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ABSTRACT
This work considers an industrial production site partially powered by a decentral-
ized energy system based on intermittent renewable energy sources. Our objective is
to simultaneous plan the industrial production and the energy supply in this site so
as to minimize the total cost. A new way of modelling this combinatorial optimiza-
tion problem is proposed: it relies on the extension of a multi-product single-resource
small-bucket lot-sizing model called the proportional lot-sizing and scheduling prob-
lem. This extension involves among others sequence-dependent changeover times
overlapping multiple periods and energy-related constraints. Our numerical results
show that the resulting mixed-integer linear programming model enables to ob-
tain good-quality production and energy supply plans with a computational effort
much smaller than the one required by a previously published large-bucket lot-sizing
model.
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1. Introduction

According to a recent report of the International Energy Agency (David et al. 2022),
industry emitted in 2021 a total of 9.4Gt of CO2, accounting for a quarter of the global
CO2 emissions. These emissions should be drastically reduced to a total of 7Gt of CO2
by 2030 in order to achieve carbon neutrality by mid-21st century as set by the COP-
21 Paris Agreement. This translates into a huge pressure on industrial companies
to lower the carbon footprint of their activities. At the same time, energy cost has
become a primary concern for them due to the sharp increase in the price of gas and
grid electricity. At a company level, a possible way of simultaneously addressing these
two challenges consists in building a decentralized energy system based on renewable
sources (e.g. wind, sun) and to use the renewable electricity generated on-site to power,
at least partially, the industrial processes. This is already a reality for a growing
number of companies. For instance, the British carmaker Bentley Motors equipped
its Crewe, UK, plant with more than 30,000 solar panels representing a total energy
capacity of 7.7 MW. At peak generation times, up to two-third of the electricity
consumed by the factory can be provided by this solar energy system (Bentley Motors
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2019; Szymkowski 2018). Similarly, 30% of the electricity used in the Anheuser-Busch’s
Budweiser brewery factory, located in California, are supplied by an on-site wind
turbine and 6,500 solar panels (Anheuser-Busch 2021).

However, using a decentralized energy system based on renewable sources to power
an industrial process poses major difficulties. Namely, due to their intermittence, the
amount of energy provided by renewable sources displays strong intraday and sea-
sonal variations. This volatility means that on-site generated renewable electricity
alone cannot power an industrial process and that a combination of renewable and
grid electricity should be used. Moreover, energy providers usually rely on time-of-use
pricing schemes to prompt consumption when electricity supply is high and lower it
when electricity supply is low. For an industrial company, the electricity purchasing
price thus also displays strong intraday variations. Consequently, the electricity cost
of a production site depends on both the amount and the timing of electricity con-
sumption, which themselves depend on production planning decisions. Thus, energy
supply and industrial production should be planned simultaneously.

The present work focuses on the short-term industrial production and energy supply
planning problem of a factory using on-site generation of renewable electricity. In terms
of industrial production planning, a multi-product single-resource lot-sizing problem
with sequence-dependent changeover costs and times is considered. Basically, lot-sizing
consists in deciding when and how many finished products should be processed on a
resource so as to satisfy the customers’ demand while minimizing the total changeover
and inventory holding costs (Drexl and Kimms 1997). Lot-sizing arises in production
planning whenever the resource can process a single type of finished products at a
time and needs to undergo changeover operations (e.g., tool changes) each time the
type of finished products processed on it is changed. These changeover operations
incur both a changeover cost and a changeover time, whose values depend on the
production sequence. As for the inventory holding costs, they represent the cost of
keeping finished products in inventory on the time interval between their production
and their shipment to the customers. In terms of energy supply planning, three main
elements are considered. First, on-site power generation devices produce a time-varying
amount of electricity from renewable sources: this electricity is assumed to be free
but the generated amount depends mainly on the weather conditions and cannot be
controlled. Second, there is an on-site energy storage system with a limited capacity.
Finally, this decentralized energy system is connected to the national electric grid and
can trade (i.e., buy and sell) electricity with it at a time-varying price. The energy
supply planning problem consists in deciding when and how much electricity should
be traded with the grid and charged into/discharged from the storage system so as
to make sure that energy supply and consumption are balanced at all time. Figure 1
represents the studied integrated energy supply and industrial production system.

Dynamic lot-sizing problems such as the one studied here use a finite planning
horizon divided into a discrete set of periods. However, in the present case, defining
this discrete set of periods is not straightforward. Namely, the time discretization
needed to track the satisfaction of the customers’ demand, the one needed to build the
industrial production plan and the one needed to manage the balance between energy
supply and demand may significantly differ. More precisely, our planning problem
involves two exogenous time structures, i.e. two sets of points in time corresponding
to externally given events defined by the data of the model (Copil et al. 2017). The
first time structure is defined by the points in time at which the customers’ demand
arises. Using these points leads to the definition of rather long periods (typically days
or weeks). The second time structure is imposed by the discrete time grid used to
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track the on-site generation of electricity and the variations in the prices for trading
electricity with the energy provider. This time grid usually relies on short periods
(typically hours or 15-minutes intervals). In addition to these two exogenous time
structures, we may define a third endogenous time structure to plan production. This
one corresponds to the points in time at which internal events related to production
planning (such as the time at which the processing of a production lot or a changeover
between two production lots starts) are captured by decision variables (Copil et al.
2017).

This modeling difficulty was first tackled by Wichmann, Johannes, and Spengler
(2019a) who investigated an energy-oriented lot-sizing problem to plan production in
a factory powered by a decentralized power system comprising solar cells and Lithium-
ion batteries. They used a three-level time structure to build the integrated energy
supply and industrial production plan: a fixed time grid based on long macro-periods
to track the customers’ demand satisfaction, a fixed time grid based on short energy-
oriented micro-periods to manage the energy supply and consumption, and a flexible
time grid based on short production-oriented micro-periods to build the production
plan. More precisely, their model can be seen as an Energy-Oriented General Lot-sizing
and Scheduling Problem or EOGLSP, i.e., an extension of the General Lot-sizing
and Scheduling Problem introduced by Fleischmann and Meyr (1997) to integrate
energy supply planning and lot-sizing. However, due to the discrepancy between the
energy-oriented and production-oriented time grids, a large number of binary variables
and constraints need to be introduced in the mathematical formulation to precisely
track in which energy-oriented micro-period the industrial activities planned on the
production-oriented time grid actually consume energy. Consequently, the size of the
resulting mixed-integer linear program (MILP) formulation increases sharply with the
instance size, leading to numerical difficulties during the resolution by a mathematical
programming solver.

To overcome these difficulties, we investigate here a new modeling approach and
propose to rely on a time structure comprising only two discretization levels. The first
time grid is based on long macro-periods to track the customers’ demand satisfaction.
The second one relies on the short micro-periods imposed by the energy-related input
data and is used to both manage the energy supply and plan the industrial production.
Planning production using a time structure involving a rather large number of short
periods amounts to formulating a ’small bucket’ lot-sizing problem, i.e. a lot-sizing
problem in which the number of different product types that may be produced in each
period is strictly limited. In this work, we propose to limit this number at two, in
other words to allow at most one changeover to start in each micro-period. We thus
formulate the problem as an Energy-Oriented Proportional Lot-sizing and Scheduling
Problem or EOPLSP (Drexl and Haase 1995). As shown by the results of our numerical
experiments, the resulting MILP formulation is much smaller than the one obtained
with the EOGLSP model and the computational effort needed to obtain optimal or
good-quality feasible solutions for medium-size instances is significantly reduced.

Our contributions are thus threefold. First, we consider the same optimization prob-
lem as the one investigated by Wichmann, Johannes, and Spengler (2019a), i.e., we
seek to build an integrated industrial production and energy supply plan for a fac-
tory equipped with a decentralized energy system using renewable sources. For this
problem, we propose a new modeling approach based on a two-level time structure
and the use of the fixed time grid imposed by the energy-related input data to plan
the industrial production. This approach leads to a drastic reduction in the number of
binary variables and constraints involved in the resulting MILP formulation. However,
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using short micro-periods to determine lot-sizes means that changeover times may
exceed the duration of a micro-period and that changeover operations may overlap
several periods. Although this problem was investigated by Kaczmarczyk (2021) for
the PLSP with multi-period sequence-independent changeover times, a direct exten-
sion of his work to our setting leads to the formulation of a large-size MILP and to
numerical difficulties. Our second contribution thus consists in proposing a new exten-
sion of the model recently introduced by Kaczmarczyk (2021) in order to accommodate
sequence-dependent changeover times and to improve the numerical tractability of the
resulting MILP. Finally, we carry out numerical experiments on a large set of small to
medium-size instances to compare the proposed EOPLSP model with the EOGLSP
one previously published by Wichmann, Johannes, and Spengler (2019a). Our numer-
ical results show that in most cases, our model provides a production plan of the same
quality as the one provided by the EOGLSP model but with a significantly reduced
computational effort.

The paper is organized as follows. An overview of the literature on energy-efficient
lot-sizing is given in Section 2. Section 3 provides a detailed description of the opti-
mization problem under study. Section 4 presents the proposed EOPLSP model based
on a two-level time structure. Section 5 discusses the results of the computational
experiments conducted on small to medium-size instances. Conclusion and research
perspectives are given in Section 6.

2. Related works

As mentioned by Biel and Glock (2016), the scarcity of resources, rising energy prices,
and an increasing awareness of the environmental impact of manufacturing recently
triggered research on energy-efficient production planning. Basically, energy-efficient
production planning aims at computing production plans considering not only the
traditional production-related costs but also energy-related objectives and constraints.
The reader is referred to (Gahm et al. 2016; Biel and Glock 2016; Gao et al. 2020;
Bänsch et al. 2021; Terbrack, Claus, and Herrmann 2021) for comprehensive literature
reviews on this field. In what follows, we discuss the works most closely related to
dynamic lot-sizing.

A first set of works dealing with energy-aware dynamic lot-sizing consider that en-
ergy may only be bought from an external supplier and aim at reducing the correspond-
ing cost. Energy costs should be considered explicitly in lot-sizing when the amount
of energy consumption is a non-linear function of the produced quantity and/or when
the energy buying price is time-dependent. Özdamar and Birbil (1999) thus sought
to minimize the total inventory holding, production and energy costs in a tile curing
industry. As the energy costs are proportional to the number of active curing kilns,
the setup and lot-sizing decisions in the production plan have a direct impact on the
energy consumption and cost. Heck and Schmidt (2010) studied a single-product unca-
pacitated lot-sizing problem. They introduced in the objective function an additional
term, expressed as a non-linear function of the lot size, to take into account the energy
costs. Similarly, Tang, Che, and Liu (2012) considered a single-level single-machine
lot-sizing problem in the iron and steel industry. The energy consumed by the heat
furnace is a non-linear function of the production quantity so that decisions on the lot
sizes directly impact the energy cost. Note that, in all the above-mentioned papers, the
energy prices are assumed to be time-invariant. Johannes, Wichmann, and Spengler
(2019) and Wichmann, Johannes, and Spengler (2019b) studied a single-level single-
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machine lot-sizing problem with time-dependent energy prices. They showed that it
is possible to significantly reduce the overall production and energy costs by setting
the timing and level of production while taking into account the energy price fluctua-
tions. Perraudat, Dauzère-Pérès, and Mason (2022) recently investigated a stochastic
multi-product single-machine lot-sizing problem faced by a company taking part to
the demand response program of its energy provider. In such a program, the company
receives monetary incentives to reduce its electric load during periods defined by the
energy provider.

A second set of works dealing with energy-aware lot-sizing consider that the energy
needed to power the industrial process is obtained from both an external supplier
(through e.g. the national electric grid) and an on-site power generation system using
renewable sources. Rodoplu, Arbaoui, and Yalaoui (2019) addressed a multi-machine
multi-level lot-sizing problem with a single end-product and a serial gozinto structure.
In their model, the planning horizon is split into a discrete set of rather long planning
periods (6 to 8 hours) defined by the points in time at which demand for the end-
product occurs. Within each of these periods, the electricity price is assumed to be
constant, the energy supply-demand balance is considered in an aggregate way and the
detailed production plan on each resource is built using a continuous-time flow-shop
scheduling model. Note that the use of such large time buckets may not be accu-
rate enough to track the variations in the energy price and availability. In contrast,
(Golp̂ıra, Khan, and Zhang 2018) studied lot-sizing for a multi-machine multi-level
system powered by a grid-connected micro-grid comprising among others a wind tur-
bine, a combined heat and power generator and an electrical storage system. They
used the same time structure based on short one-hour planning periods to track the
demand satisfaction and build the industrial and energy production plan. They as-
sumed that the energy consumption depends only on the resource setup status and
not on the production quantity and developed a robust optimization approach to deal
with the uncertainties of the wind power generation and energy consumption. Finally,
Wichmann, Johannes, and Spengler (2019a) studied a single-level single-machine lot-
sizing problem under intermittent renewable energy and energy storage. The authors
proposed an extension of the GLSP to handle this problem (Fleischmann and Meyr
1997; Meyr 2000). In their model, the planning horizon is discretized following three
different time grids. The planning horizon is first divided into macro-periods to track
demand fulfillment. Each macro-period is then further subdivided into production-
oriented micro-periods of variable length and energy-oriented micro-periods of fixed
length. Production-related micro-periods are used to define the production plan as
would be done in the GLSP: at most one type of product may be produced per micro-
period and the length of each micro-period is not fixed in advance but may be flexibly
chosen when building the production plan. Energy-oriented micro-periods are used to
track energy generation, trading and consumption. However, the discrepancy between
the production and energy time structures makes it possible for a production-oriented
micro-period to span over several energy-oriented micro-periods and for an energy-
oriented micro-period to include several production-oriented micro-periods. Conse-
quently, additional variables and constraints need to be introduced to track in which
energy-oriented micro-period the consumption of energy by the production process
takes place. They determine, e.g., whether a production-oriented micro-period over-
laps a given energy-oriented micro-period, the total duration of this overlapping and
the type of activities (manufacturing, changeover, preserving) carried out during the
overlapping time. The number of these variables and constraints is thus of order (num-
ber of production-oriented micro-periods × number of energy-oriented micro-periods).
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This results in the formulation of an MILP which involves a large number of binary
variables and big-M type constraints and is consequently computationally intensive to
solve with a mathematical programming solver. In what follows, we introduce a new
modeling approach for this problem which is intended to be more computationally
efficient.

3. Problem description

We consider an industrial plant producing a set of J finished products to satisfy an
external demand and focus on building an industrial production and energy supply
plan for this plant over a finite horizon.

The points in time at which the external demand occurs define a first coarse dis-
cretization of the planning horizon into a set T = {1, ..., T} of macro-periods. Let l
be the fixed length of a macro-period. There is a demand djt for each product j to be
satisfied at the end of macro-period t. The demand cannot be backlogged and should
always be met on time. In case some inventory of finished products is kept for later
use at the end of macro-period t, an inventory holding cost hjt has to be paid per
unit of product j kept in inventory. Let Ij,0 be the inventory level of product j at the
beginning of macro-period 1.

There is a single production resource. This resource may be in four distinct states:
idle, changeover, manufacturing, and preserving. The idle state, represented by a
dummy product j = 0, corresponds to the case where the machine is turned on but not
ready for production. Let J = {0, 1, 2, . . . , J} denote the set of all products. In order
to produce product j, the machine should be in the right configuration, i.e. should
be setup for this product. The machine is in the changeover state whenever actions
to change its configuration from a product j′ ∈ J to another product j ∈ J \ {j′}
are on-going. Re-configuring the machine from j′ to j incurs a sequence-dependent
changeover cost fcj′,j and a sequence-dependent changeover time stj′,j . A changeover
cannot be interrupted, i.e., once a changeover process is launched, the reconfiguration
actions need to be executed until completely finished. Once the machine is setup for a
given product j, it can produce it: this corresponds to the manufacturing state. The
production time required to produce one unit of product j is denoted by kj . Finally,
we assume that the setup status of the machine for a given product may be conserved
even if it is not producing it: this corresponds to the preserving state. The main ad-
vantage of using setup status conservation when technically possible is that it allows
to restart the manufacturing of the product immediately after an non-production pe-
riod whereas the other alternative would consist in turning off the machine to the idle
state and carrying out a costly and time-consuming changeover from the idle state to
the setup status to produce the product. Depending on the production process type,
this setup status conservation may or not incur significant preserving costs. Let pcj
denote the cost of preserving the machine setup status for product j during one unit
of time. We assume w.l.o.g. that the machine is idle at the beginning of the planning
horizon.

The machine consumes energy whenever it is in the changeover, manufacturing or
preserving state, but not when it is idle. The amount of energy consumed per unit of
time during a changeover from product j′ to product j is given by eFj′,j : the total energy

consumed by a changeover from j′ to j is thus equal to eFj′,jstj′,j . The energy consumed

when manufacturing product j is proportional to the produced quantity: let eMj denote
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the energy needed to produce one unit of product j. Finally, the energy consumption
by the machine in the preserving state is proportional to the time during which its
setup status is preserved. Let ePj be the energy consumed per unit of time to keep the

machine setup for product j without manufacturing it. Note that eM0,r = eP0,r = 0 as
the machine does not consume energy when in the idle state.

Regarding the energy supply, two sources are available: the on-site power genera-
tion devices producing electricity from renewable sources (photovoltaic panels or wind
turbines) or the main electric grid. Both the amount of locally generated renewable
energy and the prices to trade electricity with the main grid are time-varying. In or-
der to track these variations, we introduce a second exogenously defined time grid.
This one relies on a fine discretization of the planning horizon through a set of micro-
periods sufficiently short to assume that the renewable energy generation and the
trading prices with the grid are constant within a micro-period. Thus, each macro-
period t ∈ T is further divided in R micro-periods of length le such that l = Rle. Let
R = {1, ..., RT} be the set of all micro-periods and Rt = {(t − 1)R + 1, , ..., tR} be
the set of micro-periods belonging to macro-period t ∈ T . The amount of renewable
electricity available in micro-period r ∈ R is represented by pRr . This on-site generated
electricity is assumed to be free. The unit price to buy (resp. to sell) electricity from
(resp. to) the main grid in r ∈ R is denoted by πGP

r (resp. πGS
r ). Finally, the electricity

traded with the main grid must go through an electrical transformer, which induces
energy losses. Let ηG denote the efficiency of the grid transformer.

The electricity generated on-site or bought from the main grid can be stored locally
in a battery. This battery has a storage capacity of cB, a charging efficiency of ηC and
a discharging efficiency of ηD. Moreover, the maximum amount of energy than can be
charged into (resp. discharged from) the battery during a micro-period is denoted by

mC (resp. mD). Let P
B
0 denote the amount of electricity stored in the battery at the

beginning of the planning horizon.
See Table 1 for a summary of the parameters in the problem.
Our aim is to build an integrated energy supply and industrial production plan

minimizing the total production and energy procurement cost of the plant. This plan
should indicate when and how many finished products should be produced, when and
how much energy should be traded with the grid, charged into the battery or discharged
from it. Moreover, it should guarantee that the customers’ demand is met without any
delay at the end of each macro-period and that the balance between energy supply
and demand is reached during each micro-period.

4. Mathematical formulation

This section describes a new modeling approach for this problem. The basic idea of
the proposed model is to exploit the energy-oriented fine discretization of the plan-
ning horizon to build the production plan, thus avoiding the introduction of a third
production-oriented fine discretization as done by Wichmann, Johannes, and Spengler
(2019b). The main advantage of this approach is that computing the energy con-
sumed by production-related operations within each micro-period can be done much
easier than in the EOGLSP model introduced by Wichmann, Johannes, and Spen-
gler (2019b). However, as discussed in Subsection 4.1, it requires the management of
changeover overlapping multiple micro-periods.
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4.1. Model description

Using an exogenously imposed time structure consisting of a large number of short
micro-periods to compute a production plan leads to the definition of a small-bucket
lot-sizing problem. Among the small-bucket lot-sizing models investigated in the lit-
erature, the Proportional Lot-sizing and Scheduling Problem or PLSP introduced
by Drexl and Haase (1995) is the most flexible one in terms of the number of dif-
ferent product types that may produced in a period. We thus propose in this work to
rely on the same modeling assumptions as the ones used in the PLSP. More precisely,
we assume that at most one changeover operation may start, i.e., that the machine may
be processing for at most two different types of products, within each micro-period.

However, our problem involves sequence-dependent changeover times, the duration
of which may be greater than the length of a micro-period. A changeover may thus
overlap several micro-periods. Moreover, the number of micro-periods overlapped by
a changeover may not be determined in advance but will rather depend on when
the changeover starts within the first overlapped period. Extensions of the PLSP
with positive changeover times were investigated among others by (Drexl and Haase
1995; Tempelmeier and Buschkühl 2008; Stadtler 2011; Kaczmarczyk 2013) but the
changeovers were restricted to overlap at most one or two micro-periods. Kaczmarczyk
(2021) recently introduced an MILP model for the PLSP with changeovers overlapping
any number of micro-periods but assumed sequence-independent changeover times. A
direct extension of this work to our setting involving sequence-dependent changeover
times leads to the formulation of a large-size MILP. Our preliminary computational
results showed that this MILP is numerically difficult to solve even for small-size
instances. We thus propose in what follows a new extension of the model introduced
by Kaczmarczyk (2021) to accommodate sequence-dependent changeover times with
a reduced number of variables and constraints.

We now discuss the set of binary and continuous decision variables introduced to
formulate the problem as an MILP.
Let us first focus on the decision variables needed to build the production plan. We
start by introducing the continuous decision variables recording the inventory level of
each product at the end of each macro-period.

• Ij,t: inventory level of product t at the end of macro-period t.

We then introduce a set of binary variables to represent the status of the resource at the
end of each micro-period and follow the changeovers between products. The machine is
said to be ’processing for product j’ if it is either set up for this product (manufacturing
it or preserving its setup status for it) or if it is undergoing a changeover from another
product j′ ̸= j to product j. We thus introduce:

• Yj,r = 1 if the machine is processing for item j at the end of micro-period r, and
Yj,r = 0 otherwise.

In the EOPLSP model with multi-period changeovers, the number of periods over-
lapped by a changeover is not fixed but rather depends on the point in time at which
the changeover starts in the first overlapped micro-period, i.e., depends on production
planning decisions. Let us denote by quj′,j = ⌊stj′,j/le⌋ the quotient of the modular
division of the changeover time from j′ to j by the duration le of a micro-period and
by rej′,j = stj′,j − quj′,j · le the remainder of this division. For the sake of simplicity,
we set quj′,j = ⌊stj′,j/l⌋ − 1 and rej′,j = le in case stj′,j is an integer multiple of le. A
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changeover from j′ to j will overlap quj′,j +1 if the time devoted to the changeover in
the first overlapped period is greater than rej′,j , and quj′,j + 2 periods otherwise. In
order to distinguish between these two situations, we thus define:

• W 1
j′,j,r = 1 if a changeover from product j′ ̸= j to product j begins in micro-

period r and overlaps quj′,j + 1 micro-periods, W 1
j′,j,r = 0 otherwise.

• W 2
j′,j,r = 1 if a changeover from product j′ ̸= j to product j begins during

micro-period r and overlaps quj′,j + 2 micro-periods, W 2
j′,j,r = 0 otherwise.

We then introduce a set of continuous decision variables to determine how the capacity
of the machine is used in each micro-period r.

• Qj,r: Production quantity of product j during micro-period r.
• LP

j,r: Time spent by the machine preserving its setup status for product j during
micro-period r.

• LF
j′,j,r: Time devoted to carrying a changeover from product j′ ̸= j to product j

during micro-period r.
• Bj,r: Time reserved for processing product j in micro-period r before a
changeover from product j to product j′ ̸= j starts, if this happens; Bj,r = 0 if
no changeover from product j starts during r.

• Aj,r: Time reserved for processing product j in micro-period r after a changeover
from product j′ ̸= j to product j starts if this happens; Aj,r = 0 if no changeover
to product j starts during r.

Note that Bj,r (resp. Aj,r) represents the total processing time devoted to j in r before
a changeover from (resp. to) j and may include changeover, production and preserving
time.

Finally, we define a set of continuous variables to track the energy consumption, trading
and storage in each micro-period:

• PU
r : Energy consumed by the factory in micro-period r.

• PGP
r : Electricity purchased from the grid in micro-period r.

• PGS
r : Electricity sold to the grid in micro-period r.

• PC
r : Electricity charged into the battery within micro-period r.

• PD
r : Electricity discharged from the battery within micro-period r.

• PB
r : Electricity stored in the battery at the end of micro-period r.

See Table 2 for a summary of the decision variables introduced in the formulation.

Illustrative example Before going on with the presentation of the MILP formula-
tion, we show on a small illustrative example how the value of the variables involved
in the modeling of the multi-period changeovers evolve over time. This small example
involves two products (indexed resp. by 1 and 2) and a set of R = 4 micro-periods
of length le = 80. The changeover time from product 2 to product 1 is st2,1 = 140:
we thus have qu2,1 = 1 and re2,1 = 60. Assume that the resource is setup for product
2 at the end of micro-period 1 and that a changeover operation from product 2 to
product 1 starts during micro-period 2. Depending on when this changeover starts
within micro-period 2, the changeover may overlap qu2,1 + 2 = 3 or qu2,1 + 1 = 2
micro-periods. These two cases are presented in Figure 2.

• Case 1: see Figure 2(a) and Table 3(a). In this case, the changeover starts rather
late during micro-period 2. Namely, the time devoted to product 1 after the
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changeover, A1,2, is equal to 40 and is thus smaller than re2,1 = 60. Consequently,
the changeover overlaps qu2,1 +2 = 3 micro-periods and ends in micro-period 4.
We thus have W 1

2,1,2 = 0 and W 2
2,1,2 = 1. B1,2 = 40 gives the time devoted to

processing product 2 in micro-period 2 before the changeover starts whereas the
time devoted to carrying out the changeover from 2 to 1 in each micro-period is
given by LF

2,1,r.
• Case 2: see Figure 2(b) and Table 3(b). In this case, the changeover starts rather
early during micro-period 1. Namely, the time devoted to product 1 after the
changeover, A1,2, is equal to 70 and is thus greater than re2,1 = 60. Consequently,
the changeover overlaps qu2,1 +1 = 2 micro-periods and ends in micro-period 3.
We thus have W 1

2,1,2 = 1 and W 2
2,1,2 = 0. B1,2 = 20 gives the time devoted to

processing product 2 in micro-period 2 before the changeover starts whereas the
time devoted to carrying out the changeover from 2 to 1 in each micro-period is
given by LF

2,1,r.

4.2. MILP formulation

We now provide the MILP formulation proposed for the integrated energy supply and
industrial production planning problem.

Objective function

min
∑
r∈R

∑
j′∈J

∑
j∈J\{j′}

∑
δ∈{1,2}

fcj′,jW
δ
j′,j,r +

∑
t∈T

∑
j∈J

hcjIj,t

+
∑
r∈R

∑
j∈J

pcjL
P
j,r +

∑
r∈R

(πGP
r · PGP

r − πGS
r · PGS

r ).
(1)

The objective is to minimize the sum of the production-related and energy-related costs
over the whole planning horizon. The production-related costs comprise the changeover
costs, the inventory holding costs and the preserving costs. The energy-related costs
are computed as the difference between the cost of buying electricity from the main
grid and the revenue obtained by selling extra electricity to the grid.

Inventory balance and demand satisfaction

Ij,t−1 +
∑
r∈Rt

Qj,r = Ij,t + dj,t, ∀j ∈ J , t ∈ T . (2)

Equations (2) define the inventory balance at the end of each macro-period t. Together
with constraints Ij,t ≥ 0, they ensure that demand is satisfied on time.
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Links between the processing and changeover variables∑
j∈J

Yj,r = 1, ∀r ∈ R. (3)

Yj,r − Yj,r−1 =
∑

j′∈J\{j}

∑
δ∈{1,2}

(W δ
j′,j,r −W δ

j,j′,r), ∀j ∈ J , ∀r ∈ R. (4)

∑
j∈J

∑
j′∈J\{j}

∑
δ∈{1,2}

W δ
j,j′,r ⩽ 1, ∀r ∈ R. (5)

Yj,r−1 +
∑

j′∈J\{j}

∑
δ∈{1,2}

W δ
j′,j,r ⩽ 1, ∀j ∈ J , ∀r ∈ R. (6)

Equalities (3) ensure that the machine is processing for exactly one product at the
end of each micro-period, i.e., that it is either set up for product j (manufacturing
it or preserving its setup status for it) or undergoing a changeover to this product.
Constraints (4) link the processing variables to the changeover variables. Thus, if
Yj,r − Yj,r−1 = 0, the processing status of the machine with respect to product j is
kept unchanged and no changeover to or from product j may start in micro-period r.
If Yj,r − Yj,r−1 = −1, we have Yj,r−1 = 1 and Yj,r = 0, which means that a changeover
from product j to another product starts in r and one of the binary variables W δ

j,j′,r
should be equal to 1. Finally, if Yj,r − Yj,r−1 = 1, then Yj,r−1 = 0 and Yj,r = 1, which
indicates that a changeover to product j starts during micro-period r and one of the
binary variablesW δ

j′,j,r equals one. Inequalities (5) enforce that at most one changeover
starts during a micro-period, which corresponds to the basic modeling assumption on
which the PLSP is based. Constraints (6) are simple valid inequalities. They state that
if the machine is already processing for product j at the end of micro-period r − 1,
then no changeover to this product may start during micro-period r.

Aggregate and disaggregate capacity∑
j∈J

(
kjQj,r +

∑
j′∈J\{j}

LF
j′,j,r + LP

j,r

)
= le, ∀r ∈ R. (7)

Constraints (7) are aggregate capacity constraints. They state that the total time
available on the machine in a micro-period r, le, is equal to the sum, over all products
j ∈ J , of the time spent manufacturing product j, kjQj,r, the time spent carrying out
a changeover to j,

∑
j′∈J\{j} L

F
j′,j,r, and the time spent preserving the setup status for

j, LP
j,r.

∑
j∈J

(Bj,r +Aj,r) = le ·
∑
j∈J

∑
j′∈J\{j}

∑
δ∈{1,2}

W δ
j,j′,r, ∀r ∈ R. (8)

Bj,r ⩽ le
∑

j′∈J\{j}

∑
δ∈{1,2}

W δ
j,j′,r, ∀j ∈ J , r ∈ R, (9)

Aj,r ⩽ le
∑

j′∈J\{j}

∑
δ∈{1,2}

W δ
j′,j,r, ∀j ∈ J , r ∈ R. (10)

Constraints (8)-(10) are used to determine the values of variables Aj,r and Bj,r. Thus,
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Equalities (8) ensure that the capacity of a micro-period is distributed between the
time devoted to the product processed before the changeover and the time devoted to
the product processed after the changeover if and only if a changeover starts during
micro-period r. Inequalities (9) guarantee that the time reserved for product j before
a changeover starts, Bj,r, is positive only if a changeover from product j to another
product j′ starts during micro-period r. Similarly, Inequalities (10) guarantee that
the time reserved for product j after a changeover starts, Aj,r, is positive only if a
changeover to product j starts during micro-period r.

kjQj,r+
∑

j′∈J\{j}

LF
j′,j,r+LP

j,r ⩽ le

Yj,r −
∑

j′∈J\{j}

∑
δ∈{1,2}

W δ
j′,j,r

+Aj,r+Bj,r,∀j ∈ J , r ∈ R.

(11)

Inequalities (11) are disaggregate constraints limiting the amount of machine capacity
that each product j may use in a given micro-period r. Here, four different situations
may occur:

• The machine is processing for product j at the end of micro-period r (Yj,r = 1)
and no changeover to j starts during r (

∑
j′∈J\{j}

∑
δ∈{1,2}W

δ
j′,j,r = 0, Bj,r =

Aj,r = 0). The machine was thus already processing for product j at the end
of micro-period r − 1 and all the capacity available in r, le, is devoted to j (for
manufacturing it, preserving the setup status for it or carrying out a changeover
to j started in a previous micro-period).

• The machine is processing for product j at the end of micro-period r (Yj,r = 1)
and a changeover to j starts during r (

∑
j′∈J\{j}

∑
δ∈{1,2}W

δ
j′,j,r = 1). We have

Bj,r = 0 and Aj,r ≥ 0. The capacity of the machine devoted to j in r should be
less than Aj,r.

• The machine is not processing for product j at the end of micro-period r (Yj,r =
0) and a changeover from j starts during r. We have

∑
j′∈J\{j}

∑
δ∈{1,2}W

δ
j′,j,r =

0, Bj,r ≥ 0 and Aj,r = 0. The capacity of the machine devoted to j in r should
be less than Bj,r.

• The machine is not processing for product j at the end of micro-period
r and no changeover to or from j starts during r. We have Yj,r = 0,∑

j′∈J\{j}
∑

δ∈{1,2}W
δ
j′,j,r = 0 and Aj,r = Bj,r = 0 so that no machine capacity

is available for j in r.

Link between the changeover time variables and the number of micro-
periods overlapped by a changeover

LF
j′,j,r ⩾ rej′,jW

1
j′,j,r, ∀(j′, j) ∈ J 2 : j ̸= j′, r ∈ R. (12)

LF
j′,j,r ⩽ (rej′,j − le)W 2

j′,j,r + le, ∀(j′, j) ∈ J 2 : j ̸= j′, r ∈ R. (13)

Constraints (12)-(13) are used to enforce the consistency between the number of
micro-periods overlapped by a changeover and the time devoted to carrying out this
changeover in the period in which it starts. Inequalities (12) thus state that if a
changeover from product j′ ̸= j to j overlapping quj′,j + 1 micro-periods starts in
micro-period r, then the time reserved for this changeover in r should be greater than
the remainder rej′,j . Similarly, Constraints (13) impose that if a changeover from prod-
uct j′ ̸= j to j overlapping quj′,j + 2 micro-periods starts in micro-period r, then the
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time devoted to this changeover during r should be less than the remainder rej′,j .

Management of changeovers overlapping multiple periods

quj′,j∑
τ=0

LF
j′,j,r+τ ⩾ stj′,jW

1
j′,j,r, ∀(j′, j) ∈ J 2 : j ̸= j′, r ∈ R. (14)

quj′,j+1∑
τ=0

LF
j′,j,r+τ ⩾ stj′,jW

2
j′,j,r, ∀(j′, j) ∈ J 2 : j ̸= j′, r ∈ R. (15)

quj′,j∑
τ=0

LF
j′,j,r+τ ⩽ (stj′,j − (quj′,j + 1) ∗ le)W 1

j′,j,r

+ (quj′,j + 1)le ∀(j′, j) ∈ J 2 : j ̸= j′, r ∈ R. (16)

quj′,j+1∑
τ=0

LF
j′,j,r+τ ⩽ (stj′,j − (quj′,j + 1) ∗ le)W 2

j′,j,r

+ (quj′,j + 1)le ∀(j′, j) ∈ J 2 : j ̸= j′, r ∈ R. (17)

Constraints (14)-(17) make sure that the actual duration of a changeover from j′ to
j equals the prescribed changeover time stj′,j . Inequalities (14) thus impose that if a
changeover from product j′ to product j begins in micro-period r and overlaps quj′,j+
1 micro-periods, then the total time devoted to this changeover over micro-periods
r, ..., r+quj′,j should be greater than stj′,j . Inequalities (15) are similar constraints for
the situation where the changeover overlaps quj′,j +2 micro-periods. Inequalities (16)
(resp. (17)) make sure that the cumulative time devoted to a changeover from j′ ̸= j
to j over micro-periods r, ..., r+ quj′,j (resp. r, ..., r+ quj′,j + 1) does not exceed stj′,j
if a changeover from j′ ̸= j to j overlapping quj′,j + 1 (resp. quj′,j + 2) micro-periods
starts during r.

LF
j′,j,r ⩾ Aj,r − le(Yj,r −W 2

j′,j,r), ∀(j′, j) ∈ J 2 : quj′,j = 0, r ∈ R. (18)

LF
j′,j,r ⩾ Aj,r − le(Yj,r −W 1

j′,j,r −W 2
j′,j,r), ∀(j′, j) ∈ J 2 : quj′,j ⩾ 1, r ∈ R. (19)

LF
j′,j,r ≥ W 2

j′,j,r−1 le, ∀(j′, j) ∈ J 2 : quj′,j = 1, r ∈ R. (20)

LF
j′,j,r ≥

( quj′,j∑
τ=1

W 2
j′,j,r−τ

+

quj′,j−1∑
τ=1

W 1
j′,j,r−τ

)
le, ∀(j′, j) ∈ J 2 : quj′,j ⩾ 2, r ∈ R. (21)

A changeover operation started in r should not be interrupted but rather should con-
tinue till its end. This can be enforced by using lower bounds on the time devoted
to carrying out this changeover in r and in the subsequent micro-periods. Constraints
(18)-(19) thus impose that LF

j′,j,r is greater than Aj,r, i.e. that all the time available
for j during r is devoted to carrying out the changeover (thus forbidding any manu-
facturing or preserving for j) whenever a changeover from j′ to j overlapping at least
two periods starts during r. Note how these constraints are inactive when r is not
the first period of a changeover from j′ to j. Moreover, recall that Constraints (14)
and (17) above impose LF

j′,j,r = stj′,j in the case of a changeover totally included in
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micro-period r (i.e., in case quj′,j = 0 andW 1
j′,j,r = 1). Moreover, Constraints (20)-(21)

guarantee that micro-period r is fully devoted to carrying out the changeover from j′

to j, i.e., guarantee that LF
j′,j,r is greater than le, in case r is strictly within the time

interval covered by a changeover overlapping at least 3 periods.

Energy consumption

PU
r =

J∑
j′=0

J∑
j=0

eFj′,j · LF
j′,j,r +

J∑
j=1

eMj ·Qj,r +

J∑
j=0

ePj · LP
j,r, ∀r ∈ R. (22)

Equation (22) computes the total energy needed by the factory in each energy-oriented
micro-period r as a function of the changeover, manufacturing and preserving activities
occurring during r.

Energy supply

PU
r +

PGS
r

ηG
+

PC
r

ηC
= ηG · PGP

r + pRr + ηD · PD
r , ∀r ∈ R. (23)

PB
r = PB

r−1 + PC
r − PD

r , ∀r ∈ R. (24)

0 ⩽ PB
r ⩽ cB, ∀r ∈ R. (25)

PC
r ⩽ mC , ∀r ∈ R. (26)

PD
r ⩽ mD, ∀r ∈ R. (27)

Constraints (23)-(27) aim at building a feasible energy supply plan in each energy-
oriented micro-period. Equalities (23) ensure that the energy supply and demand is
balanced within each micro-period. The energy demand consists in the energy con-

sumed by the manufacturing process PU
r , the energy sold to the main grid PGS

r

ηG
and

the energy charged into the battery PC
r

ηC
. Note how, since part of the energy is lost

within the grid transformer, the amount of energy needed to sell PGS
r to the main

grid is given by PGS
r /ηG. Similarly, the actual energy needed to charge PC

r into the
battery is computed by PC

r /ηC due to the losses during the battery charging process.
The energy supply consists in the energy purchased from the grid ηG ·PGP

r , the energy
generated from the renewable resources pRr and the energy discharged from the battery
ηD · PD

r . Note that, when we buy PGP
r from the main grid, only ηG · PGP

r energy is
really available for the plant. The same applies for the energy discharging process.
The energy balance in the battery is defined by Equations (24). The amount of energy
stored in the battery at the end of micro-period r is equal to the amount stored at the
beginning of r plus the amount charged into the battery during r minus the amount
discharged from the battery in r. Constraints (25) impose that the amount of energy
stored in the battery does not exceed its capacity. Inequalities (26) and (27) are the
battery maximum charging and discharging rate constraints.
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Initial and final states of the system

Ij,0 = Ij,0, ∀j ∈ J , (28)

Y0,0 = 1, (29)

PB
0 = P

B
0 . (30)

Ij,T ⩾ Ij,0, ∀j ∈ J , (31)

PB
T ⩾ P

B
T . (32)

Constraints (28)-(30) describe the initial state of the system. Constraints (31) ensure
that the inventory level of each product at the end of the planning horizon is at least
equal to its initial inventory level. Constraint (32) is a similar constraint on the final
battery state of charge.

4.3. Comparison with the EOGLSP model

We now briefly discuss the main differences between the EOPLSP model presented
in Subsection 4.2 and the EOGLSP model introduced by Wichmann, Johannes, and
Spengler (2019a).

First, thanks to the fact that the EOPLSP model use the energy-oriented fixed
time grid to plan the industrial activities, the amount of energy consumed in each
energy-oriented micro-period r can be directly computed: see Equalities (22). Conse-
quently, there is no need to introduce the |S|R binary variables used in the EOGLSP
model, where |S| denotes the total number of micro-periods of flexible length in the
production-oriented time grid, to track when the energy consumption actually takes
place. This explains the drastic reduction in the MILP size obtained when using the
EOPLSP model rather than the EOGLSP model.

Second, the two models rely on different modeling restrictions. Namely, on one
hand, the EOPLSP model limits the number of changeovers during an energy-oriented
micro-period to one whereas there is no such restriction in the EOGLSP model. The
EOGLSP model is thus less restrictive than the EOPLSP model regarding this aspect
and may theoretically provide less expensive production plans. However, on the other
hand, the EOGLSP model does not allow changeovers overlapping two macro-periods
while there is no such restriction in the EOPLSP model. Thus, theoretically speaking,
none of the two models has a feasible space strictly included in the feasible space of
the other one and is guaranteed to find a better optimal solution. Yet, in practice, the
computational results presented in Section 5 show that, on the instances which could
be solved to guaranteed optimality using both models, the gap between the optimal
values is very small.

4.4. Valid inequalities

This subsection discusses valid inequalities that may be used to strengthen the MILP
formulation of the EOPLSP model. The objective is to improve the quality of the
lower bounds provided by the continuous relaxation of the MILP formulation and to
speed up the resolution of the problem by a branch-and-bound type algorithm.

Barany, Van Roy, and Wolsey (1984) proposed a set of (l, S) inequalities strength-
ening the formulation of the single-product uncapacitated lot-sizing (ULS) problem
and enabling to obtain a full description of the convex envelope of its feasible space.
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However, the ULS is essentially a large-bucket model in which demand may occur at
the end of each period and the setup state of the resource is not conserved between
two consecutive periods. Thus, the (l, S) inequalities cannot be directly applied to our
small-bucket EOPLSP model. We thus discuss how to extend them.

To gain a first intuition of the proposed extension, let us first consider a given
product j ∈ J and a single macro-period t ∈ T . The following simple valid inequality
holds:

∑
r∈Rt

Qj,r ⩽ dj,t

(
Yj,(t−1)R +

∑
r∈Rt

∑
j′∈J\{j}

∑
δ∈{1,2}

W δ
j′,j,r

)
+ Ij,t. (33)

Two situations may namely arise:

• either Yj,(t−1)R+
∑

r∈Rt

∑
j′∈J\{j}

∑
δ∈{1,2}W

δ
j′,j,r = 0. In this case, the machine

is not processing for j at the beginning of macro-period t and no changeover to
j occurs during t. Hence, no production for j may occur during t. We thus have
Yj,r = 0 and Qj,r = 0 for all r ∈ Rt. The inequality reduces to 0 ≤ Ij,t and
trivially holds.

• or Yj,(t−1)R +
∑

r∈Rt

∑
j′∈J\{j}

∑
δ∈{1,2}W

δ
j′,j,r ≥ 1. Thanks to the inventory

balance constraints (2) and the fact that Ij,t−1 ≥ 0, we have
∑

r∈Rt
Qj,r ≤

dj,t+Ij,t. Using the assumption that Yj,(t−1)R+
∑

r∈Rt

∑
j′∈J (W

1
j′,j,r+W 2

j′,j,r) ≥ 1
gives ∑

r∈Rt

Qj,r ⩽ dj,t

(
Yj,(t−1)R +

∑
r∈Rt

∑
j′∈J

∑
δ∈{1,2}

W δ
j′,j,r

)
+ Ij,t.

Let us now consider a more general case.

Proposition 1. Let j ∈ J be a product, w ∈ T be a macro-period, W = {1, ..., w}
and Φ ⊆ W be two subsets of macro-periods. The following inequality holds for the
EOPLSP model:∑

τ∈Φ

∑
r∈Rτ

Qj,r ⩽
∑
τ∈Φ

dj,τw

(
Yj,(τ−1)R +

∑
r∈Rτ

∑
j′∈J

∑
δ∈{1,2}

W δ
j′,j,r

)
+ Ij,w, (34)

with dj,τ,w =
∑w

t=τ dj,t the cumulative demand for product j over the time interval
[τ, w].

Proof. Let us consider a production plan (Y,W,Q) solution of the EOPLSP model.
If Yj,(τ−1)R +

∑
r∈Rt

∑
j′∈J\{j}

∑
δ∈{1,2}W

δ
j′,j,r = 0 for all r ∈ Rτ and τ ∈ Φ, we

have Yj,r = 0 for all r ∈ Rτ and τ ∈ Φ. No production for j may occur during the
macro-periods τ belonging to Φ. We thus have Qj,r = 0 for all r ∈ Rτ and τ ∈ Φ. This
inequality amounts to Ij,w ≥ 0 and is trivially satisfied.

Otherwise, let τ0 = min{τ ∈ Φ : Yj,(τ−1)R +
∑

r∈Rt

∑
j′∈J\{j}

∑
δ∈{1,2}W

δ
j′,j,r ⩾ 1}
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be the first macro-period in Φ in which production for j may occur. We have:∑
τ∈Φ

∑
r∈Rτ

Qj,r ⩽
∑

τ∈Φ∩{τ0,...,w}

∑
r∈Rτ

Qj,r (35a)

⩽
w∑

τ=τ0

∑
r∈Rτ

Qj,r (35b)

⩽ dj,τ0w + Ij,w (35c)

⩽ dj,τ0w

(
Yj,(τ0−1)R +

∑
r∈Rτ0

∑
j′∈J\{j}

∑
δ∈{1,2}

W δ
j′,j,r)

)
+ Ij,w (35d)

⩽
∑
τ∈Φ

dj,τw

(
Yj,(τ−1)R +

∑
r∈Rτ

∑
j′∈J\{j}

∑
δ∈{1,2}

W δ
j′,j,r

)
+ Ij,w. (35e)

(35a) follows from the definition of τ0 and (35b) from the non-negativity of the pro-
duction variables Qj,r. (35c) is obtained by summing up the inventory balance con-
straints (2) over the time interval [τ0, w] and using the fact that Ij,τ0−1 ≥ 0. (35d) is
obtained thanks to the definition of τ0 as a period in which production for j occurs,
i.e., in which Yj,(τ0−1)R +

∑
r∈Rτ0

∑
j′∈J\{j}

∑
δ∈{1,2}W

δ
j′,j,r ≥ 1. (35e) follows from

the non-negativity of variables Y and W .

Note that there is a valid inequality for each subset of macro-periods Φ, meaning
that the number of valid inequalities (34) is exponential. It is thus not possible to
add all of them a priori into the formulation as this would lead to numerical difficul-
ties. We need to solve the associated separation problem which is defined as follows.
Given a feasible solution (Y ∗,W ∗, Q∗) of the continuous relaxation of the EOPLSP
model, either identify an inequality (34) violated by (Y ∗,W ∗, Q∗) or prove that no
such inequality exists.

In order to more easily solve this separation problem, we reformulate inequalities
(34) by using the fact that Ij,w = Ij,0 +

∑
τ∈W

∑
r∈Rτ

Qj,r − dj,1w. This gives:

dj,1w−Ij,0 ≤
∑

τ∈W\Φ

∑
r∈Rτ

Qj,r+
∑
τ∈Φ

dj,τw

(
Yj,(τ−1)R+

∑
r∈Rτ

∑
j′∈J\{j}

∑
δ∈{1,2}

W δ
j′,j,r

)
(36)

Clearly, for a given product j and macro-period w, the inequality most violated
by (Y ∗,W ∗, Q∗), if it exists, will be the one with the smallest possible value of the
right-hand side of (36).

The following polynomial-time algorithm enables to find, for each product j and
macro-period w, the subset Φ minimizing this right-hand side, thus enabling to solve
the separation problem defined above.

Note that similar valid inequalities may be obtained for the EOGLSP model intro-
duced by Wichmann, Johannes, and Spengler (2019a) using the same reasoning as the
one used above for the EOPLSP model.

17



Algorithm 1 Separation algorithm for the extended (l, S) inequalities

for j = 1, 2, . . . , J do
for w = 1, 2, . . . , T do

αj,w :=
∑w

τ=1 min
{∑

r∈Rτ
Q∗

j,r, dj,τw

(
Y ∗
j,(τ−1)R

+
∑

r∈Rτ

∑
j′∈J\{j}

∑
δ∈{1,2} W δ,∗

j′,j,r

)}
if αj,w < dj,1w − Ij,0 then
The inequality (36) corresponding to the subset defined by Φ ={
τ ∈ W :

∑
r∈Rτ

Q∗
j,r > dj,τw

(
Y ∗
j,(τ−1)R +

∑
r∈Rτ

∑
j′∈J\{j}

∑
δ∈{1,2} W

δ,∗
j′,j,r

)}
is

violated for product j and macro-period w.
else
(Y ∗,W ∗, Q∗) complies with all valid inequalities (36) defined for product j
and macro-period w.

end if
end for

end for

5. Numerical experiments

Numerical experiments were conducted to assess the performance of the proposed EO-
PLSP model and compare it with one of the EOGLSP model investigated by Wich-
mann, Johannes, and Spengler (2019a).

The procedure used to randomly generate instances is described in Subsection 5.1.
The corresponding computational results are reported in Subsection 5.2. Finally, some
managerial insights on the cost savings that may be obtained through a decentralized
energy system are provided in Subsection 5.3.

5.1. Instances

The parameter setting used to randomly generate instances is mostly based on the
numerical values provided by Wichmann, Johannes, and Spengler (2019b). Further-
more, as this paper involves energy losses neither in the grid transformer nor during
the battery charging/discharging process, we use the values provided in Zhang et al.
(2017) and Golp̂ıra, Khan, and Zhang (2018) for these parameters.

Note that the numerical values used in Wichmann, Johannes, and Spengler (2019a)
were based on a potential application case of the EOGSLP model in a factory produc-
ing automotive steel parts by a warm/hot forming process (Wichmann, Johannes, and
Spengler 2019b). In this process, a gas or electrical oven first heats the blanks from
the ambient temperature to a high temperature, a forming machine then processes
the heated blanks to obtain parts of complex geometric shapes. Steel parts of various
size and weight may have to be processed on this resource and changeover operations
have to be carried between the processing of lots of different product types. Moreover,
in case there is some non-productive time between two production lots for the same
product type, it may be preferable to keep the oven at the right temperature, i.e., to
preserve its setup status, rather than turning it off and heating it up again from the
ambient temperature.

We thus consider a production system involving a single machine producing a set
of J products on a finite planning horizon spanning several days. Each day comprises
a morning shift (from 6 a.m. to 2 p.m.), an afternoon shift (from 2 p.m. to 10 p.m.),
and an evening shift (from 10 p.m. to 6 a.m. of the next day). Demand for the finished
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products arises at the end of each shift. We thus discretize the planning horizon into
T macro-periods, each one corresponding to an eight-hour shift and lasting l = 480
minutes. Macro-periods with an index t ≡ 1 mod 3 correspond to morning shifts, the
ones with an index t ≡ 2 mod 3 correspond to afternoon shifts, and the ones with an
index t ≡ 0 mod 3 are night shifts. We consider four sets of instances of various sizes:
more precisely, we use values of (J, T ) in {(3, 2), (3, 6), (4, 9), (4, 12)}.

Producing one unit of product j ∈ J \ {0} takes kj = 0.05 minutes and consumes
eMj = 0.136kWh of electricity. Preserving the machine status for product j during

one hour costs pcj = 12e and consumes an energy amount equal to ePj = 5kWh.

A changeover from product j′ ̸= j to product j costs fcj′,j = 200e and consumes
eFj′,j = 10kWh per hour.

Regarding the changeover times, four different patterns are considered:

• Pattern 1: in this pattern, the value of the changeover times are set to the ones
used by Wichmann, Johannes, and Spengler (2019b). We thus have stj′,j =
60min for any pair of products j′ ̸= j.

• Pattern 2: Changeover times remain product and sequence-independent but are
set to a larger value than in Pattern 1. We set stj′,j = 0.75 ∗ le/(J + 1) for any
pair of products j′ ̸= j.

• Pattern 3: Changeover times remain product and sequence-independent but are
set to a smaller value than in Pattern 1. We set stj′,j = 0.25 ∗ le/(J +1) for any
pair of products j′ ̸= j.

• Pattern 4: Changeover times are product and sequence-dependent. The
changeover time from product j′ ̸= j to product j is randomly generated follow-
ing the Normal distribution of mean 0.5le/(J + 1) and a standard deviation of
0.25le/(J + 1). stj′,j is set to zero if the randomly generated value is negative.

Thus, we have: stj′,j ∼ max
(
N (0.5l

e

J+1 ,
0.25le

J+1 ); 0
)
.

The production capacity of the machine within one macro-period is equal to Cap =
l/kj = 480/0.05 = 9600 units of finished product per macro-period. The demand for
each item j = 1, ...J is randomly generated as follows. We consider a utilization rate of
the resource equal to ρ = 0.5 (resp. ρ = 0.25 and ρ = 0.75) for Patterns 1 and 4 (resp.
for Pattern 2 and Pattern 3). The mean value of the total demand to be satisfied in
each macro-period t ∈ T is thus set to ρCap units of finished products. The demand
dj,t for product j = 1, ..., J is randomly generated according to a Normal distribution

of mean ρCap
J and standard deviation ρCap

3J . In case the randomly generated value is

negative, we replace it by 0. We thus have dj,t ∼ max
(
int(N (ρCap

J , ρCap
3J )); 0

)
.

The initial inventory of product j is randomly generated following the uniform
distribution using Īj,0 ∼ randint(0, 2dj,1). The unit inventory holding cost of product
j is set to hcj = 0.05e per macro-period.

As for the dummy product j = 0, holding and preserving cost are set to zero, i.e.,
hcj = pcj = 0. The corresponding unit production time, as well as the energy required
for the manufacturing and preserving, are set to 0: k0 = 0, eM0,r = eP0,r = 0.

Regarding the energy supply and consumption, each macro-period t ∈ T is split
evenly into R = 8 energy-oriented micro-periods of le =60min length. Recall that each
day is split into three macro-periods corresponding to a morning, an afternoon and an
evening shift and that the production plan is assumed to start with a morning shift.
Thus, the micro-period indexed by r = 1 corresponds to a time interval between 6am
and 7am, i.e. to the the hour of the day indexed by 6. More generally, the micro-period
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indexed by r corresponds to the hour of the day indexed by h ≡ (r + 5) mod 24.
The energy price is assumed to display intraday variations but to be otherwise daily

periodic. We considered two distinct levels for the energy price:

• Level H corresponding to high energy prices. In this case, we set πGP
r =

πref
(r+5)(mod24) with πref

h the unit price to buy energy from the main grid at the

hour of the day indexed by h ∈ {0, .., 23}: see Table 5. The energy selling prices
are 0.021e/kWh lower than the buying prices, i.e., πGS

r = πGP
r − 0.021.

• Level L corresponds to low energy prices. In this case, we set the buying and

selling prices to be one tenth of the reference prices, i.e., πGP
r = 0.1πref

(r+5)(mod24),

and πGS
r = πGP

r − 0.0021.

The amount of on-site generated electricity depends on the weather and thus
varies both within the day and from one day to the next. The value of pRr for
micro-period r is randomly generated using a Normal distribution with an expected
value and a standard deviation equal to G(r+5)(mod24): see Table 5. Note how the
values of Gh are consistent with a power generation by PV panels. We thus have

pRr ∼ max
(
N (G(r+5)(mod24), G(r+5)(mod24)); 0

)
.

The energy storage system has a capacity of cB = 500kWh. Within each micro-
period r, the maximum amount of energy than can be charged into or discharged from
the battery is set to mC = mD = 250kWh. The charging and discharging efficiencies,
as well as the grid transformer efficiency, are set to ηC = ηD = ηG = 0.95.

In the EOPLSP model, the production-oriented micro-periods are identical to the
energy-oriented ones. In the EOGLSP model, each macro-period t may be flexibly
divided into a predefined number |St| of production-oriented micro-periods of variable
length: we set |St| = 7 for each t (refer to Wichmann, Johannes, and Spengler (2019a)
for the definition of St).

Table 4 provides an overview of this parameters setting.

5.2. Numerical results

For each considered instance size, changeover time pattern and energy price level, we
randomly generated 10 instances, resulting in a total number of 320 instances.

Each instance was solved using either the EOGLSP model or the EOPLSP model
(see Section 4) with a cut-and-branch algorithm. This algorithm comprises two steps.
We first iteratively add valid inequalities (34) to strengthen the LP relaxation of
the MILP formulation using the separation algorithm described in Subsection 4.4.
When no more violated valid inequalities can be found, we solve the problem using
the strengthened MILP formulation with the mathematical solver CPLEX 20.10. The
implementation was done in Python. The computational experiments were carried
out on a laptop running under Linux with an Intel(R) Core(TM) i7-1165G7 CPU @
2.80GHz processor and 32 GB RAM. The time limit was set to 20 minutes.

The results are displayed in Tables 6-9. Each table gives the results for the set of 80
instances corresponding to a given changeover time pattern. Within each table, each
column provides the average results over the 10 instances of similar size and energy
price level. When a feasible solution could not be obtained for the 10 corresponding
instances within the computation time limit, we report the average results over the
instances for which a feasible solution could be obtained. We provide, for each set of
10 instances:
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• # VAR / # BINVAR: the number of variables and binary variables involved in
the formulation,

• # CONS: the number of constraints in the formulation,
• GapLP0: the integrality gap (before adding the extended (l, S) cuts), i.e., the
relative difference between the lower bound provided by the linear relaxation
of the problem and the value of the best integer feasible solution found by the
solver,

• # VI: the number of generated extended (l, S) cuts,
• GapLP : the integrality gap after adding the extended (l, S) cuts,
• # FEAS: the number of instances for which a feasible solution is found within
the time limit,

• Zbest: the value of the best feasible integer solution found by the solver within
the time limit,

• GapMIP : the average optimality gap, i.e., the average gap between the best lower
bound and the best upper bound found by the solver before the time limit is
reached (note that this gap is equal to 0% in case a guaranteed optimal solution
could be found),

• σGap: the standard deviation of GapMIP over the 10 considered instances,
• Time: the average computation time (in seconds),
• σt: the standard deviation of Time over the 10 considered instances.

We observe from the results provided in Tables 6-9 that the computational effort
needed to solve the problem with an MILP solver is significantly reduced when using
the EOPLSP model instead of the EOGLSP model.

Namely, for the 80 instances corresponding to (J, T ) = (3, 2), the average time
needed to solve the problem to optimality is significantly reduced from 28s with the
EOGLSP model to 2s with the EOPLSP model. Moreover, for the 80 instances cor-
responding to (J, T ) = (3, 6), we were able to obtain a guaranteed optimal solution
within an average computation of 131s when using the EOPLSP model. In contrast,
the branch-and-cut algorithm embedded in CPLEX20.10 could not converge to an
optimal solution after 20 minutes of computation when using the EOGLSP model.
As for the larger instances corresponding to (J, T ) ∈ {(4, 9), (4, 12)}, we could find a
feasible solution of acceptable quality for all instances when using the EOPLSP model
whereas a feasible solution was found for only 95 out of 180 instances when using the
EOGLSP model. Note how the average optimality gap GapMIP obtained with the
EOPLSP model is equal to 5.01% for the 80 instances with (J, T ) = (4, 9) and to
9.26% for the 80 instances with (J, T ) = (4, 12).

This improvement in the computational efficiency of the MILP solver is mainly
explained by the significant decrease in the size of the MILP formulation obtained
when using the EOPLSP model. For instance, for the largest considered instances with
(J, T ) = (4, 12), the total number of variables (resp. of binary variables) is drastically
reduced from 310,102 (resp. 11,645) in the EOGLSP model to 10,652 (resp. 5,535) in
the EOPLSP model. Similarly, the number of constraints involved in the formulation is
divided by around 12 when using the EOPLSP model instead of the EOGLSP model.
Moreover, the computational efficiency improvement may also come from the fact that
the extended (l, S) cuts generated by our cut-and-branch algorithm are slightly more
efficient at strengthening the formulation of the EOPLSP model than at strengthening
the one of the EOGLSP model: see how the average value of GapLP is most often
smaller for the EOPLSP model than for the EOGLSP model. The use of lower bounds
of better quality may help the MILP solver converge more rapidly when using the
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EOPLSP model.
In terms of solution quality, as explained in Subsection 4.3, none of the EOPLSP or

EOGLSP models is theoretically guaranteed to find a planning less expensive than the
other model. However, over the 85 instances that could be solved to optimality using
both models, we obtain production plans of equal cost for 68 instances and slightly less
expensive production plans with the EOPLSP model for 17 instances : see line Zbest of
Tables 6-9. It thus seems that, for the considered instances, the additional flexibility
offered by the EOGLSP model to produce more than three products in a micro-
period is not useful. This might be explained by the presence of positive changeover
times between production lots and a high ratio of the changeover costs over inventory
holding costs, which makes it either impossible or sub-optimal to produce using lots
of such a small size that three or more of them could fit in a one-hour micro-period.
Nevertheless, this observation might not hold for instances featuring zero changeover
times, a smaller ratio of the changeover costs over inventory holding costs, and longer
energy-oriented micro-periods.

5.3. Managerial insights on the cost savings obtained with a
decentralized energy system

Installing a decentralized energy system on a production site requires a substantial
financial investment and is a strategic long-term decision. Yet, this initial investment
may be counterbalanced by cost savings at the operational level through a reduction of
the energy supply costs. In this subsection, we try to quantify the energy cost savings
that may be obtained at the operational level by installing a decentralized energy
system. The resulting managerial insights may be useful for a decision-maker wishing
to invest in such a system.

To this aim, we consider a reference scenario in which no decentralized energy system
is installed on the production site (i.e., there is no on-site generation of electricity:
pRr ≡ 0 for all r ∈ R and no battery : cB = 0) and all the energy needed is directly
purchased from the main grid. We then define alternative scenarios in which:

• a small or large number of photovoltaic panels are installed, leading to a low/high
level of renewable electricity availability. In the low (resp. high) level scenario,
pRr is generated as described in Subsection 5.1 using the values of Gh (resp. 2Gh)
displayed in Table 5.

• a battery of capacity cB ∈ {500, 1000}kWh is installed.

This computational study relies on the 80 instances with (J, T ) = (3, 6) introduced
in Subsection 5.1. For each instance and each investment scenario, we build a plan using
the EOPLSP model presented in Section 4 and record the corresponding total cost Z.
We denote by Zref the cost of the plan obtained in the reference scenario (in which
there is no decentralized energy system) and by Zscen the one of the plan obtained
in an alternative scenario (in which a battery and/or some PV panels are installed).
The relative cost saving obtained for a given instance in a given investment scenario
is finally calculated as ∆Cscen = (Zref − Zscen)/Zref . The average values, over the 80
studied instances, of the total cost of the production plan Z and of ∆Cscen for the
various investigated scenarios are displayed in Table 10 for the case where electricity
selling to the grid is allowed and in Table 11 for the case where it is forbidden.

Results from Table 10 first show that, when energy selling to the main grid is
allowed, it is possible to obtain substantial cost savings by investing in a decentralized
energy system. The total costs can namely be reduced by up to 43% with a large
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battery capacity and a high number of PV panels. Moreover, it seems important
to simultaneously invest in both PV panels and energy storage capacity as the cost
savings obtained by investing in only one of these technologies are significantly smaller
(around 20%) than the ones obtained when both technologies are installed. However,
a more detailed analysis of these results showed that these cost savings come partly
from a speculative behaviour in which the factory buys energy from the grid when
its price is low, stores it for a few hours and resells it at a latter point in time when
its price is high. This can be seen by looking at the value of the ratio between the
total amount of energy not used to supply the industrial process over the total energy

consumed by the production process, i.e., α =
∑

r=1∈R(ηGPGP
r +pR

r −PU
r )∑

r=1∈R PU
r

. Over the three

investment scenarios involving a large number of PV panels, α sharply increases from
4.46% when there is no battery (thus indicating that the energy available in the system
is mostly used to power the industrial system) to 46.64% (resp. 73.66%) when there is
small (resp. large) battery (thus indicating that a large share of the energy available
in the system is not used to power the industrial process but rather sold to the main
grid.) Nevertheless, results from Table 11 show that, even when energy selling is not
allowed, investing in a decentralized energy system may still lead to significant cost
savings (nearly 26% in the best case). Moreover, in this case, priority should be placed
on installing a large number of PV panels and a battery with a small capacity as using
a battery with a large capacity leads to a marginal improvement of the cost savings.

6. Conclusion and perspectives

We investigated an integrated industrial production and energy supply planning prob-
lem faced by a production site partially powered by on-site generated renewable elec-
tricity. We proposed to model the industrial production problem as a small-bucket lot-
sizing problem, more precisely as a PLSP with sequence-dependent changeover times
overlapping multiple periods. Our numerical results show that the resulting MILP
model enables to obtain good-quality plans with a computational effort much smaller
than the one required by a previously published EOGLSP model. Moreover, our re-
sults also indicate that substantial cost savings may be obtained at the operational
level by investing in a decentralized energy system.

The present work has several limitations. First, we considered a single-machine
single-level production system. An interesting research direction could be to extend
this work to a more general multi-machine multi-level setting in order to improve its
practical relevancy. Second, we assumed that the amount of renewable energy provided
by the local system is deterministically known whereas it is in fact difficult to accu-
rately forecast. Thus, it may be worth to study a stochastic extension of this work in
which these uncertainties are explicitly considered. Third, we focused on modeling and
solving a short-term production planning problem. However, a more strategic problem
could be studied to determine whether investing in a decentralized energy system will
be profitable for a factory on the long run and to define the energy conversion and
storage capacity of this system.
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Tables

Table 1: Parameters

J Number of finished products

T Number of macro-periods

R Number of micro-periods in each macro-period

J Set of all products including dummy product j = 0

T Set of macro-periods

R Set of all micro-periods

Rt Set of micro-periods belonging to macro-period t

l Length of a macro-period

le Length of a micro-period

Ij,0 Initial inventory of product j

dj,t Demand for product j at the end of macro-period t

kj Time needed to produce one unit of product j

fcj′,j Changeover cost from product j′ to product j

hcj Unit inventory holding cost for product j

pcj Preserving cost for product j per unit of time

stj′,j Changeover time from product j′ to product j

quj′,j Quotient of the modular division of the changeover time by the length of a
micro-period, defined by quj′,j = ⌊stj′,j/le⌋

rej′,j Remainder of the modular division of the changeover time by the length
of a micro-period, rej′,j = stj′,j − quj′,j · le (if rej′,j = 0, then let quj′,j =
⌊stj′,j/le⌋ − 1 and rej′,j = le)

eMj Energy needed for manufacturing one unit of product j

eFj′,j Energy consumed per unit of time during a changeover from product j′ to
product j

ePj Energy consumed per unit of time when preserving the machine setup status
for product j

πGP
r Unit price to purchase electricity from the grid in micro-period r

πGS
r Unit price to sell electricity to the grid in micro-period r

pRr Electricity generated by the renewable energy system in micro-period r

cB Capacity of the battery

mC Maximum amount of energy than can be charged into the battery during a
micro-period

mD Maximum amount of energy that can be discharged from the battery during
a micro-period

ηC Efficiency of the battery charging process

ηD Efficiency of the battery discharging process

ηG Efficiency of the grid transformer

P
B
0 Initial state of charge of the battery
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Table 2: Decision variables

Ij,t Inventory of product j at the end of macro-period t

Yj,r Binary variables indicating whether the machine is processing for product
j (i.e. manufacturing j, preserving its setup status for j or undergoing a
changeover to j) at the end of micro-period r

W δ
j′,j,r Binary variables indicating whether a changeover from product j′ ̸= j to

product j overlapping quj′,j + δ micro-periods starts during period r

Qj,r Production quantity of product j during micro-period r

LP
j,r Time devoted to preserving the machine setup status for product j in

micro-period r

LF
j′,j,r Time devoted to carrying out a changeover from product j′ ̸= j to product

j during micro-period r

Bj,r Time reserved for processing product j in micro-period r before a
changeover from product j to product j′ starts (if this happens)

Aj,r Time reserved for processing product j in micro-period r after a changeover
from product j′ to product j′ starts (if this happens)

PU
r Energy used by the factory in micro-period r

PGP
r Electricity purchased from the grid in micro-period r

PGS
r Electricity sold to the grid in micro-period r

PC
r Electricity input to the battery within micro-period r

PD
r Electricity discharged from the battery within micro-period r

PB
r Electricity stored in the battery at the end of micro-period r

Table 3: Decision variables’ values for the illustrative example

(a) Decision variables’ values for Sce-
nario 1

r 1 2 3 4
Y1,r 0 1 1 1
Y2,r 1 0 0 0
W 1

2,1,r 0 0 0 0
W 2

2,1,r 0 1 0 0
A1,r 0 40 0 0
A2,r 0 0 0 0
B1,r 0 0 0 0
B2,r 0 40 0 0
LF
2,1,r 0 40 80 20

(b) Decision variables’ values for
Scenario 2

r 1 2 3 4
Y1,r 0 1 1 1
Y2,r 1 0 0 0
W 1

2,1,r 0 1 0 0
W 2

2,1,r 0 0 0 0
A1,r 0 70 0 0
A2,r 0 0 0 0
B1,r 0 0 0 0
B2,r 0 10 0 0
LF
2,1,r 0 70 70 0
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Table 4: Parameters setting for the numerical experiments

Number of products J ∈ {3, 4}
Number of macro-periods T ∈ {2, 6, 9, 12}
Number of micro-periods R ∈ {16, 48, 72, 96}
Length of a macro-period l = 480min

Length of a micro-period le = 60min

Initial inventory Ij,0 ∼ randint(0, 2dj,1)

Demand dj,t ∼ max
(
int(N (ρCap

J , ρCap
3J )); 0

)
Production time kj = 0.05min

Changeover cost fcj′,j = 200e

Inventory holding cost hcj = 0.05e

Preserving cost pcj = 12e

Changeover time Pattern 1: stj′,j = 60min

Pattern 2: stj′,j = 0.75 ∗ le/(J + 1)min

Pattern 3: stj′,j = 0.25 ∗ le/(J + 1)min

Pattern 4: stj′,j ∼ max
(
N ( 0.5l

e

J+1 ,
0.25le

J+1 ); 0
)
min

Energy demand for manufacturing eMj = 0.136kWh per unit of product

Energy demand for changeover eFj′,j = 10kWh per minute

Energy demand for preserving ePj = 5kWh per minute

Battery storage capacity cB ∈ {0, 500, 1000}kWh

Battery charging maximal rate mC = 250kW

Battery discharging maximal rate mD = 250kW

Efficiency of the battery charging ηC = 0.95

Efficiency of the battery discharging ηD = 0.95

Efficiency of the grid transformer ηG = 0.95

Initial state of charge of the battery P
B

0 = 0kWh

Table 5: Reference energy price and generated renewable electricity according to the
hour of the day

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

πref
h 3.0 3.0 3.0 3.0 3.0 3.0 4.8 6.1 6.3 6.0 5.6 4.0 3.7 3.8 4.5 5.1 5.4 5.9 6.4 6.3 5.5 4.5 3.0 3.0

Gh 0 0 0 0 0 0 1 4 10 18 25 27 30 30 25 15 5 2 0 0 0 0 0 0
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Table 6: Results for instances with changeover time pattern 1

Energy (J, T ) (3, 2) (3, 6) (4, 9) (4, 12)
price Model EOPLSP EOGLSP EOPLSP EOGLSP EOPLSP EOGLSP EOPLSP EOGLSP

Level H

# VAR 1,353 7,302 3,753 56,714 7,953 176,656 10,527 310,102
# BINVAR 676 675 1,828 3,311 4,115 7,232 5,435 11,645

# CONS 2,698.7 7,268.3 7,939.5 5,9460.5 17,667 183,089 23,515.9 322,782
GapLP0 14.09% 20.96% 15.86% 17.79% 22.31% 26.47% 22.75% 30.37%
# VI 5.7 7.3 35.5 71.5 107 202 144.4 314
GapLP 11.55% 15.84% 9.92% 9.74% 13.09% 14.37% 13.95% 17.97%

# FEAS 10 10 10 10 10 2 10 1
Zbest 6,395.73 6,405.12 14,145.66 14,320.12 21,426.19 22,378.52 28,029.57 27,776.41
GapMIP 0.00% 0.01% 0.01% 3.92% 7.38% 11.94% 9.98% 16.60%

σGap 0.00% 0.00% 0.00% 1.69% 0.75% 1.25% 1.15% 0.00%
Time 2.02 218.18 105.73 1,202.61 1,201.02 1,202.05 1,201.06 1,204.41
σt 5.83 82.32 58.97 0.73 0.12 0.10 0.21 0.19

Level L

# VAR 1,353 7,302 3,753 56,714 7,953 176,656 10,527 310,102

# BINVAR 676 675 1,828 3,311 4,115 7,232 5,435 11,645

# CONS 2,698.7 7,268.5 7,952.3 59,457.5 17,697.5 183,079.25 23,564.7 322,786
GapLP0 34.91% 44.58% 40.63% 46.06% 51.15% 57.03% 54.29% 64.56%

# VI 6.7 7.5 48.3 68.5 137.5 192.25 193.7 318

GapLP 20.80% 26.73% 16.25% 17.78% 17.10% 23.42% 19.05% 32.54%
# FEAS 10 10 10 10 10 4 10 1

Zbest 1,812.60 1,813.31 3,790.23 3,792.31 6,057.83 6,464.29 8,046.30 9,466.76

GapMIP 0.00% 0.01% 0.01% 1.54% 2.73% 17.22% 9.59% 28.68%
σGap 0.00% 0.00% 0.00% 2.47% 1.51% 2.00% 2.64% 0.00%
Time 1.77 37.67 50.05 1,163.50 1,201.93 1,202.36 1,201.28 1,204.12

σt 1.08 8.17 30.79 112.84 0.15 0.19 0.20 0.21

Table 7: Results for instances with changeover time pattern 2

Energy (J, T ) (3, 2) (3, 6) (4, 9) (4, 12)
price Model EOPLSP EOGLSP EOPLSP EOGLSP EOPLSP EOGLSP EOPLSP EOGLSP

Level H

# VAR 1,433 7,302 3,833 56,714 8,078 176,656 10,652 310,102

# BINVAR 740 675 1,892 3,311 4,215 7,232 5,535 11,645
# CONS 2,985.8 7,269.7 8,741.3 59,445.9 19,517 183,050.3 25,988.6 322,722.7
GapLP0 24.87% 33.03% 24.09% 28.36% 34.97% 42.72% 34.07% 43.58%

# VI 5.8 8.7 37.3 56.9 107 163.3 167.6 254.7
GapLP 21.87% 23.99% 12.16% 13.07% 15.71% 23.81% 13.30% 22.60%
# FEAS 10 10 10 10 10 9 10 3

Zbest 2,600.05 2,602.68 5,461.52 5,489.81 7,621.79 8,414.75 9,681.79 10,277.47
GapMIP 0.00% 0.01% 0.01% 1.83% 5.73% 17.31% 5.68% 17.83%

σGap 0.00% 0.00% 0.00% 2.41% 1.63% 6.19% 1.94% 3.65%

Time 2.16 74.20 189.28 1,102.43 1,200.86 1,202.16 1,201.06 1,204.23
σt 0.48 23.05 159.88 205.30 0.13 0.38 0.31 0.36

Level L

# VAR 1,433 7,302 3,833 56,714 8,078 176,656 10,652 310,102
# BINVAR 740 675 1,892 3,311 4,215 7,232 5,535 11,645

# CONS 2,988.1 7,269.6 8,759.2 59,462.7 19,567.9 183,109.9 26,051.9 322,820
GapLP0 41.30% 51.34% 48.67% 55.35% 61.45% 68.22% 63.21% 67.91%

# VI 8.1 8.6 55.2 73.7 157.9 222.9 230.9 352

GapLP 28.30% 31.99% 25.57% 29.71% 28.00% 37.60% 27.29% 36.43%
# FEAS 10 10 10 10 10 8 10 2
Zbest 1,159.27 1,159.27 2,496.53 2,515.63 4,066.08 4,584.66 5,240.79 5,899.01
GapMIP 0.00% 0.01% 0.01% 3.87% 9.13% 29.09% 17.14% 30.64%
σGap 0.00% 0.00% 0.00% 3.16% 4.52% 5.62% 2.27% 0.96%

Time 3.17 31.31 167.36 1,202.33 1,201.99 1,202.69 1,201.28 1,204.45
σt 1.81 10.43 124.08 0.35 0.08 0.21 0.16 0.38
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Table 8: Results for instances with changeover time pattern 3

Energy (J, T ) (3, 2) (3, 6) (4, 9) (4, 12)
price Model EOPLSP EOGLSP EOPLSP EOGLSP EOPLSP EOGLSP EOPLSP EOGLSP

Level H

# VAR 1,353 7,302 3,753 56,714 7,953 176,656 10,527 310,102
# BINVAR 676 675 1,828 3,311 4,115 7,232 5,435 11,645

# CONS 2,697.4 7,268.5 7,941.6 59,460.3 17,672.6 183,087.5 23,531.9 322,770.5
GapLP0 6.34% 8.56% 8.37% 10.35% 12.22% 15.42% 13.25% 16.68%
# VI 5.4 7.5 37.6 71.3 112.6 200.5 160.9 302.5
GapLP 4.65% 6.23% 5.45% 6.10% 5.60% 8.80% 6.62% 8.87%

# FEAS 10 10 10 10 10 6 10 2
Zbest 10,340.48 10,342.76 23,628.40 23,776.55 36,231.82 36,639.11 48,195.47 49,700.88
GapMIP 0.00% 0.01% 0.01% 2.33% 3.32% 7.58% 5.35% 8.33%

σGap 0.00% 0.00% 0.00% 1.33% 0.56% 3.07% 0.62% 0.75%
Time 1.51 108.13 192.01 1,206.17 1,200.79 1,202.31 1,201.14 1,203.65
σt 0.96 59.74 142.80 0.24 0.11 0.21 0.13 0.28

Level L

# VAR 1,353 7,302 3,753 56,714 7,953 176,656 10,527 310,102

# BINVAR 676 675 1,828 3,311 4,115 7,232 5,435 11,645

# CONS 2,697.4 7,268.8 7,948.5 59,458 17,686.5 183,072.8 23,554.1 322,783
GapLP0 20.81% 27.70% 29.64% 34.79% 41.03% 49.07% 44.54% 50.32%

# VI 5.4 7.8 44.5 69 126.5 155.4 183.1 315

GapLP 13.26% 17.85% 12.83% 34.79% 41.03% 49.07% 44.54% 50.32%
# FEAS 10 10 10 10 10 6 10 1

Zbest 2,542.68 2,542.96 5,268.01 5,275.43 8,187.04 8,763.97 10,825.30 13,044.01

GapMIP 0.00% 0.01% 0.01% 1.05% 3.11% 16.09% 8.35% 26.71%
σGap 0.00% 0.00% 0.00% 1.75% 2.06% 3.89% 0.99% 0.00%
Time 1.07 27.67 81.01 1,167.87 1,138.19 1,202.23 1,201.13 1,203.45

σt 0.26 13.37 61.61 113.49 191.03 0.25 0.12 0.31

Table 9: Results for instances with changeover time pattern 4

Energy (J, T ) (3, 2) (3, 6) (4, 9) (4, 12)
price Model EOPLSP EOGLSP EOPLSP EOGLSP EOPLSP EOGLSP EOPLSP EOGLSP

Level H

# VAR 1,398.5 7,302 3,797 56,714 7,989 176,656 105,685 310,102

# BINVAR 712.4 675 1,863.2 3,311 4,143.8 7,232 5,468.2 11,645
# CONS 2,869.7 7,269.6 8,400.8 27,089.5 18,191.8 145,266.3 24,347.4 322,813.8
GapLP0 8.59% 13.35% 14.21% 16.57% 18.89% 27.77% 19.52% 31.29%

# VI 5.9 8.9 28 66.1 99 201.9 142.4 319.5
GapLP 7.61% 9.96% 8.41% 9.92% 9.65% 18.55% 10.29% 23.35%
# FEAS 10 10 10 10 10 8 10 2

Zbest 6,551.15 6,551.59 13,205.93 13,368.47 20,781.22 23,023.92 25,764.44 29,183.64
GapMIP 0.00% 0.01% 0.01% 4.83% 5.05% 16.58% 6.80% 21.60%

σGap 0.00% 0.00% 0.00% 2.92% 1.42% 5.60% 1.37% 5.96%

Time 1.52 60.44 148.42 1,201.16 1,200.80 1,201.17 1,201.18 1,203.45
σt 0.63 22.68 126.25 0.10 0.12 0.18 0.15 0.25

Level L

# VAR 1,398.5 7,302 3,797 56,714 7,989 176,656 105,685 310,102
# BINVAR 712.4 675 1,863.2 3,311 4,143.8 7,232 5,468.2 11,645

# CONS 2,871.1 7,269.6 8,419.5 59,456 18,225.2 183,081.7 24,375.9 322,773.7
GapLP0 23.92% 35.42% 38.33% 44.61% 51.87% 65.75% 55.65% 62.50%

# VI 7.3 8.9 46.7 67 132.4 194.7 191.5 305.7

GapLP 17.80% 21.80% 16.82% 20.47% 16.10% 27.39% 19.04% 30.64%
# FEAS 10 10 10 10 10 7 10 3
Zbest 1,854.14 1,854.19 3,833.08 3,880.39 6,055.77 6,860.61 7,887.53 9,226.81
GapMIP 0.00% 0.01% 0.01% 4.59% 3.62% 21.34% 11.18% 25.91%
σGap 0.00% 0.00% 0.00% 3.81% 1.99% 4.88% 1.72% 2.83%

Time 2.06 28.99 116.74 1,201.17 1,201.33 1,202.78 1,201.12 1,203.39
σt 0.90 9.93 83.81 0.41 0.21 0.26 0.17 0.29
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Table 10: Total cost of the production plan Z and relative cost savings ∆Cscen -
electricity selling allowed

PV availability

Battery size
0 small large

0 18,906.58 (0.00%) 16,019.34 (15.27%) 14,602.94 (22.76%)

small 16,957.04 (10.31%) 14,145.66 (25.18%) 12,680.48 (32.93%)

large 15,043.41 (20.43%) 12,224.42 (35.34%) 10,765.39 (43.06%)

Table 11: Total cost of the production plan Z and relative cost savings ∆Cscen -
electricity selling forbidden

PV availability

Battery size
0 small large

0 18,906.58 (0.00%) 17,658.33 (6.60%) 17,287.76 (8.56%)

small 16,992.71 (10.12%) 15,917.70 (15.81%) 15,609.87 (17.44%)

large 15,182.01 (19.70%) 14,223.17 (24.77%) 13,996.77 (25.97%)

Figure captions

• Figure 1 caption: Integrated energy supply and industrial production system
• Figure 1 alt text: Integrated on-site energy and production system interacting
with the main electric grid and the factory’s customers. Local energy system
consists of an on-site generation and storage system, providing energy to the
production process.

• Figure 2 caption: Changeovers overlapping multiple periods
◦ Figure 2(a) caption: Case 1
◦ Figure 2(b) caption: Case 2

• Figure 2 alt text: The figure illustrates that a given changeover may overlap a
different number of micro-periods depending on its starting time.
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