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Linear quadratic optimal control turnpike in finite and

infinite dimension: two-term expansion of the value function

Veljko Ašković∗ Emmanuel Trélat† Hasnaa Zidani‡

Abstract

In this paper, we consider a linear quadratic (LQ) optimal control problem in both finite
and infinite dimensions. We derive an asymptotic expansion of the value function as the
fixed time horizon T tends to infinity. The leading term in this expansion, proportional to
T , corresponds to the optimal value attained through the classical turnpike theory in the
associated static problem. The remaining terms are associated with optimal stabilization
problems towards the turnpike.

1 Introduction and Formulation of the problem

1.1 Setting

The optimization of linear autonomous control systems has been a subject of considerable interest
in the field of control theory. In this work, we are concerned with a long-time optimal control
problem. We aim to analyze the connection between this problem and a static problem with an
infinite horizon. Our study concerns both the finite-dimensional and infinite-dimensional cases.

Consider two Hilbert spaces, denoted as (X, 〈 , 〉X) and (U, 〈 , 〉U ), each equipped with their
respective scalar products. Our focus lies on the guidance of a linear control system from an
initial point to a final point within a fixed time interval T > 0. Specifically, we fix the values of
y0, y1, yd ∈ X, and ud ∈ U , the linear quadratic (LQ) optimal control problem consists of steering
the system

ẏ(t) = Ay(t) +Bu(t) (1)

from the initial point y(0) = y0 to the final point y(T ) = y1, with a control input u ∈ L2([0, T ], U)
that minimizes the following cost functional

CT (u) =
1

2

∫ T

0

(
‖y(t)− yd‖2Q + ‖u(t)− ud‖2R

)
dt. (2)

Here, we use the notations ‖y−yd‖2Q = 〈Q(y−yd), y−yd〉X and ‖u−ud‖2R = 〈R(u−ud), u−ud〉U .
For a finite-dimensional case, where X = Rn and U = Rm (for some integers n > 1 and m > 1),

the system is defined by a n×n matrix A, and a control matrix B of dimension n×m. The matrices
Q and R that appear in the cost function are symmetric positive definite of sizes n×n and m×m,
respectively. All the matrices are real-valued.
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In the general case (notably, in infinite dimension), A : D(A)→ X is a linear operator on the
Hilbert space X of domain D(A) generating on X a C0 semi-group (etA)t>0 and B ∈ L(U,X)
is a linear bounded operator from U to X (see [7, 23, 29, 34] for the general framework). The
operators Q ∈ L(X) and R ∈ L(U) are positive definite, boundedly invertible, selfadjoint operators
respectively on X and U .

To ensure the well-posedness of the optimal control problem, we introduce the following as-
sumption (H) to guarantee exact controllability in the state space X.

(H) There exists T0 > 0 such that the control system (1) is exactly controllable in the state space
X, with controls u ∈ L2([0, T ], U), in any time T > T0.

Note that, in finite-dimensional spaces, (H) is equivalent to the Kalman condition on the pair
(A,B) and does not depend on T (and one can take T0 = 0). In infinite-dimensional spaces,
the exact controllability condition (H) is satisfied for instance for wave equations in appropriate
functional spaces under some geometric conditions (with a minimal controllability time required)
but it does not hold for heat equations, although such equations enjoy approximate controllability
properties.

Now, under Assumption (H) and by strict convexity of the cost function, the optimal control
problem (1)-(2) has a unique solution for every T > T0 (see, e.g., [18, 23, 28, 34]), denoted
(yT (·), uT (·)). The central focus of this paper is on the value function of the above optimal control
problem, defined by

VT (y0, y1) = min{CT (u) | y(0) = y0, y(T ) = y1} = CT (uT ), (3)

that is the minimal cost required to steer the control system (1) from y0 to y1 in time T . The
objective is to provide a two-term expansion of VT (y0, y1) for large time T and to identify the
various components of this expansion.

In the subsequent sections, we explore the turnpike property and the main term of the asymp-
totic expansion. The turnpike property, well-established in the literature, suggests that optimal
trajectories exhibit a specific structure, involving rapid transitions to and from a turnpike state.

1.2 Turnpike and main term of the asymptotic expansion

Determining an asymptotic value to VT (y0, y1) as T → +∞ proves to be a straightforward task,
closely related to the renowned turnpike property, as succinctly outlined in [26, 27]. This task
involves using the underlying connection between the value function V and the dynamic behavior
of the system over prolonged time horizons, aligning with the well-established principles represented
by the turnpike property.

1.2.1 Static optimal control problem

Let (ȳ, ū) ∈ D(A) × U be the unique solution of the (strictly convex) constrained optimization
problem given by

min
Ay+Bu=0

1

2

(
‖y − yd‖2Q + ‖u− ud‖2R

)
(4)

referred to as the static optimal control problem. According to the Karush-Kuhn-Tucker (KKT,
see [16, 28]) rule, there exists λ̄ ∈ D(A∗) such that

Q(ȳ − yd) = A∗λ̄ and R(ū− ud) = B∗λ̄. (5)
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Here, we have used the adjoint operators A∗ : D(A∗)→ X and B∗ : U → X, and we have identified
X ′ ' X and U ′ ' U . As a consequence of (5), we have ȳ = yd +Q−1A∗λ̄ and ū = ud + R−1B∗λ̄
and thus (

A BR−1B∗

Q −A∗
)

︸ ︷︷ ︸
M

(
ȳ
λ̄

)
=

(
−Bud
Qyd

)
, (6)

where M is a linear operator on X ×X of domain D(M) = D(A)×D(A∗). We denote by

V̄ =
1

2

(
‖ȳ − yd‖2Q + ‖ū− ud‖2R

)
(7)

the optimal value of the optimization problem (4). Note that

V̄ = −1

2
〈Ayd +Bud, λ̄〉X .

1.2.2 Application of the Pontryagin maximum principle

For every T > T0, by the Pontryagin maximum principle (PMP, see [18, 20, 21, 23, 28]) applied
to the optimal control problem (1)-(2), of optimal solution (yT (·), uT (·)), there exists an (unique)
absolutely continuous costate λT (·) : [0, T ]→ D(A∗) satisfying almost everywhere on [0, T ]

λ̇T (t) = −A∗λT (t) +Q(yT (t)− yd), (8)

and we have uT (t) = ud +R−1B∗λT (t) for almost every t ∈ [0, T ].
The non-triviality of the Pontryagin maximum principle is not always guaranteed when dimX =

+∞ and may require stringent conditions [5, 6]. Indeed, in the infinite-dimensional case, it is well-
known that the PMP may fail (see [20]) if there is an infinite number of constraints on the terminal
states, which is the case here since the initial and final states are prescribed.

Actually, Assumption (H) (exact controllability) implies that the controllability Gramian oper-
ator is an isomorphism (see [11]), and then the Hilbert Uniqueness Method (HUM), see [19]), can
be applied. However, in the LQ case, HUM exactly coincides with the PMP (see [23]). Another
justification is that, under (H), the differential Riccati theory can be applied (see [11, 34]), which
leads as well to the adjoint equation (8). In the proof of the main result, we will indeed revisit
these issues and particularly focus on the Riccati theory.

1.2.3 Exponential turnpike property. Main term of the asymptotic expansion

It has been proven in [27] for finite dimensional problems and in [26] for infinite dimension that,
under the assumption (H), there exist C, ν > 0 such that

‖yT (t)− ȳ‖X + ‖uT (t)− ū‖U + ‖λT (t)− λ̄‖X 6 Ce−νt(T−t) ∀t ∈ [0, T ] ∀T > T0. (9)

The inequality (9) is referred to as the exponential turnpike property. It implies that, except at the
beginning and the end of the time frame [0, T ], the ”dynamic” optimal triple (yT (·), uT (·), λT (·))
is exponentially close to the ”static” optimal triple (ȳ, ū, λ̄). It’s worth noting that the constants
C and ν are independent of T > T0. This property ensures that the optimal solution remains close
to its static counterpart over the majority of the time interval, providing a stable and predictable
behavior for the optimal trajectory. As an immediate consequence of this exponential turnpike
property, it follows that

VT (y0, y1) = T V̄ + o(T )

as T → +∞, where VT (y0, y1) is defined by (3) and V̄ is defined by (7).
In the following sections, we present our main result, which provides the second term in the

large-time asymptotic expansion of VT (y0, y1), that is, an equivalent of VT (y0, y1)−T V̄ as T → +∞.
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2 Two-term asymptotic expansion of the value function.
Main result

2.1 A preliminary comment

The turnpike property was identified in the 1950s by Nobel Prize laureate Samuelson and his coau-
thors in [8], primarily in the context of econometrics (for historical insights and a comprehensive
bibliography, refer to [27]). In essence, the turnpike property stipulates that the optimal trajectory
approximately consists of three segments: the first (resp. the third) arc is short and represents
a rapid transition to (resp., from) the turnpike, while the second, middle arc is long and consists
of remaining at an optimal steady-state that is the turnpike. Notably, in the 1970s and 1980s,
an equivalent property known as the exponential dichotomy property was identified in [1, 32]. In
that work, the authors demonstrated that large-time optimal trajectories can be approximated by
concatenating two infinite-time trajectories. Each of these trajectories is the solution to an optimal
stabilization (towards the turnpike) problem and serves as an approximation of the initial or final
transient arc.

This is why, unsurprisingly, we proceed to preliminarily define two optimal stabilization prob-
lems. The first one aims to stabilize the forward-in-time control system (1) from the (initial)
point y0 to the turnpike point ȳ, by minimizing a quadratic cost that measures the discrepancy
between the trajectory and the turnpike. The second one aims to stabilize the backward-in-time
control system (1) from the (final) point y1 to the turnpike point ȳ, again by minimizing the same
quadratic cost. To achieve this, we rely on the following assumption, which we consider satisfied
throughout this section.

(HA) The operator A is the infinitesimal generator on X of a C0-group (etA)t∈R.

A well-known necessary and sufficient condition for (HA) to hold is that both A and −A
generate a C0 semi-group. It is worth noting that, like (H), this assumption is satisfied for wave
equations but not for heat equations.

2.2 Forward stabilization problem

Considering the forward control system with initial condition

ẏ(t) = Ay(t) +Bu(t), y(0) = y0,

we define

Sf (y0) = inf
u∈L2([0,+∞),U)

1

2

∫ +∞

0

(
‖y(t)− ȳ‖2Q + ‖u(t)− ū‖2R

)
dt.

Under (H), this infinite time horizon optimal control problem, called the forward stabilization
problem, has a unique solution (yf (·), uf (·)). Equivalently, setting z = y − ȳ and v = u − ū, we
have

ż(t) = Az(t) +Bv(t), z(0) = y0 − ȳ,

and

Sf (y0) = inf
v∈L2([0,+∞),U)

1

2

∫ +∞

0

(
‖z(t)‖2Q + ‖v(t)‖2R

)
dt.

Since, by (H), the pair (A,B) is stabilizable, by the well known Riccati algebraic theory (see
[7, 18, 34]), the latter “shifted” stabilization problem has a unique solution (zf (·), vf (·)) with the
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feedback control vf = −R−1B∗Pzf where the linear bounded operator P : X → X is the unique
nonnegative selfadjoint solution of the algebraic Riccati equation (of unknown X)

A∗X + XA− XBR−1B∗X = −Q. (10)

Actually, P is positive definite and is even boundedly invertible, due to the exact controllability
assumption (H) and the group assumption (HA) (see [11]). Moreover, the operator

A− = A−BR−1B∗P,

of domain D(A−) = D(A), generates on X an exponentially stable C0 group (etA−)t∈R, and
Sf (y0) = 1

2 〈Pz(0), z(0)〉X . Therefore uf = ū−R−1B∗P (yf − ȳ) and yf (t) = ȳ+ etA−(y0− ȳ), and

Sf (y0) =
1

2
〈P (y0 − ȳ), y0 − ȳ〉X .

2.3 Backward stabilization problem

We now turn our attention to the backward control system with initial condition

ẏ(t) = −Ay(t)−Bu(t), y(0) = y1,

we define

Sb(y1) = inf
u∈L2([0,+∞),U)

1

2

∫ +∞

0

(
‖y(t)− ȳ‖2Q + ‖u(t)− ū‖2R

)
dt.

This infinite time horizon optimal control problem, called the backward stabilization problem, has
a unique solution (yb(·), ub(·)). Here again, setting z = y − ȳ and v = u− ū, we obtain

ż(t) = −Az(t)−Bv(t), z(0) = y1 − ȳ,

and

Sb(y1) = inf
v∈L2([0,+∞),U)

1

2

∫ +∞

0

(
‖z(t)‖2Q + ‖v(t)‖2R

)
dt.

Under (H), since (etA)t∈R is a group ((HA) is crucially used here), the pair (−A,−B) is stabilizable.
Here, let us emphasize an important observation. Denoting temporarily by (Rf ) the algebraic

Riccati equation (10) associated with the pair (A,B), the algebraic Riccati equation (Rb) associated
with the pair (−A,−B) is −A∗X − XA − XBR−1B∗X = −Q (of unknown X), and obviously X is
a solution of (Rf ) if and only if −X is a solution of (Rb). According to the Riccati algebraic
theory, (Rb) has a unique non-negative self-adjoint solution, denoted by −N , which is actually
positive definite and even boundedly invertible. Therefore the linear boundedly invertible operator
N : X → X is the unique non-positive self-adjoint solution of (10), and actually is negative definite.

Moreover, as per the Riccati algebraic theory, the “shifted” backward stabilization problem
possesses a unique solution (zb(·), vb(·)) with the feedback control vb = −R−1B∗Nzb. Defining the
operator

A+ = A−BR−1B∗N

of domain D(A+) = D(A), the operator −A+ (also of domain D(A)) generates an exponentially
stable C0 group (e−tA+)t∈R, and Sb(y1) = − 1

2 〈Nz(0), z(0)〉X . Therefore, ub = ū−R−1B∗N(yb− ȳ)
and yb(t) = ȳ + e−tA+(y1 − ȳ), which yield

Sb(y1) = −1

2
〈N(y1 − ȳ), y1 − ȳ〉X .
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2.4 Main result

Let ν be the exponential decay rate of etA− and of e−tA+ (they are actually the same).

Theorem 1. We have

VT (y0, y1) = T V̄ + Sf (y0)− 〈λ̄, y0 − ȳ〉X + Sb(y1) + 〈λ̄, y1 − ȳ〉X + O(e−νT ) (11)

as T → +∞.

Additionally to the statement of Theorem 1, we have the following results, stated in the next
two propositions.

Proposition 1. Defining the optimal cost

Vf (y0) = inf
u∈L2([0,+∞),U)

1

2

∫ +∞

0

(
‖y(t)− yd‖2Q + ‖u(t)− ud‖2R − ‖ȳ − yd‖2Q − ‖ū− ud‖2R

)
dt (12)

for the forward control system, and the optimal cost

Vb(y1) = inf
u∈L2([0,+∞),U)

1

2

∫ +∞

0

(
‖y(t)− yd‖2Q + ‖u(t)− ud‖2R − ‖ȳ − yd‖2Q − ‖ū− ud‖2R

)
dt (13)

for the backward control system, we have

Vf (y0) = Sf (y0 − ȳ)− 〈λ̄, y0 − ȳ〉X , Vb(y1) = Sf (y0 − ȳ)− 〈λ̄, y0 − ȳ〉X ,

and (11) is equivalent to

VT (y0, y1) = T V̄ + Vf (y0) + Vb(y1) + O(e−νT ) (14)

as T → +∞.

This alternative expression of the two-term large-time asymptotic expansion of VT (y0, y1) is
interesting because the function inside the integral defining the cost in (12) and in (13) is exactly
the supply rate function used to characterize the dissipativity property of the optimal control
problem. The form (14) can thus be seen as a preliminary to a generalization to nonlinear optimal
control problems, treated in [3].

Proposition 2. In addition, as regards the optimal solution, we have

yT (t) = ȳ + zf (t) + zb(T − t)− e−(T−t)A+zf (T )− etA−zb(T )

+ e−(T−t)A+O(e−2νT ) + etA−O(e−2νT ) (15)

= ȳ + etA−
(
y0 − ȳ − e−TA+(y1 − ȳ) + O(e−2νT )

)
+ e−(T−t)A+

(
y1 − ȳ + eTA−(y0 − ȳ) + O(e−2νT )

)
(16)

where
zf (t) = etA−(y0 − ȳ), zb(t) = e−tA+(y1 − ȳ), (17)

and

λT (t) = λ̄− Pzf (t)−Nzb(T − t) + PetA−zb(T )−Ne−(T−t)A+zf (T )

+ e−(T−t)A+O(e−2νT ) + etA−O(e−2νT ) (18)

= λ̄− PetA−
(
y0 − ȳ − e−TA+(y1 − ȳ) + O(e−2νT )

)
−Ne−(T−t)A+

(
y1 − ȳ − eTA−(y0 − ȳ) + O(e−2νT )

)
(19)
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and, using that ū = ud +R−1B∗λ̄,

uT (t) = ud +R−1B∗λT (t)

= ū+ vf (t) + vb(T − t) (20)

= ū−R−1B∗PetA−(y0 − ȳ)−R−1B∗Ne−(T−t)A+(y1 − ȳ) + O(e−νT ) (21)

as T → +∞.

The formulas (15), (18) and (20) above are interesting because they show how the optimal
solution of (1)-(2) is related to the optimal solutions of the (shifted) forward and backward sta-
bilization problems defined in Section 2: (zf (·), vf (·)) (resp., (zb(·), vb(·))) is the optimal solution
of the forward (resp., backward) stabilization problem defined in Section 2.2 (resp., Section 2.3).
Note that the corresponding costate, in the infinite time horizon PMP, is λf (·) = −Pzf (·) (resp.,
λb(·) = Nzb(·)).

The formulas (16), (19) and (21) give the first terms of an expansion of the optimal solution
within the scale given by eTA− and e−TA+ . The expansion can actually be obtained at any order
(see the proof in Section 3.3). As a consequence, an expansion of the value function VT (y0, y1) can
also be obtained at any order. In (11) we have given only the two first terms of that expansion,
because we know how to give an interpretation of those two terms; but it seems that terms of
higher order do not have a nice interpretation.

Remark 1. It is a classical result of optimal control that the initial or final costates are given in
terms of the gradient of the value function (sensitivity analysis), namely, λT (0) = −∂VT

∂y0
(y0, y1)

and λT (T ) = ∂VT

∂y1
(y0, y1). It is then interesting to note that, thanks to (14) and (19), we have

−λT (0) =
∂VT
∂y0

(y0, y1) =
∂Vf
∂y0

(y0, y1) + O(e−νT ) = −λ̄+ P (y0 − ȳ)︸ ︷︷ ︸
∂Sf
∂y0

(y0)

+O(e−νT ),

and

λT (T ) =
∂VT
∂y1

(y0, y1) =
∂Vb
∂y1

(y1) + O(e−νT ) = λ̄−N(y1 − ȳ)︸ ︷︷ ︸
∂Sb
∂y1

(y1)

+O(e−νT ),

as T → +∞. This is of interest, in particular, in view of initializing a numerical shooting method
(see [27]).

3 Proof of Theorem 1 and of the subsequent remarks

The proof goes in several steps, performed in the subsequent sections.

3.1 Preliminary

In Section 1.2.2, we have applied the Pontryagin maximum principle, leading to the extremal
system

ẏT = AyT +BR−1B∗λT +Bud

λ̇T = QyT −A∗λT −Qyd
(22)

with y(0) = y0 and y(T ) = y1. Noting that the pair (ȳ, λ̄) defined in Section 1.2.1 satisfies (6),
setting

δyT (t) = yT (t)− ȳ, δλT (t) = λT (t)− λ̄ ∀t ∈ [0, T ],

7



we get from (22) that
d

dt

(
δy
δλ

)
= M

(
δy
δλ

)
(23)

where we recall that M =

(
A BR−1B∗

Q −A∗
)

, with δyT (0) = y0 − ȳ and δyT (T ) = y1 − ȳ.

3.2 Diagonalization by blocks of M

Let us first prove that M is diagonalizable by blocks and is boundedly invertible. The following
argument is borrowed from [32]; its generalization to infinite dimension is straightforward under
the assumptions of exact controllability and of group.

In Section 2, we have defined the boundedly invertible selfadjoint operators P > 0 and N < 0.
Defining on X ×X the linear bounded operator

T =

(
id id
−N −P

)
,

we first note that T is boundedly invertible and

T−1 =

(
∆−1P ∆−1

−∆−1N −∆−1

)
where ∆ = P −N is a boundedly invertible selfadjoint positive definite operator on X. Moreover,

T−1MT =

(
A−BR−1B∗N 0

0 A−BR−1B∗P

)
=

(
A+ 0
0 A−

)
(24)

by straightforward calculations. Moreover, subtracting the algebraic Riccati equations satisfied
respectively by P and N , we have

∆A− +A∗+∆ = 0.

This shows that the spectrum of A− is the negative of that of A+.

3.3 Consequence: proof of Proposition 2

Setting (
vT
wT

)
= T−1

(
δyT
δλT

)
, (25)

we get from (23) and (24) that

v̇T = A+vT

ẇT = A−wT

with vT (0) + wT (0) = y0 − ȳ and vT (T ) + wT (T ) = y1 − ȳ. Since vT (t) = e−(T−t)A+vT (T ) and
wT (t) = etA−wT (0), taking t = 0 yields(

y0 − ȳ
y1 − ȳ

)
=

(
id e−TA+

eTA− id

)
︸ ︷︷ ︸

JT

(
wT (0)
vT (T )

)
. (26)

By the exponential stability property, there exist M > 0 and ν > 0 such that, using the op-
erator norm, ‖esA−‖L(X) 6 Me−νs and ‖e−sA+‖L(X) 6 Me−νs for every s > 0. In particular,
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‖eTA−‖L(X) 6 Me−νT and ‖e−TA+‖L(X) 6 Me−νT . Therefore there exists T0 > 0 such that, for
every T > T0, the operator JT (on X) defined in (26) is boundedly invertible, and we have

JT =

(
id 0
0 id

)
+ O(e−νT )

and

J−1
T =

(
id + e−TA+

(
id + eTA−e−TA+

)−1
eTA− −e−TA+

(
id + eTA−e−TA+

)−1

−
(
id + eTA−e−TA+

)−1
eTA−

(
id + eTA−e−TA+

)−1

)

=

(
id −e−TA+

−eTA− id

)
+ O(e−2νT )

where the remainder terms in O(·) are in the sense of the operator norm as T → +∞. Hence

wT (0) = y0 − ȳ − e−TA+(y1 − ȳ) + O(e−2νT )

vT (T ) = −eTA−(y0 − ȳ) + y1 − ȳ + O(e−2νT )

and thus

vT (t) = −e−(T−t)A+eTA−(y0 − ȳ) + e−(T−t)A+(y1 − ȳ) + e−(T−t)A+O(e−2νT )

wT (t) = etA−(y0 − ȳ)− etA−e−TA+(y1 − ȳ) + etA−O(e−2νT )

as T → +∞.
Using (25), the formulas (15), (16), (18), (19), (20) and (21) of Proposition 2 follow. The

expansions can actually be obtained at any order, by expanding J−1
T to higher orders.

3.4 Proof of Theorem 1

We infer from (15), (17) and (20) that

VT (y0, y1) = CT (uT ) =
1

2

∫ T

0

(
‖yT (t)− yd‖2Q + ‖uT (t)− ud‖2R

)
dt

=
T

2

(
‖ȳ − yd‖2Q + ‖ū− ud‖2R

)
(27)

+
1

2

∫ T

0

(
‖zf (t)‖2Q + ‖vf (t)‖2R

)
dt (28)

+
1

2

∫ T

0

(
‖zb(T − t)‖2Q + ‖vb(T − t)‖2R

)
dt (29)

+

∫ T

0

(〈Q(ȳ − yd), zf (t)〉X + 〈R(ū− ud), vf (t)〉U ) (30)

+

∫ T

0

(〈Q(ȳ − yd), zb(T − t)〉X + 〈R(ū− ud), vb(T − t)〉U ) (31)

+

∫ T

0

(〈Qzf (t), zb(T − t)〉X + 〈Rvf (t), vb(T − t)〉U ) (32)

+O(e−νT ) (33)

as T → +∞. Above, the remainder term (33) is obtained by integration. The first term (27) is
identified with T V̄ , where we recall that V̄ is defined by (7). The second term (28) is equal to

Sf (y0)− 1

2

∫ +∞

T

(
‖zf (t)‖2Q + ‖vf (t)‖2R

)
dt = Sf (y0) + O(e−νT )
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where we recall that Sf (y0) is the optimal value of the forward stabilization problem defined in
Section 2.2. Similarly, the third term (29) is equal to Sb(y1) + O(e−νT ).

Let us compute the term (30). Using (17), we have∫ T

0

zf (t) dt = A−1
− (eTA− − id)(y0 − ȳ) = −A−1

− (y0 − ȳ) + O(e−νT ),

and since vf (t) = −R−1B∗Pzf (t), we have∫ T

0

vf (t) dt = R−1B∗PA−1
− (y0 − ȳ) + O(e−νT ).

Then, using (5), we infer that the term (30) is equal to

〈λ̄, (A−BR−1B∗P )︸ ︷︷ ︸
A−

∫ T

0

zf (t) dt〉X = 〈λ̄, ȳ − y0〉X + O(e−νT ).

Similarly, the term (31) is equal to 〈λ̄, y1 − ȳ〉X + O(e−νT ).
Finally, using (17), the term (32) is a O(e−νT ) as T → +∞.
We have thus obtained (11).

3.5 Proof of Proposition 1

We can arrange differently the terms in the computations of the previous section. Gathering the
terms (28) and (30) gives

1

2

∫ T

0

(
‖zf (t)‖2Q + ‖vf (t)‖2R + 2〈zf (t), Q(ȳ − yd)〉X + 2〈vf (t), R(ū− ud)〉U

)
dt

=
1

2

∫ T

0

(
‖ zf (t)︸ ︷︷ ︸
yf (t)−ȳ

+ȳ − yd‖2Q + ‖ vf (t)︸ ︷︷ ︸
uf (t)−ū

+ū− ud‖2R − ‖ȳ − yd‖2Q − ‖ū− ud‖2R
)
dt

=
1

2

∫ T

0

∥∥yf (t)− yd‖2Q + ‖uf (t)− ud‖2R − ‖ȳ − yd‖2Q − ‖ū− ud‖2R
)
dt

=
1

2

∫ +∞

0

∥∥yf (t)− yd‖2Q + ‖uf (t)− ud‖2R − ‖ȳ − yd‖2Q − ‖ū− ud‖2R
)
dt+ O(e−νT )

= Vf (y0) + O(e−νT )

where Vf (y0) is defined by (12). Similarly, the sum of the two terms (29) and (31) is equal to
Vb(y1) + O(e−νT ). We have thus proved (14) and all contents of Proposition 1.

4 An additional result for free final states

4.1 Setting and main result

In this section, we consider the optimal control problem (1)-(2) with fixed initial state y(0) = y0

but with free final state y(T ) ∈ X. The value function of such an optimal control problem is then
defined by

VT (y0) = min{CT (u) | y(0) = y0}.
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As before, there exists a unique solution (yT (·), uT (·)). The objective is to provide an asymptotic
expansion of VT (y0) as T → +∞.

Compared with Section 2, interestingly, we can relax the assumptions of exact controllability
and of group generation and even consider unbounded control operators (occuring in boundary
control problems). Also, we only assume that Q is positive semidefinite. Hereafter, we assume
that:

• The operator A : D(A)→ X generates on X an analytic C0 semigroup (etA)t>0.

• The control operator B ∈ L(X,D(A∗)′) is admissible.

• The pair (A,B) is exponentially stabilizable and the pair (A,Q1/2) is exponentially de-
tectable.

The admissibility assumption implies that the control operator B is ’not too unbounded’ (see
[23, 29] for details and examples). For instance, this framework includes the heat equation with
Neumann boundary control. Refer to [7] for concepts related to exponential stabilizability and
detectability. We refer the reader to [7] for concepts related to exponential stabilizability and
detectability.

Theorem 2. Defining Vf (y0) as in (12), there exists µ ∈ R such that

VT (y0) = T V̄ + Vf (y0) + µ+ O(e−νT ) (34)

as T → +∞.

Additionally to the statement of Theorem 2, we have the following result.

Proposition 3. We have

yT (t) = ȳ + etA−(y0 − ȳ)− Ee(T−t)A∗
−wT (T ) + O(e−ν(t+T ))

λT (t) = λ̄− PetA−(y0 − ȳ) + (id + PE)e(T−t)A∗
−wT (T ) + O(e−ν(t+T ))

uT (t) = ū−R−1B∗PetA−(y0 − ȳ) +R−1B∗(id + PE)e(T−t)A∗
−wT (T ) + O(e−ν(t+T ))

where wT (T ) = P (yT (T )− ȳ)− λ̄.

Remark 2. Theorem 1 generalizes [9] where an expansion similar to (11) was derived in the
finite-dimensional context. The constant µ (denoted λ in [9]), which may be alternatively defined
as the limit of VT (ȳ) − T V̄ as T → +∞, is related to ergodic considerations on the Hamilton-
Jacobi equation – here, coinciding with the algebraic Riccati equation (see, e.g., [2, 4, 15, 22])
and is sometimes called the ergodic constant. We refer the reader to the numerous comments and
citations done in [9].

Here, in addition to the extension to infinite dimension, we provide an expression for µ:

µ = lim
T→+∞

1

2

∫ T

0

(
‖Ee(T−t)A∗

−wT (T )‖2Q + ‖R−1B∗(id + PE)e(T−t)A∗
−wT (T )‖2R

)
dt

+
〈
λ̄, (−AE +BR−1B∗(id + PE))

∫ T

0

e(T−t)A∗
− dtwT (T )

〉
X

(35)

where E = −
∫ +∞

0
etA−BR−1B∗etA− dt is the unique solution of the Lyapunov equation A−E +

EA∗− −BR−1B∗ = 0.
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4.2 Proof of Theorem 2

The strategy is quite similar to the proof of Theorem 1 and actually, except some minor modi-
fications (such as, in the PMP, we have λT (T ) = 0 by transversality, because yT (T ) is let free),
the proof is the same in finite dimension. But, in infinite dimension, the main difference is that
now we have a semigroup, and not a group; as a consequence, P > 0 still exists (but P is not
boundedly invertible in general) but the existence of N is not ensured. Therefore, the strategy
of diagonalization by blocks of M , developed in Section 3.2, needs to be adapted. Actually, an
appropriate strategy has been developed in [26, Section 3.3, proof of Theorem 6]. Let us sum up
hereafter, rapidly, the main steps.

First of all, under the assumptions that have been done (admissibility of B, analyticity of the
semigroup, exponential stabilizability and detectability), there exists a positive definite selfadjoint
operator P ∈ L(X) solution of the algebraic Riccati equation (10) (see [17, 11]); note however
that P fails in general to be boundedly invertible. The operator A− = A − BR−1B∗P generates
on X an exponentially stable C0 semigroup (etA−)t>0. Hence, the forward stabilization problem
considered in Section 2.2 is still well defined, with the same solution. Note that, to define properly
A−, it is required to consider the operator B∗P ; since B∗ ∈ L(D(A∗), U), it could happen that this
operator does not make sense. But it is part of the results contained in [17] that B∗P ∈ L(X,U)
(and this is a nontrivial issue).

As a second step, it is proved in [26] that there exists an operator E ∈ L(X) solution of the
Lyapunov equation

(A−BR−1B∗P︸ ︷︷ ︸
A−

)E + E(A−BR−1B∗P︸ ︷︷ ︸
A−

)∗ −BR−1B∗ = 0.

Actually, E = −
∫ +∞

0
etA−BR−1B∗etA− dt. Now, defining

L =

(
id + EP E

P id

)
,

the operator L ∈ L(X) is boundedly invertible and

L−1 =

(
id −E
−P id + PE

)
,

and we have

LML−1 =

(
A− 0
0 −A∗−

)
.

Then, setting (
vT
wT

)
= L

(
δyT
δλT

)
,

we have

v̇T = A−vT

ẇT = −A∗−wT

with vT (0) − EwT (0) = y0 − ȳ. We have vT (t) = etA−vT (0) and wT (t) = e(T−t)A∗
−wT (T ). By

[26, Lemma 2], there exists C > 0 (not depending on T ) such that ‖δyT (T )‖X + ‖δλT (0)‖X 6
C(‖δy(0)‖X + ‖δλT (T )‖X). Since δyT (0) = y0 − ȳ and δλT (T ) = −λ̄, it follows that δλT (0) and
δyT (T ) are bounded in X uniformly with respect to T , and thus vT (0) and wT (T ) are bounded
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in X uniformly with respect to T . Therefore vT (T ) = O(e−νT ) and wT (0) = O(e−νT ). As a
consequence,

vT (0) = y0 − ȳ + O(e−νT ), (id + PE)wT (T ) = −λ̄+ O(e−νT ).

We do not know whether id + PE is boundedly invertible or not, but we insist that we know that
wT (T ) is bounded in X uniformly with respect to T . Finally, we obtain

vT (t) = etA−(y0 − ȳ) + etA−O(e−νT ), wT (t) = e(T−t)A∗
−wT (T ).

Note that, since wT = P (yT − ȳ) + λT − λ̄ and since λT (T ) = 0 (transversality condition in the
PMP, since yT (T ) is let free), we have wT (T ) = P (yT (T ) − ȳ) − λ̄. We then infer the results of
Proposition 3.

To establish the statements of Theorem 2 and Remark 2, we proceed as in Section 3.4, by
gathering adequately the various terms. We do not give any details. The fact that µ is well defined
by (35) is because we first define µ as the limit of VT (y0) − T V̄ − Vf (y0) as T → +∞ (as it is
the usual definition for the ergodic constant) and we identify this limit in the exponential scale
provided by the asymptotic expansion.

5 Conclusion

For large-time LQ optimal control problems with fixed terminal points, we presented an asymptotic
expansion of the value function. The first term is obtained using the turnpike property, and the
second term is the sum of the optimal values of two stabilization problems corresponding to the
respective terminal points towards the turnpike. We also established a version of this result when
the final point is left free.

Furthermore, in both cases, we derived explicit expansions for the optimal trajectories. The-
orems 1 and 2 are applicable in infinite-dimensional spaces but under different assumptions. In
Theorem 1, we assumed exact controllability, group generation, and a bounded control opera-
tor. On the other hand, Theorem 2 is based on assumptions of an analytic semigroup, a possibly
unbounded but admissible control operator, and exponential stabilizability and detectability.

These assumptions enable us to use the comprehensive algebraic Riccati theory, akin to the one
in finite dimension, which has been instrumental in proving the theorems.

Relaxing analyticity If one wishes to relax the analyticity assumption, the algebraic Riccati
theory becomes considerably more complicated. In particular, there exist several possible algebraic
Riccati equations with different meanings and interpretations (see [12, 30, 31]). Consequently, it is
not clear whether Theorem 2 and its proof, developed in Section 4.2, can be adapted to this more
general context. We leave this issue open for further exploration.

To be more precise, we refer to the explanation given in [24, Section 3.3, page 108], that we
reproduce partly here. The operator A− = A−BR−1B ∗ P , of domain D(A−) (which may differ
from D(A)) generates an exponentially stable C0 semigroup (etA−)t>0. Here, P ∈ L(X) is a pos-
itive definite selfadjoint operator that maps D(A−) to D(A∗) and D(A) to D(A∗−), and we have
Sf (y0) = 1

2 〈P (y0−ȳ), y0−ȳ〉X . However, P satisfies an algebraic Riccati onD(A−) and possibly an-
other one on D(A). It is not known whether the control operator B is admissible or not for the semi-

group (etA−)t>0. The latter fact is a serious obstacle to defining E = −
∫ +∞

0
etA−BR−1B∗etA− dt

solution of the Lyapunov equation A−E+EA−−BR−1B∗ = 0, and thus to defining the operator
L instrumentally used in Section 4.2 to diagonalize M .
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Nonlinear systems Another final remark is the following. In the present paper we have treated
LQ optimal control problems. It is natural to ask whether our results can be established in a
nonlinear context, for the optimal control problem

ẏ(t) = f(y(t), u(t)), y(0) = y0, y(T ) = y1,

VT (y0, y1) = minCT (u) where CT (u) =

∫ T

0

f0(y(t), u(t)) dt.

This study is done in [3] and since it is interesting to compare the obtained results with those of
the present paper we provide hereafter a quick overview of the main result of [3].

Let (ȳ, ū) (the turnpike) be a solution of the static optimal control problem

V̄ = min
f(y,u)=0

f0(y, u).

We define the forward stabilization problem as

ẏ(t) = f(y(t), u(t)), y(0) = y0,

Vf (y0) = min

∫ +∞

0

(
f0(y(t), u(t))− f0(ȳ, ū)

)
dt

and the backward stabilization problem as

ẏ(t) = −f(y(t), u(t)), y(0) = y1,

Vb(y1) = min

∫ +∞

0

(
f0(y(t), u(t))− f0(ȳ, ū)

)
dt.

Noting that w(y, u) = f0(y, u)−f0(ȳ, ū) is the usual supply rate function that is used to characterize
the dissipativity property of an optimal control problem (see [33] for the notion of dissipativity and
see [10, 13, 14, 25] for the various relationships between dissipativity and turnpike). It is proved
in [3] that, in finite dimension, under dissipativity and other appropriate assumptions,

VT (y0, y1) = T V̄ + Vf (y0) + Vb(y1) + o(1)

as T → +∞.
It is interesting to compare this result to the results obtained in the present paper – and more

precisely, with the contents of Proposition 1, which are more prepared for the comparison with
respect to the dissipativity property, as already alluded. Apart from the dimension, the results
in the LQ case stated in Propositions 1 and 2 are more precise, in that, not only, the remainder
term is not a o(1) and a O(e−νT ), but also, in the LQ case we have obtained an expansion for the
optimal solution, which we do not have in the nonlinear case.
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