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The diversity of the immune repertoire is grounded on V(D)J recombinations in several loci. Many algorithms and software detect and designate these recombinations in high-throughput sequencing data. To improve their efficiency, we propose a multi-loci seed identification through an Aho-Corasick like automaton as well as a seed-based gene filtration. These algorithms were implemented into Vidjil-algo, used routinely by several labs for the analysis of hematologic malignancies.

We benchmark the results of Vidjil-algo and of MiXCR on five datasets, evaluating the specificity and sensitivity of the detection, as well as the adequation of the designation to manually curated sequences. Compared to the previous algorithms, the new algorithms implemented in Vidjil-algo bring speedups between 5x and 30x, with a smaller memory footprint and without quality loss in results. They enable to precisely annotate in a few minutes millions of sequences coming from V(D)J recombinations, including incomplete V(D)J-like recombinations, improving our knowledge on immune repertoires.

Introduction

V(D)J recombinations are genetic events occurring in immature immunologic cells, the lymphoblasts. These recombinations are an important factor of the diversity of the receptors on B-and T-cells [START_REF] Tonegawa | Somatic generation of antibody diversity[END_REF].

A V(D)J recombination is the result of a random process combining a V gene, possibly a D gene, and a J gene on the genome, building either VDJ or a VJ recombination. The recombination involves enzymes called recombination-activating genes (RAGs). At the junction of these V, D, and J gene segments, nucleotides can be removed and other random ones can be added (see Figure 1), improving again the diversity. Depending on the cell type, these recombinations occur at several loci. Human B-cell receptors have an heavy chain (IGH) and a light chain λ or κ (denoted here IGL and IGK), whereas T-cell receptors either have γ and δ chains (TRG and TRD) or α and β chains (TRA and TRB).

T-and B-cell receptors are crucial for recognizing antigens, which is a key part of the adaptative immune response. Identifying and possibly quantifying V(D)J recombinations helps thus describe the immune response more efficiently. Moreover, a V(D)J recombination can be seen as an identifier -that may be unique -of a clonal population, or shortly clone, that is a cell population coming from a same lymphoblast. This identifying sequence is called a clonotype, but there may be several clonotypes of the same clone (at different loci or alleles) or several different clones with the same clonotype (that may differ elsewhere). In hemato-oncology, V(D)J recombinations are thus used to identify and track clonotypes along time in blood cancers [START_REF] Cavé | Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia[END_REF]. Library preparation for these studies was recently standardized by the EuroClonality-NGS working group [START_REF] Brüggemann | Standardized next-generation sequencing of immunoglobulin and T-cell receptor gene recombinations for MRD marker identification in acute lymphoblastic leukaemia; a EuroClonality-NGS validation study[END_REF][START_REF] Langlois De Septenville | Immunoglobulin Gene Mutational Status Assessment by Next Generation Sequencing in Chronic Lymphocytic Leukemia[END_REF][START_REF] Villarese | One-Step Next-Generation Sequencing of Immunoglobulin and T-Cell Receptor Gene Recombinations for MRD Marker Identification in Acute Lymphoblastic Leukemia[END_REF].

On the software side, since the 1980s, after the pioneering work by the Universität zur Köln with DNAPLOT, many tools for the in-depth analysis of V(D)J recombinations were developed by IMGT [START_REF] Giudicelli | IMGT, the international ImMunoGeneTics database: a new design for immunogenetics data access[END_REF][START_REF] Lefranc | IMGT, the International ImMunoGeneTics Information System[END_REF]. In the 2010s, new methods and software were proposed to analyze these V(D)J recombinations in high-throughput sequencing data with millions of sequences, such as [START_REF] Arnaout | High-Resolution Description of Antibody Heavy-Chain Repertoires in Humans[END_REF], IgBlast [START_REF] Ye | IgBLAST: an immunoglobulin variable domain sequence analysis tool[END_REF], Decombinator [START_REF] Thomas | Decombinator: a tool for fast, efficient gene assignment in T-cell receptor sequences using a finite state machine[END_REF], miTCR [START_REF] Bolotin | MiTCR: software for T-cell receptor sequencing data analysis[END_REF], TCRKlass [START_REF] Yang | TCRklass: A New K-String-Based Algorithm for Human and Mouse TCR Repertoire Characterization[END_REF], Vidjil [START_REF] Giraud | Fast multiclonal clusterization of V(D)J recombinations from high-throughput sequencing[END_REF], MiXCR [START_REF] Bolotin | MiXCR: software for comprehensive adaptive immunity profiling[END_REF], IMSEQ [START_REF] Kuchenbecker | IMSEQ -a fast and error aware approach to immunogenetic sequence analysis[END_REF], Partis [START_REF] Ralph | Consistency of VDJ Rearrangement and Substitution Parameters Enables Accurate B Cell Receptor Sequence Annotation[END_REF], IgReC [START_REF] Shlemov | Reconstructing antibody repertoires from error-prone immunosequencing reads[END_REF], and IGoR [START_REF] Marcou | High-throughput immune repertoire analysis with IGoR[END_REF]. [START_REF] Afzal | Systematic comparative study of computational methods for T-cell receptor sequencing data analysis[END_REF] did a comparison of several of those software . These Adaptive Immune Receptor Repertoire (AIRR-Seq) methods and software, also called Repertoire Sequencing (RepSeq) [START_REF] Benichou | Rep-Seq: uncovering the immunological repertoire through next-generation sequencing[END_REF], developed and invented text algorithmics methods adapted to the specificity of V(D)J recombinations.

We call here:

• detection, the process of identifying the presence of a V(D)J recombination within a given DNA sequence and determining the related chain (the locus);

• designation, the process of determining the specific germline V, (D), and J genes that have undergone recombination, as well as identifying nucleotide deletions, or insertions that may have occurred at the junction between those genes, and possibly detecting the mutations in the whole sequence;

• clusterization, the process of gathering equal or similar recombinations, according to some criteria, into clonotypes.

Most V(D)J analysis software detect and designate V(D)J recombinations at the same time, for each of the input sequences, and some of them cluster sequences thereafter. Vidjil-algo rather cluster sequences before the For example, on the 14q11.2 TRD locus, apart from the regular recombination, there are at least three known systems of irregular recombinations (TRD+) as well as two systems involving the very close TRA locus (TRA+D).

These recombination systems are formally described in the JSON file homo-sapiens.g, and the corresponding 5' and 3' genes (V and J genes for the regular recombinations) are indexed in a Aho-Corasick automaton.

Note also that, for short genes (J genes, and D genes involved in incomplete recombination systems), both the genes and 60 bp of their downstream/upstream region are indexed [START_REF] Duez | Vidjil: A web platform for analysis of high-throughput repertoire sequencing[END_REF].

full designation [START_REF] Giraud | Fast multiclonal clusterization of V(D)J recombinations from high-throughput sequencing[END_REF]. Indeed, for many applications, the designation for each sequence is not useful and more efficient alignment-free approaches, including k-mers indexing, can cluster the sequences after detection.

A mature B-or T-cell needs only two V(D)J recombinations, on only one allele. However, V(D)J recombinations may occur at seven diffent loci (IGH, IGL, IGK, TRG, TRD, TRA, TRB, see Table 1). One may find unproductive recombinations on the other allele, or even in the TR loci in B-cells. Some of these non-productive recombinations may be incomplete or irregular, such as D-J recombinations on the IGH locus or V-KDE on the IGK, the RAGs enzymes handling the KDE sequence as a J gene. These bi-allelic, incomplete, or irregular recombination are even more frequent in pathological samples, and are also tracked in hemato-oncology studies [START_REF] Brüggemann | Standardized next-generation sequencing of immunoglobulin and T-cell receptor gene recombinations for MRD marker identification in acute lymphoblastic leukaemia; a EuroClonality-NGS validation study[END_REF].

Altogether, one frequently studies datasets with V(D)J or V(D)J-like recombinations on different loci. We propose here a new algorithm able to detect any V(D)J or V(D)J-like recombinations in time O(n), independently of the number ℓ of recombination systems (Section 2). We also propose a filtering algorithm to improve the V(D)J designation (Section 3). We finally report benchmarks, both on simulated and real datasets, on the quality and the speed of detection and designation (Section 4).

Linear detection of multi-loci V(D)J recombinations

An efficient strategy to detect V(D)J recombinations in a sequence is to look for a position splitting the sequence into two zones the 5' zone with significant hits from a given type (e.g. V genes) followed by a 3' zone, with significant hits from another type (e.g. J genes). In the original Vidjil-algo version, this strategy was used successively for all recombination systems listed in Table 1 [START_REF] Giraud | Fast multiclonal clusterization of V(D)J recombinations from high-throughput sequencing[END_REF].

We use here an Aho-Corasick automaton, well-suited to look for a set of patterns inside a sequence. This search has a time complexity linear in the sequence size and independent from the size of the set of patterns [START_REF] Aho | Efficient string matching: An aid to bibliographic search[END_REF]. Note that Decombinator [START_REF] Thomas | Decombinator: a tool for fast, efficient gene assignment in T-cell receptor sequences using a finite state machine[END_REF]) also relies on an Aho-Corasick automaton by indexing some tags from the V, D and J genes in order to designate the sequences more effi-ciently. In our case, the automaton will be used for the detection of recombinations and it does not index V, D, and J genes, but rather spaced seeds extracted from these genes. Using the automaton enables to store in a single pass several types of seeds and to detect, in linear time, the recombination system (including incomplete/irregular recombinations), together with an estimation of the boundaries of the 5' and 3' zones.

Seeds and seed occurrences. A word of size n is a sequence of symbols u 1 u 2 . . . u n , and we denote a factor of a word by u[i, j] = u i u i+1 . . . u j . We consider symbols denoting nucleotides, Σ = {A, C, G, T }, as well as match (#) and don't-care (-) symbols. A gene g ∈ Σ * is a sequence of nucleotides, and G is the set of genes. Each gene g ∈ G has a type T (g) such as V - H or J + B . The type encodes both the V/J type, the locus, and the strand information.

A spaced seed u (also called spaced k-mer) is a sequence of # andsymbols. We denote by seed (w, u) = v the projection of the seed u on the word w of the same length, that is, for

1 ≤ i ≤ |w| = |u|, v i = w i if u i = # and otherwise v i = -. For example, seed (ATCG, ##-#) = AT-G.
The weight of a seed is its number of # symbol. For example, weight(##-#) = 3.

Indexation. Let Fact(s) be the set of all the factors of s. We call P (g, u) the set of words that are factor of a gene g relatively to the seed u:

P (g, u) = {w ∈ Σ * | ∃i, seed (g i...i+|u|-1 , u) = seed (w, u)}. As an example, P (GCCAT, ####) = {GCCA, CCAT}, whereas P (ACAC, #-#) = {AAA, ACA, AGA, ATA, CAC, CCC,

CGC, CTC},

There are at most O(|g|4 z ) of these words, where z = |w| -weight(w) is the number of don't-care symbols in w. Typical seeds have z = 1 or 2. All words from P (g, u), for all genes g ∈ G, are indexed by an Aho-Corasick automaton (see Figure 2). Note that, in practice, failure transitions are removed by replacing them with four transitions, corresponding to the four nucleotides. More specifically a failure transition to a state representing sequence s will be replaced by a transition to state s • c when it exists, with c one of each nucleotide. When the state s • c does not exist, we will recursively follow the failure transition of state s until a state can be reached through a transition c. If no such state exists, the failure transition will be replaced by a transition by c to the initial state. Thus the (nondeterministic) Aho-Corasick automaton is transformed in linear time into a (deterministic) factor automaton while keeping the same number of states.

The accepting states, that is here the end of seed occurrences, are tagged with the list of the types T (g) of the genes g occurring at that point -there can be one or several such genes. Note that, contrarily to a lookup table index, the Aho-Corasick automaton may store words with different lengths, representing different spaced seeds (possibly with different weights) according to the recombination system, the gene type, or even an individual gene.

Querying. Querying a sequence s simply means traversing it while following the transitions in the automaton, in O(|s|) time. All accepting states encountered indicate the end of at least one spaced seed of a given type that occurs in the sequence. The output is an affectation vector, that is a list of seed assignations such

as Aff (s, G) = -J + G -V + H V + H V + H J + H --V + H V + H -V - B --J + H J + H J + H -.
As there may be several affectations per state, the affectation vector can have a maximum size O(nL), where L ≤ ℓ is the maximum number of affectations per state. In practice, L is considered constant (on the usual germlines, L ≤ 6, and, in average, 1.14 affectations per accepting state).

One can then focus on a reduced affectation vector Aff (s, G) ± LOC focusing on V and J of one locus LOC and one strand. For example, focusing on the types V + H and J + H , we consider a reduced affectation vector

Aff (s, G) + IGH = ---V V V J --V V ----J J J -.
Given a gene type t, we denote by |s| t = |{P (g, u) ∩ Fact(s) such that T (g) = t}|, the number of t in the affectation vector Aff (s, G), with the seed u being used for t. On the same example, |s| V + H = 5.

Locus estimation and recombination detection. The affectation vector is analyzed according to the types of the two most probable (see p-value estimation section below) gene types. These two gene types may represent complete or incomplete V(D)J recombinations (Table 1), but unexpected recombinations can also be

A A A C A G A T A C A T A C C C G C T C Figure 2. Aho-Corasick automaton for P (ACAC, #-#) ∪ P (CCAT, ####)
, that is for the projected seeds A-A, C-C, and CCAT. The gray arrows correspond to the failure transitions in the Aho-Corasick automaton. They can be seen as ε-transitions and are removed in a pre-processing step, without changing the number of states.

Input: an affectation string a = a 1 a 2 . . . a n δ ← 0; δ max ← 0 i ← 0; j ← 0 For each q from 1 to n detected and are tagged as such. The algorithm detects a 5' zone with seeds from a given type followed by a 3' zone with seeds of another type, but allowing other seeds, such as a few (random

Invariant: δ = |a[1, q -1]| V -|a[1, q -1]| J if a t = V, then δ ← δ + 1 if a t = J, then δ ← δ -1 if δ > δ max , then δ max ← δ and i ← q if δ = δ max , then j ← q End for Return i and j δ i j 1 11 12 15 16 19 5' zone 3' zone ---V V V J --V V ----J J J -
) J + H or even V - B in a significant V + H zone.
Let a = Aff (s, G) ± LOC a reduced affectation vector. We look for positions t such as δ(t

) = |a[1, t]| V -|a[1, t]
| J is maximal (many V and few J at the left). This is equivalent to maximize δ ′ (t) = |a[t, n]| J -|a[t, n]| V (many J and few V at the right), because, for every t, δ(t) -δ ′ (t) = |a| V -|a| J is constant. The algorithm described on Figure 3 computes, in linear time, both positions i ≤ j that are the first and the last to maximize δ, allowing to detect in the affectation vector the 5' and 3' zones.

p-value estimation. To estimate the significance of the (i, j) zone split and exclude chimeric vectors such as VVVV--JJJ--VVV-JJ, the first check is that the 5' zone has significantly more 5' seeds than the 3' zone,

that is |a[1, i]| V ≥ τ • |a[j, n]| V with τ = 2
, as well as the symmetrical check for the 3' zone. The p-value of a recombination is then estimated as follows. We call p ′

V the probability to observe as many affectations V in a random affectation vector, and estimate p ′

V = B(p V , |a[1, i]| V , i), where B(p, k, n) = k≤t≤n n t p t (1-p) (n-t)
is the cumulated probability to have an event of probability p at least k times out of n in a Bernoulli schema.

This is a very simple model, as the occurrences of seeds are actually not independent.

The probability p to have an affectation V on a random seed of weight k (its number of match symbols) is estimated as p = N V /4 k , where N V is the number of seeds V stored in the index. We similarly define p ′ J = B(p J , |a[j, n]| J , n -j + 1), and roughly estimate the p-value of a V-J recombination as p ′ V + p ′ J . As a multiple testing correction, this p-value is multiplied by the number of processed sequences, giving an e-value.

Altogether, when this e-value is below a given threshold, a V(D)J recombination has been detected. The middle of the recombination zone can then be estimated at around (j + i + k -1)/2. The next section details how we precisely designate such a recombination.

Fast V(D)J designation through seed-based heuristics

Designating a V(D)J recombination requires to compare the sequence against all V(D)J germline genes from the detected locus. Precisely aligning a gene against V, (D), and J germline genes can be done with dynamic programming techniques (Figure 4). This alignment is done in time O(M n), where M is the total length of the considered V and J genes. As V genes are about 300 bp in length, this is time consuming. Banded alignments [START_REF] Chao | Aligning two sequences within a specified diagonal band[END_REF] bring some improvements, however due to the deletions that occur at the end of V genes or the start of J genes, the constraint on the alignment is imposed on a single part on the gene to prevent restrictions on the number of deletions (Figure 4a andc). However, aligning all the genes of a given locus to a given sequence is still very long, in particular for some locus such as the B-cell heavy chain (IGH) with about 350 genes and alleles.

Selecting candidate genes with seed-based heuristics. Several V(D)J designation methods use seed-based heuristics (eg. [START_REF] Bolotin | MiXCR: software for comprehensive adaptive immunity profiling[END_REF][START_REF] Thomas | Decombinator: a tool for fast, efficient gene assignment in T-cell receptor sequences using a finite state machine[END_REF][START_REF] Ye | IgBLAST: an immunoglobulin variable domain sequence analysis tool[END_REF]). We propose here to use the previous filtering phase to speed-up the designation phase. The V(D)J detection heuristic presented in the previous section, giving an information on the gene type in sequences, is extended to identify genes which have seeds occurring in any sequence, in order to determine against which genes the sequence s will be aligned.

For each gene g, the accepting states in the Aho-Corasick automaton are now marked with the gene identifier I(g) along with the gene type T (g). Computing, still in linear time, the affectations on the gene identifiers, we consider C G (s) = {g ∈ G | |s| I(g) > 0} the set of genes, having at least one seed in the sequence s, and n max = max g∈G |s| I(g) the maximal number of seeds from s that matched on a gene. We want to align s against all the genes whose number of matched seeds is close to n max . This proximity is determined by assuming that the number of matched seeds follows a binomial distribution. Thus we compute a confidence interval for n max (with a p-value at 99.9% by default) which gives us a range [n a , n b ]. We finally consider the set of candidate genes C ⋆ G (s) = {g ∈ G | |s| I(g) ≥ n a }: All the genes from G which have at least n a seeds matching on s are aligned against s using dynamic programming as on the Figure 4. The designation algorithm runs in O(M ′ n), where M ′ ≤ M is the total size of these candidate genes. For example, on the IGH germlines, a typical value of n max = 200 on sequences of length about 300 gives [n a , n b ] = [174,216], and there are usually less than 10 genes/alleles (out of 350+) matching at least 174 seeds, thus M ′ ≪ M .

Evaluation and results

Datasets

Five datasets were used to benchmark the detection and the designation of V(D)J recombinations.

Evaluation of the specificity of the detection

• A. 10 6 random DNA sequences, generated with %GC ratios and sequence length similar to the V(D)J IGH germline genes, in which no V(D)J recombination should be found.

Evaluation of the sensitivity of the detection

• B. 2.3 • 10 6 synthetic sequences on all loci, both for regular and "incomplete" recombinations. For each possible combination of V, D, and J genes, 10 sequences were generated, by taking the full gene lengths.

Insertions and deletions at the junctions were added according to a normal distribution of 5 ± 5, and substitutions to the whole sequence on 2% of the nucleotides to take into account sequencing artifacts but also individual variations. We also generated datasets with 5% and 10% substitutions (resp. B 5% and B 10% ). random.fa 1,000,000 seq. • C. TRB simulated sequences from the benchmark of [START_REF] Afzal | Systematic comparative study of computational methods for T-cell receptor sequencing data analysis[END_REF]. We focus on their datasets with more than a single clone and with some errors (low, .1%, and medium, 1%). Each dataset is made of 1M sequences of 250bp. For each error rate, we average the results obtained for the datasets with varying level of clonal populations, as they were very similar.

Evaluation of the correctness of the V(D)J designation

• D. 1,365 sequences from LIGM-DB [START_REF] Giudicelli | IMGT/LIGM-DB, the IMGT® comprehensive database of immunoglobulin and T cell receptor nucleotide sequences[END_REF], focusing on the two most represented loci in LIGM-DB, IGH and IGK.

• E. 301 sequences from patient data with curated VDJ designations [START_REF] Salson | A Dataset of Sequences with Manually Curated V(D)J Designations[END_REF].

Software

Methods described here were implemented in C++ in a development Vidjil-algo version 1 and compared to Vidjil-algo 2018.02. We benchmarked against MiXCR 2 (versions 3.0.13 and 4.4.1) [START_REF] Bolotin | MiXCR: software for comprehensive adaptive immunity profiling[END_REF]. MiXCR is widely used, and, although it is not open-source, its code is available. After systematic comparison between several V(D)J analysis tools, MiXCR was assessed by [START_REF] Afzal | Systematic comparative study of computational methods for T-cell receptor sequencing data analysis[END_REF] as the most balanced generic tools in terms of flexibility and accuracy. Note that MiXCR and Vidjil-algo were launched on the same germline sequences coming from the same IMGT GENE-DB version. The four programs were launched on one thread on a server with 2 Intel Xeon Gold 6130 processors (2.10 GHz, 32 MB cache) and 128 GB RAM. The benchmark is fully reproducible (from the retrieval of the data to the production of the paper's figures) using Snakemake [START_REF] Köster | Snakemake-a scalable bioinformatics workflow engine[END_REF], with the instructions provided at https://www.vidjil.org/data# 2023-pcicompbio.

V(D)J detection

Specificity and sensitivity. We restrict MiXCR to launch the smallest analysis it can do -performing a V(D)J designation on each sequence. Thus the results they produce are much more detailed than what Vidjil-algo provides. On the opposite, Vidjil-algo first tries to identify a V(D)J recombination, then determines an identifier for this V(D)J recombination and clusters all sequences sharing the same identifier into clonotypes. Then, only the 100 most abundant clonotypes are designated (which is not discussed in this section).

On random sequences (dataset A, see Figure 5), only MiXCR detects spurious V(D)J recombinations among the million random sequences. However we note a large improvement in specificity, with a two-fold improvement between MiXCR 3 and MiXCR 4.

Sensitivity is assessed with the dataset B (Figure 6), consisting of randomly generated V(D)J recombinations with 2% substitutions. Our new algorithm is very sensitive to detect those recombinations. It is the most sensitive among all the tested tools. It is the only one to reach 100% sensitivity on all loci. This is a noticeable improvement compared to previous versions of Vidjil-algo. In Supplementary File 1, figure 1, we show that even with 10 % errors the new heuristic shows very good results. On average, on the complete loci, it reaches 99.1 % detection which is better than Vidjil-old (68 %) and MiXCR 3 (89.6 %) but less than MiXCR 4 (99.5 %).

1 This version is available at https://gitlab.inria.fr/vidjil/vidjil/-/tree/feature-a/one-heuristic-multiple-affects-working. The X-axis on the time diagrams is logarithmic. 7) our new algorithm is among the most sensitive: it detects all the recombinations in the low error condition (.1%) and more than 99.992% in the medium error condition (1%). In this second condition, this is slightly less than MiXCR3 (99.996%) but more than MiXCR 4 (99.94%). On IGH and IGK recombinations from LIGM-DB (dataset D, Figure 8), MiXCR 3 gives again the best results for the detection. However Vidjil-algo's new heuristic improves the former one, and for IGH, is now much closer to MiXCR 3 results. The improvement is less pronounced on IGK. However in both cases, our new heuristics gives better detection results than MiXCR 4. The reason why IGK results are worse is that IGK recombined sequences in LIGM-DB are very short on the J side, with 60% sequences being at most 20bp long and even 20% sequences at most 10bp long, whereas germinal IGKJ genes are 38-39bp long. Among the 68 sequences that Vidjil-algo did not detect and MiXCR 3 did, almost all of them ( 67 68 ) had an IGKJ gene 12bp long or shorter. With so short sequences, a single mutation may prevent any spaced seed to match the J sequence.

On the dataset E, results are shown in Table 2. Results are very similar between the four programs for complete recombinations (IGH, IGK, IGL, TRA, TRB, TRD, TRG). As expected, only Vidjil-algo detects some incomplete recombinations, as MiXCR does not deal with them. The drop in detection in the new version on TRA+D and TRD+ is not an algorithmic issue but rather an engineering one (the problem being to differentiate genes that are shared by TRA+D and TRD within Vidjil codebase).

Speed and memory. On top of that, the new algorithm is much quicker than the former version of Vidjilalgo (at least four times quicker on large enough datasets). For datasets A, B, and C, it is between 20 and 30 times quicker than MiXCR. The difference is less striking on small datasets due to the construction of the Aho-Corasick automaton at each startup. In spite of this data structure, the memory consumption is lower than before because it used lookup tables (that were sparse). MiXCR almost systematically has the highest memory consumption, apart from dataset with a large number of distinct recombinations (IGH on Figure 6). 

V(D)J designation

V(D)J designations predicted by the software, taking the same reference genes, are compared to the reference datasets D and E (Table 3 and Figure 8). Only the names of the V and of the J genes are checked (or D and J genes for incomplete recombinations). As some genes are very similar, designating one gene is very dependant to fine tunings in the scoring of the sequence comparisons. The output of both software could thus be considered correct in some cases even when departing from those reference datasets -and note that the dataset E already contains some alternative acceptable designations.

Both Vidjil-algo and MiXCR designate the same V(D)J recombinations than in the reference datasets in most of the sequences. Designations on the complete loci (IGH, TRB, TRD, TRG) are particularly close to the curated dataset E, with more than 90% correct designations, showing that the software do not have any specific difficulty to identify the V and J genes involved. Surprisingly, MiXCR 4 with the default parameters does not designate some sequences in the way that MiXCR 3 did. This may come from stricter parameters to improve specificity, as it was also shown on random sequences in Figure 5. Note also that in some cases (see IGK in Anyway, while staying very specific, the new Vidjil-algo designation is much closer to the best results that were obtained by MiXCR 3, and even slightly better on the IGH dataset. Moreover, as expected, only Vidjil is capable of handling incomplete recombinations (Table 3), with 79% correct designations on IGH+, IGK+, and TRB+ incomplete recombinations, the TRD+/TRA+D recombinations being more challenging.

On the E dataset, our new heuristic to avoid the alignment against many genes leads to a more than 10 fold improvement in time consumption. Thus, Vidjil time consumption of designation with our new heuristic becomes comparable to MiXCR, while Vidjil-algo didn't optimize the alignment by itself (by using SIMD for instance). Note that in the classic usage, and due to its approach, Vidjil-algo can limit the designation to the 100 most abundant clonotypes.

Discussion and perspectives

Studying immune repertoire by high-throughput sequecing for immunological or onco-hematological applications requires adapted methods. We introduced a seed-based alignment-free algorithm, based on an Aho-Corasick automaton, to detect in a single pass, in O(n) time, V(D)J recombinations coming from different loci, as well as a filtering algorithm improving the designation of V(D)J gene segments from a recombination.

Both algorithms are fast and sensitive, and come with a statistical evaluation of their results, including on irregular or incomplete recombinations.

Our new version of Vidjil-algo is hence one of the fastest available programs for analyzing large datasets with billions of immune recombinations, and is moreover released under an open-source licence. The two algorithms provided an up to 10× speed-up compared to the previous Vidjil-algo version, still keeping excellent sensibility and specificity and a low memory footprint. Other software may give more information -notably the V(D)J designation of each sequence -but they are not necessarily needed in several applications. We also show that Vidjil-algo is highly effective to identify and filter sequences that do not exhibit V(D)J recombinations.

This is a feature of interest to analyze large sequencing datasets, such as RNA-seq data that contain very few V(D)J recombinations.

Vidjil-algo is already used in reference protocols dealing with sequencing and analyzing immunogenetical data (Langlois de [START_REF] Langlois De Septenville | Immunoglobulin Gene Mutational Status Assessment by Next Generation Sequencing in Chronic Lymphocytic Leukemia[END_REF][START_REF] Villarese | One-Step Next-Generation Sequencing of Immunoglobulin and T-Cell Receptor Gene Recombinations for MRD Marker Identification in Acute Lymphoblastic Leukemia[END_REF]. With the rise of large-scale analysis of public datasets [START_REF] Edgar | Petabase-scale sequence alignment catalyses viral discovery[END_REF], Vidjil-algo could become one of the preferred methods for V(D)J detection on such large-scale analyses. In a second time, MiXCR could be used to obtain detailed informations on the V(D)J recombinations detected by Vidjil-algo.

As the Aho-Corasick automaton stores words projected from different seeds, seed optimization could be further studied. The smaller the seed, the more sensitive, but the less specific. Gene repertoires have very different sizes according to the locus, with for example more than 200 kB of sequences on IGH V-J and just a few nucleotides for the TRD+ Dd2/Dd3 (see Supplementary Figure 1). In the assessed version, shorter seed sizes were selected for J genes, enabling a better recognition. Further work could optimize the seed lengths and weights depending on each recombination system.

More generally, seed-based heuristics provide efficient and pertinent solutions to analyze large datasets.

Further research on these algorithms could include efficient detection and designation of recombined sequences with three or more segments, as well as improving again the statistical evaluation of recombinations.

Figure 3 .Figure 4 .

 34 Figure 3. (Left) O(n) time search of the (i, j) plateau reached around the V-J recombination zone. The actual implementation (affectanalyser.h) also computes, in the same linear time, the values |a[1, i]| V , |a[1, i]| J , |a[j, n]| V et |a[j, n]| J for filters and the statistical evaluation. (Right) On this affectation vector, the maximal values of δ are δ(11) = . . . = δ(15) = 4. Thus here i = 11 and j = 15.

Figure 5 .

 5 Figure 5. Detection results of MiXCR and Vidjil-algo on random sequences (dataset A)

Figure 6 .

 6 Figure 6. Detection by MiXCR and Vidjil-algo on synthetic V(D)J recombinations on all human loci (dataset B).

Figure 8 .

 8 Figure 8. Correct detection and designation of V(D)J recombinations on LIGM-DB version LIGMDB_V12 (dataset D) with MiXCR and Vidjil-algo.

Figure 8 ,

 8 Figure 8, dataset D), the detection step of Vidjil-algo can assign borderline sequences to an incorrect locus. The figure for dataset E is shown in Supplementary file 1, figure 2. During the designation step such an error would be fixed.

Table 1 .

 1 Regular and incomplete/irregular human V(D)J and V(D)J-like recombinations analyzed by vidjil-algo. There are seven loci with at least 16 recombination possibilities (called recombination systems).

	TRA+D Vd-(Dd)-Ja, Dd-Ja

Table 1

 1 

	lists ℓ = 16 different known recombination systems. Some AIRR-Seq/RepSeq software allow to analyze several
	systems. The previous Vidjil-algo algorithm was able to detect recombinations in time O(ℓn), where n is the
	length of the input sequence.

Table 2 .

 2 Detection on MiXCR, and Vidjil-algo on curated V(D)J designations (dataset E)

	Low error 1,000,000 seq. Medium error 1,000,000 seq.	10 1 vidjil-new vidjil-old mixcr4 mixcr3 10 1 vidjil-new vidjil-old mixcr4 mixcr3	10 2 time (s) 10 3 10 2 10 3	10 4 10 4	0 0	memory (MB) 2000 2000	4000 4000	% detection 99.90 99.93 99.95 99.98 100.00 99.90 99.95 100.00
	Figure 7. Detection on Afzal et al. (2019) TRB benchmark (dataset C) by MiXCR and Vidjil-algo.
		locus nb. seq. mixcr3 mixcr4 vidjil-old vidjil-new
		IGH	95	95	94	93		94
		IGK	2	2	2	2		2
		IGL	2	2	2	2		2
		TRA	1	1	1	1		1
		TRB	16	15	15	16		16
		TRD	18	18	18	18		18
		TRG	31	30	31	30		31
		IGH+	23			23		23
		IGK+	29			29		29
		TRA+D	28			28		7
		TRB+	20			19		19
		TRD+	31			25		16
	On the TRB benchmark from Afzal et al. (2019) (dataset C, Figure		

Table 3 .

 3 Correct designation on V(D)J recombinations on manually curated V(D)J sequences (dataset E) with MiXCR and Vidjil-algo. nb. seq. is the number of sequences in the dataset with the given locus.

			mixcr3 mixcr4 vidjil-old vidjil-new
	IGH	95	89	87	89	90
	IGK	2	2	2	2	2
	IGL	2	2	2	2	2
	TRA	1	1	1	1	1
	TRB	16	14	15	14	15
	TRD	18	15	14	15	13
	TRG	31	28	28	28	28
	IGH+	23	1		21	20
	IGK+	29			19	18
	TRA+D	28	2		23	7
	TRB+	20	2		19	19
	TRD+	31			28	17
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