130 processors (2.10GHz, 32MB cache) and 128GB RAM. The 209

benchmark is fully reproducible (from the retrieval of the data to the production of the paper’s figures) us- 210

ing Snakemake (Köster and Rahmann, 2012), with the instructions provided at https://www.vidjil.org/data# 211

2023-pcicompbio. 212

4.3 V(D)J detection 213

Specificity and sensitivity. We restrict MiXCR to launch the smallest analysis it can do – performing a V(D)J 214

designation on each sequence. Thus the results they produce are much more detailed than what Vidjil-algo 215

provides. On the opposite, Vidjil-algo first tries to identify a V(D)J recombination, then determines an identifier 216

for this V(D)J recombination and clusters all sequences sharing the same identifier into clonotypes. Then, only 217

the 100 most abundant clonotypes are designated (which is not discussed in this section). 218

On random sequences (dataset A, see Figure 5), only MiXCR detects spurious V(D)J recombinations among 219

the million random sequences. However we note a large improvement in specificity, with a two-fold improve- 220

ment between MiXCR 3 and MiXCR 4. 221

Sensitivity is assessed with the dataset B (Figure 6), consisting of randomly generated V(D)J recombinations 222

with 2% substitutions. Our new algorithm is very sensitive to detect those recombinations. It is the most 223

sensitive among all the tested tools. It is the only one to reach 100% sensitivity on all loci. This is a noticeable 224

improvement compared to previous versions of Vidjil-algo. In Supplementary File 1, figure 1, we show that 225

even with 10% errors the new heuristic shows very good results. On average, on the complete loci, it reaches 226

99.1% detection which is better than Vidjil-old (68%) and MiXCR 3 (89.6%) but less than MiXCR 4 (99.5%). 227

1This version is available at https://gitlab.inria.fr/vidjil/vidjil/-/tree/feature-a/one-heuristic-multiple-affects-working.
2MiXCR code is available at https://github.com/milaboratory/mixcr, but is not released under an open-source licence.

8

https://www.vidjil.org/data#2023-pcicompbio
https://www.vidjil.org/data#2023-pcicompbio
https://www.vidjil.org/data#2023-pcicompbio
https://gitlab.inria.fr/vidjil/vidjil/-/tree/feature-a/one-heuristic-multiple-affects-working
https://github.com/milaboratory/mixcr

102 103 104 105

time (s)

vidjil-new
vidjil-old

mixcr4
mixcr3IGH

2,042,040 seq.

0 2000 4000 6000

memory (MB)

99.40 99.60 99.80 100.00

% detection

100 101 102
vidjil-new
vidjil-old

mixcr4
mixcr3IGK

9,720 seq.

0 1000 2000 97.00 98.00 99.00 100.00

100 101 102
vidjil-new
vidjil-old

mixcr4
mixcr3IGL

10,010 seq.

0 500 1000 1500 90.00 95.00 100.00

100 101 102 103
vidjil-new
vidjil-old

mixcr4
mixcr3TRA

70,040 seq.

0 1000 2000 3000 99.90 99.95 100.00

100 101 102 103
vidjil-new
vidjil-old

mixcr4
mixcr3TRB

68,160 seq.

0 1000 2000 99.40 99.60 99.80 100.00

100 101 102
vidjil-new
vidjil-old

mixcr4
mixcr3TRD

2,520 seq.

0 500 1000 1500 99.60 99.80 100.00

10 1 100 101 102
vidjil-new
vidjil-old

mixcr4
mixcr3TRG

1,140 seq.

0 200 400 600 99.90 99.93 99.95 99.98 100.00

Figure 6. Detection by MiXCR and Vidjil-algo on synthetic V(D)J recombinations on all human loci (dataset B).
The X-axis on the time diagrams is logarithmic.

9

101 102 103 104

time (s)

vidjil-newvidjil-oldmixcr4mixcr3Low error
1,000,000 seq.

0 2000 4000

memory (MB)

99.90 99.93 99.95 99.98 100.00

% detection

101 102 103 104
vidjil-newvidjil-oldmixcr4mixcr3Medium error

1,000,000 seq.
0 2000 4000 99.90 99.95 100.00

Figure 7. Detection on Afzal et al. (2019) TRB benchmark (dataset C) by MiXCR and Vidjil-algo.
locus nb. seq. mixcr3 mixcr4 vidjil-old vidjil-new

IGH 95 95 94 93 94

IGK 2 2 2 2 2

IGL 2 2 2 2 2

TRA 1 1 1 1 1

TRB 16 15 15 16 16

TRD 18 18 18 18 18

TRG 31 30 31 30 31

IGH+ 23 23 23

IGK+ 29 29 29

TRA+D 28 28 7

TRB+ 20 19 19

TRD+ 31 25 16

Table 2. Detection on MiXCR, and Vidjil-algo on curated V(D)J designations (dataset E)

On the TRB benchmark from Afzal et al. (2019) (dataset C, Figure 7) our new algorithm is among the most 228

sensitive: it detects all the recombinations in the low error condition (.1%) and more than 99.992% in the 229

medium error condition (1%). In this second condition, this is slightly less than MiXCR3 (99.996%) but more 230

than MiXCR 4 (99.94%). On IGH and IGK recombinations from LIGM-DB (dataset D, Figure 8), MiXCR 3 gives 231

again the best results for the detection. However Vidjil-algo’s new heuristic improves the former one, and 232

for IGH, is now much closer to MiXCR 3 results. The improvement is less pronounced on IGK. However in 233

both cases, our new heuristics gives better detection results than MiXCR 4. The reason why IGK results are 234

worse is that IGK recombined sequences in LIGM-DB are very short on the J side, with 60% sequences being 235

at most 20bp long and even 20% sequences at most 10bp long, whereas germinal IGKJ genes are 38-39bp 236

long. Among the 68 sequences that Vidjil-algo did not detect and MiXCR 3 did, almost all of them (6768) had an 237

IGKJ gene 12bp long or shorter. With so short sequences, a single mutation may prevent any spaced seed to 238

match the J sequence. 239

On the dataset E, results are shown in Table 2. Results are very similar between the four programs for 240

complete recombinations (IGH, IGK, IGL, TRA, TRB, TRD, TRG). As expected, only Vidjil-algo detects some in- 241

complete recombinations, as MiXCR does not deal with them. The drop in detection in the new version on 242

TRA+D and TRD+ is not an algorithmic issue but rather an engineering one (the problem being to differentiate 243

genes that are shared by TRA+D and TRD within Vidjil codebase). 244

Speed and memory. On top of that, the new algorithm is much quicker than the former version of Vidjil- 245

algo (at least four times quicker on large enough datasets). For datasets A, B, and C, it is between 20 and 246

30 times quicker than MiXCR. The difference is less striking on small datasets due to the construction of the 247

Aho-Corasick automaton at each startup. In spite of this data structure, the memory consumption is lower 248

than before because it used lookup tables (that were sparse). MiXCR almost systematically has the highest 249

memory consumption, apart from dataset with a large number of distinct recombinations (IGH on Figure 6). 250

10

200 400 600 800 988
Number of sequences

vidjil-new
vidjil-old

mixcr4
mixcr3

IGH

80 160 240 320 377
Number of sequences

IGK

Detection Designation
Figure 8. Correct detection and designation of V(D)J recombinations on LIGM-DB version LIGMDB_V12
(dataset D) with MiXCR and Vidjil-algo.

locus nb. seq. mixcr3 mixcr4 vidjil-old vidjil-new
IGH 95 89 87 89 90

IGK 2 2 2 2 2

IGL 2 2 2 2 2

TRA 1 1 1 1 1

TRB 16 14 15 14 15

TRD 18 15 14 15 13

TRG 31 28 28 28 28

IGH+ 23 1 21 20

IGK+ 29 19 18

TRA+D 28 2 23 7

TRB+ 20 2 19 19

TRD+ 31 28 17

Table 3. Correct designation on V(D)J recombinations on manually curated V(D)J sequences (dataset E) with
MiXCR and Vidjil-algo. nb. seq. is the number of sequences in the dataset with the given locus.

4.4 V(D)J designation 251

V(D)J designations predicted by the software, taking the same reference genes, are compared to the ref- 252

erence datasets D and E (Table 3 and Figure 8). Only the names of the V and of the J genes are checked (or 253

D and J genes for incomplete recombinations). As some genes are very similar, designating one gene is very 254

dependant to fine tunings in the scoring of the sequence comparisons. The output of both software could 255

thus be considered correct in some cases even when departing from those reference datasets – and note that 256

the dataset E already contains some alternative acceptable designations. 257

Both Vidjil-algo andMiXCR designate the same V(D)J recombinations than in the reference datasets in most 258

of the sequences. Designations on the complete loci (IGH, TRB, TRD, TRG) are particularly close to the cu- 259

rated dataset E, with more than 90% correct designations, showing that the software do not have any specific 260

difficulty to identify the V and J genes involved. Surprisingly, MiXCR 4 with the default parameters does not 261

designate some sequences in the way that MiXCR 3 did. This may come from stricter parameters to improve 262

specificity, as it was also shown on random sequences in Figure 5. Note also that in some cases (see IGK in 263

Figure 8, dataset D), the detection step of Vidjil-algo can assign borderline sequences to an incorrect locus. 264

The figure for dataset E is shown in Supplementary file 1, figure 2. During the designation step such an error 265

would be fixed. 266

Anyway, while staying very specific, the new Vidjil-algo designation is much closer to the best results that 267

were obtained by MiXCR 3, and even slightly better on the IGH dataset. Moreover, as expected, only Vidjil is 268

capable of handling incomplete recombinations (Table 3), with 79% correct designations on IGH+, IGK+, and 269

TRB+ incomplete recombinations, the TRD+/TRA+D recombinations being more challenging. 270

On the E dataset, our new heuristic to avoid the alignment against many genes leads to a more than 10 271

fold improvement in time consumption. Thus, Vidjil time consumption of designation with our new heuristic 272

11

becomes comparable to MiXCR, while Vidjil-algo didn’t optimize the alignment by itself (by using SIMD for 273

instance). Note that in the classic usage, and due to its approach, Vidjil-algo can limit the designation to the 274

100 most abundant clonotypes. 275

5 Discussion and perspectives 276

Studying immune repertoire by high-throughput sequecing for immunological or onco-hematological ap- 277

plications requires adapted methods. We introduced a seed-based alignment-free algorithm, based on an 278

Aho-Corasick automaton, to detect in a single pass, inO(n) time, V(D)J recombinations coming from different 279

loci, as well as a filtering algorithm improving the designation of V(D)J gene segments from a recombination. 280

Both algorithms are fast and sensitive, and come with a statistical evaluation of their results, including on 281

irregular or incomplete recombinations. 282

Our new version of Vidjil-algo is hence one of the fastest available programs for analyzing large datasets 283

with billions of immune recombinations, and is moreover released under an open-source licence. The two al- 284

gorithms provided an up to 10× speed-up compared to the previous Vidjil-algo version, still keeping excellent 285

sensibility and specificity and a low memory footprint. Other software may give more information – notably 286

the V(D)J designation of each sequence – but they are not necessarily needed in several applications. We also 287

show that Vidjil-algo is highly effective to identify and filter sequences that do not exhibit V(D)J recombinations. 288

This is a feature of interest to analyze large sequencing datasets, such as RNA-seq data that contain very few 289

V(D)J recombinations. 290

Vidjil-algo is already used in reference protocols dealing with sequencing and analyzing immunogenetical 291

data (Langlois de Septenville et al., 2022; Villarese et al., 2022). With the rise of large-scale analysis of public 292

datasets (Edgar et al., 2022), Vidjil-algo could become one of the preferred methods for V(D)J detection on 293

such large-scale analyses. In a second time, MiXCR could be used to obtain detailed informations on the V(D)J 294

recombinations detected by Vidjil-algo. 295

As the Aho-Corasick automaton stores words projected from different seeds, seed optimization could be 296

further studied. The smaller the seed, the more sensitive, but the less specific. Gene repertoires have very 297

different sizes according to the locus, with for example more than 200 kB of sequences on IGH V-J and just a 298

few nucleotides for the TRD+ Dd2/Dd3 (see Supplementary Figure 1). In the assessed version, shorter seed 299

sizes were selected for J genes, enabling a better recognition. Further work could optimize the seed lengths 300

and weights depending on each recombination system. 301

More generally, seed-based heuristics provide efficient and pertinent solutions to analyze large datasets. 302

Further research on these algorithms could include efficient detection and designation of recombined se- 303

quences with three or more segments, as well as improving again the statistical evaluation of recombinations. 304

Acknowledgments 305

We thank the Mésocentre de Lille for their computing resources, and Inria for the support as well as com- 306

puting resources. We also thank Nika Abdollahi (Abdollahi, 2021) and the Bonsai team for discussions on 307

alignment-free methods. We finally thank the VidjilNet consortium, users of Vidjil as well as the EuroClonality- 308

NGS consortium. Their feedback helped us improve the algorithm. 309

Conflict of Interest 310

Mathieu Giraud and Mikaël Salson are members of the Scientific and Technical Committee of the not-for- 311

profit VidjilNet consortium. They do not receive any financial compensation from that consortium. 312

12

References 313

Abdollahi N (July 2021). B cell receptor repertoire analysis in clinical context : new approaches for clonal group- 314

ing, intra-clonal diversity studies, and repertoire visualization. PhD thesis. Sorbonne Université. 315

Afzal S, I Gil-Farina, R Gabriel, S Ahmad, C von Kalle, M Schmidt, and R Fronza (2019). Systematic comparative 316

study of computational methods for T-cell receptor sequencing data analysis. Briefings in Bioinformatics 20, 317

222–234. https://doi.org/10.1093/bib/bbx111. 318

Aho AV and MJ Corasick (1975). Efficient string matching: An aid to bibliographic search. Communications of 319

the ACM 18, 333–340. 320

Arnaout R, W Lee, P Cahill, T Honan, T Sparrow, M Weiand, C Nusbaum, K Rajewsky, and SB Koralov (2011). 321

High-Resolution Description of Antibody Heavy-Chain Repertoires in Humans. PLoS ONE 6, e22365. 322

Benichou J, R Ben-Hamo, Y Louzoun, and S Efroni (2012). Rep-Seq: uncovering the immunological repertoire 323

through next-generation sequencing. Immunology 135, 183–91. 324

Bolotin DA, M Shugay, IZ Mamedov, MAT Ekaterina V Putintseva, IV Zvyagin, OV Britanova, and DM Chudakov 325

(2013). MiTCR: software for T-cell receptor sequencing data analysis. Nature Methods 10, 813–814. https: 326

//doi.org/10.1038/nmeth.2555. 327

Bolotin DA, S Poslavsky, I Mitrophanov, M Shugay, IZ Mamedov, EV Putintseva, and DM Chudakov (2015). 328

MiXCR: software for comprehensive adaptive immunity profiling. en. Nature Methods 12, 380–381. ISSN: 329

1548-7091. https://doi.org/10.1038/nmeth.3364. 330

Brüggemann M, M Kotrová, H Knecht, J Bartram, M Boudjogrha, V Bystry, G Fazio, E Froňková, M Giraud, A Gri- 331

oni, et al. (2019). Standardized next-generation sequencing of immunoglobulin and T-cell receptor gene 332

recombinations for MRD marker identification in acute lymphoblastic leukaemia; a EuroClonality-NGS val- 333

idation study. Leukemia. https://doi.org/10.1038/s41375-019-0496-7. 334

Cavé H, J van der Werff Ten Bosch, S Suciu, C Guidal, C Waterkeyn, J Otten, M Bakkus, K Thielemans, B Grand- 335

champ, E Vilmer, B Nelken, M Fournier, P Boutard, E Lebrun, FMéchinaud, R Garand, A Robert, N Dastugue, 336

E Plouvier, E Racadot, A Ferster, J Gyselinck, O Fenneteau, M Duval, G Solbu, and AMManel (1998). Clinical 337

significance of minimal residual disease in childhood acute lymphoblastic leukemia. New England Journal 338

of Medicine 339, 591–598. 339

Chao KM, WR Pearson, and WMiller (1992). Aligning two sequences within a specified diagonal band. Bioinfor- 340

matics 8, 481–487. 341

Duez M, M Giraud, R Herbert, T Rocher, M Salson, and F Thonier (2016). Vidjil: A web platform for analysis of 342

high-throughput repertoire sequencing. PLOS One 11, e0166126. https://doi.org/10.1371/journal.pone. 343

0166126. 344

Edgar RC, J Taylor, V Lin, T Altman, P Barbera, D Meleshko, D Lohr, G Novakovsky, B Buchfink, B Al-Shayeb, 345

et al. (2022). Petabase-scale sequence alignment catalyses viral discovery. Nature 602, 142–147. 346

Giraud M, M Salson, M Duez, C Villenet, S Quief, A Caillault, N Grardel, C Roumier, C Preudhomme, and M 347

Figeac (2014). Fast multiclonal clusterization of V(D)J recombinations from high-throughput sequencing. 348

BMC Genomics 15, 409. https://doi.org/10.1186/1471-2164-15-409. 349

Giudicelli V, D Chaume, G Mennessier, HH Althaus, W Müller, J Bodmer, A Malik, and MP Lefranc (1998). IMGT, 350

the international ImMunoGeneTics database: a new design for immunogenetics data access. In: MED- 351

INFO’98. IOS Press, pp. 351–355. 352

Giudicelli V, PDuroux, CGinestoux, G Folch, J Jabado-Michaloud, DChaume, andMPLefranc (2006). IMGT/LIGM- 353

DB, the IMGT® comprehensive database of immunoglobulin and T cell receptor nucleotide sequences. 354

Nucleic acids research 34, D781–D784. 355

Jones NC and PA Pevzner (2004). An introduction to bioinformatics algorithms. MIT Press. ISBN: 0-262-10106-8. 356

Köster J and S Rahmann (2012). Snakemake—a scalable bioinformatics workflow engine. Bioinformatics 28, 357

2520–2522. 358

13

https://doi.org/10.1093/bib/bbx111
https://doi.org/10.1038/nmeth.2555
https://doi.org/10.1038/nmeth.2555
https://doi.org/10.1038/nmeth.2555
https://doi.org/10.1038/nmeth.3364
https://doi.org/10.1038/s41375-019-0496-7
https://doi.org/10.1371/journal.pone.0166126
https://doi.org/10.1371/journal.pone.0166126
https://doi.org/10.1371/journal.pone.0166126
https://doi.org/10.1186/1471-2164-15-409

Kuchenbecker L, M Nienen, J Hecht, AU Neumann, N Babel, K Reinert, and PN Robinson (2015). IMSEQ – a 359

fast and error aware approach to immunogenetic sequence analysis. en. Bioinformatics 31, btv309. ISSN: 360

1367-4803, 1460-2059. https://doi.org/10.1093/bioinformatics/btv309. 361

Langlois de Septenville A, M Boudjoghra, C Bravetti, M Armand, M Salson, M Giraud, and F Davi (2022). Im- 362

munoglobulin Gene Mutational Status Assessment by Next Generation Sequencing in Chronic Lympho- 363

cytic Leukemia. In: Immunogenetics. Ed. by Langerak AW. Vol. 2453. Methods inMolecular Biology. Springer, 364

pp. 153–167. https://doi.org/10.1007/978-1-0716-2115-8_10. 365

LefrancMP (2011). IMGT, the International ImMunoGeneTics Information System. Cold Spring Harbor Protocols 366

2011, pdb.top115. https://doi.org/10.1101/pdb.top115. 367

Marcou Q, T Mora, and AM Walczak (2018). High-throughput immune repertoire analysis with IGoR. Nature 368

communications 9, 561. 369

Ralph DK and FAM Iv (Jan. 2016). Consistency of VDJ Rearrangement and Substitution Parameters Enables 370

Accurate B Cell Receptor Sequence Annotation. PLOS Comput Biol 12, e1004409. ISSN: 1553-7358. https: 371

//doi.org/10.1371/journal.pcbi.1004409. 372

Salson M, A Caillault, M Duez, Y Ferret, A Fievet, M Kotrova, F Thonier, P Villarese, S Wakeman, GWright, andM 373

Giraud (2016). A Dataset of Sequences with Manually Curated V(D)J Designations. Workshop on Immune 374

Repertoire Sequencing : Bioinformatics and Applications in Hematology and Immunology (RepSeq 2016). 375

Shlemov A, S Bankevich, A Bzikadze, MA Turchaninova, Y Safonova, and PA Pevzner (2017). Reconstructing 376

antibody repertoires from error-prone immunosequencing reads. The Journal of Immunology 199, 3369– 377

3380. 378

Thomas N, J Heather, W Ndifon, J Shawe-Taylor, and B Chain (2013). Decombinator: a tool for fast, efficient 379

gene assignment in T-cell receptor sequences using a finite state machine. Bioinformatics 29, 542–550. 380

Tonegawa S (1983). Somatic generation of antibody diversity. Nature 302, 575–581. 381

Villarese P, C Abdo,MBertrand, F Thonier,MGiraud,MSalson, and EMacintyre (2022). One-StepNext-Generation 382

Sequencing of Immunoglobulin and T-Cell ReceptorGeneRecombinations forMRDMarker Identification in 383

Acute Lymphoblastic Leukemia. In: Immunogenetics. Methods and Protocols. Ed. by Langerak AW. Vol. 2453. 384

Methods in Molecular Biology. Springer, pp. 43–59. https://doi.org/10.1007/978-1-0716-2115-8_3. 385

Yang X, D Liu, N Lv, F Zhao, F Liu, J Zou, Y Chen, X Xiao, J Wu, P Liu, J Gao, Y Hu, Y Shi, J Liu, R Zhang, C Chen, 386

J Ma, GF Gao, and B Zhu (2014). TCRklass: A New K-String-Based Algorithm for Human and Mouse TCR 387

Repertoire Characterization. Journal of Immunology 194. https://doi.org/10.4049/jimmunol.1400711. 388

Ye J, N Ma, TL Madden, and JM Ostell (2013). IgBLAST: an immunoglobulin variable domain sequence analysis 389

tool. Nucleic Acids Research 41, W34–W40. https://doi.org/10.1093/nar/gkt382. 390

14

https://doi.org/10.1093/bioinformatics/btv309
https://doi.org/10.1007/978-1-0716-2115-8_10
https://doi.org/10.1101/pdb.top115
https://doi.org/10.1371/journal.pcbi.1004409
https://doi.org/10.1371/journal.pcbi.1004409
https://doi.org/10.1371/journal.pcbi.1004409
https://doi.org/10.1007/978-1-0716-2115-8_3
https://doi.org/10.4049/jimmunol.1400711
https://doi.org/10.1093/nar/gkt382

	Introduction
	Linear detection of multi-loci V(D)J recombinations
	Fast V(D)J designation through seed-based heuristics
	Evaluation and results
	Datasets
	Software
	V(D)J detection
	V(D)J designation

	Discussion and perspectives

