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Abstract: This work proposes a method for the stability analysis of aperiodic sampled-data
control systems with sector and slope bounded input nonlinearities. The stability conditions are
derived by using a hybrid system representation and a timer-dependent Lur’e type Lyapunov
function. Considering a polynomial timer-dependence, the stability conditions are cast in sum-
of-squares optimization problems aiming at computing the largest range of sampling intervals
or the largest sector bounds on the nonlinearity for which the origin of the closed-loop system
is globally asymptotically stable.
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1. INTRODUCTION

Motivated by the advent of control loops implemented in a
shared network, the literature about stability of sampled-
data systems with aperiodic sampling has grown rapidly
in the last three decades (see Hetel et al. (2017) and
references therein). For instance, Cloosterman et al. (2010)
have developed a discrete representation for networked
control systems subject to packet losses, aperiodic sam-
pling and uncertain delays for the synthesis of stabilizing
controllers. Based on the partition of the admissible sam-
pling interval, Fujioka (2009) has proposed a technique
using norm-bounded uncertainties to model the effects of
aperiodic sampling. In Kao and Fujioka (2013), a method
based on integral quadratic constraints is developed. There
is also the modeling technique based on time-varying de-
lays (Fridman (2010)) to express the aperiodic sampling.
In Seuret (2012), an approach based on looped-functionals
is established. In Naghshtabrizi et al. (2008) and Briat
(2013), the sampled-data system is modeled by impulsive
differential equations. This approach is also referred as the
hybrid approach (Naghshtabrizi et al. (2006)), because the
sampled-data system may be represented as a particular
case of a hybrid dynamical system (Goebel et al., 2012).

It is worth noting that the references of the previous
paragraph consider sampled-data systems composed by
a continuous-time system with linear inputs. In practice,
however, some nonlinearities can affect the input of the
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controlled system. This can in fact model the effect of
nonlinear actuators. Common actuator nonlinearities are
saturation (Tarbouriech et al. (2011)), deadzone, and
quantization (Ferrante et al., 2015), which are all sector-
bounded.

This paper investigates the stability analysis of sampled-
data systems with sector-bounded input nonlinearities,
and aperiodic sampling in intervals that range from a lower
to an upper bound, similarly to Ferrante and Tarbouriech
(2022). In this case, the hybrid system representation is
combined with a Lur’e type Lyapunov function candidate
in order to reduce conservatism of the stability analysis.
Assuming a polynomial timer dependence of the Lur’e
type function, stability conditions are developed and cast
as sum-of-squares (SOS) constraints. This combined ap-
proach, however, requires the development of relaxed con-
ditions for the jump trajectories, to guarantee the decrease
of the Lur’e type function candidate, in a similar problem
found for discrete-time control systems subject to actuator
amplitude saturation (Gomes da Silva Jr. et al. (2001)
Haddad and Kapila (1995)). Based on the stability condi-
tions, optimization problems are proposed to estimate the
maximum sampling interval and the largest sector bounds
for which the global asymptotic stability of the sampled-
data system is ensured.

Notation: The vector v has Euclidean norm given by
|v|. The distance of a vector v to a closed set A is denoted
|v|A and is defined by |v|A = infy∈A |v−y|. The induced 2-
norm of a matrix M is represented by |M |. Sn is the set of
symmetric matrices of size n, and for a symmetric matrix
S ∈ Sn, S ≻ 0 means that S is positive definite. Dn and
Dn

⪰0 are the sets of the diagonal and positive semidefinite

diagonal matrices of order n, respectively. M⊤ denotes the
transpose of M , and He{M} = M⊤+M . The matrices In
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Toulouse, France.

sophie.tarbouriech@laas.fr

Abstract: This work proposes a method for the stability analysis of aperiodic sampled-data
control systems with sector and slope bounded input nonlinearities. The stability conditions are
derived by using a hybrid system representation and a timer-dependent Lur’e type Lyapunov
function. Considering a polynomial timer-dependence, the stability conditions are cast in sum-
of-squares optimization problems aiming at computing the largest range of sampling intervals
or the largest sector bounds on the nonlinearity for which the origin of the closed-loop system
is globally asymptotically stable.

Keywords: sampled-data systems; input nonlinearity; hybrid systems

1. INTRODUCTION

Motivated by the advent of control loops implemented in a
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data systems with aperiodic sampling has grown rapidly
in the last three decades (see Hetel et al. (2017) and
references therein). For instance, Cloosterman et al. (2010)
have developed a discrete representation for networked
control systems subject to packet losses, aperiodic sam-
pling and uncertain delays for the synthesis of stabilizing
controllers. Based on the partition of the admissible sam-
pling interval, Fujioka (2009) has proposed a technique
using norm-bounded uncertainties to model the effects of
aperiodic sampling. In Kao and Fujioka (2013), a method
based on integral quadratic constraints is developed. There
is also the modeling technique based on time-varying de-
lays (Fridman (2010)) to express the aperiodic sampling.
In Seuret (2012), an approach based on looped-functionals
is established. In Naghshtabrizi et al. (2008) and Briat
(2013), the sampled-data system is modeled by impulsive
differential equations. This approach is also referred as the
hybrid approach (Naghshtabrizi et al. (2006)), because the
sampled-data system may be represented as a particular
case of a hybrid dynamical system (Goebel et al., 2012).

It is worth noting that the references of the previous
paragraph consider sampled-data systems composed by
a continuous-time system with linear inputs. In practice,
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controlled system. This can in fact model the effect of
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quantization (Ferrante et al., 2015), which are all sector-
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This paper investigates the stability analysis of sampled-
data systems with sector-bounded input nonlinearities,
and aperiodic sampling in intervals that range from a lower
to an upper bound, similarly to Ferrante and Tarbouriech
(2022). In this case, the hybrid system representation is
combined with a Lur’e type Lyapunov function candidate
in order to reduce conservatism of the stability analysis.
Assuming a polynomial timer dependence of the Lur’e
type function, stability conditions are developed and cast
as sum-of-squares (SOS) constraints. This combined ap-
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ditions for the jump trajectories, to guarantee the decrease
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found for discrete-time control systems subject to actuator
amplitude saturation (Gomes da Silva Jr. et al. (2001)
Haddad and Kapila (1995)). Based on the stability condi-
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|v|. The distance of a vector v to a closed set A is denoted
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Toulouse, France.

sophie.tarbouriech@laas.fr

Abstract: This work proposes a method for the stability analysis of aperiodic sampled-data
control systems with sector and slope bounded input nonlinearities. The stability conditions are
derived by using a hybrid system representation and a timer-dependent Lur’e type Lyapunov
function. Considering a polynomial timer-dependence, the stability conditions are cast in sum-
of-squares optimization problems aiming at computing the largest range of sampling intervals
or the largest sector bounds on the nonlinearity for which the origin of the closed-loop system
is globally asymptotically stable.

Keywords: sampled-data systems; input nonlinearity; hybrid systems

1. INTRODUCTION

Motivated by the advent of control loops implemented in a
shared network, the literature about stability of sampled-
data systems with aperiodic sampling has grown rapidly
in the last three decades (see Hetel et al. (2017) and
references therein). For instance, Cloosterman et al. (2010)
have developed a discrete representation for networked
control systems subject to packet losses, aperiodic sam-
pling and uncertain delays for the synthesis of stabilizing
controllers. Based on the partition of the admissible sam-
pling interval, Fujioka (2009) has proposed a technique
using norm-bounded uncertainties to model the effects of
aperiodic sampling. In Kao and Fujioka (2013), a method
based on integral quadratic constraints is developed. There
is also the modeling technique based on time-varying de-
lays (Fridman (2010)) to express the aperiodic sampling.
In Seuret (2012), an approach based on looped-functionals
is established. In Naghshtabrizi et al. (2008) and Briat
(2013), the sampled-data system is modeled by impulsive
differential equations. This approach is also referred as the
hybrid approach (Naghshtabrizi et al. (2006)), because the
sampled-data system may be represented as a particular
case of a hybrid dynamical system (Goebel et al., 2012).

It is worth noting that the references of the previous
paragraph consider sampled-data systems composed by
a continuous-time system with linear inputs. In practice,
however, some nonlinearities can affect the input of the

⋆ This work was supported by Coordenação de Aperfeiçoamento de
Pessoal de Nı́vel Superior (CAPES) - Finance Code 001 and Conselho
Nacional de Desenvolvimento Cient́ıfico e Tecnológico (CNPq) (grant
PQ 307449/2019-0) from Brazil. It was also funded by CNRS
(France) and CAPES (Brazil) in the context of a STIC-AmSud
project.

controlled system. This can in fact model the effect of
nonlinear actuators. Common actuator nonlinearities are
saturation (Tarbouriech et al. (2011)), deadzone, and
quantization (Ferrante et al., 2015), which are all sector-
bounded.

This paper investigates the stability analysis of sampled-
data systems with sector-bounded input nonlinearities,
and aperiodic sampling in intervals that range from a lower
to an upper bound, similarly to Ferrante and Tarbouriech
(2022). In this case, the hybrid system representation is
combined with a Lur’e type Lyapunov function candidate
in order to reduce conservatism of the stability analysis.
Assuming a polynomial timer dependence of the Lur’e
type function, stability conditions are developed and cast
as sum-of-squares (SOS) constraints. This combined ap-
proach, however, requires the development of relaxed con-
ditions for the jump trajectories, to guarantee the decrease
of the Lur’e type function candidate, in a similar problem
found for discrete-time control systems subject to actuator
amplitude saturation (Gomes da Silva Jr. et al. (2001)
Haddad and Kapila (1995)). Based on the stability condi-
tions, optimization problems are proposed to estimate the
maximum sampling interval and the largest sector bounds
for which the global asymptotic stability of the sampled-
data system is ensured.

Notation: The vector v has Euclidean norm given by
|v|. The distance of a vector v to a closed set A is denoted
|v|A and is defined by |v|A = infy∈A |v−y|. The induced 2-
norm of a matrix M is represented by |M |. Sn is the set of
symmetric matrices of size n, and for a symmetric matrix
S ∈ Sn, S ≻ 0 means that S is positive definite. Dn and
Dn

⪰0 are the sets of the diagonal and positive semidefinite

diagonal matrices of order n, respectively. M⊤ denotes the
transpose of M , and He{M} = M⊤+M . The matrices In

Stability analysis of sampled-data systems
with sector-bounded input nonlinearity ⋆

Arthur S. Fagundes ∗ João M. Gomes da Silva Jr. ∗

Sophie Tarbouriech ∗∗

∗ Universidade Federal do Rio Grande do Sul (UFRGS),
Grad. Program in Electrical Engineering (PPGEE),

Porto Alegre, RS, Brazil.
{arthur.fagundes, jmgomes}@ufrgs.br

∗∗ LAAS-CNRS, Université de Toulouse, CNRS,
Toulouse, France.

sophie.tarbouriech@laas.fr

Abstract: This work proposes a method for the stability analysis of aperiodic sampled-data
control systems with sector and slope bounded input nonlinearities. The stability conditions are
derived by using a hybrid system representation and a timer-dependent Lur’e type Lyapunov
function. Considering a polynomial timer-dependence, the stability conditions are cast in sum-
of-squares optimization problems aiming at computing the largest range of sampling intervals
or the largest sector bounds on the nonlinearity for which the origin of the closed-loop system
is globally asymptotically stable.

Keywords: sampled-data systems; input nonlinearity; hybrid systems

1. INTRODUCTION

Motivated by the advent of control loops implemented in a
shared network, the literature about stability of sampled-
data systems with aperiodic sampling has grown rapidly
in the last three decades (see Hetel et al. (2017) and
references therein). For instance, Cloosterman et al. (2010)
have developed a discrete representation for networked
control systems subject to packet losses, aperiodic sam-
pling and uncertain delays for the synthesis of stabilizing
controllers. Based on the partition of the admissible sam-
pling interval, Fujioka (2009) has proposed a technique
using norm-bounded uncertainties to model the effects of
aperiodic sampling. In Kao and Fujioka (2013), a method
based on integral quadratic constraints is developed. There
is also the modeling technique based on time-varying de-
lays (Fridman (2010)) to express the aperiodic sampling.
In Seuret (2012), an approach based on looped-functionals
is established. In Naghshtabrizi et al. (2008) and Briat
(2013), the sampled-data system is modeled by impulsive
differential equations. This approach is also referred as the
hybrid approach (Naghshtabrizi et al. (2006)), because the
sampled-data system may be represented as a particular
case of a hybrid dynamical system (Goebel et al., 2012).

It is worth noting that the references of the previous
paragraph consider sampled-data systems composed by
a continuous-time system with linear inputs. In practice,
however, some nonlinearities can affect the input of the

⋆ This work was supported by Coordenação de Aperfeiçoamento de
Pessoal de Nı́vel Superior (CAPES) - Finance Code 001 and Conselho
Nacional de Desenvolvimento Cient́ıfico e Tecnológico (CNPq) (grant
PQ 307449/2019-0) from Brazil. It was also funded by CNRS
(France) and CAPES (Brazil) in the context of a STIC-AmSud
project.

controlled system. This can in fact model the effect of
nonlinear actuators. Common actuator nonlinearities are
saturation (Tarbouriech et al. (2011)), deadzone, and
quantization (Ferrante et al., 2015), which are all sector-
bounded.

This paper investigates the stability analysis of sampled-
data systems with sector-bounded input nonlinearities,
and aperiodic sampling in intervals that range from a lower
to an upper bound, similarly to Ferrante and Tarbouriech
(2022). In this case, the hybrid system representation is
combined with a Lur’e type Lyapunov function candidate
in order to reduce conservatism of the stability analysis.
Assuming a polynomial timer dependence of the Lur’e
type function, stability conditions are developed and cast
as sum-of-squares (SOS) constraints. This combined ap-
proach, however, requires the development of relaxed con-
ditions for the jump trajectories, to guarantee the decrease
of the Lur’e type function candidate, in a similar problem
found for discrete-time control systems subject to actuator
amplitude saturation (Gomes da Silva Jr. et al. (2001)
Haddad and Kapila (1995)). Based on the stability condi-
tions, optimization problems are proposed to estimate the
maximum sampling interval and the largest sector bounds
for which the global asymptotic stability of the sampled-
data system is ensured.

Notation: The vector v has Euclidean norm given by
|v|. The distance of a vector v to a closed set A is denoted
|v|A and is defined by |v|A = infy∈A |v−y|. The induced 2-
norm of a matrix M is represented by |M |. Sn is the set of
symmetric matrices of size n, and for a symmetric matrix
S ∈ Sn, S ≻ 0 means that S is positive definite. Dn and
Dn

⪰0 are the sets of the diagonal and positive semidefinite

diagonal matrices of order n, respectively. M⊤ denotes the
transpose of M , and He{M} = M⊤+M . The matrices In

Stability analysis of sampled-data systems
with sector-bounded input nonlinearity ⋆

Arthur S. Fagundes ∗ João M. Gomes da Silva Jr. ∗

Sophie Tarbouriech ∗∗

∗ Universidade Federal do Rio Grande do Sul (UFRGS),
Grad. Program in Electrical Engineering (PPGEE),

Porto Alegre, RS, Brazil.
{arthur.fagundes, jmgomes}@ufrgs.br

∗∗ LAAS-CNRS, Université de Toulouse, CNRS,
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and 0n×p denote an identity matrix of size n and a n× p
matrix of zeros, respectively.

2. PROBLEM STATEMENT

2.1 Closed-loop system modeling

Consider the following system:
ẋ(t) = Ax(t) +Bu(t)

u(t) = ϕ(y(t))
(1)

where x ∈ Rn is the plant state, y ∈ Rp is the control
signal, and u ∈ Rp is the plant input, resulting from
the control signal subject to the actuator nonlinearity ϕ.
The nonlinear function ϕ : Rp → Rp is decentralized,
sector-bounded and slope-restricted, that is, it satisfies the
following properties element-wise:

ϕ(i)(y) = ϕ(i)(y(i)) (2a)

ϕ(i)(0) = 0 (2b)

ϕ(i)(y)

y(i)
∈

δ(i), δ(i)


(2c)

0 ≤
ϕ(i)(yb)− ϕ(i)(ya)

yb(i) − ya(i)
≤ γ(i) , yb(i) ̸= ya(i) (2d)

for i = 1, ..., p. Notice that in (2c), because of (2d), one
has that δ(i) ≥ 0. It is also assumed that δ(i) ≤ γ(i).
For the next lemmas and the rest of the text, we define
the diagonal matrices ∆ ≜ diag{δ(1), · · · , δ(p)}, ∆ ≜

diag{δ(1), · · · , δ(p)} and Γ ≜ diag{γ(1), · · · , γ(p)}, and the
following function:

S∆(U, y) ≜ (ϕ(y)−∆y)⊤U(∆y − ϕ(y)) (3)

From property (2c), the following sector condition can be
stated (Valmorbida et al., 2018):

Lemma 1. If ϕ satisfies (2c), then the relation

S∆(U, y) ≥ 0 (4)

is satisfied for all y ∈ Rm, with any matrix U ∈ Dm
⪰0.

We consider a sampled-data control law with sampling
instants given by tk, k ∈ N occurring in intervals that
are possibly aperiodic, ranging from a lower value of Tm

to an upper value of TM , that is

0 < Tm ≤ tk+1 − tk ≤ TM (5)

with t0 = 0. Hence, we consider that system (1) is
stabilized by a control law given as follows:

y(t) = Kxx(tk) +Kuu(tk−1)

= Kxx(tk) +Kuϕ(y(tk−1)) ∀t ∈ [tk, tk+1)
(6)

where Kx ∈ Rp×n and Ku ∈ Rp×p are the controller gains.
The control law (6) can be seen as the combination of
a linear state feedback with a nonlinear feedback of the
last computed control signal. The term depending on the
control signal is in particular useful to the design when
a hybrid system representation is considered (see, for in-
stance, Huff et al. (2021), Huff et al. (2022), Fagundes and
Gomes da Silva Jr. (2022)). Note that the particular case
of a pure state feedback sampled-data control corresponds
to (6) with Ku = 0. As in this paper we are concerned only
by stability analysis, we assume that the gains Kx and Ku

have been previously computed.

From the above setup, the analysis problems we intend to
solve in this paper are described as follows:

P1. Given the control law (6), sector and slope bounds
δ(i), δ(i), and γ(i) for i = 1, · · · , p, and the lower
interval of sampling Tm, find an estimate for the
maximum TM such that the closed-loop system given
by (1) and (6) is globally asymptotically stable.

P2. Given the control law (6), the sampling interval limits
Tm and TM , and the lower sector bounds δ(i), find

estimates for the maximum δ(i), and/or γ(i) for i =

1, · · · , p such that the closed-loop system given by (1)
and (6) is globally asymptotically stable.

To tackle problems P1 and P2, we will consider a hybrid
system framework to model the sampling behavior

2.2 Hybrid system modeling

The closed-loop system described by (1) and (6) is now
represented as a hybrid dynamical system H, with state
given by η = [z⊤ τ ]⊤, where z = [x⊤ u⊤]⊤, and τ is a
timer variable:

H




η̇ =


ż
τ̇


= f(η), ∀η ∈ C

η+ =


z+

τ+


= g(η), ∀η ∈ D

(7)

The flow and jump sets are defined as C = Rq × [0, TM ]
and D = Rq× [Tm, TM ], with q = n+p, while the flow and
jump maps f : Rh → Rh and g : Rh → Rh, with h = q+1,
are defined as follows:

f(η) =


AFz
1


and g(η) =


AJz +KJϕ(Kzz)

0


(8)

with:

AF =


A B

0p×n 0p×p


, Kz = [Kx Ku]

AJ =


In 0n×p

0p×n 0p×p


, KJ =


0n×p

Ip



The system H satisfies the hybrid basic conditions (see
(Goebel et al., 2012), chapter 6): the sets C and D are
closed and the functions f and g are continuous. The
solutions to H are given by an hybrid arc η(t, k) with
hybrid domain dom η = ∪∞

k=0([tk, tk+1], k). In particular,
for any η(0, 0) = [z(0, 0)⊤, 0]⊤ ∈ C ∪D, the corresponding
solution starting from η(0, 0) is well posed, maximal, and,
from assumption (5), without Zeno behavior.

Note that the timer variable τ is reset to zero at each jump
instant (the jumps correspond to the sampling instants),
i.e. τ(t, k) = t − tk. Taking into account that t0 = 0,
it follows that τ(0, 0) = 0. Hence, we are interested in
the behavior of the closed loop with respect to the initial

conditions η(0, 0) =

z(0, 0)⊤ 0

⊤
.

3. STABILITY CONDITIONS

3.1 Stability of a hybrid system

The notion of stability of the system H is characterized
by the stability of a closed set containing the origin of the
plant state space and the domain of the timer variable
defined as follows:

A = {0} × [0, TM ] (9)
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The next theorem is found in Goebel et al. (2012) and
provides sufficient conditions to ensure that A is globally
asymptotically stable for system H
Theorem 1. If there exists a function V : Rh → R⪰0 and
class K∞ functions α1 and α2 such that

α1(|η|A) ≤ V (η) ≤ α2(|η|A) , ∀η ∈ (C ∪D) (10)

⟨∇V (η), f(η)⟩ < 0 , ∀η ∈ C\A (11)

V (g(η))− V (η) < 0 , ∀η ∈ D\A (12)

then the set A is uniformily globally asymptotically stable.

The next corollary, in turn, states a particular consequence
of this theorem regarding the original sampled data closed-
loop system composed by (1) and (6):

Corollary 1. If conditions (10), (11) and (12) of Theorem
1 are satisfied, then the equilibrium point x = 0 of the
closed-loop system(1)-(6) is globally asymptotically stable,
provided that the sampling instants satisfy (5).

3.2 Stability of the closed-loop system

To derive stability conditions for the closed-loop sys-
tem, we consider a generalized timer-dependent Lur’e-
Postnikov function defined as follows:

V (η) = VQ(η) +

p∑
i=1

λ(i)

∫ Kz(i)z

0

(ϕ(i)(s)− δ(i)s)ds (13)

where VQ : Rh → R is a quadratic term defined as:

VQ(η) ≜ VQ(z, τ) = z⊤P (τ)z (14)

with P : [0, TM ] → Sq and λ(i) ∈ R for i = 1, . . . , p.
Note that, differently from a classical Lur’e type function
(Haddad and Kapila, 1995), matrix P and the scalars λ(i)

are not required to be positive definite and nonnegative,
respectively. In this case, the positivity of V (η) can be
enforced by a timer-dependent version of the lemma pro-
posed in Valmorbida et al. (2018) as proposed below:

Lemma 2. Consider V (η) as in (13), where ϕ satisfies (2),

and define Λ ≜ diag{λ(1), . . . , λ(m)}. If there exists a

matrix function Λ̃ : [0, TM ] → Dp
⪰0 such that

ΨΛ(τ) ⪰ 0 , ∀τ ∈ [0, TM ] (15)

ΨP (τ) ≻ 0 , ∀τ ∈ [0, TM ] (16)

where

ΨΛ(τ) =Λ + Λ̃(τ)

ΨP (τ) =P (τ)− 1

2
K⊤

z (∆−∆)Λ̃(τ)Kz

then there exists class K∞ functions α1 and α2 such that
the condition (10) is satisfied.

Proof. To prove that class K∞ function α2 exists, first
note that

0 ≤ ϕ(i)(s)− δ(i)s ≤ δ(i)s− δ(i)s = (δ(i) − δ(i))s

to obtain the following upper bound for (13):

V (η) ≤|P (τ)||z|2 + 1

2
|K⊤

z (∆−∆)ΛKz||z|2 = Ψ(τ)|z|2

(17)

The upper bound (17) is, in turn, bounded by the maxi-
mum value of Ψ(τ)|z|2 over the admissible interval for τ :

Ψ(τ)|z|2 ≤ max
τ∈[0,TM ]

{Ψ(τ)}|z|2 (18)

Note that from the definition of A in (9), one has the
identity |z| = |η|A for all τ ∈ [0, TM ]. Therefore, one can
rewrite (18) as follows:

max
τ∈[0,TM ]

{Ψ(τ)}|z|2 = max
τ∈[0,TM ]

{Ψ(τ)}|η|2A = α2(|η|A)

which proves the existence of a class K∞ function α2.

Now a lower bound must be found to prove the existence
of a class K∞ function α1 in (10). If the condition (15)
is verified, a lower bound for V (η) is provided as follows
(Valmorbida et al., 2018):

V (η) = VQ(z, τ) +

m∑
i=1

λ(i)

∫ Kz(i)z

0

(ϕ(i)(s)− δ(i)s)ds

≥ VQ(z, τ)−
m∑
i=1

λ̃(i)(τ)

∫ Kz(i)z

0

(ϕ(i)(s)− δ(i)s)ds

Then, taking into account that
∫Kz(i)z

0
(ϕ(i)(s)−δ(i)s)ds =

1
2z

⊤K⊤
z (δ(i) − δ(i))Kzz −

∫Kz(i)z

0
(δ(i)s − ϕ(i)(s))ds, the

inequality above is equivalently expressed as:

V (η) ≥ z⊤ΨP (τ)z +

m∑
i=1

λ̃(i)(τ)

∫ Kz(i)z

0

(δ(i)s− ϕ(i)(s))ds

(19)
for τ ∈ [0, TM ]. From (16), it follows that there exists α̃1

(the minimum eigenvalue of ΨP (τ) for τ ∈ [0, TM ]) such
that

z⊤ΨP (τ)z ≥ α̃1|z|2 (20)

Thus, as λ̃(i)(τ) ≥ 0 and
∫Kz(i)z

0
(δ(i)s− ϕ(i)(s))ds > 0, we

can conclude from (19) and (20) that

V (η) ≥ z⊤ΨP (τ)z ≥ α̃1|z|2 = α1(|η|A)
which proves the existence of a class K∞ function α1,
finishing the proof. ■

Recalling from (7) that g(η) = [(z+)⊤ τ+]⊤ and consider-
ing V (η) as in (13), the inequality (12) presents the term:

p∑
i=1

λ(i)

∫ Kz(i)z
+

Kz(i)z

(ϕ(i)(s)− δ(i)s)ds (21)

In order to cast inequality (12) as a matrix inequality, the
following lemma presents an upper bound for (21):

Lemma 3. If ϕ satisfies (2d), then
∫ y+

(i)

y(i)

(ϕ(i)(s)− δ(i)s)ds ≤ (22)

1

2
(2ϕ(i)(y) + γ(i)(y

+
(i) − y(i))− δ(i)(y

+
(i) + y(i)))(y

+
(i) − y(i))

is satisfied for all i = 1, · · · , p and y, y+ ∈ Rp.

Proof. Note that∫ y+
(i)

y(i)

(ϕ(i)(s)− δ(i)s)ds

=

∫ y+
(i)

y(i)

(ϕ(i)(y) + γ(i)(s− y(i))− δ(i)s)ds (23)

−
∫ y+

(i)

y(i)

(ϕ(i)(y) + γ(i)(s− y(i))− ϕ(i)(s))ds

Based on the slope-restricted property (2d) of ϕ, the last
term of (23) (including the signal) is non-positive, and
thus the following inequality holds:
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The next theorem is found in Goebel et al. (2012) and
provides sufficient conditions to ensure that A is globally
asymptotically stable for system H
Theorem 1. If there exists a function V : Rh → R⪰0 and
class K∞ functions α1 and α2 such that

α1(|η|A) ≤ V (η) ≤ α2(|η|A) , ∀η ∈ (C ∪D) (10)

⟨∇V (η), f(η)⟩ < 0 , ∀η ∈ C\A (11)

V (g(η))− V (η) < 0 , ∀η ∈ D\A (12)

then the set A is uniformily globally asymptotically stable.

The next corollary, in turn, states a particular consequence
of this theorem regarding the original sampled data closed-
loop system composed by (1) and (6):

Corollary 1. If conditions (10), (11) and (12) of Theorem
1 are satisfied, then the equilibrium point x = 0 of the
closed-loop system(1)-(6) is globally asymptotically stable,
provided that the sampling instants satisfy (5).

3.2 Stability of the closed-loop system

To derive stability conditions for the closed-loop sys-
tem, we consider a generalized timer-dependent Lur’e-
Postnikov function defined as follows:

V (η) = VQ(η) +

p∑
i=1

λ(i)

∫ Kz(i)z

0

(ϕ(i)(s)− δ(i)s)ds (13)

where VQ : Rh → R is a quadratic term defined as:

VQ(η) ≜ VQ(z, τ) = z⊤P (τ)z (14)

with P : [0, TM ] → Sq and λ(i) ∈ R for i = 1, . . . , p.
Note that, differently from a classical Lur’e type function
(Haddad and Kapila, 1995), matrix P and the scalars λ(i)

are not required to be positive definite and nonnegative,
respectively. In this case, the positivity of V (η) can be
enforced by a timer-dependent version of the lemma pro-
posed in Valmorbida et al. (2018) as proposed below:

Lemma 2. Consider V (η) as in (13), where ϕ satisfies (2),

and define Λ ≜ diag{λ(1), . . . , λ(m)}. If there exists a

matrix function Λ̃ : [0, TM ] → Dp
⪰0 such that

ΨΛ(τ) ⪰ 0 , ∀τ ∈ [0, TM ] (15)

ΨP (τ) ≻ 0 , ∀τ ∈ [0, TM ] (16)

where

ΨΛ(τ) =Λ + Λ̃(τ)

ΨP (τ) =P (τ)− 1

2
K⊤

z (∆−∆)Λ̃(τ)Kz

then there exists class K∞ functions α1 and α2 such that
the condition (10) is satisfied.

Proof. To prove that class K∞ function α2 exists, first
note that

0 ≤ ϕ(i)(s)− δ(i)s ≤ δ(i)s− δ(i)s = (δ(i) − δ(i))s

to obtain the following upper bound for (13):

V (η) ≤|P (τ)||z|2 + 1

2
|K⊤

z (∆−∆)ΛKz||z|2 = Ψ(τ)|z|2

(17)

The upper bound (17) is, in turn, bounded by the maxi-
mum value of Ψ(τ)|z|2 over the admissible interval for τ :

Ψ(τ)|z|2 ≤ max
τ∈[0,TM ]

{Ψ(τ)}|z|2 (18)

Note that from the definition of A in (9), one has the
identity |z| = |η|A for all τ ∈ [0, TM ]. Therefore, one can
rewrite (18) as follows:

max
τ∈[0,TM ]

{Ψ(τ)}|z|2 = max
τ∈[0,TM ]

{Ψ(τ)}|η|2A = α2(|η|A)

which proves the existence of a class K∞ function α2.

Now a lower bound must be found to prove the existence
of a class K∞ function α1 in (10). If the condition (15)
is verified, a lower bound for V (η) is provided as follows
(Valmorbida et al., 2018):

V (η) = VQ(z, τ) +

m∑
i=1

λ(i)

∫ Kz(i)z

0

(ϕ(i)(s)− δ(i)s)ds

≥ VQ(z, τ)−
m∑
i=1

λ̃(i)(τ)

∫ Kz(i)z

0

(ϕ(i)(s)− δ(i)s)ds

Then, taking into account that
∫Kz(i)z

0
(ϕ(i)(s)−δ(i)s)ds =

1
2z

⊤K⊤
z (δ(i) − δ(i))Kzz −

∫Kz(i)z

0
(δ(i)s − ϕ(i)(s))ds, the

inequality above is equivalently expressed as:

V (η) ≥ z⊤ΨP (τ)z +

m∑
i=1

λ̃(i)(τ)

∫ Kz(i)z

0

(δ(i)s− ϕ(i)(s))ds

(19)
for τ ∈ [0, TM ]. From (16), it follows that there exists α̃1

(the minimum eigenvalue of ΨP (τ) for τ ∈ [0, TM ]) such
that

z⊤ΨP (τ)z ≥ α̃1|z|2 (20)

Thus, as λ̃(i)(τ) ≥ 0 and
∫Kz(i)z

0
(δ(i)s− ϕ(i)(s))ds > 0, we

can conclude from (19) and (20) that

V (η) ≥ z⊤ΨP (τ)z ≥ α̃1|z|2 = α1(|η|A)
which proves the existence of a class K∞ function α1,
finishing the proof. ■

Recalling from (7) that g(η) = [(z+)⊤ τ+]⊤ and consider-
ing V (η) as in (13), the inequality (12) presents the term:

p∑
i=1

λ(i)

∫ Kz(i)z
+

Kz(i)z

(ϕ(i)(s)− δ(i)s)ds (21)

In order to cast inequality (12) as a matrix inequality, the
following lemma presents an upper bound for (21):

Lemma 3. If ϕ satisfies (2d), then
∫ y+

(i)

y(i)

(ϕ(i)(s)− δ(i)s)ds ≤ (22)

1

2
(2ϕ(i)(y) + γ(i)(y

+
(i) − y(i))− δ(i)(y

+
(i) + y(i)))(y

+
(i) − y(i))

is satisfied for all i = 1, · · · , p and y, y+ ∈ Rp.

Proof. Note that∫ y+
(i)

y(i)

(ϕ(i)(s)− δ(i)s)ds

=

∫ y+
(i)

y(i)

(ϕ(i)(y) + γ(i)(s− y(i))− δ(i)s)ds (23)

−
∫ y+

(i)

y(i)

(ϕ(i)(y) + γ(i)(s− y(i))− ϕ(i)(s))ds

Based on the slope-restricted property (2d) of ϕ, the last
term of (23) (including the signal) is non-positive, and
thus the following inequality holds:

∫ y+
(i)

y(i)

(ϕ(i)(s)− δ(i)s)ds ≤ (24)

(ϕ(i)(y)− γ(i)y(i))(y
+
(i) − y(i)) +

1
2 (γ(i) − δ(i))((y

+
(i))

2 − y2(i))

Finally, the expression (24) is equivalent to the right-hand
side of (22), finishing the proof. ■

Considering V (η) in (13), and defining the matrices M1 ≜
[Iq 0q×p], M2 ≜ [0p×q Ip], AJ ≜ [AJ KJ], AF ≜ [AF 0q×p],

Ω1 ≜ 1
2 (AJ − Iq)

⊤K⊤
z ΛΓKz(AJ − Iq) − 1

4He{(AJ +

Iq)
⊤K⊤

z Λ∆Kz(AJ−Iq)}, Ω2 ≜ 1
4 (AJ−Iq)

⊤K⊤
z ΛΓKzKJ−

1
4 (AJ + Iq)

⊤K⊤
z Λ∆KzKJ + 1

2 (AJ − Iq)
⊤K⊤

z Λ + 1
4 (AJ −

Iq)
⊤K⊤

z Λ(Γ −∆)KzKJ, Ω3 ≜ 1
2K

⊤
J K⊤

z Λ(Γ −∆)KzKJ +

1
2He{K

⊤
J K⊤

z Λ} and Ω ≜

[
Ω1 Ω2

⋆ Ω3

]
, the next theorem

proposes matrix inequalities that are sufficient for the
satisfaction of (10), (11) and (12), and therefore for the
stability of the closed-loop system (1)-(6).

Theorem 2. If there exist matrix functions P : [0, TM ] →
Sq, Λ ∈ Dp, Λ̃ : [0, TM ] → Dp and Uj : [0, TM ] → Dp,
j = 0, 1, 2 satisfying the following matrix inequalities

Uj(τ) ⪰ 0 , ∀τ ∈ [0, TM ], j ∈ {0, 1, 2} (25)

Λ̃(τ) ⪰ 0 , ∀τ ∈ [0, TM ] (26)

ΨΛ(τ) ⪰ 0 , ∀τ ∈ [0, TM ] (27)

ΨP (τ) ≻ 0 , ∀τ ∈ [0, TM ] (28)

ΨF(τ) ≺ 0 , ∀τ ∈ [0, TM ] (29)

ΨJ(τ) ≺ 0 , ∀τ ∈ [Tm, TM ] (30)

where

ΨF(τ) =M⊤
1

∂P (τ)

∂τ
M⊤

1 +He{M⊤
1 P (τ)AF}

− 0.5He
{
(M⊤

1 (∆Kz)
⊤ −M⊤

2 )ΛKz(AFM1)
}

+He{(M⊤
2 −M⊤

1 (∆)⊤)U1(τ)(∆KzM1 −M2)}
ΨJ(τ) =A⊤

J P (0)AJ −M⊤
1 P (τ)M1 +Ω

+He

{[
(∆Kz)

⊤

−Ip

]
U2(τ)

[
∆Kz − Ip

]}

then the equilibrium point x = 0 of the closed-loop system
given by (1) and (6) is globally and asymptotically stable,
provided that the sampling instants satisfy (5).

Proof. From Lemma 2, it follows that (27) and (28)
ensure that (10) is verified. Taking into account that

∂

∂t

[
m∑
i=1

λ(i)

∫ Kz(i)z

0

(ϕ(i)(s)− δ(i)s)ds

]
=

− (z⊤(∆Kz)
⊤ − ϕ⊤(Kzz))ΛKz ż

(31)

and denoting ⟨∇V (η), f(η)⟩ ≜ ⟨∇V, f⟩, one obtains

⟨∇V, f⟩ =z⊤
∂P (τ)

∂τ
zτ̇ +He

{
z⊤P (τ)ż

}

− (z⊤(∆Kz)
⊤ − ϕ⊤(Kzz))ΛKz ż

(32)

Define now ζ = [z⊤ ϕ⊤(Kzz)]
⊤. If (29) is verified, then

ζ⊤
(
M⊤

1

∂P (τ)

∂τ
M1τ̇ +He{M⊤

1 P (τ)AF}−

0.5He
{
(M⊤

1 (∆Kz)
⊤ −M⊤

2 )ΛKz(AFM1)
}
+ (33)

He{(M⊤
2 −M⊤

1 (∆Kzz)
⊤)U1(τ)(∆KzzM1 −M2)}

)
ζ < 0

which, taking into account (32) and recalling that τ̇ = 1
and ż = AFz, is equivalent to

⟨∇V, f⟩+ S∆(U1(τ),Kzz) < 0 (34)

Thus, from Lemma 1, it follows that ⟨∇V, f⟩ < 0, that is,
condition (29) implies the satisfaction of condition (11).

Now, consider the jump behavior. With the candidate
function (13), the simplified notation ϕ = ϕ(Kzz), and
recalling the definition of the jump map g in (8), that is
z+ = AJz +KJϕ, one obtains the following expression:

∆V ≜V (g(η))− V (η)

=

[
z
ϕ

]⊤ (
A⊤

J P (0)AJ −M⊤
1 P (τ)M1

) [z
ϕ

]

+

p∑
i=1

λ(i)

∫ Kz(i)z
+

Kz(i)z

(ϕ(i)(s)− δ(i)s)ds

(35)

Now consider the rightmost term of (35). From Lemma
3, replacing y with Kzz and y+ with Kzz

+, the following
upper bound is obtained:

p∑
i=1

λ(i)

∫ Kz(i)z
+

Kz(i)z

(ϕ(i)(s)− δ(i)s)ds

≤
p∑

i=1

λ(i)
1

2
(2ϕ(i) + γ(i)Kz(i)(z

+ − z)

− δ(i)Kz(i)(z
+ + z))Kz(i)(z

+ − z)

=
1

2
(2ϕ + ΓKz(z

+ − z) (36)

−∆Kz(z
+ + z))⊤ΛKz(z

+ − z)

Recalling again that z+ = AJz + KJϕ, one has that the
right-hand side of inequality (36) is equivalent to

1

2
(ΓKz(AJ − Iq)z −∆Kz(AJ + Iq)z+

(2Ip + (Γ−∆)KzKJ)ϕ)
⊤ΛKz((AJ − Iq)z +KJϕ) (37)

In terms of z and ϕ, the upper bound (37) is equivalently
expressed as:

p∑
i=1

λ(i)

∫ Kz(i)z
+

Kz(i)z

(ϕ(i)(s)− δ(i)s)ds ≤
[
z
ϕ

]⊤
Ω

[
z
ϕ

]
(38)

and thus, a sufficient condition for the negativity of ∆V
in (35) is given by

[
z
ϕ

]⊤ (
A⊤

J P (0)AJ −M⊤
1 P (τ)M1 +Ω

) [z
ϕ

]
< 0 (39)

Thus, considering U2 : [Tm, TM ] → Dm
⪰0 and Lemma 1,

the condition (30) ensures that (12) is verified at the
jumps. Hence, the conditions of Theorem 2 guarantee the
verification of conditions of Theorem 1 with V defined in
(13)-(14), which from Corollary 1 concludes the proof. ■

4. POLYNOMIAL DEPENDENCE ON τ

The issue in formulating an optimization problem with
Theorem 2 is that its conditions have infinite dimension,
since they must be verified for τ in continuous intervals. To
overcome this problem, the variables with generic depen-
dence on τ in Theorem 2 are specified now as polynomials
of τ , with the intent of obtaining conditions as sum-of-
squares (SOS) (Parrilo (2003), Peyrl and Parrilo (2008)).
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Hence, we consider that the τ -dependent matrices of Theo-
rem 2 can be generically cast as a matrix polynomial M(τ)
of appropriate dimensions described as:

M(τ) =
d

i=0

Miτ
i = M0 + τM1 + · · ·+ τdMd (40)

where d is the order of the polynomial. The next theorem
exploits this property and presents the stability conditions
cast in the framework of the sum-of-squares programming.

Theorem 3. If there exist matrix polynomials P : [0, TM ] →
Sq+p, Λ ∈ Dp, Λ̃ : [0, TM ] → Dp

⪰0, Qi : [0, TM ] → Sp⪰0, i ∈
{0, 1, 2, 3, 4}, Q5 : [0, TM ] → Sq+p

⪰0 , Q6 : [0, TM ] → Sq+p
⪰0 ,

Q7 : [0, TM ] → Sq+p
⪰0 , Uj : [0, TM ] → Dp

⪰0, j ∈ {0, 1, 2},
and a scalar ξ > 0 satisfying the following sum-of-squares
(SOS) conditions

Q0(τ), Q1(τ), Q2(τ), Q3(τ), Q4(τ),

Q5(τ), Q6(τ), Q7(τ) are SOS
(41)

U0(τ)−Q0(τ)τ(TM − τ) is SOS (42)

U1(τ)−Q1(τ)τ(TM − τ) is SOS (43)

U2(τ)−Q2(τ)τ(TM − τ) is SOS (44)

Λ̃(τ)−Q3(τ)τ(TM − τ) is SOS (45)

ΨΛ(τ)−Q4(τ)τ(TM − τ) is SOS (46)

ΨP (τ)−Q5(τ)τ(TM − τ)− ξIq+p is SOS (47)

−ΨF(τ)−Q6(τ)τ(TM − τ)− ξIq+p is SOS (48)

−ΨJ(τ)−Q7(τ)(τ − Tm)(TM − τ)− ξIq+p is SOS (49)

then, the equilibrium point x = 0 of the closed-loop system
(1) and (6) is globally asymptotically stable, provided that
the sampling instants satisfy (5).

Proof. If the conditions in (41) are verified, then

Q0(τ), Q1(τ), Q2(τ), Q3(τ), Q4(τ),

Q5(τ), Q6(τ), Q7(τ) ⪰ 0 , ∀τ
Noting that τ(TM − τ) ⪰ 0 for τ ∈ [0, TM ], provided that
Q0(τ) ⪰ 0, ∀τ , it follows that (42) ensures that

U0(τ) ⪰ 0 , τ ∈ [0, TM ] (50)

Similarly, as Q1(τ), Q2(τ), Q3(τ), Q4(τ) ⪰ 0, ∀τ ,
the conditions (43), (44), (45) and (46) imply that

U1(τ), U2(τ), Λ̃(τ) and (Λ − Λ̃(τ)) ⪰ 0, ∀τ ∈ [0, TM ].
Moreover, since Q5(τ) ⪰ 0, ∀τ and ξ > 0, the condition
(47) implies that

ΨP (τ) ⪰ ξIq+p ≻ 0 , ∀τ ∈ [0, TM ] (51)

and therefore that (28) is satisfied. Similarly, since
Q6(τ) ⪰ 0, ∀τ , one has that (48) implies (29).

Finally, noting that (τ − Tm)(TM − τ) ⪰ 0 for τ ∈
[Tm, TM ], provided that Q7(τ) ⪰ 0, ∀τ , it follows that
(49) ensures (30).

Hence, the conditions of Theorem 3 guarantee the verifica-
tion of conditions of Theorem 2, which in turn guarantee
the conditions of Theorem 1 with V as defined in (13)-(14).
With Corollary 1, the proof is concluded. ■

5. OPTIMIZATION PROBLEMS

Here we formulate optimization problems to solve prob-
lems P1 and P2 defined in Section 2, based on the con-

straints of Theorem 3. Hence, we can consider the two
following optimization problems:

P1





max TM

subject to:

(46), (47), (48), (49)

(52)

P2




max f(∆,Γ)

subject to:

(46), (47), (48), (49)

(53)

In the optimization problem (53) a generic objective
function depending on ∆, Γ, i.e. on the bounds on the
sector and slope of the nonlinearity, is considered. Recall
that the basic idea is to enlarge the sector for which the
stability can be certified. For instance, for a given ∆, we
can consider f(∆,Γ) =

m
i=1(δ(i) + γ(i)) and δ(i) = γ(i) =

β, ∀i and maximize β.

On the other hand, the objective variables TM of problem
P1 and ∆, Γ of P2 cannot be listed as decision variables,
because they appear multiplying other decision variables.
Thus, to solve P1 and P2, an SOS feasibility problem is
solved repeatedly, each time increasing the value of the
objective function, until the constraints become unfeasible.
Hence, solutions to both P1 and P2 can be obtained with
the SOStools toolbox (Prajna et al., 2004).

5.1 Example 1

Consider system (1) with the following parameters

A =



−4 −1 1 −1
2 −1 −1 1
3 1 0 1
4 3 4 1


 , B =



0
0
2
2


 , Kx =



−2
−1
−1
−2




⊤

(54)

Consider first that Ku = 0, Γ = 1 and ∆ = ∆ = 1, which
corresponds to a linear system. Notice that the system is
open loop unstable, because A has one positive eigenvalue,
and that A+BKx eigenvalues are all negative. With that
in mind, problem (52) is solved with dΛ̃ = dU0 = dU1 =
dU2 = 0 and dP = 4, and considering Tm = TM = T , i.e
periodic sampling. Thus, maximizing T in problem (52),
one obtains the maximum value of 0.355. This same value
is also the maximum such that eAT +

 T

0
eATBKx is Schur-

Cohn, showing that the method is not conservative when
applied to this particular case. However, when decreasing
the degree of polynomial P to dP = 2, the maximum
found with (52) is 0.203. That is a decrease of 42.8%
caused by reducing dP , showing the importance of the
timer dependence.

Now, setting Tm = 0.1 and considering again optimization
problem (52), the results for ∆ = 1 and different values of
∆ are exposed in Table 1:

Table 1.
∆ (Given) 1 0.8 0.6 0.4

TM (with dP = 4) 0.355 0.324 0.237 0.104

TM (with dP = 2) 0.189 0.188 0.173 unfeasible

We can observe that the results obtained with dP = 4
are less conservative than the ones with dP = 2. For
dP ≥ 5, the results are basically the same as obtained
with dP = 4. Furthermore, it can be noted that the larger
is the considered sector (i.e. smaller is ∆), the smaller is the
maximum value of TM for which we can certify stability.
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Hence, we consider that the τ -dependent matrices of Theo-
rem 2 can be generically cast as a matrix polynomial M(τ)
of appropriate dimensions described as:

M(τ) =
d

i=0

Miτ
i = M0 + τM1 + · · ·+ τdMd (40)

where d is the order of the polynomial. The next theorem
exploits this property and presents the stability conditions
cast in the framework of the sum-of-squares programming.

Theorem 3. If there exist matrix polynomials P : [0, TM ] →
Sq+p, Λ ∈ Dp, Λ̃ : [0, TM ] → Dp

⪰0, Qi : [0, TM ] → Sp⪰0, i ∈
{0, 1, 2, 3, 4}, Q5 : [0, TM ] → Sq+p

⪰0 , Q6 : [0, TM ] → Sq+p
⪰0 ,

Q7 : [0, TM ] → Sq+p
⪰0 , Uj : [0, TM ] → Dp

⪰0, j ∈ {0, 1, 2},
and a scalar ξ > 0 satisfying the following sum-of-squares
(SOS) conditions

Q0(τ), Q1(τ), Q2(τ), Q3(τ), Q4(τ),

Q5(τ), Q6(τ), Q7(τ) are SOS
(41)

U0(τ)−Q0(τ)τ(TM − τ) is SOS (42)

U1(τ)−Q1(τ)τ(TM − τ) is SOS (43)

U2(τ)−Q2(τ)τ(TM − τ) is SOS (44)

Λ̃(τ)−Q3(τ)τ(TM − τ) is SOS (45)

ΨΛ(τ)−Q4(τ)τ(TM − τ) is SOS (46)

ΨP (τ)−Q5(τ)τ(TM − τ)− ξIq+p is SOS (47)

−ΨF(τ)−Q6(τ)τ(TM − τ)− ξIq+p is SOS (48)

−ΨJ(τ)−Q7(τ)(τ − Tm)(TM − τ)− ξIq+p is SOS (49)

then, the equilibrium point x = 0 of the closed-loop system
(1) and (6) is globally asymptotically stable, provided that
the sampling instants satisfy (5).

Proof. If the conditions in (41) are verified, then

Q0(τ), Q1(τ), Q2(τ), Q3(τ), Q4(τ),

Q5(τ), Q6(τ), Q7(τ) ⪰ 0 , ∀τ
Noting that τ(TM − τ) ⪰ 0 for τ ∈ [0, TM ], provided that
Q0(τ) ⪰ 0, ∀τ , it follows that (42) ensures that

U0(τ) ⪰ 0 , τ ∈ [0, TM ] (50)

Similarly, as Q1(τ), Q2(τ), Q3(τ), Q4(τ) ⪰ 0, ∀τ ,
the conditions (43), (44), (45) and (46) imply that

U1(τ), U2(τ), Λ̃(τ) and (Λ − Λ̃(τ)) ⪰ 0, ∀τ ∈ [0, TM ].
Moreover, since Q5(τ) ⪰ 0, ∀τ and ξ > 0, the condition
(47) implies that

ΨP (τ) ⪰ ξIq+p ≻ 0 , ∀τ ∈ [0, TM ] (51)

and therefore that (28) is satisfied. Similarly, since
Q6(τ) ⪰ 0, ∀τ , one has that (48) implies (29).

Finally, noting that (τ − Tm)(TM − τ) ⪰ 0 for τ ∈
[Tm, TM ], provided that Q7(τ) ⪰ 0, ∀τ , it follows that
(49) ensures (30).

Hence, the conditions of Theorem 3 guarantee the verifica-
tion of conditions of Theorem 2, which in turn guarantee
the conditions of Theorem 1 with V as defined in (13)-(14).
With Corollary 1, the proof is concluded. ■

5. OPTIMIZATION PROBLEMS

Here we formulate optimization problems to solve prob-
lems P1 and P2 defined in Section 2, based on the con-

straints of Theorem 3. Hence, we can consider the two
following optimization problems:

P1





max TM

subject to:

(46), (47), (48), (49)

(52)

P2




max f(∆,Γ)

subject to:

(46), (47), (48), (49)

(53)

In the optimization problem (53) a generic objective
function depending on ∆, Γ, i.e. on the bounds on the
sector and slope of the nonlinearity, is considered. Recall
that the basic idea is to enlarge the sector for which the
stability can be certified. For instance, for a given ∆, we
can consider f(∆,Γ) =

m
i=1(δ(i) + γ(i)) and δ(i) = γ(i) =

β, ∀i and maximize β.

On the other hand, the objective variables TM of problem
P1 and ∆, Γ of P2 cannot be listed as decision variables,
because they appear multiplying other decision variables.
Thus, to solve P1 and P2, an SOS feasibility problem is
solved repeatedly, each time increasing the value of the
objective function, until the constraints become unfeasible.
Hence, solutions to both P1 and P2 can be obtained with
the SOStools toolbox (Prajna et al., 2004).

5.1 Example 1

Consider system (1) with the following parameters

A =



−4 −1 1 −1
2 −1 −1 1
3 1 0 1
4 3 4 1


 , B =



0
0
2
2


 , Kx =



−2
−1
−1
−2




⊤

(54)

Consider first that Ku = 0, Γ = 1 and ∆ = ∆ = 1, which
corresponds to a linear system. Notice that the system is
open loop unstable, because A has one positive eigenvalue,
and that A+BKx eigenvalues are all negative. With that
in mind, problem (52) is solved with dΛ̃ = dU0 = dU1 =
dU2 = 0 and dP = 4, and considering Tm = TM = T , i.e
periodic sampling. Thus, maximizing T in problem (52),
one obtains the maximum value of 0.355. This same value
is also the maximum such that eAT +

 T

0
eATBKx is Schur-

Cohn, showing that the method is not conservative when
applied to this particular case. However, when decreasing
the degree of polynomial P to dP = 2, the maximum
found with (52) is 0.203. That is a decrease of 42.8%
caused by reducing dP , showing the importance of the
timer dependence.

Now, setting Tm = 0.1 and considering again optimization
problem (52), the results for ∆ = 1 and different values of
∆ are exposed in Table 1:

Table 1.
∆ (Given) 1 0.8 0.6 0.4

TM (with dP = 4) 0.355 0.324 0.237 0.104

TM (with dP = 2) 0.189 0.188 0.173 unfeasible

We can observe that the results obtained with dP = 4
are less conservative than the ones with dP = 2. For
dP ≥ 5, the results are basically the same as obtained
with dP = 4. Furthermore, it can be noted that the larger
is the considered sector (i.e. smaller is ∆), the smaller is the
maximum value of TM for which we can certify stability.

5.2 Example 2

Consider system (1) and (6) with the following data
borrowed from Huff et al. (2022):

A =




0 1 0 0
−330.46 −12.15 −2.44 0

0 0 0 1
−812.61 −29.87 −30.10 0


 , B =




0
2.71762

0
6.68268




Kx = [12.87 0.24 −0.21 0.032] , Ku = −0.00076

∆ = 0 , ∆ = 1 , Γ = 1 (55)

First we compare conditions of Theorem 3 based on
the candidate V with simplified conditions based on the
quadratic candidate VQ, i.e., V without the integral term.
Solving (52) with the different sets of conditions and
dP = 4 in a range of values of Tm, the next figure shows
the maximum estimates of TM . It can be seen that, as in
the previous example, the extra decision variables of the
conditions based on V allow higher estimates to be found.
Moreover, as Tm increases, the estimates obtained in both
cases converge to the value of the maximum periodic
sampling such that the system is globally asymptotically
stable, intercepting the dashed line of Tm.
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6. CONCLUSION

The stability analysis of sampled-data systems with sector
and slope bounded input nonlinearities has been studied in
this paper. Based on the hybrid system framework, and a
Lur’e type function, conditions to assess the stability of the
closed-loop system were developed. Based on these condi-
tions, two problems were proposed: the first one consisted
in finding the maximum allowable interval of sampling,
and second consisted in finding the least restricted sector
of the nonlinearity. Both problems were posed as sum-of-
squares (SOS) optimization problems.
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