
HAL Id: hal-04361693
https://hal.science/hal-04361693v1

Preprint submitted on 22 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the dynamical Manin-Mumford conjecture for plane
polynomial maps

Romain Dujardin, Charles Favre, Matteo Ruggiero

To cite this version:
Romain Dujardin, Charles Favre, Matteo Ruggiero. On the dynamical Manin-Mumford conjecture for
plane polynomial maps. 2023. �hal-04361693�

https://hal.science/hal-04361693v1
https://hal.archives-ouvertes.fr


ON THE DYNAMICAL MANIN-MUMFORD CONJECTURE FOR

PLANE POLYNOMIAL MAPS

ROMAIN DUJARDIN, CHARLES FAVRE, AND MATTEO RUGGIERO

Abstract. We prove the dynamical Manin-Mumford conjecture for regular polyno-
mial maps of A2 and irreducible curves avoiding super-attracting orbits at infinity, over
any field of characteristic 0.
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Introduction

The dynamical Manin-Mumford conjecture for polarized endomorphisms of algebraic
varieties, first formulated by S.-W. Zhang in two influential papers [32, Conjecture 2.5]
and [33, Conjecture 1.2.1], has been a driving force for the development of the field of
arithmetic dynamics. It was realized by Ghioca, Tucker and Zhang [19] and Pazuki [26]
that the original formulation of the conjecture was too optimistic, and a modified con-
jecture was proposed in [19] and more recently in [18]. It can be stated as follows: let
f : X → X be a polarized endomorphism of a smooth projective variety over a field of
characteristic zero, and Z ⊂ X be a subvariety containing a Zariski dense set of periodic
points. Then either Z is preperiodic or Z is special, in the sense that it is contained in
some subvariety Y that is both fn- and ψ-invariant, for some n ≥ 1, where ψ is another
polarized endomorphism commuting with fn. Recall that an endomorphism is said to
be polarized if there is an ample line bundle L→ X such that f∗L ' Ld for some d ≥ 2.
A basic example is that of non-invertible endomorphisms of Pk, for which we can take
L = O(1) and d is the degree of f .

Despite its importance, very few cases of the conjecture have been settled so far.
One first case is of course the original Manin-Mumford conjecture, which was solved by
Raynaud [27, 28]. Viewed as a dynamical statement, it deals with endomorphisms of
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Abelian varieties, and was generalized to related settings, such as commutative algebraic
groups (see Hindry [22], and also Lang’s classical paper [25]). Uniform versions involv-
ing height bounds were subsequently obtained by S.-W. Zhang, David and Philippon,
Chambert-Loir and others. We refer to the recent work of Kühne [24] in the semi-
abelian case for a latest update, and more references. Closer to algebraic dynamics is
the case of polarized endomorphisms of (P1)k, which was solved by Ghioca, Nguyen and
Ye [17, 16] (see also [18]). Note that such mappings are of product type, that is of
the form f(x1, . . . , xk) = (f1(x1), . . . , fk(xk)), so their dynamical complexity reduces to
dimension 1, which is a key step in the proof.

In this paper we will establish the dynamical Manin-Mumford conjecture for a wide
class of 2-dimensional examples, whose dynamical behavior is truly higher dimensional.

Note that besides polarized endomorphisms, a partial answer to the conjecture was
given in [11] for plane polynomial automorphisms.

Let k be any field of characteristic zero. If required we fix an algebraic closure kalg of
k. Let f : A2

k → A2
k be a polynomial self-map of the affine plane of degree d ≥ 2, which

in coordinates is written as

f(z, w) =
(
P (z, w), Q(z, w)

)
,

with P,Q ∈ k[x, y]. We say that f is regular if it extends to an endomorphism of P2
k of

degree d ≥ 2; this means that P = Pd + l.o.t. and Q = Qd + l.o.t., where Pd and Qd are
homogeneous polynomials of degree d without common factors. In particular f induces
a rational map f∞ := [Pd : Qd] on the line at infinity, which is fixed. Note that any
endomorphism of P2

k with a totally invariant line is conjugate to a regular polynomial
map, and that a generic polynomial map of A2 whose components are polynomials of
degree ≤ d is regular.

For regular polynomial maps of A2, it seems that none of the known obstructions to
the dynamical Manin-Mumford conjecture can arise. As said above, according to [18],
one obstruction would be the existence of a periodic curve C for some endomorphism
ψ commuting with f . Such pairs (f, ψ) were classified in [8] over C (see also [9, 23]),
and after a ramified cover they are all induced from a product map or a monomial map
on the multiplicative 2-torus. Thanks to [17] it appears that in any such case, C must
be also f -preperiodic. Thus we expect that the dynamical Manin-Mumford conjecture
holds unconditionally in this case. Our main result confirms this expectation in the vast
majority of cases.

Theorem A. Let f be a regular polynomial endomorphism of A2 of degree d ≥ 2, defined
over an arbitrary field k of characteristic 0.

Let C ⊂ A2 be an irreducible algebraic curve containing infinitely many preperiodic
points of f , and suppose that the closure of C in P2 contains a point p ∈ L∞ which is
not eventually superattracting. Then C is preperiodic under f .

Corollary B. Under the assumptions of the theorem, if f has no super-attracting points
on the line at infinity, then any irreducible algebraic curve C ⊂ P2 containing infinitely
many periodic points is preperiodic, that is, the dynamical Manin-Mumford conjecture
holds for f .
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Our strategy relies on techniques from Arakelov geometry, in particular on the notion
of canonical height, which is now classical in arithmetic dynamics, together with a variety
of techniques from holomorphic and non-Archimedean dynamics.

We first assume that k is a number field, in which case we prove a stronger statement
(Theorem 3.1). We first recall in Section 1, that there exists a canonical height hf on

A2(kalg), for which preperiodic points are exactly points of zero height. By a theorem of
Zhang, all points of C lying at infinity are preperiodic, hence, by replacing C by some
iterate we may assume that they are periodic, and, thanks to our assumptions, one of
these periodic points is not superattracting for f∞. Fix such a point p ∈ C ∩ L∞. A
second consequence of Zhang’s theorem is that or each place v of k, the dynamical Green
function gf,v(z, w) := limn→∞

1
dn log+ ‖fn(z, w)‖ satisfies

(1)

∫
C
gf,vdd

cgf,v = 0.

To make sense of this equality at a finite place, we consider the Berkovich analytification
of C and ddcgf,v is the Laplacian of the subharmonic function gf,v|C in the sense of
Thuillier, see [31].

For an appropriate choice of v, we may suppose that the periodic point p is either
repelling or parabolic for f∞. In both cases, we construct in Section 2 a local (super-
)stable manifold W ss

loc(p). When p is repelling and v is Archimedean this is classical. We
extend this construction to the non-Archimedean setting, and allow for non-repelling
p (see Theorem 2.1). Then, in both (repelling or parabolic) cases we establish graph
transform type estimates which will be useful for the local analysis of the Green function
at p. When p is parabolic this borrows from the work of Hakim [20].

In Section 3 we combine these estimates with condition (1) to show that, near p, C
must locally coincide with W ss

loc(p), which finally implies that C is periodic. Note that a
similar argument appears in the recent work [15].

A key point in this argument is that at the chosen place v, p belongs to the Julia set
of f∞. This is no longer true when f∞ is superattracting at p, and we are not able to
conclude in this case. Still, this situation leads to interesting dynamical considerations
and objects, and we plan to come back to this issue in a later work.

Finally, we develop a specialization argument in Section 4 to reduce Theorem A for
an arbitrary k to the case where k is a number field. So here we rather deal with an
algebraic family of endomorphisms of P2 parameterized by some algebraic variety S.
The main issue is to ensure that for such a family, an infinite set of preperiodic points
cannot shrink to a finite set too often on S. To do so, one needs to control collisions
of periodic points (using the Shub-Sullivan theorem [29] in the spirit of [11]); and the
splitting of local preimages of a super-attracting cycle, a phenomenon that was studied
in particular by Chio and Roeder [7].

1. Dynamical heights

In this section, we recall some basic facts on canonical heights attached to endomor-
phisms of the projective plane defined over a number field. Our purpose is to establish
Proposition 1.7, which is the key arithmetic geometry input in our main theorem.
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Throughout this section, we assume that k is a number field.

1.1. Vocabulary of number fields. We denote by Mk = {v} the set of places of k,
that is, the set of all multiplicative norms | · |v on k that restrict to either the standard
euclidean norm | · |∞, or to a p-adic norm | · |p on Q for some prime number p > 1. We
normalize the p-adic norm by |p|p = p−1. We let kv be the completion of k w.r.t. | · |v,
and write nv := [kv : Qv]. The product formula asserts that for any a ∈ k, we have∏

v∈Mk

|a|nvv = 1 .

The set Mk splits into the finite set M∞k of Archimedean places (whose restriction to Q
is | · |∞), and the set of finite (or non-Archimedean) places.

When v ∈ M∞k , the algebraic closure Cv of kv is isometric to C. When v is a finite

place extending | · |p on Q, then | · |v extends canonically to kalg
v , and its completion Cv

is both complete and algebraically closed.

1.2. Regular polynomial maps. Let (z, w) be affine coordinates on the affine plane
A2
k. We also consider homogeneous coordinates [z0 : z1 : z2] on the projective plane P2

k
and identify the affine plane A2

k with the Zariski open set z0 6= 0 so that z = z1/z0 and
w = z2/z0. We denote by L∞ = {z0 = 0} the line at infinity.

Let f : A2
k → A2

k be any polynomial self-map of the affine plane of degree d ≥ 2 that
extends to an endomorphism of P2

k. In the coordinates z, w, it is given by

f(z, w) =
(
P (z, w), Q(z, w)

)
,

where P,Q ∈ k[z, w] satisfy max{degP,degQ} = d. The fact that f extends to a regular
endomorphism f : P2

k → P2
k is equivalent to say that P = Pd + l.o.t. and Q = Qd + l.o.t.,

where Pd and Qd are homogeneous polynomials of degree d without common factors.

For n ∈ N we write fn(z, w) =
(
Pn(z, w), Qn(z, w)

)
. The restriction of f∞ to L∞ is

an endomorphism of P1
k given in homogeneous coordinates by

f∞([z1 : z2]) = [Pd(z1, z2) : Qd(z1, z2)] .

1.3. Green functions. The next proposition follows from the Nullstellensatz (see e.g. [30,
Theorem 3.11]).

Proposition 1.1. For any v ∈Mk, there exists a constant Cv ≥ 1 such that

(2) C−1
v ≤ max{1, |P (z, w)|v, |Q(z, w)|v}

max{1, |z|v, |w|v}d
≤ Cv

for all z, w ∈ Cv. Moreover, for all but finitely many v ∈Mk we may take Cv = 1.

By the previous proposition, the sequence of functions

gv,n(z, w) :=
1

dn
log max{1, |Pn(z, w)|v, |Qn(z, w)|v}

converges uniformly on C2
v to a continuous function gv, and the next proposition follows.
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Proposition 1.2. For any v ∈Mk, the function gv : C2
v → R+ is continuous, it satisfies

the invariance equation gv ◦ f = dgv, and we have∣∣gv(z, w)− log max{1, |z|v, |w|v}
∣∣ ≤ logCv

d− 1
.

The set {(z, w) ∈ C2
v, gv(z, w) = 0} coincides with the set of points having bounded

orbits.

We shall also consider the global Green function in C3
v. Write P̃ (z0, z1, z2) = zd0P ( z1z0 ,

z2
z0

)

and Q̃(z0, z1, z2) = zd0Q( z1z0 ,
z2
z0

) so that F (z0, z1, z2) = (zd0 , P̃ , Q̃) is a homogenous map

of degree d that lifts f to C3
v. Observe that in homogenous coordinates, (2) can be

rewritten as follows:

C−1
v ≤ max{|z0|d, |P̃ (z0, z1, z2)|v, |Q̃(z0, z1, z2)|v}

max{|z0|v, |z1|v, |z2|v}d
≤ Cv

so that the next result also holds.

Proposition 1.3. The function Gv(z0, z1, z2) = gv(z1/z0, z2/z0) + log |z0| is continuous
on C3

v \ {0}, 1-homogeneous (that is, Gv(λZ) = log |λ|+Gv(Z)), and satisfies Gv ◦ F =
dGv. We have

|Gv(z0, z1, z2)− log max{|z0|v, |z1|v, |z2|v}| ≤
logCv
d− 1

.

The set {(z0, z1, z2) ∈ C3
v, Gv(z0, z1, z2) ≤ 0} coincides with the set of points having

bounded F -orbits.

1.4. Canonical heights on points. We refer to [6] for generalities on heights. Consider
the line bundle onO(1)→ P2

k. The space of sections of this line bundle can be canonically
identified with the space of linear forms a0z0 +a1z1 +a2z2 with ai ∈ k. More precisely, in
the trivialization of the bundle over {zi 6= 0}, this section is given by 1

zi
a0z0 +a1z1 +a2z2.

For any v ∈ Mk, we consider the line bundle O(1) → P2
Cv and endow it with the

metrization | · |v induced by Gv, in the sense that any section σ = a0z0 + a1z1 + a2z2 as
above

(3) |σ|v([z0 : z1 : z2]) = |a0z0 + a1z1 + a2z2|e−Gv(z0,z1,z2)

(this expression is well-defined thanks to the homogeneity property of Gv). Let us now
explain how this collection of metrizations defines a function on the set of algebraic
points in P2 as well as on the set of all algebraic curves in P2

k defined by an equation

with coefficients in kalg.

For any p ∈ (kalg)3 \ {0}, we set

hf (p) :=
1

N(p)

∑
p′∈Gal ·p

∑
v∈Mk

nvGv(p
′)


where Gal denotes the absolute Galois group of kalg over k, and N(x) is the cardinality
of the set Gal ·x ⊂ (kalg)3.

The product formula entails that hf (z0, z1, z2) = hf (λz0, λz1, λz2) for any λ ∈ kalg so

that we have a well-defined function hf : P2(kalg)→ R.
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Proposition 1.4. The function hf takes non-negative values, and satisfies hf ◦f = dhf .
The set {hf = 0} coincides with the set of preperiodic points of f . Furthermore, for any

(z, w) ∈ (kalg)2 we have

hf (z, w) :=
1

N(z, w)

∑
(z′,w′)∈Gal ·(z,w)

∑
v∈Mk

nvgv(z
′, w′)

 .

As above Gal denotes the absolute Galois group of kalg over k, and N(z, w) is the
cardinality of the set Gal ·(z, w) ⊂ (kalg)2. The proof follows directly from Northcott’s
theorem, see [4, Corollary 1.1.1].

1.5. Analytification of affine curves. Let C be any irreducible algebraic curve in A2
k

defined by an equation {R = 0} with R ∈ k[z, w]. Denote by C the Zariski closure of C
in P2.

Fix any place v ∈Mk. We denote by Can
v the analytification in the sense of Berkovich

of C over Cv. This is a connected, locally connected and locally compact space. When
| · |v is Archimedean, hence Cv is isometric to C, Can

v is the complex analytic subspace
(possibly with singularities) defined as usual by the vanishing of R in C2

v. When | · |v
is non-Archimedean, then Can

v is defined as the set of multiplicative semi-norms on the
ring Cv[z, w]/(R) whose restriction to the base field equals | · |v. A point is said to be
rigid when the semi-norm has non-trivial kernel.

One can also define the analytification of C by considering suitable affine coordinates
in P2 and patching the previous construction in a natural way, see [3, §3.4]. Observe
that C

an
v \ Can

v consists of rigid points.

Suppose first v is Archimedean. The metrization of O(1) defined by (3) induces a
measure µC,v on C

an
v which is locally defined by µC,v := ∆ log |σ|v where σ is a local

section of O(1). The plurisubharmonicity of Gv ensures that µC,v is a positive measure.
The Lelong-Poincaré formula implies that the mass of µC,v is equal to deg(C), and we
have µC,v = ∆(gv|Can

v
) on Can

v . Observe that since Gv is continuous, µC,v gives no mass
to points.

The construction is completely analogous in the non-Archimedean case. We again
obtain a positive measure µC,v on C

an
v of total mass deg(C) which is given in Can

v by
µC,v = ∆(gv|Can

v
) where ∆ is the Laplace operator defined by Thuillier [31]. Observe

that the continuity of the metrization implies that µC,v does not charge any rigid point
(but it may still charge some non-rigid point in Can

v ). We refer to [6, §1.3] for the details
of the constructions.

1.6. Canonical heights on curves. Let C be any irreducible algebraic curve in A2
k as

in the previous section. We now define the canonical height of the curve C following the
recipe given in [6, §3.1.2], taking z0 as a section of O(1) (note that this section vanishes
exactly along the line at infinity). We obtain:

(4) hf (C) :=
∑

p∈C∩L∞

(C,L∞)p × hf (p) +
∑
v∈Mk

∫
Can
v

gvdµv .
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Note that hf (C) ≥ 0 because the canonical height is non-negative on closed points,
and the Green functions gv are also non-negative.

Define the essential minimum of hf by the following formula:

essminC(hf ) := sup
F finite⊂C(kalg)

inf
C(kalg)\F

hf .

Theorem 1.5 (Zhang’s inequality [32, Theorem 1.10]). We have

2 essminC(hf ) ≥
hf (C)

deg(C)
≥ essminC(hf ) + inf

p∈C(kalg)
hf (p) .

Since hf (x) = 0 if and only if x is preperiodic, we obtain:

Corollary 1.6. An irreducible algebraic curve C containing infinitely many f -preperiodic
points satisfies hf (C) = 0.

1.7. A first characterization of special curves.

Proposition 1.7. Suppose that C ⊂ A2
k is an irreducible algebraic curve containing a

sequence of distinct points pn ∈ C(kalg) such that hf (pn)→ 0.

Then all points in C ∩ L∞ are preperiodic for f , and for any v ∈ Mk the function
gv|Can

v
is harmonic on {gv > 0}.

Proof. Note that hf (C) ≥ 0. By Theorem 1.5, our assumption implies that essminC(hf ) ≤
0, therefore hf (C) = 0. Then the result follows from (4) and the fact that a point p is
f -preperiodic if and only if hf (p) = 0. �

2. Super-stable manifolds and local estimates

2.1. Construction of super-stable manifolds. In this section we work under the
following hypothesis: (k, | · |) is a complete metrized field of characteristic 0 (which may
be either Archimedean or non-Archimedean).

Theorem 2.1. Suppose f : (A2
k, 0)→ (A2

k, 0) is a germ of analytic map fixing the origin
of the form

(5) f(x, y) =
(
λx+ µy + g(x, y), yd(1 + h(x, y))

)
,

where d ≥ 2, λ 6= 0, µ ∈ k, h(0, 0) = 0, and g(x, y) = O(|(x, y)|2). Then there exists a
unique smooth analytic curve which is transverse to {y = 0} and f -invariant.

We shall call this curve the local super-stable manifold of the origin, and denote it by
W ss

loc(0). After a linear change of coordinates of the form (x, y) 7→ (x + µ
λy, y), we may

and will assume from now on that µ = 0. Expressing the invariant curve as a graph of
the form x = ϕ(y) and making a change of coordinates of the form (x, y) 7→ (x−ϕ(y), y),
f takes the form

(6) f(x, y) = (λx+ xg̃(x, y), yd(1 + h̃(x, y))).

It follows that f is analytically conjugate to y 7→ yd on W ss
loc(0), hence the terminology.
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The result is classical when k is Archimedean and/or f is locally invertible (see
e.g. [21, Appendix]). For convenience we include a proof that works simultaneously
in the Archimedean and non-Archimedean settings, and is adapted to {y = 0} being
superattracting.

Proof. As explained above, we look for an analytic map y 7→ ϕ(y), with ϕ(0) = 0 such
that the change of coordinates Φ(x, y) = (x+ ϕ(y), y) satisfies

Φ−1 ◦ f ◦ Φ(x, y) = (λx+ xg̃(x, y), yd(1 + h̃(x, y)))

with g̃, h̃ analytic and vanishing at 0. This property is equivalent to the identities:{
λϕ(y) + g(ϕ(y), y) = ϕ(yd(1 + h̃(0, y)))

h̃(0, y) = h(ϕ(y), y)

so that we aim at finding some analytic function ϕ satisfying

λϕ(y) + g(ϕ(y), y) = ϕ(yd(1 + h(ϕ(y), y))) .

For any r > 0, let us introduce the Banach space Br that consist of those power
series ϕ(y) :=

∑
j≥1 ajy

j which are convergent in the disk of radius r, and satisfy

‖ϕ‖r := sup|y|<r |ϕ(y)| < ∞. Note that in the non-Archimedean case, we have ‖ϕ‖r :=

supj |aj |rj .
For any ϕ ∈ Br, we set

Tϕ(y) :=
1

λ

(
ϕ(yd(1 + h(ϕ(y), y)))− g(ϕ(y), y)

)
.

We claim that for r > 0 and ρ > 0 sufficiently small, T is a well-defined strictly con-
tracting map on B(0, ρ) ⊂ Br. Then, applying the Banach fixed point theorem implies
the existence of the desired ϕ.

First, we may suppose that g is analytic in the polydisk of radius r, and since g
vanishes up to order 2 at the origin, we have

|g(x, y)| ≤ C max{|x|, |y|}2

for some C > 0 and all |x|, |y| < r. Similarly, we may suppose that h is analytic in the
polydisk of radius r > 0, and that |h(x, y)| ≤ 1

2 for all |x|, |y| < r.

Pick any ϕ(y) =
∑

j ajy
j ∈ B(0, ρ) ⊂ Br. Reduce r > 0 if necessary so that 3

2r
d < r.

Then ϕ̃ : y 7→ ϕ(yd(1 + h(ϕ(y), y))) is well-defined and analytic on the disk of radius r.

In the non-Archimedean case, |1 + h(ϕ(y), y))| = 1, so that one has

‖ϕ̃(y)‖r = sup
j≥1
|aj |rdj ≤ r sup

j≥1
|aj |rdj−1 ≤ r|ϕ|r .

In the Archimedean case, the Schwarz lemma yields |ϕ(y)| ≤ |ϕ|rr |y| for all |y| < r, hence

‖ϕ̃‖r ≤
3
2r
d−1|ϕ|r. Note that we also have:

‖g(ϕ(y), y)‖r ≤ C max{‖ϕ‖r , r}
2

so for ϕ ∈ B(0, ρ) we deduce

|Tϕ|r ≤
1

λ

(
3

2
rd−1ρ+ C max {ρ, r}2

)
.
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By choosing ρ = r and then r small enough, this estimate shows that Tϕ is well-defined
on the ball B(0, r) ⊂ Br and T (B(0, r)) ⊂ B(0, r).

In order to prove that T is strictly contracting, observe that we can write

g(x, y)− g(x′, y) = (x− x′)ĝ(x, x′, y)

where ĝ(x, x′, y) is again analytic in the polydisk of radius r, and

|ĝ(x, x′, y)| ≤ C ′max{|x|, |x′|, |y|}
for some constant C ′ > 0. For any pair of analytic functions ϕ1, ϕ2 ∈ B(0, r) ⊂ Br we
infer:

|g(ϕ1(y), y)− g(ϕ2(y), y)| ≤ C ′ ‖ϕ1 − ϕ2‖r max{‖ϕ1‖r , ‖ϕ2‖r , r}
hence

‖Tϕ1 − Tϕ2‖r ≤
1

λ
(3rd + C ′r) ‖ϕ1 − ϕ2‖r .

Again, by choosing r sufficiently small, we obtain that T is strictly contracting and we
are done. �

2.2. The rescaling argument in the repelling case. We work in A2
k where k is an

arbitrary complete metrized field of characteristic 0. We start with a preparation lemma.

Lemma 2.2. Suppose f is an analytic map of the form

(7) f(x, y) =
(
λx+ xg(x, y), yd(1 + h(x, y))

)
where |λ| > 1, d ≥ 2 and g(0) = h(0) = 0.

Then there exists an analytic change of coordinates Φ such that

Φ−1 ◦ f ◦ Φ(x, y) = (λx(1 + xyg̃(x, y)), yd(1 + xh̃(x, y)))

for some analytic functions g̃, h̃.

Recall that the form (7) is what is obtained from (5) after conjugating to get µ = 0
and declaring that the stable manifold of Theorem 2.1 is {x = 0}.

Proof. By Böttcher’s theorem (see [2, Chapter 4] for the non-Archimedean case) applied
to y 7→ f(0, y) we may suppose that x divides h. Similarly, since |λ| > 1, by we may
linearize x 7→ f(x, 0), and suppose that f is of the form f(x, y) = (λx(1 + g1(y)) +
x2yh1(x, y), yd(1 +O(x))) for some analytic functions g1, h1 with g1(0) = 0.

We claim that there exists Φ(x, y) = (x(1 + ϕ(y)), y) with ϕ(0) = 0 such that

Φ−1 ◦ f ◦ Φ(x, y) = (λx+ x2yh2(x, y), yd(1 +O(x)))

for some analytic function h2. Indeed, ϕ is then characterized by the equation

λx(1 + ϕ(y))(1 + g1(y)) +O(x2) = (λx+O(x2))(1 + ϕ(yd))

that is, (1 + ϕ(y))(1 + g1(y)) = (1 + ϕ(yd)), a solution of which is given by the infinite
product

1 + ϕ(y) =

∞∏
k=0

(
1 + g1

(
yd

k
))−1

and we are done. �
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The next result is similar to [11, Lemma 4.2].

Proposition 2.3. Suppose f is an analytic map of the form

(8) f(x, y) = (λx(1 + xyg(x, y)), yd(1 + xh(x, y)))

where |λ| > 1, d ≥ 2 and g, h are analytic functions.

Then fn( x
λn , y) → (x, 0) when n → ∞, uniformly on a polydisk of sufficiently small

radius centered at the origin.

Proof. Fix 0 < r ≤ 1/4 small enough so that g, h are both analytic on the polydisk of
radius r and |g(x, y)|, |h(x, y)| ≤ 1 for |x|, |y| < r. Let us first show that if |x| ≤ r

2|λ|n

and |y| ≤ r, then the n first iterates of (x, y) remain in D2
r . We argue by induction. So

assume that (x0, y0) ∈ Dr|λ|−n/2 × Dr, put f j(x0, y0) = (xj , yj), let k ≤ n and assume

that (xj , yj) ∈ D2
r for j ≤ k − 1. Observe that for j ≤ k − 1, |yj+1| ≤ 2|yj |d from which

it follows that

|yk| ≤
(

21/(d−1)|y0|
)dk
≤
(

21/(d−1)r
)dk
≤ r.

Observe that the first inequality together with r ≤ 1/4 also yield |yj | ≤ 2−d
j
. For the

first coordinate, we use recursively the relation xj+1 = λxj(1 + xjyjg(xj , yj)) to get

(9) |xk| ≤ |λ|k|x0|
k−1∏
j=0

(1 + |xj ||yj |) ≤
r

2
|λ|k−n

k−1∏
j=0

(
1 + 2−d

j
)
≤ r|λ|k−n,

where the last inequality follows from

k−1∏
j=0

(
1 + 2−d

j
)
≤

k−1∏
j=0

(
1 + 2−2j

)
=

22k − 1

22k−1
< 2,

in which the middle equality is easily obtained by induction.

Now take (x, y) ∈ Dr/2, and consider fn( x
λn , y). Denote as before (x0, y0) = ( x

λn , y)

and (xj , yj) = f j(x0, y0). The first part of the proof shows that (xj , yj) is well-defined
for all j ≤ n, and that yn → 0. Now we have

xn = λnx0

n−1∏
j=0

(1 + xjyjh(xj , yj)) = x
n−1∏
j=0

(1 + xjyjh(xj , yj)) .

The inequality
∣∣∏(1+zj)−1

∣∣ ≤ exp (
∑
|zj |)−1 shows that to establish the convergence

xn → x it is enough to show that
∑n−1

j=0 |xjyjh(xj , yj)| tends to 0. But by (9), |xj | ≤
r|λ|j−n, thus

n−1∑
j=0

|xjyjh(xj , yj)| ≤
n−1∑
j=0

r|λ|j−n2−d
j ≤ r|λ|−n

∞∑
j=0

|λ|j2−dj ,

and we are done. �



DMM CONJECTURE FOR PLANE POLYNOMIAL MAPS 11

2.3. Graph transform for λ = 1. In this paragraph we assume that k = C and f is
of the form

(10) f(x, y) =
(
x+ g(x, y), yd(1 + h(x, y))

)
,

with g(x, y) = O(|x, y|2), h(0, 0) = 0, and g(x, 0) = cxk+1 + O(xk+2) for some k ≥ 1
and c 6= 0. Observe that f |{y=0} has a parabolic point at the origin with k attracting
and k repelling petals (see e.g. [1, §6.5]). An attracting petal is a f -invariant (connected
and simply-connected) open subset U containing 0 in its boundary, and such that, for
all z ∈ U , fn(z)→ 0 tangentially to some real direction (in our case, to the normalized
k-th roots of −c). A repelling petal is an attracting petal for f−1 (they are tangent to
the normalized k-th roots of c). One can chose the k attracting petals and k repelling
petals so that their union fills up a punctured neighborhood of the origin.

A vertical graph V in a domain of the form Ω × Dρ is a submanifold of the form
V := {(ϕ(y), y), y ∈ Dρ} for some holomorphic function ϕ : Dρ → Ω. In the next
theorem we consider pull backs of such graphs in D2

r in the graph transform sense, that
is, when pulling back some vertical graph under f , we keep only the component of
f−1(V ) ∩ D2

r containing f−1(V ∩ {y = 0}). Abusing notation we simply denote it by
f−1(V ).

Theorem 2.4. Let f : (C2, 0) → (C2, 0) be of the form (10) with h(0) = 0, g(x, 0) 6≡ 0
and g(x, y) = O(|(x, y)|2). Let U be any repelling petal of f |{y=0} and consider a germ
V of analytic curve transverse to {y = 0}, intersecting U .

Then there exists r > 0 depending only on f , such that for large enough n, the analytic
sets f−n(V ) are vertical graphs in D2

r converging to W ss
loc(0) in the C1 topology.

Lemma 2.5. Suppose f is a holomorphic map of the form (10) as in Theorem 2.4.
Then there exist an integer k ≥ 1, and an analytic change of coordinates Φ such that

Φ−1 ◦ f ◦ Φ(x, y) = (x+ xk+1 + x2k+1g̃(x, y), yd(1 + xh̃(x, y)))

for some analytic functions g̃, h̃.

Proof. The proof is essentially contained in [20, Proposition 2.3]. We provide the details
for the sake of completeness. By Theorem 2.1 and by applying the Böttcher theorem to
y 7→ f(0, y) we may assume that both g and h are divisible by x, so that we may write

(11) f(x, y) =
(
x+ xg(x, y), yd(1 + xh(x, y))

)
,

with g(0, 0) = 0.

By a local change of coordinates involving only x, we can arrange so that f(x, 0) =
(x+xk+1 +O(x2k+1), 0). Expand the first coordinate of f in power series of x as follows:

x ◦ f(x, y) = x(1 + g0(y)) + xk+1(1 + gk(y)) +

∞∑
j 6=0,k

xj+1gj(y),

with gj(0) = 0 for 0 ≤ j ≤ 2k − 1.

We claim that for all n ≤ 2k− 1, we can conjugate f by a germ of invertible holomor-
phic map such that gj ≡ 0 for every j ≤ n. Applied to n = 2k − 1, this claim implies
the proposition.
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For n = 0 this is done by a change of coordinates of the form Φ0(x, y) := (x(1 +
ϕ0(y)), y) such that (1 + g0)(1 + ϕ0) = 1 + ϕ0(yd). This equation can be solved exactly
as in Lemma 2.2.

Now assume that n > 0, and that the result has been achieved up to j = n − 1.
Put Φn(x, y) =

(
x(1 +ϕn(y)xn), y

)
, so that Φ−1

n (x, y) =
(
x(1−ϕn(y)xn +O(xn+1)), y

)
.

Depending on the position of n and k, we obtain:

x◦ (Φ−1
n ◦f ◦Φn) =


x+ xn+1

(
ϕn(y) + gn(y)− ϕn(yd)

)
+O(xn+2) if n < k,

x+ xn+1
(
ϕk(y) + 1 + gn(y)− ϕn(yd)

)
+O(xn+2) if n = k,

x+ xk+1 + xn+1
(
ϕn(y) + gn(y)− ϕn(yd)

)
+O(xn+2) if n > k.

Therefore, to render the term in xn+1 constant, it is enough to solve the equation
−gn(y) = ϕn(y)− ϕn(yd) which can be done by setting ϕn(y) = −

∑∞
m=0 gn

(
yd

m)
. �

Proof of Theorem 2.4. By the previous lemma, we may suppose that

f(x, y) =
(
x+ xk+1 + x2k+1g(x, y), yd(1 + xh(x, y))

)
with g and h holomorphic near the origin. Note that f |y=0 has a repelling petal along the
positive real axis. Fix r > 0 such that f is holomorphic and injective on a neighborhood

of D2
r . Reducing and rotating the petal if necessary, we may assume that

U :=
{
x : arg(x) ∈

(
− π

4k
,
π

4k

)
, |x| < r

}
.

The holomorphic map z =
(
kxk

)−1
is univalent on U × Dr, and takes its values in

ΩR :=
{
z : arg(z) ∈

(
−π

4
,
π

4

)
, |z| > R

}
,

where R = (krk)−1. The expression of f in the coordinates (z, y) is of the form

(12) f(z, y) =

(
z − 1 +

1

z
a(z, y), yd

(
1 +

1

z1/k
b(z, y)

))
.

so that f is now defined in ΩR × Dr. Fix M > 0 such that

(13) |a|, |b|,
∣∣∣∣∂a∂z

∣∣∣∣, ∣∣∣∣∂a∂y
∣∣∣∣, ∣∣∣∣∂b∂z

∣∣∣∣, ∣∣∣∣∂b∂y
∣∣∣∣ ≤M on ΩR × Dr,

and reduce r if necessary so that r < 1
10d and MR−1/k ≤ 1

100 .

For any ρ < r and σ > 0 we let

G(ρ, σ) = {ϕ : Dρ → ΩR holomorphic s.t. sup
Dρ

∣∣ϕ′∣∣ ≤ σ} .
Lemma 2.6. Suppose that σρ < 1

100d . For any vertical graph Γ determined by ϕ ∈
G(ρ, σ), then f−1Γ is a vertical graph determined by a function ψ ∈ G(ρ1,

1
10) where

ρ1 = min
(
(ρ/2)1/d, r

)
and Re(ψ) ≥ Re(ϕ(0)) + 9/10.

Assuming this result for the moment, let us conclude the proof of the theorem. Let
V be any germ of curve intersecting transversally {y = 0} at (x0, 0) ∈ U . Then V is a
graph of slope σ over some disk Dρ in the second coordinate, for some ρ > 0. Reduce
ρ by trimming V if necessary so that σρ < 1/100d. Since r/10 < 1/100d, the previous
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lemma implies that we can define inductively a sequence of vertical graphs V = V0,
Vn := f−1Vn−1, where Vn is defined by a holomorphic function z = ϕn(y) of uniformly
bounded slope over Dρn , and furthermore ρn = r for large enough n. Moreover, we have
Re(ϕn) ≥ Re(ϕ(0)) + 9n/10, hence, coming back to the (x, y) coordinates, we see that

Vn = {x = (kϕn(y))−1/k} converges in the C1-topology to the curve W ss
loc(0) = {x =

0}. �

Proof of Lemma 2.6. Let Γ be a vertical graph of equation z = ϕ(y) in the (z, y) coor-
dinates, with ϕ ∈ G(ρ, σ). Then the equation of f−1Γ is given by z = `(z, y), where

`(z, y) = ϕ

(
yd
(

1 +
1

z1/k
b(z, y)

))
+ 1− 1

z
a(z, y).

Fix y0 ∈ Dρ1 . We show that the equation z = `(z, y0) admits a unique solution z ∈ ΩR.
First, observe that by the estimates (13) on |a| and |b|, for z ∈ ΩR we have

|`(z, y0)− (ϕ(0) + 1)| ≤
∣∣∣∣ϕ(yd0 (1 +

1

z1/k
b(z, y)

))
− ϕ(0)

∣∣∣∣+
M

R
(14)

≤ 2ρd1σ +
1

100
≤ ρσ +

1

100
≤ 1

10
,

hence `(·, y0) maps ΩR to itself. Next, we see that∣∣∣∣∂`∂z (z, y0)

∣∣∣∣ ≤ ∣∣∣∣yd0 ( 1

z1/k

∂b

∂z
− 1

kz1/k+1
b

)∣∣∣∣ · ∣∣∣∣ϕ′(yd0 (1 +
1

z1/k
b

))∣∣∣∣+

∣∣∣∣ az2
− 1

z

∂a

∂z

∣∣∣∣
≤ ρd1

2M

R1/k
σ +

2M

R
≤ 4

100
ρσ +

2

100
≤ 1

10
,

so `(·, y0) is a contraction and the equation z = `(z, y0) has a unique solution. This
means that f−1Γ is a vertical graph over Dρ1 determined by a holomorphic function ψ
satisfying ψ(y) = `(ψ(y), y). The slope of this graph can be estimated as above:∣∣ψ′(y)

∣∣ ≤ ∣∣∣∣ ∂`/∂y

1− ∂`/∂z

∣∣∣∣ ≤ 10

9

(
σ

(
dρd−1

(
1 +

M

R1/k

)
+ ρd

M

R1/k

)
+
M

R

)
≤ 1

10
.

Finally, the estimate Re(ψ) ≥ Re(ϕ(0)) + 9/10 follows from (14) and we are done. �

3. Proof of Theorem A when k is a number field

Here we establish the following more precise form of our main theorem, in the number
field case.

Theorem 3.1. Let k be a number field and f be a regular polynomial map of A2
k. Denote

by hf the induced canonical height.

Suppose that C ⊂ A2
k is an irreducible algebraic curve containing a sequence of distinct

points pn ∈ C(kalg) such that hf (pn)→ 0. If there exists a point of C ∩L∞ which is not
eventually superattracting, then C is preperiodic.

Let f∞ be the restriction to the line at infinity L∞ of the extension of f to P2. By
Proposition 1.7, all points in C ∩L∞ are preperiodic, so we may replace f by fN and C
by fN (C), to assume that C∩L∞ contains a fixed point p which is not super-attracting.
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Let λ = f ′∞(p) be the multiplier of p along L∞. Then one of the two following mutually
disjoint cases occur:

(a) either λ is a root of unity;
(b) or there is a place v ∈Mk such that |λ|v > 1.

In the remainder of this section we split the proof of the theorem according to these two
cases.

3.1. When λ is a root of unity. In this situation we iterate f further so that λ = 1,
and work over the complex numbers. Since p belongs to the Julia set J(f∞), which is a
perfect set, the union of attracting and repelling petals cover a punctured neighborhood
of p, and the attracting petals of p are contained in the Fatou set, we see that there is
a repelling periodic point q of f∞ contained in some local repelling petal of p. Then the
local (super-)stable manifold of q is a disk transverse to L∞ at q, and by Theorem 2.4,
the local truncated pull-backs f−n(W ss

loc(q)) under fn converge to W ss
loc(p) when n→∞.

Assume by way of contradiction that C does not locally coincide with W ss
loc(p). We

claim that C intersects f−n(W ss
loc(q)) in C2 close to p for large n. Indeed, locally near p,

C∩W ss
loc(p) = {p}, so by the persistence of proper intersections, C intersects f−n(W ss

loc(q))
close to p for large n. But p /∈ f−n(W ss

loc(q))∩L∞, so these intersection points lie in C2, as
claimed. If now ∆ is a small disk in C containing one of these intersection points, then by
the Inclination Lemma, the derivative of fn in the direction of ∆ tends to infinity, thus
(fn|∆) is not a normal family. On the other hand, by Proposition 1.7 g|∆ is harmonic,
which implies that (fn|∆) is normal (see [13, Prop 5.10]). This contradiction shows that
C locally coincides with W ss

loc(p) near p, so it is fixed under f , and by irreducibility this
property propagates to the whole of C. This completes the proof in this case. �

Remark 3.2. This argument works essentially the same when |λ|v > 1 at some Archime-
dean place, and may help understand the non-Archimedean argument below.

3.2. When |λ|v > 1. We may assume that p = [0 : 0 : 1], and by Lemma 2.2 find a
local analytic isomorphism (x, y) 7→ ψ(x, y) = [z0(x, y) : z1(x, y) : 1] such that ψ(0) = p,
z0(x, 0) = 0 so that {y = 0} corresponds to the line at infinity1, and write

f̃ := ψ−1 ◦ f ◦ ψ : (x, y) 7−→
(
λx
(
1 + xyg(x, y)

)
, yd
(
1 + xh(x, y)

))
.

If C has an analytic branch at p which coincides with {x = 0} then C is fixed as above,
and we are done. Otherwise, we may find a Puiseux parameterization of a branch of
C at p in the (x, y) coordinates of the form Γ(t) = (tq, γ(t)), where γ is analytic and
defined in a small disk Dδ, and q ∈ N∗. We seek a contradiction.

We lift ψ to A3
k, and set Ψ(x, y) = (z0(x, y), z1(x, y), 1). As in §1.3, we lift f to a

homogeneous polynomial map F : A3
k → A3

k, of the form F (z0, z1, z2) = (zd0 , P̃ , Q̃). Since

Ψ ◦ ψ−1 is a local section of the projection A3 \ {0} → P2, Ψ ◦ f̃ must be a multiple of
F ◦Ψ. From the expression of F we obtain

Ψ ◦ f̃ =
F ◦Ψ

Q̃ ◦Ψ
.

1Beware that coordinates are swapped here : {z0 = 0} corresponds to {y = 0}.
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To simplify notation, we write Fn(z0, z1, z2) = (zd
n

0 , P̃n, Q̃n). We consider the 1-homoge-

neous Green function Gf : A3,an
v → R of Proposition 1.3; it satisfies Gf ◦ F = dGf and

gf (z1, z2) = Gf (1, z1, z2).

Observe that h := Gf ◦ Ψ ◦ Γ is a continuous function on Dδ. Since h(t) = gf ◦ ψ ◦
Γ(t) + log |z0 ◦Γ(t)|, by Proposition 1.7, h is harmonic on {t 6= 0}. Since it is continuous
at 0, it is also harmonic on Dδ, see, e.g., [12, Lemma 3.7]. Write

dnq h(t) = Gf ◦ Fnq ◦Ψ ◦ Γ(t)

= Gf ◦Ψ ◦ f̃ [nq] ◦ Γ(t) + log
∣∣∣Q̃nq ◦Ψ ◦ Γ(t)

∣∣∣ .
By Proposition 2.3, f̃ [n]

(
x
λn , y

)
→ (x, 0) uniformly in a neighborhood of the origin, hence

Gf ◦Ψ ◦ f̃ [nq] ◦ Γ
(

t
λn/q

)
→ Gf

(
0, z1(tq, 0), 1

)
as n→∞. On the other hand, since dnq h

(
t

λn/q

)
− log

∣∣∣Q̃nq ◦Ψ ◦ Γ
(

t
λn/q

)∣∣∣ is a sequence

of harmonic functions, it follows that t 7→ Gf (0, z1(tq, 0), 1) is harmonic as well.

Now, observe that the restriction of f to the line at infinity is f∞[z1 : z2] =
[
P̃ (0, z1, z2) :

Q̃(0, z1, z2)
]
, so that Gf (0, z1, z2) is the global Green function of f∞. The equilib-

rium measure of f∞ is the probability measure on the analytification of L∞ defined
by µf∞ := ∆Gf (0, z1, 1) in the chart z2 6= 0. Its support is the Julia set of f∞
(see [2, Theorem 13.39]), and it contains all repelling (rigid) fixed points, see [2, The-
orem 8.7]. Therefore, z1 7→ Gf (0, z1, 1) cannot be harmonic near 0, hence the function
t 7→ Gf (0, z1(tq, 0), 1) cannot be harmonic either. This contradiction concludes the
proof. �

Remark 3.3. Under the assumptions of Theorem 3.1, the proof shows that the prepe-
riod k of F and the period of fk(C) are exactly the same as that of any of its non-
superattracting points at infinity.

4. Proof of Theorem A for arbitrary k

In this section we use a specialization argument to deal with maps defined over arbi-
trary fields. It shares some arguments with [11, §5] (see also [5, §7]). Nevertheless, new
ideas are needed to deal with preperiodic points instead of periodic ones.

We are in the setting of Theorem A, so we assume that f is a regular polynomial map
of A2 of degree d ≥ 2 defined over a field k of characteristic 0, and C is a curve containing
an infinite set P = {pn, n ≥ 0} of preperiodic points and whose closure C∩L∞ contains
at least one point which is not eventually super-attracting.

By enlarging k if necessary we may assume that it contains the algebraic closure Qalg

of its prime field. Let R be the sub-Qalg-algebra of k generated by all coefficients defining
f and C. Its fraction field K is finitely generated over Qalg. Let S = SpecR. This is an
affine variety defined over Qalg, and elements of R can be seen as regular functions on
S.

Inverting some elements of R if necessary, we may suppose that C is flat over S, and
f extends as a morphism f : P2

S → P2
S . We let π : P2

S → S be the canonical projection,
and write P2

s = π−1(s). We also let A2
s := A2

S ∩ π−1(s).
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For each (scheme theoretic) point s ∈ S, we write Cs = C ∩ A2
s and let Cs be the

closure of Cs in P2
s. The flatness of the morphism C → S implies Cs (hence Cs) to be

a curve. Similarly, we let fs : P2
s → P2

s be the induced map on the fibers: this is an
endomorphism of degree d.

We also denote by pn,s ∈ A2
s the specialization of pn. Note that pn is defined over

some finite extension of K which depends on n.

The first result does not use the assumption that our infinite set of preperiodic points
lies on a curve.

Proposition 4.1. Let as above f : P2
S → P2

S be a family of endomorphisms over an affine

variety defined over Qalg, and let P = {pn, n ≥ 0} be an infinite family of preperiodic
points. Then there exists a non-empty Zariski open and dense subset U ⊂ S such that
for any s ∈ U ∩ S(Qalg), Ps = {pn,s, n ≥ 0} ⊂ A2

s is infinite.

Before starting the proof, let us fix some additional notation. For each n ≥ 0, we
denote by kn the preperiod of pn, so that qn := fkn(pn) is the first periodic point in the
orbit of pn. We let `n be the (primitive) period of qn.

Proof. We may suppose that there exists a parameter s0 ∈ S(Qalg) such that Ps0 is finite
(otherwise we take U = S and the proof is complete).

Lemma 4.2. The family of periodic points (qn) is finite.

Proof. We follow the arguments of [11, §5]. Set Q = {qn, n ≥ 0}. For each ` ≥ 1, we
consider the subvariety Per` of P2

S defined by the equation f `(z) = z. Since P2
S → S is

proper, the structure map Per` → S is also proper.

Let Q` be the union of the irreducible components of Per` containing a point of P.
Its underlying set is the Zariski closure of P ∩ Per`, hence Q` → S is proper. Observe
that for x ∈ Q`,s, the multiplicity of x as a point of Q`,s equals its multiplicity as a fixed

point of f `s . By Nakayama’s lemma and the properness of Q` over S, the function

(15) s 7−→
∑
x∈Q`,s

multx(Q`,s)

is upper semi-continuous for the Zariski topology, hence

(16)
∑
q∈Q`

multq(Q`) ≤
∑

x∈Q`,s0

multx(Q`,s0),

where the left hand side is the value of (15) at the generic point. By assumption Ps0 is
a finite set, hence so does Qs0 = {q1,s0 , . . . , qr,s0} and by the Shub-Sullivan theorem [29],
there exists a uniform bound C > 0 such that for every j, and for any `, we have

multqj,s0 (Q`,s0) ≤ multqj,s0 (Per`,s0) ≤ C .

It then follows from (16) that

#Q` ≤
∑
q∈Q`

multq(Q`) ≤ rC

hence
⋃
`Q` is finite, as was to be shown. �
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By the previous lemma, replacing f by some iterate fN we may assume that all
periodic points qn are fixed. Since P is infinite, one of these fixed points, say q1, admits
infinitely many preimages in P. We may denote q = q1 and suppose P is made of an
infinite set of preimages of q, that is, (after possible reordering of P) for any pn ∈ P
there is a minimal kn ≥ 0 such that fkn(pn) = q, and that kn+1 > kn. We may adjoin
to R the coordinates of q so that q ∈ A2(R), i.e., for any s ∈ S, qs is a single point (to
say it differently, we replace S by a branched cover of a Zariski open dense subset of S).

Let d(s) be the local degree of fs at qs, which is upper semicontinuous for the Zariski
topology. Since fs is a finite map of degree d2, d(s) ≤ d2 for every s. Thus there is an
analytic hypersurface H such that d(s) = dmin is constant for s ∈ S \H.

We claim that Ps1 is infinite for any s1 ∈ S \ H. We argue again in the complex
analytic category fixing an embedding Qalg into C. Observe that for any point s ∈ S(C),

pn,s is a finite set included in the fiber A2,an
s ' C2 (not necessarily reduced to a single

point since pn lies in a finite extension of R).

Fix an analytic neighborhood V of qs1 in P2,an
s1 (C) such that f−1

s1 (qs1) ∩ V = {qs1}.
Since d(s) is locally constant near s1, there is an analytic neighborhood W of s1 in
San(C) such that for s ∈W ,

(17) f−1
s (qs) ∩ V = {qs}

Choose any n > m, and suppose by contradiction that pm,s1 = pn,s1 . Since kn− 1 ≥ km,
we have

fkn−1
s1 (pn,s1) = fkn−1

s1 (pm,s1) = qs1 .

Thus, for s close to s1, the finite set fkn−1
s1 (pn,s1) is contained in V , hence by (17),

fkn−1
s (pn,s) = qs, and by analytic continuation this property holds throughout S, which

contradicts the definition of kn.

This shows that the pn,s are all distinct for all s ∈ S \H, and concludes the proof of
Proposition 4.1. �

Proposition 4.3. Let f : A2
k → A2

k be a regular polynomial map and C ⊂ A2
k be an

algebraic curve containing infinitely many preperiodic points. Then every point of C∩L∞
is preperiodic under f |L∞.

Proof. We keep the same formalism and notation as above, so that f is viewed as a family
over S. Write C ∩L∞ = {c1, . . . cr} and without loss of generality enlarge R so that the
points at infinity ci have their coordinates in R. Fix i ∈ {1, . . . , r} for the remainder
of the proof and consider c = ci. By Proposition 4.1, there is a Zariski open subset U
such that for any s ∈ U ∩ S(Qalg), fs admits infinitely many preperiodic points on Cs.
Therefore, by Proposition 1.7, for every such s, cs is preperiodic. Fix s0 ∈ U ∩ S(Qalg),
then cs0 eventually falls on a periodic point qs0 . Replacing f by fN and C by fN (C) for
some N , we may assume that qs0 is fixed and cs0 = qs0 . Enlarging R again if necessary
we way assume that qs0 is the specialization at s = s0 of a fixed point q ∈ P2(R) of f .

Our purpose is to show that c = q. To simplify notation we write f̂ = f |L∞ . Note

that the multiplier µ := f̂ ′s0(qs0) belongs to Qalg. It follows from Kronecker’s theorem

that either µ is a root of unity or there is a place v on Qalg such that |µ|v < 1.
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Case 1. µ is not a root of unity.

Fix a place v on Qalg such that |µ|v < 1, and consider the completion Cv of (Qalg, |·|v).
We then argue in the analytic topology in the Berkovich analytification of P2

Cv and SCv .

Fix a neighborhood W of s0 in San
Cv such that for s ∈ W , qs is attracting, and a

neighborhood V of qs in L∞ independent of s ∈ W such that f̂s(V ) ⊂ V and for any
z ∈ V , fns (z) converges to qs as n→∞. Reducing W if necessary we may assume that
for any s ∈ W , cs belongs to V . For s ∈ W ∩ S(Qalg), cs is preperiodic and converges
to qs, so it is preperiodic to qs, that is, there exists a minimal k = k(s) such that

f
k(s)
s (cs) = qs. Now we use an argument similar to that of Proposition 4.1: let H ⊂ S

be a hypersurface such that the local degree of fs at qs is locally minimal outside H and
fix s1 ∈ W \H. Then, there is a neighborhood W1 of s1 in W \H and a neighborhood
V1 ⊂ V of q1 such that for any s ∈W1, fs(V1) ⊂ V1 and f−1

s (qs) ∩ V1 = {qs}. From this
it follows that the only point eventually falling onto qs in V1 is qs itself. Therefore if
s ∈W1 is so close to s1 that cs ∈ V1, we infer that cs = qs, and finally c = q by analytic
continuation.

Case 2. µ is a root of unity.

To deal with this case we embed Qalg into C, and work at the complex place. Re-
call that a holomorphic family (gλ)λ∈Λ of rational maps on P1(C), parameterized by a
connected complex manifold is trivial if any two members are conjugate by a Möbius
transformation, depending holomorphically on Λ. If c is persistently preperiodic we are
done, so assume that c is not persistently preperiodic.

Under our assumptions, there is a dense set S(Qalg) of parameters such that cs is
preperiodic, but c is not persistently preperiodic. Thus by Chio-Roeder [7, Theorem
2.7] (see also [10, Theorem 4]) every such parameter belongs to the bifurcation locus of
the marked family (f∞, c) (note that c is not a critical point here). As a consequence,
the bifurcation locus of the family is equal to San

C . (Note that it is enough to work in a
neighborhood of s0, away from possible singularities of San

C .)

A first possibility is that the family (f̂s)s∈San
C

is non-trivial. Then Gauthier [14,

Theorem A] implies that J(f̂s) = L∞ for all s. But since f̂s0 has a rationally indifferent

fixed point, it admits an attracting petal and J(f̂s0) 6= L∞. This contradiction shows

that the family (f̂s)s∈San
C

is trivial.

Now the situation is that there is a holomorphic family ϕs of Möbius transformations
such that ϕsf̂sϕ

−1
s = g is a fixed rational map g on P1 with a rationally indifferent fixed

point at 0. After this conjugacy, the marked family (f̂ , c) becomes (g, ϕ(c)). Since c
coincides with q at s0 and by assumption c is not persistently preperiodic, there is an
open set Ω of parameters such that for s ∈ Ω, ϕs(cs) belongs to some attracting petal
associated to 0 for g. This contradicts the fact that ϕs(cs) must be preperiodic for a
dense set of parameters, and the proof is complete. �

Conclusion of the proof of Theorem A. By Proposition 4.3, any point at infinity of C
is preperiodic, and, by assumption, one of these points, say c, is preperiodic to a non-
superattracting periodic point p. Replace f by fN and C by fN (C) for some N , so
that c = p is fixed. By Proposition 4.1, there is a non-trivial Zariski open subset U ⊂ S
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such that for every s ∈ U ∩ S(Qalg), Cs contains infinitely many preperiodic points.
Then, since ps is fixed and not superattracting for fs, Theorem 3.1 asserts that Cs
is preperiodic, and more precisely fixed, under fs (see Remark 3.3). The density of
U ∩ S(Qalg) in S (for the Zariski or analytic topology) then implies that f(C) = C, and
the proof is complete. �
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Cedex, France

Email address: charles.favre@polytechnique.edu
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